WorldWideScience

Sample records for facility profiles ag ch

  1. World Energy Data System (WENDS). Volume VII. Nuclear facility profiles, AG--CH. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  2. File list: NoD.Bld.10.AllAg.CH12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.10.AllAg.CH12 mm9 No description Blood CH12 SRX371731,SRX348590,SRX348597,S...RX371734,SRX371735,SRX348517,SRX371732,SRX371309,SRX348589,SRX348592,SRX371310,SRX371733 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.10.AllAg.CH12.bed ...

  3. CATCHprofiles: Clustering and Alignment Tool for ChIP Profiles

    DEFF Research Database (Denmark)

    G. G. Nielsen, Fiona; Galschiøt Markus, Kasper; Møllegaard Friborg, Rune

    2012-01-01

    Chromatin Immuno Precipitation (ChIP) profiling detects in vivo protein-DNA binding, and has revealed a large combinatorial complexity in the binding of chromatin associated proteins and their post-translational modifications. To fully explore the spatial and combinatorial patterns in ChIP-profil......Chromatin Immuno Precipitation (ChIP) profiling detects in vivo protein-DNA binding, and has revealed a large combinatorial complexity in the binding of chromatin associated proteins and their post-translational modifications. To fully explore the spatial and combinatorial patterns in Ch......IP-profiling data and detect potentially meaningful patterns, the areas of enrichment must be aligned and clustered, which is an algorithmically and computationally challenging task. We have developed CATCHprofiles, a novel tool for exhaustive pattern detection in ChIP profiling data. CATCHprofiles is built upon...... a computationally efficient implementation for the exhaustive alignment and hierarchical clustering of ChIP profiling data. The tool features a graphical interface for examination and browsing of the clustering results. CATCHprofiles requires no prior knowledge about functional sites, detects known binding patterns...

  4. CATCHprofiles: clustering and alignment tool for ChIP profiles.

    Directory of Open Access Journals (Sweden)

    Fiona G G Nielsen

    Full Text Available Chromatin Immuno Precipitation (ChIP profiling detects in vivo protein-DNA binding, and has revealed a large combinatorial complexity in the binding of chromatin associated proteins and their post-translational modifications. To fully explore the spatial and combinatorial patterns in ChIP-profiling data and detect potentially meaningful patterns, the areas of enrichment must be aligned and clustered, which is an algorithmically and computationally challenging task. We have developed CATCHprofiles, a novel tool for exhaustive pattern detection in ChIP profiling data. CATCHprofiles is built upon a computationally efficient implementation for the exhaustive alignment and hierarchical clustering of ChIP profiling data. The tool features a graphical interface for examination and browsing of the clustering results. CATCHprofiles requires no prior knowledge about functional sites, detects known binding patterns "ab initio", and enables the detection of new patterns from ChIP data at a high resolution, exemplified by the detection of asymmetric histone and histone modification patterns around H2A.Z-enriched sites. CATCHprofiles' capability for exhaustive analysis combined with its ease-of-use makes it an invaluable tool for explorative research based on ChIP profiling data. CATCHprofiles and the CATCH algorithm run on all platforms and is available for free through the CATCH website: http://catch.cmbi.ru.nl/. User support is available by subscribing to the mailing list catch-users@bioinformatics.org.

  5. A multi-wire beam profile monitor in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Buxton, W.; Castillo, V.; Glenn, J.W. [and others

    1997-07-01

    A multi-wire beam profile monitor which can be used to directly monitor and control the optical matching between the Booster and AGS rings has been installed and tested in the AGS. Placement of a multi-wire monitor directly in the AGS provides profile measurements taken upon injection and the first two or more revolutions of the beam. The data from such measurements can be used to determine the optical properties of the beam transport line leading into the AGS.

  6. Complete Phase I Tests As Described in the Multi-lab Test Plan for the Evaluation of CH3I Adsorption on AgZ

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, S. H. [ORNL; Jubin, R. T. [ORNL

    2014-09-30

    Silver-exchanged mordenite (AgZ) has been identified as a potential sorbent for iodine present in the off-gas streams of a used nuclear fuel reprocessing facility. In such a facility, both elemental and organic forms of iodine are released from the dissolver in gaseous form. These species of iodine must be captured with high efficiency for a facility to avoid radioactive iodine release above regulatory limits in the gaseous effluent of the plant. Studies completed at Idaho National Laboratory (INL) examined the adsorption of organic iodine in the form of CH3I by AgZ. Upon breakthrough of the feed gas through the sorbent bed, elemental iodine was observed in the effluent stream, despite the fact that the only source of iodine in the system was the CH3I in the feed gas.1 This behavior does not appear to have been reported previously nor has it been independently confirmed. Thus, as a result of these prior studies, multiple knowledge gaps relating to the adsorption of CH3I by AgZ were identified, and a multi-lab test plan, including Oak Ridge National Laboratory (ORNL), INL, Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories, was formulated to address each in a systematic way.2 For this report, the scope of work for ORNL was further narrowed to three thin-bed experiments that would characterize CH3I adsorption onto AgZ in the presence of water, NO, and NO2. Completion of these three-thin bed experiments demonstrated that organic iodine in the form of CH3I was adsorbed by reduced silver mordenite (Ag0Z) to a 50% higher loading than that of I2 when adsorbed from a dry air stream. Adsorption curves suggest different adsorption mechanisms for I2 and CH3I. In the presence of NO and NO2 gas, the loading of CH3I onto Ag0Z is suppressed and may be reversible. Further, the presence of NO and NO2 gas appears to oxidize CH3I to I2; this is indicated by an adsorption curve similar to that of I2 on Ag0Z. Finally, the loss of organic iodine loading

  7. Facile synthesis of S-Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    Science.gov (United States)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S-Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70-160 nm and lengths of 200-360 nm. X-ray diffraction of the S-Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S-Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S-Ag nanocomposites with diameters of 10-40 nm were obtained. The formation mechanism of the S-Ag nanocomposites was studied by designing a series of experiments using ultraviolet-visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S-Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S-Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  8. Size-Selected SnO1.8: Ag Mixed Nanoparticle Films for Ethanol, CO, and CH4 Detection

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Joshi

    2007-01-01

    Full Text Available Mixed nanoparticle films of SnO1.8: Ag prepared by the gas phase condensation method using an aerosol route have been used for the detection of CO and CH4. Particle size as estimated by transmission electron microscopy is 20 nm for both SnO1.8 and Ag nanoparticles. The gas-sensing behavior of the films for these gases has been studied in detail as a function of Ag concentration in the films. A study has been made in order to distinguish the size effect and specific surface area effect in the ethanol gas-sensing behavior of SnO1.8: Ag mixed nanoparticle films. This distinction, which has not been possible using the traditional methods of the sensor fabrication, gives evidence of the dominance of size effect of the metal dopant over the surface area effect in the gas sensing of the films. The sensors show also an increased sensor signal with increase of Ag concentration in the films for CO and CH4. It is observed from the comparative study of the sensing behavior of SnO1.8: Ag films for CO and CH4 that the sensors are more sensitive towards CO as compared to CH4. The mixed nanoparticle films were also used for the detection of CO at 100 ppm level.

  9. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq

    NARCIS (Netherlands)

    Johannes, Frank; Wardenaar, Rene; Colomé Tatché, Maria; Mousson, Florence; de Graaf, Petra; Mokry, Michal; Guryev, Victor; Timmers, H. Th. Marc; Cuppen, Edwin; Jansen, Ritsert C.; Bateman, Alex

    2010-01-01

    Motivation: ChIP-chip and ChIP-seq technologies provide genomewide measurements of various types of chromatin marks at an unprecedented resolution. With ChIP samples collected from different tissue types and/ or individuals, we can now begin to characterize stochastic or systematic changes in epigen

  10. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq

    NARCIS (Netherlands)

    Johannes, F.; Wardenaar, R.; Colome-Tatche, M.; Mousson, F.; de Graaf, P.; Mokry, M.; Guryev, V.; Timmers, H.T.; Cuppen, E.; Jansen, R.

    2010-01-01

    MOTIVATION: ChIP-chip and ChIP-seq technologies provide genome-wide measurements of various types of chromatin marks at an unprecedented resolution. With ChIP samples collected from different tissue types and/or individuals, we can now begin to characterize stochastic or systematic changes in epigen

  11. Facile synthesis, structure, and properties of Ag2S/Ag heteronanostructure

    Science.gov (United States)

    Sadovnikov, S. I.; Gusev, A. I.

    2016-09-01

    Ag2S/Ag heteronanostructure has been produced by a simple one-stage chemical deposition from aqueous solutions of silver nitrate, sodium sulfide, and sodium citrate with the use of monochromatic light irradiation. For simultaneous synthesis of Ag2S and Ag nanoparticles, deposition has been performed from reaction mixtures with reduced sodium sulfide concentration. The size of Ag2S and Ag nanoparticles is 45-50 and 15-20 nm, respectively. It is established that in the contact layer between silver sulfide and silver, nonconducting α-Ag2S acanthite transforms into superionic β-Ag2S argentite under the action of external electric field. The scheme of the operation of a resistive switch based on an Ag2S/Ag heteronanostructure is proposed. The UV-Vis optical absorption spectra of colloidal solutions of Ag2S/Ag heteronanostructures have been studied.

  12. 咪唑盐四环溴化银聚合物[[(CH3CH2{(CHNCHCHN)}CH2]2]n2+[(Ag2Br4)]n2﹣的合成与结构%Synthesis and Structure of 4 th ﹣ ring Silver Bromide Polymer [[(CH 3 CH 2{(CHNCHCHN)}CH2 ]2 ]n2 +[(Ag2 Br4)]n2 ﹣

    Institute of Scientific and Technical Information of China (English)

    王志国

    2015-01-01

    The reaction of the NHC Precursor[CH3 CH2(CHNCHCHN)CH2 ]2 2 +[Br]2 2 ﹣ with Ag2 O in a 1:2 molar ratio at 45 ℃ in CH3 CN yields the title comPlex [[( CH3 CH2{( CHNCHCHN )}CH2 ]2 ]n2 +[(Ag2 Br4 )]n2 ﹣ . The title comPound has been characterized by 1 HNMR and single ﹣ crystal X ﹣ ray diffraction and TGA analysis. Ⅰt crystallizes in monoclinic,sPace grouP P21 / c with a = 13. 862(4)/ nm,b = 12. 822(3)/nm,c = 11. 447(3)/ nm,α = 90. 00°,β = 113. 277(5)°,γ = 90. 00°,V = 1869. 0(9)nm3 ,Z = 2 ,D = 2. 621 0Mg / m3 ,μ = 7. 492 / mm ﹣ 1 and F(000)= 1108. 00. The structure was refined to R1 = 0. 0296 and wR2 =0. 0765 for 1696 observed reflections with F2 ﹥ 2σ(F2). The title salt consists of a carbon ﹣ bridged imidazoli-umcation[(CH3 CH2{(CHNCHCHN)}CH2 ]2 2 + and a 4th ﹣ ring silver bromide Polymer anionic[Ag2 Br4 ]2 ﹣ .%氮杂环卡宾前体[CH3 CH2(CHNCHCHN)CH2]22+[Br]22﹣与 Ag2 O 在45℃下在乙腈溶液中以1:2的摩尔比反应成功合成四环溴化银聚合物1,2﹣亚乙基,3,3'﹣乙基咪唑[[(CH3 CH2{(CHNCHCHN)}CH2]2]n2+[(Ag2 Br4)]n2﹣,产物通过元素分析,1 HNMR 和 X ﹣ ray 衍射及差热分析表征.晶体结构表明配合物属于单斜晶体,空间群均为 P2(1)/ c,化合物晶胞参数 a =13.862(4)nm,b =12.822(3)nm,c =11.447(3)nm,α=90.00°,β=113.277(5)°,γ=90.00°,V =1869.0(9)nm3,Z =2,F(000)=1108.00,D =2.6210 Mg/ m3,μ=7.492 mm ﹣1, R1=0.0296,wR2=0.0765.化合物由双咪唑阳离子[(CH3 CH2{(CHNCHCHN)}CH2]22+和四环溴化银阴离子[Ag2 Br4]2﹣构成.

  13. Effect of Ag and Pd promotion on CH4 selectivity in Fe(100) Fischer-Tröpsch catalysis.

    Science.gov (United States)

    Psarras, Peter C; Wilcox, Jennifer; Ball, David W

    2017-02-15

    The current CO2 utilization market is dominated by enhanced oil recovery and urea manufacturing; yet, the scale of demand falls well short of that deemed necessary to make a significant impact on climate change. CO2 conversion to fuels, however, is a utilization technology that can theoretically match the scale of projected CO2 capture. Fischer-Tröpsch (FT) processing is a long-established technology for converting non-petroleum based precursors into transportation fuels and other valuable chemicals. Here, we report the effects of Pd and Ag doping on CH4 selectivity over Fe(100), a common FT catalyst, as these metals have shown potential in the direct conversion of co-fed CO2. Adsorption energies for pathway specific C1 and C2 species were weakened in the presence of Ag and Pd by ca. 0.55 eV and 0.35 eV, respectively. Further, while both Ag- and Pd-promoted surfaces show decreased CH4 production, Ag introduces a prohibitively high coupling barrier; thus, only Pd offered a decrease in CH4 selectivity (-36%) relative to unmodified Fe(100).

  14. A facility design for repackaging ORNL CH-TRU legacy waste in Building 3525

    Energy Technology Data Exchange (ETDEWEB)

    Huxford, T.J.; Cooper, R.H. Jr.; Davis, L.E.; Fuller, A.B.; Gabbard, W.A.; Smith, R.B. [Oak Ridge National Lab., TN (United States); Guay, K.P. [S. M. Stroller Corp. (United States); Smith, L.C. [United Energy Services Corp. (United States)

    1995-07-01

    For the last 25 years, the Oak Ridge National Laboratory (ORNL) has conducted operations which have generated solid, contact-handled transuranic (CH-TRU) waste. At present the CH-TRU waste inventory at ORNL is about 3400 55-gal drums retrievably stored in RCRA-permitted, aboveground facilities. Of the 3400 drums, approximately 2600 drums will need to be repackaged. The current US Department of Energy (DOE) strategy for disposal of these drums is to transport them to the Waste Isolation Pilot Plant (WIPP) in New Mexico which only accepts TRU waste that meets a very specific set of criteria documented in the WIPP-WAC (waste acceptance criteria). This report describes activities that were performed from January 1994 to May 1995 associated with the design and preparation of an existing facility for repackaging and certifying some or all of the CH-TRU drums at ORNL to meet the WIPP-WAC. For this study, the Irradiated Fuel Examination Laboratory (IFEL) in Building 3525 was selected as the reference facility for modification. These design activities were terminated in May 1995 as more attractive options for CH-TRU waste repackaging were considered to be available. As a result, this document serves as a final report of those design activities.

  15. A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yinghui; Zhou, Ying [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wu, Xiaomian [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Orthodontics College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Wang, Lu [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Xu, Ling, E-mail: lingxu@pku.edu.cn [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057 (China); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer AgNPs/PVA/CM-chitosan nanofibers were prepared via electrospinning method. Black-Right-Pointing-Pointer AgNPs were in situ synthesized in electrospinning solution via a facile method. Black-Right-Pointing-Pointer AgNPs distributed homogeneously on the surface of nanofibers. Black-Right-Pointing-Pointer The prepared nanofibers possessed certain antibacterial ability against Escherichia coli. Black-Right-Pointing-Pointer The AgNPs containing nanofibers had potential as antibacterial biomaterial. - Abstract: A facile method to prepare silver nanoparticles (AgNPs) containing nanofibers via electrospinning has been demonstrated. AgNPs were in situ synthesized in poly (vinyl alcohol) (PVA)/carboxymethyl-chitosan (CM-chitosan) blend aqueous solution before electrospinning. UV-vis spectra, viscosity and conductivity of the electrospinning solution were measured to investigate their effects on the electrospinning procedure. The morphology of AgNPs/PVA/CM-chitosan nanofibers was observed by Field Emission Scanning Electron Microscopy. The formation and morphology of AgNPs were investigated by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. The resulted nanofibers have smooth surface and uniform diameters ranging from 295 to 343 nm. The diameters of AgNPs mainly distributed in the range of 4-14 nm, and the electrostatic interaction between AgNPs and fibers was observed. Finally, in vitro Ag release from the nanofibers was measured and the antibacterial behavior of the nanofibers against Escherichia coli was studied by bacterial growth inhibition halos and bactericidal kinetic testing. The AgNPs/PVA/CM-chitosan nanofibers possessed certain antibacterial ability, which makes them capable for antibacterial biomaterials.

  16. Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements

    Directory of Open Access Journals (Sweden)

    S. Noël

    2015-11-01

    Full Text Available Stratospheric profiles of methane (CH4 and carbon dioxide (CO2 have been derived from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY. The retrieval is performed using a method called "Onion Peeling DOAS" (ONPD which combines an onion peeling approach with a weighting function DOAS (Differential Optical Absorption Spectroscopy fit. By use of updated pointing information and optimisation of the data selection and of the retrieval approach the altitude range for reasonable CH4 could be extended to about 17 to 45 km. Furthermore, the quality of the derived CO2 has been assessed such that now the first stratospheric profiles of CO2 from SCIAMACHY are available. Comparisons with independent data sets yield an estimated accuracy of the new SCIAMACHY stratospheric profiles of about 5–10 % for CH4 and 2–3 % for CO2. The accuracy of the products is currently mainly restricted by the appearance of unexpected vertical oscillations in the derived profiles which need further investigation. Using the improved ONPD retrieval, CH4 and CO2 stratospheric data sets covering the whole SCIAMACHY time series (August 2002–April 2012 and the latitudinal range between about 50 and 70° N have been derived. Based on these time series, CH4 and CO2 trends have been estimated, which are in reasonable agreement with total column trends for these gases. This shows that the new SCIAMACHY data sets can provide valuable information about the stratosphere.

  17. Computer Profile of School Facilities Energy Consumption.

    Science.gov (United States)

    Oswalt, Felix E.

    This document outlines a computerized management tool designed to enable building managers to identify energy consumption as related to types and uses of school facilities for the purpose of evaluating and managing the operation, maintenance, modification, and planning of new facilities. Specifically, it is expected that the statistics generated…

  18. A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers

    Science.gov (United States)

    Zhao, Yinghui; Zhou, Ying; Wu, Xiaomian; Wang, Lu; Xu, Ling; Wei, Shicheng

    2012-09-01

    A facile method to prepare silver nanoparticles (AgNPs) containing nanofibers via electrospinning has been demonstrated. AgNPs were in situ synthesized in poly (vinyl alcohol) (PVA)/carboxymethyl-chitosan (CM-chitosan) blend aqueous solution before electrospinning. UV-vis spectra, viscosity and conductivity of the electrospinning solution were measured to investigate their effects on the electrospinning procedure. The morphology of AgNPs/PVA/CM-chitosan nanofibers was observed by Field Emission Scanning Electron Microscopy. The formation and morphology of AgNPs were investigated by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. The resulted nanofibers have smooth surface and uniform diameters ranging from 295 to 343 nm. The diameters of AgNPs mainly distributed in the range of 4-14 nm, and the electrostatic interaction between AgNPs and fibers was observed. Finally, in vitro Ag release from the nanofibers was measured and the antibacterial behavior of the nanofibers against Escherichia coli was studied by bacterial growth inhibition halos and bactericidal kinetic testing. The AgNPs/PVA/CM-chitosan nanofibers possessed certain antibacterial ability, which makes them capable for antibacterial biomaterials.

  19. Automation of Library Preparation for High-resolution ChIP-seq Profiling

    Science.gov (United States)

    Henry, Isabelle M.; Cotterman, Rebecca; Knoepfler, Paul; Comai, Luca; Kim, Ryan W.; O'Geen, Henriette

    2013-01-01

    The dynamic modification of DNA and histones plays a key role in transcriptional regulationthrough altering the packaging of DNA and modifying the nucleosome surface. These chromatin states, also referred to as the epigenome, are distinctive for different tissues, developmental stages, and disease states and can also be altered by environmental influences. New technologies allow the genome-wide visualization of the information encoded in theepigenome. For example, the chromatin immunoprecipitation (ChIP) assay allows investigators to characterize DNA–protein interactions in vivo. ChIP followed by high-throughput sequencing (ChIP-seq) is a powerful tool to identify genome-wide profiles of transcription factors, histone modifications, DNA methylation, and nucleosome positioning. The low yield of ChIP assays presents a challenge for reproducible and high quality library preparation for high throughput sequencing. Using the automated library preparation system from IntegenX, we prepared ChIP-seq libraries from as little as 1 ng ChIP DNA material. Sequencing of biological replicates on the Illumina platform confirmed a 95%-98% overlap of identified binding sites. Progress of ChIP experiments using limited tissue amounts from rice seedlings as well as other applications of the library automation system will be discussed.

  20. DFT evaluation of the electronic structures and spectroscopic properties of the self-assembled [Pt_2M_4(C=CH)_8](M=Cu,Ag) clusters

    Institute of Scientific and Technical Information of China (English)

    BAI FuQuan; XIA BaoHui; ZHANG HongXing; YANG BaoZhu; WANG Jian; SUN Lei

    2009-01-01

    Electronic structures and spectroscopic properties of self-assembled[Pt_2M_4(C≡CH)_8](M=Cu,Ag) clusters have been studied by the TD-DFT (time-dependent density functional theory) calculations with the polarizable continuum model (PCM).The ground-and excited-state structures were optimized by the DFT (density functional theory) methods.The calculated structures and spectroscopic properties are in agreement with the corresponding experimental results.The[Pt_2M_4(C≡CH)_8]clusters have two stable ground state geometries (D_4 and D_(4h) symmetry).The calculated Pt-M distances suggest only very weak interactions.The Cu-Cu distances are larger than the van der Waals radii of two Cu atoms and the Ag-Ag distances are analogous with the sum of van der Waals radii of two Ag atoms.Upon excitation,the interaction of Pt…M,Ag…Ag is strengthened,while the Cu…Cu distances are shortened but they are still larger than the sum of van der Waals radii of two Cu atoms.The lowest-energy absorptions are at 450,365 and 375 nm and the emissions are at 611,431 and 435 nm for[Pt_2M_4(C≡CH)_8],[Pt_2M_4(C≡CH)_8](A) and (B),respectively.The transitions are all perturbed by the Cu or Ag composition through the UV-Vis spectra region;therefore,there are not pure ILCT or M_(pt)LCT characteristics (ILCT:intraligand charge transfer;MLCT:metal-to-ligand charge transfer) in absorptions of heteropolynuclear [Pt_2M_4(C≡CH)_8]clusters.Since the emissions and the lowest-absorptions have different transition characteristics for each complex,the emissions should not come from the lowest-energy absorptions.Because the M…M interactions in the excited state of[Pt_2Ag_4(C≡CH)_8]are augmented,the emissions of [Pt_2Ag_4(C≡CH)_8]clusters bear prominent ILCT character,which is the reason why the emission wavelengths of[Pt_2Ag_4(C≡CH)_8]have a small hypsochromic shift relative to the emission wavelength of homoleptic[Pt(C≡CH)_4]~(2-)precursor.

  1. A facile route to synthesis of AgInS2 nanostructures

    Indian Academy of Sciences (India)

    Mehdi Ranjbar; Mohammad Ali Taher; Mohammad Sadeghinia

    2014-06-01

    AgInS2 nanoparticles have been synthesized via a facile one-step process using AgNO3, thiosemicarbazid (TSC) and InCl3.4H2O as starting reagents from propylene glycol solution. The effects of concentration of precursors, reaction time and type of sulfur sources on the morphology and particle size were also studied. X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), scanning electron microscope (SEM), transmission electron microscope (TEM), ultraviolet–visible spectroscopy (UV–Vis) and photoluminescence (PL) spectroscopy were used to characterize the obtained products.

  2. Facile fabrication of AgNPs/(PVA/PEI) nanofibers: high electrochemical efficiency and durability for biosensors.

    Science.gov (United States)

    Zhu, Han; Du, MingLiang; Zhang, Ming; Wang, Pan; Bao, ShiYong; Wang, LiNa; Fu, YaQin; Yao, JuMing

    2013-11-15

    A novel, facile and green approach for the fabrication of H2O2, glutathione (GSH) and glucose detection biosensor using water-stable PVA and PVA/PEI nanofibers decorated with AgNPs by combining an in situ reduction approach and electrospinning technique has been demonstrated. Small, uniform and well-dispersed AgNPs embedded in the PVA nanofibers and immobilized on functionalized PVA/PEI nanofibers indicate the highly sensitive detection of H2O2 with a detection limit of 5 μM and exhibit a fast response, broad linear range, low detection limit and excellent stability and reusability.

  3. A Facile Synthesis of Ag Modified ZnO Nanocrystals with Enhanced Photocatalytic Activity

    Institute of Scientific and Technical Information of China (English)

    DONG Yanling; ZHAN Sha; WANG Ping

    2012-01-01

    Ag modified ZnO (Ag/ZnO) nanocrystals were prepared by a facile and low temperature wet chemical method.The phase structures,morphologies,and optical properties of the as-prepared samples were characterized by X-ray powder diffraction (XRD),field-emission scanning electron microscopy (FESEM),high-resolution transmission electron microscopy (HRTEM),the Brumauer-Emmett-Teller (BET) surface area,UV-vis diffuse reflectance spectroscopy and photoluminescence (PL) spectra,respectively.The photocatalytic performance of Ag/ZnO with diffent Ag contents was measured with the degradation of methyl orange (MO) at room temperature under UV light irradiation.The experimental results indicated that the well-crystalline ZnO nanopaticles with a size of ca.4.5 nm exhibited a high photocatalytic activity for the degradation of MO with the apparent rate constant (k) of 1.57 × 10-2 min-1,and the photocatalytic activities of ZnO were further enhanced by modification with silver.When the Ag loading was 3mo1%,Ag/ZnO showed the highest photocatalytic acitivity with a k value of 5.452× 10-2 min-1,which is 3.5 and 2.5 time more than that of ZnO and commercial P25,respectively.

  4. SignalSpider: Probabilistic pattern discovery on multiple normalized ChIP-Seq signal profiles

    KAUST Repository

    Wong, Kachun

    2014-09-05

    Motivation: Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-Seq) measures the genome-wide occupancy of transcription factors in vivo. Different combinations of DNA-binding protein occupancies may result in a gene being expressed in different tissues or at different developmental stages. To fully understand the functions of genes, it is essential to develop probabilistic models on multiple ChIP-Seq profiles to decipher the combinatorial regulatory mechanisms by multiple transcription factors. Results: In this work, we describe a probabilistic model (SignalSpider) to decipher the combinatorial binding events of multiple transcription factors. Comparing with similar existing methods, we found SignalSpider performs better in clustering promoter and enhancer regions. Notably, SignalSpider can learn higher-order combinatorial patterns from multiple ChIP-Seq profiles. We have applied SignalSpider on the normalized ChIP-Seq profiles from the ENCODE consortium and learned model instances. We observed different higher-order enrichment and depletion patterns across sets of proteins. Those clustering patterns are supported by Gene Ontology (GO) enrichment, evolutionary conservation and chromatin interaction enrichment, offering biological insights for further focused studies. We also proposed a specific enrichment map visualization method to reveal the genome-wide transcription factor combinatorial patterns from the models built, which extend our existing fine-scale knowledge on gene regulation to a genome-wide level. Availability and implementation: The matrix-algebra-optimized executables and source codes are available at the authors\\' websites: http://www.cs.toronto.edu/∼wkc/SignalSpider. Contact: Supplementary information: Supplementary data are available at Bioinformatics online.

  5. Harmonisation and diagnostics of MIPAS ESA CH4 and N2O profiles using data assimilation

    Science.gov (United States)

    Errera, Quentin; Ceccherini, Simone; Christophe, Yves; Chabrillat, Simon; Hegglin, Michaela I.; Lambert, Alyn; Ménard, Richard; Raspollini, Piera; Skachko, Sergey; van Weele, Michiel; Walker, Kaley A.

    2016-12-01

    This paper discusses assimilation experiments of methane (CH4) and nitrous oxide (N2O) profiles retrieved from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Here we focus on data versions 6 and 7 provided by the ESA processor. These data sets have been assimilated by the Belgian Assimilation System for Chemical ObsErvations (BASCOE). The CH4 and N2O retrieved profiles can oscillate, especially in the tropical lower stratosphere. Using the averaging kernels of the observations and a background error covariance matrix, which has previously been calibrated, allows the system to partly remedy this issue and provide assimilated fields that are more regular vertically. In general, there is a good agreement between the BASCOE analyses and independent observations from ACE-FTS (CH4 and N2O) and MLS (N2O), demonstrating the general good quality of CH4 and N2O retrievals provided by MIPAS ESA. Nevertheless, this study also identifies two issues in these data sets. First, time series of the observations show unexpected discontinuities due to an abrupt change in the gain of MIPAS band B, generally occurring after the instrument decontamination. Since the calibration is performed weekly, the abrupt change in the gain affects the measurements until the subsequent calibration is performed. Second, the correlations between BASCOE analyses and independent observations are poor in the lower stratosphere, especially in the tropics, probably due to the presence of outliers in the assimilated data. In this region, we recommend using MIPAS CH4 and N2O retrievals with caution.

  6. AgNO2-mediated direct nitration of the quinoxaline tertiary benzylic C-H bond and direct conversion of 2-methyl quinoxalines into related nitriles.

    Science.gov (United States)

    Wu, Degui; Zhang, Jian; Cui, Jianhai; Zhang, Wei; Liu, Yunkui

    2014-09-25

    A unique method for AgNO2-mediated direct nitration of the quinoxaline tertiary C-H bond and direct conversion of 2-methyl quinoxalines into 2-quinoxaline nitriles under oxidative conditions has been developed. This protocol provides an efficient way to access quinoxaline containing nitroalkanes and nitriles depending on different substrate selection.

  7. ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles.

    Science.gov (United States)

    Chen, Xi; Jung, Jin-Gyoung; Shajahan-Haq, Ayesha N; Clarke, Robert; Shih, Ie-Ming; Wang, Yue; Magnani, Luca; Wang, Tian-Li; Xuan, Jianhua

    2016-04-20

    Chromatin immunoprecipitation with massively parallel DNA sequencing (ChIP-seq) has greatly improved the reliability with which transcription factor binding sites (TFBSs) can be identified from genome-wide profiling studies. Many computational tools are developed to detect binding events or peaks, however the robust detection of weak binding events remains a challenge for current peak calling tools. We have developed a novel Bayesian approach (ChIP-BIT) to reliably detect TFBSs and their target genes by jointly modeling binding signal intensities and binding locations of TFBSs. Specifically, a Gaussian mixture model is used to capture both binding and background signals in sample data. As a unique feature of ChIP-BIT, background signals are modeled by a local Gaussian distribution that is accurately estimated from the input data. Extensive simulation studies showed a significantly improved performance of ChIP-BIT in target gene prediction, particularly for detecting weak binding signals at gene promoter regions. We applied ChIP-BIT to find target genes from NOTCH3 and PBX1 ChIP-seq data acquired from MCF-7 breast cancer cells. TF knockdown experiments have initially validated about 30% of co-regulated target genes identified by ChIP-BIT as being differentially expressed in MCF-7 cells. Functional analysis on these genes further revealed the existence of crosstalk between Notch and Wnt signaling pathways.

  8. An Electronic Pressure Profile Display system for aeronautic test facilities

    Science.gov (United States)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  9. Facile synthesis of AgCl/polydopamine/Ag nanoparticles with in-situ laser improving Raman scattering effect

    Science.gov (United States)

    Zhang, Yan; Zhang, Wenqi; Wang, Lin; Wang, Feng; Yang, Haifeng

    2017-01-01

    We reported a simple and fast method to prepare a composite material of polydopamine (PDA) adlayer covered cubic AgCl core, which was inlaid with Ag nanoparticles (NPs), shortly named as AgCl/PDA/AgNPs. The resultant AgCl/PDA/AgNPs could be employed as surface-enhanced Raman scattering (SERS) substrate for in-situ detection and the SERS activity could be further greatly improved due to the production of more AgNPs upon laser irradiation. With 4-mercaptopyridine (4-Mpy) as the probe molecule, the enhancement factor could reach 107. Additionally, such SERS substrate shows good reproducibility with relative standard deviation of 7.32% and long term stability (after storage for 100 days under ambient condition, SERS intensity decay is less than 25%). In-situ elevating SERS activity of AgCl/PDA/AgNPs induced by laser may be beneficial to sensitive analysis in practical fields.

  10. Facile synthesis of PdAgTe nanowires with superior electrocatalytic activity

    Science.gov (United States)

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-12-01

    In this work, ultrathin Te nanowires (NWs) with high-aspect-ratio are prepared by a simple hydrothermal method. By using Te NWs as the sacrificial template, we demonstrate a facile and efficient method for the synthesis of PdAgTe NWs with high-quality through the partly galvanic replacement between Te NWs and the corresponding noble metal salts precursors in an aqueous solution. The compositions of PdAgTe NWs can be tuned by simply altering the concentration of the precursors. After cyclic voltammetry treatment, multi-component PdAgTe NW with a highly active and stable surface can be obtained. The structure and composition of the as-prepared nanomaterials are analyzed by transmission electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopy, inductively coupled plasma-mass spectroscopy and X-ray photoelectron spectroscopy. Electrochemical catalytic measurement results prove that the as synthesized PdAgTe NWs present superior catalytic activity toward ethanol electrooxidation in alkaline solution than the commercial Pd/C catalyst, which making them can be used as effective catalysts for the direct ethanol fuel cells.

  11. A facile and green strategy for the synthesis of Au, Ag and Au-Ag alloy nanoparticles using aerial parts of R. hypocrateriformis extract and their biological evaluation.

    Science.gov (United States)

    Godipurge, S S; Yallappa, S; Biradar, Naveen J; Biradar, J S; Dhananjaya, B L; Hegde, Gajanan; Jagadish, K; Hegde, Gurumurthy

    2016-12-01

    A facile and green strategy is reported here to synthesize gold (Au), silver (Ag) and gold-silver (Au-Ag) alloy nanoparticles (NPs) through bio-reduction reactions of aqueous corresponding metal precursors mediated by extracts of aerial parts of R. hypocrateriformis, which act as both reducing and stabilizing agents, under microwave irradiation. UV-vis spectrophotometer, XRD, FT-IR, FESEM/TEM, TGA and EDAX analysis were used to characterize the obtained NPs. The formation of NPs is evident from their surface plasmon resonance peak observed at λmax=∼550, 450 and 500nm for Au, Ag and Au-Ag alloy NPs respectively. XRD pattern revealed that fcc structure, while FT-IR spectra signify the presence of phytochemicals adsorbed on NPs. Such a biofunctionalized NPs were characterized by their weight loss, 30% due to thermal degradation of plant phytochemicals observed in TG analysis. The spherical shape of Au, Ag and Au-Ag alloy NPs (∼10-50nm) is observed by FE-SEM/TEM images. EDAX analysis confirms the expected elemental composition. Moreover, these NPs showed enhanced antimicrobial, antioxidant, and anticancer activities, though it is more pronounced for Au-Ag alloy NPs, which is due to the combining effect of phytochemicals, Au and Ag metals. Thus, the biosynthesized NPs could be applied as effective growth inhibitors for various biomedical applications.

  12. Design of FELiChEM, the first infrared free-electron laser user facility in China

    CERN Document Server

    Li, He-Ting; Zhang, Shan-Cai; Wang, Lin; Yang, Yong-Liang

    2016-01-01

    FELiChEM is a new experimental facility under construction at University of Science and Technology of China (USTC), whose core device is two free electron laser oscillators generating middle-infrared and far-infrared laser and covering the spectral range of 2.5-200 ?m. It will be a dedicated infrared light source aiming at energy chemistry research. We present the brief design of FEL oscillators with the emphasis put on the middle-infrared oscillator. Most of the basic parameters are determined and the anticipated performance of the output radiation is given. The first light of FELiChEM is targeted for the end of 2017.

  13. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    Energy Technology Data Exchange (ETDEWEB)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  14. Formation and characterisation of the silver hydride nanocluster cation [Ag3H2((Ph2 P)2CH2)](+) and its release of hydrogen.

    Science.gov (United States)

    Girod, Marion; Krstić, Marjan; Antoine, Rodolphe; MacAleese, Luke; Lemoine, Jérome; Zavras, Athanasios; Khairallah, George N; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A J

    2014-12-08

    Multistage mass spectrometry and density functional theory (DFT) were used to characterise the small silver hydride nanocluster, [Ag3 H2 L](+) (where L=(Ph2 P)2 CH2 ) and its gas-phase unimolecular chemistry. Collision-induced dissociation (CID) yields [Ag2 HL](+) as the major product while laser-induced dissociation (LID) proceeds via H2 formation and subsequent release from [Ag3 H2 L](+) , giving rise to [Ag3 L](+) as the major product. Deuterium labelling studies on [Ag3 D2 L](+) prove that the source of H2 is from the hydrides and not from the ligand. Comparison of TD-DFT absorption patterns obtained for the optimised structures with action spectroscopy results, allows assignment of the measured features to structures of precursors and products. Molecular dynamics "on the fly" reveal that AgH loss is favoured in the ground state, but H2 formation and loss is preferred in the first excited state S1 , in agreement with CID and LID experimental findings. This indicates favourable photo-induced formation of H2 and subsequent release from [Ag3 H2 L](+) , an important finding in context of metal hydrides as a hydrogen storage medium, which can subsequently be released by heating or irradiation with light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Seasonality and interannual variability of CH4 fluxes from the eastern Amazon Basin inferred from atmospheric mole fraction profiles

    Science.gov (United States)

    Basso, Luana S.; Gatti, Luciana V.; Gloor, Manuel; Miller, John B.; Domingues, Lucas G.; Correia, Caio S. C.; Borges, Viviane F.

    2016-01-01

    The Amazon Basin is an important region for global CH4 emissions. It hosts the largest area of humid tropical forests, and around 20% of this area is seasonally flooded. In a warming climate it is possible that CH4 emissions from the Amazon will increase both as a result of increased temperatures and precipitation. To examine if there are indications of first signs of such changes we present here a 13 year (2000-2013) record of regularly measured vertical CH4 mole fraction profiles above the eastern Brazilian Amazon, sensitive to fluxes from the region upwind of Santarém (SAN), between SAN and the Atlantic coast. Using a simple mass balance approach, we find substantial CH4 emissions with an annual average flux of 52.8 ± 6.8 mg CH4 m-2 d-1 over an area of approximately 1 × 106 km2. Fluxes are highest in two periods of the year: in the beginning of the wet season and during the dry season. Using a CO:CH4 emission factor estimated from the profile data, we estimated a contribution of biomass burning of around 15% to the total flux in the dry season, indicating that biogenic emissions dominate the CH4 flux. This 13 year record shows that CH4 emissions upwind of SAN varied over the years, with highest emissions in 2008 (around 25% higher than in 2007), mainly during the wet season, representing 19% of the observed global increase in this year.

  16. Facile synthesis, characterization, and electrochemical performance of multi-scale AgVO{sub 3} particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hangkong [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong); Li, Hailong [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong); School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Wu, Shaokang [School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Liao, Changzhong; Zhou, Zhengyuan [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong); Liu, Xiang; Djurišić, Aleksandra B.; Xie, Maohai [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Tang, Chuyang [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong); Shih, Kaimin, E-mail: kshih@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2016-07-25

    Multi-scale AgVO{sub 3} particles were successfully synthesized from different organic acids using a facile sol–gel method; a series of techniques were then used to characterize the particles. The X-ray Diffraction (XRD) patterns showed that a main characteristic peak of element Ag is at around 38°. The X-ray photoelectron spectroscopy (XPS) spectra demonstrated the binding energies of Ag{sup 0} 3d (5/2) and Ag{sup 0} 3d (3/2), which further confirmed the existence of element Ag. In addition, the composition of the samples, including the amorphous phase, was determined with a quantitative X-ray diffraction (QXRD) analysis. With a heating rate of 10 °C/min, the products synthesized with citric acid at 450 °C had a larger amorphous phase (26.4% in wt.%) than the samples synthesized with citric acid at 500 °C. To obtain lesser amorphous phase, the precursors were treated at 500 °C with a slower heating rate of 5 °C/min. The electrochemical performance of these three samples, particularly their suitability as cathode materials for lithium ion batteries, were investigated. The products with minimum amorphous phase (9.4%) showed higher specific discharge capacity than other two samples at the first 40 cycles. However, with the increasing fading rate, only 27% of the initial capacity was retained after 100 cycles. Amorphous phase can stabilize the material and avoid the structural collapse during the cycles. Therefore, under the synergistic effect of amorphous content and particle size, the products obtained at 500 °C with quicker heating rate exhibited the optimal capacity and cycling stability. This electrode showed a high initial capacity of 243 mA h/g and retained 41% of the initial capacity after 100 cycles. - Highlights: • Multi-scale AgVO{sub 3} particles were synthesized successfully via a sol–gel method. • With a series of characterization techniques, the existence of Ag was confirmed. • The effects of amorphous phase on the electrochemical

  17. A facile strategy to synthesize bimetallic Au/Ag nanocomposite film by layer-by-layer assembly technique

    Science.gov (United States)

    Zhang, Li; Wang, Cong; Zhang, Yi

    2012-05-01

    A facile strategy has been developed for the preparation of bimetallic gold-silver (Au-Ag) nanocomposite films by alternating absorption of poly-(ethyleneimine)-silver ions and Au onto substrates and subsequent reduction of the silver ions. The composition, micro-structure and properties of the {PEI-Ag/Au}n nanocomposite films were characterized by ultraviolet visible spectroscopy (UV-vis), transmisson electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), surface enhanced Raman scattering (SERS) and cyclic voltammetry (CV). The UV-vis characteristic absorbances of {PEI-Ag/Au}n nanocomposite thin film increase almost linear with the number of bilayers, which indicates a process of uniform assembling. Appearance of a double plasmon bands in the visible region and the lack of apparent core-shell structures in the TEM images confirm the formation of bimetallic Au-Ag nanoparticles. The result of XPS also demonstrates the existence of Ag and Au nanoparticles in the nanocomposite films. TEM and FESEM images show that these Ag and Au nanoparticles in the films possess sphere structure with the size of 20-25 nm. The resulting {PEI-Ag/Au}n films inherit the properties from both the metal Ag and Au, which exhibits a unique performance in SERS and electrocatalytic activities to the oxidation of dopamine. As a result, the {PEI-Ag/Au}n films are more attractive compared to {PEI-Ag/PSS}n and {PEI/Au}n films.

  18. Facile Synthesis of Bimetallic Pt-Ag/Graphene Composite and Its Electro-Photo-Synergistic Catalytic Properties for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Shuhong Xu

    2016-09-01

    Full Text Available A Pt-Ag/graphene composite (Pt-Ag/GNs was synthesized by the facile aqueous solution method, in which Ag+ was first transformed into Ag2O under UV light irradiation, and then Ag2O, Pt2+, and graphene oxide (GO were simultaneously reduced by formic acid. It was found that Pt-Ag bimetallic nanoparticles were highly dispersed on the surface of graphene, and their size distribution was narrow with an average diameter of 3.3 nm. Electrocatalytic properties of the Pt-Ag/GNs composite were investigated by cyclic voltammograms (CVs, chronoamperometry (CA, CO-stripping voltammograms, and electrochemical impedance spectrum (EIS techniques. It was shown that the Pt-Ag/GNs composite has much higher catalytic activity and stability for the methanol oxidation reaction (MOR and better tolerance toward CO poisoning when compared with Pt/GNs and the commercially available Johnson Matthey 20% Pt/C catalyst (Pt/C-JM. Furthermore, the Pt-Ag/GNs composite showed efficient electro-photo-synergistic catalysis for MOR under UV or visible light irradiation. Particularly in the presence of UV irradiation, the Pt-Ag/GNs composite exhibited an ultrahigh mass activity of 1842.4 mA·mg−1, nearly 2.0 times higher than that without light irradiation (838.3 mA·mg−1.

  19. Electrodeposited Ag nanoparticles on TiO{sub 2} nanorods for enhanced UV visible light photoreduction CO{sub 2} to CH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Dan; Tan, Jeannie Ziang Yie; Yang, Fei; Zeng, Jieliang; Zhang, Xiwen, E-mail: zhangxw@zju.edu.cn

    2013-07-15

    We employed the double-potentiostatic methodology to electrodeposit Ag nanoparticles on oriented single-crystalline rutile TiO{sub 2} nanorods synthesized by hydrothermal method. The synthesized composites were used as the photocatalyst to reduce CO{sub 2} to CH{sub 4} under UV irradiation, and tested by SEM, XRD, TEM, XPS, UV–vis and photoluminescence. Deposition with Ag nanoparticles was observed to enhance the photocatalytic activity (≈1.5–2.64 μmol (g{sub catal} h){sup −1}) up to 5 times with respect to undecorated TiO{sub 2} nanorods (≈0.5 μmol (g{sub catal} h){sup −1}). The increase in the CH{sub 4} yield was correlated with the surface morphology and structure of TiO{sub 2} nanorods.

  20. Facile synthesis of ternary Ag/AgBr-Ag{sub 2}CO{sub 3} hybrids with enhanced photocatalytic removal of elemental mercury driven by visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Anchao, E-mail: anchaozhang@126.com [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Zhang, Lixiang; Lu, Hao; Chen, Guoyan; Liu, Zhichao [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Xiang, Jun; Sun, Lushi [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2016-08-15

    Graphical abstract: Schematic illustration for the charge transfer in the Ag/AgBr(0.7)-Ag{sub 2}CO{sub 3} system. - Highlights: • A novel technique on Hg{sup 0} removal using visible-light-driven Ag/AgBr-Ag{sub 2}CO{sub 3} hybrids was proposed. • Ag/AgBr-Ag{sub 2}CO{sub 3} hybrids were synthesized by a simple modified co-precipitation method. • Hg{sup 0} was mainly removed by the photogenerated holes (h{sup +}). • The possible reaction mechanism for superior Hg{sup 0} removal was proposed. - Abstract: A novel technique for photocatalytic removal of elemental mercury (Hg{sup 0}) using visible-light-driven Ag/AgBr-Ag{sub 2}CO{sub 3} hybrids was proposed. The ternary Ag/AgBr-Ag{sub 2}CO{sub 3} hybrids were synthesized by a simple modified co-precipitation method and characterized by N{sub 2} adsorption-desorption, scanning electron microscope (SEM), X-ray diffraction (XRD), UV–vis diffused reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) techniques. The effects of AgBr content, fluorescent lamp (FSL) irradiation, solution temperature, SO{sub 2} and NO on Hg{sup 0} removal were investigated in detail. Furthermore, a possible reaction mechanism for higher Hg{sup 0} removal was proposed, and the simultaneous removal of Hg{sup 0}, SO{sub 2} and NO was studied. The results showed that a high efficiency of Hg{sup 0} removal was obtained by using Ag/AgBr-Ag{sub 2}CO{sub 3} hybrids under fluorescent lamp irradiation. The AgBr content, FSL irradiation, solution temperature, and SO{sub 2} all exhibited significant effects on Hg{sup 0} removal, while NO had slight effect on Hg{sup 0} removal. The addition of Ca(OH){sub 2} demonstrated a little impact on Hg{sup 0} removal and could significantly improve the SO{sub 2}-resistance performance of Ag/AgBr(0.7)-Ag{sub 2}CO{sub 3} hybrid. The characterization results exhibited that hydroxyl radical (·OH), superoxide radical (·O{sub 2}{sup −}), hole (h{sup +}), and Br

  1. Electroluminescence from perovskite LEDs with the structure of Ag/Spiro-OMeTAD/CH3NH3PbI3/TiO2/FTO

    Science.gov (United States)

    Wang, Minhuan; Shi, Yantao; Bian, Jiming; Dong, Qingshun; Sun, Hongjun; Liu, Hongzhu; Luo, Yingmin; Zhang, Yuzhi

    2016-10-01

    The perovskite light-emitting diodes (Pe-LEDs) with the structure of Ag/Spiro-OMeTAD/CH3NH3PbI3/TiO2/FTO were synthesized, where the CH3NH3PbI3 perovskite layer was deposited by a two-step spin-coating process. A dominant near-infrared electroluminescence (EL) at 773 nm was detected from the Pe-LEDs under forward bias at room temperature. The origin and mechanism of the EL were discussed in comparison with the photoluminescence (PL) spectra, and it was attributed to the radiative recombination of electrons and holes confined in the CH3NH3PbI3 emissive layer. Moreover, the corresponding energy band diagrams was proposed to illustrate the carrier transport mechanism in the Pe-LED device.

  2. Facile one-pot synthesis of uniform TiO2-Ag hybrid hollow spheres with enhanced photocatalytic activity.

    Science.gov (United States)

    Wang, Sunli; Qian, Huanhuan; Hu, Yong; Dai, Wei; Zhong, Yijun; Chen, Jiafu; Hu, Xiao

    2013-01-28

    TiO(2)-Ag hybrid hollow spheres (about 700 nm in diameter) with a highly uniform morphology and good structural stability were facilely prepared via a one-pot hydrothermal method, using carbon spheres as templates followed by an annealing treatment. Through this route, the as-prepared hybrid hollow spheres preserved the uniformity of the initial carbon sphere templates and the loading amount of the Ag nanocrystals can be conveniently varied or controlled by the concentration of the Ag precursor. The investigation of the photocatalytic ability demonstrated that the as-prepared TiO(2)-Ag hybrid hollow spheres possess excellent photocatalytic activity, superior to commercial TiO(2) nanoparticles (Degussa P25), for the degradation of rhodamine B (RhB) and methyl orange (MO) dyes under visible-light illumination. Furthermore, the ˙OH radicals formed during photocatalysis with different Ag content hybrids were revealed by means of a terephthalic acid fluorescence probe method, which uncovers that the Ag content in the TiO(2)-Ag hybrids was crucial to obtain an optimal synergistic effect between the Ag and TiO(2) for the degradation of organic pollutants. Accordingly, the optimum matching for the best photocatalytic activity was investigated thoroughly and a reasonable mechanism was also proposed.

  3. Electronic, optical properties and chemical bonding in six novel 1111-like chalcogenide fluorides AMChF (A=Sr, Ba; M=Cu, Ag; and Ch=S, Se, Te) from first principles calculations

    Science.gov (United States)

    Bannikov, V. V.; Shein, I. R.; Ivanovskii, A. L.

    2012-12-01

    Employing first-principles band structure calculations, we have examined the electronic, optical properties and the peculiarities of the chemical bonding for six newly synthesized layered quaternary 1111-like chalcogenide fluorides SrAgSF, SrAgSeF, SrAgTeF, BaAgSF, BaAgSeF, and SrCuTeF, which are discussed in comparison with some isostructural 1111-like chalcogenide oxides. We found that all of the studied phases AMChF (A=Sr, Ba; M=Cu, Ag; and Ch=S, Se, Te) are semiconductors for which the fitted “experimental” gaps lie in the interval from 2.23 eV (for SrAgSeF) to 3.07 eV (for SrCuTeF). The near-Fermi states of AMChF are formed exclusively by the valence orbitals of the atoms from the blocks (MCh); thus, these phases belong to the layered materials with “natural multiple quantum wells”. The bonding in these new AMChF phases is described as a high-anisotropic mixture of ionic and covalent contributions, where ionic M-Ch bonds together with covalent M-Ch and Ch-Ch bonds take place inside blocks (MCh), while inside blocks (AF) and between the adjacent blocks (MCh)/(AF) mainly ionic bonds emerge.

  4. Design of FELiChEM, the first infrared free-electron laser user facility in China

    Science.gov (United States)

    Li, He-Ting; Jia, Qi-Ka; Zhang, Shan-Cai; Wang, Lin; Yang, Yong-Liang

    2017-01-01

    FELiChEM is a new experimental facility under construction at the University of Science and Technology of China (USTC). Its core device is two free electron laser oscillators generating middle-infrared and far-infrared laser and covering the spectral range of 2.5-200 μm. It will be a dedicated infrared light source aiming at energy chemistry research. We present the brief design of the FEL oscillators, with the emphasis put on the middle-infrared oscillator. Most of the basic parameters are determined and the anticipated performance of the output radiation is given. The first light of FELiChEM is targeted for the end of 2017. Supported by National Natural Science Foundation of China (21327901)

  5. A facile strategy to synthesize bimetallic Au/Ag nanocomposite film by layer-by-layer assembly technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Li, E-mail: zhlisuzh@163.com [Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou 234000 (China); Wang Cong; Zhang Yi [Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou 234000 (China)

    2012-05-01

    A facile strategy has been developed for the preparation of bimetallic gold-silver (Au-Ag) nanocomposite films by alternating absorption of poly-(ethyleneimine)-silver ions and Au onto substrates and subsequent reduction of the silver ions. The composition, micro-structure and properties of the {l_brace}PEI-Ag/Au{r_brace}{sub n} nanocomposite films were characterized by ultraviolet visible spectroscopy (UV-vis), transmisson electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), surface enhanced Raman scattering (SERS) and cyclic voltammetry (CV). The UV-vis characteristic absorbances of {l_brace}PEI-Ag/Au{r_brace}{sub n} nanocomposite thin film increase almost linear with the number of bilayers, which indicates a process of uniform assembling. Appearance of a double plasmon bands in the visible region and the lack of apparent core-shell structures in the TEM images confirm the formation of bimetallic Au-Ag nanoparticles. The result of XPS also demonstrates the existence of Ag and Au nanoparticles in the nanocomposite films. TEM and FESEM images show that these Ag and Au nanoparticles in the films possess sphere structure with the size of 20-25 nm. The resulting {l_brace}PEI-Ag/Au{r_brace}{sub n} films inherit the properties from both the metal Ag and Au, which exhibits a unique performance in SERS and electrocatalytic activities to the oxidation of dopamine. As a result, the {l_brace}PEI-Ag/Au{r_brace}{sub n} films are more attractive compared to {l_brace}PEI-Ag/PSS{r_brace}{sub n} and {l_brace}PEI/Au{r_brace}{sub n} films.

  6. Facile synthesis of nano silver ferrite (AgFeO{sub 2}) modified with chitosan applied for biothiol separation

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhamid, Hani Nasser [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Department of Chemistry, Assuit University, Assuit 71515 (Egypt); Wu, Hui-Fen, E-mail: hwu@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 800, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Doctoral Degree Program of Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung 804,Taiwan (China); Institute of Medical Science and Technology, National Sun Yat-Sen University, Taiwan (China)

    2014-12-01

    Silver iron oxide nanoparticles (AgFeO{sub 2} NPs) with narrow size distribution have been synthesized, characterized and was applied for biothiols separation. AgFeO{sub 2} and AgFeO{sub 2} modified chitosan (AgFeO{sub 2}@CTS NPs) were synthesized using a hydrothermal method and then characterized by electron microscopy (transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX)), X-ray diffraction (XRD), and Fourier transform infrared (FTIR). Different biological thiols (dithiothreitol, glutathione, thiabendazole, and sulfamethizole) were investigated and characterized using matrix assisted laser desorption/ionization mass spectrometry (MALDI–MS) and surface assisted laser desorption/ionization mass spectrometry (SALDI–MS). The new material displays dual functionality; 1) for separation and 2) can be served as the matrices for SALDI–MS. Data showed a clear background in the case of nanomaterials compared to conventional matrices (mefenamic acid and 2,5-dihydroxybenzoic acid (DHB) for MALDI–MS). - Highlights: • Facile synthesis of AgFeO{sub 2} and AgFeO{sub 2}@chitosan has been reported • Surface modification of AgFeO{sub 2} with chitosan was presented • Applications for biothiols were investigated using mass spectrometry • Novel application as surface for SALDI-MS were successfully reported.

  7. Differential plasma microRNA profiles in HBeAg positive and HBeAg negative children with chronic hepatitis B.

    Directory of Open Access Journals (Sweden)

    Thilde Nordmann Winther

    Full Text Available BACKGROUND AND AIM: Children chronically infected with hepatitis B virus (HBV are at high risk of progressive liver disease. However, no treatment is available that is consistently effective in curing chronic hepatitis B (CHB in children. Improved understanding of the natural course of disease is warranted. Identification of specific microRNA (miRNA profiles in children chronically infected with HBV may provide insight into the pathogenesis of CHB and lead to advances in the management of children with CHB. PATIENTS AND METHODS: MiRNA PCR panels were employed to screen plasma levels of 739 miRNAs in pooled samples from HBeAg positive, HBeAg negative, and healthy children. The three groups' plasma miRNA profiles were compared, and aberrantly expressed miRNAs were identified. The identified miRNAs were then validated. Individual RT-qPCRs were performed on plasma from 34 HBeAg positive, 26 HBeAg negative, and 60 healthy children. RESULTS: A panel of 16 plasma miRNAs were identified as aberrantly expressed in HBeAg positive and HBeAg negative children (p<0.001. Levels of all of the miRNAs were upregulated in HBeAg positive children compared with in HBeAg negative children. A positive correlation was furthermore found between plasma levels of the identified miRNAs and HBV DNA (p<0.001. CONCLUSION: We are the first to investigate the plasma miRNA profile of children chronically infected with HBV. Our data indicates the existence of a relationship between abundance of circulating miRNAs and immunological stages in the natural course of disease. Certain miRNAs may contribute to the establishment and maintenance of CHB in children. Further studies are warranted to advance understanding of miRNAs in the pathogenesis of CHB, hopefully leading to the identification of future therapeutic targets.

  8. World Energy Data System (WENDS). Volume VIII. Nuclear facility profiles, CO--HU. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  9. World Energy Data System (WENDS). Volume X. Nuclear facility profiles, PO--ZA. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  10. World Energy Data System (WENDS). Volume IX. Nuclear facility profiles, IN--PL. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  11. Virus-specific immune response in HBeAg-negative chronic hepatitis B: relationship with clinical profile and HBsAg serum levels.

    Directory of Open Access Journals (Sweden)

    Elisabetta Loggi

    Full Text Available BACKGROUND AIMS: The immune impairment characterizing chronic hepatitis B (cHBV infection is thought to be the consequence of persistent exposure to viral antigens. However, the immune correlates of different clinical stages of cHBV and their relation with different levels of HBsAg have not been investigated. The aim of the present study was to evaluate the relationship between HBV-specific T cells response and the degree of in vivo HBV control and HBsAg serum levels in HBeAg-HBeAb+ cHBV. METHODS: Peripheral blood mononuclear cells from 42 patients with different clinical profiles (treatment-suppressed, inactive carriers and active hepatitis of cHBV, 6 patients with resolved HBV infection and 10 HBV-uninfected individuals were tested with overlapping peptides spanning the entire HBV proteome. The frequency and magnitude of HBV-specific T cell responses was assessed by IFNγ ELISPOT assay. Serum HBsAg was quantified with a chemiluminescent immunoassay. RESULTS: The total breadth and magnitude of HBV-specific T cell responses did not differ significantly between the four groups. However, inactive carriers targeted preferentially the core region. In untreated patients, the breadth of the anti-core specific T cell response was inversely correlated with serum HBsAg concentrations as well as HBV-DNA and ALT levels and was significantly different in patients with HBsAg levels either above or below 1000 IU/mL. The same inverse association between anti-core T cell response and HBsAg levels was found in treated patients. CONCLUSIONS: Different clinical outcomes of cHBV infection are associated with the magnitude, breadth and specificity of the HBV-specific T cell response. Especially, robust anti-core T cell responses were found in the presence of reduced HBsAg serum levels, suggesting that core-specific T cell responses can mediate a protective effect on HBV control.

  12. Facile synthesis of the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres with enhanced photocatalytic performance

    Science.gov (United States)

    Zhao, Xiaohua; Su, Shuai; Wu, Guangli; Li, Caizhu; Qin, Zhe; Lou, Xiangdong; Zhou, Jianguo

    2017-06-01

    To utilize sunlight more effectively in photocatalytic reactions, the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres (Ag/ZnO@C) was successfully synthesized by a green and facile one-pot hydrothermal method. The carbon spheres (CSs) were wrapped by ZnO nanosheets, forming flower-like microstructures, and Ag nanoparticles (Ag NPs) were deposited on the surface of the ZnO nanosheets. The Ag/ZnO@C ternary heterostructure exhibited enhanced photocatalytic activity compared to those of Ag/ZnO, ZnO@C and pure ZnO for the degradation of Reactive Black GR and metronidazole under sunlight and visible light irradiation. This was attributed to the enhanced visible light absorption and effective charge separation based on the synergistic effect of ZnO, Ag NPs, and CSs. Due to the surface plasmon resonance effect of Ag NPs and surface photosensitizing effect of CSs, Ag/ZnO@C exhibited enhanced visible light absorption. Meanwhile, Ag NPs and CSs can both act as rapid electron transfer units to improve the separation of photogenerated charge carriers in Ag/ZnO@C. The primary active species were determined, and the photocatalytic mechanism was proposed. This work demonstrates an effective way to improve the photocatalytic performance of ZnO and provides information for the facile synthesis of noble metal/ZnO@C ternary heterostructure.

  13. Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH{sub 3}){sub 2}]Cl for ultrasensitive SERS detecting of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiajia; Ye, Weichun [Department of Chemistry, Lanzhou University, Lanzhou 73000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 73000 (China); Wang, Chunming, E-mail: wangcm@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 73000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 73000 (China)

    2013-08-15

    Symmetric silver dendrites have been synthesized on commercial aluminum foil via galvanic replacement reaction with [Ag(NH{sub 3}){sub 2}]Cl. This process is facile and environmentally friendly, without the use of any templates, surfactants or oxidants, and also avoiding the introduction of fluoride anions as a strong toxicity resulting in hypocalcemia. The products were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and X-ray diffraction (XRD). SEM characterizations and electrochemical measurements including an electrochemical direct current polarization method and OCP-t technique demonstrate that chloride has proven to be the key factor to the formation of well-defined dendritic shape. The as-prepared Ag dendrites are developed as a surface-enhanced Raman scattering (SERS)-active platform for detection of folic acid, DNA and RNA with well resolved bands and high Raman intensities. The detection concentration for the three biomolecules reaches the level of 10{sup −12} M, and thus the symmetric silver dendrites can potentially be employed as effective SERS sensors for label-free and ultrasensitive biomolecule detection. - Highlights: • Simple galvanic replacement is used to synthesize Ag dendrites on commercial Al foils. • This method avoids the introduction of fluoride anions. • The as-prepared dendrites exhibit high SERS activities for biomolecules. • The detection concentration for the biomolecules reaches the level of 10{sup −12} M.

  14. X-ray scattering measurements on imploding CH spheres at the National Ignition Facility

    Science.gov (United States)

    Kraus, D.; Chapman, D. A.; Kritcher, A. L.; Baggott, R. A.; Bachmann, B.; Collins, G. W.; Glenzer, S. H.; Hawreliak, J. A.; Kalantar, D. H.; Landen, O. L.; Ma, T.; Le Pape, S.; Nilsen, J.; Swift, D. C.; Neumayer, P.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2016-07-01

    We have performed spectrally resolved x-ray scattering measurements on highly compressed polystyrene at pressures of several tens of TPa (100 Mbar) created by spherically convergent shocks at the National Ignition Facility. Scattering data of line radiation at 9.0 keV were recorded from the dense plasma shortly after shock coalescence. Accounting for spatial gradients, opacity effects, and source broadening, we demonstrate the sensitivity of the elastic scattering component to carbon K -shell ionization while at the same time constraining the temperature of the dense plasma. For six times compressed polystyrene, we find an average temperature of 86 eV and carbon ionization state of 4.9, indicating that widely used ionization models need revision in order to be suitable for the extreme states of matter tested in our experiment.

  15. Fast and facile preparation of CTAB based gels and their applications in Au and Ag nanoparticles synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ravi Kant, E-mail: rkupadhyay85@gmail.com [Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India); Soin, Navneet, E-mail: n.soin@bolton.ac.uk [Knowledge Centre for Materials Chemistry (KCMC), Institute for Materials Research and Innovation (IMRI), University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Saha, Susmita, E-mail: ssaha@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Barman, Anjan, E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Sinha Roy, Susanta, E-mail: susanta.roy@snu.edu.in [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India)

    2015-04-15

    We have demonstrated that the gel-like mesophase of Cetyltrimethylammonium bromide (CTAB) can be synthesized by judicial adjustment of water to surfactant molar ratio (W{sub 0}), without using any additional salts, gelating agents or co-surfactants. Gel formation was found to be highly dependent on the water to surfactant molar ratio (W{sub 0}), with the lowest value of W{sub 0} (41.5) resulting in rapid gel formation. Environmental scanning electron microscope (ESEM) analysis revealed that the gel was comprised of interconnected cylindrical structures. The presence of hydrogen bonding in the gel-like mesophase was confirmed by Fourier Transform Infrared spectroscopy (FTIR) analysis. Rheology measurements revealed that all the gel samples were highly viscoelastic in nature. Furthermore, Au and Ag containing CTAB gels were explored as precursors for the preparation of spherical Gold (Au) and Silver (Ag) nanoparticles using Sodium borohydride (NaBH{sub 4}) as reducing agent. The effects of NaBH{sub 4} concentration on the particle size and morphology of the Au and Ag nanoparticles have also been studied. - Highlights: • A facile synthesis of CTAB based gel-like mesophase is reported. • CTAB gels were obtained by adjusting water to surfactant molar ratio (W{sub 0}). • FTIR analysis revealed that hydrogen bonding plays a key role in gel formation. • Au, Ag nanoparticles were synthesized by using CTAB gel and NaBH{sub 4}.

  16. Simulation of Binary CO2/CH4 Mixture Breakthrough Profiles in MIL-53 (Al

    Directory of Open Access Journals (Sweden)

    Luis Fernando Gomez

    2015-01-01

    Full Text Available MIL-53 (Al aluminum terephthalate, a commercial metal-organic framework, has been studied as a potential candidate for pressure swing adsorption separation of CO2/CH4 binary mixtures. Pure gas isotherms of CH4 and CO2 measured over 0–6 MPa and at room temperature are fitted with the Dubinin-Astakhov (D-A model. The D-A model parameters are used in the Doong-Yang Multicomponent adsorption model to predict the binary mixture isotherms. A one-dimensional multicomponent adsorption breakthrough model is then used to perform a parametric study of the effect of adsorbent particle diameter, inlet pressures, feed flow rates, and feed compositions on the breakthrough performance. Commercial MIL-53 with a particle diameter of 20 μm renders high tortuous flow; therefore it is less effective for separation. More effective separation can be achieved if MIL-53 monoliths of diameters above 200 μm are used. Faster separation is possible by increasing the feed pressure or if the starting compositions are richer in CO2. More CH4 is produced per cycle at higher feed pressures, but the shortened time at higher pressures can result in the reduction of the CH4 purity.

  17. Facile synthesis and intraparticle self-catalytic oxidation of dextran-coated hollow Au-Ag nanoshell and its application for chemo-thermotherapy.

    Science.gov (United States)

    Jang, Hongje; Kim, Young-Kwan; Huh, Hyun; Min, Dal-Hee

    2014-01-28

    Galvanic replacement reaction is a useful method to prepare various hollow nanostructures. We developed fast and facile preparation of biocompatible and structurally robust hollow Au-Ag nanostructures by using dextran-coated Ag nanoparticles. Oxidation of the surface dextran alcohols was enabled by catalytic activity of the core Au-Ag nanostructure, introducing carbonyl groups that are useful for further bioconjugation. Subsequent doxorubicin (Dox) conjugation via Schiff base formation was achieved, giving high payload of approximately 35 000 Dox per particle. Near-infrared-mediated photothermal conversion showed high efficacy of the Dox-loaded Au-Ag nanoshell as a combinational chemo-thermotherapy to treat cancer cells.

  18. Structural, electronic properties and inter-atomic bonding in layered chalcogenide oxides La MChO (where M = Cu, Ag, and Ch = S, Se) from FLAPW-GGA calculations

    Science.gov (United States)

    Bannikov, V. V.; Shein, I. R.; Ivanovskii, A. L.

    2012-01-01

    Using the first principles FLAPW-GGA method, comparative study of structural, electronic properties and of chemical bonding in four 1111-like chalcogenide oxides La MChO (LaCuSO, LaCuSeO, LaAgSO, and LaAgSeO) with ZrCuSiAs-type structure was performed. Our studies showed that: (i) replacements of d metal atoms (Cu ↔ Ag) and chalcogen atoms (S ↔ Se) lead to anisotropic deformations of the crystal structure; this effect is related to strong anisotropy of inter-atomic bonds; (ii) all of the examined chalcogenide oxides are semiconducting; the band gap decreases both at S → Se and Cu → Ag substitutions; and (iii) the bonding in La MChO phases can be classified as a high-anisotropic mixture of ionic and covalent contributions, where mixed covalent-ionic bonds take place inside [La 2O 2] and [ M2Ch2] blocks, whereas between the adjacent [La 2O 2]/[ M2Ch2] blocks, ionic bonds emerge owing to [La 2O 2] → [ M2Ch2] charge transfer. Since the near-Fermi bands of La MChO phases originate mainly from electronic states of [ M2Ch2] blocks, we speculate that chemical substitutions inside these blocks can result in striking differences in electronic properties of these systems; therefore, this approach can be promising for significant enlargement of the functional properties of these materials.

  19. Facile synthesis of pompon-like ZnO-Ag nanocomposites and their enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; An, Liang [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Lan, Jing [College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109 (China); Gao, Fang [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Tan, Ruiqin [College of Information Science and Engineering, Ningbo University, Ningbo 315211 (China); Li, Xiao-min [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Wang, Guang-hui, E-mail: wangguanghui1959@126.com [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2013-10-15

    Graphical abstract: - Highlights: • Pompon-like ZnO-Ag was prepared via heterothermal and photodeposition method. • Pompon-like ZnO-Ag is a excellent photocatalyst for degradation of azo dyes. • The photocatalytic and wetting properties were studied upon UV irradiation. • The discoloring efficiency of ZnO-Ag heterostructure toward to azo dyes is 99.1%. - Abstract: A series of pompon-like ZnO-Ag nanocomposites were prepared by hydrothermal method and photochemical deposition technique. Several characterizations indicated the successful deposition of Ag nanoparticles on ZnO. As a whole, the as-prepared composites present pompon-like nanostructures with a diameter of ∼10 μm. In detail, the nanostructural, chemical and optical properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (IR), ultra-visible spectra (UV). The photocatalytic degradation experiments under UV irradiation using Methyl Orange (MO) as a model dye were executed here. The relative results demonstrated that the pompon-like ZnO-Ag nanocomposite with a suitable content of Ag nanoparticles (about 4.82 wt%) has the highest photochemical activity, and the removal ratio of MO was 99.1% after 0.5 h adsorption and subsequent 2 h photodegradation processes. The excellent photocatalytic performance was attributed to the high surface areas of ZnO nanostructure and effectively separation of photo-generated charge on flower-like ZnO by employing Ag nanoparticles as a conductor.

  20. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  1. Facile Patterning of Ag Nanowires Network by Micro-Contact Printing of Siloxane.

    Science.gov (United States)

    Yoon, Sung-Soo; Khang, Dahl-Young

    2016-09-07

    A simple, low-cost, scalable patterning method has been demonstrated for chemically welded Ag nanowires (AgNWs) network. The chemically welded network of AgNWs on substrates has been patterned by modified microcontact printing (μCP). As an ink for the μCP, uncured high-viscosity siloxane polymer has been applied. Using elastomeric polydimethylsiloxane (PDMS) stamp that has been replicated from micromachined Si master mold by metal-assisted chemical etching, the printed siloxane ink materials have been cured by simple UV/ozone exposure for 3 min, which acts as an etch barrier in ensuing wet-removal of exposed AgNWs network. The proposed patterning technique has no limitation in the choice of substrates and pattern shape, in addition to high resolution. The patterned AgNWs network electrodes have shown excellent optical, electrical, and mechanical performances, such as high flexibility (up to ∼10%) and stretchability (up to 40%). Finally, the patterned AgNWs network electrodes have been applied as a transparent heater, which can be used for rapid raindrop removal or deicing of car windows and outside mirrors. This can be a valuable help for driving safety under harsh weather conditions.

  2. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms.

    Science.gov (United States)

    Huang, Qingli; Wang, Jiaming; Wei, Wenxian; Yan, Qiuxiang; Wu, Changle; Zhu, Xiashi

    2015-01-01

    Reduced graphene oxide/Ag nanoparticles hybrids (rGO/AgNPs) were fabricated via a green and facile hydrothermal method. The as-synthesized materials were characterized in detail using various spectroscopic and microscopic techniques. Under a suitable dosage of silver ions, well-dispersed AgNPs on the reduced graphene oxide sheets were obtained. The surface plasmon resonance properties of AgNPs on graphene show that there is an interaction between AgNPs and graphene. Trace detection of organic dyes is studied based on rGO/AgNPs hybrids as efficient surface enhanced Raman scattering platforms. It has been found that the suitable experiment parameter is crucial to trace detection of organic dyes molecules. This work is of importance in the practical application in device-design based on the SERS effect of noble metal/reduced oxide graphene (or oxide graphene) hybrids. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Electronic, optical properties and chemical bonding in six novel 1111-like chalcogenide fluorides AMChF (A=Sr, Ba; M=Cu, Ag; and Ch=S, Se, Te) from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, V.V.; Shein, I.R. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg (Russian Federation); Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg (Russian Federation)

    2012-12-15

    Employing first-principles band structure calculations, we have examined the electronic, optical properties and the peculiarities of the chemical bonding for six newly synthesized layered quaternary 1111-like chalcogenide fluorides SrAgSF, SrAgSeF, SrAgTeF, BaAgSF, BaAgSeF, and SrCuTeF, which are discussed in comparison with some isostructural 1111-like chalcogenide oxides. We found that all of the studied phases AMChF (A=Sr, Ba; M=Cu, Ag; and Ch=S, Se, Te) are semiconductors for which the fitted 'experimental' gaps lie in the interval from 2.23 eV (for SrAgSeF) to 3.07 eV (for SrCuTeF). The near-Fermi states of AMChF are formed exclusively by the valence orbitals of the atoms from the blocks (MCh); thus, these phases belong to the layered materials with 'natural multiple quantum wells'. The bonding in these new AMChF phases is described as a high-anisotropic mixture of ionic and covalent contributions, where ionic M-Ch bonds together with covalent M-Ch and Ch-Ch bonds take place inside blocks (MCh), while inside blocks (AF) and between the adjacent blocks (MCh)/(AF) mainly ionic bonds emerge. - Graphical Abstract: Isoelectronic surface for SrAgSeF and atomic-resolved densities of states for SrAgTeF, and SrCuTeF. Highlights: Black-Right-Pointing-Pointer Very recently six new layered 1111-like chalcogenide fluorides AMChF were synthesized. Black-Right-Pointing-Pointer Electronic, optical properties for AMChF phases were examined from first principles. Black-Right-Pointing-Pointer All these materials are characterized as non-magnetic semiconductors. Black-Right-Pointing-Pointer Bonding is highly anisotropic and includes ionic and covalent contributions. Black-Right-Pointing-Pointer Introduction of magnetic ions in AMChF is proposed for search of novel magnetic materials.

  4. Problem Severity Profiles of Substance Abusing Women in Therapeutic Treatment Facilities

    Science.gov (United States)

    Isralowitz, Richard; Reznik, Alexander

    2009-01-01

    This article aims to examine specific substance use profiles among former Soviet Union (FSU) immigrant and native-born women in Israeli therapeutic treatment facilities. Individuals were sampled at drug treatment facilities and assessed using the Addiction Severity Index. ASI scores suggest differences between the two groups. Among the findings…

  5. THE AGS-BASED SUPER NEUTRINO BEAM FACILITY CONCEPTUAL DESIGN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    WENG,W.T.; DIWAN,M.; RAPARIA,D.

    2004-10-08

    After more than 40 years of operation, the AGS is still at the heart of the Brookhaven hadron accelerator complex. This system of accelerators presently comprises a 200 MeV linac for the pre-acceleration of high intensity and polarized protons, two Tandem Van der Graaffs for the pre-acceleration of heavy ion beams, a versatile Booster that allows for efficient injection of all three types of beams into the AGS and, most recently, the two RHIC collider rings that produce high luminosity heavy ion and polarized proton collisions. For several years now, the AGS has held the world intensity record with more than 7 x 10{sup 13} protons accelerated in a single pulse. The requirements for the proton beam for the super neutrino beam are summarized and a schematic of the upgraded AGS is shown. Since the present number of protons per fill is already close to the required number, the upgrade is based on increasing the repetition rate and reducing beam losses (to avoid excessive shielding requirements and to maintain activation of the machine components at workable level). It is also important to preserve all the present capabilities of the AGS, in particular its role as injector to RHIC. The AGS Booster was built not only to allow the injection of any species of heavy ion into the AGS but to allow a fourfold increase of the AGS intensity. It is one-quarter the circumference of the AGS with the same aperture. However, the accumulation of four Booster loads in the AGS takes about 0.6 s, and is therefore not well suited for high average beam power operation. To minimize the injection time to about 1 ms, a 1.2 GeV linac will be used instead. This linac consists of the existing warm linac of 200 MeV and a new superconducting linac of 1.0 GeV. The multi-turn H{sup -} injection from a source of 30 mA and 720 {micro}s pulse width is sufficient to accumulate 9 x 10{sup 13} particle per pulse in the AGS[10]. The minimum ramp time of the AGS to full energy is presently 0.5 s; this must

  6. A facile, solvent vapor-fumigation-induced, self-repair recrystallization of CH3NH3PbI3 films for high-performance perovskite solar cells.

    Science.gov (United States)

    Zhu, Weidong; Yu, Tao; Li, Faming; Bao, Chunxiong; Gao, Hao; Yi, Yong; Yang, Jie; Fu, Gao; Zhou, Xiaoxin; Zou, Zhigang

    2015-03-12

    A high-quality CH3NH3PbI3 film is crucial in the manufacture of a high-performance perovskite solar cell. Here, a recrystallization process via facile fumigation with DMF vapor has been successfully introduced to self-repair of CH3NH3PbI3 films with poor coverage and low crystallinity prepared by the commonly used one-step spin-coating method. We found that the CH3NH3PbI3 films with dendritic structures can spontaneously transform to the uniform ones with full coverage and high crystallinity by adjusting the cycles of the recrystallization process. The mesostructured perovskite solar cells based on these repaired CH3NH3PbI3 films showed reproducible optimal power conversion efficiency (PCE) of 11.15% and average PCE of 10.25±0.90%, which are much better than that of devices based on the non-repaired CH3NH3PbI3 films. In addition, the hysteresis phenomenon in the current-voltage test can also be effectively alleviated due to the quality of the films being improved in the optimized devices. Our work proved that the fumigation of solvent vapor can modify metal organic perovskite films such as CH3NH3PbI3. It offers a novel and attractive way to fabricate high-performance perovskite solar cells.

  7. Facile synthesis of Ag2S nanoparticles functionalized by carbon-containing citrate shell

    Science.gov (United States)

    Sadovnikov, S. I.; Gusev, A. I.; Gerasimov, E. Yu.; Rempel, A. A.

    2015-12-01

    Silver sulfide nanoparticles with non-toxic citrate shell are synthesized by chemical bath deposition from aqueous mixtures of silver nitrate and sodium sulfide in the presence of sodium citrate used as a complexing and stabilizing agent. The prepared nanoparticles have Ag2S core with monoclinic crystal structure functionalized by a carbon-containing citrate shell. By varying the concentrations of reagents it was possible to prepare core-shell nanoparticles with pre-assigned size of Ag2S core from 10 and 50 nm and pre-assigned thickness from 1.5 to 10 nm of citrate shell. A probable mechanism of formation of carbon-containing citrate shell on Ag2S core has been proposed.

  8. Crystal structure of an ethylene sorption complex of fully vacuum-dehydrated fully Ag+-exchanged zeolite X (FAU). Silver atoms have reduced ethylene to give CH2 2- carbanions at framework oxide vacancies.

    Science.gov (United States)

    Lee, Young Mi; Choi, Seo Jung; Kim, Yang; Seff, Karl

    2005-11-03

    of the 384 framework oxide ions were oxidized to O2(g), leaving lattice vacancies. The sorption of C(2)H(4) at 21 degrees C reoxidized about 7 of the 30 Ag(0) atoms to Ag(+) and reduced 1.75 ethylene molecules to give CH(2)(2-) groups which refilled 3.5 of these 15 lattice vacancies. The remaining vacancies may have been filled with H(2)C=C(2-) ions. The unit cell formula, which originally contained 384 oxygen atoms, may be |Ag(92)(C2H4)17|[Si(100)Al(92)O(369)(CH2)3.5] or |Ag(92)H(23)(C2H4)17|[Si(100)Al(92)O(369)(CH2)3.5(C2H2)11.5].

  9. Gene profiling characteristics of radioadaptive response in AG01522 normal human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jue Hou

    Full Text Available Radioadaptive response (RAR in mammalian cells refers to the phenomenon where a low-dose ionizing irradiation alters the gene expression profiles, and protects the cells from the detrimental effects of a subsequent high dose exposure. Despite the completion of numerous experimental studies on RAR, the underlying mechanism has remained unclear. In this study, we aimed to have a comprehensive investigation on the RAR induced in the AG01522 human fibroblasts first exposed to 5 cGy (priming dose and then followed by 2 Gy (challenge dose of X-ray through comparisons to those cells that had only received a single 2 Gy dose. We studied how the priming dose affected the expression of gene transcripts, and to identify transcripts or pathways that were associated with the reduced chromosomal damages (in terms of the number of micronuclei after application of the challenging dose. Through the mRNA and microRNA microarray analyses, the transcriptome alteration in AG01522 cells was examined, and the significantly altered genes were identified for different irradiation procedures using bioinformatics approaches. We observed that a low-dose X-ray exposure produced an alert, triggering and altering cellular responses to defend against subsequent high dose-induced damages, and accelerating the cell repair process. Moreover, the p53 signaling pathway was found to play critial roles in regulating DNA damage responses at the early stage after application of the challenging dose, particularly in the RAR group. Furthermore, microRNA analyses also revealed that cell communication and intercellular signaling transduction played important roles after low-dose irradiation. We conclude that RAR benefits from the alarm mechanisms triggered by a low-dose priming radation dose.

  10. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  11. A Comprehensive Profile of ChIP-Seq-Based PU.1/Spi1 Target Genes in Microglia.

    Science.gov (United States)

    Satoh, Jun-Ichi; Asahina, Naohiro; Kitano, Shouta; Kino, Yoshihiro

    2014-01-01

    Microglia are resident mononuclear phagocytes that play a principal role in the maintenance of normal tissue homeostasis in the central nervous system (CNS). Microglia, rapidly activated in response to proinflammatory stimuli, are accumulated in brain lesions of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. The E26 transformation-specific (ETS) family transcription factor PU.1/Spi1 acts as a master regulator of myeloid and lymphoid development. PU.1-deficient mice show a complete loss of microglia, indicating that PU.1 plays a pivotal role in microgliogenesis. However, the comprehensive profile of PU.1/Spi1 target genes in microglia remains unknown. By analyzing a chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) dataset numbered SRP036026 with the Strand NGS program, we identified 5,264 Spi1 target protein-coding genes in BV2 mouse microglial cells. They included Spi1, Irf8, Runx1, Csf1r, Csf1, Il34, Aif1 (Iba1), Cx3cr1, Trem2, and Tyrobp. By motif analysis, we found that the PU-box consensus sequences were accumulated in the genomic regions surrounding ChIP-Seq peaks. By using pathway analysis tools of bioinformatics, we found that ChIP-Seq-based Spi1 target genes show a significant relationship with diverse pathways essential for normal function of monocytes/macrophages, such as endocytosis, Fc receptor-mediated phagocytosis, and lysosomal degradation. These results suggest that PU.1/Spi1 plays a crucial role in regulation of the genes relevant to specialized functions of microglia. Therefore, aberrant regulation of PU.1 target genes might contribute to the development of neurodegenerative diseases with accumulation of activated microglia.

  12. Visible light induced degradation of methyl orange using β-Ag0.333V2O5 nanorod catalysts by facile thermal decomposition method

    Directory of Open Access Journals (Sweden)

    R. Saravanan

    2015-09-01

    Full Text Available One dimensional nanorods of β-Ag0.333V2O5 have been synthesized by facile thermal decomposition method without using any additives. The prepared sample was characterized by different physical and chemical techniques such as XRD, FE-SEM, TEM, DRS and XPS. The photocatalytic activity of β-Ag0.333V2O5 catalyst was investigated by studying the degradation of methyl orange (MO in aqueous medium under visible light exposure. The result shows β-Ag0.333V2O5 exhibits outstanding photocatalytic activity under visible light illumination.

  13. Direct C-C Coupling of CO2 and the Methyl Group from CH4 Activation through Facile Insertion of CO2 into Zn-CH3 σ-Bond.

    Science.gov (United States)

    Zhao, Yuntao; Cui, Chaonan; Han, Jinyu; Wang, Hua; Zhu, Xinli; Ge, Qingfeng

    2016-08-17

    Conversion of CO2 and CH4 to value-added products will contribute to alleviating the green-house gas effect but is a challenge both scientifically and practically. Stabilization of the methyl group through CH4 activation and facile CO2 insertion ensure the realization of C-C coupling. In the present study, we demonstrate the ready C-C coupling reaction on a Zn-doped ceria catalyst. The detailed mechanism of this direct C-C coupling reaction was examined based on the results from density functional theory calculations. The results show that the Zn dopant stabilizes the methyl group by forming a Zn-C bond, thus hindering subsequent dehydrogenation of CH4. CO2 can be inserted into the Zn-C bond in an activated bent configuration, with the transition state in the form of a three-centered Zn-C-C moiety and an activation barrier of 0.51 eV. The C-C coupling reaction resulted in the acetate species, which could desorb as acetic acid by combining with a surface proton. The formation of acetic acid from CO2 and CH4 is a reaction with 100% atom economy, and the implementation of the reaction on a heterogeneous catalyst is of great importance to the utilization of the greenhouse gases. We tested other possible dopants including Al, Ga, Cd, In, and Ni and found a positive correlation between the activation barrier of C-C coupling and the electronegativity of the dopant, although C-H bond activation is likely the dominant reaction on the Ni-doped ceria catalyst.

  14. Sensory and Volatile Profiles of Monovarietal North Tunisian Extra Virgin Olive Oils from 'Chétoui' Cultivar.

    Science.gov (United States)

    Essid, Faten; Sifi, Samira; Beltrán, Gabriel; Sánchez, Sebastián; Raïes, Aly

    2016-07-01

    The quality of olive oil is defined as a combination of characteristics that significantly determine its acceptance by consumers. This study was carried out to compare sensorial and chemical characteristics of sixty 'Chétoui' extra virgin olive oils (EVOOc) samples from six northern areas in Tunisia (Tebourba (EVOOT); Other regions (EVOON): Mornag, Sidi Amor, El Kef, Béjà and Jendouba). Trained panel taste detected ten sensory attributes. EVOOT and EVOON were defined by 'tomato' and 'grass/ leave notes, respectively. Twenty one volatile compounds from EVOOc were extracted and identified by Headspace Solid-Phase Microextraction followed by Gas Chromatography- Flame Ionization Detector. Principal component and cluster analysis of all studied parameters showed that EVOOT differed from EVOON. Sensory and volatile profiles of EVOOc revealed that the perception of different aromas, in monovarietal olive oil, was the result of synergic effect of oils' various components, whose composition was influenced by the geographical growing area.

  15. Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7} heterogeneous photocatalyst prepared by a facile hydrothermal synthesis with enhanced photocatalytic performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Rong; McEvoy, Joanne Gamage [Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Zhang, Zisheng, E-mail: zzhang@uottawa.ca [Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada)

    2016-02-15

    Highlights: • The photocatalyst was hydrothermally prepared by adjusting the ratio of Ag to V. • Multi-phase Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7} obtained exhibited multi-morphological features. • The photocatalyst exhibited strong visible light driven photoactivity towards RhB. - Abstract: A novel Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7} photocatalyst was synthesized by adjusting the molar ratio of silver–vanadium (Ag–V) in a facile hydrothermal method to obtain multi-phase Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7} photocatalyst. The photocatalytic activity of the prepared samples was quantified by the degradation of Rhodamine B (RhB) model organic pollutant under visible light irradiation. Compared to pure Ag{sub 3}VO{sub 4}, Ag{sub 4}V{sub 2}O{sub 7} and P25 TiO{sub 2}, respectively, the as-synthesized multi-phase Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7} powders gave rise to a significantly higher photocatalytic activity, achieving up to 99% degradation of RhB in 2 h under visible light. This enhanced photocatalytic performance was attributed to the effect of the multi-phase Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7} photocatalyst and the surface plasmon resonance (SPR) of the incorporated metallic silver (Ag{sup 0}) nanoparticles (NPs) generated during the photocatalysis, as evidenced by post-use characterization, resulting in improved visible light absorption and electron-hole (e{sup −}-h{sup +}) separation. A mechanism was proposed for the photocatalytic degradation of RhB on the surface of Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7}.

  16. Fluxes of CO2, CH4 and N2O at two European beech forests: linking soil gas production profiles with soil and stem fluxes

    Science.gov (United States)

    Maier, Martin; Machacova, Katerina; Halaburt, Ellen; Haddad, Sally; Urban, Otmar; Lang, Friederike

    2016-04-01

    Soil and plant surfaces are known to exchange greenhouse gases with the atmosphere. Some gases like nitrous oxide (N2O) and methane (CH4) can be produced and re-consumed in different soil depths and soil compartments, so that elevated concentrations of CH4 or N2O in the soil do not necessarily mean a net efflux from the soil into the atmosphere. Soil aeration, and thus the oxygen status can underlay a large spatial variability within the soil on the plot and profile scale, but also within soil aggregates. Thus, conditions suitable for production and consumption of CH4 and N2O can vary on different scales in the soil. Plant surfaces can also emit or take up CH4 and N2O, and these fluxes can significantly contribute to the net ecosystem exchange. Since roots usually have large intercellular spaces or aerenchyma they may represent preferential transport ways for soil gases, linking possibly elevated soil gas concentrations in the subsoil in a "shortcut" to the atmosphere. We tested the hypothesis that the spatial variability of the soil-atmosphere fluxes of CO2, CH4 and N2O is caused by the heterogeneity in soil properties. Therefore, we measured soil-atmosphere gas fluxes, soil gas concentrations and soil diffusivity profiles and did a small scale field assessment of soil profiles on the measurments plots. We further tried to link vertical profiles of soil gas concentrations and diffusivity to derive the production and consumption profiles, and to link these profiles to the stem-atmosphere flux rates of individual trees. Measurements were conducted in two mountain beech forests with different geographical and climatic conditions (White Carpathians, Czech Republic; Black Forest, Germany). Gas fluxes at stem and soil levels were measured simultaneously using static chamber systems and chromatographic and continuous laser analyses. Monitoring simultaneously vertical soil gas profiles allowed to assess the within-soil gas fluxes, and thus to localize the production and

  17. Microwave assisted facile synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and their application as active SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wadhwa, Heena, E-mail: heenawadhwa1988@gmail.com; Kumar, Devender, E-mail: devkumsaroha@kuk.ac.in; Mahendia, Suman, E-mail: mahendia@gmail.com; Kumar, Shyam, E-mail: profshyam@gmail.com

    2017-06-15

    The present paper represents the facile and rapid synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite with the help of microwave irradiation. The graphene oxide (GO) solution has been prepared in bulk using Hummer's method followed by microwave assisted in-situ reduction of GO and silver nitrate (AgNO{sub 3}) by hydrazine hydrate in a short spam of 5 min. The prepared nanocomposite has been characterized using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) Scanning Electron Microscopy (SEM) and UV–Visible spectroscopy. TEM analysis shows that Ag nanoparticles with average size 32 nm are uniformly entangled with in RGO layers. The UV–Visible absorption spectrum of nanocomposite depicts the reduction of GO to RGO along with the formation of Ag nanoparticles with the presence of characteristic surface Plasmon resonance (SPR) peak of Ag nanoparticles at 422 nm. The performance of prepared nanocomposite has been tested as the active Surface Enhanced Raman Scattering (SERS) substrate for Rhodamine 6G with detection limit 0.1 μM. - Highlights: • The RGO and RGO-Ag nanocomposite were synthesized with microwave irradiation. • Ag nanoparticles of average size 32 nm are uniformly entangled within RGO layers. • RGO itself is a florescence quencher with SERS detection limit 1 μM for R6G. • RGO-Ag nanocomposite show good SERS activity for R6G with detection limit 0.1 μM.

  18. The Beam Profile Monitoring System for the CERN IRRAD Proton Facility

    CERN Document Server

    Ravotti, F; Glaser, M; Matli, E; Pezzullo, G; Gan, K K; Kagan, H; Smith, S; Warner, J D

    2016-01-01

    To perform proton irradiation experiments, CERN built during LS1 a new irradiation facility in the East Area at the Proton Synchrotron accelerator. At this facility, named IR-RAD, a high-intensity 24 GeV/c proton beam is used. During beam steering and irradiation, the intensity and the transverse profile of the proton beam are monitored online with custom-made Beam Profile Monitor (BPM) devices. In this work, we present the design and the architecture of the IRRAD BPM system, some results on its performance with the proton beam, as well as its planned grades.

  19. A facile approach to prepare silicon-based Pt-Ag tubular dendritic nano-forests (tDNFs) for solar-light-enhanced methanol oxidation reaction

    Science.gov (United States)

    Lin, Chun-Ting; Shiao, Ming-Hua; Chang, Mao-Nan; Chu, Nancy; Chen, Yu-Wei; Peng, Yu-Hsuan; Liao, Bo-Huei; Huang, Hung Ji; Hsiao, Chien-Nan; Tseng, Fan-Gang

    2015-02-01

    In this paper, a facile two-step Galvanic replacement reaction (GRR) is proposed to prepare Pt-Ag tubular dendritic nano-forests (tDNFs) in ambient condition for enhancing methanol oxidation reaction (MOR) under solar illumination. In the first GRR, a homogeneous layer of silver dendritic nano-forests (DNFs) with 10 μm in thickness was grown on Si wafer in 5 min in silver nitride (AgNO3) and buffer oxide etchant (BOE) solution. In the second GRR, we utilized chloroplatinic acid (H2PtCl6) as the precursor for platinum (Pt) deposition to further transform the prepared Ag DNFs into Pt-Ag tDNFs. The catalytic performance and solar response of the Pt-Ag tDNFs toward methanol electro-oxidation are also studied by cyclic voltammetry (CV) and chronoamperometry (CA). The methanol oxidation current was boosted by 6.4% under solar illumination on the Pt-Ag tDNFs due to the induced localized surface plasmon resonance (LSPR) on the dendritic structure. Current results provide a cost-effective and facile approach to prepare solar-driven metallic electrodes potentially applicable to photo-electro-chemical fuel cells.

  20. Facile deposition of Ag{sub 3}PO{sub 4} on graphene-like MoS{sub 2} nanosheets for highly efficient photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peifu [College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Shi, Penghui, E-mail: shipenghui@shiep.edu.cn [College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Hong, Yuanchen; Zhou, Xuejun [College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Yao, Weifeng, E-mail: yaoweifeng@shiep.edu.cn [College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China)

    2015-02-15

    Graphical abstract: The photocatalytic performance of Ag{sub 3}PO{sub 4} was highly improved by the in situ deposition of Ag{sub 3}PO{sub 4} particles on graphene-like MoS{sub 2} nanosheets. - Highlights: • A novel composite photocatalyst was synthesized by depositing Ag{sub 3}PO{sub 4} on the graphene-like MoS{sub 2} nanosheets. • Ag{sub 3}PO{sub 4}/MoS{sub 2} photocatalyst exhibited a high photocatalytic activity for RhB degradation. • Graphene-like MoS{sub 2} nanosheets. • MoS{sub 2} nanosheets play an important role in photocatalytic activity by serving as an effective acceptor of the photogenerated carriers. - Abstract: A facile method for the in situ deposition of Ag{sub 3}PO{sub 4} on graphene-like MoS{sub 2} nanosheets was developed to improve the photocatalytic performance of Ag{sub 3}PO{sub 4} catalysts. The heterostructure of Ag{sub 3}PO{sub 4}/MoS{sub 2} composites was characterized by using X-ray diffraction spectra (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The prepared Ag{sub 3}PO{sub 4}/MoS{sub 2} photocatalyst exhibited a much higher photocatalytic activity than that of Ag{sub 3}PO{sub 4} for the degradation of Rhodamine B (RhB) under visible light irradiation (>400 nm). The improved photocatalytic activity of Ag{sub 3}PO{sub 4}/MoS{sub 2} is attributed to the efficient separation of photogenerated electron–hole pairs in the composite. This result provides a new perspective on the design of high-performance photocatalysts which is promising for energy applications.

  1. Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates

    Science.gov (United States)

    Li, Zhongbo; Meng, Guowen; Liang, Ting; Zhang, Zhuo; Zhu, Xiaoguang

    2013-01-01

    We report a facile low-cost synthetic approach to large-scale Ag nanosheet-assembled films with a high density of uniformly distributed sub-10 nm gaps between the adjacent nanosheets on Si substrates via galvanic cell reactions. The distribution density of Ag nanosheets on substrates could be tailored by tuning the duration of the HF-etching and the concentration of citric acid in the solution. Furthermore, in conjunction with a conventional photolithography, highly uniform patterned Ag nanosheet-assembled structures with different morphologies can be achieved on Si substrates via galvanic-cell-induced growth. By using rhodamine 6G as a standard test molecule, the large-scale Ag nanosheet-assembled films exhibit highly active and homogenous surface-enhanced Raman scattering (SERS) effect and also show promising potentials as reliable SERS substrates for rapid detection of trace polychlorinated biphenyls (PCBs).

  2. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates.

    Science.gov (United States)

    Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian

    2016-08-01

    A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components.

  3. Facile synthesis of MWCNTs/Ag{sub 3}PO{sub 4}: novel photocatalysts with enhanced photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Tian Jingqi; Li Haiyan; Xing Zhicai; Wang Lei [Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, State Key Lab of Electroanalytical Chemistry (China); Asiri, Abdullah M.; Al-Youbi, Abdulrahman O. [Faculty of Science, King Abdulaziz University, Chemistry Department (Saudi Arabia); Sun, Xuping, E-mail: sunxp@ciac.jl.cn [Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, State Key Lab of Electroanalytical Chemistry (China)

    2013-03-15

    The present communication demonstrates a facile strategy toward rapid in situ synthesis of Ag{sub 3}PO{sub 4} nanoparticles onto the surface of multi-walled carbon nanotubes (MWCNTs/Ag{sub 3}PO{sub 4}) by adding Na{sub 2}HPO{sub 4} into the mixture of MWCNTs and AgNO{sub 3} ethylene glycol solution under stirring. We further demonstrate the use of such composites as novel photocatalysts toward photodecomposition of rhodamine B under visible light. It suggests that varied loading of MWCNTs in the composites has significant influence on the photocatalytic activity and the MWCNTs{sub 2.5%}/Ag{sub 3}PO{sub 4} exhibits the highest photocatalytic performance.Graphical abstract.

  4. Validation Through Simulations of a Cn2 Profiler for the ESO/VLT Adaptive Optics Facility

    CERN Document Server

    Garcia-Rissmann, A; Kolb, J; Louarn, M Le; Madec, P -Y; Neichel, B

    2015-01-01

    The Adaptive Optics Facility (AOF) project envisages transforming one of the VLT units into an adaptive telescope and providing its ESO (European Southern Observatory) second generation instruments with turbulence corrected wavefronts. For MUSE and HAWK-I this correction will be achieved through the GALACSI and GRAAL AO modules working in conjunction with a 1170 actuators Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). Multiple wavefront sensors will enable GLAO and LTAO capabilities, whose performance can greatly benefit from a knowledge about the stratification of the turbulence in the atmosphere. This work, totally based on end-to-end simulations, describes the validation tests conducted on a Cn2 profiler adapted for the AOF specifications. Because an absolute profile calibration is strongly dependent on a reliable knowledge of turbulence parameters r0 and L0, the tests presented here refer only to normalized output profiles. Uncertainties in the input parameters inherent t...

  5. Preparation of AgInS₂ quantum dot/In₂S₃ co-sensitized photoelectrodes by a facile aqueous-phase synthesis route and their photovoltaic performance.

    Science.gov (United States)

    Wang, Yuanqiang; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2015-04-14

    In an aqueous-phase system, AgInS2 quantum dot (QD) sensitized TiO2 photoanodes were prepared in situ by the reaction of β-In2S3 nanocrystals and as-prepared TiO2/Ag2S-QD electrodes, followed by a covering process with a ZnS passivation layer. A facile successive ionic layer adsorption and reaction (SILAR) method was adopted to obtain TiO2/Ag2S-QD electrodes. β-In2S3 nanocrystals synthesized by the chemical bath deposition (CBD) process serve as the reactant of AgInS2 as well as a buffer layer between the interfaces of TiO2 and AgInS2-QDs. A polysulfide electrolyte and a Pt-coated FTO glass count electrode were used to test the photovoltaic performance of the constructed devices. The characteristics of the sensitized photoelectrodes were studied in more detail by electron microscopy, X-ray techniques, and optical and photoelectric performance measurements. AgInS2 is the main photo-sensitizer for TiO2/AgInS2-QD/In2S3 electrodes and excess In2S3 appears on the surface of the electrodes. Based on the optimal Ag2S SILAR cycle, the best photovoltaic performance of the prepared TiO2/AgInS2-QD/In2S3 electrode with the short-circuit photocurrent density (Jsc) of 7.87 mA cm(-2) and power conversion efficiency (η) of 0.70% under full one-sun illumination was achieved.

  6. Facile synthesis and enhanced visible-light photocatalytic activity of micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001 (China); Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2015-03-15

    Graphical abstract: - Highlights: • Micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres were synthesized by a facile method. • The formation mechanism for the Ag{sub 2}ZnGeO{sub 4} hollow spheres was investigated. • The catalyst exhibited an enhanced visible-light photocatalytic activity. • The reactive species in the photocatalytic process were studied. - Abstract: Micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres were successfully synthesized by a one-step and low-temperature route under ambient pressure. The micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres have a diameter of 1–2 μm and their shells are composed of numerous nanoparticles and nanorods. The growth process of the micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres was investigated in detail. The results indicated that the morphologies and composition of Ag{sub 2}ZnGeO{sub 4} samples were strongly dependent on the dose of the AgNO{sub 3} and reaction time. Excessive AgNO{sub 3} was favorable for the nucleation and growth rate of Ag{sub 2}ZnGeO{sub 4} crystals and the formation of pure Ag{sub 2}ZnGeO{sub 4}. Moreover, the formation mechanism of the micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres is related to the Ostwald ripening. Under the same conditions, the photocatalytic activity of micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres is about 1.7 times and 11 times higher than that of bulk Ag{sub 2}ZnGeO{sub 4} and Degussa P25, respectively. These interesting findings could provide new insight on the synthesis of micro/nanostructured ternary-metal oxides with enhanced photocatalytic activity.

  7. Monodispersed biocompatible Ag2S nanoparticles: Facile extracellular bio-fabrication using the gamma-proteobacterium, S. oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, Anil K [ORNL; Doktycz, Mitchel John [ORNL; Wang, Wei [ORNL; Moon, Ji Won [ORNL; Gu, Baohua [ORNL; Meyer III, Harry M [ORNL; Hensley, Dale K [ORNL; Retterer, Scott T [ORNL; Allison, David P [ORNL; Phelps, Tommy Joe [ORNL; Pelletier, Dale A [ORNL

    2011-01-01

    Interest in engineered metal and semiconductor nanocrystallites continues to grow due to their unique size and or shape dependent optoelectronic, physicochemical and biological properties. Therefore identifying novel non-hazardous nanoparticle synthesis routes that address hydrophilicity, size and shape control and production costs have become a priority. In the present illustration we report for the first time the efficient generation of extracellular Ag2S nanoparticles by the metal reducing bacterium, Shewanella oneidensis. The particles are nearly monodispersed with homogeneous shape distributions and are produced under ambient temperatures and pressures at high yield, 85 % theoretical maximum. UV-vis and Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy measurements confirmed the formation, optical properties, purity, and crystallinity of the as-synthesized particles. Further characterization revealed that the particles consist of spheres in the size range of 1-22 nm, with an average size of 9 3 nm and are capped by a detachable protein/peptide surface coat. Toxicity assessments of these silver sulfide nanoparticles on Gram-negative Escherichia coli and Shewanella oneidensis and Gram-positive Bacillus subtilis bacterial systems as well as eukaryotic; mouse lung epithelial (C 10) and macrophage (RAW-264.7) cells showed that the particles were non-inhibitory or non-cytotoxic to both these systems. Our results provide a facile, eco-friendly and economical route for the fabrication of technologically important semiconducting Ag2S nanoparticles which are dispersible and biocompatible; thus providing excellent potential for their uses in optical imaging and electronic devices, and solar cell applications.

  8. Assessment of disease profiles and drug prescribing patterns of health care facilities in Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Ehijie F.O. Enato

    2012-10-01

    Full Text Available Few studies have systematically characterized drug-prescribing patterns, particularly at the primary care level in Nigeria, a country disproportionately burdened with disease. The aim of this study was to assess the disease profiles and drug-prescribing pattern in two health care facilities in Edo State, Nigeria. The medical records of 495 patients who attended a primary or secondary health care facility in Owan-East Local Government Area of Edo State, Nigeria, between June and November 2009 were reviewed. Disease profiles and drug prescribing patterns were assessed. Data were analyzed based on the World Health Organization Anatomic Therapeutic Chemical classification system, and core drug prescribing indicators. Five hundred and twelve clinical conditions were identified. Infectious disease was most prevalent (38.3%, followed by disorder of the alimentary tract (16.4%. Malaria was responsible for 55.6% of the infectious diseases seen, and 21.3% (109/512 of the total clinical conditions managed at the two health facilities during the study period. Consequently, anti-infective medications were the most frequently prescribed medicines (21.5%, followed by vitamins (18.2%. Use of artesunate monotherapy at both facilities (15.7%, and chloroquine at the primary health facility (24.9% were common. Paracetamol (41.8% and non-steroidal anti-inflammatory drugs (24.9% were the most frequently used analgesic/antipyretic. At the primary health care facility, dipyrone was used in 21.6% of cases. The core drug prescribing use indicators showed inappropriate prescribing, indicating poly-pharmacy, overuse of antibiotics and injectio. Inappropriate drug use patterns were identified at both health care facilities, especially with regard to the use of ineffective antimalarial drugs and the use of dipyrone.

  9. Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions.

    Science.gov (United States)

    Eom, Hyun-Jeong; Chatterjee, Nivedita; Lee, Jeongsoo; Choi, Jinhee

    2014-08-17

    In our previous in vitro study of the toxicity on silver nanoparticles (AgNPs), we observed a dramatically higher sensitivity of Jurkat T cells to AgNPs than to Ag ions, and DNA damage and apoptosis were found to be involved in that toxicity. In this study, to understand underlying mechanism of different sensitivity of Jurket T cells to AgNPs and Ag ions, mRNA microarray and micro RNA microarray were concomitantly conducted on AgNPs and Ag ions exposed Jurkat T cells. Surprisingly only a small number of genes were differentially expressed by exposure to each of the silver (15 altered mRNA by AgNPs exposure, whereas 4 altered mRNA by Ag ions exposure, as determined 1.5-fold change as the cut-off value). miRNA microarray revealed that the expression of 63 miRNAs was altered by AgNPs exposure, whereas that of 32 miRNAs was altered by Ag ions exposure. An integrated analysis of mRNA and miRNA expression revealed that the expression of hsa-miR-219-5p, was negatively correlated with the expression of metallothionein 1F (MT1F) and tribbles homolog 3 (TRIB3), in cells exposed to AgNPs; whereas, the expression of hsa-miR-654-3p was negatively correlated with the expression of mRNA, endonuclease G-like 1 (EDGL1) in cells exposed to Ag ions. Network analysis were further conducted on mRNA-miRNA pairs, which revealed that miR-219-5p-MT1F and -TRIB3 pairs by AgNPs are being involved in various cellular processes, such as, oxidative stress, cell cycle and apoptosis, whereas, miR-654-3p and ENDOGL1 pair by Ag ions generated a much simpler network. The putative target genes of AgNPs-induced miR-504, miR-33 and miR-302 identified by Tarbase 6.0 are also found to be involved in DNA damage and apoptosis. These results collectively suggest that distinct epigenetic regulation may be an underlying mechanism of different sensitivity of Jurkat T cells to AgNPs and Ag ion. Further identification of putative target genes of DE miRNA by AgNPs and Ag ions may provide additional clues for the

  10. Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor.

    Directory of Open Access Journals (Sweden)

    Biaoyang Lin

    Full Text Available BACKGROUND: The androgen receptor (AR plays important roles in the development of male phenotype and in different human diseases including prostate cancers. The AR can act either as a promoter or a tumor suppressor depending on cell types. The AR proliferative response program has been well studied, but its prohibitive response program has not yet been thoroughly studied. METHODOLOGY/PRINCIPAL FINDINGS: Previous studies found that PC3 cells expressing the wild-type AR inhibit growth and suppress invasion. We applied expression profiling to identify the response program of PC3 cells expressing the AR (PC3-AR under different growth conditions (i.e. with or without androgens and at different concentration of androgens and then applied the newly developed ChIP-seq technology to identify the AR binding regions in the PC3 cancer genome. A surprising finding was that the comparison of MOCK-transfected PC3 cells with AR-transfected cells identified 3,452 differentially expressed genes (two fold cutoff even without the addition of androgens (i.e. in ethanol control, suggesting that a ligand independent activation or extremely low-level androgen activation of the AR. ChIP-Seq analysis revealed 6,629 AR binding regions in the cancer genome of PC3 cells with an FDR (false discovery rate cut off of 0.05. About 22.4% (638 of 2,849 can be mapped to within 2 kb of the transcription start site (TSS. Three novel AR binding motifs were identified in the AR binding regions of PC3-AR cells, and two of them share a core consensus sequence CGAGCTCTTC, which together mapped to 27.3% of AR binding regions (1,808/6,629. In contrast, only about 2.9% (190/6,629 of AR binding sites contains the canonical AR matrix M00481, M00447 and M00962 (from the Transfac database, which is derived mostly from AR proliferative responsive genes in androgen dependent cells. In addition, we identified four top ranking co-occupancy transcription factors in the AR binding regions, which

  11. Training a Neural Network Via Large-Eddy Simulation for Autonomous Location and Quantification of CH4 Leaks at Natural Gas Facilities

    Science.gov (United States)

    Sauer, J.; Travis, B. J.; Munoz-Esparza, D.; Dubey, M. K.

    2015-12-01

    Fugitive methane (CH4) leaks from oil and gas production fields are a potential significant source of atmospheric methane. US DOE's ARPA-E MONITOR program is supporting research to locate and quantify fugitive methane leaks at natural gas facilities in order to achieve a 90% reduction in CH4 emissions. LANL, Aeris and Rice University are developing an LDS (leak detection system) that employs a compact laser absorption methane sensor and sonic anemometer coupled to an artificial neural network (ANN)-based source attribution algorithm. LANL's large-eddy simulation model, HIGRAD, provides high-fidelity simulated wind fields and turbulent CH4 plume dispersion data for various scenarios used in training the ANN. Numerous inverse solution methodologies have been applied over the last decade to assessment of greenhouse gas emissions. ANN learning is well suited to problems in which the training and observed data are noisy, or correspond to complex sensor data as is typical of meteorological and sensor data over a site. ANNs have been shown to achieve higher accuracy with more efficiency than other inverse modeling approaches in studies at larger scales, in urban environments, over short time scales, and even at small spatial scales for efficient source localization of indoor airborne contaminants. Our ANN is intended to characterize fugitive leaks rapidly, given site-specific, real-time, wind and CH4 concentration time-series data at multiple sensor locations, leading to a minimum time-to-detection and providing a first order improvement with respect to overall minimization of methane loss. Initial studies with the ANN on a variety of source location, sensor location, and meteorological condition scenarios are presented and discussed.

  12. Genome-wide profiling of transcription factor binding and epigenetic marks in adipocytes by ChIP-seq

    DEFF Research Database (Denmark)

    Nielsen, Ronni; Mandrup, Susanne

    2014-01-01

    The recent advances in high-throughput sequencing combined with various other technologies have allowed detailed and genome-wide insight into the transcriptional networks that control adipogenesis. Chromatin immunoprecipitation (ChIP) combined with high-throughput sequencing (ChIP-seq) is one...

  13. Phosphine-directed C-H borylation reactions: facile and selective access to ambiphilic phosphine boronate esters.

    Science.gov (United States)

    Crawford, Kristina M; Ramseyer, Timothy R; Daley, Christopher J A; Clark, Timothy B

    2014-07-14

    Ambiphilic ligands have received considerable attention over the last two decades due to their unique reactivity as organocatalysts and ligands. The iridium-catalyzed C-H borylation of phosphines is described in which the phosphine is used as a directing group to provide selective formation of arylboronate esters with unique scaffolds of ambiphilic compounds. A variety of aryl and benzylic phosphines were subjected to the reaction conditions, selectively providing stable, isolable boronate esters upon protection of the phosphine as the borane complex. After purification, the phosphine-substituted boronate esters could be deprotected and isolated in pure form.

  14. Usability of optical spectrum analyzer in measuring atmospheric CO2 and CH4 column densities: inspection with FTS and aircraft profiles in situ

    Directory of Open Access Journals (Sweden)

    I. Morino

    2012-11-01

    Full Text Available The practical usefulness of a desktop optical spectrum analyzer (OSA for measuring atmospheric CO2 and CH4 column densities at surface sites was examined in two separate measurement campaigns. The first comparison involved operating the OSA in parallel with a high resolution Fourier transform spectroscopy (FTS situated at the University of Wollongong in Australia. Scale factors for the OSA were assigned for the column average volume mixing ratios of xCO2 and xCH4 by comparing with the well-studied FTS. The second method is a calibration against aircraft CO2 profiles in situ over Tsukuba in Japan obtained during a GOSAT validation campaign carried out from 28 January to 7 February 2011. The xCO2 values in the campaign, deduced by use of a derived OSA scale factor, were in excellent agreement with the integrated aircraft profiles.

  15. Usability of optical spectrum analyzer in measuring atmospheric CO2 and CH4 column densities: substantiation with FTS and aircraft profiles in situ

    Directory of Open Access Journals (Sweden)

    I. Morino

    2012-06-01

    Full Text Available The practical usefulness of a desktop optical spectrum analyzer (OSA for measuring atmospheric CO2 and CH4 column densities at surface sites was examined in two separate measurement campaigns. The first involved a long term measurement in parallel with a high resolution Fourier transform spectroscopy (FTS studies at the University of Wollongong in Australia. Scale factors of the OSA were assigned for the column average volume mixing ratios of xCO2 and xCH4 by comparing with the well-studied FTS. The second method is a calibration against aircraft CO2 profiles in situ over Tsukuba in Japan obtained during a GOSAT validation campaign carried out from 28 January to 7 February 2011. The xCO2 values in the campaign, deduced by use of a derived OSA scale factor, were in excellent agreement with the integrated aircraft profiles.

  16. Burying of channel optical waveguides: relation between near-field measurement and Ag concentration profile

    Science.gov (United States)

    Tsai, Wan-Shao; Liu, Yen-Huang; Barkman, Ondrej; Prajzler, Vaclav; Stanek, Stanislav; Nekvindova, Pavla

    2015-01-01

    Two-step field-assisted ion-exchanged waveguides have been fabricated on a glass substrate. The concentration profiles of the exchanged ions were measured with electron microprobe. The waveguides were characterized under scanning electron microscope and optical microscope for the investigation of burying structures. Guiding mode patterns were characterized with near-field measurement, where symmetric profiles were observed for the burying-type waveguide. The refractive index profiles were also measured with a modified end-fire coupling method. The relation between ion concentration profiles and index profiles were compared for the waveguides with different fabrication process.

  17. A Cobalt(I) Pincer Complex with an η(2) -C(aryl)-H Agostic Bond: Facile C-H Bond Cleavage through Deprotonation, Radical Abstraction, and Oxidative Addition.

    Science.gov (United States)

    Murugesan, Sathiyamoorthy; Stöger, Berthold; Pittenauer, Ernst; Allmaier, Günter; Veiros, Luis F; Kirchner, Karl

    2016-02-24

    The synthesis and reactivity of a Co(I) pincer complex [Co(ϰ(3) P,CH,P-P(CH)P(NMe) -iPr)(CO)2](+) featuring an η(2)-C(aryl)-H agostic bond is described. This complex was obtained by protonation of the Co(I) complex [Co(PCP(NMe) -iPr)(CO)2]. The Co(III) hydride complex [Co(PCP(NMe) -iPr)(CNtBu)2(H)](+) was obtained upon protonation of [Co(PCP(NMe) -iPr)(CNtBu)2]. Three ways to cleave the agostic C-H bond are presented. First, owing to the acidity of the agostic proton, treatment with pyridine results in facile deprotonation (C-H bond cleavage) and reformation of [Co(PCP(NMe) -iPr)(CO)2]. Second, C-H bond cleavage is achieved upon exposure of [Co(ϰ(3)P,CH,P-P(CH)P(NMe) -iPr)(CO)2](+) to oxygen or TEMPO to yield the paramagnetic Co(II) PCP complex [Co(PCP(NMe) -iPr)(CO)2](+). Finally, replacement of one CO ligand in [Co(ϰ(3) P,CH,P-P(CH)P(NMe) -iPr)(CO)2](+) by CNtBu promotes the rapid oxidative addition of the agostic η(2) -C(aryl)-H bond to give two isomeric hydride complexes of the type [Co(PCP(NMe) -iPr)(CNtBu)(CO)(H)](+).

  18. Facile synthesis of highly efficient one-dimensional plasmonic photocatalysts through Ag@Cu₂O core-shell heteronanowires.

    Science.gov (United States)

    Xiong, Jinyan; Li, Zhen; Chen, Jun; Zhang, Shanqing; Wang, Lianzhou; Dou, Shixue

    2014-09-24

    A novel class of one-dimensional (1D) plasmonic Ag@Cu2O core-shell heteronanowires have been synthesized at room temperature for photocatalysis application. The morphology, size, crystal structure and composition of the products were investigated by XRD, SEM, TEM, XPS, and UV-vis instruments. It was found the reaction time and the amount of Ag nanowires play crucial roles in the formation of well-defined 1D Ag@Cu2O core-shell heteronanowires. The resultant 1D Ag@Cu2O NWs exhibit much higher photocatalytic activity toward degradation of organic contaminants than Ag@Cu2O core-shell nanoparticles or pure Cu2O nanospheres under solar light irradiation. The drastic enhancement in photocatalytic activity could be attributed to the surface plasmon resonance and the electron sink effect of the Ag NW cores, and the unique 1D core-shell nanostructure.

  19. Facile biosynthesis of Ag-NPs using Otostegia limbata plant extract: Physical characterization and auspicious biological activities

    Science.gov (United States)

    Kausar, Rizwan; Shaheen, Muhammad Ashraf; Maqbool, Qaisar; Naz, Sania; Nazar, Mudassar; Abbas, Fazal; Hussain, Talib; Younas, Umer; Shams, Muhammad Fahad

    2016-09-01

    Silver nanoparticles (Ag-NPs) synthesized through reduction by Otostegia limbata green extract are, hereby, reported for the first time. It is very interesting to observe that in this case, O. limbata plant extract acts as a strong chelating agent in Ag-NPs formation through AgNO3. Scanning electron microscope (SEM) studies expose that Ag-NPs formation is highly homogenous and spherical with mean particle size of 32 ±0.8 nm. A typical Ag absorption peak has been observed at 419 nm by ultra violet (UV)-visible spectroscopy which have endorsed the successful formation of single phase Ag-NPs. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) examination further validates the crystalline pure phase structure of Ag-NPs. Promising results have been recorded against protein kinase inhibition assay and antibacterial assay having prominent pathogenic strains. Our present study explores that biosynthesized eco-friendly Ag-NPs have great potential, in the future, for anticancer drug development with wide range pharmaceutical applications.

  20. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening

    Science.gov (United States)

    Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; Li, Zhen; Li, Ge; Kim, Dong Hoe; Guo, Nanjie; Berry, Joseph J.; Zhu, Kai; Zhao, Yixin

    2016-08-01

    Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3-xBrx (MAPbI3-xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3-xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I-Br anion exchange reaction, yielding poorer device performance. This MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability.

  1. From nanoplates to microtubes and microrods: a surfactant-free rolling mechanism for facile fabrication and morphology evolution of Ag2S films.

    Science.gov (United States)

    Li, Da-Peng; Zheng, Zhi; Lei, Yan; Yang, Feng-Ling; Ge, Su-Xiang; Zhang, Yi-Dong; Huang, Bao-Jun; Gao, Yuan-Hao; Wong, Ka-Wai; Lau, Woon-Ming

    2011-06-27

    By a simple and facile wet-chemistry technique without any surfactant, various shapes of Ag(2)S crystals--including leaflike pentagonal nanoplates, crinkly nanoscrolls, hexagonal prismlike microtubes, and microrods--were fabricated in situ on a large-area silver-foil surface separately. Detailed experiments revealed that the Ag(2)S nanoplates were formed just by immersing the silver foil in a sulfur/ethanol solution at room temperature and atmospheric pressure, and they subsequently rolled into nanoscrolls and further grew into microtubes and microrods under solvothermal conditions. Inspired by the natural curling of a piece of foliage, we proposed a surfactant-free rolling mechanism to interpret the observed morphological evolution from lamellar to tubular structures. Based on these simple, practical, and green chemical synthetic routes, we can easily synthesize lamellar, scrolled, tubular, and clubbed Ag(2)S crystals by simply adjusting the reaction temperature, pressure, and time. It is very interesting to note that the current rolling process is quite different from the previous reported rolling mechanism that highly depends on the surfactants; we revealed that the lamellar Ag(2)S could be rolled into tubular structures without using any surfactant or other chemical additives, just like the natural rolling process of a piece of foliage. Therefore, this morphology-controlled synthetic route of Ag(2)S crystals may provide new insight into the synthesis of metal sulfide semiconducting micro-/nanocrystals with desired morphologies for further industrial applications. The optical properties of the pentagonal Ag(2)S nanoplates/film were also investigated by UV/Vis and photoluminescence (PL) techniques, which showed large blue-shift of the corresponding UV/Vis and PL spectra.

  2. Facile synthesis of Ag@CeO{sub 2} core–shell plasmonic photocatalysts with enhanced visible-light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Linen; Fang, Siman [State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Ge, Lei, E-mail: gelei08@sina.com [State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Han, Changcun; Qiu, Ping; Xin, Yongji [Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China)

    2015-12-30

    Highlights: • Novel Ag@CeO{sub 2} core–shell nanostructures with well-controlled shape and shell thickness were successfully synthesized. • The Ag@CeO{sub 2} showed dramatic photocatalytic activity than pure CeO{sub 2}. • Improving activity is from a combination of SPR effect and hybrid effects. • The mechanism was proposed and confirmed by ESR and PL results. - Abstract: Novel Ag@CeO{sub 2} core–shell nanostructures with well-controlled shape and shell thickness were successfully synthesized via a green and facile template-free approach in aqueous solution. As-prepared samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (DRS), electron spin resonance (ESR) and photoluminescence spectroscopy (PL). The structures with different core shapes and controllable shell thickness exhibited unique optical properties. It is found that the nanoscale Ag@CeO{sub 2} core–shell photocatalysts exhibit significantly enhanced photocatalytic activities in the O{sub 2} evolution and MB dye degradation compared to pure CeO{sub 2} nanoparticals. The enhancement in photocatalytic activities can be ascribed to the localized surface plasmon resonance (SPR) of Ag cores. Moreover, larger active interfacial areas and contact between metal/semiconductor in the core–shell structure facilitate transfer of charge carriers and prolong lifetime of photogenerated electron-hole pairs. It is expected that the Ag@CeO{sub 2} core–shell structure may have great potential in a wider range of light-harvesting applications.

  3. Recompletion of gas filled caverns at underground storage facilities of Verbundnetz Gas AG; Umruestungen gasgefuellter Kavernen auf Untergrundspeichern der Verbundnetz Gas AG

    Energy Technology Data Exchange (ETDEWEB)

    Pischner, M.; Rehmer, K.P. [Untergrundspeicher- und Geotechnologie-Systeme GmbH, Mittenwalde (Germany); Arnold, C. [VNG Verbundnetz Gas AG, Leipzig (Germany)

    2007-11-15

    In 1991 the Verbundnetz Gas AG (VNG AG) has started to modernize outdated installations of the underground gas storage cavern near Bernburg and Bad Lauchstaedt (Germany). On 33 caverns, which were mostly leached during the 70s and 80s of the last century, the old wellheads have been replaced by new ones. In some cases even the production string has been replaced or a new head housing was installed. The reasons and technical suppositions for these measures will be explained. Most of the modifications have been made above gas filled caverns and have been safe despite of the high pressures. The packer-system developed by Untergrundspeicher- und Geotechnologie-Systeme GmbH (UGS GmbH) and VNG AG will be presented. Furthermore the technical procedures are grouped and described. Experiences and development over the years will be outlined. Working above gas filled caverns instead of flooding them before, allowed to reduce the total costs to less than one third. (orig.)

  4. Facile fabrication of Pt-Ag bimetallic nanoparticles decorated reduced graphene oxide for highly sensitive non-enzymatic hydrogen peroxide sensing.

    Science.gov (United States)

    Zhang, Cong; Zhang, Yanyan; Du, Xin; Chen, Yuan; Dong, Wenhao; Han, Bingkai; Chen, Qiang

    2016-10-01

    A new electrocatalyst, Pt-Ag bimetallic nanoparticles decorated reduced graphene oxide nanocomposite, was successfully synthesized by a facile, eco-friendly and controllable route. The morphological characterization of RGO/Pt-Ag NPs nanocomposite was examined by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) analyzer, X-ray diffraction (XRD) spectrum, and Fourier transform infrared spectrum (FT-IR), respectively. And then, the RGO/Pt-Ag NPs nanocomposite was immobilized on the surface of glassy carbon (GC) electrode to fabricate a novel and highly sensitive non-enzymatic hydrogen peroxide sensor. The electrochemical behaviors of the prepared sensor were investigated by cyclic voltammetry and chronoamperometry. The sensor showed excellent performance toward H2O2 with sensitivity as high as 699.6 μA mM(-1)cm(-2) and 402.7 μA mM(-1)cm(-2), wide linear range of 0.005-1.5mM and 1.5-7mM, and low detection limit of 0.04μM (S/N=3). Moreover, the prepared hydrogen peroxide sensor was applied to in real samples with satisfactory results. These excellent results indicate that the prepared RGO/Pt-Ag NPs nanocomposite has broad application prospect in the field of sensors.

  5. The Beam Profile Monitoring System for the IRRAD Proton Facility at the CERN PS East Area

    CERN Document Server

    Gkotse, Blerina; Matli, Emanuele; Ravotti, Federico; Gan, Kock Kiam; Kagan, Harris; Smith, Shane; Warner, Joseph

    2016-01-01

    In High Energy Physics (HEP) experiments, devices are frequently required to withstand a certain radiation level. As a result, detectors and electronics must be irradiated to determine their level of radiation tolerance. To perform these irradiations, CERN built a new irradiation facility in the East Area at the Proton Synchrotron (PS) accelerator. At this facility, named IRRAD, a high-intensity 24 GeV/c proton beam is used. During irradiation, it is necessary to monitor the intensity and the transverse profile of the proton beam. The Beam Profile Monitor (BPM) for IRRAD uses 39-channel pixel detectors to monitor the beam position. These pixel detectors are constructed using thin foil copper pads positioned on a flex circuit. When protons pass through the copper pads, they induce a measurable current. To measure this current and determine the total flux of protons passing through the thin foil copper detectors, a new data acquisition system was designed as well as a new database and on-line display system. In...

  6. Electroreductions on silver-based electrocatalysts: the use of Ag nanoparticles for CHCl{sub 3} to CH{sub 4} conversion

    Energy Technology Data Exchange (ETDEWEB)

    Aricci, G.; Locatelli, C.; Minguzzi, A.; Vertova, A. [Department of Physical Chemistry and Electrochemistry, University of Milan (Italy); Krpetic, Z.; Porta, F. [Department of Inorganic, Metallorganic and Analytical Chemistry Lamberto Malatesta, University of Milan (Italy); Rondinini, S.

    2009-06-15

    A preliminary investigation on a new class on electrocatalytic materials for the electroreduction of organic halides is presented and discussed. The electrocatalysts are based on silver nanoparticles (Ag-NP), ad hoc synthesised by chemical reduction of an aqueous silver salt in the presence of six different stabilising agents. The colloids are then supported on carbon powder (10% loading) for further characterisation and use. The electrocatalytic properties of the Ag-NP/carbon composites towards the dehalogenation of halocompounds are tested by cyclic voltammetry and by preparative electrolysis. The hydrodehalogenation of trichloromethane, extensively studied by this group, is selected as a model reaction, because of its relevance for the detoxification of wastes. The voltammetric characterisation is performed in an aqueous solution, supporting the composites on cavity microelectrodes. Gas-diffusion electrodes (GDE) based on the most promising Ag-NP composite - and, for reference, on a commercial Ag/C oxygen reduction electrocatalyst - are then tested in an electrolytic process for the progressive conversion of gaseous trichloromethane to less chlorinated compounds, and ultimately to methane. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. [Atypical serological profiles in hepatitis B infections: investigation of S gene mutations in cases with concurrently positive for HBsAg and anti-HBs].

    Science.gov (United States)

    Aydın, Neriman; Kırdar, Sevin; Uzun, Nilgül; Eyigör, Mete; Sayan, Murat

    2016-10-01

    Hepatitis B virus (HBV) causes different clinical manifestations, ranging from asymptomatic carriage to fulminant or chronic hepatitis. Serological tests are widely used for the diagnosis of HBV infections to detect viral markers. However, facing with atypical serological profiles in some patients leads to problems in interpreting of the results and management of the patients. The aims of this study were to investigate the atypical serologic profiles seen in patients screened for HBV infection and the S gene mutations in patients with concurrent positivity of HBsAg and anti-HBs. A total of 592 sera from patients (332 male, 260 female; age range: 13-84 years, mean age: 43.9 years) prediagnosed as HBV infection between January to September 2013, and screened for HBV markers (HBsAg, anti-HBs, HBeAg, anti-HBe, anti-HBc-IgM, anti-HBc-total and HBV-DNA) were included in the study. Of those samples 364 were screened only for HBsAg and anti-HBs markers. S gene mutations were investigated by direct sequencing method in sera which were concurrent positive for HBsAg and anti-HBs. In our study, 5.2% (31/592) of the sera yielded atypical serologic profiles. Of these 13 cases were concurrently positive for HBsAg and anti-HBs; nine were HBeAg positive, anti-HBe and HBV-DNA negative; eight were HBeAg, anti-HBe and HBV-DNA positive; and one was HBsAg and anti-HBs negative, anti-HBe and HBV-DNA positive. The rate of concurrent positivity of HBsAg and anti-HBs was 3.6% (13/364), while 76.9% (10/13) of those cases were also positive for HBV-DNA. DNA sequencing was performed for seven out of 10 samples which were positive for HBsAg, anti-HBs and HBV-DNA, however three samples were not used because of the low amounts. Sequence analysis of seven samples showed S gene mutations in two samples, one was sS143L with sS193L, a HBV vaccine escape mutation, and the other was sP120R, a HBV immune escape mutation. Of the patients 2.7% (10/364) was negative for both HBsAg and anti-HBs; in which

  8. Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles.

    Science.gov (United States)

    He, Enjie; Zheng, Hairong; Dong, Jun; Gao, Wei; Han, Qingyan; Li, Junna; Hui, Le; Lu, Ying; Tian, Huani

    2014-01-31

    A novel hybrid nanostructure, that is a Ag nanoparticle decorated LaF(3):Yb(3+)/Ln(3+)@SiO(2) nanosphere (Ln=Er, Tm), was constructed by a facile strategy, and characterized by XRD, TEM, FTIR, XPS and UV-vis-NIR absorption. Obvious spectral broadening and red-shift on the surface plasmon resonance were obtained by adjusting the size and configuration of Ag nanoparticles. Effective upconversion luminescence enhancements for Er(3+) and Tm(3+) containing samples were obtained. It is suggested that the luminescence enhancement results from both the excitation and emission processes, and the configuration of the studied hybrid nanostructure is an efficient system to enhance the luminescence emission of rare earth doped nanomaterials. It is believed that the enhancement from the hybrid nanostructure will find great potential in the development of photovoltaic solar cells.

  9. Facile fabrication of porous pure and Ag nanoparticle-doped poly(4-vinylpyridine) films at the liquid-liquid interfaces

    Institute of Scientific and Technical Information of China (English)

    Zhi Bin Ren; Jiang Liu; Yu Ping Chen; Meng Chen; Dong Jin Qian

    2011-01-01

    We reported an interfacial self-assembly of regularly layered porous poly(4-vinylpyridine) (P4VP) films at the interfaces of water-chloroform or -dichloroethane. The porous diameters were in the range from hundred nanometers to several micrometers. It was revealed that formation of such kind of porous materials was solvent dependent. Moreover, cyclic Ag nanoparticles could be grown in the porous P4VP films to form Ag-P4VP nanohybrids under radiation.

  10. NH and OH Concentration Profiles in a Stoichiometric CH4/N2O Flame by Laser Excited Fluorescence and Absorption Techniques.

    Science.gov (United States)

    1982-10-01

    Molecular Beam Mass Spectrometry and Ultraviolet Absorption Spectroscopy, Combustion and Flane VoZ . 33, p. 5, 1978. 2 CattoZica, R.J., Yoon, S. and Knuth, E.L...National Bureau of Standards Special Publication 561/2, U.S. Government Printing Office, ’-..Washington, D.C., VoZ . II, Section VI, 1979. ?Anderson, W.R...Chm. Phys. VoZ . 43, p. 3237, 1965. 19 1Anderson, W.R., Decker, L.J., and KotZar, A.J., "Concentration Profiles of NH and OH in a Stoichiometric CH4

  11. Facile growth of Ag@Pt bimetallic nanorods on electrochemically reduced graphene oxide for an enhanced electrooxidation of hydrazine

    Indian Academy of Sciences (India)

    Jeena S E; Selvaraju T

    2016-03-01

    An efficient transducer was constructed by the direct growth of bimetallic Ag@Pt nanorods (NRDs) on L−tryptophan functionalized electrochemically reduced graphene oxide (L−ERGO) modified electrode using galvanic displacement method for the electrooxidation of hydrazine.Initially, one dimensionalbimetallic Ag@Cu core−shell NRDs were grown on L−ERGO modified electrode by simple seed mediated growth method. Then, the Cu shells at bimetallic NRDs were exchanged by Pt through galvanic displacement method. Accordingly, the synergetic effect produced by the combination of Ag and Pt as NRDs at L−ERGO surface enabled an enhancement in the electrocatalytic efficiency for hydrazine oxidation. L−ERGO supported bimetallic Ag@Pt NRDs were characterised by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and cyclic voltammetric techniques. Finally, the modified electrode was successfully used for the electrooxidation of hydrazine in PB (pH 7.4)with a detection limit of 6*10−7M(SdivN=3). Importantly, the presence of Pt on Ag surface plays a vital role in the electrooxidation of [N2H4] at−0.2 V with an onset potential at−0.5 V where its overpotential has decreased. On the other hand, L−ERGO nanosheets tend to facilitate an effective immobilization of low density Ag seeds (Agseeds) on its surface. Chronoamperometric studies were used to study the linear correlation of [N2H4] between 1 mM and 10 mM. The modified electrode shows a high sensitivity and selectivity for a trace amount of N2H4 in the presence of different interfering cations and anions

  12. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method

    Institute of Scientific and Technical Information of China (English)

    Abolghasem Hoseinzadeh; Aziz Habibi-Yangjeh; Mahdi Davari

    2016-01-01

    In the present work, magnetically separable Fe3O4/ZnO/AgBr nanocomposites with different weight ra-tios of Fe3O4 to ZnO/AgBr were prepared by a facile microwave-assisted method. The resultant samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission elec-tron microscopy (TEM), energy dispersive analysis of X-rays (EDX), and vibrating sample magnetometery (VSM). Antifungal activity of the as-prepared samples was evaluated against Fusarium graminearum and Fusarium oxysporum as two phytopathogenic fungi. Among the nanocomposites, the sample with 1:8 weight ratio of Fe3O4 to ZnO/AgBr was selected as the best nanocomposite. This nanocomposite in-activates Fusarium graminearum and Fusarium oxysporum at 120 and 60 min, respectively. Moreover, it was observed that the microwave irradiation time has considerable influence on the antifungal activity and the sample prepared by irradiation for 10 min showed the best activity. Moreover, the nano-composite without any thermal treatment displayed the superior activity.

  13. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method

    Directory of Open Access Journals (Sweden)

    Abolghasem Hoseinzadeh

    2016-08-01

    Full Text Available In the present work, magnetically separable Fe3O4/ZnO/AgBr nanocomposites with different weight ratios of Fe3O4 to ZnO/AgBr were prepared by a facile microwave-assisted method. The resultant samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive analysis of X-rays (EDX, and vibrating sample magnetometery (VSM. Antifungal activity of the as-prepared samples was evaluated against Fusarium graminearum and Fusarium oxysporum as two phytopathogenic fungi. Among the nanocomposites, the sample with 1:8 weight ratio of Fe3O4 to ZnO/AgBr was selected as the best nanocomposite. This nanocomposite inactivates Fusarium graminearum and Fusarium oxysporum at 120 and 60 min, respectively. Moreover, it was observed that the microwave irradiation time has considerable influence on the antifungal activity and the sample prepared by irradiation for 10 min showed the best activity. Moreover, the nanocomposite without any thermal treatment displayed the superior activity.

  14. [Dynamic expression profile of HBsAg according to hepatic parenchyma cells' volume at different liver fibrosis stages in the immune clearance phase].

    Science.gov (United States)

    Wu, Zhe-bin; Cao, Hong; Liu, Ting; Wu, Ze-qian; Ke, Wei-min; Gao, Zhi-liang

    2012-10-01

    The aim of this study was to determine the dynamic expression profile of hepatitis B surface antigen (HBsAg) according to hepatic parenchyma cells' volume at different stages of liver fibrosis during the immune clearance phase. Eighty-nine patients with HBeAg-positive chronic hepatitis B (CHB) in the immune clearance stage were recruited for study. Each patient's serum HBsAg levels were detected by electrochemiluminescence. The serum HBsAg levels were apportioned according to hepatic parenchyma cells' volume at liver fibrosis stages 1, 2, 3, and 4 and compared by ANOVA. The unapportioned serum HBsAg levels (IU/mL) at liver fibrosis stages 1 (227.2+/-237.7), 2 (211.0+/-131.4), 3(300.1+/-144.6), and 4 (278.7+/-148.8) were not significantly different (all comparisons, P range: 0.061 to 0.759). However, when the serum HBsAg levels were apportioned by the same hepatic parenchyma cells' volume at liver fibrosis stages 1 (343.9+/-359.8), 2 (336.4+/-209.5), 3 (508.7+/-245.1), and 4 (525.2+/-274.8), the levels were significantly different (all comparisons, F = 3.045 and P = 0.033; stage 1 vs. 3, P = 0.041; stage 1 vs. 4, P = 0.046; stage 2 vs. 3, P = 0.028; stage 2 vs. 4, P = 0.034). During the immune clearance phase of chronic hepatitis B, increased HBsAg expression is associated with increased hepatic parenchyma cells' volume and progressive liver fibrosis stage.

  15. Rietveld neutron powder profile analysis and electrical conductivity of the fast silver-ion conductor (LaO)AgS

    Energy Technology Data Exchange (ETDEWEB)

    Wilmer, D.; Wuensch, B. J.; Jorgensen, J. D.

    1999-11-18

    Lanthanum silver oxysulfide, (LaO)AgS, exhibits a predominantly ionic conductivity of 10{sup {minus}3} to 10{sup {minus}1} S/cm between 300 K and 770 K. The tetragonal structure consists of alternating (LaO) and (AgS) sheets, their sequence being O-La-S-Ag-S-La-O. The structure suggests that ionic transport arises from migration of silver ions within the AgS layers analogous to sodium ion transport in Na-{beta}-alumina. Neutron powder diffraction data measured at five temperatures between 300 K and 770 K are analyzed using the Rietveld method to determine the distribution and thermal vibration parameters of the mobile silver ions. The structural investigation is accompanied by measurements of the total conductivity in the same temperature range in order to resolve severe discrepancies in the literature data.

  16. Genome-wide ChIP-seq profiling of PPARγ/RXR target sites and gene program during adipogenesis

    DEFF Research Database (Denmark)

    Nielsen, Ronni; Pedersen, Thomas Åskov; Hagenbeek, Dik

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors which bind to DNA as heterodimers with members of the retinoid X receptor family. PPARγ is an important regulator of adipocyte differentiation and function. In addition to driving the adipogenic process, PPARγ activates...... directly a large number of genes involved in lipid metabolism. Using ChIP combined with deep sequencing we have generated a genome-wide map of PPARγ-RXR binding to chromatin as well as the activation of associated target genes during differentiation of murine 3T3-L1 adipocytes. Our analysis shows...... that target sites/genes attain RXR and PPARγ occupancy at different time points and that sites are often co-occupied by C/EBP factors. Coupling this analysis with RNAPII occupancy throughout adipogenesis revealed that PPARg:RXR is specifically associated with induced genes involved in diverse processes...

  17. Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data

    Directory of Open Access Journals (Sweden)

    King Benjamin L

    2011-08-01

    Full Text Available Abstract Background We introduce Glaucoma Discovery Platform (GDP, an online environment for facile visualization and interrogation of complex transcription profiling datasets for glaucoma. We also report the availability of Datgan, the suite of scripts that was developed to construct GDP. This reusable software system complements existing repositories such as NCBI GEO or EBI ArrayExpress as it allows the construction of searchable databases to maximize understanding of user-selected transcription profiling datasets. Description Datgan scripts were used to construct both the underlying data tables and the web interface that form GDP. GDP is populated using data from a mouse model of glaucoma. The data was generated using the DBA/2J strain, a widely used mouse model of glaucoma. The DBA/2J-Gpnmb+ strain provided a genetically matched control strain that does not develop glaucoma. We separately assessed both the retina and the optic nerve head, important tissues in glaucoma. We used hierarchical clustering to identify early molecular stages of glaucoma that could not be identified using morphological assessment of disease. GDP has two components. First, an interactive search and retrieve component provides the ability to assess gene(s of interest in all identified stages of disease in both the retina and optic nerve head. The output is returned in graphical and tabular format with statistically significant differences highlighted for easy visual analysis. Second, a bulk download component allows lists of differentially expressed genes to be retrieved as a series of files compatible with Excel. To facilitate access to additional information available for genes of interest, GDP is linked to selected external resources including Mouse Genome Informatics and Online Medelian Inheritance in Man (OMIM. Conclusion Datgan-constructed databases allow user-friendly access to datasets that involve temporally ordered stages of disease or developmental stages

  18. Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the July 2012 ChArMEx/EMEP campaign

    Science.gov (United States)

    José Granados-Muñoz, María; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; Bravo-Aranda, Juan Antonio; Binietoglou, Ioannis; Nepomuceno Pereira, Sergio; Basart, Sara; María Baldasano, José; Belegante, Livio; Chaikovsky, Anatoli; Comerón, Adolfo; D'Amico, Giuseppe; Dubovik, Oleg; Ilic, Luka; Kokkalis, Panos; Muñoz-Porcar, Constantino; Nickovic, Slobodan; Nicolae, Doina; José Olmo, Francisco; Papayannis, Alexander; Pappalardo, Gelsomina; Rodríguez, Alejandro; Schepanski, Kerstin; Sicard, Michaël; Vukovic, Ana; Wandinger, Ulla; Dulac, François; Alados-Arboledas, Lucas

    2016-06-01

    The simultaneous analysis of aerosol microphysical properties profiles at different European stations is made in the framework of the ChArMEx/EMEP 2012 field campaign (9-11 July 2012). During and in support of this campaign, five lidar ground-based stations (Athens, Barcelona, Bucharest, Évora, and Granada) performed 72 h of continuous lidar measurements and collocated and coincident sun-photometer measurements. Therefore it was possible to retrieve volume concentration profiles with the Lidar Radiometer Inversion Code (LIRIC). Results indicated the presence of a mineral dust plume affecting the western Mediterranean region (mainly the Granada station), whereas a different aerosol plume was observed over the Balkans area. LIRIC profiles showed a predominance of coarse spheroid particles above Granada, as expected for mineral dust, and an aerosol plume composed mainly of fine and coarse spherical particles above Athens and Bucharest. Due to the exceptional characteristics of the ChArMEx database, the analysis of the microphysical properties profiles' temporal evolution was also possible. An in-depth analysis was performed mainly at the Granada station because of the availability of continuous lidar measurements and frequent AERONET inversion retrievals. The analysis at Granada was of special interest since the station was affected by mineral dust during the complete analyzed period. LIRIC was found to be a very useful tool for performing continuous monitoring of mineral dust, allowing for the analysis of the dynamics of the dust event in the vertical and temporal coordinates. Results obtained here illustrate the importance of having collocated and simultaneous advanced lidar and sun-photometer measurements in order to characterize the aerosol microphysical properties in both the vertical and temporal coordinates at a regional scale. In addition, this study revealed that the use of the depolarization information as input in LIRIC in the stations of Bucharest,

  19. Migrating the facility profile information management system into the world wide web

    Energy Technology Data Exchange (ETDEWEB)

    Kero, R.E.; Swietlik, C.E.

    1994-09-01

    The Department of Energy - Office of Special Projects and Argonne National Laboratory (ANL), along with the Department of Energy - office of Scientific and Technical Information have previously designed and implemented the Environment, Safety and Health Facility Profile Information Management System (FPIMS) to facilitate greater efficiency in searching, analyzing and disseminating information found within environment, safety and health oversight documents. This information retrieval based system serves as a central repository for full-text electronic oversight documents, as well as a management planning and decision making tool that can assist in trend and root cause analyses. Continuous improvement of environment, safety and health programs are currently aided through this personal computer-based system by providing a means for the open communication of lessons learned across the department. Overall benefits have included reductions in costs and improvements in past information management capabilities. Access to the FPIMS has been possible historically through a headquarters-based local area network equipped with modems. Continued demand for greater accessibility of the system by remote DOE field offices and sites, in conjunction with the Secretary of Energy` s call for greater public accessibility to Department of Energy (DOE) information resources, has been the impetus to expand access through the use of Internet technologies. Therefore, the following paper will discuss reasons for migrating the FPIMS system into the World Wide Web (Web), various lessons learned from the FPIMS migration effort, as well as future plans for enhancing the Web-based FPIMS.

  20. Validation through simulations of a C_n^2 profiler for the ESO/VLT Adaptive Optics Facility

    Science.gov (United States)

    Garcia-Rissmann, A.; Guesalaga, A.; Kolb, J.; Le Louarn, M.; Madec, P.-Y.; Neichel, B.

    2015-04-01

    The Adaptive Optics Facility (AOF) project envisages transforming one of the VLT units into an adaptive telescope and providing its ESO (European Southern Observatory) second generation instruments with turbulence-corrected wavefronts. For MUSE and HAWK-I this correction will be achieved through the GALACSI and GRAAL AO modules working in conjunction with a 1170 actuators deformable secondary mirror (DSM) and the new Laser Guide Star Facility (4LGSF). Multiple wavefront sensors will enable GLAO (ground layer adaptive optics) and LTAO (laser tomography adaptive optics) capabilities, whose performance can greatly benefit from a knowledge about the stratification of the turbulence in the atmosphere. This work, totally based on end-to-end simulations, describes the validation tests conducted on a C_n^2 profiler adapted for the AOF specifications. Because an absolute profile calibration is strongly dependent on a reliable knowledge of turbulence parameters r0 and L0, the tests presented here refer only to normalized output profiles. Uncertainties in the input parameters inherent to the code are tested as well as the profiler response to different turbulence distributions. It adopts a correction for the unseen turbulence, critical for the GRAAL mode, and highlights the effects of masking out parts of the corrected wavefront on the results. Simulations of data with typical turbulence profiles from Paranal were input to the profiler, showing that it is possible to identify reliably the input features for all the AOF modes.

  1. Frequencies of dendritic cells and Toll-like receptor 3 in neonates born to HBsAg-positive mothers with different HBV serological profiles.

    Science.gov (United States)

    Guo, J; Gao, Y; Guo, Z; Zhang, L R; Wang, B; Wang, S P

    2015-01-01

    To investigate the frequencies of dendritic cells (DCs) and Toll-like receptor 3 (TLR3) in neonates of HBsAg-positive mothers with different HBV serological profiles, we conducted a study in Taiyuan, China. The study included 144 HBsAg-positive mothers and their neonates. The frequencies of DCs and TLR3 were determined using four-colour flow-cytometric analysis. DC and TLR3 frequencies were not related to HBV intrauterine transmission, maternal HBeAg positivity, maternal HBV DNA positivity and HBeAg/HBV DNA double-positivity. The plasmacytoid dendritic cell (pDC) frequencies in neonates whose maternal HBV DNA was >5 × 107 copies/ml decreased significantly compared to that in neonates whose maternal HBV DNA was ⩽5 × 107 copies/ml (Z = - 2·170, P = 0·03) or whose maternal HBV DNA was negative (Z = - 1·981 P = 0·048). This study suggests that neonatal pDC frequencies decrease when maternal HBV DNA loads are >5 × 107 copies/ml.

  2. Preparation of AgInS2 quantum dot/In2S3 co-sensitized photoelectrodes by a facile aqueous-phase synthesis route and their photovoltaic performance

    Science.gov (United States)

    Wang, Yuanqiang; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2015-03-01

    In an aqueous-phase system, AgInS2 quantum dot (QD) sensitized TiO2 photoanodes were prepared in situ by the reaction of β-In2S3 nanocrystals and as-prepared TiO2/Ag2S-QD electrodes, followed by a covering process with a ZnS passivation layer. A facile successive ionic layer adsorption and reaction (SILAR) method was adopted to obtain TiO2/Ag2S-QD electrodes. β-In2S3 nanocrystals synthesized by the chemical bath deposition (CBD) process serve as the reactant of AgInS2 as well as a buffer layer between the interfaces of TiO2 and AgInS2-QDs. A polysulfide electrolyte and a Pt-coated FTO glass count electrode were used to test the photovoltaic performance of the constructed devices. The characteristics of the sensitized photoelectrodes were studied in more detail by electron microscopy, X-ray techniques, and optical and photoelectric performance measurements. AgInS2 is the main photo-sensitizer for TiO2/AgInS2-QD/In2S3 electrodes and excess In2S3 appears on the surface of the electrodes. Based on the optimal Ag2S SILAR cycle, the best photovoltaic performance of the prepared TiO2/AgInS2-QD/In2S3 electrode with the short-circuit photocurrent density (Jsc) of 7.87 mA cm-2 and power conversion efficiency (η) of 0.70% under full one-sun illumination was achieved.In an aqueous-phase system, AgInS2 quantum dot (QD) sensitized TiO2 photoanodes were prepared in situ by the reaction of β-In2S3 nanocrystals and as-prepared TiO2/Ag2S-QD electrodes, followed by a covering process with a ZnS passivation layer. A facile successive ionic layer adsorption and reaction (SILAR) method was adopted to obtain TiO2/Ag2S-QD electrodes. β-In2S3 nanocrystals synthesized by the chemical bath deposition (CBD) process serve as the reactant of AgInS2 as well as a buffer layer between the interfaces of TiO2 and AgInS2-QDs. A polysulfide electrolyte and a Pt-coated FTO glass count electrode were used to test the photovoltaic performance of the constructed devices. The characteristics of the

  3. High intensity profile monitor for time resolved spectrometry at the CLIC Test Facility 3

    Science.gov (United States)

    Olvegård, M.; Adli, E.; Braun, H. H.; Bravin, E.; Chritin, N.; Corsini, R.; Dabrowski, A. E.; Döbert, S.; Dutriat, C.; Egger, D.; Lefèvre, T.; Mete, O.; Skowronski, P. K.; Tecker, F.

    2012-08-01

    The power source of the Compact LInear Collider (CLIC) relies on the generation and deceleration of a high-intensity electron drive beam. In order to provide the best radio-frequency (RF) to beam-energy transfer efficiency, the electron beam is accelerated using fully loaded RF cavities, which leads to strong beam loading effects resulting in a high-energy transient. The stability of the RF power produced by the drive beam depends on the stability of the drive beam energy and energy spread along the pulse. The control and the monitoring of the time evolution of the beam energy distribution are therefore crucial for the accelerator performance. For this purpose segmented beam dumps, which are simple and robust devices, have been designed and installed at the CLIC Test Facility 3 (CTF3). These devices are located at the end of spectrometer lines and provide horizontal beam profiles with a time resolution better than 10 ns. The segmented dumps are composed of parallel, vertical, metallic plates, and are based on the same principle as a Faraday cup: the impinging beam current is read by a fast acquisition channel. Both FLUKA and Geant4 simulations were performed to define the optimum detector geometry for beam energies ranging from 5 MeV to 150 MeV. This paper presents a detailed description of the different steps of the design: the optimization of the detector spatial resolution, the minimization of the thermal load and the long-term damage resulting from high radiation doses. Four segmented dumps are currently used in the CTF3 complex. Their measured performance and limitations are presented in this paper. Typical beam spectra as measured in the CTF3 linac are also presented along with a description of the RF manipulations needed for tuning the beam energy spectrum.

  4. A facile fabrication of plasmonic g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag ternary heterojunction visible-light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 (China); Lv, Jiali [College of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 (China); Lu, Luhua, E-mail: lhlu@cug.edu.cn [Faculty of Material Science and Chemical Engineering, China University of Geosciences, Wuhan, 430074 (China); Liang, Changhao [College of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 (China); Geng, Lei; Zhu, Guangping [College of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 (China)

    2016-07-01

    It's important to reduce recombination of electrons and holes and enhance charge transfer through fine controlled interfacial structure. In this work, novel graphitic-C{sub 3}N{sub 4} (g-C{sub 3}N{sub 4})/Ag{sub 2}WO{sub 4}/Ag ternary photocatalyst has been synthesized by deposition of Ag{sub 2}WO{sub 4} onto g-C{sub 3}N{sub 4} template and followed by sun light reduction of Ag{sub 2}WO{sub 4} into Ag{sub 2}WO{sub 4}/Ag. As-prepared g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag presented significantly enhanced photocatalytic performance in degrading methylene blue (MB) under 410 nm LED light irradiation. Metallic Ag{sup 0} is used as plasmonic hot spots to generate high energy charge carriers. Optimal g-C{sub 3}N{sub 4} content has been confirmed to be 40 wt%, corresponding to apparent pseudo-first-order rate constant kapp of 0.0298 min{sup −1}, which is 3.3 times and 37.3 times more than that of pure g-C{sub 3}N{sub 4} and Ag{sub 2}WO{sub 4}, respectively. This novel ternary g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag structure material is an ideal candidate in environmental treatment and purifying applications. - Graphical abstract: A high efficient plasmonic graphitic-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag ternary nanocomposite photocatalyst was synthesized. - Highlights: • g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag ternary nanocomposite photocatalyst was prepared. • g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag showed high photocatalytic activity. • g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag showed long reusable life.

  5. AES depth profile and photoconductive studies of AgInS2 thin films prepared by co-evaporation

    Directory of Open Access Journals (Sweden)

    C. A Arredondo

    2014-06-01

    Full Text Available In this study, thin films of AgInS2 with chalcopyrite-type tetragonal structure were grown by means of a procedure based on the sequential evaporation of metallic precursors in presence of elemental sulfur in a two-stage process. The effect of the growth temperature and the proportion of the evaporated Ag mass in relation to the evaporated In mass (mAg/mIn on the phase and homogeneity in the chemical composition were researched through X-ray diffraction measurements and Auger electrons spectroscopy. These measurements evidenced that the conditions for preparing thin films containing only the AgInS2 phase, grown with tetragonal chalcopyrite-type structure and good homogeneity of the chemical composition in the entire volume, are a temperature of 500 °C and a 0.89 mAg/mIn proportion. The transient photocurrent measurements indicated that the electricity transmission is affected by recombination processes via band-to-band transitions and trap-assisted transitions.

  6. Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures

    Science.gov (United States)

    Wu, Jian; Xu, Yijun; Xu, Pengyu; Pan, Zhenghui; Chen, Sheng; Shen, Qishen; Zhan, Li; Zhang, Yuegang; Ni, Weihai

    2015-10-01

    We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a ``hot surface'' for enhancing the Raman response of two-dimensional materials.We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a ``hot surface'' for enhancing the Raman response of two-dimensional materials. Electronic supplementary information (ESI) available: Additional SEM images, electric field enhancement profiles, Raman scattering spectra, and structure-dependent peak ratios. See DOI: 10.1039/c5nr04500b

  7. Lateral critical current distribution and self-field profile of Bi-2223/Ag conductors: measurements and calculations

    NARCIS (Netherlands)

    Demencik, E.; Usak, P.; Polak, M.; Piel, H.; Dhalle, M.

    2006-01-01

    The lateral current distribution and the magnetic self-field induced by a transport current were measured independently in three multifilament Bi-2223/Ag tapes with qualitatively different filament layouts. The current and field data from these two experiments, magnetic knife and scanning Hall probe

  8. Lateral critical current distribution and self-field profile of Bi-2223/Ag conductors: measurements and calculations

    NARCIS (Netherlands)

    Demencik, E.; Usak, P.; Polak, M.; Piel, H.; Dhalle, Marc M.J.

    2006-01-01

    The lateral current distribution and the magnetic self-field induced by a transport current were measured independently in three multifilament Bi-2223/Ag tapes with qualitatively different filament layouts. The current and field data from these two experiments, magnetic knife and scanning Hall

  9. Ag和Pd及其离子对TiO2光催化分解CH3CHO的影响%The effects of Ag, Pd and Ag+, Pd2+ on photodegradation of CH3CHO catalyzed by TiO2

    Institute of Scientific and Technical Information of China (English)

    姚晓斌; 马颖; 姚建年

    1999-01-01

    @@ 当用能量大于其禁带宽度的光照射通有氧气的TiO2悬浮液时,在TiO2微粒表面会产生反应活性很高的空穴和O2-、H2O2等多种活性氧.在上一篇文章中[1]我们已报道了在通氧气和紫外光照的条件下,向TiO2悬浮液中加入少量Ag+或Pd2+,将会大幅度提高体系中H2O2的生成量.

  10. Facile fabrication of magnetically recyclable metal-organic framework nanocomposites for highly efficient and selective catalytic oxidation of benzylic C-H bonds.

    Science.gov (United States)

    Chen, Yifa; Huang, Xianqiang; Feng, Xiao; Li, Jikun; Huang, Yingyu; Zhao, Jingshu; Guo, Yuexin; Dong, Xinmei; Han, Ruodan; Qi, Pengfei; Han, Yuzhen; Li, Haiwei; Hu, Changwen; Wang, Bo

    2014-08-07

    HKUST-1@Fe3O4 chemically bonded core-shell nanoparticles have been prepared by growing HKUST-1 thin layers joined by carboxyl groups onto Fe3O4 nanospheres. These magnetic core-shell MOF nanostructures show exceptional catalytic activity for the oxidation of benzylic C-H bonds and they can be recovered by magnetic separation and reused without losing any activity.

  11. Comparison of the GOSAT TANSO-FTS TIR CH volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations

    Directory of Open Access Journals (Sweden)

    K. S. Olsen

    2017-10-01

    Full Text Available The primary instrument on the Greenhouse gases Observing SATellite (GOSAT is the Thermal And Near infrared Sensor for carbon Observations (TANSO Fourier transform spectrometer (FTS. TANSO-FTS uses three short-wave infrared (SWIR bands to retrieve total columns of CO2 and CH4 along its optical line of sight and one thermal infrared (TIR channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios (VMRs in the troposphere. We examine version 1 of the TANSO-FTS TIR CH4 product by comparing co-located CH4 VMR vertical profiles from two other remote-sensing FTS systems: the Canadian Space Agency's Atmospheric Chemistry Experiment FTS (ACE-FTS on SCISAT (version 3.5 and the European Space Agency's Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on Envisat (ESA ML2PP version 6 and IMK-IAA reduced-resolution version V5R_CH4_224/225, as well as 16 ground stations with the Network for the Detection of Atmospheric Composition Change (NDACC. This work follows an initial inter-comparison study over the Arctic, which incorporated a ground-based FTS at the Polar Environment Atmospheric Research Laboratory (PEARL at Eureka, Canada, and focuses on tropospheric and lower-stratospheric measurements made at middle and tropical latitudes between 2009 and 2013 (mid-2012 for MIPAS. For comparison, vertical profiles from all instruments are interpolated onto a common pressure grid, and smoothing is applied to ACE-FTS, MIPAS, and NDACC vertical profiles. Smoothing is needed to account for differences between the vertical resolution of each instrument and differences in the dependence on a priori profiles. The smoothing operators use the TANSO-FTS a priori and averaging kernels in all cases. We present zonally averaged mean CH4 differences between each instrument and TANSO-FTS with and without smoothing, and we examine their information content, their sensitive altitude range, their correlation, their a priori dependence, and the

  12. The Federal intermediate storage facility at the Paul Scherrer Institute (CH). Change of perspective - what does that mean?; Das Bundeszwischenlager am Paul Scherrer Institut (CH). Aenderung der Perspektive - Was bedeutet das?

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Hans-Frieder [Paul Scherrer Institut, Villigen-PSI (Switzerland)

    2015-07-01

    The Paul Scherrer Institute (PSI) operates a place of collection of radioactive wastes from medicine, industry and research based on the Swiss legislation. Paragraph 87 of the Swiss radiation protection regulation says: ''The Federal place of collection is the PSI.'' and further in paragraph 87a: ''The PSI accepts the radioactive waste and cares for the stacking, conditioning and intermediate storage''. The site search for an underground final repository is difficult. Therefore the planned commissioning of a final repository is shifted to the remote future. The report covers also the operational experience of the intermediate storage facility during the last 30 years.

  13. Curcumin Effect on the Expressional Profile of OCT4, Nanog and Nucleostemin Genes in AGS (Adenocarcinoma Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Fahmideh Bagrezaei

    2016-07-01

    Full Text Available Background Curcumin is the natural yellow pigment in turmeric isolated from the rhizome of the plant Curcuma longa. Curcumin inhibits formation and invasive cancer cells and destroys cancer cells resistant to chemotherapeutic drugs. Objectives The purpose of this study was the survey of effects of different concentrations of alcoholic curcumin on the octamer-binding transcription factor 4 (OCT4 Nanog and Nucleostemin genes in the AGS (human gastric adenocarcinoma cell line. Materials and Methods In this experimental study the AGS cell line was cultured in RPMI-1640, supplemented with penicillin/streptomycin (100 U/mL and 100 mg/mL, respectively and 10% fetal bovine serum, at 37°C in a humidified atmosphere of 5% CO2. In 60 - 70% cell confluence, the cells were treated with curcumin concentration (20, 40, 100 μL and incubated for 24, 48 and 72 hours. Finally, total RNA were extracted and cDNA were synthesized and the expression of mentioned genes was detected. The data were analyzed by excel software. Results Expression rate of OCT4A, OCT4B, Nanog and Nucleostemin (GLN3 at concentrations less than 20 μg/mL were reduced but OCT4B1 expression showed increased by hours respectively. Conclusions The results showed that curcumin inhibited cell division; also, this study could be the basis for more extensive studies on the anti-cancer effect of the combined plants.

  14. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.

    Science.gov (United States)

    Guo, Huizhang; Chen, Yuanzhi; Chen, Xiaozhen; Wen, Ruitao; Yue, Guang-Hui; Peng, Dong-Liang

    2011-05-13

    Magnetically recyclable Ag-Ni core-shell nanoparticles have been fabricated via a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as a surfactant. As characterized by transmission electron microscopy (TEM), the as-synthesized Ag-Ni core-shell nanoparticles exhibit a very narrow size distribution with a typical size of 14.9 ± 1.2 nm and a tunable shell thickness. UV-vis absorption spectroscopy study shows that the formation of a Ni shell on Ag core can damp the surface plasmon resonance (SPR) of the Ag core and lead to a red-shifted SPR absorption peak. Magnetic measurement indicates that all the as-synthesized Ag-Ni core-shell nanoparticles are superparamagnetic at room temperature, and their blocking temperatures can be controlled by modulating the shell thickness. The as-synthesized Ag-Ni core-shell nanoparticles exhibit excellent catalytic properties for the generation of H(2) from dehydrogenation of sodium borohydride in aqueous solutions. The hydrogen generation rate of Ag-Ni core-shell nanoparticles is found to be much higher than that of Ag and Ni nanoparticles of a similar size, and the calculated activation energy for hydrogen generation is lower than that of many bimetallic catalysts. The strategy employed here can also be extended to other noble-magnetic metal systems.

  15. Avaliação do perfil sensorial de chá light sabor pêssego Sensory profile evaluation of light peach tea

    Directory of Open Access Journals (Sweden)

    Cibele Cristina Osawa

    2008-12-01

    Full Text Available No presente estudo foi determinado o perfil sensorial e a aceitação de três marcas comerciais de chá light sabor pêssego, denominadas A, B e C, acondicionadas em embalagem PET e adquiridas no comércio local. O perfil sensorial foi determinado por Análise Descritiva Quantitativa (ADQ utilizando-se uma equipe de 11 provadores rigorosamente selecionados e treinados. A aceitação dos produtos foi avaliada por 33 consumidores representativos do público alvo. Os resultados da ADQ foram submetidos à Análise de Variância (ANOVA, Teste de Média de Tukey e Análise de Componentes Principais. As amostras comerciais apresentaram perfis semelhantes em alguns termos descritores e diferenças significativas em outros. A amostra A caracterizou-se principalmente pelos atributos aroma e sabor de banana passa; a amostra B por aroma artificial de pêssego e refrescância; e a amostra C por aroma natural de pêssego e doçura. O Teste Afetivo, analisado por ANOVA e Teste de Média de Tukey, indicou maior aceitação para a amostra C. A cor das amostras foi avaliada pelo método Cielab L*a*b*, sendo que a amostra C se destacou das demais pela cor vermelha.In this work, three different brands of light peach iced tea (A, B and C, purchased in a local market and packed in PET bottles were sensory analyzed. At first, Quantitative Descriptive Analysis (QDA was conducted in order to obtain the sensorial profile, with eleven tasters, previously selected and trained. The product acceptance was evaluated by 33 consumers, representing the target public. The QDA results were submitted to ANOVA, Tukey's test and Principal Component Analysis (PCA. The sample A was mainly characterized by banana aroma and flavor; the sample B by artificial peach aroma and refreshment; while the sample C by sweetness and natural peach aroma. The acceptance test, analyzed by ANOVA and Tukey's test, showed a greater acceptance for the sample C. The colour of the samples was evaluated by

  16. Analysis of behaviour of transonic profiles with strong curvature: Test facilities, instrumentation, test results, theoretical interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Pittaluga, G.; Benvenuto, G. (Udine Univ. (Italy); L' Aquila Univ. (Italy))

    1988-06-01

    Relevant to experimental investigations on the performance of a transonic turbine blade cascade, this paper discusses recent developments regarding the following topics: the experimental equipment and relative instrumentation; the results of tests on turbine blade cascades; the conceptual methods specifically developed and aimed at the optimized design of steam turbines systems and turbine blades; the theoretical-numerical procedures developed and applied as supports for theoretical-experimental analyses and the redesign of blade profiles to increase efficiency.

  17. Construction of Ag/AgCl nanostructures from Ag nanoparticles as high-performance visible-light photocatalysts

    Science.gov (United States)

    Yang, Fan; Liu, Dongzhi; Wang, Tianyang; Li, Wei; Hu, Wenping; Zhou, Xueqin

    2016-11-01

    A combined strategy of in situ oxidation and assembly is developed to prepare Ag/AgCl nanospheres and nanocubes from Ag nanoparticles under room temperature. It is a new facile way to fabricate Ag/AgCl with small sizes and defined morphologies. Ag/AgCl nanospheres with an average size of 80 nm were achieved without any surfactants, while Ag/AgCl nanocubes with a mean edge length of 150 nm were obtained by introduction of N-dodecyl- N, N-dimethyl-2-ammonio-acetate. The possible formation mechanism involves the self-assembly of AgCl nanoparticles, Ostwald ripening and photoreduction of Ag+ into Ag0 by the room light. The as-prepared Ag/AgCl nanospheres and nanocubes exhibit excellent photocatalytic activity and stability toward degradation of organic pollutants under visible-light irradiation. It is demonstrated that Ag/AgCl nanocubes display enhanced photocatalytic activity in comparison with Ag/AgCl nanospheres due to the more efficient charge transfer. This work may pave an avenue to construct various functional materials via the assembly strategy using nanoparticles as versatile building blocks.

  18. Facile fabrication of highly efficient AgI/ZnO heterojunction and its application of methylene blue and rhodamine B solutions degradation under natural sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinjun, E-mail: wxjtg2006@126.com; Wan, Xiaoli; Xu, Xiaoning; Chen, Xuenian

    2014-12-01

    Highlights: • A high-efficiency natural sunlight driven AgI/ZnO photocatalysts have been first prepared. • Our method is a simple, environment-friendly and cost-effective process. • The possible photocatalytic mechanism of AgI/ZnO was proposed. • AgI/ZnO exhibits higher efficiency for the degradation of methylene blue and rhodamine B under natural sunlight than a 500 W Xe lamp. - Abstract: The AgI/ZnO heterojunction was successfully synthesized by in situ deposition method and was found to be a natural sunlight driven photocatalyst. The photocatalytic efficiency of AgI/ZnO was evaluated by the degradation of rhodamine B under visible light irradiation. The influence of various operational parameters such as the effect of loading amount, catalyst dosage and initial RhB concentration on the photodegradation was investigated in detail and the results were discussed. The results indicated that the AgI/ZnO composites displayed much higher photocatalytic performances over ZnO as well as AgI. Moreover, the catalyst obviously showed higher efficiency for the degradation of methylene blue and rhodamine B under natural sunlight than a 500 W Xe lamp, and nearly 100% of dyes were degraded only in 120 min under the optimum conditions. At last, the quenching effects of different scavengers suggested that the reactive • OH and h{sup +} play the major role in the RhB degradation.

  19. Facile fabrication of efficient AgBr-TiO{sub 2} nanoheterostructured photocatalyst for degrading pollutants and its photogenerated charge transfer mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxin [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China); Jing, Liqiang, E-mail: Jinglq@hlju.edu.cn [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China); Qu, Yichun; Luan, Yunbo; Fu, Honggang; Xiao, Yuchen [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A microemulsion-like chemical precipitation is developed for AgBr-TiO{sub 2} composite. Black-Right-Pointing-Pointer The composite displays effective charge transfers between AgBr and TiO{sub 2.} Black-Right-Pointing-Pointer A charge transfer mechanism in the AgBr-TiO{sub 2} composite is suggested. Black-Right-Pointing-Pointer The suggested mechanism is responsible for the enhanced photocatalytic activity. - Abstract: A simple microemulsion-like chemical precipitation method has been successfully developed to construct effectively-contacted AgBr-TiO{sub 2} composite. The key of this method is the dual roles of Br{sup -} in the synthetic process, as linkers between cetyltrimethyl ammonium cation surfactants and nanocrystalline anatase TiO{sub 2} in the acidic condition, and as bromine sources to directly produce nanocrystalline AgBr on the surfaces of TiO{sub 2} by chemical precipitation. It is well demonstrated that the as-constructed AgBr-TiO{sub 2} nanoheterostructured composites display effective photogenerated charge transfer between AgBr and TiO{sub 2}, favorable to improve charge separation, by means of the surface photovoltage technique in different atmospheres at the aid of outer electric fields, especially for the transient surface photovoltage technique in air. And also, the Br{sup -} in crystal lattice of AgBr could effectively capture photogenerated holes under illumination. These factors are well responsible for the enhanced activity for photocatalytic degradation of liquid phase aqueous phenol solution and gas phase acetaldehyde under either UV-visible or visible irradiation, and the stability of AgBr in the photocatalytic processes.

  20. Facile synthesis, characterization and recyclable photocatalytic activity of Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Vignesh, K., E-mail: vignesh134@gmail.com; Kang, Misook, E-mail: mskang@ynu.ac.kr

    2015-09-15

    Graphical abstract: The schematic diagram of electron–hole transfer process in Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} under simulated solar light irradiation. - Highlights: • Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} was synthesized by sono-chemical impregnation method. • Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} was characterized using XRD, TEM, BET, UV-DRS and PL. • The photocatalytic activity was performed for the degradation of methylene blue. • Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} showed excellent photocatalytic activity within 120 min. • Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} was found to be a recyclable photocatalyst. - Abstract:: Silver tungstate (Ag{sub 2}WO{sub 4}) supported on graphite like carbon nitride (Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4}) was synthesized via sono-chemical impregnation method to improve the photo-stability. The photocatalytic performance was evaluated for the degradation of methylene blue (MB) dye under simulated solar light irradiation. The surface area, light absorption capacity and photocatalytic activity of Ag{sub 2}WO{sub 4} were improved in the presence of g-C{sub 3}N{sub 4} support. The photocatalyst of Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} (40%) exhibited the best performance (100%) for the degradation of MB within 120 min of irradiation time. The recycling experiments revealed that the photo-corrosion behavior of Ag{sub 2}WO{sub 4} was strongly inhibited by g-C{sub 3}N{sub 4}. A possible mechanism was proposed to explain the electron–hole transfer process between Ag{sub 2}WO{sub 4} and g-C{sub 3}N{sub 4}. The results of this research work testified that Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} could be used as a promising photocatalyst under solar light exposure.

  1. Silicon detectors for the neutron flux and beam profile measurements of the n_TOF facility at CERN

    Science.gov (United States)

    Musumarra, Agatino; Cosentino, Luigi; Barbagallo, Massimo; Colonna, Nicola; Damone, Lucia; Pappalardo, Alfio; Piscopo, Massimo; Finocchiaro, Paolo

    2016-09-01

    The demand of new and high precision cross section data for neutron-induced reactions is continuously growing, driven by the requirements from several fields of fundamental physics, as well as from nuclear technology, medicine, etc. Several neutron facilities are operational worldwide, and new ones are being built. In the coming years, neutron beam intensities never reached up to now will be available, thus opening new scientific and technological frontiers. Among existing facilities, n_TOF at CERN provides a high intensity pulsed neutron beam in a wide energy range (thermal to GeV) and with an extremely competitive energy resolution that also allows spectroscopy studies. In order to ensure high quality measurements, the neutron beams must be fully characterized as a function of the neutron energy, in particular by measuring the neutron flux and the beam transverse profile with high accuracy. In 2014 a new experimental area (EAR2), with a much higher neutron flux, has been completed and commissioned at n_TOF. In order to characterize the neutron beam in the newly built experimental area at n_TOF, two suitable diagnostics devices have been built by the INFN-LNS group. Both are based on silicon detectors coupled with 6Li converter foils, in particular Single Pad for the flux measurement and Position Sensitive (strips and others) for the beam profile. The devices have been completely characterized with radioactive sources and with the n_TOF neutron beam, fulfilling all the specifications and hence becoming immediately operational. The performances of these devices and their high versatility, in terms of neutron beam intensity, make them suitable to be used in both n_TOF experimental areas. A description of the devices and the main results obtained so far will be presented.

  2. Facile synthesis of AgI/BiOI-Bi{sub 2}O{sub 3} multi-heterojunctions with high visible light activity for Cr(VI) reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); The Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332 (United States); Shi, Xiaodong; Liu, Enqin [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Crittenden, John C. [The Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332 (United States); Ma, Xiangjuan; Zhang, Yi [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Cong, Yanqing, E-mail: yqcong@hotmail.com [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China)

    2016-11-05

    Graphical abstract: Highly visible-light-active AgI/BiOI-Bi{sub 2}O{sub 3} with multi-heterojunctions was developed. - Highlights: • Visible-light-active AgI/BiOI-Bi{sub 2}O{sub 3} with multi-heterojunctions was prepared. • Highly enhanced photocatalytic reduction of Cr(VI) was observed. • k{sub Cr(VI)} on AgI/BiOI-Bi{sub 2}O{sub 3} increased by ca.16 times relative to Bi{sub 2}O{sub 3}. • Decreased E{sub g}, shifted E{sub fb} and reduced charge transfer resistance were observed. • Simultaneous reduction of Cr(VI) and degradation of organics were achieved. - Abstract: AgI sensitized BiOI-Bi{sub 2}O{sub 3} composite (AgI/BiOI-Bi{sub 2}O{sub 3}) with multi-heterojunctions was prepared using simple etching-deposition process. Different characterization techniques were performed to investigate the structural, optical and electrical properties of the as-prepared photocatalysts. It was found that the ternary AgI/BiOI-Bi{sub 2}O{sub 3} composite exhibited: (1) improved photocurrent response, (2) smaller band gap, (3) greatly reduced charge transfer resistance and (4) negative shift of flat band potential, which finally led to easier generation and more efficient separation of photo-generated electron-hole pairs at the hetero-interfaces. Thus, for the reduction of Cr(VI), AgI/BiOI-Bi{sub 2}O{sub 3} exhibited excellent photocatalytic activity under visible light irradiation at near neutral pH. AgI/BiOI-Bi{sub 2}O{sub 3} was optimized when the initial molar ratio of KI to Bi{sub 2}O{sub 3} and AgNO{sub 3} to Bi{sub 2}O{sub 3} was 1:1 and 10%, respectively. The estimated k{sub Cr(VI)} on optimized AgI/BiOI-Bi{sub 2}O{sub 3} was about 16 times that on pure Bi{sub 2}O{sub 3}. Good stability was also observed in cyclic runs, indicating that the current multi-heterostructured photocatalyst is highly desirable for the remediation of Cr(VI)-containing wastewater.

  3. Inferences from CO2 and CH4 concentration profiles at the Zotino Tall Tower Observatory (ZOTTO on local summer-time ecosystem fluxes

    Directory of Open Access Journals (Sweden)

    J. Winderlich

    2013-09-01

    Full Text Available The Siberian region is still sparsely covered by ecosystem observatories, which motivates to exploit existing datasets to gain spatially and temporally better-resolved carbon fluxes. The Zotino Tall Tower Observatory (ZOTTO, 60°48' N, 89°21' E observations of CO2 and CH4 mole fractions as well as meteorological parameters from six different heights up to 301 m allow for an additional estimate of surface-atmosphere fluxes of CO2 and CH4 for the Middle-Siberian region since 2009. The total carbon flux is calculated from the storage and the turbulent flux component. The gradients between the different tower levels determine the storage flux component, which dominates the local fluxes, especially during night. As a correction term, the turbulent flux component was estimated by the modified Bowen ratio method based on the sensible heat flux measurements at the top of the tower. The gained average night time fluxes (23:00 to 04:00 local time are 2.7 ± 1.1 μmol (m2 s−1 for CO2 and 5.6 ± 4.5 nmol (m2 s−1 for CH4 during the summer months June-September in 2009 and 2011. During day, the method is limited due to numeric instabilities from vanishing vertical gradients; however, the derived CO2 fluxes exhibit reasonable diurnal shape and magnitude compared to the eddy covariance technique, which become available at the site in 2012. Therefore, the tall tower data facilitates the extension of the new eddy covariance flux dataset back in time. The diurnal signal of the CH4 flux is predominantly characterized by a strong morning transition, which is explained by local topographic effects.

  4. Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles.

    Science.gov (United States)

    Feres, Magda; Louzoun, Yoram; Haber, Simi; Faveri, Marcelo; Figueiredo, Luciene C; Levin, Liran

    2017-08-02

    The existence of specific microbial profiles for different periodontal conditions is still a matter of debate. The aim of this study was to test the hypothesis that 40 bacterial species could be used to classify patients, utilising machine learning, into generalised chronic periodontitis (ChP), generalised aggressive periodontitis (AgP) and periodontal health (PH). Subgingival biofilm samples were collected from patients with AgP, ChP and PH and analysed for their content of 40 bacterial species using checkerboard DNA-DNA hybridisation. Two stages of machine learning were then performed. First of all, we tested whether there was a difference between the composition of bacterial communities in PH and in disease, and then we tested whether a difference existed in the composition of bacterial communities between ChP and AgP. The data were split in each analysis to 70% train and 30% test. A support vector machine (SVM) classifier was used with a linear kernel and a Box constraint of 1. The analysis was divided into two parts. Overall, 435 patients (3,915 samples) were included in the analysis (PH = 53; ChP = 308; AgP = 74). The variance of the healthy samples in all principal component analysis (PCA) directions was smaller than that of the periodontally diseased samples, suggesting that PH is characterised by a uniform bacterial composition and that the bacterial composition of periodontally diseased samples is much more diverse. The relative bacterial load could distinguish between AgP and ChP. An SVC classifier using a panel of 40 bacterial species was able to distinguish between PH, AgP in young individuals and ChP. © 2017 FDI World Dental Federation.

  5. Facile synthesis and enhanced magnetic, photocatalytic properties of one-dimensional Ag@Fe3O4-TiO2

    Science.gov (United States)

    Jia, Xiaohua; Dai, Rongrong; Lian, Dandan; Han, Song; Wu, Xiangyang; Song, Haojie

    2017-01-01

    Fe3O4-TiO2 heterostructures were synthesized through co-precipitation method based on TiO2 nanobelts. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibration sample magnetometry (VSM) were used to characterize the heterostructure nanocomposites. The results of XRD proved that the TiO2 nanobelt was anatase which was the most suitable crystal form for photocatalysis. SEM and TEM analysis indicated that Fe3O4 nanoparticles were adhere to TiO2 nanobelts which have one-dimensional structure with 100-200 nm in width. The VSM measurements showed that the photocatalyst can be easily recovered by an extemal magnetic field. X-ray photoelectron spectroscopy (XPS) of Ag@Fe3O4-TiO2 nanocomposites studies confirm that Ag is in Ag0 state. Finally, the photodegradation of rhodamine B (RhB) by the obtained magnetic photocatalyst was investigated via UV-vis absorption spectra. The photocatalytic activity of the composites was observed to be lower compared to bare TiO2 due to the higher degree of recombination reactions after combined with Fe3O4 nanoparticles. After coated the composite of 15% Fe3O4-TiO2 with Ag, the new nanocomposite of Ag@Fe3O4-TiO2 can be easily recovered after photocatalysis by an extemal magnetic field and showed enhanced photocatalytic activity. The mechanisms for the exhibited enhanced photocatalytic effect of Ag nanoparticle decorated Fe3O4-TiO2 nanocomposites with surface heterostructures are discussed.

  6. Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores.

    Science.gov (United States)

    Li, Juan; Li, Congshan; Chen, Cheng; Hao, Qingli; Wang, Zhijia; Zhu, Jie; Gao, Xuefeng

    2012-10-24

    We report a facile nanofabrication method, one-step hard anodizing and etching peeling (OS-HA-EP) of aluminum foils followed by multistep mild anodizing and etching pore-widening (MS-MA-EW), for the controllable tailoring of hexagonally packed three-dimensional alumina taper-nanopores. Their profiles can be precisely tailored by the synergistic control of anodizing time, etching time and cyclic times at the MS-MA-EW stage, exemplified by linear cones, whorl-embedded cones, funnels, pencils, parabolas, and trumpets. Meantime, their periods can also be modulated in the range of 70-370 nm by choosing matched anodizing electrolytes (e.g., H(2)C(2)O(4), H(2)SO(4), H(2)C(2)O(4)-H(2)SO(4), and H(2)C(2)O(4)-C(2)H(5)OH mixture) and anodizing voltages at the OS-HA-EP stage. We also demonstrated that the long-range ordering of nanopits and the peak voltage of stable self-ordered HA, which are unachievable in a single H(2)C(2)O(4) electrolyte system, can be effectively tuned by simply adding tiny quantity of H(2)SO(4) and C(2)H(5)OH to keep an appropriate HA current density, respectively. This method of using the combination of simple pure chemical nanofabrication technologies is very facile and efficient in realizing the controllable tailoring of large-area alumina membranes containing self-ordered taper-nanopores. Our work opens a door for exploring the novel physical and chemical properties of different materials of nanotaper arrays.

  7. Facile synthesis of graphene-like Co{sub 3}S{sub 4} nanosheet/Ag{sub 2}S nanocomposite with enhanced performance in visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Mingyang [Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Niu, Helin, E-mail: niuhelin@ahu.edu.cn [Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Huang, Jinjing; Song, Jiming; Mao, Changjie; Zhang, Shengyi [Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Zhu, Chengfeng [School of Chemical Engineering Hefei University of Technology, Hefei 230009 (China); Chen, Changle [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2015-10-01

    Highlights: • Graphene-like Co{sub 3}S{sub 4} nanosheet/Ag{sub 2}S nanocomposites was prepared by a facile method. • Good photocatalytic activity for dye degradation under visible light irradiation. • Promising candidates as photocatalyst for dye degradation. - Abstract: Visible light photocatalysts have stimulated great research efforts. In this contribution, graphene-like Co{sub 3}S{sub 4} nanosheet/Ag{sub 2}S nanocomposite was prepared using a simple method, and characterized by transmission electron microscopy, X-ray diffraction, and UV–Vis DRS, etc. The photocatalytic properties of the nanocomposite was evaluated by the photocatalytic degradation of Methylene blue (MB) and Methyl orange (MO) under visible light irradiation. The nanocomposite photocatalyst displays excellent stability and photocatalytic activity compared with pure Co{sub 3}S{sub 4} nanosheet or Ag{sub 2}S nanoparticles. The superior photocatalytic properties were attributed to its unique structures, which could promote efficiently electron/hole separation and transportation.

  8. Studies on the structure-activity relationship of 2',6'-dimethyl-l-tyrosine (Dmt) derivatives: bioactivity profile of H-Dmt-NH-CH(3).

    Science.gov (United States)

    Fujita, Yoshio; Tsuda, Yuko; Motoyama, Takashi; Li, Tingyou; Miyazaki, Anna; Yokoi, Toshio; Sasaki, Yusuke; Ambo, Akihiro; Niizuma, Hideko; Jinsmaa, Yunden; Bryant, Sharon D; Lazarus, Lawrence H; Okada, Yoshio

    2005-02-01

    The 2',6'-dimethyl-l-tyrosine (Dmt) enhances receptor affinity, functional bioactivity and in vivo analgesia of opioid peptides. To further investigate its direct influence on these opioid parameters, we developed a series of compounds (H-Dmt-NH-X). Among them, H-Dmt-NH-CH(3) showed the highest affinity (K(i)mu=7.45 nM) equal to that of morphine, partial mu-opioid agonism (E(max)=66.6%) in vitro and a moderate antinociception in mice.

  9. Combining ChIP-chip and expression profiling to model the MoCRZ1 mediated circuit for Ca/calcineurin signaling in the rice blast fungus.

    Directory of Open Access Journals (Sweden)

    Soonok Kim

    2010-05-01

    Full Text Available Significant progress has been made in defining the central signaling networks in many organisms, but collectively we know little about the downstream targets of these networks and the genes they regulate. To reconstruct the regulatory circuit of calcineurin signal transduction via MoCRZ1, a Magnaporthe oryzae C2H2 transcription factor activated by calcineurin dephosphorylation, we used a combined approach of chromatin immunoprecipitation - chip (ChIP-chip, coupled with microarray expression studies. One hundred forty genes were identified as being both a direct target of MoCRZ1 and having expression concurrently differentially regulated in a calcium/calcineurin/MoCRZ1 dependent manner. Highly represented were genes involved in calcium signaling, small molecule transport, ion homeostasis, cell wall synthesis/maintenance, and fungal virulence. Of particular note, genes involved in vesicle mediated secretion necessary for establishing host associations, were also found. MoCRZ1 itself was a target, suggesting a previously unreported autoregulation control point. The data also implicated a previously unreported feedback regulation mechanism of calcineurin activity. We propose that calcium/calcineurin regulated signal transduction circuits controlling development and pathogenicity manifest through multiple layers of regulation. We present results from the ChIP-chip and expression analysis along with a refined model of calcium/calcineurin signaling in this important plant pathogen.

  10. Microbial Indicator Profiling of Fresh Produce and Environmental Samples from Farms and Packing Facilities in Northern Mexico.

    Science.gov (United States)

    Heredia, Norma; Caballero, Cindy; Cárdenas, Carmen; Molina, Karina; García, Rafael; Solís, Luisa; Burrowes, Vanessa; Bartz, Faith E; de Aceituno, Anna Fabiszewski; Jaykus, Lee-Ann; García, Santos; Leon, Juan

    2016-07-01

    To compare microbiological indicator and pathogen contamination among different types of fresh produce and environmental samples along the production chain, 636 samples of produce (rinsates from cantaloupe melons, jalapeño peppers, and tomatoes) and environmental samples (rinsates from hands of workers, soil, and water) were collected at four successive steps in the production process (from the field before harvest through the packing facility) on 11 farms in northern Mexico during 2011 and 2012. Samples were assayed for enteric pathogens (Escherichia coli O157:H7, other Shiga toxigenic E. coli, Salmonella, and Listeria monocytogenes) and microbial indicators (coliforms, other E. coli strains, and Enterococcus spp.). Salmonella was the only pathogen detected; it was found in one preharvest jalapeño sample (detection limits: 0.0033 CFU/ml in produce and hand samples, 0.0013 CFU/ml in water, and 0.04 CFU/g in soil). Microbial indicator profiles for produce, worker hands, and soil from jalapeño and tomato farms were similar, but cantaloupe farm samples had higher indicator levels (P < 0.05 for all comparisons) on fruit (6.5, 2.8, and 7.2 log CFU per fruit) and hands (6.6, 3.1, and 7.1 log CFU per hand) for coliforms, E. coli, and Enterococcus, respectively, and lower E. coli levels in soil (<1 CFU/g). In water from tomato farms, E. coli indicators were significantly more prevalent (70 to 89% of samples were positive; P = 0.01 to 0.02), and geometric mean levels were higher (0.3 to 0.6 log CFU/100 ml) than those in cantaloupe farm water (32 to 38% of samples were positive, geometric mean <1 CFU/100 ml). Microbial indicators were present during all production steps, but prevalence and levels were generally highest at the final on-farm production step (the packing facility) (P < 0.03 for significant comparisons). The finding that microbial contamination on produce farms is influenced by produce type and production step can inform the design of effective approaches to

  11. Facile synthesis of hybrid nanorods with the Sb2Se3/AgSbSe2 heterojunction structure for high performance photodetectors.

    Science.gov (United States)

    Chen, Shuo; Qiao, Xvsheng; Wang, Fengxia; Luo, Qun; Zhang, Xianghua; Wan, Xia; Xu, Yang; Fan, Xianping

    2016-01-28

    An effective colloidal process involving the hot-injection method is developed to synthesize uniform single-crystalline Sb2Se3 nanorods in high yields. The photoconductive characteristics of the as-synthesized Sb2Se3 nanorods are investigated by developing a film-based photodetector and this device displays a remarkable response to visible light with an "ON/OFF" ratio as high as 50 (with an incident light density of 12.05 mW cm(-2)), short response/recovery times and long-term durability. To overcome the challenge of the intrinsic low electrical conductivity of Sb2Se3, hybrid nanorods with the Sb2Se3/AgSbSe2 heterojunction structure having a type-II band alignment are firstly prepared. The electric current of the photodetector based on the Sb2Se3/AgSbSe2 hybrid nanorod film has been significantly increased both in the dark and under light illumination. The responsivity of the photodetector based on the Sb2Se3/AgSbSe2 hybrid nanorod film is about 4.2 times as much as that of the photodetector based on the Sb2Se3 nanorod film. This improvement can be considered as an important step to promote Sb2Se3 based semiconductors for applications in high performance photodetectors.

  12. ChIP-seq profiling of the active chromatin marker H3K4me3 and PPARγ, CEBPα and LXR target genes in human SGBS adipocytes

    Science.gov (United States)

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-01-01

    Transcription factors (TFs) represent key factors to establish a cellular phenotype. It is known that several TFs could play a role in disease, yet less is known so far how their targets overlap. We focused here on identifying the most highly induced TFs and their putative targets during human adipogenesis. Applying chromatin immunoprecipitation coupled with deep sequencing (ChIP-Seq) in the human SGBS pre-adipocyte cell line, we identified genes with binding sites in their vicinity for the three TFs studied, PPARγ, CEBPα and LXR. Here we describe the experimental design and quality controls in detail for the deep sequencing data and related results published by Galhardo et al. in Nucleic Acids Research 2014 [1] associated with the data uploaded to NCBI Gene Expression Omnibus (GSE41578). PMID:26484099

  13. ChIP-seq profiling of the active chromatin marker H3K4me3 and PPARγ, CEBPα and LXR target genes in human SGBS adipocytes

    Directory of Open Access Journals (Sweden)

    Mafalda Galhardo

    2014-12-01

    Full Text Available Transcription factors (TFs represent key factors to establish a cellular phenotype. It is known that several TFs could play a role in disease, yet less is known so far how their targets overlap. We focused here on identifying the most highly induced TFs and their putative targets during human adipogenesis. Applying chromatin immunoprecipitation coupled with deep sequencing (ChIP-Seq in the human SGBS pre-adipocyte cell line, we identified genes with binding sites in their vicinity for the three TFs studied, PPARγ, CEBPα and LXR. Here we describe the experimental design and quality controls in detail for the deep sequencing data and related results published by Galhardo et al. in Nucleic Acids Research 2014 [1] associated with the data uploaded to NCBI Gene Expression Omnibus (GSE41578.

  14. Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, G. E., E-mail: kemp10@llnl.gov; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M. [Lawrence Livermore National Laboratory, Livermore, California 94550-9698 (United States)

    2015-05-15

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3–5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (∼n{sub c}/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from CRETIN, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3–5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ∼100–150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (∼20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3–5 keV x-ray source on NIF.

  15. Ripening and storage conditions of Chétoui and Arbequina olives: Part II. Effect on olive endogenous enzymes and virgin olive oil secoiridoid profile determined by high resolution mass spectrometry.

    Science.gov (United States)

    Hachicha Hbaieb, Rim; Kotti, Faten; Cortes-Francisco, Nuria; Caixach, Josep; Gargouri, Mohamed; Vichi, Stefania

    2016-11-01

    Several factors affect virgin olive oil (VOO) phenolic profile. The aim of this study was to monitor olive hydrolytic (β-glucosidase) and oxidative (peroxydase, POX, and polyphenoloxydase, PPO) enzymes during olive ripening and storage and to determine their capacity to shape VOO phenolic profile. To this end, olives from the cultivars Chétoui and Arbequina were stored at 4°C or 25°C for 4weeks and their enzymatic activities and oil phenolic profiles were compared to those of ripening olives. We observed different trends in enzymes activities according to cultivar and storage temperature. Secoiridoid compounds, determined by high resolution mass spectrometry (HRMS), and their deacetoxylated, oxygenated, and deacetoxy-oxygenated derivatives were identified and their contents differed between the cultivars according to olive ripening degree and storage conditions. These differences could be due to β-glucosidase, POX and PPO activities changes during olive ripening and storage. Results also show that oxidised phenolic compounds could be a marker of VOO ''freshness". Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Chôra

    DEFF Research Database (Denmark)

    Isar, Nicoletta

    2009-01-01

    , for whom "il y a khôra" (there is chôra), Sallis keeps the definite article (the chôra) as an index of certain differentiation in chôra. This article takes as a point of departure Sallis' thesis regarding the manifestation of the chôra, grounded in the manner in which the chôra is apprehended, that is...

  17. ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis

    Directory of Open Access Journals (Sweden)

    Karchenko Peter V

    2011-02-01

    Full Text Available Abstract Background Chromatin immunoprecipitation (ChIP followed by microarray hybridization (ChIP-chip or high-throughput sequencing (ChIP-seq allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII, and six histone modifications across four developmental stages of Drosophila melanogaster. Results Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis. Conclusions Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis.

  18. Expertise concerning the request by the ZWILAG Intermediate Storage Facility Wuerenlingen AG for granting of a licence for the building and operation of the Central Intermediate Storage Facility for radioactive wastes; Gutachten zum Gesuch der ZWILAG Zwischenlager Wuerenlingen AG um Erteilung der Bewilligung fuer Bau und Betrieb des Zentralen Zwischenlagers fuer radioaktive Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-15

    On July 15, 1993, the Intermediate Storage Facility Wuerenlingen AG (ZWILAG) submitted a request to the Swiss Federal Council for granting of a license for the construction and operation of a central intermediate storage facility for radioactive wastes. The project foresees intermediate storage halls as well as conditioning and incineration installations. The Federal Agency for the Safety of Nuclear Installations (HSK) has to examine the project from the point of view of nuclear safety. The present report presents the results of this examination. Different waste types have to be treated in ZWILAG: spent fuel assemblies from Swiss nuclear power plants (KKWs); vitrified, highly radioactive wastes from reprocessing; intermediate and low-level radioactive wastes from KKWs and from reprocessing; wastes from the dismantling of nuclear installations; wastes from medicine, industry and research. The wastes are partitioned into three categories: high-level (HAA) radioactive wastes containing, amongst others, {alpha}-active nuclides, intermediate-level (MAA) radioactive wastes and low-level (SAA) radioactive wastes. The projected installation consists of three repository halls for each waste category, a hot cell, a conditioning plant and an incineration and melting installation. The HAA repository can accept 200 transport and storage containers with vitrified high-level wastes or spent fuel assemblies. The expected radioactivity amounts to 10{sup 20} Bq, including 10{sup 18} Bq of {alpha}-active nuclides. The thermal power produced by decay is released to the environment by natural circulation of air. The ventilation system is designed for a maximum power of 5.8 MW. Severe conditions are imposed to the containers as far as tightness and shielding against radiation is concerned. In the repository for MAA wastes the maximum radioactivity is 10{sup 18} Bq with 10{sup 15} Bq of {alpha}-active nuclides. The maximum thermal power of 250 kW is removed by forced air cooling. Because

  19. Spectroscopy of {sup 96}Ag.

    Energy Technology Data Exchange (ETDEWEB)

    Boutachkov, P.; Gorska, M.; Grawe, H.; Pietri, S.; Pardo, C.D.; Farinon, F.; Kojouharov, I.; Kurz, N.; Nociforo, C.; Prochazka, A.; Prokopowicz, W.; Caceres, L.; Engert, T.; Gerl, J.; Goel, N.; Schaffner, H.; Weick, H.; Wollersheim, H.J.; Merchant, E. [GSI (Germany); Braun, N.; Blazhev, A.; Bettermann, L.; Finke, F.; Geibel, K.; Ilie, G.; Iwasaki, H.; Reiter, P.; Scholl, C.; Warr, N. [Univ. Koeln (Germany); Brock, T.; Nara Singh, B.S.; Wadsworth, R. [Univ. York (United Kingdom); Liu, Z.; Gottardo, A.; Woods, P. [Univ. Edinburgh (United Kingdom); Faestermann, T.; Eppinger, K.; Hinke, C.; Kruecken, R. [TU Munich (Germany); Grebosz, J. [Inst. Fizyki, Krakow (Poland); Podolyak, Zs.; Steer, S.; Regan, P. [Univ. Surrey (United Kingdom); Hoischen, R. [GSI (Germany); Lund Univ. (Sweden); Nyberg, J.; Soederstroem, P.A. [Uppsala Univ. (Sweden); Pfuetzner, M. [Warsaw Univ. (Poland); Rinta-Antila, S. [Univ. Liverpool (United Kingdom); Rudolph, D. [Lund Univ. (Sweden); Atac, A. [Ankara Univ. (Turkey)

    2010-07-01

    A measurement with the RISING setup at the GSI-FRS facility has been performed to study isomer and {beta} decays in N{proportional_to}Z Cd, Ag and Pd isotopes. This study provides information on the shell evolution around the N=Z=50 shell closure. In particular, three new isomeric states were observed in {sup 96}Ag, extending the level scheme to high-spin spherical structures, including core-excited states. A comparison to shell-model calculations ascertains the {sup 100}Sn shell gap from this data. The new {sup 96}Ag results are presented.

  20. Ag transport in CrN-Ag nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, C.P. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); U.S. Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, NY 12189 (United States); Papi, P.A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Gall, D., E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2012-09-01

    2-{mu}m-thick CrN-Ag composite coatings containing 22 at.% Ag were deposited on Si(001) by reactive co-sputtering at T{sub s} = 300, 400, and 500 Degree-Sign C. Subsequent vacuum annealing at T{sub a} = 425, 525, and 625 Degree-Sign C causes Ag transport to the surface. Auger electron spectroscopy and plan-view microscopy are used to quantify the Ag transport to the surface, which increases strongly with increasing {Delta}T = T{sub a} - T{sub s}. Compositional depth profiles and cross-sectional microscopy show that annealing causes a negligible Ag gradient through the composite layer, suggesting that the Ag transport is detachment-limited as opposed to diffusion-limited. Statistical analyses of Ag aggregate size-distributions within the matrix show that large aggregates ({>=} 50 nm) are unaffected by annealing, while the Ag in a large fraction of small aggregates (< 50 nm) moves to the surface, leaving behind 10-50 nm wide voids in the annealed composite. This indicates that the Ag from the smaller grains, with a higher chemical potential and thus a higher detachment rate, is transferred to the large grains on the surface which are 200-1000 nm wide. - Highlights: Black-Right-Pointing-Pointer CrN-Ag coatings were deposited at T{sub s} = 300-500 Degree-Sign C and annealed at T{sub a} = 425-625 Degree-Sign C. Black-Right-Pointing-Pointer Ag diffuses from aggregates in the coating to the surface, if T{sub a} > T{sub s}. Black-Right-Pointing-Pointer During annealing, aggregates < 50 nm become voids, those > 50 nm are unaffected. Black-Right-Pointing-Pointer The Ag transport is detachment rather than diffusion limited.

  1. Compare the photocatalytic properties of nanocomposites with tandem n (AgBr)-n (Ag2CO3) and p (AgCl)-n (Ag2CO3) heterojunctions

    Science.gov (United States)

    Asadollahi, A.; Sohrabnezhad, Sh.; Ansari, R.

    2017-07-01

    In this work, Ag2CO3 nanoparticles (NPs) (as a n-type semiconductor) incorporated in mordenite zeolite (MOR) by a facile precipitation method. Silver halides, AgCl (as a p-type semiconductor) and AgBr (as a n-type semiconductor), with different weight percentage (20%, 40% and 50%) were coupled into Ag2CO3-MOR nanocomposite (NC) and producing a series of novel AgCl/Ag2CO3 (p-n heterojunction)-MOR and AgBr/Ag2CO3 (n-n heterojunction)-MOR NCs. The effects of silver halides on the Ag2CO3-MOR catalyst for the photocatalytic degradation of methyl blue (MB) under visible light irradiation have been investigated. The structure, composition and optical properties of NCs were investigated by UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). The prepared AgX/Ag2CO3-MOR NCs with the optimal content of AgX (50 wt%) indicated higher photocatalytic activity than that of the Ag2CO3-MOR and Ag2CO3. The cycle experiments on the heterojuctions NCs indicated that photocatalytic stability of AgBr/Ag2CO3-MOR NC was more than AgCl/Ag2CO3-MOR NC in all cycles. On the basis of the experimental results, a possible mechanism for the enhanced photocatalytic activity and photoinduced stability of silver compounds was proposed.

  2. An exploration of the socio-economic profile of women and costs of receiving abortion services at public health facilities of Madhya Pradesh, India.

    Science.gov (United States)

    Banerjee, Sushanta K; Kumar, Rakesh; Warvadekar, Janardan; Manning, Vinoj; Andersen, Kathryn Louise

    2017-03-21

    Maternal mortality, which primarily burdens developing countries, reflects the greatest health divide between rich and poor. This is especially pronounced for access to safe abortion services which alone avert 1 of every 10 maternal deaths in India. Primarily due to confidentiality concerns, poor women in India prefer private services which are often offered by untrained providers and may be expensive. In 2006 the state government of Madhya Pradesh (population 73 million) began a concerted effort to ensure access to safe abortion services at public health facilities to both rural and urban poor women. This study aims to understand the socio-economic profile of women seeking abortion services in public health facilities across this state and out of pocket cost accessing abortion services. In particular, we examine the level of access that poor women have to safe abortion services in Madhya Pradesh. This study consisted of a cross-sectional client follow-up design. A total of 19 facilities were selected using two-stage random sampling and 1036 women presenting to chosen facilities with abortion and post-abortion complications were interviewed between May and December 2014. A structured data collection tool was developed. A composite wealth index computed using principal component analysis derived weights from consumer durables and asset holding and classified women into three categories, poor, moderate, and rich. Findings highlight that overall 57% of women who received abortion care at public health facilities were poor, followed by 21% moderate and 22% rich. More poor women sought care at primary level facilities (58%) than secondary level facilities and among women presenting for postabortion complications (67%) than induced abortion. Women reported spending no money to access abortion services as abortion services are free of cost at public facilities. However, poor women spend INR 64 (1 USD) while visiting primary level facilities and INR 256 (USD 4) while

  3. Antibacterial Activity and Cytotoxicity of Silver(I) Complexes of Pyridine and (Benz)Imidazole Derivatives. X-ray Crystal Structure of [Ag(2,6-di(CH2OH)py)2]NO3.

    Science.gov (United States)

    Kalinowska-Lis, Urszula; Felczak, Aleksandra; Chęcińska, Lilianna; Szabłowska-Gadomska, Ilona; Patyna, Emila; Małecki, Maciej; Lisowska, Katarzyna; Ochocki, Justyn

    2016-01-28

    Selected aspects of the biological activity of a series of six nitrate silver(I) complexes with pyridine and (benz)imidazole derivatives were investigated. The present study evaluated the antibacterial activities of the complexes against three Gram-negative strains: Pseudomonas aeruginosa ATCC 15442, Escherichia coli ATCC 25922 and Proteus hauseri ATCC 13315. The results were compared with those of silver nitrate, a silver sulfadiazine drug and appropriate ligands. The most significant antibacterial properties were exerted by silver(I) complexes containing benzimidazole derivatives. The cytotoxic activity of the complexes was examined against B16 (murine melanoma) and 10T1/2 (murine fibroblasts) cells. All of the tested silver(I) compounds were not toxic to fibroblast cells in concentration inhibited cancer cell (B16) viability by 50%, which ranged between 2.44-28.65 µM. The molecular and crystal structure of silver(I) complex of 2,6-di(hydroxymethyl)pyridine was determined by single-crystal X-ray diffraction analysis. The most important features of the crystal packing and intermolecular non-covalent interactions in the Ag(I) complex were quantified via Hirshfeld surface analysis.

  4. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China.

    Science.gov (United States)

    Zheng, Junyu; Yu, Yufan; Mo, Ziwei; Zhang, Zhou; Wang, Xinming; Yin, Shasha; Peng, Kang; Yang, Yang; Feng, Xiaoqiong; Cai, Huihua

    2013-07-01

    Industrial sector-based VOC source profiles are reported for the Pearl River Delta (PRD) region, China, based source samples (stack emissions and fugitive emissions) analyzed from sources operating under normal conditions. The industrial sectors considered are printing (letterpress, offset and gravure printing processes), wood furniture coating, shoemaking, paint manufacturing and metal surface coating. More than 250 VOC species were detected following US EPA methods TO-14 and TO-15. The results indicated that benzene and toluene were the major species associated with letterpress printing, while ethyl acetate and isopropyl alcohol were the most abundant compounds of other two printing processes. Acetone and 2-butanone were the major species observed in the shoemaking sector. The source profile patterns were found to be similar for the paint manufacturing, wood furniture coating, and metal surface coating sectors, with aromatics being the most abundant group and oxygenated VOCs (OVOCs) as the second largest contributor in the profiles. While OVOCs were one of the most significant VOC groups detected in these five industrial sectors in the PRD region, they have not been reported in most other source profile studies. Such comparisons with other studies show that there are differences in source profiles for different regions or countries, indicating the importance of developing local source profiles. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light

    Science.gov (United States)

    Zhang, Anchao; Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao; Xiang, Jun

    2017-01-01

    A series of ternary Ag/AgI-Ag2CO3 photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg0 removal in a wet scrubbing reactor. The hybrids were characterized by N2 adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg0 removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg0 removal. NO exhibited significant effect on Hg0 removal in comparison to SO2. Among these ternary Ag/AgI-Ag2CO3 hybrids, Ag/AgI(0.1)-Ag2CO3 showed the highest Hg0 removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag2CO3 and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag0 NPs). The trapping studies of reactive radicals showed that the superoxide radicals (rad O2-) may play a key role in Hg0 removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg0 removal over Ag/AgI(0.1)-Ag2CO3 hybrid under fluorescent light was proposed.

  6. Morbidity profile of elderly outpatients attending selected sub-district Siddha health facilities in Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Kalaiselvi Selvaraj

    2016-01-01

    Conclusion: Elderly constitute more than one fourth of outpatients load from siddha health facilities. Degenerative diseases like arthritis and non-communicable diseases were the common morbidities in this age group. Geriatric clinics and mobile clinics under siddha system may help in improving health care services.

  7. "Atmospheric Measurements by Ultra-Light SpEctrometer" (AMULSE) dedicated to vertical profile measurements of greenhouse gases (CO2, CH4) under stratospheric balloons: instrumental development and field application.

    Science.gov (United States)

    Maamary, Rabih; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albora, Grégory; Chauvin, Nicolas; Miftah-El-Khair, Zineb; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Moulin, Eric; Ramonet, Michel; Bréon, François-Marie; Durry, Georges

    2016-04-01

    Human activities disrupt natural biogeochemical cycles such as the carbon and contribute to an increase in the concentrations of the greenhouse gases (carbone dioxide and methane) in the atmosphere. The current atmospheric transport modeling (the vertical trade) still represents an important source of uncertainty in the determination of regional flows of greenhouse gases, which means that a good knowledge of the vertical distribution of CO2 is necessary to (1) make the link between the ground measurements and spatial measurements that consider an integrated concentration over the entire column of the atmosphere, (2) validate and if possible improve CO2 transport model to make the link between surface emissions and observed concentration. The aim of this work is to develop a lightweight instrument (based on mid-infrared laser spectrometry principles) for in-situ measuring at high temporal/spatial resolution (5 Hz) the vertical profiles of the CO2 and the CH4 using balloons (meteorological and BSO at high precision levels (logistics flights. These laser spectrometers are built on recent instrumental developments. Several flights were successfully done in the region Champagne-Ardenne and in Canada recently. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS défi instrumental and the region Champagne-Ardenne.

  8. Impact of genome assembly status on ChIP-Seq and ChIP-PET data mapping

    Directory of Open Access Journals (Sweden)

    Sachs Laurent

    2009-12-01

    Full Text Available Abstract Background ChIP-Seq and ChIP-PET can potentially be used with any genome for genome wide profiling of protein-DNA interaction sites. Unfortunately, it is probable that most genome assemblies will never reach the quality of the human genome assembly. Therefore, it remains to be determined whether ChIP-Seq and ChIP-PET are practicable with genome sequences other than a few (e.g. human and mouse. Findings Here, we used in silico simulations to assess the impact of completeness or fragmentation of genome assemblies on ChIP-Seq and ChIP-PET data mapping. Conclusions Most currently published genome assemblies are suitable for mapping the short sequence tags produced by ChIP-Seq or ChIP-PET.

  9. Ag-Ag2S/reduced graphene oxide hybrids used as long-wave UV radiation emitting nanocomposites

    Science.gov (United States)

    Li, Wenyao; Xu, Ruoyu; Ling, Min; He, Guanjie

    2017-10-01

    We report a facile thermal decomposition approach to synthesize Ag-Ag2S/reduced graphene oxide (Ag-Ag2S/rGO), the Ag-Ag2S nanoparticles uniformly dispersed on reduced graphene oxide with diameters of 10-20 nm. The photoluminescence spectra of Ag-Ag2S/rGO showed two obvious emission peaks at 327 and 339 nm with the excitation wavelength at 287 nm. Compared with Ag-Ag2S heterostructured clusters with two peaks at 407 and 430 nm, it showed a big blue shift and higher intensity, which makes it a novel candidate for long-wave UV radiation emitting nanocomposite.

  10. Visible light driven photocatalysis and antibacterial activity of AgVO{sub 3} and Ag/AgVO{sub 3} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anamika [Department of Life Sciences, University of Mumbai, Santacruz (E), Mumbai 400 098 (India); Dutta, Dimple P., E-mail: dimpled@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ballal, A. [Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Fulekar, M.H. [School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382 030, Gujarat (India)

    2014-03-01

    Graphical abstract: - Highlights: • Ag/AgVO{sub 3} and pure AgVO{sub 3} nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO{sub 3} within 45 min. • Antibacterial activity of Ag/AgVO{sub 3} demonstrated. - Abstract: Ag/AgVO{sub 3} nanowires and AgVO{sub 3} nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO{sub 3} nanowires. The photocatalytic studies revealed that the Ag/AgVO{sub 3} nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO{sub 3} nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO{sub 3} nanorods prove that in case of the Ag dispersed Ag/AgVO{sub 3} nanowires, the enhanced antibacterial action is also due to contribution from the AgVO{sub 3} support.

  11. Rational design of organic superconductors through the use of the large, discrete molecular anions M(CF{sub 3}){sub 4}{sup -}(M = Cu, Ag, Au) and SO{sub 3}CF{sub 2}CH{sub 2}SF{sub 5}{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, J.A.; Geiser, U.; Williams, J.M. [and others

    1996-10-01

    A new approach to synthesis of organic superconductors has recently been pioneered which involves the use of large discrete molecular anions as the charge-compensating entities in these charge transfer salts. The organic electron-donor molecule bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF or ET) has been electrocrystallized with the novel organometallic M(CF{sub 3}){sub 4}{sup -} (M=Cu, Ag, Au) anions in a variety of 1,1,2-trihaloethane solvents. Over 20 organic superconductors have been synthesized which can be described by (ET){sub 2}M(CF{sub 3}){sub 4}(1,1,2- trihaloethane). These solvated salts are shown to have highly anisotropic physical properties which can be tuned via modifications of each of their three molecular components: ET electron donor molecule, M(CF{sub 3}){sub 4}{sup -} anion, and neutral 1,1,2- trihaloethane solvent molecule. Superconductivity has also been observed in an ET salt containing the discrete SF{sub 5}CH{sub 2}CF{sub 2}SO{sub 3}{sup -} anion with onset temperature near 5.2 K.

  12. Rational design of organic superconductors through the use of the large, discrete molecular anions M(CF{sub 3}){sub 4}{sup -} (M = Cu, Ag, Au) and SO{sub 3}CF{sub 2}CH{sub 2}SF{sub 5}{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, J.A. [Argonne National Lab., IL (United States). Div. of Chemistry and Materials Science; Geiser, U. [Argonne National Lab., IL (United States). Div. of Chemistry and Materials Science; Williams, J.M. [Argonne National Lab., IL (United States). Div. of Chemistry and Materials Science; Dudek, J.D. [Argonne National Lab., IL (United States). Div. of Chemistry and Materials Science; Kelly, M.E. [Argonne National Lab., IL (United States). Div. of Chemistry and Materials Science; Flynn, J.P. [Argonne National Lab., IL (United States). Div. of Chemistry and Materials Science; Wilson, R.R. [Argonne National Lab., IL (United States). Div. of Chemistry and Materials Science; Zakowicz, H.I. [Argonne National Lab., IL (United States). Div. of Chemistry and Materials Science; Sche, P.P. [Argonne National Lab., IL (United States). Div. of Chemistry and Materials Science; Naumann, D. [Koeln Univ. (Germany). Inst. fuer Anorganische Chemie; Roy, T. [Koeln Univ. (Germany). Inst. fuer Anorganische Chemie; Nixon, P.G. [Portland State Univ., OR (United States). Dept. of Chemistry; Winter, R.W. [Portland State Univ., OR (United States). Dept. of Chemistry; Gard, G.L. [Portland State Univ., OR (United States). Dept. of Chemistry

    1997-02-15

    A new approach to the synthesis of organic superconductors has recently been pioneered which involves the use of large, discrete, molecular anions as the charge-compensating entities in these charge transfer salts. The organic electron-donor molecule bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF or ET) has been electrocrystallized with the novel organometallic M(CF{sub 3}){sub 4}{sup -} (M = Cu, Ag, and Au) anions in a variety of 1,1,2-trihaloethane solvents. Over twenty organic superconductors have been synthesized which can be described by the general formula (ET){sub 2}M(CF{sub 3}){sub 4}(1,1,2-trihaloethane). These solvated salts are shown to have highly anisotropic physical properties which can be tuned via modifications of each of their three molecular components: ET electron donor molecule, M(CF{sub 3}){sub 4}{sup -} anion, and neutral 1,1,2-trihaloethane solvent molecule. Superconductivity has also been observed in an ET salt containing the discrete SF{sub 5}CH{sub 2}CF{sub 2}SO{sub 3}{sup -} anion with an onset temperature near 5.2 K. (orig.)

  13. Infrared reflection absorption spectroscopic study on the adsorption structures of acrylonitrile on Ag(111) and Ag(110) surfaces

    Science.gov (United States)

    Osaka, Naoki; Akita, Masato; Hiramoto, Shuji; Itoh, Koichi

    1999-06-01

    Infrared reflection-absorption spectra in CN stretching, CH 2 out-of-plane wagging and CH 2 twisting vibration regions were measured for acrylonitrile (CH 2CHCN) exposed to Ag(111) and Ag(110) in increasing amounts at 77 K. The adsorbate on Ag(111) takes on a series of discrete adsorption states; i.e., an isolated state, associated states, and ordered and amorphous multilayer states. The adsorbate on Ag(110) at lower exposures is in a state with the CN group weakly coordinated to a silver atom (or silver atoms). The adsorbate on Ag(110) takes the associated state and the amorphous multilayer at larger exposures. On raising the temperature to 96 K, the amorphous states on both Ag(111) and Ag(110) are converted to the ordered multilayer. The desorption temperature of the ordered multilayer is below 99 K for Ag(110), while the temperature is above 107 K for Ag(111); the result indicates the effect of the surface morphology on the stability of the ordered state.

  14. Chôra

    DEFF Research Database (Denmark)

    Isar, Nicoletta

    2009-01-01

    , as in a dream. Sallis' interpretation opens up the possibility for a new reading of the dialogue, and offers a tool to examine phenomena occurred in the aftermath of the Platonic cosmogony. One of the most fascinating episodes of the afterlife of the Platonic chôra is the Byzantine chôra, presented...

  15. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag{sub 2}MoO{sub 4}–AgBr composite

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku, E-mail: jkliu@ecust.edu.cn

    2016-04-15

    Highlights: • Ag@Ag{sub 2}MoO{sub 4}–AgBr composite is synthesized by in-situ exchange and photo depositio nmethod. • Compared with pure Ag{sub 2}MoO{sub 4} crystal, the photocatalytic activity of Ag@Ag{sub 2}MoO{sub 4}–AgBr composite was increased by 348.4%. • Silver particles act as electron trap to enhance electron–hole separation. • This composite has the promising application to degrade organic wastewater. - Abstract: The Ag{sub 2}MoO{sub 4}-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag{sub 2}MoO{sub 4}–AgBr composite. The in-situ Br{sup −} replacement in a crystal lattice node position of Ag{sub 2}MoO{sub 4} crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag{sub 2}MoO{sub 4}–AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O{sub 2} as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag{sub 2}MoO{sub 4}–AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag{sub 2}MoO{sub 4}–AgBr composite compared to pure AgBr and Ag{sub 2}MoO{sub 4} crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag{sub 2}MoO{sub 4}–AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7 min.

  16. Formation of AgGaS2 nano-pyramids from Ag2S nanospheres through intermediate Ag2S-AgGaS2 heterostructures and AgGaS2 sensitized Mn2+ emission

    Science.gov (United States)

    Huang, Feng; Zhou, Jiangcong; Xu, Ju; Wang, Yuansheng

    2014-01-01

    A one-pot solution synthesis of monodisperse AgGaS2 nanocrystals with uniform pyramid-like shape is realized for the first time, in which an interesting phase and shape evolution from monodisperse Ag2S nanospheres to pure AgGaS2 nano-pyramids through an intermediate stage of Ag2S-AgGaS2 heterostructures, is revealed. Evidently, upon introducing Mn2+ ions into the reaction system, they are incorporated into AgGaS2 nano-pyramids which act as efficient sensitization matrixes for the red emission of Mn2+ d-d transition under blue excitation. Benefiting from their non-toxicity and facile fabrication, Mn:AgGaS2 nanocrystals may find potential applications in some fields such as blue chip excited LEDs and bio-labeling.A one-pot solution synthesis of monodisperse AgGaS2 nanocrystals with uniform pyramid-like shape is realized for the first time, in which an interesting phase and shape evolution from monodisperse Ag2S nanospheres to pure AgGaS2 nano-pyramids through an intermediate stage of Ag2S-AgGaS2 heterostructures, is revealed. Evidently, upon introducing Mn2+ ions into the reaction system, they are incorporated into AgGaS2 nano-pyramids which act as efficient sensitization matrixes for the red emission of Mn2+ d-d transition under blue excitation. Benefiting from their non-toxicity and facile fabrication, Mn:AgGaS2 nanocrystals may find potential applications in some fields such as blue chip excited LEDs and bio-labeling. Electronic supplementary information (ESI) available: Fig. S1-S2. See DOI: 10.1039/c3nr04765b

  17. A FLYING WIRE SYSTEM IN THE AGS.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG,H.; BUXTON,W.; MAHLER,G.; MARUSIC,A.; ROSER,T.; SMITH,G.; SYPHERS,M.; WILLIAMS,N.; WITKOVER,R.

    1999-03-29

    As the AGS prepares to serve as the injector for RHIC, monitoring and control of the beam transverse emittance become a major and important topic. Before the installation of the flying wire system, the emittance was measured with ionization profile monitors in the AGS, which require correction for space charge effects. It is desirable to have a second means of measuring profile that is less depend on intensity. A flying wire system has been installed in the AGS recently to perform this task. This paper discusses the hardware and software setup and the capabilities of the system.

  18. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China.

    Science.gov (United States)

    Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua

    2008-11-15

    Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion

  19. Comp ositionally Graded Microstructure for Ag-Fe Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Chandan Srivastava∗; K. V. L. Sushma

    2012-01-01

    Ag-Fe nanoparticles with a highly Ag rich average composition were synthesized by the sono-chemical route. Silver-iron system exhibits a wide miscibility gap in the bulk materials. Interestingly, a graded compositional profile along the nanoparticle radius was observed. Regions at and near the surface of the nanoparticle contained both Ag and Fe atoms. The composition got relatively deficient Fe towards the center of the particle with particle core made up of pure Ag. Alloying of Ag and Fe is confirmed by the absence of diffraction signal corresponding to pure Fe phase and presence of a paramagnetic phase in nanoparticles containing a diamagnetic (Ag) and ferromagnetic (Fe) elements.

  20. CH Packaging Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-06-13

    This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

  1. Transformation from Ag@Ag3PO4 to Ag@Ag2SO4 hybrid at room temperature: preparation and its visible light photocatalytic activity

    Science.gov (United States)

    Wei, Ting; Gao, Shanmin; Wang, Qingyao; Xu, Hui; Wang, Zeyan; Huang, Baibiao; Dai, Ying

    2017-02-01

    In the present study, Ag/Ag2SO4 hybrid photocatalysts were obtained via a facile redox-precipitation reaction approach by using Ag@Ag3PO4 nanocomposite as the precursor and KMnO4 as the oxidant. Multiple techniques, such as X-ray diffraction pattern (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS) and Brunauer-Emmett-Teller (BET), photocurrent and electrochemical impedance spectroscopy (EIS), were applied to investigate the structures, morphologies, optical, and electronic properties of as-prepared samples. The photocatalytic activities were evaluated by photodegradation of organic rhodamine B (RhB) and methyl orange (MO) under visible light irradiation. It was found that pure Ag2SO4 can partially transform into metallic Ag during the photocatalytic degradation of organic pollutants, but the Ag/Ag2SO4 hybrids can maintain its structure stability and show enhanced visible light photocatalytic activity because of the surface plasma resonance effect of the metallic Ag.

  2. Modeling and Analysis of AGS (1998) Thermal Shock Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R.; Kim, S.H.; Taleyarkhan, R.P.

    1999-11-14

    An overview is provided on modeling and analysis of thermal shock experiments conducted during 1998 with high-energy, short-pulse energy deposition in a mercury filled container in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). The simulation framework utilized along with the results of simulations for pressure and strain profiles are presented. While the magnitude of penk strain predictions versus data are in reasonable agreement, the temporal variations were found to differ significantly in selected cases, indicating lack of modeling of certain physical phenomena or due to uncertainties in the experimental data gathering techniques. Key thermal-shock related issues and uncertainties are highlighted. Specific experiments conducted at BNL's AGS facility during 1998 (the subject of this paper) involved high-energy (24 GeV) proton energy deposition in the mercury target over a time frame of - 0.1s. The target consisted of an - 1 m. long cylindrical stainless steel shell with a hemispherical dome at the leading edge. It was filled with mercury at room temperature and pressure. Several optical strain gages were attached to the surface of the steel target. Figure 1 shows a schematic representation of the test vessel along with the main dimensions and positions of three optical strain gages at which meaningful data were obtained. As

  3. COPAR: A ChIP-Seq Optimal Peak Analyzer

    Directory of Open Access Journals (Sweden)

    Binhua Tang

    2017-01-01

    Full Text Available Sequencing data quality and peak alignment efficiency of ChIP-sequencing profiles are directly related to the reliability and reproducibility of NGS experiments. Till now, there is no tool specifically designed for optimal peak alignment estimation and quality-related genomic feature extraction for ChIP-sequencing profiles. We developed open-sourced COPAR, a user-friendly package, to statistically investigate, quantify, and visualize the optimal peak alignment and inherent genomic features using ChIP-seq data from NGS experiments. It provides a versatile perspective for biologists to perform quality-check for high-throughput experiments and optimize their experiment design. The package COPAR can process mapped ChIP-seq read file in BED format and output statistically sound results for multiple high-throughput experiments. Together with three public ChIP-seq data sets verified with the developed package, we have deposited COPAR on GitHub under a GNU GPL license.

  4. Enhanced Visible Light Photocatalytic Degradation of Organic Pollutants over Flower-Like Bi2O2CO3 Dotted with Ag@AgBr

    Directory of Open Access Journals (Sweden)

    Shuanglong Lin

    2016-10-01

    Full Text Available A facile and feasible oil-in-water self-assembly approach was developed to synthesize flower-like Ag@AgBr/Bi2O2CO3 micro-composites. The photocatalytic activities of the samples were evaluated through methylene blue degradation under visible light irradiation. Compared to Bi2O2CO3, flower-like Ag@AgBr/Bi2O2CO3 micro-composites show enhanced photocatalytic activities. In addition, results indicate that both the physicochemical properties and associated photocatalytic activities of Ag@AgBr/Bi2O2CO3 composites are shown to be dependent on the loading quantity of Ag@AgBr. The highest photocatalytic performance was achieved at 7 wt % Ag@AgBr, degrading 95.18% methylene blue (MB after 20 min of irradiation, which is over 1.52 and 3.56 times more efficient than that of pure Ag@AgBr and pure Bi2O2CO3, respectively. Bisphenol A (BPA was also degraded to further demonstrate the degradation ability of Ag@AgBr/Bi2O2CO3. A photocatalytic mechanism for the degradation of organic compounds over Ag@AgBr/Bi2O2CO3 was proposed. Results from this study illustrate an entirely new approach to fabricate semiconductor composites containing Ag@AgX/bismuth (X = a halogen.

  5. Environmental Management Waste Management Facility Proxy Waste Lot Profile 6.999 for Building K-25 West Wing, East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Rigsby V.P.

    2009-02-12

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2002. The purpose of this agreement is to define a streamlined decision-making process to facilitate the accelerated implementation of cleanup, resolve ORR milestone issues, and establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. Decontamination and decommissioning (D&D) activities of Bldg. K-25, the original gaseous diffusion facility, is being conducted by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. The planned CERCLA action covering disposal of building structure and remaining components from the K-25 building is scheduled as a non-time-critical CERCLA action as part of DOE's continuous risk reduction strategy for ETTP. The K-25 building is proposed for D&D because of its poor physical condition and the expense of surveillance and maintenance activities. The K-25/K-27 D&D Project proposes to dispose of the commingled waste listed below from the K-25 west side building structure and remaining components and process gas equipment and piping at the Environmental Management Waste Management Facility (EMWMF) under waste disposal proxy lot (WPXL) 6.999: (1) Building structure (e.g. concrete floors [excluding basement

  6. Environmental Management Waste Management Facility Waste Lot Profile 155.5 for K-1015-A Laundry Pit, East Tennessee Technology Park Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs, Raymer J.E.

    2008-06-12

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2003. The purpose of this agreement is to define a streamlined decision-making process to facilitate the accelerated implementation of cleanup, to resolve ORR milestone issues, and to establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. The disposal of the K-1015 Laundry Pit waste will be executed in accordance with the 'Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone, 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOB/ORAH-2161&D2) and the 'Waste Handling Plan for the Consolidated Soil and Waste Sites with Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOE/OR/01-2328&D1). This waste lot consists of a total of approximately 50 cubic yards of waste that will be disposed at the Environmental Management Waste Management Facility (EMWMF) as non-containerized waste. This material will be sent to the EMWMF in dump trucks. This profile is for the K-1015-A Laundry Pit and includes debris (e.g., concrete, metal rebar, pipe), incidental soil, plastic and wood, and secondary waste (such as plastic sheeting, hay bales and other erosion control materials, wooden

  7. An elusive hydridoaluminum(I) complex for facile C-H and C-O bond activation of ethers and access to its isolable hydridogallium(I) analogue: syntheses, structures, and theoretical studies.

    Science.gov (United States)

    Tan, Gengwen; Szilvási, Tibor; Inoue, Shigeyoshi; Blom, Burgert; Driess, Matthias

    2014-07-01

    The reaction of AlBr3 with 1 molar equiv of the chelating bis(N-heterocyclic carbene) ligand bis(N-Dipp-imidazole-2-ylidene)methylene (bisNHC, 1) affords [(bisNHC)AlBr2](+)Br(-) (2) as an ion pair in high yield, representing the first example of a bisNHC-Al(III) complex. Debromination of the latter with 1 molar equiv of K2Fe(CO)4 in tetrahydrofuran (THF) furnishes smoothly, in a redox reaction, the (bisNHC)(Br)Al[Fe(CO)4] complex 3, in which the Al(I) center is stabilized by the Fe(CO)4 moiety through Al(I):→Fe(0) coordination. Strikingly, the Br/H ligand exchange reactions of 3 using potassium hydride as a hydride source in THF or tetrahydropyran (THP) do not yield the anticipated hydridoaluminum(I) complex (bisNHC)Al(H)[Fe(CO)4] (4a) but instead lead to (bisNHC)Al(2-cyclo-OC4H7)[Fe(CO)4] (4) and (bisNHC)Al(2-cyclo-OC5H9)[Fe(CO)4] (5), respectively. The latter are generated via C-H bond activation at the α-carbon positions of THF and THP, respectively, in good yields with concomitant elimination of dihydrogen. This is the first example whereby a low-valent main-group hydrido complex facilitates metalation of sp(3) C-H bonds. Interestingly, when K[BHR3] (R = Et, sBu) is employed as a hydride source to react with 3 in THF, the reaction affords (bisNHC)Al(OnBu)[Fe(CO)4] (6) as the sole product through C-O bond activation and ring opening of THF. The mechanisms for these novel C-H and C-O bond activations mediated by the elusive hydridoaluminum(I) complex 4a were elucidated by density functional theory (DFT) calculations. In contrast, the analogous hydridogallium(I) complex (bisNHC)Ga(H)[Fe(CO)4] (9) can be obtained directly in high yield by the reaction of the (bisNHC)Ga(Cl)[Fe(CO)4] precursor 8 with 1 molar equiv of K[BHR3] (R = Et, sBu) in THF at room temperature. The isolation of 9 and its inertness toward cyclic ethers might be attributed to the higher electronegativity of gallium versus aluminum. The stronger Ga(I)-H bond, in turn, hampers α-C-H metalation

  8. AG-3340 (Agouron Pharmaceuticals Inc).

    Science.gov (United States)

    Griffioen, A W

    2000-03-01

    Agouron Pharmaceuticals is developing AG-3340 (prinomastat), the lead compound in a series of structurally related metalloproteinase inhibitors, for the potential treatment of cancer and age-related macular degeneration. AG-3340, an oral, non-peptide inhibitor of gelatinase types A and B (MMP-2 and -9), MT1-MP (MMP-14) and collagenase III [234058], was selected following demonstration of activity in a variety of in vivo preclinical models upon oral dosing. In May 1999, phase III trials for lung and prostate cancers of AG-3340 in front-line combination with chemotherapy was begun in the US and Canada [286380,326640]. The tested dose for these trials is 5 to 15 mg bid. Following demonstration of the enhanced efficacy of chemotherapy when supplemented with AG-3340 in preclinical tumor models, pilot combination studies and double-blinded, placebo-controlled phase III trials in 700 patients are in progress for the treatment of non-small cell lung cancer or advanced hormone-refractory prostate cancer [302584,327014]. In August 1999, Agouron initiated a second, confirmatory phase III trial of AG-3340 in combination with chemotherapy in patients with advanced non-small cell lung cancer [337253]. Pharmacokinetic studies have been conducted in healthy male volunteers and single agent dose-escalation studies in patients demonstrated toxicities (grade 1 or 2; joint related) were not doselimiting [302238]. At the 10th European Organization for Research and Treatment of Cancer (EORTC) meeting in Amsterdam (June 1998), Agouron released encouraging results from two phase I studies and one preclinical study of AG-3340 [289688]. In a further 15- patient, phase I study of AG-3340 with paclitaxel and carboplatin, the combination was safe and well tolerated [326268]. AG-3340 has demonstrated significant antimetastatic and antitumor activity in animal models, as well as oral bioavailability and a favorable pharmacokinetic profile. Daily doses of 50 mg/kg completely halted growth of

  9. An organo-functionalized metal-oxide cluster, [VO6{(OCH2CH2)2N(CH2CH2OH)}6], with Anderson-like structure.

    Science.gov (United States)

    Li, H; Swenson, L; Doedens, R J; Khan, M I

    2016-10-18

    A new polyoxovanadium cluster compound, [VO6{(OCH2CH2)2N(CH2CH2OH)}6]·0.5CH3CN, was synthesized and characterized by single-crystal X-ray diffraction analysis, FTIR and UV-vis spectroscopy, and TGA. The cluster is composed of a fully reduced cyclic {V6N6O18} framework, which adopts an Anderson-like structure and is comprised of a ring of six edge-sharing {VO5N} octahedra incorporating six {(OCH2CH2)2N(CH2CH2OH)} ligands. Two (OCH2CH2-) arms of each of the six triethanolamine ligands are directly incorporated into the oxometalate core and the third {-CH2CH2OH} arm remains pendant. In the condensed phase, the clusters form discrete hcp layers through inter-cluster hydrogen bonding. These layers stack through soft chemical interactions to form a 3D network structure. The neutral cluster, [VO6{(OCH2CH2)2N(CH2CH2OH)}6], is the isopolyoxovanadium analogue to the cationic clusters contained in a series of heteropolyoxovanadium compounds previously introduced by our laboratory, e.g., [LiVO6{(OCH2CH2)2N(CH2CH2OH)}6](+); its existence shows that a heteroatom is not required to form or stabilize the common organofunctionalized vanadium oxide framework: [VO6{(OCH2CH2)2N(CH2CH2OH)}6]. To the best of our knowledge, the isopolyoxovanadium and heteropolyoxovanadium clusters represent the first reported isopoly-heteropoly analogues in the polyoxometalate field. We compare the TGA profile, FTIR and UV-vis spectra of the new compound with two of its cationic heteropoly analogues.

  10. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Walia, M.; Wang, L.; Li, N.; Trindade, L.M.; Gronemeyer, H.

    2011-01-01

    Genome-wide profiling of transcription factors based on massive parallel sequencing of immunoprecipitated chromatin (ChIP-seq) requires nanogram amounts of DNA. Here we describe a high-fidelity, single-tube linear DNA amplification method (LinDA) for ChIP-seq and reChIP-seq with picogram DNA amounts

  11. Cloning and Expression Profiling Analysis of a Transcription Factor ChNAC1 in Hazelnut(Corylus heterophylla Fisch.)%平榛NAC转录因子的分离及表达特性分析

    Institute of Scientific and Technical Information of China (English)

    赵天田; 陈新; 刘庆忠; 王贵禧; 梁丽松; 马庆华

    2012-01-01

    NAC transcription factors are a family of functionally diverse proteins. These plant-specific NAC domain genes play an important role in response to various stresses. A cDNA encoding the NAC-like gene homologue was isolated from hazelnut( Corylus heterophylla Fisch. ) by RACE-PCR and designated ChNACl ( GenBank Accession No. HQ639415). Sequence analysis showed that cDNA of ChNACl was 1154 bp long and contained a single open reading frame. The predicted ChNACl protein has 291 amino acids with an estimated molecular mass of 33. 31 kD and an isoelectric point of 6. 66 kD,qRT-PCR analysis showed that the expression of ChNACl was induced by low temperature and peaked at 4 h after exposed to low temperatures of 4℃. The transcripts of ChNACl appeared in many hazelnut tissues including male inflorescence, bark, flower bud and seeds, but mostly accumulated in male inflorescence. These results suggest that ChNACl may function in cold stress signal transduction pathway.%NAC转录因子是近十年来新发现的具有多种生物功能的植物特异转录因子,在植物生长发育、激素调节和抵抗逆境等方面发挥着重要的作用.本研究基于Solexa技术对平榛花芽转录组文库进行分析,结合RACE-PCR扩增,从平榛中克隆了一个与NAC类基因同源的cDNA序列ChNAC1,该序列长度为1154bp,具有长度为876bp的完整开放阅读框架,推测编码蛋白含有291个氨基酸,具有N-末端同源性较高且十分保守的NAC结构域和一个位于C-末端的高度可变区域.qRT-PCR分析表明,ChNAC1可以在4℃低温胁迫条件下上调表达,在4h时出现表达峰值.组织表达分析结果表明,ChNAC1在雄花序中表达最高,其次是花芽、树皮和种子.推测ChNAC1可能参与植物响应低温反应过程.ChNAC1基因的克隆及表达分析为进一步阐明和探讨平榛NAC转录因子的功能奠定了基础.

  12. Atmospheric Chemistry of CH3CH2OCH3

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Bjørn Svendsen, Sissel; Østerstrøm, Freja From

    2017-01-01

    The atmospheric chemistry of methyl ethyl ether, CH3CH2OCH3, was examined using FT-IR/relative-rate methods. Hydroxyl radical and chlorine atom rate coefficients of k(CH3CH2OCH3+OH) = (7.53 ± 2.86) × 10−12 cm3 molecule−1 s−1 and k(CH3CH2OCH3+Cl) = (2.35 ± 0.43) × 10−10 cm3 molecule−1 s−1 were...

  13. Preparation and Characterization of Highly Efficient and Stable Visible-Light-Responsive Photocatalyst AgBr/Ag3PO4

    Directory of Open Access Journals (Sweden)

    Zhang Jinfeng

    2013-01-01

    Full Text Available AgBr/Ag3PO4 photocatalyst was synthesized using a facile coprecipitation method. The photocatalyst was characterized by X-ray powder diffraction (XRD, UV-Vis diffuse reflectance spectroscopy (DRS, scanning electron microscopy (SEM, Brunauer-Emmett-Teller (BET surface areas, and photoluminescence (PL technique. The activity of the photocatalyst was evaluated by the degradation of methyl orange (MO and rhodamine B (RhB. The results showed that the prepared AgBr/Ag3PO4 exhibited excellent performance and much higher photocatalytic activity than the single one under visible-light irradiation. The optimum mole ratio of Br/P in AgBr/Ag3PO4 samples is 0.3. The prepared AgBr/Ag3PO4 photocatalyst was transformed to Ag/AgBr/Ag3PO4 system with excellent property and good stability in the photocatalytic process. The possible mechanisms of the enhanced photocatalytic activity for the AgBr/Ag3PO4 were also discussed in detail.

  14. Oscillation in the Kmno 4NH 2CH 2COOHH 3PO 4 Cstr system

    Science.gov (United States)

    Li, Hexing; Huang, Xiaojun; Deng, Jingfa

    1996-08-01

    A novel chemical oscillating reaction in the KMnO 4NH 2CH 2COOHH 3PO 4 CSTR system in the presence and absence of Ag + has been described. The reaction kinetics in a closed Mn0 4-NH 2CH 2COOHH 3PO 4 system has been analyzed and a possible mechanism has been proposed. The catalytic effect of Ag + in the above reaction has also been studied.

  15. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

  16. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol.

    Science.gov (United States)

    An, Changhua; Wang, Jizhuang; Jiang, Wen; Zhang, Meiyu; Ming, Xijuan; Wang, Shutao; Zhang, Qinhui

    2012-09-21

    Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO(2). For example, reduction of CO(2) under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO(2) into useful organic compounds.

  17. Efeitos do chá de orégano (Origanum vulgare no perfil bioquímico de ratos Wistar = Effects of oregano (Origanum vulgare tea on the biochemical profile of Wistar rats

    Directory of Open Access Journals (Sweden)

    Coqueiro, Daniel Pereira

    2012-01-01

    Conclusões: O estudo dos efeitos do chá de orégano em ratos sugere que essa planta pode ter efeitos benéficos na manutenção da glicemia. Propõe-se que mais estudos clínicos sejam realizados com diferentes concentrações e períodos de tempo

  18. Fabrication of Heterostructured g-C3N4/Ag-TiO2 Hybrid Photocatalyst with Enhanced Performance in Photocatalytic Conversion of CO2 Under Simulated Sunlight Irradiation

    Science.gov (United States)

    Li, Hailong; Gao, Yan; Wu, Xianying; Lee, Po-Heng; Shih, Kaimin

    2017-04-01

    Heterostructured g-C3N4/Ag-TiO2 (CN/AgTi) hybrid catalysts were fabricated through a facile solvent evaporation followed by a calcination process, using graphitic carbon nitride (g-C3N4) and Ag-TiO2 (AgTi) as precursors. The phase compositions, optical properties, and morphologies of the catalysts were systematically characterized. The heterostructured combination of g-C3N4, titania (TiO2) and silver nanoparticles (Ag NPs) resulted in significant synergy for catalytic conversion of CO2 in the presence of water vapor under simulated sunlight irradiation. The optimal CN/AgTi composite with a g-C3N4 to AgTi mass ratio of 8% exhibited the maximum CO2 photoreduction activity, achieving a CO2 conversion of 47 μmol, CH4 yield of 28 μmol, and CO yield of 19 μmol per gram of catalyst during a 3 h simulated sunlight irradiation. Under the experimental conditions, the rate of electron consumption was calculated to be 87.3 μmol/g·h, which was 12.7 times, 7.9 times, and 2.0 times higher than those for TiO2, g-C3N4 and AgTi, respectively. The combination of g-C3N4 and AgTi resulted in more sunlight harvesting for electron and hole generations. Photoinduced electrons transferred through the heterjunction between g-C3N4 and TiO2, and further from TiO2 to Ag NPs with lower Fermi level greatly suppressed the recombination of electron-hole pairs, and hence resulted in electron accumulation on Ag NPs deposited on the TiO2 surface in the CN/AgTi. Abundant electrons accumulated on the Ag NPs were further energized by the surface plasmon resonance effect with the aid of visible light. Therefore, the CN/AgTi catalysts exhibited superior catalytic performance in CO2 reduction by water vapor under simulated sunlight irradiation.

  19. The strange diffusivity of Ag atoms in CdTe

    CERN Document Server

    Wolf, H; Ostheimer, V; Schachtrup, A R; Stolwijk, N A; Wichert, T

    2001-01-01

    The diffusion of Ag atoms in CdTe was investigated using the radiotracer $^{111}\\!$Ag, which was introduced by implantation with an energy of 60 or 80 keV. The measured diffusion profiles are explained by assuming the existence of a repulsive interaction between Ag and residual Cu atoms causing a drift of the Ag atoms towards the centre of the crystal, which supposes the diffusion in a concentration gradient. This effect vanishes if the Ag concentration is increased and becomes more pronounced if the crystals are simultaneously co- doped with Cu. (11 refs).

  20. RHIC FY15 pp Run RHIC and AGS polarization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Adams, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-20

    The polarization information is important for the spin physics program in Relativistic Heavy Ion Collider (RHIC). There are discrepancies between AGS and RHIC polarization measurements. First, the face value of AGS polarization is higher than RHIC ones in general. Second, the measured polarization profile (described by the profile ratio R) is stronger in AGS than in RHIC. This note analyzes the polarization data from FY15 pp run period. The results show that the differences between AGS and RHIC polarization measurements are reasonable, but the R value difference is puzzling. The difference between blue and yellow ring is worth of spin simulation to explain.

  1. Electrocatalytic Oxidation of Formic Acid in an Alkaline Solution with Graphene-Oxide- Supported Ag and Pd Alloy Nanoparticles.

    Science.gov (United States)

    Han, Hyoung Soon; Yun, Mira; Jeong, Haesang; Jeon, Seungwon

    2015-08-01

    The electrocatalytic activities of metal-decorated graphene oxide (GO) catalysts were investigated. Electrochemically reduced GO-S-(CH2)4-S-Pd [ERGO-S-(CH2)4-S-Pd] and GO-S-(CH2)4-S-PdAg alloy [ERGO-S-(CH2)4-S-PdAg] were obtained through the electrochemical reduction of GO-S-(CH2)4-S-Pd and GO-S-(CH2)4-S-PdAg in a pH 5 PBS solution. It was demonstrated that the application of ERGO-S-(CH2)4-S-Pd and ERGO-S-(CH2)4-S-PdAg used in a modified GCE improves the electrocatalytic oxidation of formic acid. The addition of an Ag nanoparticle with a carbon chain-Pd in the electrode provides an electrode with very interesting properties for the electrocatalytic oxidation of formic acid. The ERGO-S-(CH2)4-S-Pd and ERGO-S-(CH2)4-S-PdAg were characterized via X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). ERGO-S-(CH2)4-S-Pd and ERGO-S-(CH2)4-S-PdAg can be employed for the electrocatalytic oxidation of formic acid. The electrochemical behaviors of this electrode were investigated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS).

  2. A facile synthesis of MInSe2 (M = Cu, Ag) via low temperature pyrolysis of single source molecular precursors, [(R3P)2MIn(SeCOAr)4

    Indian Academy of Sciences (India)

    Shamik Ghoshal; Liladhar B Kumbhare; Vimal K Jain; Gautam K Dey

    2007-04-01

    The reaction of KSeCOAr with InCl3 and [MCl(PR3)2] in benzene afforded bimetallic complexes, [(R3P)2MIn(SeCOAr)4] (PR3 = PEt3 or PPh3; M = Cu or Ag; Ar = –C6H5 (phenyl) or 4-MeC6H4 (tolyl)). The triethylphosphine complexes decomposed rapidly when M = Ag while slowly when M = Cu. All these complexes were characterized by elemental analysis, IR, UV-VIS, NMR (1H, 31P) spectral data. Pyrolysis in a furnace at 300°C gave tetragonal MInSe2 (M = Cu, Ag) structure. Solvothermal decomposition of [(PPh3)2CuIn(SeCOAr)4] in boiling ethylene glycol gave nanorods of CuInSe2 which were characterized by XRD, EDAX, SEM and TEM.

  3. Synthesis and characterization of novel plasmonic Ag/AgX-CNTs (X = Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light.

    Science.gov (United States)

    Shi, Huixian; Chen, Jiangyao; Li, Guiying; Nie, Xin; Zhao, Huijun; Wong, Po-Keung; An, Taicheng

    2013-08-14

    A series of novel well-defined Ag/AgX (X = Cl, Br, I) loaded carbon nanotubes (CNTs) composite photocatalysts (Ag/AgX-CNTs) were fabricated for the first time via a facile ultrasonic assistant deposition-precipitation method at the room temperature (25 ± 1 °C). X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption-desorption analysis, scanning electron microscopy, and ultraviolet-visible light absorption spectra analysis were used to characterize the structure, morphology, and optical properties of the as-prepared photocatalysts. Results confirmed the existence of the direct interfacial contact between Ag/AgX nanoparticles and CNTs, and Ag/AgX-CNTs nanocomposites exhibit superior absorbance in the visible light (VL) region owing to the surface plasmon resonance (SPR) of Ag nanoparticles. The fabricated composite photocatalysts were employed to remove 2,4,6-tribromophenol (TBP) in aqueous phase. A remarkably enhanced VL photocatalytic degradation efficiency of Ag/AgX-CNTs nanocomposites was observed when compared to that of pure AgX or CNTs. The photocatalytic activity enhancement of Ag/AgX-CNTs was due to the effective electron transfer from photoexcited AgX and plasmon-excited Ag(0) nanoparticles to CNTs. This can effectively decrease the recombination of electron-hole pairs, lead to a prolonged lifetime of the photoholes that promotes the degradation efficiency.

  4. Analysis of unsaturated compounds by Ag+ coordination ionspray mass spectrometry: studies of the formation of the Ag+/lipid complex.

    Science.gov (United States)

    Seal, Jennifer R; Havrilla, Christine M; Porter, Ned A; Hachey, David L

    2003-08-01

    Coordination ionspray mass spectrometry (CIS-MS) is a useful tool in the detection and identification of cholesterol ester and phospholipid hydroperoxides and diacyl peroxides. Extensive studies of a series of cholesterol esters using CIS-MS revealed the following: (1) Cholesterol esters with equal number of double bonds as the internal standard showed a linear relative response in the mass spectrometer while compounds with non-equal numbers of double bonds gave a nonlinear relative response. (2) Complex adducts containing cholesterol ester, silver ion, AgF, AgBF(4), and 2-propanoxide form when silver is in molar excess of cholesterol esters, reducing the [M + Ag](+) signal. (3) In a mixture of cholesterol esters where silver is limiting, Ch22:6 and Ch20:4 bind to silver at the expense of Ch18:2 and have a higher signal in the mass spectrometer. (4) In a mixture of cholesterol esters where silver concentration is twofold greater than total cholesterol ester concentration, Ch22:6 and Ch20:4 form large complex adducts more frequently than Ch18:2 and have a lower signal in the mass spectrometer.

  5. Ag/AgCl Loaded Bi2WO6 Composite: A Plasmonic Z-Scheme Visible Light-Responsive Photocatalyst

    Directory of Open Access Journals (Sweden)

    Xiangchao Meng

    2016-01-01

    Full Text Available Hierarchical flower-like Bi2WO6 was successfully synthesized by facile hydrothermal method at low pH. And Ag/AgCl was loaded by photoreduction on its surface. As-prepared photocatalysts were characterized by various techniques. Bi2WO6 was successfully synthesized at a size of 2-3 μm. Depositing Ag/AgCl did not destroy the crystal structure, and both Ag+ and metallic Ag0 were found. The band gap of the composite was 2.57 eV, which indicates that visible light could be the activating irradiation. In the photocatalytic activity test, the composite with 10 wt% Ag/AgCl boasted the highest removal efficiency (almost 100% in 45 min. The significant enhancement can be attributed to the surface plasmon resonance (SPR effect and the establishment of heterostructures between Ag/AgCl and Bi2WO6. A possible mechanism of photocatalytic oxidation in the presence of Ag/AgCl-Bi2WO6 was proposed. This work sheds light on the potential applications of plasmonic metals in photocatalysis to enhance their activities.

  6. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films

    Science.gov (United States)

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  7. Atmospheric chemistry of CF3CH2CH2OH

    DEFF Research Database (Denmark)

    Hurley, Michael D.; Misner, Jessica A.; Ball, James C.

    2005-01-01

    Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF3CH2C(O)H and CF3CH2CH2OH in 700 Torr of N-2 or air diluent at 296 2 K. The rate constants determined were k(Cl+CF3CH2C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF3CH2C(O)H) = (2.57 +/- 0.44...

  8. Facile preparation of agarose-chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol-gel transition

    CERN Document Server

    Trivedi, Tushar J; Kumar, Arvind

    2014-01-01

    We report simultaneous dissolution of agarose (AG) and chitosan (CH) in varying proportions in an ionic liquid (IL), 1-butyl-3-methylimidazolium chloride [C4mim][Cl]. Composite materials were constructed from AG-CH-IL solutions using the antisolvent methanol, and IL was recovered from the solutions. Composite materials could be uniformly decorated with silver oxide (Ag2O) nanoparticles (Ag NPs) to form nanocomposites in a single step by in situ synthesis of Ag NPs in AG-CH-IL sols, wherein the biopolymer moiety acted as both reducing and stabilizing agent. Cooling of Ag NPs-AG-CH-IL sols to room temperature resulted in high conductivity and high mechanical strength nanocomposite ionogels. The structure, stability and physiochemical properties of composite materials and nanocomposites were characterized by several analytical techniques, such as Fourier transform infrared (FTIR), CD spectroscopy, differential scanning colorimetric (DSC), thermogravimetric analysis (TGA), gel permeation chromatography (GPC), and...

  9. Isotopic signatures of anthropogenic CH4 sources in Alberta, Canada

    Science.gov (United States)

    Lopez, M.; Sherwood, O. A.; Dlugokencky, E. J.; Kessler, R.; Giroux, L.; Worthy, D. E. J.

    2017-09-01

    A mobile system was used for continuous ambient measurements of stable CH4 isotopes (12CH4 and 13CH4) and ethane (C2H6). This system was used during a winter mobile campaign to investigate the CH4 isotopic signatures and the C2H6/CH4 ratios of the main anthropogenic sources of CH4 in the Canadian province of Alberta. Individual signatures were derived from δ13CH4 and C2H6 measurements in plumes arriving from identifiable single sources. Methane emissions from beef cattle feedlots (n = 2) and landfill (n = 1) had δ13CH4 signatures of -66.7 ± 2.4‰ and -55.3 ± 0.2‰, respectively. The CH4 emissions associated with the oil or gas industry had distinct δ13CH4 signatures, depending on the formation process. Emissions from oil storage tanks (n = 5) had δ13CH4 signatures ranging from -54.9 ± 2.9‰ to -60.6 ± 0.6‰ and non-detectable C2H6, characteristic of secondary microbial methanogenesis in oil-bearing reservoirs. In contrast, CH4 emissions associated with natural gas facilities (n = 8) had δ13CH4 signatures ranging from -41.7 ± 0.7‰ to -49.7 ± 0.7‰ and C2H6/CH4 molar ratios of 0.10 for raw natural gas to 0.04 for processed/refined natural gas, consistent with thermogenic origins. These isotopic signatures and C2H6/CH4 ratios have been used for source discrimination in the weekly atmospheric measurements of stable CH4 isotopes over a two-month winter period at the Lac La Biche (LLB) measurement station, located in Alberta, approximately 200 km northeast of Edmonton. The average signature of -59.5 ± 1.4‰ observed at LLB is likely associated with transport of air after passing over oil industry sources located south of the station.

  10. Novel fluorescent chemosensor for Ag+ based on coumarin fluorophore

    Institute of Scientific and Technical Information of China (English)

    Mao Xiang Wang; Xiang Ming Meng; Man Zhou Zhu; Qing Xiang Guo

    2008-01-01

    A novel chemosensor 1 (CS1) bearing one coumarin and two carbodithioate groups was synthesized and its fluorescent sensing behavior toward metal ions was investigated. Ag+ addition to a CH3COCH3/H20 (3:7, v:v) solution of CS1 gave a significantly quenched fluorescence. Other ions including Pb2+, Zn2+, Cu2+, Ca2+, Cd2+, Co2+, Mg2+, Mn2+, Hg2+, Ag+, Ni2+ induced no or much smaller spectral changes. This constitutes an ON-OFF Ag+-selective fluorescent chemosensor.

  11. Enhanced and enduring protection against tuberculosis by recombinant BCG-Ag85C and its association with modulation of cytokine profile in lung.

    Directory of Open Access Journals (Sweden)

    Ruchi Jain

    Full Text Available BACKGROUND: The variable efficacy (0-80% of Mycobacterium bovis Bacille Calmette Guréin (BCG vaccine against adult tuberculosis (TB necessitates development of alternative vaccine candidates. Development of recombinant BCG (rBCG over-expressing promising immunodominant antigens of M. tuberculosis represents one of the potential approaches for the development of vaccines against TB. METHODS/PRINCIPAL FINDINGS: A recombinant strain of BCG - rBCG85C, over expressing the antigen 85C, a secretory immuno-dominant protein of M. tuberculosis, was evaluated for its protective efficacy in guinea pigs against M. tuberculosis challenge by aerosol route. Immunization with rBCG85C resulted in a substantial reduction in the lung (1.87 log(10, p<0.01 and spleen (2.36 log(10, p<0.001 bacillary load with a commensurate reduction in pathological damage, when compared to the animals immunized with the parent BCG strain at 10 weeks post-infection. rBCG85C continued to provide superior protection over BCG even when post-challenge period was prolonged to 16 weeks. The cytokine profile of pulmonary granulomas revealed that the superior protection imparted by rBCG85C was associated with the reduced levels of pro-inflammatory cytokines - interleukin (IL-12, interferon (IFN-gamma, tumor necrosis factor (TNF-alpha, moderate levels of anti-inflammatory cytokine - transforming growth factor (TGF-beta along with up-regulation of inducible nitric oxide synthase (iNOS. In addition, the rBCG85C vaccine induced modulation of the cytokine levels was found to be associated with reduced fibrosis and antigen load accompanied by the restoration of normal lung architecture. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of rBCG85C over BCG as a promising prophylactic vaccine against TB. The enduring protection observed in this study gives enough reason to postulate that if an open-ended study is carried out with low dose of infection, rBCG85C vaccine in all

  12. Ag nanoparticle/polymer composite barcode nanorods

    Institute of Scientific and Technical Information of China (English)

    Hongxu Chen[1; Tieqiang Wang[2; Huaizhong Shen[1; Wendong Liu[1; Shuli Wang[1; Kun Liu[1; Junhu Zhang[1; Bai Yang[1

    2015-01-01

    We demonstrate a facile method combining colloidal lithography, selective ion-exchange, and the in situ reduction of Ag ions (Ag+) for the fabrication of multi-segmented barcode nanorods. First, polymer multilayer films were prepared by spin-coating alternating thin films of polystyrene and polyacrylic acid (PAA), and then multi-segmented polymer nanorods were fabricated via reactive ion etching with colloidal masks. Second, Ag nanoparticles (Ag NPs) were incorporated into the PAA segments by an ion exchange and the in situ reduction of the Ag~. The selective incorporation of the Ag NPs permitted the modification of the specific bars of the nanorods. Lastly, the Ag NP/polymer composite nanorods were released from the substrate to form suspensions for further coding applications. By increasing the number of segments and changing the length of each segment in the nanorods, the coding capacity of nanorods was improved. More importantly, this method can easily realize the density tuning of Ag NPs in different segments of a single nanorod by varying the composition of the PAA segments. We believe that numerous other coded materials can also be obtained, which introduces new approaches for fabricating barcoded nanomaterials.

  13. Nano Ag@AgBr surface-sensitized Bi{sub 2}WO{sub 6} photocatalyst: oil-in-water synthesis and enhanced photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shuanglong; Liu, Li; Hu, Jinshan; Liang, Yinghua, E-mail: liangyh@heuu.edu.cn; Cui, Wenquan, E-mail: wkcui@163.com

    2015-01-01

    Graphical abstract: - Highlights: • The plasmatic Ag@AgBr surface-sensitized Bi{sub 2}WO{sub 6} composite photocatalysts. • Ag@AgBr greatly increased visible-light absorption for Bi{sub 2}WO{sub 6}. • The plasmonic photocatalysts exhibited enhanced activity for the degradation of MB, phenol and salicylic acid. - Abstract: Nano Ag@AgBr decorated on the surface of flower-like Bi{sub 2}WO{sub 6} (hereafter designated Ag@AgBr/Bi{sub 2}WO{sub 6}) were prepared via a facile oil-in-water self-assembly method. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS), etc. The characterization results indicated that nano Ag@AgBr was observed to be evenly dispersed on the surface of Bi{sub 2}WO{sub 6}, and was approximately 20 nm in size. Ag@AgBr/Bi{sub 2}WO{sub 6} composites exhibited excellent UV–vis absorption, due to quantum dimension effect of Ag@AgBr, the surface plasmonic resonance (SPR) of Ag nanoparticles and the special flower-like structure of Bi{sub 2}WO{sub 6}. The photoelectrochemical measurement verified that the suitable band potential of Ag@AgBr and Bi{sub 2}WO{sub 6} and the existence of metal Ag resulted in the high efficiency in charge separation of the composite. The photocatalytic activities of the Ag@AgBr/Bi{sub 2}WO{sub 6} samples were examined under visible-light irradiation for the degradation of methylene blue (MB). The composite presented excellent photocatalytic activity due to the synergetic effect of Bi{sub 2}WO{sub 6}, AgBr, and Ag nanoparticles. The Ag@AgBr(20 wt.%)/Bi{sub 2}WO{sub 6} sample exhibited the best photocatalytic activity, degrading 95.03% MB after irradiation for 2 h, which was respectively 1.29 times and 1.28 times higher than that of Ag@AgBr and Bi{sub 2}WO{sub 6} photocatalyst. Meanwhile, phenol and salicylic acid were degraded to further prove the degradation ability of Ag@AgBr/Bi{sub 2

  14. Reactions of VX, HD, and their simulants with NaY and AgY zeolites. Desulfurization of VX on AgY

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.W.; Bartram, P.W.

    1999-11-09

    The room-temperature reactions of the chemical warfare agents VX (O-ethyl S-2-(diisopropylamino)-ethyl methylphosphonothioate), HD (2,2{prime}-dichloroethyl sulfide, or mustard), and their common simulants, O,S-diethyl phenylphosphonothioate (DEPPT) and 2-chloroethyl phenyl sulfide (CEPS), with NaY and silver-exchanged (AgY) zeolites have been studied using solid-state magic angle spinning NMR. VX hydrolyzes via exclusive cleavage of the P{single{underscore}bond}S bond on both NaY and AgY to yield ethyl methylphosphonate (EMPA). The reaction is significantly faster on AgY than on NaY, suggesting catalysis by silver. On AgY, an intermediate silver salt of EMPA is apparently formed which is slowly converted to ethyl 2-(diisopropylamino)ethyl methylphosphonate (QB, the desulfurized analogue of VX) in about a 78% yield. DEPPT similarly hydrolyzes via P{single{underscore}bond}S cleavage on AgY to yield an apparent silver salt of ethyl phenylphosphonate, which does not undergo further reaction to the desulfurized analogue. No reaction is observed for DEPPT on NaY. HD on AgY forms both vinyl sulfide and the cyclic ether 1,4-thioxane. HD reacts faster on NaY to exclusively form the CH-TG sulfonium ion (HOCH{sub 2}CH{sub 2}SCH{sub 2}CH{sub 2}S{sup +}[CH{sub 2}CH{sub 2}OH]{sub 2}). CEPS also reacts faster on NaY, forming 2-hydroxyethyl phenyl sulfide. On AgY, CEPS does not give the vinyl product, but does yield the ether product PhSCH{sub 2}CH{sub 2}OCH{sub 2}CH{sub 2}SPh. A mechanism is proposed for the silver-catalyzed hydrolysis of VX, the desulfurization of the cleaved thiol, and the formation of QB.

  15. Estudio del CH interestelar

    Science.gov (United States)

    Olano, C.; Lemarchand, G.; Sanz, A. J.; Bava, J. A.

    El objetivo principal de este proyecto consiste en el estudio de la distribución y abundancia del CH en nubes interestelares a través de la observación de las líneas hiperfinas del CH en 3,3 GHz. El CH es una molécula de amplia distribución en el espacio interestelar y una de las pocas especies que han sido observadas tanto con técnicas de radio como ópticas. Desde el punto de vista tecnológico se ha desarrollado un cabezal de receptor que permitirá la realización de observaciones polarimétricas en la frecuencia de 3,3 GHz, con una temperatura del sistema de 60 K y un ancho de banda de 140 MHz, y que será instalado en el foco primario de la antena parabólica del IAR. El cabezal del receptor es capaz de detectar señales polarizadas, separando las componentes de polarización circular derecha e izquierda. Para tal fin el cabezal consta de dos ramas receptoras que amplificarán la señal y la trasladarán a una frecuencia más baja (frecuencia intermedia), permitiendo de esa forma un mejor transporte de la señal a la sala de control para su posterior procesamiento. El receptor además de tener características polarimétricas, podrá ser usado en el continuo y en la línea, utilizando las ventajas observacionales y de procesamiento de señal que actualmente posee el IAR.

  16. Fabrication of graphene oxide enwrapped Z-scheme Ag2SO3/AgBr nanoparticles with enhanced visible-light photocatalysis

    Science.gov (United States)

    Wan, Yujuan; Liang, Chunyan; Xia, Yue; Huang, Wei; Li, Zelin

    2017-02-01

    A novel graphene oxide (GO) enwrapped Ag2SO3/AgBr (GO/Ag2SO3/AgBr) composite was fabricated through a facile solution approach via electrostatic interaction and precipitation transformation reaction for the first time. The results of XRD, Raman, SEM, TEM and XPS confirmed the structure, morphology and composition of the GO/Ag2SO3/AgBr composite very well. The Ag2SO3/AgBr nanoparticles were found to be encapsulated by GO sheets. The photocatalytic activity of the composite was investigated by the degradation of methyl orange (MO), rhodamine B (RhB) and methylene blue (MB) in water under visible light. The incorporation of GO sheets not only significantly enhanced the photocatalytic activity but also improved the reusability of Ag2SO3/AgBr nanoparticles. The photocatalytic ability of GO/Ag2SO3/AgBr can be maintained at a high level for 4 times cycle experiments. The trapping experiments confirmed that holes and superoxide ion radicals were the main active species responsible for the degradation reaction. A plasmonic Z-scheme photocatalytic mechanism was proposed to illustrate the possible transferred and separated behavior of electron-hole pairs among Ag, Ag2SO3, AgBr and GO quaternary system under visible light irradiation.

  17. AGS vertical beta function measurements for Run 15

    Energy Technology Data Exchange (ETDEWEB)

    Harper, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ahrens, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-10-07

    One key parameter for running the AGS efficiently is by maintaining a low emittance. To measure emittance, one needs to measure the beta function throughout the cycle. This can be done by measuring the beta function at the ionization profile monitors (IPM) in the AGS. This tech note delves into the motivation, the measurement, and some strides that were made throughout Run15.

  18. Relative tropospheric photolysis rates of acetaldehyde and formaldehyde measured at the European Photoreactor Facility

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Bache-Andreassen, Lihn; Johnson, Matthew Stanley;

    2009-01-01

    The photolysis rates of HCHO, DCDO, CH3CHO, and CH3CDO are studied by long-path FTIR spectroscopy in natural tropospheric conditions at the European Photoreactor Facility (EUPHORE) in Valencia, Spain. Average relative photolysis rates jHCHO/jDCDO ) 3.15 ( 0.08 and jCH3CHO/jCH3CDO ) 1.26 ( 0...

  19. Linking rhizospheric CH4 oxidation and net CH4 emissions in an arctic wetland based on 13CH4 labeling of mesocosms

    DEFF Research Database (Denmark)

    Nielsen, Cecilie Skov; Michelsen, Anders; Ambus, Per

    2017-01-01

    the overall effect of these plants on the CH4 budget. Methods: A mesocosms study was established based on the upper 20 cm of an organic soil profile with intact plants retrieved from a peatland in West Greenland (69°N). We measured dissolved concentrations and emissions of 13CO2 and 13CH4 from mesocosms...

  20. CH_{4} production in the deep soil as a source of stem CH_{4} emission in Fagus sylvatica}

    Science.gov (United States)

    Maier, Martin; Machacova, Katerina; Urban, Otmar; Lang, Friederike

    2017-04-01

    Predicting greenhouse gas (GHG) fluxes on a global scale requires understanding fluxes on the local scale. Understanding GHG processes in soil-plant-atmosphere systems is essential to understand and mitigate GHG fluxes on the local scale. Forests are known to act as carbon sink. Yet, trees at waterlogged sites are known to emit large amounts of CH4, what can offset the positive GHG balance due the CO2 that is sequestered as wood. Generally, upland trees like European beech (Fagus sylvatica L.) are assumed not to emit CH4, and the upland forest soils are regarded as CH4 sinks. Soil-atmosphere fluxes and stem-atmosphere fluxes of CH4 were studied together with soil gas profiles at two upland beech forest sites in Germany and Czech Republic. Soil was a net CH4 sink at both sites. While most trees showed no or low emissions, one beech tree had exorbitant CH4 emissions that were higher than the CH4 sink capacity of the soil. A soil survey showed strong redoximorphic color patterns in the soil adjacent to this tree. Although the soil around the tree was taking up CH4, the soil gas profiles around this tree showed CH4 production at a soil depth >0.3 m. We interpret the coincidence of the production of CH4 in the deep soil below the beech with the large stem emissions as strong hint that there is a transport link between the soil and stem. We think that the root system represents a preferential transport system for CH4 despite the fact that beech roots usually do not have a special gas transport tissue. The observed CH4 stem emissions represent an important CH4 flux in this ecosystem, and, thus, should be considered in future research. Acknowledgement This research was supported by the Czech Academy of Sciences and the German Academic Exchange Service within the project "Methane (CH4) and nitrous oxide (N2O) emissions from Fagus sylvatica trees" (DAAD-15-03), the Czech Science Foundation (17-18112Y), National Programme for Sustainability I (LO1415) and project DFG (MA 5826

  1. Two-step synthesis of Ag@GQD hybrid with enhanced photothermal effect and catalytic performance

    Science.gov (United States)

    Wu, Cong; Yuan, Yali; He, Qian; Song, Rui

    2016-12-01

    A novel Ag@GQD (graphene quantum dot) hybrid fabricated by a facile two-step strategy is presented: the GQDs are prepared by citrate acid and AgNO3 is reduced. Catalytic studies showed that the Ag@GQD hybrid exhibited excellent photothermal effect and catalytic performance for 4-nitrophenol (4-NP) reduction, suggesting that the GQDs enhanced the catalytic activity via a synergistic effect and the Ag NPs boosted the catalytic efficiency through SPR-mediated photothermal local heating.

  2. Profiles of intensity loads in physical education classes in Poland Profily intenzivní zátěže v hodinách tělesné výchovy v Polsku

    Directory of Open Access Journals (Sweden)

    Michał Bronikowski

    2006-02-01

    Full Text Available The aim of the research was to compare the health-related effectiveness of various types of physical education lessons on the cardio-respiratory system. The research was carried out in the years 2002 and 2003 in two junior high schools in Poznań. There were four types of classes examined: outdoor athletics, volleyball, basketball and fun games, each type lasting 45 minutes. Heart rates of two randomly selected pupils aged 15–16 were recorded during class, with the use of Polar heart rate monitors. According to the findings of a cross-national study, Polish youth do not have enough moderate-to-vigorous activity on a daily basis (Cabak & Woynarowska, 2004. In our research the most effective in stimulating cardio-respiratory fitness appeared to be outdoor athletics classes in boys and girls, and basketball in boys. Our data support the earlier findings of other studies (Stratton, 1997; Fairclough & Stratton, 2005. Cílem průzkumu bylo srovnání zdravotní účinnosti různých typů hodin tělesné výchovy na kardio-respirační ústrojí. Průzkum byl prováděn v letech 2002 a 2003 na nižším stupni středních škol v Poznani. Zkoumány byly čtyři typy hodin: atletika, volejbal, basketbal a pohybové hry, přičemž každý typ měl trvání 45 minut. V průběhu hodiny byla u dvou náhodně zvolených 15–16letých žáků měřena srdeční frekvence, a to pomocí monitorů srdeční frekvence Polar. Podle výsledků celonárodního výzkumu nemá polská mládež dostatek každodenní střední až intenzivní aktivity (Cabak & Woynarowska, 2004. V našem průzkumu se hodiny atletiky, v případě chlapců a dívek, a basketbalu, v případě chlapců, jevily jako hodiny nejúčinněji stimulující kardio-respirační zdatnost. Naše údaje potvrzují dřívější výsledky jiných průzkumů (Stratton, 1997; Fairclough & Stratton, 2005.

  3. Facile, one-pot and scalable synthesis of highly emissive aqueous-based Ag,Ni:ZnCdS/ZnS core/shell quantum dots with high chemical and optical stability.

    Science.gov (United States)

    Sahraei, Reza; Soheyli, Ehsan; Faraji, Zahra; Soleiman-Beigi, Mohammad

    2017-10-11

    We report here a one pot, mild and low cost aqueous-based synthetic route for preparation of colloidally stable and highly luminescent dual-doped Ag,Ni:ZnCdS/ZnS core/shell quantum dots (QDs). The pure dopant emission of the Ni-doped core/shell quantum dots was found to be highly effected at the presence of second dopant ion (Ag+). Results showed that the PL emission intensity increases while its peak position experiences an obvious blue shift with increasing the content of Ag+ ions. Regarding the optical observations, we simply provide a scheme for absorption-recombination processes of the carriers through impurity centers. To obtain an optimum conditions with better emission characteristic, we also study the effect of different reaction parameters such as: refluxing temperature, core and shell solutions pH, molar ratio of the dopant ions (Ni:(Zn+Cd) and Ag:(Zn+Cd)), and concentration of the core and shell precursors. Nonetheless, the most effective parameter is the presence of the ZnS shell with suitable amount to eliminate the surface trap states and enhance their emission intensity. It can also, improve the bio-compatibility of the prepared QDs by restricting the Cd2+ toxic ions inside the core of the QDs. The present suggested route was also yielded to remarkable optical and chemical stability of the colloidal QDs which introduce them as a decent kind of nano-scale structures for light emitting applications, especially in the biological technologies. The suggested process has also this interesting potential to be scaled-up while remaining the emission characteristics and structural quality which is inevitable for industrial applications in optoelectronic devices. © 2017 IOP Publishing Ltd.

  4. Reactivity control of C-H bond activation over vanadium-silver bimetallic oxide cluster cations.

    Science.gov (United States)

    Li, Xiao-Na; Wu, Xiao-Nan; Ding, Xun-Lei; Xu, Bo; He, Sheng-Gui

    2012-08-27

    Vanadium-silver bimetallic oxide cluster ions (V(x)Ag(y)O(z)(+); x=1-4, y=1-4, z=3-11) are produced by laser ablation and reacted with ethane in a fast-flow reactor. A reflectron time of flight (Re-TOF) mass spectrometer is used to detect the cluster distribution before and after the reactions. Hydrogen atom abstraction (HAA) reactions are identified over VAgO(3)(+), V(2)Ag(2)O(6)(+), V(2)Ag(4)O(7)(+), V(3)AgO(8)(+), V(3)Ag(3)O(9)(+), and V(4)Ag(2)O(11)(+) ions, in which the oxygen-centered radicals terminally bonded on V atoms are active sites for the facile HAA reactions. DFT calculations are performed to study the structures, bonding, and reactivity. The reaction mechanisms of V(2)Ag(2)O(6)(+) +C(2)H(6) are also given. The doped Ag atoms with a valence state of +1 are highly dispersed at the periphery of the V(x)Ag(y)O(z)(+) cluster ions. The reactivity can be well-tuned gradually by controlling the number of Ag atoms. The steric protection due to the peripherally bonded Ag atoms greatly enhances the selectivity of the V-Ag bimetallic oxide clusters with respect to the corresponding pure vanadium oxide systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Shock Hugoniot measurements of CH at Gbar pressures at the NIF

    Science.gov (United States)

    Kritcher, A. L.; Doeppner, T.; Swift, D.; Hawreliak, J.; Nilsen, J.; Hammer, J.; Bachmann, B.; Collins, G.; Landen, O.; Keane, C.; Glenzer, S.; Rothman, S.; Chapman, D.; Kraus, D.; Falcone, R. W.

    2016-03-01

    Laboratory measurements of the shock Hugoniot at high pressure, exceeding several hundred Mbar, are of great importance in the understanding and accurate modeling of matter at extreme conditions. In this work we present a platform to measure the material properties, specifically the single shock Hugoniot and electron temperature, at extreme pressures of ∼Gbar at the National Ignition Facility (NIF). In these experiments we launch spherically convergent shocks into solid CH, using a Hohlraum radiation drive. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determining of the material pressure and Hugoniot equation of state. X-ray scattering is applied to measure the electron temperature through measurement of the electron velocity distribution.

  6. Diffusion and separation of CH4/N2 in pillared graphene nanomaterials: A molecular dynamics investigation

    Science.gov (United States)

    Zhou, Sainan; Lu, Xiaoqing; Wu, Zhonghua; Jin, Dongliang; Guo, Chen; Wang, Maohuai; Wei, Shuxian

    2016-09-01

    Diffusion and separation of CH4/N2 in pillared graphene were investigated by molecular dynamics. The pillared graphene with (6, 6) carbon nanotube (CNT) exhibited the higher diffusion and selectivity of CH4 over N2 than that with (7, 7) CNT due to the cooperative effect of pore topological characteristics and interaction energy. The stronger interaction facilitated CH4 to enter CNT prior to N2, and higher pressure promoted CH4 to pass CNT more easily. The relative concentrations profiles showed that CH4 reached equilibrium state faster than N2 at low pressure. Our results highlight potential use of pillared graphene in gas purification and separation.

  7. Facile Preparation of Silver Halide Nanoparticles as Visible Light Photocatalysts

    Directory of Open Access Journals (Sweden)

    Linfan Cui

    2015-07-01

    Full Text Available In this study, highly efficient silver halide (AgX-based photocatalysts were successfully fabricated using a facile and template-free direct-precipitation method. AgX nanoparticles, which included silver chloride (AgCl, silver bromide (AgBr and silver iodide (AgI, were synthesized using different potassium halides and silver acetate as reactive sources. The size distribution of the AgX nanopar‐ ticles was determined by the reaction time and ratio of the reagents, which were monitored by UV-vis spectra. The as- prepared AgX nanoparticles exhibited different photoca‐ talytic properties. This shows the differences for the photodegradation of methyl orange and Congo red dyes. In addition, the AgCl nanoparticle-based photocatalyst exhibited the best photocatalytic property among all three types of AgX nanoparticles that are discussed in this study. Therefore, it is a good candidate for removing organic pollutants.

  8. Subsoil methanogenesis as source of stem CH4 emission in upland forest trees: preferential CH4 transport via the root system?

    Science.gov (United States)

    Maier, M.; Machacova, K.; Urban, O.; Friederike, L.

    2016-12-01

    Quantifying and understanding green house gas fluxes in natural soil-plant-atmosphere systems are crucial to predicting global climate change. Wetland species or trees at waterlogged sites are known to emit large amounts of CH4. Yet upland forest soils are regarded as CH4 sinks and tree species like upland European beech (Fagus sylvatica, L.) are assumed not to emit CH4. We studied the soil-atmosphere and stem-atmosphere fluxes of CH4, and soil gas profiles at two upland beech forest sites in Central Europe. Soil was a net CH4 sink at both. Unusually there was one beech tree with substantial CH4 emissions that were higher than the CH4 sink of the soil. The soil gas profile at this tree indicated CH4 production at a soil depth >0.3 m, despite the net uptake of CH4 observed at the soil surface adjacent to the tree. Field soil assessment showed strong redoximorphic color patterns in the adjacent soil. We think that there is a transport link between the soil and stem via the root system representing a preferential transport mechanism for CH4 despite the fact that beech roots usually do not bear aerenchyma. The gas transport process , either via dissolved CH4 in the xylem water or in the root gas phase, is not yet clear. The observed CH4 stem emissions represent an important CH4flux in this ecosystem, und thus should be considered in future research. AcknowledgementThis research was financially supported by the Czech Academy of Sciences and the German Academic Exchange Service within the project "Methane (CH4) and nitrous oxide (N2O) emissions from Fagus sylvatica trees" (DAAD-15-03), National Programme for Sustainability I (LO1415) and project DFG (MA 5826/2-1). We would like to thank Marek Jakubik, Katerina Svobodova, Sinikka Paulus, Ellen Halaburt and Sally Haddad for technical support.

  9. AGS experiments - 1994, 1995, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  10. IgG2 Fc structure and the dynamic features of the IgG CH2-CH3 interface.

    Science.gov (United States)

    Teplyakov, Alexey; Zhao, Yonghong; Malia, Thomas J; Obmolova, Galina; Gilliland, Gary L

    2013-11-01

    The analyses of two human IgG2 Fc structures, determined in different crystal forms, and the comparison with IgG1 Fc structures reveals molecular features that are involved in accommodating and stabilizing structural conformations. In the IgG2 Fc structures relative positions of the CH2 domains with respect to the CH3 domains vary significantly from those observed for IgG1 Fc structures in similar unit cells. The analysis reveals that the movement of the CH2 domain in all of the Fc structures results from a pivoting around a highly conserved ball-and-socket-like joint in which the CH2 L251 side chain (the ball) interacts with a pocket (the socket) formed by CH3 M428, H429, E430, and H435. Despite the change in positioning of the CH2 and CH3 domains, conserved hydrogen bonds and electrostatic interactions are retained, stabilizing the Fc domain interface. In the high resolution IgG2 and IgG1 Fc structures the position and number of water molecules, and water networks bridging the two domains differ significantly because of the difference in positions of CH2 relative to CH3. At the domain interface, only CH2 T339 in IgG2 differs from alanine found in IgG1 and IgG4. This residue's side chain influences the water structure at the interface by interacting either directly or through a bridging water molecule with D376 in the CH3 BC loop. Thus, the analyses of the IgG2 Fc structures and their comparisons with IgG1 Fc structures reveals similar, but distinctly different dynamic CH2-CH3 interfaces that can accommodate a wide range of CH2-CH3 conformations, that in conjunction with the amino acid residues in the hinge region, may influence FcγR effector function profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. CH-47F Improved Cargo Helicopter (CH-47F)

    Science.gov (United States)

    2015-12-01

    supply chain and industrial base. Nuclear Costs None CH-47F December 2015 SAR March 21, 2016 18:18:21 UNCLASSIFIED 22 Unit Cost Unit Cost Report...mission is transportation of ground forces, Class III/Class V supplies , and other battle critical cargo in support of all future contingencies. The CH

  12. Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures.

    Science.gov (United States)

    Wu, Jian; Xu, Yijun; Xu, Pengyu; Pan, Zhenghui; Chen, Sheng; Shen, Qishen; Zhan, Li; Zhang, Yuegang; Ni, Weihai

    2015-11-07

    We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a "hot surface" for enhancing the Raman response of two-dimensional materials.

  13. Synthesis of biocompatible AuAgS/Ag{sub 2}S nanoclusters and their applications in photocatalysis and mercury detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qian; Chen, Shenna; Zhang, Lingyang; Huang, Haowen, E-mail: hhwn09@163.com; Liu, Fengping [Hunan University of Science and Technology, Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial University Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering (China); Liu, Xuanyong, E-mail: xyliu@mail.sic.ac.cn [Chinese Academy of Sciences, State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics (China)

    2014-12-15

    In this paper, a facile approach for preparation of AuAgS/Ag{sub 2}S nanoclusters was developed. The unique AuAgS/Ag{sub 2}S nanoclusters capped with biomolecules exhibit interesting excellent optical and catalytic properties. The fluorescent AuAgS/Ag{sub 2}S nanoclusters show tunable luminescence depending on the nanocluster size. The apoptosis assay demonstrated that the AuAgS/Ag{sub 2}S nanoclusters showed low cytotoxicity and good biocompatibility. Therefore, the nanoclusters can be used not only as a probe for labeling cells but also for their photocatalytic activity for photodegradation of organic dye. Moreover, a highly selective and sensitive assay for detection of mercury including Hg{sup 2+} and undissociated mercury complexes was developed based on the quenching fluorescent AuAgS/Ag{sub 2}S nanoclusters, which provides a promising approach for determining various forms of Hg in the mercury-based compounds in environment. These unique nanoclusters may have potential applications in biological labeling, sensing mercury, and photodegradation of various organic pollutants in waste water.Graphical Abstract.

  14. Synthesis of biocompatible AuAgS/Ag2S nanoclusters and their applications in photocatalysis and mercury detection

    Science.gov (United States)

    Zhao, Qian; Chen, Shenna; Zhang, Lingyang; Huang, Haowen; Liu, Fengping; Liu, Xuanyong

    2014-12-01

    In this paper, a facile approach for preparation of AuAgS/Ag2S nanoclusters was developed. The unique AuAgS/Ag2S nanoclusters capped with biomolecules exhibit interesting excellent optical and catalytic properties. The fluorescent AuAgS/Ag2S nanoclusters show tunable luminescence depending on the nanocluster size. The apoptosis assay demonstrated that the AuAgS/Ag2S nanoclusters showed low cytotoxicity and good biocompatibility. Therefore, the nanoclusters can be used not only as a probe for labeling cells but also for their photocatalytic activity for photodegradation of organic dye. Moreover, a highly selective and sensitive assay for detection of mercury including Hg2+ and undissociated mercury complexes was developed based on the quenching fluorescent AuAgS/Ag2S nanoclusters, which provides a promising approach for determining various forms of Hg in the mercury-based compounds in environment. These unique nanoclusters may have potential applications in biological labeling, sensing mercury, and photodegradation of various organic pollutants in waste water.

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-01-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-01-30

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-12-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  1. CH-TRU Waste Content Codes (CH TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2004-12-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-11-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  4. CH-TRU Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-10-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-03-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-05-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2004-10-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  15. Nano Ag@AgBr surface-sensitized Bi2WO6 photocatalyst: oil-in-water synthesis and enhanced photocatalytic degradation

    Science.gov (United States)

    Lin, Shuanglong; Liu, Li; Hu, Jinshan; Liang, Yinghua; Cui, Wenquan

    2015-01-01

    Nano Ag@AgBr decorated on the surface of flower-like Bi2WO6 (hereafter designated Ag@AgBr/Bi2WO6) were prepared via a facile oil-in-water self-assembly method. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), etc. The characterization results indicated that nano Ag@AgBr was observed to be evenly dispersed on the surface of Bi2WO6, and was approximately 20 nm in size. Ag@AgBr/Bi2WO6 composites exhibited excellent UV-vis absorption, due to quantum dimension effect of Ag@AgBr, the surface plasmonic resonance (SPR) of Ag nanoparticles and the special flower-like structure of Bi2WO6. The photoelectrochemical measurement verified that the suitable band potential of Ag@AgBr and Bi2WO6 and the existence of metal Ag resulted in the high efficiency in charge separation of the composite. The photocatalytic activities of the Ag@AgBr/Bi2WO6 samples were examined under visible-light irradiation for the degradation of methylene blue (MB). The composite presented excellent photocatalytic activity due to the synergetic effect of Bi2WO6, AgBr, and Ag nanoparticles. The Ag@AgBr(20 wt.%)/Bi2WO6 sample exhibited the best photocatalytic activity, degrading 95.03% MB after irradiation for 2 h, which was respectively 1.29 times and 1.28 times higher than that of Ag@AgBr and Bi2WO6 photocatalyst. Meanwhile, phenol and salicylic acid were degraded to further prove the degradation ability of Ag@AgBr/Bi2WO6. Additionally, studies performed using radical scavengers indicated that O2-•, •OH and Br0 acted as the main reactive species. Based on above, a photocatalytic mechanism for organics degradation over Ag@AgBr/Bi2WO6 was proposed.

  16. 高活性Ag修饰TiO2空心八面体光催化剂的简易模板诱导合成%Facile template-induced synthesis of Ag-modified TiO2 hollow octahedra with high photocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    王雪飞; 余锐; 王康; 杨桂全; 余火根

    2015-01-01

    Noble metal/titania hollow nanomaterials usually exhibit excellent photocatalytic activity because of their high specific surface area, low density, good surface permeability, strong light‐harvesting capacity, and rapid interfacial charge transfer. However, the present preparation methods usually include complicated and multistep procedures, which can cause damage to the hollow nanostruc‐tures. In this paper, a facile template‐induced synthesis, based on a template‐directed deposition and in situ template‐sacrificial dissolution, was employed to prepare Ag‐modified TiO2 (Ag/TiO2) hollow octahedra using Ag2O octahedra as templates and TiF4 as the precursor. In the synthetic strategy, the shells of TiO2 hollow octahedra were formed by coating TiO2 nanoparticles on the sur‐face of Ag2O templates based on the template‐directed deposition. Simultaneously, the Ag2O tem‐plates can be in situ removed by dissolving the Ag2O octahedral template in HF solution produced via the hydrolysis reaction of TiF4 in the reaction system. In addition, Ag nanoparticles were depos‐ited on the inside and outside surfaces of TiO2 shells by effectively using the photosensitive proper‐ties of Ag2O and Ag+ions under light irradiation, along with the formation of TiO2 hollow octahedra. The Ag/TiO2 hollow octahedra exhibited high photocatalytic activity because of their (1) short dif‐fusion distances between photogenerated electrons and holes because of the thin shells of Ag/TiO2 hollow octahedral, (2) deposition of Ag nanoparticles on the inside and outside surfaces of TiO2 shells, and (3) rapid interfacial charge transfer between TiO2 shells and Ag nanoparticles. This work may also provide new insights into preparing other Ag‐modified and hollow nanostructured photo‐catalysts.%贵金属修饰的TiO2空心纳米光催化材料由于具有大的比表面积、低的质量密度、良好的表面渗透性、强的光吸收能力以及界面电荷的快速转移,因而

  17. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  18. Genome-wide ChIP-seq analysis of EZH2-mediated H3K27me3 target gene profile highlights differences between low- and high-grade astrocytic tumors.

    Science.gov (United States)

    Sharma, Vikas; Malgulwar, Prit Benny; Purkait, Suvendu; Patil, Vikas; Pathak, Pankaj; Agrawal, Rahul; Kulshreshtha, Ritu; Mallick, Supriya; Julka, Pramod Kumar; Suri, Ashish; Sharma, Bhawani Shankar; Suri, Vaishali; Sharma, Mehar Chand; Sarkar, Chitra

    2017-02-01

    Enhancer of zeste homolog-2(EZH2) is a key epigenetic regulator that functions as oncogene and also known for inducing altered trimethylation of histone at lysine-27 (H3K27me3) mark in various tumors. However, H3K27me3 targets and their precise relationship with gene expression are largely unknown in astrocytic tumors. In this study, we checked EZH2 messenger RNA and protein expression in 90 astrocytic tumors of different grades using quantitative PCR and immunohistochemistry, respectively. Further, genome-wide ChIP-seq analysis for H3K27me3 modification was also performed on 11 glioblastomas (GBMs) and 2 diffuse astrocytoma (DA) samples. Our results showed EZH2 to be highly overexpressed in astrocytic tumors with a significant positive correlation with grade. Interestingly, ChIP-seq mapping revealed distinct differences in genes and pathways targeted by these H3K27me3 modifications between GBM versus DA. Neuroactive ligand receptor pathway was found most enriched in GBM (P = 9.4 × 10-25), whereas DA were found to be enriched in metabolic pathways. Also, GBM showed a higher enrichment of H3K27me3 targets reported in embryonic stem cells and glioma stem cells as compared with DAs. Our results show majority of these H3K27me3 target genes were downregulated, not only due to H3K27me3 modification but also due to concomitant DNA methylation. Further, H3K27me3 modification-associated gene silencing was not restricted to promoter but also present in gene body and transcription start site regions. To the best of our knowledge, this is the first high-resolution genome-wide mapping of H3K27me3 modification in adult astrocytic primary tissue samples of human, highlighting the differences between grades. Interestingly, we identified SLC25A23 as important target of H3K27me3 modification, which was downregulated in GBM and its low expression was associated with poor prognosis in GBMs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions

  19. Facile Routes to NiF(6)(2)(-), AgF(4)(-), AuF(6)(-), and PtF(6)(-) Salts Using O(2)(+) as a Source of O(2)F in Anhydrous HF.

    Science.gov (United States)

    Lucier, G. M.; Shen, C.; Elder, S. H.; Bartlett, N.

    1998-07-27

    O(2)(+) salts dissolved in liquid anhydrous hydrogen fluoride (aHF) at 20 degrees C or below oxidize aHF solutions of PtF(6)(2)(-) to PtF(6)(-). The parent base of O(2)(+) salts in aHF (O(2)F((solv))) generated with alkali fluoride is long-lived below -50 degrees C. An aHF solution of O(2)F((solv)) oxidizes Au(III) to Au(V) below -50 degrees C (2O(2)F((solv)) + AuF(4)(-)((solv)) --> AuF(6)(-)((solv)) +2O(2(g))). In situ generation of O(2)F((solv)) (O(2)(+)((solv)) + F(-)((solv)) --> O(2)F((solv))) with AgF(2) or NiF(2) in suspension in the aHF made basic with alkali fluoride gives AgF(4)(-) and NiF(6)(2)(-)salts. Low solubility of AAsF(6)(A = Cs, K) in aHF provides for the metathetical preparation of (O(2))(2)PdF(6) solutions in aHF. Removal of aHF, even at -60 degrees C, results in some O(2) and F(2) loss, to a composition approaching (O(2))PdF(5).

  20. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  1. The role of Ag precipitates in Cu-12 wt% Ag

    Energy Technology Data Exchange (ETDEWEB)

    Yao, D.W.; Song, L.N. [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China); Dong, A.P.; Wang, L.T. [China Railway Construction Electrification Bureau Group Co.,Ltd., Beijing 100036 (China); Zhang, L. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Meng, L., E-mail: mengliang@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China)

    2012-12-15

    The Cu-12 wt% Ag was prepared to investigate the role of Ag precipitates on the properties of the alloy. Two kinds of heat treatment procedures were adopted to produce different amount of Ag precipitates in the Cu-12 wt% Ag. The microstructure of Ag precipitates was systematically observed by optical microscopy and electron microscopy. The Cu-12 wt% Ag with more Ag precipitates exhibits higher strength and lower electrical conductivity. More Ag precipitates results in more phase interface and less Ag atoms dissolved in Cu matrix. By comparing the strengthening effect and electron scattering effect of phase interface and dissolved Ag atoms, it is conclude that the interface between Cu matrix and Ag precipitates could significantly block dislocation movement and enhance electron scattering in Cu-Ag alloys.

  2. A Statistical Framework for the Analysis of ChIP-Seq Data

    OpenAIRE

    Kuan, Pei Fen; Chung, Dongjun; Pan, Guangjin; Thomson, James A.; Stewart, Ron; Keleş, Sündüz

    2011-01-01

    Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) has revolutionalized experiments for genome-wide profiling of DNA-binding proteins, histone modifications, and nucleosome occupancy. As the cost of sequencing is decreasing, many researchers are switching from microarray-based technologies (ChIP-chip) to ChIP-Seq for genome-wide study of transcriptional regulation. Despite its increasing and well-deserved popularity, there is little work that investigates and accounts for sources...

  3. Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2 heterojunction photocatalyst under simulated solar light irradiation

    Science.gov (United States)

    Wang, Xin; Utsumi, Motoo; Yang, Yingnan; Li, Dawei; Zhao, Yingxin; Zhang, Zhenya; Feng, Chuanping; Sugiura, Norio; Cheng, Jay Jiayang

    2015-01-01

    A novel photocatalyst AgBr/Ag3PO4/TiO2 was developed by a simple facile in situ deposition method and used for degradation of mirocystin-LR. TiO2 (P25) as a cost effective chemical was used to improve the stability of AgBr/Ag3PO4 under simulated solar light irradiation. The photocatalytic activity tests for this heterojunction were conducted under simulated solar light irradiation using methyl orange as targeted pollutant. The results indicated that the optimal Ag to Ti molar ratio for the photocatalytic activity of the resulting heterojunction AgBr/Ag3PO4/TiO2 was 1.5 (named as 1.5 BrPTi), which possessed higher photocatalytic capacity than AgBr/Ag3PO4. The 1.5 BrPTi heterojunction was also more stable than AgBr/Ag3PO4 in photocatalysis. This highly efficient and relatively stable photocatalyst was further tested for degradation of the hepatotoxin microcystin-LR (MC-LR). The results suggested that MC-LR was much more easily degraded by 1.5 BrPTi than by AgBr/Ag3PO4. The quenching effects of different scavengers proved that reactive h+ and •OH played important roles for MC-LR degradation.

  4. Predicting kinetic nanocrystal shapes through multi-scale theory and simulation: Polyvinylpyrrolidone-mediated growth of Ag nanocrystals.

    Science.gov (United States)

    Balankura, Tonnam; Qi, Xin; Zhou, Ya; Fichthorn, Kristen A

    2016-10-14

    In the shape-controlled synthesis of colloidal Ag nanocrystals, structure-directing agents, particularly polyvinylpyrrolidone (PVP), are known to be a key additive in making nanostructures with well-defined shapes. Although many Ag nanocrystals have been successfully synthesized using PVP, the mechanism by which PVP actuates shape control remains elusive. Here, we present a multi-scale theoretical framework for kinetic Wulff shape predictions that accounts for the chemical environment, which we used to probe the kinetic influence of the adsorbed PVP film. Within this framework, we use umbrella-sampling molecular dynamics simulations to calculate the potential of mean force and diffusion coefficient profiles of Ag atom deposition onto Ag(100) and Ag(111) in ethylene glycol solution with surface-adsorbed PVP. We use these profiles to calculate the mean-first passage times and implement extensive Brownian dynamics simulations, which allows the kinetic effects to be quantitatively evaluated. Our results show that PVP films can regulate the flux of Ag atoms to be greater towards Ag(111) than Ag(100). PVP's preferential binding towards Ag(100) over Ag(111) gives PVP its flux-regulating capabilities through the lower free-energy barrier of Ag atoms to cross the lower-density PVP film on Ag(111) and enhanced Ag trapping by the extended PVP film on Ag(111). Under kinetic control, {100}-faceted nanocrystals will be formed when the Ag flux is greater towards Ag(111). The predicted kinetic Wulff shapes are in agreement with the analogous experimental system.

  5. Facility Management's Role in Organizational Sustainability

    Science.gov (United States)

    Adams, Gregory K.

    2013-01-01

    Facility managers have questions about sustainability. How do an organization's physical facilities--its built environment--and the management of them, influence the sustainability of the organization or institution as a whole? How important is Facility Management (FM) to the overall sustainability profile of an organization? Facility managers…

  6. Facility Management's Role in Organizational Sustainability

    Science.gov (United States)

    Adams, Gregory K.

    2013-01-01

    Facility managers have questions about sustainability. How do an organization's physical facilities--its built environment--and the management of them, influence the sustainability of the organization or institution as a whole? How important is Facility Management (FM) to the overall sustainability profile of an organization? Facility managers…

  7. CH-53K Heavy Lift Replacement Helicopter (CH-53K)

    Science.gov (United States)

    2015-12-01

    Engineering Development Model ( EDM ) October 27, 2015 which commenced the CH-53K Systems Development and Demonstration Test Program. Currently two of...the four required test EDMs are in a test flight status. There are no significant software-related issues with this program at this time. CH-53K...cost variance is due to Test & Evaluation for Gearbox Engineering Support for Engineering Design Model ( EDM ) 1 First Flight and for Ground Test Vehicle

  8. Pressure dependence of NO formation in laminar fuel-rich premixed CH4/air flames

    NARCIS (Netherlands)

    van Essen, V. M.; Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    Effects of pressure on NO formation in CH4/air flames at a fixed equivalence ratio of 1.3 are investigated. The axial profiles of temperature, OH, CH, and NO mole fractions are measured using laser-induced fluorescence and compared with one-dimensional flame calculations. The measured and calculated

  9. Ag/AgBr/Co-Ni-NO3 layered double hydroxide nanocomposites with highly adsorptive and photocatalytic properties.

    Science.gov (United States)

    Fan, Hai; Zhu, Jianying; Sun, Jianchao; Zhang, Shenxiang; Ai, Shiyun

    2013-02-11

    A facile anion-exchange precipitation method was used to synthesize bifunctional Ag/AgBr/Co-Ni-NO(3) layered double hydroxide (LDH) nanocomposites by adding AgNO(3) solution to a suspension of Co-Ni-Br LDH. The Ag/AgBr nanoparticles were highly dispersed on the sheets of Co-Ni-NO(3) LDH. The prepared nanocomposites were used to adsorb and photocatalytically degrade organic pollutants from water. Without light illumination, the nanocomposites quickly adsorbed methyl orange, and the adsorptive capacity, which can reach 230 mg g(-1), is much higher than those of Co-Ni-Br LDH, Ag/AgBr, and activated carbon. The photocatalytic activities of the nanocomposites for the removal of dyes and phenol are higher than those of Co-Ni-Br LDH and Ag/AgBr. The proposed method can be applied to prepare other LDH/silver salt composites. The high absorptive capacity and good photocatalytic activity of such nanostructures could have wide applications in wastewater treatment.

  10. Microlandscaping on a graphene oxide film via localized decoration of Ag nanoparticles.

    Science.gov (United States)

    Teoh, Hao Fatt; Dzung, Pham; Lim, Wan Qi; Chua, Jun Hui; Lee, Kian Keat; Hu, Zhibin; Tan, Huiru; Tok, Eng Soon; Sow, Chorng Haur

    2014-03-21

    A direct and facile method for micro-landscaping of Ag nanoparticles on reduced graphene oxide (rGO) is presented. This method employs a focused laser beam to achieve local reduction of Ag(+) ions to Ag NPs by laser irradiation on a GO film that is submerged in AgNO3 solution. Using this method, the Ag nanoparticles can be directly anchored on a rGO film, creating a microlandscape of Ag nanoparticles on the rGO film. In addition, varying the intensity of the laser beam can control the shapes, sizes and distributions of Ag nanoparticles. The resulting hybrid materials exhibit surface enhanced Raman scattering of up to 16 times depending on the size and number density of silver nanoparticles. In addition, the hybrid Ag-rGO material shows superior photoresponse when compared to rGO.

  11. Study of Ag and PE interface after plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mackova, A.; Malinsky, P. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Bocan, J. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Rez (Czech Republic); Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 11519 Praha 1 (Czech Republic); Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Pavlik, J.; Stryhal, Z. [Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Sajdl, P. [Department of Inorganic Chemistry, Institute of Chemical Technology, Technicka 5,166 28 Prague (Czech Republic)

    2008-07-01

    In this study, the effect of simultaneous plasma treatment and thermal annealing on the diffusion of Ag in low and high-density polyethylene (LDPE and HDPE) and on intermixing at the metal/polymer interface is examined. Metal layers were deposited onto 50 {mu}m thick LDPE and HDPE foils using diode sputtering. Concentration profiles of Ag were determined by Rutherford backscattering spectrometry (RBS). Ag diffusion coefficients in LDPE and HDPE were extracted from measured Ag depth profiles. Diffusion coefficients 5.05 x 10{sup -14}-6.78 x 10{sup -14} cm{sup 2}.s{sup -1} and 2.44 x 10{sup -14}-4.66 x 10{sup -14} cm{sup 2}.s{sup -1} were found for Ag in HDPE and Ag in LDPE, respectively. Morphology changes after the plasma treatment were determined using atomic force microscopy (AFM) and from RBS measurements as well. Surface fraction of Ag and plasma induced surface chemistry modification was investigated using XPS analysis. The signal of Ag bonded on polymer structure was identified and degradation of polymer substrate was observed in XPS spectra. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. AGS experiments: 1993 - 1994 - 1995

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  13. Detection of interstellar $CH_{3}$

    CERN Document Server

    Feuchtgruber, H; Van Dishoeck, E F; Wright, C M

    2000-01-01

    Observations with the Short Wavelength Spectrometer (SWS) onboard the {\\it Infrared Space Observatory} (ISO) have led to the first detection of the methyl radical ${\\rm CH_3}$ in the interstellar medium. The $\

  14. Study of boron implantation in Ag-Si layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Pelikan, L. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Elektrotechnicka); Rybka, V.; Krejci, P. (Tesla, Prague (Czechoslovakia). Vyzkumny Ustav pro Sdelovaci Techniku); Hnatowicz, V.; Kvitek, J. (Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia))

    1982-07-16

    The implanted boron depth profiles in samples comprising Si wafers covered with Ag films of various thicknesses are determined experimentally as well as by Monte-Carlo simulation. A complex shape of depth profiles is revealed, which is well reproduced by the calculation.

  15. Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants.

    Science.gov (United States)

    Pirhashemi, Mahsa; Habibi-Yangjeh, Aziz

    2017-04-01

    In this work, plasmonic ternary ZnO/Ag/Ag2WO4 nanocomposites as efficient visible-light-driven photocatalysts prepared by a facile ultrasonic-irradiation method. The as-prepared samples were characterized by XRD, SEM, TEM, EDX, XPS, UV-vis DRS, FT-IR, and PL techniques. The photocatalytic performance of the prepared ZnO/Ag/Ag2WO4 nanocomposites were evaluated by photodegradations of rhodamine B, methylene blue, methyl orange, and fuchsine under visible-light irradiation. The optimal nanocomposite with 15wt% of Ag/Ag2WO4 to ZnO showed the highest photocatalytic activity for RhB degradation, which is about 95 and 19 times higher than those of the Ag/Ag2WO4 and ZnO samples, respectively. The highly enhanced activity of the ZnO/Ag/Ag2WO4 (15%) nanocomposite was attributed to the surface plasmon resonance effect of metallic silver and the formation of heterojunctions between the counterparts, which effectively suppresses recombination of the photogenerated charge carriers. Lastly, the plasmon-enhanced photocatalytic mechanism associated with the ZnO/Ag/Ag2WO4 nanocomposites was discussed.

  16. Template-free synthesis of cube-like Ag/AgCl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts.

    Science.gov (United States)

    Zhu, Mingshan; Chen, Penglei; Ma, Wanhong; Lei, Bin; Liu, Minghua

    2012-11-01

    In this paper, we report that cube-like Ag/AgCl nanostructures could be facilely fabricated in a one-pot manner through a direct-precipitation protocol under ambient conditions, wherein no additional issues such as external energy (e.g., high temperature or high pressure), surfactants, or reducing agents are required. In terms of using sodium chloride (NaCl) as chlorine source and silver acetate (CH₃COOAg) as silver source, it is disclosed that simply by adding an aqueous solution of NaCl into an aqueous solution of CH₃COOAg, Ag/AgCl nanostructures with a cube-like geometry, could be successfully formulated. We show that thus-formulated cube-like Ag/AgCl nanospecies could be used as high-performance yet durable visible-light-driven or sunlight-driven plasmonic photocatalysts for the photodegradation of methyl orange (MO) and 4-chlorophenol (4-CP) pollutants. Compared with the commercially available P25-TiO₂, and the Ag/AgCl nanospheres previously fabricated via a surfactant-assisted method, our current cube-like Ag/AgCl nanostructures could exhibit much higher photocatalytic performance. Our template free protocol might open up new and varied opportunities for an easy synthesis of cube-like Ag/AgCl-based high-performance sunlight-driven plasmonic photocatalysts for organic pollutant elimination.

  17. The Unique Gas-Phase Chemistry of the [AuO](+) /CH4 Couple: Selective Oxygen-Atom Transfer to, Rather than Hydrogen-Atom Abstraction from, Methane.

    Science.gov (United States)

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-08-26

    The thermal reaction of [AuO](+) with methane has been explored using FT-ICR mass spectrometry complemented by high-level quantum chemical calculations. In contrast to the previously studied congener [CuO](+) , and to [AgO](+) , [AuO](+) reacts with CH4 exclusively via oxygen-atom transfer to form CH3 OH, and a novel mechanistic scenario for this selective oxidation process has been revealed. Also, the origin of the inertness of the [AgO](+) /CH4 couple has been addressed computationally.

  18. Etude spectroscopique de derives mercuriques d'amides thiols. Partie IV. Spectres de vibration et structure des complexes CH 3NHCOCH 2 - SHgCH 3, CH 3NHCOCH 2CH 2SHgCH 3 et CH 3CONHCH 2CH 2SHgCH 3

    Science.gov (United States)

    Perchard, C.; Baron, M. H.; De Lozé, C.

    1982-04-01

    The vibrational spectra of CH 3NHCOCH 2SHgCH 3, CH 3NHCOCH 2CH 2SHgCH 3 and CH 3CONHCH 2CH 2SHgCH 3 have been analyzed. Mercury in the methylmercury group is covalently bonded to one sulphur atom. A preliminary study of CH 3NHCOCH 2CH 2SHgCH 3 by X-ray diffraction revealed a five-atom ring with weak intramolecular bonding Hg·O. In CH 3NHCOCH 2CH 2SHgCH 3, Hg·O or Hg· Nbonding leads to an internal chelate with six atoms. These rings also exist in solution in acetonitrile and D 2O. In the third complex, the existence of such chelates is doubtful.

  19. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  20. The role of reduction extent of graphene oxide in the photocatalytic performance of Ag/AgX (X = Cl, Br)/rGO composites and the pseudo-second-order kinetics reaction nature of the Ag/AgBr system.

    Science.gov (United States)

    Gao, Weiyin; Ran, Chenxin; Wang, Minqiang; Li, Le; Sun, Zhongwang; Yao, Xi

    2016-07-21

    Although reduced graphene oxide (rGO)-based photocatalyst composites have been intensively developed during the past few years, the influence of reduction extent of rGO on the photocatalytic performance of the rGO-based composite has virtually not been investigated due to some technical limitations, such as the poor water dispersibility of rGO and low reduction selectivity of the hydrothermal method, which make it difficult to control the reduction extent of rGO in these composites. Herein, we used a facile room-temperature method to synthesize Ag/AgX (X = Cl, Br)/rGO photocatalyst composites as a model to study the effect of reduction extent of rGO on the photocatalytic performance of the photocatalyst. It was found that the photocatalytic activities of both Ag/AgCl/PrGO and Ag/AgBr/PrGO systems had an optimized threshold of the reduction extent of photoreduced GO (PrGO). More importantly, due to the different conductive band values of AgCl and AgBr, the optimized thresholds in the two systems were at different PrGO reduction extents, based on which we proposed that the favorable energy band matching between AgX and PrGO in the two systems played a crucial role in obtaining high photocatalysis performance. Besides, the photocatalytic reaction of the Ag/AgBr based system was confirmed to be a pseudo-second-order kinetics reaction rather than pseudo-first-order kinetics reaction. The new insights presented in this work provided useful information on the design and development of a more sophisticated photocatalyst, and can also be applied to many other applications.

  1. Facility Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  2. Time-course profiling of molecular stress responses to silver nanoparticles in the earthworm Eisenia fetida

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Heckmann, Lars-Henrik; Simonsen, Vibeke

    2013-01-01

    The molecular mechanism of silver nanoparticle (AgNP) toxicity, particularly its temporal aspect, is currently limited in the literature. This study seeks to identify and profile changes in molecular response patterns over time during soil exposure of the earthworm Eisenia fetida to AgNPs (82±27 nm......) with reference to dissolved silver salt (AgNO3). Principal component analysis of selected gene and enzyme response profiles revealed dissimilar patterns between AgNO3 and AgNP treatments and also over time. Despite the observed difference in molecular profiles, the body burdens of total Ag were within the same...

  3. Discrete and Polymeric, Mono- and Dinuclear Silver Complexes of a Macrocyclic Tetraoxime Ligand with AgI–AgI Interactions

    Directory of Open Access Journals (Sweden)

    Mitsuhiko Shionoya

    2013-05-01

    Full Text Available Macrocyclic compounds that can bind cationic species efficiently and selectively with their cyclic cavities have great potential as excellent chemosensors for metal ions. Recently, we have developed a tetraoxime-type tetraazamacrocyclic ligand 1 formed through a facile one-pot cyclization reaction. Aiming to explore and bring out the potential of the tetraoxime macrocycle 1 as a chelating sensor, we report herein the preparation of several kinds of silver complexes of 1 and their unique coordination structures determined by single-crystal X-ray diffraction analyses. As a result, the formation of two kinds of discrete structures, monomeric complexes [Ag(1X] (X = counter anions and a dimeric complex [Ag2(12]X2, and two kinds of polymeric structures from a mononuclear complex, [Ag(1]nXn, and from a dinuclear complex, [Ag2(1X2]n, was demonstrated. In the resulting complexes, the structurally flexible macrocyclic ligand 1 was found to provide several different coordination modes. Notably, in some silver complexes of 1, AgI–AgI interactions were observed with different AgI–AgI distances which depend on the kind of counter anions and the chemical composition.

  4. Study of diffusion of Ag in Cu single crystals

    CERN Document Server

    Wang, R

    2002-01-01

    4.0 MeV sup 7 Li sup + sup + RBS and AES were used for investigations of thermal diffusion of Ag in Cu single crystals. The annealing of samples was carried out in vacuum in the temperature range from 498 to 613 K. The element depth concentration profiles transformed from RBS spectra indicate that the diffusion of Ag into Cu is a typical volume diffusion. The Arrhenius parameters corresponding to the diffusion were obtained.

  5. CH2 - Lighting and Physiology

    Directory of Open Access Journals (Sweden)

    Sergio Altomonte

    2012-11-01

    Full Text Available This paper explains the designed performances of the new CH2 building in Melbourne, Australia. CH2 is an environmentally significant project that involves biomimicry of natural systems to produce indoor conditions that are conducive to user comfort, health and productivity. This paper focuses on lighting and physiology and examines the solutions chosen for artificial and natural lighting and the likely effects these will have on building occupants. The purpose of the paper is to critically comment on the adopted strategy and, cognisance of contemporary thinking in lighting design, to judge the effectiveness of this aspect of the project with a view to later verification and post-occupancy review. The paper concludes that CH2 is an exemplar of lighting innovation that provides valuable lessons to designers of office buildings, particularly in the Melbourne CSD.

  6. CH2 - Lighting and Physiology

    Directory of Open Access Journals (Sweden)

    Sergio Altomonte

    2012-11-01

    Full Text Available This paper explains the designed performances of the new CH2 building in Melbourne, Australia. CH2 is an environmentally significant project that involves biomimicry of natural systems to produce indoor conditions that are conducive to user comfort, health and productivity. This paper focuses on lighting and physiology and examines the solutions chosen for artificial and natural lighting and the likely effects these will have on building occupants. The purpose of the paper is to critically comment on the adopted strategy and, cognisance of contemporary thinking in lighting design, to judge the effectiveness of this aspect of the project with a view to later verification and post-occupancy review. The paper concludes that CH2 is an exemplar of lighting innovation that provides valuable lessons to designers of office buildings, particularly in the Melbourne CSD.

  7. Detection of circumstellar CH2CHCN, CH2CN, CH3CCH and H2CS

    CERN Document Server

    Agundez, M; Cernicharo, J; Pardo, J R; Guélin, M

    2007-01-01

    We report on the detection of vinyl cyanide (CH2CHCN), cyanomethyl radical (CH2CN), methylacetylene (CH3CCH) and thioformaldehyde (H2CS) in the C-rich star IRC +10216. These species, which are all known to exist in dark clouds, are detected for the first time in the circumstellar envelope around an AGB star. The four molecules have been detected trough pure rotational transitions in the course of a 3 mm line survey carried out with the IRAM 30-m telescope. The molecular column densities are derived by constructing rotational temperature diagrams. A detailed chemical model of the circumstellar envelope is used to analyze the formation of these molecular species. We have found column densities in the range 5 x 10^(12)- 2 x 10^(13) cm^(-2), which translates to abundances relative to H2 of several 10^(-9). The chemical model is reasonably successful in explaining the derived abundances through gas phase synthesis in the cold outer envelope. We also find that some of these molecules, CH2CHCN and CH2CN, are most pr...

  8. Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid PVD–PECVD deposition process

    Indian Academy of Sciences (India)

    Majji Venkatesh; Sukru Taktak; Efstathios I Meletis

    2014-12-01

    Silver-doped hydrogenated amorphous carbon (Ag-DLC) films were deposited on Si substrates using a hybrid plasma vapour deposition–plasma enhanced chemical vapour deposition (PVD–PECVD) process combining Ag target magnetron sputtering and PECVD in an Ar–CH4 plasma. Processing parameters (working pressure, CH4/Ar ratio and magnetron current) were varied to obtain good deposition rate and a wide variety of Ag films. Structure and bonding environment of the films were obtained from transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy studies. Variation of processing parameters was found to produce Ag-doped amorphous carbon or diamond-like carbon (DLC) films with a range of characteristics with CH4/Ar ratio exercising a dominant effect. It was pointed out that Ag concentration and deposition rate of the film increased with the increase in d.c. magnetron current. At higher Ar concentration in plasma, Ag content increased whereas deposition rate of the film decreased. FTIR study showed that the films contained a significant amount of hydrogen and, as a result of an increase in the Ag content in the hydrogenated DLC film, $sp^{2}$ bond content also increased. The TEM cross sectional studies revealed that crystalline Ag particles were formed with a size in the range of 2–4 nm throughout an amorphous DLC matrix.

  9. Efficient removal of radioactive iodide ions from water by three-dimensional Ag{sub 2}O–Ag/TiO{sub 2} composites under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuaishuai; Wang, Na; Zhang, Yuchang; Li, Yaru [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Han, Zhuo [CECEP Environmental Protection Investment Development Co., Ltd., Jiangxi 3300969 (China); Na, Ping, E-mail: naping@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin Co-Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China)

    2015-03-02

    Highlights: • 3D Ag{sub 2}O–Ag/TiO{sub 2} composites have been synthesized through a facile method. • 3D Ag{sub 2}O–Ag/TiO{sub 2} composites exhibit large photocatalytic adsorption capacity, high selectivity, and excellent trace removal performance of I{sup −} under visible light. • 3D Ag{sub 2}O–Ag/TiO{sub 2} composites could be easily separated and regenerated. • The adsorption capacity of Ag{sub 2}O for I{sup −} is enlarged 4.4 times by the photooxidation of Ag/TiO{sub 2}. • The cooperative effects mechanism between Ag{sub 2}O and Ag/TiO{sub 2} is proposed and verified. - Abstract: Three-dimensional Ag{sub 2}O and Ag co-loaded TiO{sub 2} (3D Ag{sub 2}O–Ag/TiO{sub 2}) composites have been synthesized through a facile method, characterized using SEM, EDX, TEM, XRD, XPS, UV–vis DRS, BET techniques, and applied to remove radioactive iodide ions (I{sup −}). The photocatalytic adsorption capacity (207.6 mg/g) of the 3D Ag{sub 2}O–Ag/TiO{sub 2} spheres under visible light is four times higher than that in the dark, which is barely affected by other ions, even in simulated salt lake water where the concentration of Cl{sup −} is up to 590 times that of I{sup −}. The capability of the composites to remove even trace amounts of I{sup −} from different types of water, e.g., deionized or salt lake water, is demonstrated. The composites also feature good reusability, as they were separated after photocatalytic adsorption and still performed well after a simple regeneration. Furthermore, a mechanism explaining the highly efficient removal of radioactive I{sup −} has been proposed according to characterization analyses of the composites after adsorption and subsequently been verified by adsorption and desorption experiments. The proposed cooperative effects mechanism considers the interplay of three different phenomena, namely, the adsorption performance of Ag{sub 2}O for I{sup −}, the photocatalytic ability of Ag/TiO{sub 2} for oxidation

  10. Canonical discrimination of the effect of a new broiler production facility on soil chemical profiles as related to current management practices.

    Directory of Open Access Journals (Sweden)

    Cynthia L Sheffield

    Full Text Available The effect dirt-floored broiler houses have on the underlying native soil, and the potential for contamination of the ground water by leaching under the foundation, is an understudied area. This study examines alterations in fifteen quantitative soil parameters (Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, Na, NO3, organic matter, P, pH, S, soil moisture and Zn in the underlayment of a newly constructed dirt-floored broiler house over the first two years of production (Native through Flock 11. The experiment was conducted near NW Robertson County, Texas, where the native soil is a fine, smectitic thermic Udertic Paleustalfs and the slopes range from zero to three percent. Multiple samples were collected from under each of three water and three feed lines the length of the house, in a longitudinal study during February 2008 through August 2010. To better define the relationship between the soil parameters and sampling times, a canonical discriminant analysis approach was used. The soil profiles assembled into five distinctive clusters corresponding to time and management practices. Results of this work revealed that the majority of parameters increased over time. The management practices of partial and total house clean-outs markedly altered soil profiles the house underlayment, thus reducing the risk of infiltration into the ground water near the farm. This is important as most broiler farms consist of several houses within a small area, so the cumulative ecological impact could be substantial if not properly managed.

  11. Canonical discrimination of the effect of a new broiler production facility on soil chemical profiles as related to current management practices.

    Science.gov (United States)

    Sheffield, Cynthia L; Crippen, Tawni L; Byrd, J Allen; Beier, Ross C; Yeater, Kathleen

    2015-01-01

    The effect dirt-floored broiler houses have on the underlying native soil, and the potential for contamination of the ground water by leaching under the foundation, is an understudied area. This study examines alterations in fifteen quantitative soil parameters (Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, Na, NO3, organic matter, P, pH, S, soil moisture and Zn) in the underlayment of a newly constructed dirt-floored broiler house over the first two years of production (Native through Flock 11). The experiment was conducted near NW Robertson County, Texas, where the native soil is a fine, smectitic thermic Udertic Paleustalfs and the slopes range from zero to three percent. Multiple samples were collected from under each of three water and three feed lines the length of the house, in a longitudinal study during February 2008 through August 2010. To better define the relationship between the soil parameters and sampling times, a canonical discriminant analysis approach was used. The soil profiles assembled into five distinctive clusters corresponding to time and management practices. Results of this work revealed that the majority of parameters increased over time. The management practices of partial and total house clean-outs markedly altered soil profiles the house underlayment, thus reducing the risk of infiltration into the ground water near the farm. This is important as most broiler farms consist of several houses within a small area, so the cumulative ecological impact could be substantial if not properly managed.

  12. Theoretical Study of CH3CH=CH2+O(1D) Reaction:Mechanism and Kinetics

    Institute of Scientific and Technical Information of China (English)

    WU Nai-nan; LIU Hong-xia; DUAN Xue-mei; LIU Jing-yao

    2012-01-01

    The mechanism and kinetics for the reaction of propene(CH3CH=CH2) molecule with O(1D) atom were investigated theoretically.The electronic structure information of the potential energy surface(PES) was obtained at the B3LYP/6-31 l+G(d,p) level,and the single-point energies were refined by the multi-level MCG3-MPWB method.The calculated results show that O(1D) atom can attack CH3CH=CH2 via the barrierless insertion mechanism to form four energy-riched intermediates CH3C(OH)CH2(IM1),CH3CHCHOH(IM2),CH2OHCHCH2(IM3)and cycloCH2OCHCH3(IM4),respectively,on the singlet PES.The branching ratios as well as the pressure- and temperaturedependence of various product channels for this multi-well reaction were predicted by variational transition-state and Rice-Ramsperger-Kassel-Marcus(RRKM) theories.The present results will be useful to gain a deep insight into the reaction mechanism and kinetics of CH3CH=CH2+O(1D) reaction.

  13. Study on Synthesis and Antibacterial Properties of Ag NPs/GO Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2016-01-01

    Full Text Available Using graphene oxide as substrate and stabilizer for the silver nanoparticles, silver nanoparticles-graphene oxide (Ag NPs/GO composites with different Ag loading were synthesized through a facile solution-phase method. During the synthesis process, AgNO3 on GO matrix was directly reduced by NaBH4. The structure characterization was studied through X-ray diffraction (XRD, atomic force microscopy (AFM, high-resolution transmission electron microscope (HRTEM, ultraviolet-visible spectroscopy (UV-Vis, and selected area electron diffraction (SAED. The results show that Ag nanoparticles (Ag NPs with the sizes ranging from 5 to 20 nm are highly dispersed on the surfaces of GO sheets. The shape and size of the Ag NPs are decided by the volume of initial AgNO3 solution added in the GO. The antibacterial activities of Ag NPs/GO nanocomposites were investigated and the result shows that all the produced composites exhibit good antibacterial activities against Gram-negative (G− bacterial strain Escherichia coli (E. coli and Gram-positive (G+ strain Staphylococcus aureus (S. aureus. Moreover, the antibacterial activities of Ag NPs/GO nanocomposites gradually increased with the increasing of volume of initial AgNO3 solution added in the GO and this improvement of the antibacterial activities results from the combined action of size effect and concentration effect of Ag NPs in Ag NPs/GO nanocomposites.

  14. Synthesis and characterization of Ag nanoparticles decorated mesoporous sintered activated carbon with antibacterial and adsorptive properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxia; Xiao, Kaijun, E-mail: fekjxiao@scut.edu.cn; He, Tinglin; Zhu, Liang, E-mail: zhuliang@scut.edu.cn

    2015-10-25

    In this study, the sliver nanoparticles (AgNPs) immobilized on the sintered activated carbon (Ag/SAC) were synthesized by the ultrasonic-assisted impregnation method and were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption. SEM showed that the AgNPs were well embedded in the SAC and immersion time had an important influence on final morphologies of AgNPs. Longer immersing duration caused significant aggregation of the AgNPs. The XRD data revealed that the successful synthesis of AgNPs on the SAC and immobilizing AgNPs on sintered active carbon did not change the crystalline degree of SAC. Texture characteristics were determined by analysis of the N{sub 2}/77 K isotherms. The minimum inhibitory concentration (MIC) of Ag/SAC against Escherichia coli (DH5α) and Staphyloccocus aureus (ATCC 29213) was evaluated by a broth dilution method. MICs such as 5 mg/L (against E. coli) and 10 mg/L (against S. aureus) suggest that Ag/SAC have predominant antibacterial activity compared to active carbon. - Highlights: • Sintered active carbon (SAC) was coated with Ag via a facile approach. • The Ag/SAC exhibit good adsorption properties and excellent antibacterial effects. • The Ag/SAC was durable and stable in the application of water purification.

  15. Synthesis and Characterization of (CH3CH2CH2CH2NH3)2SnBr6

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhang-Jing; GUO Guo-Cong; CAI Li-Zhen; ZHOU Guo-Wei; LIU Bing; CHEN Wen-Tong; WU A-Qing; FU Ming-Lai; HUANG Jin-Shun

    2005-01-01

    The title compound ((CH3CH2CH2CH2NH3)2SnBr6, Mr = 746.44) has been synthesized by hydrothermal technique and its crystal structure was determined by X-ray diffraction method. It crystallizes in monoclinic, space group P21/m with a = 10.633(2), b = 7.6152(15), c = 12.633(3) (A), β = 103.25(3)°, V = 995.7(4) (A)3, Z = 2, Dc = 2.490 g/cm3, F(000) = 692, μ(MoKα) = 13.309 mm-1 and T = 293(2) K. The final R = 0.0634 and wR = 0.1236 for 936 observed reflections with I > 2((I). Each tin atom in the present compound is coordinated by six bromine atoms to adopt a slightly distorted octahedral geometry. The interactions between protonated organic amine and [SnBr6]4- anions are electrostatic. The thermogravimetric analysis shows that the compound is not decomposed until 260 ℃. The optical absorption spectrum of the compound reveals the appearance of a sharp optical gap of 2.95 eV, and fluorescence study shows it displays intense blue emission in solid state.

  16. Peak Discharge, Flood Profile, Flood Inundation, and Debris Movement Accompanying the Failure of the Upper Reservoir at the Taum Sauk Pump Storage Facility near Lesterville, Missouri

    Science.gov (United States)

    Rydlund, Jr., Paul H.

    2006-01-01

    The Taum Sauk pump-storage hydroelectric power plant located in Reynolds County, Missouri, uses turbines that operate as pumps and hydraulic head generated by discharging water from an upper to a lower reservoir to produce electricity. A 55-acre upper reservoir with a 1.5- billion gallon capacity was built on top of Proffit Mountain, approximately 760 feet above the floodplain of the East Fork Black River. At approximately 5:16 am on December 14, 2005, a 680-foot wide section of the upper reservoir embankment failed suddenly, sending water rushing down the western side of Proffit Mountain and emptying into the floodplain of East Fork Black River. Flood waters from the upper reservoir flowed downstream through Johnson's Shut-Ins State Park and into the lower reservoir of the East Fork Black River. Floods such as this present unique challenges and opportunities to analyze and document peak-flow characteristics, flood profiles, inundation extents, and debris movement. On December 16, 2005, Light Detection and Ranging (LiDAR) data were collected and used to support hydraulic analyses, forensic failure analyses, damage extent, and mitigation of future disasters. To evaluate the impact of sedimentation in the lower reservoir, a bathymetric survey conducted on December 22 and 23, 2005, was compared to a previous bathymetric survey conducted in April, 2005. Survey results indicated the maximum reservoir capacity difference of 147 acre-feet existed at a pool elevation of 730 feet. Peak discharge estimates of 289,000 cubic feet per second along Proffit Mountain and 95,000 cubic feet per second along the East Fork Black River were determined through indirect measurement techniques. The magnitude of the embankment failure flood along the East Fork Black River was approximately 4 times greater than the 100-year flood frequency estimate of 21,900 cubic feet per second, and approximately 3 times greater than the 500-year flood frequency estimate of 30,500 cubic feet per second

  17. Modification of polyamide-CdS-CdSe composite material films with Ag using a cation–cation exchange reaction

    Energy Technology Data Exchange (ETDEWEB)

    Krylova, V.; Žalenkienė, S.; Dukstienė, N. [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu st. 19, LT-50254, Kaunas (Lithuania); Baltrusaitis, J., E-mail: job314@lehigh.edu [Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States)

    2015-10-01

    Highlights: • We investigated deposition of a mixed CdSe-CdS-Ag{sub 2}Se-Ag{sub 2}S on polyamide. • A single chalcogen precursor – K{sub 2}SeS{sub 2}O{sub 6} – was used. • AAS showed five- to ten-fold excess of chalcogens diffused into PA. • Addition of AgNO{sub 3} resulted in subsurface Ag{sub 2}Se–Ag{sub 2}S formation. - Abstract: Thin mixed CdSe-CdS-Ag{sub 2}Se-Ag{sub 2}S films were deposited on a polyamide 6 (PA) surface by successfully using a cation-exchange reaction between Cd{sup 2+} and Ag{sup +} to convert CdSe-CdS into Ag{sub 2}Se-Ag{sub 2}S. These were deposited using a K{sub 2}SeS{sub 2}O{sub 6} precursor solution at 60 °C followed by cadmium acetate (Cd(CH{sub 3}COO){sub 2}). An aqueous AgNO{sub 3} solution was used as the Ag source. XRD patterns showed a complex PA-Cd-S-Se-Ag film crystalline composition with CdS, CdSe, Ag{sub 2}S and Ag{sub 2}Se peaks. Calculated dislocation density ranged within 5–15 × 10{sup 13} lines·m{sup −2} indicating high quality atomic layers. Atomic Absorption Spectroscopy (AAS) showed five- to ten-fold excess of chalcogens to metals in the thin films formed. No chalcogenides were observed on the sample surface during XPS analysis after Ag exchange due to the desorption of CdS and CdSe layers, not diffused into the bulk of the polymer suggesting that silver chalcogenides were located subsurface, as opposed to the outermost layer, likely comprised of Ag{sub 2}O.

  18. Prevalence of enterobacteriaceae in Tupinambis merianae (Squamata: Teiidae from a captive facility in Central Brazil, with a profile of antimicrobial drug resistance in Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Andréa de Moraes Carvalho

    2013-06-01

    Full Text Available The present study reports the presence of enterobacteriaceae in Tegu Lizards (Tupinambis merianaefrom a captive facility in central Brazil. From a total of 30 animals, 10 juveniles and 20 adults (10 males, 10 females, 60 samples were collected, in two periods separated by 15 days. The samples were cultivated in Xylose-lysine-deoxycholate agar (XLT4 and MacConkey agar. The Salmonella enterica were tested for antimicrobial susceptibility. A total of 78 bacteria was isolated, of wich 27 were from juveniles of T. merianae, 30 from adult males and 21 from adult females. Salmonella enterica was the most frequent bacteria followed by Citrobacter freundii, Escherichia coli, Enterobacter sakasakii, Kluivera sp., Citrobacter amalonaticus, Serratia marcescens, Citrobacter diversus, Yersinia frederiksenii, Serratia odorifera, and Serratia liquefaciens. Salmonella enterica subsp. diarizonae and houtenae showed resistance to cotrimoxazole, and serum Salmonella enterica Worthington showed resistance to tetracycline and gentamicin. Salmonella enterica Panama and S. enterica subsp. diarizonae showed intermediate sensitivity to cotrimoxazole. In addition to Enterobacteriaceae in the Tegu lizard, pathogenic serotypes of S. enterica also occur, and their antimicrobial resistance was confirmed.

  19. Using phenotype microarrays in the assessment of the antibiotic susceptibility profile of bacteria isolated from wastewater in on-site treatment facilities.

    Science.gov (United States)

    Jałowiecki, Łukasz; Chojniak, Joanna; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna

    2017-04-27

    The scope of the study was to apply Phenotype Biolog MicroArray (PM) technology to test the antibiotic sensitivity of the bacterial strains isolated from on-site wastewater treatment facilities. In the first step of the study, the percentage values of resistant bacteria from total heterotrophic bacteria growing on solid media supplemented with various antibiotics were determined. In the untreated wastewater, the average shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria were 53, 56, and 42%, respectively. Meanwhile, the shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria in the treated wastewater were 39, 33, and 29%, respectively. To evaluate the antibiotic susceptibility of the bacteria present in the wastewater, using the phenotype microarrays (PMs), the most common isolates from the treated wastewater were chosen: Serratia marcescens ss marcescens, Pseudomonas fluorescens, Stenotrophomonas maltophilia, Stenotrophomonas rhizophila, Microbacterium flavescens, Alcaligenes faecalis ss faecalis, Flavobacterium hydatis, Variovorax paradoxus, Acinetobacter johnsonii, and Aeromonas bestiarum. The strains were classified as multi-antibiotic-resistant bacteria. Most of them were resistant to more than 30 antibiotics from various chemical classes. Phenotype microarrays could be successfully used as an additional tool for evaluation of the multi-antibiotic resistance of environmental bacteria and in preliminary determination of the range of inhibition concentration.

  20. Immunization with HBsAg-Fc fusion protein induces a predominant production of Th1 cytokines and reduces HBsAg level in transgenic mice

    Institute of Scientific and Technical Information of China (English)

    MENG Zhe-feng; WANG Hua-jing; YAO Xin; WANG Xuan-yi; WEN Yu-mei; DAI Jian-xin; XIE You-hua; XU Jian-qing

    2012-01-01

    Background The Fc receptor associated pathway might improve the immune responses against hepatitis B virus (HBV) as previously described by us.In addition,the Flt3 ligand (FL) has been reported to potentiate antigen presenting cells in vivo and may act as a potential adjuvant to boost antigen-specific immune responses.In this study,the immune efficacies of a set of fusion proteins of HBsAg and Fc and/or FL were evaluated in HBsAg transgenic mice.Methods The fusion proteins composed of HBsAg and the Fc domain of murine IgG1 (HBsAg-Fc) and/or the Flt3 ligand,and yeast-derived recombinant HBsAg were used as immunogen to immunize HBsAg transgenic mice,respectively.Serum and liver HBsAg levels,serum anti-HBsAg and cytokine profile,and the activities of alanine aminotransferase (ALT)/AST were investigated after immunization.Results After six injections,the most pronounced decrease in serum and liver HBsAg levels was observed in the HBsAg-Fc immunized group.In addition,serum Th1 cytokines and ALT/AST activities were highest in this group,indicating an effective induction of a favorable cellular immune response.Interestingly,the fusion protein containing HBsAg-Fc and the Flt3 ligand stimulated an alternative Th1-type immune response featured with high level productions of tumor necrosis factor α (TNF- α) and monocyte chemoabstractant protein 1 (MCP-1),causing a more severe cytotoxicity in hepatocytes while showed less effective in reducing serum HBsAg level.Conclusion HBsAg-Fc is effective in eliciting both the humoral and cellular immune responses against HBsAg in HBsAg transgenic mice,which makes it a potential immunogen for the immunotherapy of chronic hepatitis B.

  1. Thermodynamic and hydrochemical controls on CH4 in a coal seam gas and overlying alluvial aquifer: new insights into CH4 origins

    Science.gov (United States)

    Owen, D. Des. R.; Shouakar-Stash, O.; Morgenstern, U.; Aravena, R.

    2016-08-01

    Using a comprehensive data set (dissolved CH4, δ13C-CH4, δ2H-CH4, δ13C-DIC, δ37Cl, δ2H-H2O, δ18O-H2O, Na, K, Ca, Mg, HCO3, Cl, Br, SO4, NO3 and DO), in combination with a novel application of isometric log ratios, this study describes hydrochemical and thermodynamic controls on dissolved CH4 from a coal seam gas reservoir and an alluvial aquifer in the Condamine catchment, eastern Surat/north-western Clarence-Moreton basins, Australia. δ13C-CH4 data in the gas reservoir (-58‰ to -49‰) and shallow coal measures underlying the alluvium (-80‰ to -65‰) are distinct. CO2 reduction is the dominant methanogenic pathway in all aquifers, and it is controlled by SO4 concentrations and competition for reactants such as H2. At isolated, brackish sites in the shallow coal measures and alluvium, highly depleted δ2H-CH4 (gas reservoir (200-500 m) to the shallow coal measures (<200 m) or the alluvium was not observed. The study demonstrates the importance of understanding CH4 at different depth profiles within and between aquifers. Further research, including culturing studies of microbial consortia, will improve our understanding of the occurrence of CH4 within and between aquifers in these basins.

  2. Durch intrinsische defekte induzierte uphill-diffusion von Ag und Cu in CdTe

    CERN Document Server

    Wagner, Frank

    In the framework of the present thesis, the diffusion of Ag in CdTe was investigated by the radiotracer $^{111}$Ag. Thereby the focus was on the possibility to create a Ag flux from regions of low Ag concentration to regions of high Ag concentration (uphill diffusion). The experimentally observed diffusion profiles are explained in the framework of a thermodynamic diffusion model, taking into account the defect charge state and the defect interaction. The distribution of the charged defects produces a electric field, which leads to a drift of the charged defects. The experimental data are well explained assuming that Ag is incorporated interstitially and ionized (Agi$^{+}$). The Agi$^{+}$ concentration then reflects the profile of the Fermi level, which again is determined by the intrinsic defect distribution or, more precisely, the deviation from stoichiometry. On the basis of the experimental data it is possible to gather information on the thermodynamic properties of extrinsic as well as intrinsic defects....

  3. CH-47F Improved Cargo Helicopter (CH-47F)

    Science.gov (United States)

    2013-12-01

    Authority/Budget Activity BY - Base Year DAMIR - Defense Acquisition Management Information Retrieval Dev Est - Development Estimate DoD - Department of...SEP 1999 LRIP (#1) Contract Award DEC 2002 DEC 2002 JUN 2003 DEC 2002 LRIP (#2) Contract Award DEC 2003 DEC 2003 JUN 2004 DEC 2003 IOT &E Start MAR...NOV 2007 JUL 2007 Change Explanations None Memo CH-47F December 2013 SAR April 16, 2014 16:29:40 UNCLASSIFIED 8 IOT &E is a single effort

  4. Performance testing of a prototype Pd-Ag diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hodge, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-21

    The fusion fuel cycle has gained significant attention over the last decade as interest in fusion programs has increased. One of the critical components of the fusion process is the tritium fuel cycle. The tritium fuel cycle is designed to supply and recycle process tritium at a specific throughput rate. One of the most important processes within the tritium fuel cycle is the clean-up of the of the process tritium. This step will initially separate the hydrogen isotopes (H2, D2, and T2) from the rest of the process gas using Pd-Ag diffusers or permeators. The Pd-Ag diffuser is an integral component for any tritium purification system; whether part of the United States’ defense mission or fusion programs. Domestic manufacturers of Pd-Ag diffusers are extremely limited and only a few manufacturers exist. Johnson-Matthey (JM) Pd-Ag diffusers (permeators) have previously been evaluated for the separation of hydrogen isotopes from non-hydrogen gas species in the process. JM is no longer manufacturing Pd-Ag diffusers and a replacement vendor needs to be identified to support future needs. A prototype Pd-Ag diffuser has been manufactured by Power and Energy, and is considered a potential replacement for the JM diffuser for tritium service. New diffuser designs for a tritium facility for any fusion energy applications must be characterized by evaluating their operating envelope prior to installation in a tritium processing facility. The prototype Pd-Ag diffuser was characterized to determine the overall performance as a function of the permeation of hydrogen through the membrane. The tests described in this report consider the effects of feed gas compositions, feed flow rates, pump configuration and internal tube pressure on the permeation of H2 through the Pd-Ag tubes.

  5. AgBr and g-C3N4 co-modified Ag2CO3 photocatalyst: A novel multi-heterostructured photocatalyst with enhanced photocatalytic activity

    Science.gov (United States)

    Tang, Hua; Chang, Shufang; Tang, Guogang; Liang, Wei

    2017-01-01

    Novel and highly efficient visible-light-driven g-C3N4/Ag2CO3/AgBr multi-heterostructured photocatalysts are achieved from the surface modification of g-C3N4/Ag2CO3 with AgBr nanoparticles by a facile and efficient ion-exchange method. The as-prepared g-C3N4/Ag2CO3/AgBr photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scaning electron microscopy (SEM) and UV-vis diffuse reflectance spectrometry (DRS). Compared with g-C3N4/Ag2CO3, g-C3N4/Ag2CO3/AgBr hybrids exhibit enhanced the degradation activity for typical RhB, MB, and MO dyes under visible light excitation (>420 nm). Photoluminescence (PL), photo-induced current and electrochemical impedance spectroscopy (EIS) results demonstrate the g-C3N4/Ag2CO3/AgBr heterojunctions can effectively suppress the recombination of the generated electron-hole pairs. The higher photocatalytical performance of g-C3N4/Ag2CO3/AgBr can be ascribed to the efficient separation of photogenerated electron-hole pairs due to the formation of multi-heterojunctions, in which the Ag nanoparticles acted as the charge transmission bridge. In addition, the possible transferred and separated behavior of electron-hole pairs and photocatalytic mechanisms based on the experimental results are also proposed in detail.

  6. Adsorption Behavior of CH2 and CH3 on Metal Clusters Cun (n=1-6)

    Institute of Scientific and Technical Information of China (English)

    Xi-hui Cheng; Ming-xing Jin; Zhan Hu; Fei-fei Hu; Da-jun Ding

    2008-01-01

    Using density functional theory with generalized gradient approximation and hybrid functional, we studied the properties of energy, charge population, and vibration of CH2 and CH3 adsorbed on Cun (n=1-6)clusters. The results show that the DFT calculation with the hybrid functional matches the experimental results better in both cases. The calculation results indicate that the adsorption of CH2 is stronger than that of CH3. During adsorption, the charges transfer from Cu to CH2 or CH3. The obtained vibrational frequencies for different modes of CH2 and CH3 adsorbed on Cun agree well with the experimental results for the adsorption on Cu(111) surface.

  7. Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light

    Science.gov (United States)

    Wang, Wan-Sheng; Du, Hong; Wang, Rui-Xia; Wen, Tao; Xu, An-Wu

    2013-03-01

    A heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst was prepared by a rational in situ ion exchange reaction between Ag3PO4 micro-cubes and Br- in aqueous solution followed by photoreduction. The photocatalytic activities of obtained photocatalysts were measured by the degradation of methyl orange (MO) and methylene blue (MB) under visible light irradiation (λ >= 400 nm). Compared to AgBr/Ag, Ag3PO4/AgBr heterocrystals and pure Ag3PO4 crystals, the heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts exhibit much higher photocatalytic activity and stability. This enhanced photocatalytic activity suggests that the synergetic effects of the heterostructured Ag3PO4/AgBr/Ag and the strong SPR of Ag NPs on the surface result in the high efficiencies of the photocatalytic activity and the improved stability. With the assistance of Ag3PO4/AgBr/Ag heterostructures, only 8 min and 12 min are taken to completely decompose MO and MB molecules under visible-light irradiation, respectively. Furthermore, the photodegradation rate does not show an obvious decrease during ten successive cycles, indicating that our heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts are extremely stable under visible-light irradiation.A heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst was prepared by a rational in situ ion exchange reaction between Ag3PO4 micro-cubes and Br- in aqueous solution followed by photoreduction. The photocatalytic activities of obtained photocatalysts were measured by the degradation of methyl orange (MO) and methylene blue (MB) under visible light irradiation (λ >= 400 nm). Compared to AgBr/Ag, Ag3PO4/AgBr heterocrystals and pure Ag3PO4 crystals, the heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts exhibit much higher photocatalytic activity and stability. This enhanced photocatalytic activity suggests that the synergetic effects of the heterostructured Ag3PO4/AgBr/Ag and the strong SPR of Ag NPs on the surface result in the high

  8. Infrared reflection absorption spectroscopic study on the adsorption structures of ethylene on Ag(110) and atomic oxygen pre-covered Ag(110) surfaces

    Science.gov (United States)

    Akita, Masato; Osaka, Naoki; Hiramoto, Shuji; Itoh, Koichi

    1999-06-01

    Infrared reflection absorption spectra in the CH 2 out-of-plane wagging (ω(CH 2)) vibration region were measured for ethylene (C 2H 4) adsorbed on Ag(110) as well as on the oxygen-induced p( n×1) reconstructed surfaces of Ag(110) ( n=2, 3, 4 and 6) at 80 K. C 2H 4 on Ag(110) gives a main peak at 955 cm -1, while on p(2×1)O-Ag(110) it exhibits a broad features of at least four components (997, 984, 970 and 954 cm -1) at saturation coverage. C 2H 4 on p( n×1)O-Ag(110) ( n=6, 4, 3) gives rise to a 972-976 cm -1 band at low exposures, shifting to 966-970 cm -1 at saturation coverage. The spectral changes are interpreted by assuming a pair of adsorption sites on both sides of the added Ag-O rows of the reconstructed surfaces.

  9. METAL MEDIA FILTERS, AG-1 SECTION FI

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D.

    2012-05-23

    One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

  10. Synthesis of Ag2O and Ag co-modified flower-like SnS2 composites with enhanced photocatalytic activity under solar light irradiation

    Science.gov (United States)

    Deng, Lu; Zhu, Zhenfeng; Liu, Liu; Liu, Hui

    2017-01-01

    Three-dimensional Ag2O and Ag co-modified flower-like SnS2 composites have been synthesized through a facile hydrothermal and photoreduction process. The physical and chemical properties of Ag2O and Ag co-modified flower-like SnS2 composites were carefully studied by using XRD, SEM, TEM, UV-vis diffuse reflectance spectra (DRS) and XPS. The photocatalytic activity of the as-prepared products was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under solar light irradiation. The photocatalytic result shows that Ag2O and Ag co-modified flower-like SnS2 composites exhibit enhanced photocatalytic activity compared with that of pure SnS2. Three of the Ag2O and Ag co-modified flower-like SnS2 composites form the Z-scheme systems, because of their unique charge-carrier transfer process, the oxidation/reduction ability of photogenerated holes and electrons could be enhanced. Therefore, the new Ag2O and Ag co-modified flower-like SnS2 composites possess a favorable photocatalytic activity, and it can be a promising candidate for the solar energy conversion process.

  11. About AgEcon Search

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>AgEcon Search is a free,open access repository of full - text scholarly literature in agricultural and applied economics,inclu-ding working papers,conference papers,and journal articles. AgEcon Search is

  12. Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photothermal induced interface reaction.

    Science.gov (United States)

    Zhong, H X; Wei, Y; Yue, Y Z; Zhang, L H; Liu, Y

    2016-04-01

    The core-shell structure of Ag@CeO2 was prepared by a novel and facile method, which was based on the photothermal effect of localized surface plasmon resonance (LSPR). Nanoparticles (NPs) of Ag were dispersed in a solution containing citric acid, ethylene glycol and cerium nitrate, then under irradiation, Ag NPs generated heat from LSPR and the heat-induced polymerization reaction in the interface between Ag and the sol resulted in cerium gel formation only on the surface of the Ag NPs. After calcination, Ag@CeO2 was successfully obtained, then Ag@CeO2/SiO2 was prepared by loading Ag@CeO2 on SiO2. The resultant catalyst exhibited favorable activity and stability for CO oxidation. The preparation method proposed here should be extendable to other composites with metallic cores and oxide shells in which the metallic nanoparticle possesses LSPR properties.

  13. Novel Ag@Nitrogen-doped Porous Carbon Composite with High Electrochemical Performance as Anode Materials for Lithium-ion Batteries

    Science.gov (United States)

    Chen, Yuqing; Li, Jintang; Yue, Guanghui; Luo, Xuetao

    2017-07-01

    A novel Ag@nitrogen-doped porous carbon (Ag-NPC) composite was synthesized via a facile hydrothermal method and applied as an anode material in lithium-ion batteries (LIBs). Using this method, Ag nanoparticles (Ag NPs) were embedded in NPC through thermal decomposition of AgNO3 in the pores of NPC. The reversible capacity of Ag-NPC remained at 852 mAh g-1 after 200 cycles at a current density of 0.1 A g-1, showing its remarkable cycling stability. The enhancement of the electrochemical properties such as cycling performance, reversible capacity and rate performance of Ag-NPC compared to the NPC contributed to the synergistic effects between Ag NPs and NPC.

  14. Coordination Chemistry of Diiodine and Implications for the Oxidation Capacity of the Synergistic Ag(+) /X2 (X=Cl, Br, I) System.

    Science.gov (United States)

    Malinowski, Przemysław J; Himmel, Daniel; Krossing, Ingo

    2016-08-01

    The synergistic Ag(+) /X2 system (X=Cl, Br, I) is a very strong, but ill-defined oxidant-more powerful than X2 or Ag(+) alone. Intermediates for its action may include [Agm (X2 )n ](m+) complexes. Here, we report on an unexpectedly variable coordination chemistry of diiodine towards this direction: (A)Ag-I2 -Ag(A), [Ag2 (I2 )4 ](2+) (A(-) )2 and [Ag2 (I2 )6 ](2+) (A(-) )2 ⋅(I2 )x≈0.65 form by reaction of Ag(A) (A=Al(OR(F) )4 ; R(F) =C(CF3 )3 ) with diiodine (single crystal/powder XRD, Raman spectra and quantum-mechanical calculations). The molecular (A)Ag-I2 -Ag(A) is ideally set up to act as a 2 e(-) oxidant with stoichiometric formation of 2 AgI and 2 A(-) . Preliminary reactivity tests proved this (A)Ag-I2 -Ag(A) starting material to oxidize n-C5 H12 , C3 H8 , CH2 Cl2 , P4 or S8 at room temperature. A rough estimate of its electron affinity places it amongst very strong oxidizers like MF6 (M=4d metals). This suggests that (A)Ag-I2 -Ag(A) will serve as an easily in bulk accessible, well-defined, and very potent oxidant with multiple applications.

  15. AGS Booster prototype magnets

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-03-19

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10/sup 0/. The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz.

  16. Quantification Of Greenhouse Gases From Three Danish Composting Facilities

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Andersen, Jacob Kragh; Samuelsson, J.

    2011-01-01

    A measurement method combining a controlled trace gas release with downwind concentrations measurements was successfully used to quantify greenhouse gas (GHG) emissions from three Danish open windrow composting facilities. Overall, the results showed that composting of organic waste generate GHG...... emissions in terms of methane (CH4) and nitrous oxide (N2O) and thus contribute to climate change. At all three facilities significant CH4 emissions were occurring. The CH4 emission varied between 0.50 and 5.73 kg CH4 h-1. The highest CH4 emission (5.73 kg CH4 h-1) were measured at the Aarhus composting...... facility and was believed to be a result of the windrow lay-out with very broad and high windrows and a low turning frequency. The lowest CH4 emission (0.50 kg CH4 h-1) was measured at Fakse composting area and was most likely a result of the relatively small windrows and frequent weekly turnings. For all...

  17. Quantification Of Greenhouse Gases From Three Danish Composting Facilities

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Andersen, Jacob Kragh; Samuelsson, J.;

    2011-01-01

    A measurement method combining a controlled trace gas release with downwind concentrations measurements was successfully used to quantify greenhouse gas (GHG) emissions from three Danish open windrow composting facilities. Overall, the results showed that composting of organic waste generate GHG...... emissions in terms of methane (CH4) and nitrous oxide (N2O) and thus contribute to climate change. At all three facilities significant CH4 emissions were occurring. The CH4 emission varied between 0.50 and 5.73 kg CH4 h-1. The highest CH4 emission (5.73 kg CH4 h-1) were measured at the Aarhus composting...... facility and was believed to be a result of the windrow lay-out with very broad and high windrows and a low turning frequency. The lowest CH4 emission (0.50 kg CH4 h-1) was measured at Fakse composting area and was most likely a result of the relatively small windrows and frequent weekly turnings. For all...

  18. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    Science.gov (United States)

    Rubina, M. S.; Kamitov, E. E.; Zubavichus, Ya. V.; Peters, G. S.; Naumkin, A. V.; Suzer, S.; Vasil'kov, A. Yu.

    2016-03-01

    Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  19. Dipole Formation at Interfaces of Alkanethiolate Self-assembled Monolayers and Ag(111)

    NARCIS (Netherlands)

    Rusu, Paul C.; Giovannetti, Gianluca; Brocks, Geert

    2007-01-01

    The formation of interface dipoles in self-assembled monolayers (SAMs) of −CH3 and −CF3 terminated short-chain alkanethiolates on Ag(111) is studied by means of density functional theory calculations. The interface dipoles are characterized by monitoring the change in the surface work function upon

  20. An oil-in-water self-assembly synthesis, characterization and photocatalytic properties of nano Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yinghua; Lin, Shuanglong; Liu, Li, E-mail: chemll@126.com; Hu, Jinshan; Cui, Wenquan, E-mail: wkcui@163.com

    2014-12-15

    Highlights: • The plasmatic Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts. • Ag@AgCl greatly increased visible light absorption for K{sub 2}Ti{sub 4}O{sub 9}. • The photocatalysts exhibited enhanced photocatalytic dye degradation. - Abstract: Nano-sized plasmonic Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts (hereafter designated as Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9}) was synthesized via a facile oil-in-water self-assembly method. The photocatalytic activity of the prepared materials for RhB (Rhodamine B) degradation was examined under visible light irradiation. The results reveal that the size of Ag@AgCl, which evenly dispersed on the surface of K{sub 2}Ti{sub 4}O{sub 9}, distributes about 20–50 nm. The UV–vis diffuse reflectance spectra indicate that Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9} samples have a significantly enhanced optical absorption in 380–700 nm. The photocatalytic activities of the Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9} samples increase first and then decrease with increasing amount of loading Ag@AgCl and the Ag@AgCl(20 wt.%)/K{sub 2}Ti{sub 4}O{sub 9} sample exhibits the best photocatalytic activity and 94.47% RhB was degraded after irradiation for 2 h. Additionally, studies performed using radical scavengers indicated that O{sub 2}·{sup −} and Cl{sup 0} acted as the main reactive species. The electronic interaction was systematically studied and confirmed by the photo-electrochemical measurements.

  1. Enhancement of Ag nanoparticles concentration by prior ion implantation

    Science.gov (United States)

    Mu, Xiaoyu; Wang, Jun; Liu, Changlong

    2017-09-01

    Thermally grown SiO2 layer on Si substrates were singly or sequentially implanted with Zn or Cu and Ag ions at the same fluence of 2 × 1016/cm2. The profiles of implanted species, structure, and spatial distribution of the formed nanoparticles (NPs) have been characterized by the cross-sectional transmission electron microscope (XTEM) and Rutherford backscattering spectrometry (RBS). It is found that pre-implantation of Zn or Cu ions could suppress the self sputtering of Ag atoms during post Ag ion implantation, which gives rise to fabrication of Ag NPs with a high density. Moreover, it has also been demonstrated that the suppressing effect strongly depends on the applied energy and mobility of pre-implanted ions. The possible mechanism for the enhanced Ag NPs concentration has been discussed in combination with SRIM simulations. Both vacancy-like defects acting as the increased nucleation sites for Ag NPs and a high diffusivity of prior implanted ions in SiO2 play key roles in enhancing the deposition of Ag implants.

  2. Tree CH4 fluxes in forestry drained peatland in southern Finland

    Science.gov (United States)

    Haikarainen, Iikka; Putkinen, Anuliina; Pyykkö, Petteri; Halmeenmäki, Elisa; Pihlatie, Mari

    2017-04-01

    Methane (CH4) is among the most important greenhouse gases and its atmospheric concentration is increasing. Boreal forests are commonly considered a net sink of atmospheric CH4 due to CH4 consuming bacteria in aerated soil layers. Recent studies have, however, demonstrated that trees are capable of emitting CH4 from their stems and shoots by transporting anaerobically produced CH4 from deeper soil layers to the atmosphere. Furthermore, trees may act as independent sources of CH4. We have measured tree stem CH4 exchange of boreal tree species at Lettosuo, a nutrient rich peatland forest in Tammela, southern Finland (60˚ 38' N, 23˚ 57' E), using the static chamber technique. Three species, downy birch (Betula pubescens), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), were selected under investigation as they represent common boreal tree species. Fluxes of CH4 were measured during 7.6.2016 - 17.10.2016 from in total 25 sample trees growing on two different plots: a treatment plot where all the pines were removed to raise the water table level (WTL) and a control plot. Three birches from the treatment plot were selected to measure CH4 flux variation within vertical profile of the trees. Characterization of microbial communities, quantification of methanogenic and methanotrophic functional genes, and measurements of potential CH4 production and consumption from peat profile and forest floor moss samples were also carried out to obtain insight to the CH4 flux dynamics at the studied sites. The pine removal treatment did not markedly change the average WTL, but it made the WTL more variable with frequently 10-15 cm closer to soil surface compared to the WTL on the control plot. We found small and variable CH4 emissions from the stems of trees on both of the plots, while occasional consumption of CH4 was also present. Generally the CH4 emissions were higher and more dominant at the treatment plot compared to the control plot, and the fluxes were

  3. Diazabutadienes as ligands.I. Compounds of aluminium: coordination of diazabutadienes to Al(CH3)3 and subsequent intramolecular insertion and rearrangement reactions leading to [(CH3)2Al(RNCH(CH3)C(R')=NR)] (R' = H, CH3) and (CH3)2AlRNCH2C(CH3) =NR

    NARCIS (Netherlands)

    Koten, G. van; Klerks, J.M.; Stufkens, D.J.; Vrieze, K.

    1979-01-01

    Reaction of R-N=CH-CH=N-R with [(CH{3}){3}Al]{2} affords the coordination product (CH{3}){3}AlRN=CH-CH=NR (A) for R = 2, 6-(CH{3}){2}C{6}H{3} and 2,4,6(CH{3}){3}C{6}H{2}. For R = 4 ClC{6}H{4}, 4-CH{3}C{6}H{4} and 4-CH{3}OC{6}H{4}, insertion takes place, giving the complexes (CH{3}){2}AlRN-CH(CH{3})-

  4. Self- and N2-broadening of CH3Br ro-vibrational lines in the ν2 band: The J and K dependence

    Science.gov (United States)

    Boussetta, Z.; Kwabia Tchana, F.; Aroui, H.

    2015-02-01

    Methyl bromide (CH3Br) is the major source of inorganic bromine in the atmosphere and contributes significantly to ozone depletion. Indeed, CH3Br is dissociated by UV radiation, producing Br radicals that catalyze the destruction of ozone. In this paper, we report measured Lorentz self- and N2-broadening coefficients of CH3Br in the ν2 fundamental band using a mono-spectrum non-linear least squares fitting of Voigt profiles which appeared to properly model the observed molecular line shapes within the noise level. These measurements were made by analyzing 12 laboratory absorption spectra recorded at high resolution (0.005, 0.003 or 0.002 cm-1) using the Fourier transform spectrometer Bruker IF125HR located at the LISA facility in Créteil. The spectra were obtained at room temperature using a White-type multipass cell with an optical path of 0.849 m and various pressures. We have been able to determine the self- and N2-broadening coefficients of 948 ν2 transitions with quantum numbers as high as J = 49 and K = 10. The measured self-broadening coefficients range from 0.1542 to 0.4930 cm-1 atm-1 and the N2-broadening coefficients range from 0.0737 to 0.1284 cm-1 atm-1 at 295 K. The accuracy of the broadening coefficients measured in this work is between 4% and 8%, depending on the studied transition. Comparisons with measurements taken in the ν5 and ν6 bands of CH3Br did not show any clear vibrational dependence. The J and K dependences of the self- and N2-broadening coefficients have been observed and the rotational K dependence has been modeled using empirical polynomial expression. On average, the empirical expression reproduce the measured broadening coefficients to within 6%. The data obtained represent a significant contribution to the determination of broadening coefficients of CH3Br useful for atmospheric remote sensing and applications. Note: The assignment column gives the isotopologue (79 for CH379Br and 81 for CH381Br) for which the transition is

  5. Booster Applications Facility report: Addendum

    Energy Technology Data Exchange (ETDEWEB)

    Thieberger, P. (ed.)

    1992-01-01

    This proposal is based on the conceptual design and feasibility study (BNL report {number sign}52291) which was performed at the request, and with the support of NASA's Life Sciences Division. The BNL Booster, which is now being successfully commissioned with protons, will undergo similar tests and initial heavy-ion operation in early 1992. This accelerator is a fast cycling synchrotron, and therefore capable of sequentially delivering independent alternate pulses of different ions for two applications. Thus, after a pulse is injected in the Alternating Gradient Synchrotron (AGS) for further acceleration, there will be ample time to deliver a pulse of a different ion to a proposed Booster Applications Facility (BAF) before the next AGS pulse is required. Cost effective BAF operation and reliable beam delivery would result. This is guaranteed by the need to maintain all the systems in good operating condition for the main mission of the facility, which is the injection of AGS, and eventually of the Relativistic Heavy Ion Collider (RHIC). A large variety of high-Z high-energy (HZE) particles can be produced, ranging from maximum energies of 1.5 GeV/AMU for ions lighter than iron, to {approximately}1.25 GeV/AMU for iron, and to {approximately}350 MeV/AMU for gold.

  6. Morphology-controlled synthesis of silver nanoparticles on the silicon substrate by a facile silver mirror reaction

    Science.gov (United States)

    Jiang, Bing; Li, Meicheng; Bai, Fan; Yu, Hang; Mwenya, Trevor; Li, Yingfeng; Song, Dandan

    2013-03-01

    The Ag nanoparticles (Ag-NPs) with different morphology were quickly deposited on p-type Si substrate by a facile silver mirror reaction without capping agents and morphology driving seeds at room temperature. By controlling the concentrations of [Ag(NH3)2]+ and reducing agent (glucose), short rod and quasi-round Ag-NPs were produced on Si substrate. The results show that the shape of the Ag-NPs was defined by [Ag(NH3)2]+ concentration. The concentration of glucose affected the coverage fraction instead of shape of Ag-NPs. Under the high concentrations of [Ag(NH3)2]+, anisotropic crystal structure of short rod Ag-NPs were ascribed to total energy minimization. The high glucose concentration led to agglomeration of particles. Different nanoporous structures on Si substrate etched by using Ag-NPs enable control over its properties and are useful for the solar cells applications.

  7. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João, E-mail: mbebian@ualg.pt

    2013-07-15

    Highlights: •Different protein expression profiles between tissues and Ag forms. •Ag NPs and Ag{sup +} presented different mechanisms of toxic action. •Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades. •New biomarkers for Ag NPs were proposed, i.e. MVP, ras partial and precol-P. -- Abstract: Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag{sup +} (10 μg L{sup −1}) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two–dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag{sup +}. Fifteen of these proteins were subsequently identified by MALDI–TOF–TOF and database search. Ag NPs affected similar cellular pathways as Ag{sup +}, with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one

  8. Degradation of microcystin-LR by highly efficient AgBr/Ag{sub 3}PO{sub 4}/TiO{sub 2} heterojunction photocatalyst under simulated solar light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055 (China); Utsumi, Motoo, E-mail: utsumi.motoo.ge@u.tsukuba.ac.jp [Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 (Japan); Yang, Yingnan; Li, Dawei [Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 (Japan); Zhao, Yingxin [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China); Zhang, Zhenya [Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 (Japan); Feng, Chuanping [School of Water Resource and Environment, China University of Geosciences (Beijing), Beijing, 10083, P.R. China (China); Sugiura, Norio [Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 (Japan); Cheng, Jay Jiayang [School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055 (China)

    2015-01-15

    Highlights: • AgBr/Ag{sub 3}PO{sub 4}/TiO{sub 2} consisting of less silver content possessed much higher photocatalytic activity than AgBr/Ag{sub 3}PO{sub 4}. • Reactive h{sup +} and • OH played the major roles for MC-LR degradation by AgBr/Ag{sub 3}PO{sub 4}/TiO{sub 2}. • AgBr/Ag{sub 3}PO{sub 4}/TiO{sub 2} photocatalyst was more stable than AgBr/Ag{sub 3}PO{sub 4} in successive runs. • MC-LR was degraded into intermediates of smaller molecule weight (m/z < 770) by AgBr/Ag{sub 3}PO{sub 4}/TiO{sub 2.} - Abstract: A novel photocatalyst AgBr/Ag{sub 3}PO{sub 4}/TiO{sub 2} was developed by a simple facile in situ deposition method and used for degradation of mirocystin-LR. TiO{sub 2} (P25) as a cost effective chemical was used to improve the stability of AgBr/Ag{sub 3}PO{sub 4} under simulated solar light irradiation. The photocatalytic activity tests for this heterojunction were conducted under simulated solar light irradiation using methyl orange as targeted pollutant. The results indicated that the optimal Ag to Ti molar ratio for the photocatalytic activity of the resulting heterojunction AgBr/Ag{sub 3}PO{sub 4}/TiO{sub 2} was 1.5 (named as 1.5 BrPTi), which possessed higher photocatalytic capacity than AgBr/Ag{sub 3}PO{sub 4}. The 1.5 BrPTi heterojunction was also more stable than AgBr/Ag{sub 3}PO{sub 4} in photocatalysis. This highly efficient and relatively stable photocatalyst was further tested for degradation of the hepatotoxin microcystin-LR (MC-LR). The results suggested that MC-LR was much more easily degraded by 1.5 BrPTi than by AgBr/Ag{sub 3}PO{sub 4}. The quenching effects of different scavengers proved that reactive h{sup +} and • OH played important roles for MC-LR degradation.

  9. Components/factors of the Czech version of the Physical Self Perception Profile (PSPP-CZ among high school students [Komponenty/faktory české verze dotazníku tělesného sebepojetí (PSPP-CZ u středoškolských studentů

    Directory of Open Access Journals (Sweden)

    Vlastimil Kudláček

    2010-12-01

    Full Text Available BACKGROUND: The physical self has been widely investigated as a determinant of exercise behaviors as well as a contributor to mental health and well being (Fox, 1997. Self esteem has been generally accepted as an important mediator of exercise and self esteem (Fox, 2000; Sonstroem, 1997. Understanding self development processes has increased in importance as self esteem and self perception components have become increasingly valued in educational, clinical and community health programs (Ferreira & Fox, 2008. In order to examine the relationships between various levels of physical activities and self perception we need to use standardized instruments to measure physical self perception among Czech teenagers. OBJECTIVE: The purpose of this study was to analyse the structure of the translated PSPP-CZ questionnaire among the population of high school students by finding components of PSPP-CZ using principal component analysis. The Physical Self Perception Profile (PSPP has never been used in the CZ population before. METHODS: Participants were high school students from five schools representing three kinds of high schools in the Czech Republic. Of these participants, 666 were boys and 403 were girls. The average age of the participants was 17.00 (± 1.34 in boys and 16.63 (± 1.39 in girls. Participants received a test battery containing a Czech version of PSPP (Fox, 1990. PSPP has four subscales: (a sports competence – SPORT; (b attractiveness of the figure – BODY; (c physical strength and musculature – STRENGTH; and (d physical conditioning and exercise – CONDITION (Fox, 1990. RESULTS: Data were analyzed using SPSS PC 11.0. Cronbach Alpha, representing the internal consistency measure consisted of: (a sport subscale (males = .86, females = .86; (b physical condition subscales (males = .82, females = .85; (c attractiveness of figure subscales (males = .78, females = .88; and (d strength subscale (males = .87, females = .85. Initially we

  10. Enhanced field emission properties of ZnO-Ag2S core-shell heterojunction nanowires.

    Science.gov (United States)

    Wang, Guojing; Li, Mingyang; Chen, Chienhua; Lv, Shasha; Liao, Jiecui; Li, Zhengcao

    2016-06-07

    A simple approach to Ag2S quantum dot (QD) modification was used to tune the field emission (FE) properties of ZnO nanowire arrays (NWAs). By a simple and facile successive ionic layer adsorption and reaction (SILAR) approach, Ag2S QDs were uniformly and densely packed on ZnO nanowires (NWs) to form ZnO-Ag2S core-shell heterojunction structures. The FE properties of ZnO NWAs were effectively tuned by controlling the amount of Ag2S QDs. The turn-on field first reduces and then increases as the amount of Ag2S QDs increases, while the trend of the field-enhancement factor is inverse. This is attributed to the clustering of Ag2S QDs into nanoparticles (NPs) which cover the nanowire tips, as SILAR cycles increase.

  11. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  12. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  13. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  14. Shock tube investigation of CH3 + CH3OCH3.

    Science.gov (United States)

    Tranter, Robert S; Lynch, Patrick T; Annesley, Christopher J

    2012-07-12

    The title reaction has been investigated in a diaphragmless shock tube by laser schlieren densitometry over the temperature range 1163-1629 K and pressures of 60, 120, and 240 Torr. Methyl radicals were produced by dissociation of 2,3-butanedione in the presence of an excess of dimethyl ether. Rate coefficients for CH(3) + CH(3)OCH(3) were obtained from simulations of the experimental data yielding the following expression which is valid over the range 1100-1700 K: k = (10.19 ± 3.0)T(3.78) exp((-4878/T)) cm(3) mol(-1)s(-1). The experimental results are in good agreement with estimates by Curran and co-workers [Fischer, S. L.; Dryer, F. L.; Curran, H. J. Int. J. Chem. Kinet.2000, 32 (12), 713-740. Curran, H. J.; Fischer, S. L.; Dryer, F. L. Int. J. Chem. Kinet.2000, 32 (12), 741-759] but about a factor of 2.6 lower than those of Zhao et al. [Zhao, Z.; Chaos, M.; Kazakov, A.; Dryer, F. L. Int. J. Chem. Kinet.2008, 40 (1), 1-18].

  15. Energy pole system in the new building of the PAGO AG, Grabs (CH); Energiepfahlsystem im Neubau der PAGO AG, Grabs (CH)

    Energy Technology Data Exchange (ETDEWEB)

    Scheuss, U. [NDS-HTL, Ingenieurbuero Lippuner und Partner AG, Grabs (Switzerland)

    1997-12-01

    With 570 concrete poles and 80 km of tubes, 100,000 m{sup 3} of ground serve as a cold and heat storage resservoir for a building. The building houses a printing shop, which needs cooling in summer and heating in winter. The energy pole system can be used as a dual system for heating and cooling in both seasons. The project is a pilot project of the BWE (Swiss General Office for Utilities and Power Supply), who also started an extensive accompanying measurig campaign. The results during the first year of operation were very positive, and the performance of the energy pole system was up to expectations. (orig.) [Deutsch] Mittelpunkt der PAGO-Energietechnik ist das Energiepfahlsystem. Mittels 570 Betonpfaehlen und 80 km Rohrschlangen wird das Erdreich unter dem Gebaeude als ueber 100.000 m{sup 3} grosser Waerme- und Kaeltespeicher genutzt. Ueber dieses Energiepfahlsystem wird dieser Druckereibetrieb mit hohen Anforderungen an das Raumklima und viel Maschinenabwaerme sehr umweltschonend im Winter behizt und im Sommer gekuehlt. Das Besondere an diesem System ist diese ganzjaehrige Doppelnutzung zu Heiz- und Kuehlzwecken. Aus diesem Grunde wurde dieses Projekt vom Bundesamt fuer Energiewirtschaft (BEW) als Pilot- und Demonstrationsprojekt anerkannt. Zur Ueberpruefung von dessen Ausbeute und der Wirksamkeit der gesamten Energietechnik wurde vom BEW ein umfangreiches Messprojekt gestartet. Der Innovationswert der PAGO -Energietechnik liegt allerdings nicht allein im Einsatz der alternativen Komponenten. Mindestens so wichtig ist die Konzeption und die Feinabstimmung der gesamten Energietechnik. Der Betrieb lief im ersten Betriebsjahr sehr positiv und von Anfang an ohne groessere Probleme. Das Energiepfahlsystem konnte im wesentlichen die Erwartungen erfuellen. (orig.)

  16. Broad-spectrum bactericidal activity of Ag(2)O-doped bioactive glass.

    Science.gov (United States)

    Bellantone, Maria; Williams, Huw D; Hench, Larry L

    2002-06-01

    Bioactive glass has found extensive application as an orthopedic and dental graft material and most recently also as a tissue engineering scaffold. Here we report an initial investigation of the in vitro antibacterial properties of AgBG, a novel bioactive glass composition doped with Ag(2)O. The bacteriostatic and bactericidal properties of this new material and of two other bioactive glass compositions, 45S5 Bioglass and BG, have been studied by using Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus as test microorganisms. Concentrations of AgBG in the range of 0.05 to 0.20 mg of AgBG per ml of culture medium were found to inhibit the growth of these bacteria. Not only was AgBG bacteriostatic, but it also elicited a rapid bactericidal action. A complete bactericidal effect was elicited within the first hours of incubation at AgBG concentrations of 10 mg ml(-1). 45S5 Bioglass and BG had no effect on bacterial growth or viability. The antibacterial action of AgBG is attributed exclusively to the leaching of Ag(+) ions from the glass matrix. Analytical measurements rule out any contribution to AgBG-mediated bacterial killing by changes in pH or ionic strength or the dissolution of other ionic species from the biomaterials. Our observations of the dissolution profiles of Ag(+) from AgBG in the presence and absence of bacteria are consistent with silver accumulation by the bacteria.

  17. Inhibition of Ps Formation in Benzene and Cyclohexane by CH3CI and CH3Br

    DEFF Research Database (Denmark)

    Wikander, G.; Mogensen, O. E.; Pedersen, Niels Jørgen

    1983-01-01

    of the inhibition of Ps formation by CH3Br was ten times that of CH3Cl in cyclohexane, because the CH3Br− anion debrominates rapidly, while CH3Cl− is long-lived (= 30 ns) compared to the maximum time of Ps formation of 400–500 ps. as shown in radiation chemistry. The positron can pick off the electron from the CH3X...

  18. Improved quantification of microbial CH4 oxidation efficiency in Arctic wetland soils using carbon isotope fractionation

    Directory of Open Access Journals (Sweden)

    E.-M. Pfeiffer

    2012-12-01

    Full Text Available Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4. The observed accelerated warming of the Arctic will cause a deeper permafrost thawing followed by increased carbon mineralization and CH4 formation in water saturated tundra soils which might cause a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River Delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4-signatures were measured and the fractionation factors for the processes of oxidation (αox and diffusion (αdiff were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (e.g. landfill cover soils have assumed a gas transport dominated by advection (αtrans = 1. In tundra soils, however, diffusion is the main gas transport mechanism, aside from ebullition. Hence, diffusive stable isotope fractionation has to be considered. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3. CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18. Furthermore, it was found that αox differs widely between sites and horizons (mean αox, = 1.017 ± 0.009 and needs to be determined individually. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by considering both the

  19. Kinetics of the multichannel reaction of methanethiyl radical (CH3S*) with 3O2.

    Science.gov (United States)

    Zhu, Li; Bozzelli, Joseph W

    2006-06-01

    The CH3S* + O2 reaction system is considered an important process in atmospheric chemistry and in combustion as a pathway for the exothermic conversion of methane-thiyl radical, CH3S*. Several density functional and ab initio computational methods are used in this study to determine thermochemical parameters, reaction paths, and kinetic barriers in the CH3S* + O2 reaction system. The data are also used to evaluate feasibility of the DFT methods for higher molecular weight oxy-sulfur hydrocarbons, where sulfur presents added complexity from its many valence states. The methods include: B3LYP/6-311++G(d,p), B3LYP/6-311++G(3df,2p), CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p), B3P86/6-311G(2d,2p)//B3P86/6-31G(d), B3PW91/6-311++G(3df,2p), G3MP2, and CBS-QB3. The well depth for the CH3S* + 3O2 reaction to the syn-CH3SOO* adduct is found to be 9.7 kcal/mol. Low barrier exit channels from the syn-CH3SOO* adduct include: CH2S + HO2, (TS6, E(a) is 12.5 kcal/mol), CH3 + SO2 via CH3SO2 (TS2', E(a) is 17.8) and CH3SO + O (TS17, E(a) is 24.7) where the activation energy is relative to the syn-CH3SOO* stabilized adduct. The transition state (TS5) for formation of the CH3SOO adduct from CH3S* + O2 and the reverse dissociation of CH3SOO to CH3S* + O2 is relatively tight compared to typical association and simple bond dissociation reactions; this is a result of the very weak interaction. Reverse reaction is the dominant dissociation path due to enthalpy and entropy considerations. The rate constants from the chemical activation reaction and from the stabilized adduct to these products are estimated as functions of temperature and pressure. Our forward rate constant and CH3S loss profile are in agreement with the experiments under similar conditions. Of the methods above, the G3MP2 and CBS-QB3 composite methods are recommended for thermochemical determinations on these carbon-sulfur-oxygen systems, when they are feasible.

  20. Improved quantification of microbial CH4 oxidation efficiency in arctic wetland soils using carbon isotope fractionation

    Directory of Open Access Journals (Sweden)

    I. Preuss

    2013-04-01

    Full Text Available Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4. The observed accelerated warming of the arctic will cause deeper permafrost thawing, followed by increased carbon mineralization and CH4 formation in water-saturated tundra soils, thus creating a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4 signatures were measured and the fractionation factors for the processes of oxidation (αox and diffusion (αdiff were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (such as landfill cover soils have assumed a gas transport dominated by advection (αtrans = 1. In tundra soils, however, diffusion is the main gas transport mechanism and diffusive stable isotope fractionation should be considered alongside oxidative fractionation. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3. CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18. Furthermore, it was found that αox differs widely between sites and horizons (mean αox = 1.017 ± 0.009 and needs to be determined on a case by case basis. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by

  1. AGS experiments -- 1991, 1992, 1993. Tenth edition

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  2. AGS experiments -- 1995, 1996 and 1997

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  3. ZnWO{sub 4} nanorods decorated with Ag/AgBr nanoparticles as highly efficient visible-light-responsive photocatalyst for dye AR18 photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kebin, E-mail: kebinlee314@gmail.com [College of Chemistry and Material Science, Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, Northwest University, Xi’an 710069 (China); Xue, Jie; Zhang, Yanhui [College of Chemistry and Material Science, Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, Northwest University, Xi’an 710069 (China); Wei, Hong [Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi’an University of Technology, Xi’an 710048 (China); Liu, Yalan; Dong, Chengxing [College of Chemistry and Material Science, Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, Northwest University, Xi’an 710069 (China)

    2014-11-30

    Graphical abstract: - Highlights: • Ag/AgBr-sensitized ZnWO{sub 4} nanorod heterojunction was fabricated and characterized. • The composite showed the enhanced visible-light activity for AR18 photodegradation. • The enhancement mechanism and the catalytic degradation mechanism were revealed. • The effects of various parameters on AR18 photodegradation kinetics were examined. - Abstract: A novel Ag-AgBr/ZnWO{sub 4} nanorod heterostructure composite was prepared via a facile deposition–precipitation method with ZnWO{sub 4} nanorods as the substrate, and characterized by XRD, SEM-EDX, TEM, XPS, and DRS to confirm its structure, morphology, composition, and optical property. The composite was used as a photocatalyst to destroy azo dye Acid Red 18 (AR18) under visible light irradiation. The effects of catalyst composition, solution pH, catalyst loading, and initial dye concentration on photocatalytic degradation rate and efficiency were examined. It was revealed that the photocatalytic activity of Ag-AgBr/ZnWO{sub 4} nanojunction system was higher than that of the single ZnWO{sub 4} or Ag-AgBr for AR18 degradation under visible light irradiation. The optimal content of Ag-AgBr in Ag-AgBr/ZnWO{sub 4} composite was 0.58:1 of Ag/W molar ratio using in the catalyst preparation. Acid pH and decreasing dye initial concentration were favorable to AR18 photodegradation, but the catalyst loading had an optimal value. The catalyst was stable and recyclable, after five successive cycles the photoactivity was fully maintained and the XRD patterns of AgBr displayed no evident change. Photoluminescence spectra revealed the enhanced photocatalytic activity and stability were closely related to the efficient separation of photogenerated carriers in Ag-AgBr/ZnWO{sub 4} nanojunction system. Superoxide radicals and holes were found to be main active species for AR18 photodegradation. Finally, the possible mechanism for AR18 degradation over Ag-AgBr/ZnWO{sub 4} nanorods under

  4. Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq

    DEFF Research Database (Denmark)

    Jakobsen, Janus S; Bagger, Frederik O; Hasemann, Marie S

    2015-01-01

    BACKGROUND: Chromatin-Immunoprecipitation coupled with deep sequencing (ChIP-seq) is used to map transcription factor occupancy and generate epigenetic profiles genome-wide. The requirement of nano-scale ChIP DNA for generation of sequencing libraries has impeded ChIP-seq on in vivo tissues of low...... cell numbers. RESULTS: We describe a robust, simple and scalable methodology for ChIP-seq of low-abundant cell populations, verified down to 10,000 cells. By employing non-mammalian genome mapping bacterial carrier DNA during amplification, we reliably amplify down to 50 pg of ChIP DNA from...... transcription factor (CEBPA) and histone mark (H3K4me3) ChIP. We further demonstrate that genomic profiles are highly resilient to changes in carrier DNA to ChIP DNA ratios. CONCLUSIONS: This represents a significant advance compared to existing technologies, which involve either complex steps of pre...

  5. Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq

    DEFF Research Database (Denmark)

    Jakobsen, Janus S; Bagger, Frederik O; Hasemann, Marie S;

    2015-01-01

    BACKGROUND: Chromatin-Immunoprecipitation coupled with deep sequencing (ChIP-seq) is used to map transcription factor occupancy and generate epigenetic profiles genome-wide. The requirement of nano-scale ChIP DNA for generation of sequencing libraries has impeded ChIP-seq on in vivo tissues of low...... transcription factor (CEBPA) and histone mark (H3K4me3) ChIP. We further demonstrate that genomic profiles are highly resilient to changes in carrier DNA to ChIP DNA ratios. CONCLUSIONS: This represents a significant advance compared to existing technologies, which involve either complex steps of pre...... cell numbers. RESULTS: We describe a robust, simple and scalable methodology for ChIP-seq of low-abundant cell populations, verified down to 10,000 cells. By employing non-mammalian genome mapping bacterial carrier DNA during amplification, we reliably amplify down to 50 pg of ChIP DNA from...

  6. Theoretical study on the mechanism of CH3NH2 and O3 atmospheric reaction

    Indian Academy of Sciences (India)

    Samira Valehi; Morteza Vahedpour

    2014-07-01

    Reaction pathways of methylamine with ozone on the singlet potential energy profile have been investigated at the RB3LYP/6-311++G (3df-3pd) computational level. Calculated results reveal that six kinds of products P1 (CH3NO + H2O2), P2 (CH3NH + OH + O2), P3 (NH2CH + HO2+ OH), P4 (CH2NH + H2O +O2), P5 (NH2CH2OH + O2), P6 (NH3+ CH2O +O2) are obtained through variety of transformation of one reactant complex C1. Cleavage and formation of the chemical bonds in the reaction pathways have been discussed using the structural parameters. Based on the calculations, the title reaction leads to NH3+ CH2O + O2 as thermodynamic adducts in an exothermic process by −76.28 kcal/mol in heat realizing and spontaneous reaction by −86.71 kcal/mol in standard Gibbs free energy. From a kinetic viewpoint, the production of CH3NH + OH + O2 adducts with one transition state is the most favoured path.

  7. Palladium-catalyzed meta-selective C-H bond activation with a nitrile-containing template: computational study on mechanism and origins of selectivity.

    Science.gov (United States)

    Yang, Yun-Fang; Cheng, Gui-Juan; Liu, Peng; Leow, Dasheng; Sun, Tian-Yu; Chen, Ping; Zhang, Xinhao; Yu, Jin-Quan; Wu, Yun-Dong; Houk, K N

    2014-01-08

    Density functional theory investigations have elucidated the mechanism and origins of meta-regioselectivity of Pd(II)-catalyzed C-H olefinations of toluene derivatives that employ a nitrile-containing template. The reaction proceeds through four major steps: C-H activation, alkene insertion, β-hydride elimination, and reductive elimination. The C-H activation step, which proceeds via a concerted metalation-deprotonation (CMD) pathway, is found to be the rate- and regioselectivity-determining step. For the crucial C-H activation, four possible active catalytic species-monomeric Pd(OAc)2, dimeric Pd2(OAc)4, heterodimeric PdAg(OAc)3, and trimeric Pd3(OAc)6-have been investigated. The computations indicated that the C-H activation with the nitrile-containing template occurs via a Pd-Ag heterodimeric transition state. The nitrile directing group coordinates with Ag while the Pd is placed adjacent to the meta-C-H bond in the transition state, leading to the observed high meta-selectivity. The Pd2(OAc)4 dimeric mechanism also leads to the meta-C-H activation product but with higher activation energies than the Pd-Ag heterodimeric mechanism. The Pd monomeric and trimeric mechanisms require much higher activation free energies and are predicted to give ortho products. Structural and distortion energy analysis of the transition states revealed significant effects of distortions of the template on mechanism and regioselectivity, which provided hints for further developments of new templates.

  8. Synthesis of Ag{sub 2}S nanorods by biomimetic method in the lysozyme matrix

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dezhi, E-mail: dezhiqin@163.com; Zhang, Li; He, Guoxu; Zhang, Qiuxia

    2013-09-01

    Graphical abstract: - Highlights: • Firstly, Ag{sub 2}S nanorods were synthesized by biomimetic method in the lysozyme solutions. • The study of the interaction between Ag{sup +} and the lysozyme. • Discussion of possible formation mechanism of Ag{sub 2}S nanorods. • The synthesis process of lyso-conjugated Ag{sub 2}S nanocrystals is facile, effective and environment friendly. - Abstract: Ag{sub 2}S nanorods were successfully synthesized by biomimetic route in the lysozyme solution at physiological temperature and atmospheric pressure. The transmission electron microscopy (TEM) images revealed that the prepared nanorods are uniform and monodisperse with homogeneous size about 50 nm in diameter and 150 nm in length. The optical property of Ag{sub 2}S nanocrystals was studied by the ultraviolet–visible (UV–vis) and photoluminescence (PL) spectroscopy, the results show that the products exhibit well-defined emission at 471 nm and 496 nm excited by 292 nm. The interaction of Ag{sup +}/Ag{sub 2}S with the lysozyme was investigated through Fourier transform infrared (FT-IR) spectroscopy, which shows that the cooperation effect of the lysozyme and Ag{sup +} could be responsible for the formation of as obtained Ag{sub 2}S nanorods.

  9. The distonic ion (·)CH 2CH 2CH (+)OH, keto ion CH 3CH 2CH=O (+·), enol ion CH 3CH=CHOH (+·), and related C 3H 6O (+·) radical cations. Stabilities and isomerization proclivities studied by dissociation and neutralization-reionization.

    Science.gov (United States)

    Polce, M J; Wesdemiotis, C

    1996-06-01

    Metastable ion decompositions, collision-activated dissociation (CAD), and neutralization-reionization mass spectrometry are utilized to study the unimolecular chemistry of distonic ion (·)CH2CH2CH(-)OH (2(+·)) and its enol-keto tautomers CH3CH=CHOH(-·) (1 (+·)) and CH3CH2CH=O (+·) (3(+·)). The major fragmentation of metastable 1(+·)-3(+·) is H(·) loss to yield the propanoyl cation, CH3CH2C≡O(+). This reaction remains dominant upon collisional activation, although now some isomeric CH2=CH-CH(+) OH is coproduced from all three precursors. The CAD and neutralization-reionization ((+)NR(+)) spectra of keto ion 3 (+·) are substantially different from those of tautomers 2(+·) and 1(+·). Hence, 3(+·) without sufficient energy for decomposition (i. e. , "stable" 3(+·)) does not isomerize to the ther-modynamically more stable ions 2(+·) or 1(+·), and the 1,4-H rearrangement H-CH2CH2CH=O(+·)(3 (+·)) → CH2CH2CH(+) O-H (2 (+·)) must require an appreciable critical energy. Although the fragment ion abundances in the (+) NR (+) (and CAD) spectra of 1 (+·) and 2 (+·) are similar, the relative and absolute intensities of the survivor ions (recovered C3H6O(+·) ions in the (+)NR(+) spectra) are markedly distinct and independent of the internal energy of 1 (+·) and 2 (+·). Furthermore, 1 (+·) and 2 (+·) show different MI spectra. Based on these data, distonic ion 2 (+·) does not spontaneously rearrange to enol ion 1 (+·) (which is the most stable C3H6O(+·) of CCCO connectivity) and, therefore, is separated from it by an appreciable barrier. In contrast, the molecular ions of cyclopropanol (4 (+·)) and allyl alcohol (5 (+·)) isomerize readily to 2 (+·), via ring opening and 1,2-H(-) shift, respectively. The sample found to generate the purest 2 (+·) is α-hydroxy-γ-butyrolactone. Several other precursors that would yield 2 (+·) by a least-motion reaction cogenerate detectable quantities of enol ion 1 (+·), or the enol ion of acetone (CH2=C(CH3

  10. Fabrication Of Graded Germanium-Doped CH Shells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K C; Huang, H; Nikroo, A; Letts, S A; Cook, R C

    2005-07-07

    One of the current capsule designs for achieving ignition on the National Ignition Facility (NIF) is a 2 mm diameter graded Ge-doped CH shell that has a 160 {micro}m thick wall. The Ge doping is not uniform, but rather is in radial steps. This graded Ge-doped design allows rougher surface finish than the original undoped CH design thus has a less stringent new surface standard. We selected quality mandrel mandrels by coating dozens of mandrel batches to {approx}70 {micro}m thickness to amplify sub-micrometer defects on the mandrels and successively removed inferior batches. The Ge-doping layers are made by introducing (CH{sub 3}){sub 4}Ge to the gas stream. The doping concentrations were determined by performing tryout runs and characterized by X-ray fluorescence analyses and quantitative radiograph calculations, with good agreement between the methods being demonstrated. The precise layer thickness and Ge concentrations were determined by a non-destructive quantitative contact radiograph. The as-coated shell has an inner 10 {micro}m undoped CH layer, followed by a 48 {micro}m thick 0.83 at.% Ge-doped CH, 10 {micro}m thick 0.38 at.% Ge-doped CH and then 90 {micro}m of undoped CH. The shell meets nearly all the NIF design thickness specifications and Ge concentrations. The atomic force microscope power spectrum of the shell meets the new NIF standard. The shells has a root-mean-square surface roughness of {approx}24 nm (modes 100-1000). A few surface flaws are isolated domes of 1 {micro}m tall and 20 {micro}m in diameter. Mandrel was successfully removed by pyrolysis at 305 C for 10-20 h. After pyrolysis, the diameter and wall shrink 0.4% and 5.7%, respectively. The shell's inner surface has root-mean-square roughness ranging from 1.1-6.5 nm by WYKO interferometer measurement.

  11. Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland.

    Science.gov (United States)

    Lowry, Gregory V; Espinasse, Benjamin P; Badireddy, Appala Raju; Richardson, Curtis J; Reinsch, Brian C; Bryant, Lee D; Bone, Audrey J; Deonarine, Amrika; Chae, Soryong; Therezien, Mathieu; Colman, Benjamin P; Hsu-Kim, Heileen; Bernhardt, Emily S; Matson, Cole W; Wiesner, Mark R

    2012-07-03

    Transformations and long-term fate of engineered nanomaterials must be measured in realistic complex natural systems to accurately assess the risks that they may pose. Here, we determine the long-term behavior of poly(vinylpyrrolidone)-coated silver nanoparticles (AgNPs) in freshwater mesocosms simulating an emergent wetland environment. AgNPs were either applied to the water column or to the terrestrial soils. The distribution of silver among water, solids, and biota, and Ag speciation in soils and sediment was determined 18 months after dosing. Most (70 wt %) of the added Ag resided in the soils and sediments, and largely remained in the compartment in which they were dosed. However, some movement between soil and sediment was observed. Movement of AgNPs from terrestrial soils to sediments was more facile than from sediments to soils, suggesting that erosion and runoff is a potential pathway for AgNPs to enter waterways. The AgNPs in terrestrial soils were transformed to Ag(2)S (~52%), whereas AgNPs in the subaquatic sediment were present as Ag(2)S (55%) and Ag-sulfhydryl compounds (27%). Despite significant sulfidation of the AgNPs, a fraction of the added Ag resided in the terrestrial plant biomass (~3 wt % for the terrestrially dosed mesocosm), and relatively high body burdens of Ag (0.5-3.3 μg Ag/g wet weight) were found in mosquito fish and chironomids in both mesocosms. Thus, Ag from the NPs remained bioavailable even after partial sulfidation and when water column total Ag concentrations are low (<0.002 mg/L).

  12. Clinical and Virological Characteristics of Chronic Hepatitis B Patients with Coexistence of HBsAg and Anti-HBs

    OpenAIRE

    Yong Liu; Le Zhang; Jin-Yong Zhou; Jinshun Pan; Wei Hu; Yi-Hua Zhou

    2016-01-01

    Coexistence of hepatitis B surface antigen (HBsAg) and antibody against HBsAg (anti-HBs) comprises an atypical serological profile in patients with chronic hepatitis B virus (HBV) infection. In this study, in total 94 patients with coexisting HBsAg and anti-HBs and 94 age- and sex-matched patients with positive HBsAg were characterized by quantitatively measuring HBsAg and HBV DNA, sequencing large S genes, and observing clinical features. Compared with common hepatitis B patients, the patien...

  13. Adsorptive Desulfurization of Gasoline With Ag(Ⅰ)-Based Cationic Metal-Organic Frameworks%Ag(Ⅰ)金属有机骨架材料在汽油吸附脱硫中的应用

    Institute of Scientific and Technical Information of China (English)

    许敏; 刘丹; 桂建舟; 孟祥巍; 林赛燕; 马娟娟; 姜燕

    2012-01-01

    The desulfurization of model gasoline containing 500 jig/g sulfur by selective adsorption over the metal - organic frameworks (MOFs) of Ag2 (4 .4'- bipy), - (O3SCH2CH2SOs >, Ag<4 ,4- bipy)NO, and Ag(4 .4'-bipy)ClO, were studied in a static adsorbent at ambient temperature and pressure by using model fuels. The results show that adsorption rate of Ag2 (4,4 - bipy)2 - (OsSCH..CH2S()3), Ag(4.4'- bipy)NO, and Ag(4,4- bipy)CK), reached 70%, and the adsorptive selectivity of Ag2(4, 4'-bipy)2 - (O3CH2CH2SO2 ) and Ag(4, 4'- bipy) CIO, to thiophene wouldn't decrease significantly as the concentration of 1-octene increases. Moreover, for the silver-based MOF materials, there is a slight change on their framework after regeneration, however it wont lead to obvious change on the adsorption performance. Meanwhile deep desulfurization of real gasoline were also carried out, and find that sulphur content can decreased from the initial 70 fig/g to 8 μg/g over Ag2 (4,4-bipy)2-(OiSCH.CHjSOs ), and no obvious decrease in desulfurization capability can be observed after recycling 5 times.%以金属骨架材料Ag2(4,4'-bipy)2-(O3SCH2CH2SO3),Ag(4,4-bipy)NO3和Ag(4,4-bipy)ClO4为吸附剂,在常温常压下,研究了不同剂油物质的量比条件下的吸附脱硫效果,并测试了在不同1-辛烯含量的模拟油(含硫质量分数为500 μg/g)中的脱硫效果.结果表明:3种吸附剂在吸附前后晶体骨架结构略有改变;对噻吩的吸附程度都能达到70%左右;随着吸附剂含量的增加,脱硫率明显增加,最多的Ag2(4,4'-bipy)2-(O3SCH2CH2SO3)可以增加12.22%; 1-辛烯含量对Ag2(4,4'-bipy)2-(O3SCH2CH2SO3)的脱硫效果没有明显影响.同时Ag2(4,4'-bipy)2-(O3SCH2CH2SO3)对真实汽油的吸附脱硫实验表明:在常温常压下,真实汽油含硫质量分数可从70 μg/g降低到8 μg/g;再生后的吸附剂重复使用5次其吸附性能基本不变.

  14. In situ structural study on underpotential deposition of Ag on Au(111) electrode using surface X-ray scattering technique

    OpenAIRE

    KONDO, Toshihiro; Morita, Jun; Okamura, Masayuki; Saito, Toshiya; Uosaki, Kohei

    2002-01-01

    In situ surface X-ray scattering (SXS) measurements were carried out to study the structure of a Ag layer on a Au(111) electrode formed by underpotential deposition (upd) in sulfuric acid solution. Specular rod profiles showed that a monolayer of Ag was formed at a potential between the second and third upd peaks, and a bilayer of Ag was formed at a potential between the third upd peak and bulk deposition. Non-specular rod profiles demonstrated that electrochemically deposited Ag atoms both i...

  15. Synthesis of Dihydropyridines and Pyridines from Imines and Alkynes via C-H Activation

    Energy Technology Data Exchange (ETDEWEB)

    Ellman, Jonathan A.; Colby, Denise; Bergman, Robert

    2007-11-20

    A convenient one-pot C-H alkenylation/electrocyclization/aromatization sequence has been developed for the synthesis of highly substituted pyridine derivatives from alkynes and {alpha},{beta}-unsaturated N-benzyl aldimines and ketimines that proceeds through dihydropyridine intermediates. A new class of ligands for C-H activation was developed, providing broader scope for the alkenylation step than could be achieved with previously reported ligands. Substantial information was obtained about the mechanism of the reaction. This included the isolation of a C-H activated complex and its structure determination by X-ray analysis; in addition, kinetic simulations using the Copasi software were employed to determine rate constants for this transformation, implicating facile C-H oxidative addition and slow reductive elimination steps.

  16. Selenium carboxylic acids betaine; 3,3‧,3″-selenotris(propanoic acid) betaine, Se(CH2CH2COOH)2(CH2CH2COO)

    Science.gov (United States)

    Doudin, Khalid; Törnroos, Karl W.

    2017-06-01

    Attempts to prepare [Se(CH2CH2COOH)3]+Cl- from Se(CH2CH2COOH)2 and H2Cdbnd CHCOOH in concentrated hydrochloric acid, for the corresponding sulfonium salt, led exclusively to the Se-betaine, Se(CH2CH2COOH)2(CH2CH2COO). The Se-betaine crystallises in the space group P2l/c with the cell dimensions at 223 K, a = 5.5717(1), b = 24.6358(4), c = 8.4361(1) Å, β = 104.762(1)°, V = 1119.74(3) Å3, Z = 4, Dcalc = 1.763 Mgm- 3, μ = 3.364 Mm-1. The structure refined to RI = 0.0223 for 2801 reflections with Fo > 4σ(Fo). In the crystalline state the molecule is intermolecularly linked to neighbouring molecules by a number of hydrogen bonds; a very strong carboxylic-carboxylate bond with an O⋯O distance of 2.4435(16) Å, a medium strong carboxylic-carboxylate bond with an O⋯O distance of 2.6431(16) Å and several weak O⋯H(CH2) with O⋯C distances between 3.2 and 3.3 Å. In the carboxylic group involved in the very strong hydrogen bond the O⋯H bond is antiperiplanar to the Cdbnd O bond while the Osbnd H bond is periplanar to the Cdbnd O bond in the second carboxylic group. Based upon the Csbnd O bond lengths and the elongation of the Osbnd H bond involved in the strong hydrogen bond one may describe the compound as strongly linked units of Se(CH2CH2COOH)(CH2CH2COO)2 rather than Se(CH2CH2COOH)2(CH2CH2COO). The selenium atom forms two strong intramolecular 1,5-Se⋯O contacts, with a carboxylate oxygen atom, 2.9385(12) Å, and with a carboxylic oxygen atom, 2.8979(11) Å. To allow for these contacts the two organic fragments have been forced into the periplanar conformation. The molecule is only slightly asymmetric with regard to the Csbnd Sesbnd C bond angles but is very asymmetric with regard to the torsion angles.

  17. Vývoj nových druhů plynotěsných a vodotěsných povrchových úprav

    OpenAIRE

    2013-01-01

    Práce se zabývá vývojem nových druhů plynotěsných a vodotěsných povrchových úprav na bázi sekundární krystalizace cementu, s využitím průmyslových odpadů jako druhotných surovin při formulaci receptur. The work deals with the development of new types of gas and waterproof tight coatings based on secondary crystallization of cement, using industrial waste as secondary raw material in the formulation of new recipes. P

  18. Bunching high intensity proton beams with a CH-DTL

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Malte; Claessens, Christine; Heilmann, Manuel; Hinrichs, Ole; Koser, Daniel; Meusel, Oliver; Noll, Daniel; Podlech, Holger; Ratzinger, Ulrich; Seibel, Anja [Institut fuer Angewandte Physik, Goethe-Universitaet Frankfurt am Main (Germany)

    2014-07-01

    The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) will provide ultra short neutron pulses at high intensities and repetition rates. The facility is under construction with an expected first beam by the end of 2014. A 5-Gap CH rebuncher is installed behind a coupled RFQ/IH-DTL combination at the end of the LINAC section between two magnetic quadrupole triplets. It will be used for varying the final energy between 1.8 and 2.2 MeV, as well as for focusing the proton beam bunch longitudinally, to compensate RF defocusing effects and huge space charge forces at currents up to 200 mA at the final stage of extension. Therefore high current beam dynamic simulations are in progress. They include benchmarking of different beam dynamic codes like LORASR, TraceWin and Bender (a new PIC tracking code developed at IAP), as well as validating the results by measurements. Detailed error tolerance studies, thermal simulations and examination of multipole field impact, due to the cavity geometry, are also done. Furthermore, this CH rebuncher serves as prototype for CH cavity operation at MYRRHA (Belgium), an Accelerator Driven System (ADS) for transmutation of high level nuclear waste. After copper-plating the cavity, RF conditioning will start in spring 2014.

  19. Ag-Air Service

    Science.gov (United States)

    1981-01-01

    Econ, Inc.'s agricultural aerial application, "ag-air," involves more than 10,000 aircraft spreading insecticides, herbicides, fertilizer, seed and other materials over millions of acres of farmland. Difficult for an operator to estimate costs accurately and decide what to charge or which airplane can handle which assignment most efficiently. Computerized service was designed to improve business efficiency in choice of aircraft and determination of charge rates based on realistic operating cost data. Each subscriber fills out a detailed form which pertains to his needs and then receives a custom-tailored computer printout best suited to his particular business mix.

  20. Asian Facilities

    Science.gov (United States)

    Nakahata, M.

    2011-04-01

    Asian underground facilities are reviewed. The YangYang underground Laboratory in Korea and the Kamioka observatory in Japan are operational and several astrophysical experiments are running. Indian Neutrino Observatory(INO) and China JinPing Underground Laboratory (CJPL) are under construction and underground experiments are being prepared. Current activities and future prospects at those underground sites are described.

  1. Unusual reaction paths of SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-: Quantum chemical calculations

    Science.gov (United States)

    Minyaev, Ruslan M.; Quapp, Wolfgang; Schmidt, Benjamin; Getmanskii, Ilya V.; Koval, Vitaliy V.

    2013-11-01

    Quantum chemical (CCSD(full)/6-311++G(3df,3pd), CCSD(T)(full)/6-311++G(3df,3pd)) and density function theory (B3LYP/6-311++G(3df,3pd)) calculations were performed for the SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-. The calculated gradient reaction pathways for both reactions have an unusual behavior. An unusual stationary point of index 2 lies on the gradient reaction path. Using Newton trajectories for the reaction path, we can detect VRI point at which the reaction path branches.

  2. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    Science.gov (United States)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  3. Immunoblot profiles of sera from laboratory rats naturally infected with Mycoplasma pulmonis and technicians exposed to infected animal facilities Imunoeletroforese do soro de ratos naturalmente infectados com Mycoplasma pulmonis e bioteristas expostos a biotérios infectados

    Directory of Open Access Journals (Sweden)

    Márcio Oliveira Delgado

    2001-12-01

    Full Text Available Mycoplasma pulmonis have been isolated in about 10(5 CFU/mL from tracheal aspirates of rats from conventional animal facilities in São Paulo. The mycoplasma transmission by aerosol may happen from an infected rat to a healthy one at distances up to 120 cm. This condition also favors the technicians contamination. As this infection is unknown in humans, in this study the immunoblot profiles to M. pulmonis of sera from rats were compared to those presented by animal facility technicians. About 32 proteins from 11 to 230 kDa (kilodaltons were recognized by the sera from rats naturally infected with M. pulmonis. Sera from technicians responsible for the cleaning and sanitation of cages of infected animals for more than seven years recognized about 10 proteins of this bacteria. Sera from individuals with shorter working time or that had never been exposed to such environment recognized few proteins. Proteins about 117 and 95 kDa were recognized by human and rat sera and by the negative controls. Although a positive human serum against M. pulmonis is unknown, this study established a temporary profile of protein recognition of human serum against such mycoplasma.Mycoplasma pulmonis foi isolado em aproximadamente 10(5 UFC/mL do lavado traqueal de ratos mantidos em biotérios convencionais da cidade de São Paulo. A transmissão do micoplasma por aerossol pode ocorrer entre os animais em até 120 cm. Esta condição favorece a sua transmissão para os bioteristas que também são expostos a este microrganismo. Como esta colonização é desconhecida em humanos, as imunoeletroforeses dos soros destes indivíduos foram comparados à com os dos ratos. Aproximadamente 32 proteínas de 11 a 230 kDa foram reconhecidas pelo soros dos ratos naturalmente infectados com M. pulmonis. Os soros dos bioteristas que estão envolvidos por mais de 7 anos na higenização das caixas com animais infectados reconheceram cerca de 10 proteínas deste microrganismo. O soro

  4. Environmental Management Waste Management Facility Waste Lot Profile for the K-770 Scrap Yard Soils and Miscellaneous Debris, East Tennessee Technology Park, Oak Ridge, Tennessee - EMWMF Waste Lot 4.12

    Energy Technology Data Exchange (ETDEWEB)

    Davenport M.

    2009-04-15

    Waste Lot 4.12 consists of approximately 17,500 yd{sup 3} of low-level, radioactively contaminated soil, concrete, and incidental metal and debris generated from remedial actions at the K-770 Scrap Metal Yard and Contaminated Debris Site (the K-770 Scrap Yard) at the East Tennessee Technology Park (ETTP). The excavated soil will be transported by dump truck to the Environmental Management Waste Management Facility (EMWMF). This profile provides project-specific information to demonstrate compliance with Attainment Plan for Risk/Toxicity-based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee (DOE 2001). The K-770 Scrap Yard is an approximately 36-acre storage area located southwest of the main portion of ETTP, outside the security perimeter fence in the Powerhouse Area adjacent to the Clinch River. The K-770 area was used to store radioactively contaminated or suspected contaminated materials during and previous to the K-25 Site cascade upgrading program. The waste storage facility began operation in the 1960s and is estimated to at one time contain in excess of 40,000 tons of low-level, radioactively contaminated scrap metal. Scrap metal was taken to the site when it was found to contain alpha or beta/gamma activity on the surface or if the scrap metal originated from a process building. The segregated metal debris was removed from the site as part of the K-770 Scrap Removal Action (RA) Project that was completed in fiscal year (FY) 2007 by Bechtel Jacobs Company LLC (BJC). An area of approximately 10 acres is located in EUs 29 and 31 where the scrap was originally located in the 100-year floodplain. In the process of moving the materials around and establishing segregated waste piles above the 100-year floodplain, the footprint of the site was expanded by 10-15 acres in EUs 30 and 32. The area in EUs 29 and 31 that was cleared of metallic debris in the floodplain was sown with grass. The areas in EUs 30 and 32 have some scattered

  5. General expressions of peaked traveling wave solutions of CH-γ and CH equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wenling

    2004-01-01

    We use qualitative analysis and numerical simulation to study peaked traveling wave solutions of CH-γ and CH equations. General expressions of peakon and periodic cusp wave solutions are obtained. Some previous results become our special cases.

  6. annoPeak: a web application to annotate and visualize peaks from ChIP-seq/ChIP-exo-seq.

    Science.gov (United States)

    Tang, Xing; Srivastava, Arunima; Liu, Huayang; Machiraju, Raghu; Huang, Kun; Leone, Gustavo

    2017-05-15

    We developed annoPeak, a web application to annotate, visualize and compare predicted protein-binding regions derived from ChIP-seq/ChIP-exo-seq experiments using human and mouse cells. Users can upload peak regions from multiple experiments onto the annoPeak server to annotate them with biological context, identify associated target genes and categorize binding sites with respect to gene structure. Users can also compare multiple binding profiles intuitively with the help of visualization tools and tables provided by annoPeak. In general, annoPeak will help users identify patterns of genome wide transcription factor binding profiles, assess binding profiles in different biological contexts and generate new hypotheses. The web service is freely accessible through URL: http://ccc-annopeak.osumc.edu/annoPeak . Source code is available at https://github.com/XingTang2014/annoPeak . gustavo.leone@osumc.edu or kun.huang@osumc.edu. Supplementary data are available at Bioinformatics online.

  7. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data

    Directory of Open Access Journals (Sweden)

    Pagès Hervé

    2010-05-01

    Full Text Available Abstract Background Chromatin immunoprecipitation (ChIP followed by high-throughput sequencing (ChIP-seq or ChIP followed by genome tiling array analysis (ChIP-chip have become standard technologies for genome-wide identification of DNA-binding protein target sites. A number of algorithms have been developed in parallel that allow identification of binding sites from ChIP-seq or ChIP-chip datasets and subsequent visualization in the University of California Santa Cruz (UCSC Genome Browser as custom annotation tracks. However, summarizing these tracks can be a daunting task, particularly if there are a large number of binding sites or the binding sites are distributed widely across the genome. Results We have developed ChIPpeakAnno as a Bioconductor package within the statistical programming environment R to facilitate batch annotation of enriched peaks identified from ChIP-seq, ChIP-chip, cap analysis of gene expression (CAGE or any experiments resulting in a large number of enriched genomic regions. The binding sites annotated with ChIPpeakAnno can be viewed easily as a table, a pie chart or plotted in histogram form, i.e., the distribution of distances to the nearest genes for each set of peaks. In addition, we have implemented functionalities for determining the significance of overlap between replicates or binding sites among transcription factors within a complex, and for drawing Venn diagrams to visualize the extent of the overlap between replicates. Furthermore, the package includes functionalities to retrieve sequences flanking putative binding sites for PCR amplification, cloning, or motif discovery, and to identify Gene Ontology (GO terms associated with adjacent genes. Conclusions ChIPpeakAnno enables batch annotation of the binding sites identified from ChIP-seq, ChIP-chip, CAGE or any technology that results in a large number of enriched genomic regions within the statistical programming environment R. Allowing users to pass their

  8. Modified polyol route for synthesis of Fe{sub 3}O{sub 4}/Ag and α-Fe/Ag nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Mohamed [Center for NanoBioEngineering and Spintronics, Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Emerging Material Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu (Korea, Republic of); Ceramics Department, National Research Centre, 12311 Cairo (Egypt); Parvatheeswara Rao, B. [Department of Physics, Andhra University, Visakhapatnam 530003 (India); Abdel-Hamed, M.O. [Physics Department, Faculty of Science, El-Minia University (Egypt); Kim, CheolGi, E-mail: cgkim@cnu.ac.kr [Center for NanoBioEngineering and Spintronics, Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Emerging Material Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu (Korea, Republic of)

    2014-12-05

    Highlights: • We developed new polyol route for synthesis and coating of Fe{sub 3}O{sub 4}/Ag in one-pot. • The phase change from Fe{sub 3}O{sub 4}/Ag to α-Fe/Ag by using the annealing system at 600 °C. • XRD, TEM, EDS, XPS, and VSM techniques used to characterize the samples. • The Fe{sub 3}O{sub 4}/Ag nanocomposite showed nearly superparamagnetic properties. - Abstract: We developed a new one-pot synthesis method for realizing silver coated magnetite nanocomposite by way of a modified polyol process. In this reaction, polyethylene glycol was used as a solvent media and it was observed to play a key role to act as a reducing agent, stabilizer as well as a linker for silver coating simultaneously. Further, we could successfully transfer the phase from Fe{sub 3}O{sub 4}/Ag to α-Fe/Ag by using the annealing system at 600 °C in presence of hydrogen gas. X-ray diffraction data was independently used to confirm the formation of both the phases of Fe{sub 3}O{sub 4}/Ag and α-Fe/Ag. These Fe{sub 3}O{sub 4}/Ag and α-Fe/Ag samples were also characterized using transmission electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy techniques and compared the results with those of seed Fe{sub 3}O{sub 4} nanoparticles. The magnetic properties of the composites, Fe{sub 3}O{sub 4}/Ag and α-Fe/Ag with different Ag concentrations, along with the seed Fe{sub 3}O{sub 4} nanoparticles were measured using vibrating sample magnetometer (VSM) at room temperature. Maximum magnetization values of 61.3 emu/g and 175.1 emu/g were observed for the samples with 1 mL Ag concentrations of Fe{sub 3}O{sub 4}/Ag and α-Fe/Ag, respectively. This new synthesis method looks to be a promising route for facile synthesis of different magnetic nanocomposites suitable for bioapplications.

  9. The Products of the Thermal Decomposition of CH3CHO

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliou, AnGayle; Piech, Krzysztof M.; Zhang, Xu; Nimlos, Mark R.; Ahmed, Musahid; Golan, Amir; Kostko, Oleg; Osborn, David L.; Daily, John W.; Stanton, John F.; Ellison, G. Barney

    2011-04-06

    We have used a heated 2 cm x 1 mm SiC microtubular (mu tubular) reactor to decompose acetaldehyde: CH3CHO + DELTA --> products. Thermal decomposition is followed at pressures of 75 - 150 Torr and at temperatures up to 1700 K, conditions that correspond to residence times of roughly 50 - 100 mu sec in the mu tubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: VUV photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH3CHO, we have studied three isotopologues, CH3CDO, CD3CHO, and CD3CDO. We have identified the thermal decomposition products CH3(PIMS), CO (IR, PIMS), H (PIMS), H2 (PIMS), CH2CO (IR, PIMS), CH2=CHOH (IR, PIMS), H2O (IR, PIMS), and HC=CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH3CHO: Radical decomposition: CH3CHO + DELTA --> CH3 + [HCO] --> CH3 + H + CO Elimination: CH3CHO + DELTA --> H2 + CH2=C=O. Isomerization/elimination: CH3CHO + DELTA --> [CH2=CH-OH] --> HC=CH + H2O. Both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH2=C:, as an intermediate in the decomposition of vinyl alchohol: CH2=CH-OH + DELTA --> [CH2=C:] + H2O --> HC=CH + H2O.

  10. Dynamic expression profile of HBsAg according to hepatic parenchyma cells' volume at different liver fibrosis stages in the immune clearance phase%慢性乙型肝炎不同肝纤维化分期的肝实质细胞体积所分摊的HBsAg表达变化

    Institute of Scientific and Technical Information of China (English)

    邬喆斌; 曹红; 刘婷; 吴泽倩; 柯伟民; 高志良

    2012-01-01

    Objective The aim of this study was to determine the dynamic expression profile of hepatitis B surface antigen (HBsAg) according to hepatic parenchyma cells' volume at different stages of liver fibrosis during the immune clearance phase.Methods Eighty-nine patients with HBeAg-positive chronic hepatitis B (CHB) in the immune clearance stage were recruited for study.Each patient's serum HBsAg levels were detected by electrochemiluminescence.The serum HBsAg levels were apportioned according to hepatic parenchyma cells' volume at liver fibrosis stages 1,2,3,and 4 and compared by ANOVA.Results The unapportioned serum HBsAg levels (IU/mL) at liver fibrosis stages 1 (227.2 ± 237.7),2 (211.0 ± 131.4),3 (300.1 ± 144.6),and 4 (278.7 ± 148.8) were not significantly different (all comparisons,P range:0.061~0.759).However,when the serum HBsAg levels were apportioned by the same hepatic parenchyma cells' volume at liver fibrosis stages 1 (343.9 ± 359.8),2 (336.4 ± 209.5),3 (508.7 ± 245.1),and 4 (525.2 ± 274.8),the levels were significantly different (all comparisons,F =3.045 and P =0.033; stage 1 vs.3,P =0.041;stage 1 vs.4,P =0.046; stage 2 vs.3,P =0.028; stage 2 vs.4,P =0.034).Conclusion During the immune clearance phase of chronic hepatitis B,increased HBsAg expression is associated with increased hepatic parenchyma cells' volume and progressive liver fibrosis stage.%目的 观察慢性乙型肝炎免疫清除期肝纤维化S1、S2、S3和S4期,相同肝实质细胞体积所分摊HBsAg表达的动态变化. 方法 对89例HBeAg阳性慢性乙型肝炎免疫清除期患者应用电化学发光法检测肝纤维化S1、S2、S3和S4期血清HBsAg的水平;进一步用相同肝实质细胞体积分摊并且两两比较肝纤维化S1、S2、S3和S4期血清HBsAg的水平.使用SPSS 15.0统计软件,组间用两两比较,采用ANOVA检验进行分析. 结果 肝纤维化S1、S2、S3和S4期的血清HBsAg水平分别为(227.2±237.7)IU/ml、(211.0±131.4)IU/ml、(300.2

  11. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    Energy Technology Data Exchange (ETDEWEB)

    Rubina, M.S.; Kamitov, E.E. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation); Zubavichus, Ya. V.; Peters, G.S. [National Research center «Kurchatov Institute», Moscow, 123182 Russian Federation (Russian Federation); Naumkin, A.V. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation); Suzer, S. [Department of Chemistry, Bilkent University, Ankara, 06800 Turkey (Turkey); Vasil’kov, A.Yu., E-mail: alexandervasilkov@yandex.ru [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation)

    2016-03-15

    Graphical abstract: - Highlights: • Biocompatible collagen-chitosan scaffolds were modified by Au and Ag nanoparticles via the metal-vapor synthesis. • Structural and morphological parameters of the nanocomposites were assessed using a set of modern instrumental techniques, including electron microscopy, X-ray diffraction, small-angle X-ray scattering, EXAFS, XPS. • Potential application of the nanocomposites are envisaged. - Abstract: Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  12. libChEBI: an API for accessing the ChEBI database.

    Science.gov (United States)

    Swainston, Neil; Hastings, Janna; Dekker, Adriano; Muthukrishnan, Venkatesh; May, John; Steinbeck, Christoph; Mendes, Pedro

    2016-01-01

    ChEBI is a database and ontology of chemical entities of biological interest. It is widely used as a source of identifiers to facilitate unambiguous reference to chemical entities within biological models, databases, ontologies and literature. ChEBI contains a wealth of chemical data, covering over 46,500 distinct chemical entities, and related data such as chemical formula, charge, molecular mass, structure, synonyms and links to external databases. Furthermore, ChEBI is an ontology, and thus provides meaningful links between chemical entities. Unlike many other resources, ChEBI is fully human-curated, providing a reliable, non-redundant collection of chemical entities and related data. While ChEBI is supported by a web service for programmatic access and a number of download files, it does not have an API library to facilitate the use of ChEBI and its data in cheminformatics software. To provide this missing functionality, libChEBI, a comprehensive API library for accessing ChEBI data, is introduced. libChEBI is available in Java, Python and MATLAB versions from http://github.com/libChEBI, and provides full programmatic access to all data held within the ChEBI database through a simple and documented API. libChEBI is reliant upon the (automated) download and regular update of flat files that are held locally. As such, libChEBI can be embedded in both on- and off-line software applications. libChEBI allows better support of ChEBI and its data in the development of new cheminformatics software. Covering three key programming languages, it allows for the entirety of the ChEBI database to be accessed easily and quickly through a simple API. All code is open access and freely available.

  13. CMT: a constrained multi-level thresholding approach for ChIP-Seq data analysis.

    Directory of Open Access Journals (Sweden)

    Iman Rezaeian

    Full Text Available Genome-wide profiling of DNA-binding proteins using ChIP-Seq has emerged as an alternative to ChIP-chip methods. ChIP-Seq technology offers many advantages over ChIP-chip arrays, including but not limited to less noise, higher resolution, and more coverage. Several algorithms have been developed to take advantage of these abilities and find enriched regions by analyzing ChIP-Seq data. However, the complexity of analyzing various patterns of ChIP-Seq signals still needs the development of new algorithms. Most current algorithms use various heuristics to detect regions accurately. However, despite how many formulations are available, it is still difficult to accurately determine individual peaks corresponding to each binding event. We developed Constrained Multi-level Thresholding (CMT, an algorithm used to detect enriched regions on ChIP-Seq data. CMT employs a constraint-based module that can target regions within a specific range. We show that CMT has higher accuracy in detecting enriched regions (peaks by objectively assessing its performance relative to other previously proposed peak finders. This is shown by testing three algorithms on the well-known FoxA1 Data set, four transcription factors (with a total of six antibodies for Drosophila melanogaster and the H3K4ac antibody dataset.

  14. Detection of CH and CH+ in a high latitude molecular cloud

    NARCIS (Netherlands)

    Vries, de C.P.; Dishoeck, van E.F.

    1988-01-01

    Interstellar absorption lines of CH and CH(+) have been detected toward the star HD 210121, which is located behind a previously unknown high-latitude cloud. The CH observations and the measured extinction toward the star provide independent measures of the H2 column density along the line of sight,

  15. Clinical and Virological Characteristics of Chronic Hepatitis B Patients with Coexistence of HBsAg and Anti-HBs.

    Science.gov (United States)

    Liu, Yong; Zhang, Le; Zhou, Jin-Yong; Pan, Jinshun; Hu, Wei; Zhou, Yi-Hua

    2016-01-01

    Coexistence of hepatitis B surface antigen (HBsAg) and antibody against HBsAg (anti-HBs) comprises an atypical serological profile in patients with chronic hepatitis B virus (HBV) infection. In this study, in total 94 patients with coexisting HBsAg and anti-HBs and 94 age- and sex-matched patients with positive HBsAg were characterized by quantitatively measuring HBsAg and HBV DNA, sequencing large S genes, and observing clinical features. Compared with common hepatitis B patients, the patients with coexisting HBsAg and anti-HBs had lower HBsAg and HBV DNA levels. These two groups had similar rate of pre-S deletion mutations. However, in patients with coexisting HBsAg and anti-HBs, more amino acid substitutions in the a determinant of S gene were observed in HBV genotype C, but not in genotype B. Fourteen patients with coexisting HBsAg and anti-HBs were followed up for an average of 15.5 months. There were no significant changes in the levels of HBsAg, anti-HBs, HBV DNA and ALT over the follow-up period. Compared with the baseline sequences, amino acid substitutions in the MHR of HBsAg occurred in 14.3% (2/14) patients. In conclusion, coexistence of HBsAg and anti-HBs may be associated with higher frequency of mutations in the a determinant of HBV genotype C.

  16. Clinical and Virological Characteristics of Chronic Hepatitis B Patients with Coexistence of HBsAg and Anti-HBs.

    Directory of Open Access Journals (Sweden)

    Yong Liu

    Full Text Available Coexistence of hepatitis B surface antigen (HBsAg and antibody against HBsAg (anti-HBs comprises an atypical serological profile in patients with chronic hepatitis B virus (HBV infection. In this study, in total 94 patients with coexisting HBsAg and anti-HBs and 94 age- and sex-matched patients with positive HBsAg were characterized by quantitatively measuring HBsAg and HBV DNA, sequencing large S genes, and observing clinical features. Compared with common hepatitis B patients, the patients with coexisting HBsAg and anti-HBs had lower HBsAg and HBV DNA levels. These two groups had similar rate of pre-S deletion mutations. However, in patients with coexisting HBsAg and anti-HBs, more amino acid substitutions in the a determinant of S gene were observed in HBV genotype C, but not in genotype B. Fourteen patients with coexisting HBsAg and anti-HBs were followed up for an average of 15.5 months. There were no significant changes in the levels of HBsAg, anti-HBs, HBV DNA and ALT over the follow-up period. Compared with the baseline sequences, amino acid substitutions in the MHR of HBsAg occurred in 14.3% (2/14 patients. In conclusion, coexistence of HBsAg and anti-HBs may be associated with higher frequency of mutations in the a determinant of HBV genotype C.

  17. COPOLYMERIZATION OF ETHYLENE AND PROPYLENE WITH (CpCH2CH2CH=CH2)2MCl2 (M = Zr, Hf) AND Cp2ZrCl2 CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    Hui Yao; Shi-jing Xiao

    2000-01-01

    (CpCH2CH2CH = CH2)2MCl2(M = Zr, Hf)/MAO and Cp2ZrCl2/MAO (Cp = cyclopentadienyl; MAO =methylaluminoxane) catalyst systems have been compared for ethylene copolymerization to investigate the influence of the ligand and transition metal on the polymerization activity and copolymer properties. For both CH2CH2CH=CH2 substituted catalysts the catalytic activity decreased with increasing propene concentration in the feed. The activity of the hafnocene catalyst was 6~8 times lower than that of the analogous zirconocene catalyst, 13C NMR analysis showed that the copolymer obtained using the unsubstituted catalyst Cp2ZrCl2 has greater incorporatien of propene than those produced by CH2CH2CH=CH2 substituted Zr and Hf catalysts. The melting point, crystallinity and the viscosity-average molecular weight of the copolymer decreased with an increase of propene concentration in the feed. Both CH2CH2CH =CH2 substituted Zr and Hf catalysts exhibit little or no difference in the melting point and crystallinity of the produced copolymers. However,there are significant differences between the two zirconocene catalysts. The copolymer produced by Cp2ZrCl2 catalyst have much lower Tm and Xc than those obtained with the (CpCH2CH2CH=CH2)2ZrCl2 catalyst. The density and molecular weight of the copolymer decreased in the order: (CpCH2CH2CH=CH2)2HfCl2>(CpCH2CH2CH=CH2)2ZrCl2>Cp2ZrCl2. The kinetic behavior of copolymerizaton with Hf catalyst was found to be different from that with Zr catalyst.

  18. About AgEcon Search

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>AgEcon Search is a free,open access repository of full-text scholarly literature in agricultural and applied economics,including working papers,conference papers,and journal articles. AgEcon Search is co-sponsored by the Department of Applied Economics and

  19. About AgEcon Search

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>AgEcon Search is a free,open access repository of full-text scholarly literature in agricultural and applied economics,including working papers,conference papers,and journal articles.AgEcon Search is co-sponsored by the Department of Applied Economics andthe University Libraries

  20. About AgEcon Search

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>AgEcon Search is a free,open access repository of full-text scholarly literature in agricultural and applied economics,including working papers,conference papers,and journal articles. AgEcon Search is cosponsored by the Department of Applied Economics and the University Libraries at University of Minnesota and the Agricultural and Applied Economics Association.

  1. About AgEcon Search

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>AgEcon Search is a free,open access repository of full-text scholarly literature in agricultural and applied economics,including working papers,conference papers,and journal articles. AgEcon Search is co-sponsored by the Department of Applied Economics and the University Libraries at University of Minnesota and the Agricultural and Applied

  2. About AgEcon Search

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>AgEcon Search is a free,open access repository of full-text scholarly literature in agricultural and applied economics,including working papers,conference papers,and journal articles.AgEcon Search is co-sponsored by the Department of Applied Economics and the University Libraries

  3. About AgEcon Search

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>AgEcon Search is a free,open access repository of full-text scholarly literature in agricultural and applied economics,including working papers,conference papers,and journal articles. AgEcon Search is co-sponsored by the Department of Applied Economics and the University Libraries at University of Minnesota and the Agricultural and Applied Economics Association. Research

  4. About AgEcon Search

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>AgEcon Search is a free,open access repository of full-text scholarly literature in agricultural and applied economics,including working papers,conference papers,and journal articles. AgEcon Search is co-sponsored by the Department of Applied E-

  5. AGS Experiments: 1989, 1990, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ``as run``; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  6. AGS Experiments: 1989, 1990, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  7. About AgEcon Search

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>AgEcon Search is a free, open access repository of full-text scholarly literature in agricultural and applied economics, including working papers, conference papers, and journal articles.AgEcon Searchis co-sponsored by the Department of Applied E

  8. Formaldehyde mediated proton-transport catalysis in the ketene-water radical cation CH2C(O)OH2+

    Science.gov (United States)

    Lee, Richard; Ruttink, Paul J. A.; Burgers, Peter C.; Terlouw, Johan K.

    2006-09-01

    Previous studies have shown that the solitary ketene-water ion CH2C(O)OH2+ (1) does not isomerize into CH2C(OH)2+ (2), its more stable hydrogen shift isomer. Tandem mass spectrometry based collision experiments reveal that this isomerization does take place in the CH2O loss from low-energy 1,3-dihydroxyacetone ions (HOCH2)2CO+. A mechanistic analysis using the CBS-QB3 model chemistry shows that such molecular ions rearrange into hydrogen-bridged radical cations [CH2C(O)O(H)-H...OCH2]+ in which the CH2O molecule catalyzes the transformation 1 --> 2 prior to dissociation. The barrier for the unassisted reaction, 29 kcal mol-1, is reduced to a mere 0.6 kcal mol-1 for the catalysed transformation. Formaldehyde is an efficient catalyst because its proton affinity meets the criterion for facile proton-transport catalysis.

  9. Scientific Computing in the CH Programming Language

    Directory of Open Access Journals (Sweden)

    Harry H. Cheng

    1993-01-01

    Full Text Available We have developed a general-purpose block-structured interpretive programming Ianguage. The syntax and semantics of this language called CH are similar to C. CH retains most features of C from the scientific computing point of view. In this paper, the extension of C to CH for numerical computation of real numbers will be described. Metanumbers of −0.0, 0.0, Inf, −Inf, and NaN are introduced in CH. Through these metanumbers, the power of the IEEE 754 arithmetic standard is easily available to the programmer. These metanumbers are extended to commonly used mathematical functions in the spirit of the IEEE 754 standard and ANSI C. The definitions for manipulation of these metanumbers in I/O; arithmetic, relational, and logic operations; and built-in polymorphic mathematical functions are defined. The capabilities of bitwise, assignment, address and indirection, increment and decrement, as well as type conversion operations in ANSI C are extended in CH. In this paper, mainly new linguistic features of CH in comparison to C will be described. Example programs programmed in CH with metanumbers and polymorphic mathematical functions will demonstrate capabilities of CH in scientific computing.

  10. Dynamics Calculation of CH-DTL

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    CH-DTL is a new development of accelerator structure, which has high shunt impedance and simple structure. The beam dynamics of CH-DTL is based on KONUS method, whose characteristic is that the longitudinal focus is small or none,

  11. The Chêneau concept of bracing--biomechanical aspects.

    Science.gov (United States)

    Rigo, Manuel; Weiss, Hans-Rudolf

    2008-01-01

    Current concept of bracing must take in consideration both the three-dimensional (3D) nature of Adolescent Idiopathic Scoliosis (AIS) and its pathomechanism of progression. A modern brace should be able to correct in 3D in order to break the so called 'vicious cycle' model. Generally speaking, it is necessary to create detorsional forces to derotate in the transversal plane, to correct the lateral deviation in the frontal plane and to normalize the sagittal profile of the spine. Breathing mechanics can be used to fight against the thoracic structural flat back. The original Chêneau brace was introduced at the end of the 70's and its principles were based more in anatomical observations rather than in biomechanics. A further evolution , enunciating new principles, has allowed a higher standard, improving in brace corrections and trunk modelling. This biomechanical principles have been developed under the name of Rigo-Chêneau-System (RSC) and used later in latest brace models like the Chêneau light with reduced material, and similar in brace corrections. Experience is also important to improve the end results. The blueprints to built the brace according to the anatomorradiological pattern are very helpful.

  12. In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag2WO4/Ag/Bi2MoO6 composite for enhanced and stable visible light photocatalyst

    Science.gov (United States)

    Lv, Jiali; Dai, Kai; Zhang, Jinfeng; Lu, Luhua; Liang, Changhao; Geng, Lei; Wang, Zhongliao; Yuan, Guangyu; Zhu, Guangping

    2017-01-01

    A novel hierarchical Ag2WO4/Ag/Bi2MoO6 ternary visible-light-driven photocatalyst was successfully synthesized by in situ doping Ag2WO4 with Bi2MoO6 nanosheets through a facile hydrothermal and photochemical process. The morphology, structure, optical performance and crystallinity of the products were measured by field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS), UV-vis diffuse reflectance spectroscopy (DRS) and X-ray diffraction (XRD). The results showed that Ag2WO4/Ag was uniformly dispersed on the surface of Bi2MoO6 nanosheets. The photocatalytic performance of Ag2WO4/Ag/Bi2MoO6 heterostructures was evaluated by the degradation of methylene blue (MB) under 410 nm LED arrays. The ternary Ag2WO4/Ag/Bi2MoO6 nanocomposite exhibits higher photocatalytic activity than Bi2MoO6 and Ag2WO4. The synergistic effect of Ag2WO4 and Bi2MoO6 could generated more heterojunctions which promoted photoelectrons transfer from Ag2WO4 to Bi2MoO6, leading to the improvement of photocatalytic performance by photoelectrons-holes recombination suppression. At the same time, the surface plasmon resonance of Ag2WO4/Ag/Bi2MoO6 is another crucial reason for the high photocatalytic performance of organic pollutants degradation. And the 20 wt% Ag2WO4-loaded Bi2MoO6 shows the optimal photocatalytic performance in the degradation of MB. In addition, the ternary composites can be easily reclaimed by precipitation and exhibits high stability of photocatalytic degradation after five recycles.

  13. Simple fabrication of Ag nanoparticle-impregnated electrospun nanofibres as SERS substrates

    Indian Academy of Sciences (India)

    Altangerel Amarjargal; Leonard D Tijing; Cheol Sang Kim

    2015-02-01

    A facile method for the fabrication of electrospun polyurethane (PU) nanofibres impregnated with Ag nanoparticles (NPs) as an efficient and free-standing surface-enhanced Raman scattering (SERS) substrates is reported here. Electrospinning was used to produce polymeric nanofibrous matrix, while a liquid polyol(ethylene glycol) solvent under low temperature was used not only to reduce Ag+ to Ag0, but also was employed as the in situ growth medium for well-dispersed Ag NPs on the surface of fibre nets. Large enhancement in Raman signals of 4-mercaptobenzoic acid analytes could be realized in the present Ag/PU nanofibres due to the presence of SERS ‘hotspots’ by means of appropriate interparticle gap.

  14. Ferrocene-Functionalized Cu(I)/Ag(I) Dithiocarbamate Clusters.

    Science.gov (United States)

    Kishore, Pilli V V N; Liao, Jian-Hong; Hou, Hsing-Nan; Lin, Yan-Ru; Liu, C W

    2016-04-04

    A series of compounds, namely, [Cu8(μ4-H){S2CNMeCH2Fc}6](PF6) (1), [Cu7(μ4-H) {S2CN(i)PrCH2Fc}6] (2), [Cu3{S2CN(Bz) (CH2Fc)}2(dppf)2](PF6) (3), and [Ag2{S2CNMe(CH2Fc)}2(PPh3)2] (4) (dppf = 1,1'-bis(diphenylphosphino)ferrocene), supported by multiferrocene assemblies, were synthesized. All the compounds were characterized by (1)H NMR, Fourier transform infrared, elemental analysis, and electrospray ionization mass spectrometry techniques. Single-crystal X-ray structural analysis revealed that 1 is a monocationic octanuclear Cu(I) cluster and that 2 is a neutral heptanuclear Cu(I) cluster with tetracapped tetrahedral (1) and tricapped tetrahedral (2) geometries entrapped with an interstitial hydride, anchored by six ferrocene units at the periphery of the core. Compounds 3 and 4 comprise trimetallic Cu(I) and dimetallic Ag(I) cores enfolded by four and two ferrocene moieties. Interestingly both chelating and bridging modes of binding are observed for dppf ligand in 3. Further the formation and isolation of polyhydrido copper clusters [Cu28H15{S2CN(i)PrCH2Fc}12](PF6) (5) and [Cu28H15{S2CN(n)Bu2}12](PF6) (7), stabilized by bulky ferrocenyl and n-butyl dithiocarbamate ligands, was demonstrated. They are readily identified by (2)H NMR studies on their deuterium analogues, [Cu28D15{S2CN(i)PrCH2Fc}12](PF6) (6) and [Cu28D15{S2CN(n)Bu2}12](PF6) (8). Though the structure details as well as spectroscopic characterizations of 5 are yet to be investigated, the compound 7 is fully characterized by variety of spectroscopy including single-crystal X-ray diffraction. The cyclic voltammetry studies for compounds 1, 2, and 4 display irreversible redox peaks for Fe(2+)/Fe(3+) couple wherein the reduction peaks are not well-resolved due to some adsorption of the complex onto the electrode surface.

  15. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Tian-Long [Key Laboratory for Anisotropy and Texture of Materials, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Advanced Materials Processing Unit, National Institute for Materials Science, Namiki 1–1, Tsukuba, Ibaraki 305-0044 (Japan); Li, Ji-Guang, E-mail: LI.Jiguang@nims.go.jp [Key Laboratory for Anisotropy and Texture of Materials, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Advanced Materials Processing Unit, National Institute for Materials Science, Namiki 1–1, Tsukuba, Ibaraki 305-0044 (Japan); Sun, Xudong, E-mail: xdsun@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Sakka, Yoshio [Advanced Materials Processing Unit, National Institute for Materials Science, Namiki 1–1, Tsukuba, Ibaraki 305-0044 (Japan)

    2016-04-01

    Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag{sup +} concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50 mM of Ag{sup +}, 30 s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~ 1.1 × 10{sup 6} and a low relative standard deviation of ~ 0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. - Highlights: • A facile synthetic technique of growing SERS active Ag substrates onto Cu micro-grid has been systematically studied. • Changing processing parameters has yielded Ag crystals of various morphologies and SERS performances. • PVP additive was observed to suppress Ag dendrite crystallization for nearly monodispersed Ag polyhedrons/nanoplates. • PVP modified SERS substrate exhibits excellent EF and RSD values in the repeated detection of 10 μM R6G analyte.

  16. EPIDAUROS Biotechnologie AG.

    Science.gov (United States)

    Arnold, Hans-Peter; Kluge, Peter; Mauch, Simon

    2005-07-01

    EPIDAUROS Biotechnologie AG is a leading provider of pharmacogenetic consulting, genotyping and research services to the international pharmaceutical and biotechnology industries, contract research organizations and healthcare providers. The company's mission is to improve safety, efficacy and predictability in drug development and drug therapy. EPIDAUROS determines its customers' needs in the field of pharmacogenetics using an in-depth consultancy process. The development and conduct of genotyping assays for drug-metabolizing enzymes, drug transporters and drug targets (for example, receptors)--all performed under stringent quality standards--are a major activity at EPIDAUROS. The company offers its research services to academic and industrial partners for the development of innovative diagnostic solutions by using its intellectual property.

  17. CrN-Ag nanocomposite coatings: Control of lubricant transport by diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Papi, P.A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Mulligan, C.P. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); U.S. Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, NY 12189 (United States); Gall, D., E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2012-12-01

    1-{mu}m-thick self-lubricating CrN-Ag composite coatings containing 16 at.% Ag were deposited on Si substrates by reactive co-sputtering at T{sub s} = 400 Degree-Sign C, and were covered with CrN cap layers with a columnar microstructure and a thickness d = 0-1000 nm. Vacuum annealing at T{sub a} = 500 and 600 Degree-Sign C for 1 h causes Ag transport to the sample surface and the formation of Ag surface grains. Quantitative scanning electron microscopy and energy dispersive spectroscopy analyses show that increasing d from 0 to 10 to 100 nm for T{sub a} = 500 Degree-Sign C leads to a decrease in the areal density of Ag surface grains from 0.86 to 0.45 to 0.04 {mu}m{sup -2}, while their lateral size remains constant at 360 {+-} 60 nm. However, increasing T{sub a} to 600 Degree-Sign C causes a doubling of the Ag grain size, and a 4-30 times larger overall Ag transport. These results are explained by kinetic barriers for Ag diffusion through the porous cap layer with a porosity that decreases with increasing d, resulting in an effective activation barrier for Ag transport that increases from 0.78 eV in the absence of a cap layer to 0.89 eV for d = 10 nm and 1.07 eV for d = 30 nm. Auger electron spectroscopy depth profile analyses of annealed layers reveal no detectable Ag within the CrN cap layer and a uniform depletion of the Ag reservoir throughout the composite coating thickness, indicating unhindered Ag transport within the composite. The overall results show that a CrN diffusion barrier cap layer is an effective approach to control Ag lubricant transport to the surface of CrN-Ag composite coatings. - Highlights: Black-Right-Pointing-Pointer CrN-Ag composite coatings are capped with CrN diffusion barriers. Black-Right-Pointing-Pointer Ag diffuses to the surface during annealing at 500 or 600 Degree-Sign C. Black-Right-Pointing-Pointer The Ag transport is controlled by the cap thickness d = 0-1000 nm. Black-Right-Pointing-Pointer The activation energy for Ag

  18. Plasmonic Ag2MoO4/AgBr/Ag composite: Excellent photocatalytic performance and possible photocatalytic mechanism

    Science.gov (United States)

    Wang, Zhongliao; Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao

    2017-02-01

    Plasmonic Ag2MoO4/AgBr/Ag composite is fabricated by in-situ ion exchange and reduction methods at room temperature. The samples are characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance (DRS), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM) and photoluminescence (PL) measurements. The results show that butterfly-like Ag2MoO4 nanosheets served as the precursor, and Ag2MoO4/AgBr/Ag is formed in phase transformation with MoO42- displaced by Br-. The ternary Ag2MoO4/AgBr/Ag composite photocatalysts show greatly enhanced photocatalytic activity in photodegrading methylene blue (MB) under visible light irradiation compared with AgBr and Ag2MoO4. The pseudo-first-order rate constant kapp of Ag2MoO4/AgBr/Ag is 0.602 min-1, which is 11.6 and 18.3 times as high as that of AgBr and Ag2MoO4, respectively. Meanwhile, the efficiency of degradation still kept 90% after ten times cyclic experiments. Eventually, possible photocatalytic mechanism was proposed.

  19. CTAB-mediated synthesis and characterization of ZnO/Ag core–shell nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Majid; Wei, Chengsha; Chen, Mingming; Tao, Jiaojiao; Huang, Ningdong; Qi, Zeming, E-mail: zmqi@ustc.edu.cn; Li, Liangbin

    2014-11-05

    Graphical abstract: Simplified schematic process for ZnO NRs/Ag nanocomposites. - Highlights: • A new simple and facile approach to synthesize ZnO NRs/Ag core–shell nanocomposite. • The annealing improves the crystallinity and bond strength between Ag and ZnO. • CTAB and AgNO3 greatly affect the formation of ZnO NRs/Ag core–shell. • Strong interfacial interaction between Ag nanoparticles and ZnO nanorods. - Abstract: In this paper, ZnO/Ag core–shell hybrid nanocomposites have been prepared by a very simple chemical methodology. ZnO nanorods were employed as core material for Ag seeds, and subsequent nucleation and growth of Ag nanoparticle by a cationic surfactant cetyltrimethylammonium bromide (CTAB) formed the ZnO NRs/Ag core–shell nanocomposites. In addition, their morphology, microstructure and optical properties have been characterized by X-ray diffraction, Raman Spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV–Vis absorption and photoluminescence spectroscopy. It was found that face-center-cubic Ag nanoparticles with an average diameter of 20 nm were coated onto the surface of hexagonal phase ZnO nanorods with a minimum of 0.09 mmol concentration of CTAB. The excitonic absorption band and surface plasmon absorption band of the ZnO NRs/Ag nanocomposites revealed red-shifts relative to pure ZnO nanorods and metallic Ag nanoparticles. The coating of Ag nanoparticles onto the ZnO nanorods show red-shift in the near band edge (NBE) luminescence spectra and a reasonable detraction in the deep level emission (DLE) spectra compared with the pure ZnO nanorods. These interpretations demonstrated the strong interfacial interaction between Ag nanoparticles and ZnO nanorods. Furthermore, the annealing of ZnO NRs/Ag nanocomposite at 200 °C was done and improvement occurs in the crystallinity and binding strength of Ag nanoparticles.

  20. Initial Effects of NOx on Idodine and Methyl Iodine Loading of AgZ and Aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-31

    This initial evaluation provides insight into the effect of NO on the adsorption of both I2 and CH3I onto reduced silver-exchanged mordenite (Ag0Z). It was determined that adsorption of CH3I onto Ag0Z occurs at approximately 50% of the rate of I2 adsorption onto Ag0Z, although total iodine capacities are comparable. Addition of 1% NO to the simulated off-gas stream results in very similar loading behaviors and iodine capacities for both iodine species. This is most likely an effect of CH3I oxidation to I2 by NO prior to contact with the sorbent bed. Completion of tests including NO2 in the simulated off-gas stream was delayed due to vendor NO2 production schedules. A statistically designed test matrix is partially completed, and upon conclusion of the suggested experiments, the effects of temperature, NO, NO2, and water vapor on the sorption of CH3I and I2 onto Ag0Z will be able to be statistically resolved. This work represents progress towards that aim.

  1. BNL ACCELERATOR-BASED RADIOBIOLOGY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    LOWENSTEIN,D.I.

    2000-05-28

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40--3,000 MeV/nucleon with maximum beam intensities of 10{sup 10} to 10{sup 11} ions per pulse. The BAF Project is described and the future AGS and BAF operation plans are presented.

  2. Environmental Management Waste Management Facility Waste Lot Profile for the K-770 Scrap Yard Soils and Miscellaneous Debris, East Tennessee Technology Park, Oak Ridge, Tennessee - EMWMF Waste Lot 4.12

    Energy Technology Data Exchange (ETDEWEB)

    Davenport M.

    2009-04-15

    Waste Lot 4.12 consists of approximately 17,500 yd{sup 3} of low-level, radioactively contaminated soil, concrete, and incidental metal and debris generated from remedial actions at the K-770 Scrap Metal Yard and Contaminated Debris Site (the K-770 Scrap Yard) at the East Tennessee Technology Park (ETTP). The excavated soil will be transported by dump truck to the Environmental Management Waste Management Facility (EMWMF). This profile provides project-specific information to demonstrate compliance with Attainment Plan for Risk/Toxicity-based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee (DOE 2001). The K-770 Scrap Yard is an approximately 36-acre storage area located southwest of the main portion of ETTP, outside the security perimeter fence in the Powerhouse Area adjacent to the Clinch River. The K-770 area was used to store radioactively contaminated or suspected contaminated materials during and previous to the K-25 Site cascade upgrading program. The waste storage facility began operation in the 1960s and is estimated to at one time contain in excess of 40,000 tons of low-level, radioactively contaminated scrap metal. Scrap metal was taken to the site when it was found to contain alpha or beta/gamma activity on the surface or if the scrap metal originated from a process building. The segregated metal debris was removed from the site as part of the K-770 Scrap Removal Action (RA) Project that was completed in fiscal year (FY) 2007 by Bechtel Jacobs Company LLC (BJC). An area of approximately 10 acres is located in EUs 29 and 31 where the scrap was originally located in the 100-year floodplain. In the process of moving the materials around and establishing segregated waste piles above the 100-year floodplain, the footprint of the site was expanded by 10-15 acres in EUs 30 and 32. The area in EUs 29 and 31 that was cleared of metallic debris in the floodplain was sown with grass. The areas in EUs 30 and 32 have some scattered

  3. Catalytic intermolecular amination of C-H bonds: method development and mechanistic insights.

    Science.gov (United States)

    Fiori, Kristin Williams; Du Bois, J

    2007-01-24

    Reaction methodology for intermolecular C-H amination of benzylic and 3 degrees C-H bonds is described. This process uses the starting alkane as the limiting reagent, gives optically pure tetrasubstituted amines through stereospecific insertion into enantiomeric 3 degrees centers, displays high chemoselectivity for benzylic oxidation, and enables the facile preparation of isotopically enriched 15N-labeled compounds. Access to substituted amines, amino alcohols, and diamines is thereby made possible in a single transformation. Important information relevant to understanding the initial steps in the catalytic cycle, reaction chemoselectivity, the nature of the active oxidant, and pathways for catalyst inactivation has been gained through mechanistic analysis; these studies are also presented.

  4. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  5. Strong CH+ J = 1-0 emission and absorption in DR21

    NARCIS (Netherlands)

    Falgarone, E.; Ossenkopf, V.; Gerin, M.; Lesaffre, P.; Godard, B.; Pearson, J.; Cabrit, S.; Joblin, Ch.; Benz, A. O.; Boulanger, F.; Fuente, A.; Güsten, R.; Harris, A.; Klein, T.; Kramer, C.; Lord, S.; Martin, P.; Martin-Pintado, J.; Neufeld, D.; Phillips, T. G.; Röllig, M.; Simon, R.; Stutzki, J.; van der Tak, F.; Teyssier, D.; Yorke, H.; Erickson, N.; Fich, M.; Jellema, W.; Marston, A.; Risacher, C.; Salez, M.; Schmülling, F.

    2010-01-01

    We report the first detection of the ground-state rotational transition of the methylidyne cation CH+ towards the massive star-forming region DR 21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission line, in addition to two deep and broad absorption f

  6. Strong CH+ J=1-0 emission and absorption in DR21

    NARCIS (Netherlands)

    Falgarone, E.; Ossenkopf, V.; Gerin, M.; Lesaffre, P.; Godard, B.; Pearson, J.; Cabrit, S.; Joblin, Ch; Benz, A. O.; Boulanger, F.; Fuente, A.; Güsten, R.; Harris, A.; Klein, T.; Kramer, C.; Lord, S.; Martin, P.; Martin-Pintado, J.; Neufeld, D.; Phillips, T. G.; Röllig, M.; Simon, R.; Stutzki, J.; van der Tak, F.; Teyssier, D.; Yorke, H.; Erickson, N.; Fich, M.; Jellema, W.; Marston, A.; Risacher, C.; Salez, M.; Schmülling, F.

    2010-01-01

    We report the first detection of the ground-state rotational transition of the methylidyne cation CH+ towards the massive star-forming region DR 21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission line, in addition to two deep and broad absorption f

  7. ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands.

    NARCIS (Netherlands)

    Welboren, W.; Driel, M.A. van; Janssen-Megens, E.M.; Heeringen, S.J. van; Sweep, C.G.J.; Span, P.N.; Stunnenberg, H.G.

    2009-01-01

    We used ChIP-Seq to map ERalpha-binding sites and to profile changes in RNA polymerase II (RNAPII) occupancy in MCF-7 cells in response to estradiol (E2), tamoxifen or fulvestrant. We identify 10 205 high confidence ERalpha-binding sites in response to E2 of which 68% contain an estrogen response

  8. CH-TRU Waste Content Codes

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  9. Development of a superconducting CH-accelerator-structure for light and heavy ions; Entwicklung einer supraleitenden CH-Beschleuniger-Struktur fuer leichte und schwere Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Liebermann, Holger

    2007-07-01

    This work deals with the development of the prototype of a superconducting CH accelerator structure. The simulations were calculated with the program CST Microwave Studio. It is based on the finite integration theory, which the Maxwell equations in a two-grid matrix form convicted so they can be solved numerically. In another chapter, a method for determining the coupling strength is discussed. The conditions that previously were created for the optimization of the prototype of the superconducting CH structure are described. It was for the optimization of the field distribution on the beam axis by adjusting the end cell design, optimization of support for the magnetic and electric fields, leading to reduction of the quadrupole component of the CH-structure, the coupling and, finally, the possibility of static tuning during the completion of the structure. On the basis of these investigations the completion of an initial prototype superconducting at the company ACCEL in Bergisch Gladbach was commissioned. Finally simulations for an operation accelerator facility, and a look at possible areas of the superconducting CH-structure are presented. The optimizations performed for the high power injector led to a more stable operation of the plant. Through this work it could be shown that the newly-CH structure is very well suited for use in superconducting accelerators. (orig.)

  10. PICS: probabilistic inference for ChIP-seq.

    Science.gov (United States)

    Zhang, Xuekui; Robertson, Gordon; Krzywinski, Martin; Ning, Kaida; Droit, Arnaud; Jones, Steven; Gottardo, Raphael

    2011-03-01

    ChIP-seq combines chromatin immunoprecipitation with massively parallel short-read sequencing. While it can profile genome-wide in vivo transcription factor-DNA association with higher sensitivity, specificity, and spatial resolution than ChIP-chip, it poses new challenges for statistical analysis that derive from the complexity of the biological systems characterized and from variability and biases in its sequence data. We propose a method called PICS (Probabilistic Inference for ChIP-seq) for identifying regions bound by transcription factors from aligned reads. PICS identifies binding event locations by modeling local concentrations of directional reads, and uses DNA fragment length prior information to discriminate closely adjacent binding events via a Bayesian hierarchical t-mixture model. It uses precalculated, whole-genome read mappability profiles and a truncated t-distribution to adjust binding event models for reads that are missing due to local genome repetitiveness. It estimates uncertainties in model parameters that can be used to define confidence regions on binding event locations and to filter estimates. Finally, PICS calculates a per-event enrichment score relative to a control sample, and can use a control sample to estimate a false discovery rate. Using published GABP and FOXA1 data from human cell lines, we show that PICS' predicted binding sites were more consistent with computationally predicted binding motifs than the alternative methods MACS, QuEST, CisGenome, and USeq. We then use a simulation study to confirm that PICS compares favorably to these methods and is robust to model misspecification.

  11. Palladium-catalyzed C-H activation/intramolecular amination reaction: a new route to 3-aryl/alkylindazoles.

    Science.gov (United States)

    Inamoto, Kiyofumi; Saito, Tadataka; Katsuno, Mika; Sakamoto, Takao; Hiroya, Kou

    2007-07-19

    A method for the catalytic C-H activation of hydrazone compounds followed by intramolecular amination is described. It requires the use of a catalytic amount of Pd(OAc)2 in the presence of Cu(OAc)2 and AgOCOCF3, which efficiently effects the cyclization to afford variously substituted indazoles. The reactions proceed under relatively mild conditions and thus tolerate a variety of functional groups, including alkoxycarbonyl and cyano groups and halogen atoms.

  12. Bioceres: AG Biotechnology from Argentina

    Directory of Open Access Journals (Sweden)

    Roberto Feeney

    2016-04-01

    Full Text Available In this case we present a business decision-making situation in which the CEO of an Argentine Ag Biotech company, Bioceres, has to decide the best way to commercialize a new drought-tolerant transgenic technology. The company was founded by twenty three farmers, who shared a common dream that Argentina could become a benchmark in the development of Ag biotechnology. The case has strategic and financial implications, as well as decision-making situation involving a joint venture with an American biotechnology company. It also introduces to discussion the business models of Ag biotechnology companies in developing countries.

  13. Evenly distributed thin-film Ag coating on stainless plate by tricomponent Ag/silicate/PU with antimicrobial and biocompatible properties.

    Science.gov (United States)

    Huang, Yi-Hsiu; Chen, Mark Hung-Chih; Lee, Bing-Heng; Hsieh, Kuo-Huang; Tu, Yuan-Kun; Lin, Jiang-Jen; Chang, Chih-Hao

    2014-11-26

    A tricomponent nanohybrid dispersion in water comprising silver nanoparticles (AgNP), nanometer-thick silicate platelets (NSP), and water-based polyurethane (PU) was developed for surface coating on orthopedic metal plates. The previously developed AgNP-on-NSP nanohybrid was homogeneously blended into a selected waterborne PU dispersion at varied weight ratios from 1/0.1 to 1/10 (w/w). PU was used to adhere the Ag nanohybrid to the metal surface. The resultant dispersions were analyzed and found to contain AgNP 2-18 nm in diameter and characterized by using UV absorption and TEM micrograph. The subsequent coating of AgNP/NSP-PU dispersion generated a film of 1.5 μm thickness on the metal plate surface, further characterized by an energy dispersive spectroscope (EDS) to show the homogeneous distribution of Ag, Si, and C elements on the metal plates. The surface antimicrobial efficacy was proven for the coating composition of AgNP/NSP to PU ranging from 1/1 to 1/5 by weight ratio but irrelevant to the thickness of the coated materials. The metal plate coated with the high Ag content at 1/1 (w/w) ratio was shown to have very low cytotoxicity toward the contacted mammal fibroblasts. Overall, the optimized tricomponent Ag/silicate/PU in water dispersion from 1/2 to 1/3 (w/w) could generate a stable film on a metal surface exhibiting both antimicrobial and biocompatible properties. The facile coating technique of the AgNP/NSP in waterborne PU is proven to be viable for fabricating infection- and cytotoxicity-free medical devices.

  14. Palladium Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Fristrup, Peter

    2011-01-01

    -H alkylation reaction which is the topic of the current review. Particular emphasis is put on current mechanistic proposals for the three reaction types comprising the overall transformation: C-H activation, nucleophillic addition, and re-oxidation of the active catalyst. Recent advances in C-H bond activation...... an acetate ion coordinated to Pd. Several of the reported systems rely on benzoquinone for re-oxidation of the active catalyst. The scope for nucleophilic addition in allylic C-H alkylation is currently limited, due to demands on pKa of the nucleophile. This limitation could be due to the pH dependence...

  15. The effects of burner stabilization on Fenimore NO formation in low-pressure, fuel-rich premixed CH4/O2/N2 flames

    NARCIS (Netherlands)

    van Essen, Vincent; Sepman, Alexey; Mokhov, A. V.; Levinsky, H. B.

    We investigate the effects of varying the degree of burner stabilization on Fenimore NO formation in fuel-rich low-pressure flat CH4/O-2/N-2 flames. Towards this end, axial profiles of flame temperature and OH, NO and CH mole fractions are measured using laser-induced fluorescence (LIF). The

  16. Visible light responsive porous Lanthanum-doped Ag3PO4 photocatalyst with high photocatalytic water oxidation activity.

    Science.gov (United States)

    Xie, Ying Peng; Wang, Guo Sheng

    2014-09-15

    This paper report a facile route of synthesizing Ag3PO4 crystal with smooth surface, and La-doped Ag3PO4 crystal with porous surface by accurately controlling the kinetic parameters during chemical precipitation process. As a result of surface modification induced by La doping, the La-doped Ag3PO4 crystal shows a higher photocatalytic activity than Ag3PO4 crystal in O2 evolution from water splitting. The improved photocatalytic activity of La-doped Ag3PO4 is attributed to the synergistic effects of porous surface structure, abundant surface defects and increased surface area. The result also shows that La doping concentration has a remarkable effect on the photocatalytic activity of Ag3PO4.

  17. Luminescent molecular Ag-S nanocluster [Ag(62)S(13)(SBu(t))(32)](BF(4))(4).

    Science.gov (United States)

    Li, Gen; Lei, Zhen; Wang, Quan-Ming

    2010-12-22

    The first observation of luminescence from a structurally well-defined Ag(2)S molecular nanocluster is reported. Reaction of AgSBu(t)/AgBF(4) with N(2)H(4) in methanol affords the tetracationic cluster [Ag(62)S(13)(SBu(t))(32)](BF(4))(4), which has a core-shell configuration. The 14 silver(I) centers of the [Ag(14)S(13)] core are in a face-centered cubic arrangement with each edge bridged by a S(2-) ligand; the core is further connected to the [Ag(48)(SBu(t))(32)] shell via both Ag-S bonds and Ag···Ag interactions. This novel cluster displays intense red emission in both the solid state and solution at room temperature.

  18. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  19. Theme: Laboratory Facilities Improvement.

    Science.gov (United States)

    Miller, Glen M.; And Others

    1993-01-01

    Includes "Laboratory Facilities Improvement" (Miller); "Remodeling Laboratories for Agriscience Instruction" (Newman, Johnson); "Planning for Change" (Mulcahy); "Laboratory Facilities Improvement for Technology Transfer" (Harper); "Facilities for Agriscience Instruction" (Agnew et al.); "Laboratory Facility Improvement" (Boren, Dwyer); and…

  20. Metal-Free sp(2)-C-H Borylation as a Common Reactivity Pattern of Frustrated 2-Aminophenylboranes.

    Science.gov (United States)

    Chernichenko, Konstantin; Lindqvist, Markus; Kótai, Bianka; Nieger, Martin; Sorochkina, Kristina; Pápai, Imre; Repo, Timo

    2016-04-13

    C-H borylation is a powerful and atom-efficient method for converting affordable and abundant chemicals into versatile organic reagents used in the production of fine chemicals and functional materials. Herein we report a facile C-H borylation of aromatic and olefinic C-H bonds with 2-aminophenylboranes. Computational and experimental studies reveal that the metal-free C-H insertion proceeds via a frustrated Lewis pair mechanism involving heterolytic splitting of the C-H bond by cooperative action of the amine and boryl groups. The adapted geometry of the reactive B and N centers results in an unprecedentently low kinetic barrier for both insertion into the sp(2)-C-H bond and intramolecular protonation of the sp(2)-C-B bond in 2-ammoniophenyl(aryl)- or -(alkenyl)borates. This common reactivity pattern serves as a platform for various catalytic reactions such as C-H borylation and hydrogenation of alkynes. In particular, we demonstrate that simple 2-aminopyridinium salts efficiently catalyze the C-H borylation of hetarenes with catecholborane. This reaction is presumably mediated by a borenium species isoelectronic to 2-aminophenylboranes.

  1. An integrated pipeline for the genome-wide analysis of transcription factor binding sites from ChIP-Seq.

    Science.gov (United States)

    Mercier, Eloi; Droit, Arnaud; Li, Leping; Robertson, Gordon; Zhang, Xuekui; Gottardo, Raphael

    2011-02-16

    ChIP-Seq has become the standard method for genome-wide profiling DNA association of transcription factors. To simplify analyzing and interpreting ChIP-Seq data, which typically involves using multiple applications, we describe an integrated, open source, R-based analysis pipeline. The pipeline addresses data input, peak detection, sequence and motif analysis, visualization, and data export, and can readily be extended via other R and Bioconductor packages. Using a standard multicore computer, it can be used with datasets consisting of tens of thousands of enriched regions. We demonstrate its effectiveness on published human ChIP-Seq datasets for FOXA1, ER, CTCF and STAT1, where it detected co-occurring motifs that were consistent with the literature but not detected by other methods. Our pipeline provides the first complete set of Bioconductor tools for sequence and motif analysis of ChIP-Seq and ChIP-chip data.

  2. Dinuclear PCP pincer complexes from Lewis acidic [Pd(OTf)(PCP)] and basic [Pd(4-Spy)(PCP)] (OTf = triflate; 4-Spy = 4-pyridinethiolate; PCP = (-)CH(CH(2)CH(2)PPh(2))(2)).

    Science.gov (United States)

    Neo, Kian Eang; Huynh, Han Vinh; Koh, Lip Lin; Henderson, William; Hor, T S Andy

    2007-12-28

    The Lewis acidic pincer with a labile triflate ligand, viz. [Pd(OTf)(PCP)] (PCP = (-)CH(CH(2)CH(2)PPh(2))(2)) was prepared from [PdCl(PCP)] with AgOTf. It reacts readily with neutral bidentate ligands [L = 4,4'-bipyridine (4,4'-bpy) and 1,1'-bis(diphenylphosphino)ferrocene (dppf)] to give dinuclear PCP pincers [{Pd(PCP)}(2)(micro-L)][OTf](2) (L = 4,4'-bpy, 2; dppf,3). [PdCl(PCP)] also reacts with 4-mercaptopyridine in the presence of KOH to give a Lewis basic pincer with a free pyridine functional group [Pd(4-Spy)(PCP)]4. Its metalloligand character is exemplified by the isolation of an asymmetric dinuclear double-pincer complex [{Pd(PCP)}(2)(micro-4-Spy)][PF(6)] 6 bridged by an ambidentate pyridinethiolato ligand. Complexes 1, 2, 3, 4 and 6 have been characterized by single-crystal X-ray diffraction analyses.

  3. Controlled synthesis and photocatalytic properties of rhombic dodecahedral Ag3PO4 with high surface energy

    Science.gov (United States)

    Xie, Yao; Huang, Zhaohui; Zhang, Zhijie; Zhang, Xiaoguang; Wen, Ruilong; Liu, Yangai; Fang, Minghao; Wu, Xiaowen

    2016-12-01

    In this study, a series of Ag3PO4 photocatalysts with different contents of rhombic dodecahedral particles were prepared in one pot by a facile, novel hydrothermal method using ethylene glycol (EG), which served as both a morphology modifier and reducing agent. The effects of EG content on the morphologies of Ag3PO4 photocatalysts were discussed. The photocatalytic activity of the Ag3PO4 photocatalysts was evaluated by the degradation of methylene blue trihydrate under visible-light irradiation. With the use of 0.8% EG in the reaction solvent, the sample exhibited excellent photocatalytic activity, attributed to the high amount of rhombic dodecahedral Ag3PO4 particles with a high exposure of the {110} facets and high surface energy. The surface energy of the {110} facets was 1.31 J/m2, greater than that of the {100} facet (1.12 J/m2). However, with 1% EG in the reaction solvent, although the Ag3PO4 photocatalysts were composed of a majority of rhombic dodecahedral Ag3PO4 particles, tiny Ag particles formed from Ag+ under the action of EG attached on the surface of the sample decreased the absorption of visible light, resulting in low photocatalytic activity.

  4. High Resolution SOFIA/EXES Spectroscopy of CH4 and SO2 toward Massive Young Stellar Objects

    Science.gov (United States)

    Boogert, Abraham C. A.; Richter, Matt; DeWitt, Curtis; Indriolo, Nick; Neufeld, David A.; Karska, Agata; Bergin, Edwin A.; Smith, Rachel L.; Montiel, Edward

    2017-01-01

    The ro-vibrational transitions of molecules in the near to mid-infrared are excellent tracers of the composition, dynamics, and excitation of the inner regions of Young Stellar Objects (YSOs). They sample a wide range of excitations in a short wavelength range, they can be seen in absorption against strong hot dust continuum sources, and they trace molecules without permanent dipole moment not observable at radio wavelengths. In particular, at high infrared spectral resolution, spatial scales smaller than those imaged by millimeter wave interferometers can be studied dynamically.We present high resolution (R=λ/Δλ˜50,000-100,000 6-12 km/s) infrared (7-8 μm) spectra of massive YSOs observed with the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory For Infrared Astronomy (SOFIA). Absorption lines of gas phase methane (CH4) are detected in our Cycle 2 observations. CH4 is thought to be a starting point of the formation of carbon chain molecules. Abundances are derived in the different dynamical regions along the sight-line towards the central star by comparing the line profiles to those of CO and other species observed at ground based facilities such as EXES' sister instrument TEXES at IRTF and Gemini. A search is also conducted for sulfur-dioxide, using data from our ongoing Cycle 4 program. SO2 was previously detected towards these massive YSOs with the space-based ISO/SWS instrument (Keane et al. 2001, A&A 376, L5) at much lower spectral resolution (R˜2,000). At high spectral resolution we should be able to pin-point the dynamical location of this SO2 gas. Up to 98% of the sulfur in dense clouds and protostellar envelopes is presently missing, and we are searching for that with the EXES/SOFIA observations.

  5. Incorporated Organic Modified Ag Nanoparticles in Ormocer

    Institute of Scientific and Technical Information of China (English)

    Haiping XIA; Jianli ZHANG; Jinhao WANG; Qiuhua NIE

    2004-01-01

    Ag nanoparticles coated trisodium citrate were incorporated in ormocer by sol-gel method. The doping concentration of Ag in ormocer is about 1.0% in weight. The HRTFM demonstrated that the particles disperse in ormocer, and the size of Ag nanoparticles is 5~10 nm. The absorption band of Ag nanoparticle at 410 nm was observed.

  6. Linking soil O2, CO2, and CH4 concentrations in a wetland soil

    DEFF Research Database (Denmark)

    Elberling, Bo; Jensen, Louise Askær; Jørgensen, Christian Juncher

    2011-01-01

    Oxygen (O2) availability and diffusivity in wetlands are controlling factors for the production and consumption of both carbon dioxide (CO2) and methane (CH4) in the subsoil and thereby potential emission of these greenhouse gases to the atmosphere. To examine the linkage between highresolution s...... plants tissue on soil gas dynamics and greenhouse gas emissions following marked changes in water level....... spatiotemporal trends in O2 availability and CH4/CO2 dynamics in situ, we compare high-resolution subsurface O2 concentrations, weekly measurements of subsurface CH4/CO2 concentrations and near continuous flux measurements of CO2 and CH4. Detailed 2-D distributions of O2 concentrations and depth-profiles of CO2...... and CH4 were measured in the laboratory during flooding of soil columns using a combination of planar O2 optodes and membrane inlet mass spectrometry. Microsensors were used to assess apparent diffusivity under both field and laboratory conditions. Gas concentration profiles were analyzed...

  7. Quantitative ChIP-Seq Normalization Reveals Global Modulation of the Epigenome

    Directory of Open Access Journals (Sweden)

    David A. Orlando

    2014-11-01

    Full Text Available Epigenomic profiling by chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq is a prevailing methodology used to investigate chromatin-based regulation in biological systems such as human disease, but the lack of an empirical methodology to enable normalization among experiments has limited the precision and usefulness of this technique. Here, we describe a method called ChIP with reference exogenous genome (ChIP-Rx that allows one to perform genome-wide quantitative comparisons of histone modification status across cell populations using defined quantities of a reference epigenome. ChIP-Rx enables the discovery and quantification of dynamic epigenomic profiles across mammalian cells that would otherwise remain hidden using traditional normalization methods. We demonstrate the utility of this method for measuring epigenomic changes following chemical perturbations and show how reference normalization of ChIP-seq experiments enables the discovery of disease-relevant changes in histone modification occupancy.

  8. Spin dynamics simulations at AGS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.

    2010-05-23

    To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

  9. Study on synthesis of ultrafine Cu-Ag core-shell powders with high electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng Yuhsien [Department of Environmental Engineering, Dayeh University, 168 University Rd., Dacun, Changhua 515, Taiwan (China); Department of Research and Development, Oriental Happy Enterprise Co., No. 27, Xin' ai Rd., South Dist., Tainan 702, Taiwan (China); Center for General Education, Kun Shan University, No. 949, Dawan Rd., Yongkang Dist., Tainan 710, Taiwan (China); Yang Chihhao [Department of Research and Development, Oriental Happy Enterprise Co., No. 27, Xin' ai Rd., South Dist., Tainan 702, Taiwan (China); Chen Kuanting, E-mail: pengyuhsien@hotmail.com [Department of Resources Engineering, National Cheng Kung University, No.1, Da-Hsueh Road, Tainan 701, Taiwan (China); Popuri, Srinivasa R. [Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus 11000 (Barbados); Lee, Ching-Hwa [Department of Environmental Engineering, Dayeh University, 168 University Rd., Dacun, Changhua 515, Taiwan (China); Tang, Bo-Shin [Department of Research and Development, Oriental Happy Enterprise Co., No. 27, Xin' ai Rd., South Dist., Tainan 702, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer This synthesis method is relatively facile, novel and eco-friendly. Black-Right-Pointing-Pointer Toxic agents were not used for chelating agent, reductant or dispersant in our method. Black-Right-Pointing-Pointer The reaction can under room temperature for energy saving purpose. Black-Right-Pointing-Pointer Cu-Ag core-shell powders with homogeneous cover-silver layer. Black-Right-Pointing-Pointer The resistivity of Cu-Ag core-shell powders has the same value as the pure silver. - Abstract: Cu-Ag composite powders with high electrical conductivity were synthesized by electroless plating of silver sulfate, copper powders with eco-friendly sodium citrate as reducing agent, dispersant and chelating agent in an aqueous system. The influences of sodium citrate/Ag ratio on Ag coatings of Cu powders were investigated. Ag was formed a dense coating on the surface of Cu powders at a molar ratio of sodium citrate/Ag = 0.07/1. SEM showed an uniformity of Ag coatings on Cu powders. SEM-EDX also revealed that Cu cores were covered by Ag shells on the whole. The surface composition analysis by XPS indicated that without Cu or Ag atoms in the surface were oxidized. The resistivity measurements of Cu-Ag paste shows that they have closer resistivity as the pure silver paste's after 250 Degree-Sign C for 30 min heat-treatment (2.55 Multiplication-Sign 10{sup -4} {Omega} cm) and 350 Degree-Sign C for 30 min heat-treatment (1.425 Multiplication-Sign 10{sup -4} {Omega} cm).

  10. CH in stellar atmospheres: an extensive linelist

    CERN Document Server

    Masseron, T; Van Eck, S; Colin, R; Daoutidis, I; Godefroid, M; Coheur, P F; Bernath, P; Jorissen, A; Christlieb, N

    2014-01-01

    The advent of high-resolution spectrographs and detailed stellar atmosphere modelling has strengthened the need for accurate molecular data. Carbon-enhanced metal-poor (CEMP) stars spectra are interesting objects with which to study transitions from the CH molecule. We combine programs for spectral analysis of molecules and stellar-radiative transfer codes to build an extensive CH linelist, including predissociation broadening as well as newly identified levels. We show examples of strong predissociation CH lines in CEMP stars, and we stress the important role played by the CH features in the Bond-Neff feature depressing the spectra of barium stars by as much as 0.2 magnitudes in the $\\lambda=$3000 -- 5500 \\AA\\ range. Because of the extreme thermodynamic conditions prevailing in stellar atmospheres (compared to the laboratory), molecular transitions with high energy levels can be observed. Stellar spectra can thus be used to constrain and improve molecular data.

  11. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data.

    Science.gov (United States)

    Zhou, Ke-Ren; Liu, Shun; Sun, Wen-Ju; Zheng, Ling-Ling; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2017-01-04

    The abnormal transcriptional regulation of non-coding RNAs (ncRNAs) and protein-coding genes (PCGs) is contributed to various biological processes and linked with human diseases, but the underlying mechanisms remain elusive. In this study, we developed ChIPBase v2.0 (http://rna.sysu.edu.cn/chipbase/) to explore the transcriptional regulatory networks of ncRNAs and PCGs. ChIPBase v2.0 has been expanded with ∼10 200 curated ChIP-seq datasets, which represent about 20 times expansion when comparing to the previous released version. We identified thousands of binding motif matrices and their binding sites from ChIP-seq data of DNA-binding proteins and predicted millions of transcriptional regulatory relationships between transcription factors (TFs) and genes. We constructed 'Regulator' module to predict hundreds of TFs and histone modifications that were involved in or affected transcription of ncRNAs and PCGs. Moreover, we built a web-based tool, Co-Expression, to explore the co-expression patterns between DNA-binding proteins and various types of genes by integrating the gene expression profiles of ∼10 000 tumor samples and ∼9100 normal tissues and cell lines. ChIPBase also provides a ChIP-Function tool and a genome browser to predict functions of diverse genes and visualize various ChIP-seq data. This study will greatly expand our understanding of the transcriptional regulations of ncRNAs and PCGs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Spatial distribution of FIR rotationally excited CH+ and OH emission lines in the Orion Bar PDR⋆

    Science.gov (United States)

    Parikka, A.; Habart, E.; Bernard-Salas, J.; Goicoechea, J. R.; Abergel, A.; Pilleri, P.; Dartois, E.; Joblin, C.; Gerin, M.; Godard, B.

    2016-01-01

    Context The methylidyne cation (CH+) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500–1000 K) in photodissociation regions with high incident FUV radiation field. The excitation may also originate in dense gas (> 105 cm−3) followed by nonreactive collisions with H2, H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH+ and OH correlate with the excited CO, a tracer of dense and warm gas, and formation pumping contributes to CH+ excitation. Aims Our goal is to examine the spatial distribution of the rotationally excited CH+ and OH emission lines in the Orion Bar in order to establish their physical origin and main formation and excitation mechanisms. Methods We present spatially sampled maps of the CH+ J=3-2 transition at 119.8 µm and the OH Λ-doublet at 84 µm in the Orion Bar over an area of 110″×110″ with Herschel (PACS). We compare the spatial distribution of these molecules with those of their chemical precursors, C+, O and H2, and tracers of warm and dense gas (high-J CO). We assess the spatial variation of CH+ J=2-1 velocity-resolved line profile at 1669 GHz with Herschel HIFI spectrometer observations. Results The OH and especially CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are strongly related to the observed vibrationally excited H2. This, together with the observed broad CH+ line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 µm emission coincides with a bright young object, proplyd

  13. About AgEcon Search

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>AgEcon Search is a free,open access repository of full-text scholarly literature in agricultural and applied economics,including working papers,conference papers,and journal articles.AgEcon Search is co-sponsored by the Department of Applied Economics and the University Libraries at University of Minnesota and the Agricultural and Applied Economics Association.Research in Agricultural

  14. About AgEcon Search

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>AgEcon Search is a free,open access repository of full-text scholarly literature in agricultural and applied economics,including working papers,conference papers,and journal articles. AgEcon Search is co-sponsored by the Department of Applied Economics and the University Libraries at University of Minnesota and the Agricultural and Applied Economics Association. Research in Agricultural

  15. File list: His.Dig.50.AllAg.AGS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.50.AllAg.AGS hg19 Histone Digestive tract AGS SRX482979,SRX482980,SRX482982...,SRX482978,SRX482983,SRX482985,SRX482981,SRX482984 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.50.AllAg.AGS.bed ...

  16. File list: Oth.Dig.20.AllAg.AGS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.20.AllAg.AGS hg19 TFs and others Digestive tract AGS SRX367641,SRX371981,SR...X367642,SRX367640 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Dig.20.AllAg.AGS.bed ...

  17. File list: Oth.Dig.10.AllAg.AGS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.10.AllAg.AGS hg19 TFs and others Digestive tract AGS SRX367641,SRX367642,SR...X371981,SRX367640 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Dig.10.AllAg.AGS.bed ...

  18. File list: ALL.Dig.05.AllAg.AGS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.05.AllAg.AGS hg19 All antigens Digestive tract AGS SRX367641,SRX367642,SRX3...X482983 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Dig.05.AllAg.AGS.bed ...

  19. File list: His.Dig.05.AllAg.AGS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.05.AllAg.AGS hg19 Histone Digestive tract AGS SRX482980,SRX482979,SRX482981...,SRX482978,SRX482984,SRX482982,SRX482985,SRX482983 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.05.AllAg.AGS.bed ...

  20. File list: ALL.Dig.10.AllAg.AGS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.10.AllAg.AGS hg19 All antigens Digestive tract AGS SRX367641,SRX367642,SRX3...X482983 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Dig.10.AllAg.AGS.bed ...

  1. File list: His.Dig.20.AllAg.AGS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.20.AllAg.AGS hg19 Histone Digestive tract AGS SRX482980,SRX482979,SRX482981...,SRX482978,SRX482982,SRX482983,SRX482985,SRX482984 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.20.AllAg.AGS.bed ...

  2. File list: Oth.Dig.05.AllAg.AGS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.05.AllAg.AGS hg19 TFs and others Digestive tract AGS SRX367641,SRX367642,SR...X371981,SRX367640 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Dig.05.AllAg.AGS.bed ...

  3. File list: Oth.Dig.50.AllAg.AGS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.50.AllAg.AGS hg19 TFs and others Digestive tract AGS SRX367641,SRX371981,SR...X367642,SRX367640 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Dig.50.AllAg.AGS.bed ...

  4. File list: ALL.Dig.50.AllAg.AGS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.50.AllAg.AGS hg19 All antigens Digestive tract AGS SRX367641,SRX371982,SRX3...X367640 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Dig.50.AllAg.AGS.bed ...

  5. File list: ALL.Dig.20.AllAg.AGS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.20.AllAg.AGS hg19 All antigens Digestive tract AGS SRX367641,SRX371982,SRX3...X367640 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Dig.20.AllAg.AGS.bed ...

  6. File list: His.Dig.10.AllAg.AGS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.10.AllAg.AGS hg19 Histone Digestive tract AGS SRX482979,SRX482980,SRX482981...,SRX482984,SRX482978,SRX482982,SRX482985,SRX482983 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.10.AllAg.AGS.bed ...

  7. Reaction CH3 + CH3 → C2H6 Studied over the 292-714 K Temperature and 1-100 bar Pressure Ranges.

    Science.gov (United States)

    Sangwan, Manuvesh; Yan, Chao; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2015-07-16

    Reaction of recombination of methyl radicals, CH3 + CH3 → C2H6 (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 292-714 K temperature and 1-100 bar pressure ranges (bath gas He), very close to the high-pressure limit. Methyl radicals were produced by photolysis of acetone at 193.3 nm or in the reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N2O at 193.3 nm, with CH4, and subsequent reaction of OH with CH4. Temporal profiles of CH3 were recorded via absorption at 216.36 and 216.56 nm using a xenon arc lamp and a spectrograph. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in photolysis of N2O/O2/N2 mixtures. The rate constant of reaction 1 in the high-pressure limit has a negative temperature dependence: k1,inf = (5.66 ± 0.43) × 10(-11)(T/298 K)(-0.37) cm(3) molecule(-1) s(-1) (292-714 K).

  8. On the Origin of C4H and CH3OH in Protostellar Envelopes

    Science.gov (United States)

    Lindberg, Johan E.; Charnley, Steven B.; Cordiner, Martin A.

    2016-12-01

    The formation pathways of different types of organic molecules in protostellar envelopes and other regions of star formation are subjects of intense current interest. We present here observations of C4H and CH3OH, tracing two distinct groups of interstellar organic molecules, toward 16 protostars in the Ophiuchus and Corona Australis molecular clouds. Together with observations in the literature, we present C4H and CH3OH data from single-dish observations of 40 embedded protostars. We find no correlation between the C4H and CH3OH column densities in this large sample. Based on this lack of correlation, a difference in line profiles between C4H and CH3OH, and previous interferometric observations of similar sources, we propose that the emission from these two molecules is spatially separated, with the CH3OH tracing gas that has been transiently heated to high (˜70-100 K) temperatures and the C4H tracing the cooler large-scale envelope where CH4 molecules have been liberated from ices. These results provide insight in the differentiation between hot corino and warm carbon-chain chemistry in embedded protostars. Based on observations with the Kitt Peak 12 m telescope telescope and the Atacama Pathfinder EXperiment (APEX) telescope. The Kitt Peak 12 m telescope is operated by the Arizona Radio Observatory (ARO), Steward Observatory, University of Arizona. APEX is a collaboration between the Max Planck Institute for Radio Astronomy, the European Southern Observatory, and the Onsala Space Observatory.

  9. Spatial distribution of FIR rotationally excited CH+ and OH emission lines in the Orion Bar PDR

    CERN Document Server

    Parikka, A; Bernard-Salas, J; Goicoechea, J R; Abergel, A; Pilleri, P; Dartois, E; Joblin, C; Gerin, M; Godard, B

    2016-01-01

    The abundance of CH+ and OH and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500-1000 K) in PDRs with high incident FUV radiation field. The excitation may also originate in dense gas (>10^5 cm-3) followed by nonreactive collisions. Previous observations suggest that the CH+ and OH correlate with dense and warm gas, and formation pumping contributes to CH+ excitation. We examine the spatial distribution of the CH+ and OH emission in the Orion Bar to establish their physical origin and main formation and excitation mechanisms. We present spatially sampled maps of the CH+ J=3-2 transition at 119.8 {\\mu}m and the OH {\\Lambda}-doublet at 84 {\\mu}m in the Orion Bar over an area of 110"x110" with Herschel (PACS). We compare the spatial distribution of these molecules with those of their chemical precursors, C+, O and H2, and tracers of warm and dense gas. We assess the spatial variation of CH+ J=2-1 velocity-resolved line profile observed with Herschel (HIFI). The...

  10. On the origin of C$_4$H and CH$_3$OH in protostellar envelopes

    CERN Document Server

    Lindberg, Johan E; Cordiner, Martin A

    2016-01-01

    The formation pathways of different types of organic molecules in protostellar envelopes and other regions of star formation are subjects of intense current interest. We here present observations of C$_4$H and CH$_3$OH, tracing two distinct groups of interstellar organic molecules, toward 16 protostars in the Ophiuchus and Corona Australis molecular clouds. Together with observations in the literature, we present C$_4$H and CH$_3$OH data from single-dish observations of 40 embedded protostars. We find no correlation between the C$_4$H and CH$_3$OH column densities in this large sample. Based on this lack of correlation, a difference in line profiles between C$_4$H and CH$_3$OH, and previous interferometric observations of similar sources, we propose that the emission from these two molecules is spatially separated, with the CH$_3$OH tracing gas that has been transiently heated to high ($\\sim$70-100 K) temperatures, and the C$_4$H tracing the cooler large-scale envelope where CH$_4$ molecules have been liberat...

  11. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction

    Science.gov (United States)

    Yamei, Wu; Ruixia, Yang; Hanmin, Tian; Shuai, Chen

    2016-05-01

    Organic-inorganic hybrid perovskite CH3NH3PbI3 film is prepared on p-type silicon substrate using the one-step solution method to form a CH3NH3PbI3/p-Si heterojunction. The film morphology and structure are characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The photoelectric properties of the CH3NH3PbI3/p-Si heterojunction are studied by testing the current-voltage (I-V) with and without illumination and capacitance-voltage (C-V) characteristics. It turns out from the I-V curve without illumination that the CH3NH3PbI3/p-Si heterojunction has a rectifier feature with the rectification ratio over 70 at the bias of ±5 V. Also, there appears a photoelectric conversion phenomenon on this heterojunction with a short circuit current (Isc) of 0.16 μA and an open circuit voltage (Voc) of about 10 mV The high frequency C-V characteristic of the Ag/CH3NH3PbI3/p-Si heterojunction turns out to be similar to that of the metal-insulator-semiconductor (MIS) structure, and a parallel translation of the C-V curve along the forward voltage axis is found. This parallel translation means the existence of defects at the CH3NH3PbI3/p-Si interface and positive fixed charges in the CH3NH3PbI3 layer. The defects at the interface of the CH3NH3PbI3/p-Si heterojunction result in the dramatic decline of the Voc. Besides, the C-V test of CH3NH3PbI3 film shows a non-linear dielectric property and the dielectric value is about 4.64 as calculated. Project supported by the Hebei Province Natural Science Foundation of China (No. F2014202184) and the Tianjin Natural Science Foundation of China (No. 15JCZDJC37800).

  12. (CH4)-C-14 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources

    DEFF Research Database (Denmark)

    Petrenko, V. V.; Smith, A. M.; Brook, E. J.;

    2009-01-01

    The cause of a large increase of atmospheric methane concentration during the Younger Dryas-Preboreal abrupt climatic transition (similar to 11,600 years ago) has been the subject of much debate. The carbon-14 (C-14) content of methane ((CH4)-C-14) should distinguish between wetland and clathrate...... contributions to this increase. We present measurements of (CH4)-C-14 in glacial ice, targeting this transition, performed by using ice samples obtained from an ablation site in west Greenland. Measured (CH4)-C-14 values were higher than predicted under any scenario. Sample (CH4)-C-14 appears to be elevated...... by direct cosmogenic C-14 production in ice. C-14 of CO was measured to better understand this process and correct the sample (CH4)-C-14. Corrected results suggest that wetland sources were likely responsible for the majority of the Younger Dryas-Preboreal CH4 rise....

  13. STUDY OF Ag DIFFUSION INTO Cu SINGLE CRYSTALS BY RUTHERFORD BACKSCATTERING SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    R. Wang

    2003-01-01

    4. 0Me V 7 Li++ RBS was used for investigations of thermal diffusion of Ag in Cu single crystals. The annealing of samples was carried out in vacuum in the temperature range from 498K to 613K. The element depth concentration profiles transformed fiom RBS spectra indicate that the diffusion of Ag into Cu is a typical volume diffusion. The Arrhenius parameters corresponding to the diffusion were obtained.

  14. Perspective on the reactions between F- and CH3CH2F: the free energy landscape of the E2 and SN2 reaction channels.

    Science.gov (United States)

    Ensing, Bernd; Klein, Michael L

    2005-05-10

    Recently, we computed the 3D free energy surface of the base-induced elimination reaction between F(-) and CH(3)CH(2)F by using a powerful technique within Car-Parrinello molecular dynamics simulation. Here, the set of three order parameters is expanded to six, which allows the study of the competing elimination and substitution reactions simultaneously. The power of the method is exemplified by the exploration of the six-dimensional free energy landscape, sampling, and mapping out the eight stable states as well as the connecting bottlenecks. The free energy profile and barrier along the E2 and S(N)2 reaction channels are refined by using umbrella sampling. The two mechanisms do not share a common "E2C-like" transition state. Comparison with the zero temperature profiles shows a particularly significant entropy contribution to the S(N)2 channel.

  15. Release and cytotoxicity studies of magnetite/Ag/antibiotic nanoparticles: An interdependent relationship.

    Science.gov (United States)

    Ivashchenko, Olena; Woźniak, Anna; Coy, Emerson; Peplinska, Barbara; Gapinski, Jacek; Jurga, Stefan

    2017-04-01

    Though the cytotoxic properties of magnetite nanoparticles (NPs) are rather well investigated and known to be dose dependent and rather low, surface functionalization can drastically change their properties. To determine whether the cytotoxicity of magnetite/Ag/antibiotic NPs may be associated, among other things, with iron, silver and antibiotic release, this study investigates the release profiles and cytotoxicity of magnetite/Ag/rifampicin and magnetite/Ag/doxycycline NPs compares it similar profiles from magnetite, magnetite/Ag NPs and antibiotics. It was established that the studied NPs released not only water-soluble substances, such as antibiotics, but also poorly-soluble ones, such as iron and silver. The deposition of silver on the magnetite surface promotes the release of iron by the formation of a galvanic couple. Antibiotic adsorbed on the magnetite/Ag surface plays a dual role in the galvanic corrosion processes: as a corrosion inhibitor for iron oxides and as a corrosion promoter for silver. Magnetite/Ag/rifampicin and magnetite/Ag/doxycycline. NPs were found to have greater cytotoxicity towards the HEK293T cell line than magnetite NPs. These results were attributed to the combined toxic action of the released iron, silver ions and antibiotics. Intensive and simultaneous release of the NP components caused cell stress and suppressed their growth. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synchrotron-based valence shell photoionization of CH radical

    Science.gov (United States)

    Gans, B.; Holzmeier, F.; Krüger, J.; Falvo, C.; Röder, A.; Lopes, A.; Garcia, G. A.; Fittschen, C.; Loison, J.-C.; Alcaraz, C.

    2016-05-01

    We report the first experimental observations of X+ 1Σ+←X 2Π and a+ 3Π←X 2Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  17. Spectroscopy of the symbiotic star CH Cygni from 1996 to 2007

    OpenAIRE

    2009-01-01

    We monitored a set of emission lines in the optical spectra of CH Cyg using the 1.5-m telescope at the Tartu Observatory, Estonia. Most of the spectra were registered in the H alpha region, but other Balmer lines and lines of He, N, O, and Fe were also investigated in terms of their equivalent widths, radial velocities, and absolute fluxes. The spectra indicate different stages that CH Cyg has been through in the course of our observations. During quiescence, the strength of the line profiles...

  18. Messung der Geschwindigkeitskonstanten der Reaktion NH2+CH4→NH3+CH3 hinter einfallenden Stoßwellen / Measurements of the Rate Constant of the Reaction NH2+CH4→NH3+CH3 behind Incident Shock Waves

    Science.gov (United States)

    Möller, W.; Wagner, H. Gg.

    1984-09-01

    The rate constant of the reaction NH2+CH4→NH3+CH3 was measured at temperatures of about 1800 K by time-resolved UV-spectroscopy of the products behind incident shock waves. NH2 was produced by the presence and thermal decomposition of hydrazine. The data were evaluated by fitting simulated concentration-time-profiles to the measured ones. A mean rate constant k = (4±2) 1011 cm3 mol-1 s-1 1730

  19. Experimental study on CCl4/CH)4/O2/N2 oxidation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Oxidation within the system CCl4/CH4/O2/N2 is studied at atmospheric pressure in a tubular flow reactor to investigate the influence of reaction temperature and chlorine content on chlorinated waste combustion and find incineration process optimization methods for pollution control.The reaction temperature varies from 700℃ to 1000℃ and the CCl4/CH4(or Cl/H) mole ratio of the inlet mixture varies from 0.21 to 0.84.Products profiles are measured with FT-IR.It is shown that at the same initial CCl4 concentration and reaction temperature adding CH4 favors CCl4 destruction and CO2 formation.But the destruction and removal efficiency(DRE) of CH4 decreases with lower Cl/H and higher concentrations of toxic products of incomplete combustion such as COCl2 and CH3Cl are formed at the same time.The chlorine in the system favors CH4 decomposition,but it also inhibits further oxidation of CO.Higher temperature assists in both CCl4 destruction and CH4 conversion,and the concentration of toxic combustion intermediates is reduced.Increasing the temperature is the most effective way to enhance CCl4 oxidation.The CO2 concentration increases with temperature.A CO concentration peak is observed around 800℃:with a certain Cl/H,the CO concentration first increases with temperature and then declines.The effect of increasing CH4 concentration on CCl4 destruction becomes mild above 900℃.Rather,it enhances the interaction between chlorine and carbonaceous radicals,which leads to higher concentration of toxic products.

  20. Large-scale quality analysis of published ChIP-seq data.

    Science.gov (United States)

    Marinov, Georgi K; Kundaje, Anshul; Park, Peter J; Wold, Barbara J

    2014-02-19

    ChIP-seq has become the primary method for identifying in vivo protein-DNA interactions on a genome-wide scale, with nearly 800 publications involving the technique appearing in PubMed as of December 2012. Individually and in aggregate, these data are an important and information-rich resource. However, uncertainties about data quality confound their use by the wider research community. Recently, the Encyclopedia of DNA Elements (ENCODE) project developed and applied metrics to objectively measure ChIP-seq data quality. The ENCODE quality analysis was useful for flagging datasets for closer inspection, eliminating or replacing poor data, and for driving changes in experimental pipelines. There had been no similarly systematic quality analysis of the large and disparate body of published ChIP-seq profiles. Here, we report a uniform analysis of vertebrate transcription factor ChIP-seq datasets in the Gene Expression Omnibus (GEO) repository as of April 1, 2012. The majority (55%) of datasets scored as being highly successful, but a substantial minority (20%) were of apparently poor quality, and another ∼25% were of intermediate quality. We discuss how different uses of ChIP-seq data are affected by specific aspects of data quality, and we highlight exceptional instances for which the metric values should not be taken at face value. Unexpectedly, we discovered that a significant subset of control datasets (i.e., no immunoprecipitation and mock immunoprecipitation samples) display an enrichment structure similar to successful ChIP-seq data. This can, in turn, affect peak calling and data interpretation. Published datasets identified here as high-quality comprise a large group that users can draw on for large-scale integrated analysis. In the future, ChIP-seq quality assessment similar to that used here could guide experimentalists at early stages in a study, provide useful input in the publication process, and be used to stratify ChIP-seq data for different community

  1. Asymmetric interfaces in Fe/Ag and Ag/Fe bilayers prepared by molecular beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Tunyogi, A. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)]. E-mail: tunyogi@rmki.kfki.hu; Paszti, F. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Osvath, Z. [MTA Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest (Hungary); Tancziko, F. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Major, M. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2006-08-15

    Single layers of Fe and Ag, as well as Fe/Ag (iron deposited first) and Ag/Fe bilayers were prepared by molecular beam evaporation onto Si. The samples were investigated with backscattering spectrometry (BS) and atomic force microscopy (AFM). BS spectra of Fe/Ag and Ag/Fe indicate a significant difference at the interface. In the case of Fe/Ag the Ag peak has a long tail at the interface, while for Ag/Fe the interface is abrupt. The tail in the Fe/Ag spectrum is too large to be caused by double or plural scattering. According to AFM, the effect of surface roughness is also negligible. In spite of the fact that Fe and Ag are completely immiscible in equilibrium, this tail, however, suggests that some Ag is located in the Fe layer. After annealing, both samples show mixing between the two layers; this is much larger again for Fe/Ag.

  2. Ag as an alternative for Ni in direct hydrocarbon SOFC anodes

    Energy Technology Data Exchange (ETDEWEB)

    Cantos-Gomez, A.; Van Duijn, J. [Instituto de Energias Renovables, Universidad de Castilla La Mancha, Paseo de la Investigacion 1, 02006 Albacete (Spain); Ruiz-Bustos, R. [Instituto de Energias Renovables, Parque Cientifico y Tecnologico de Albacete, Paseo de la Investigacion 1, 02006 Albacete (Spain)

    2011-02-15

    Ag has been shown to be a good metal for SOFC anode cermets using CO fuel. Here we have expanded on the work reported by testing Ag-YSZ cermets against different hydrocarbon based fuel (H{sub 2} and CH{sub 4}). This study shows that while Ag is a good current collector, it alone does not have the required catalytic activity for the direct oxidation of hydrocarbon based fuels needed to be used in SOFC anodes. As such an additional catalytic material (e.g. CeO{sub 2}) needs to be present when using fuels other then CO. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Porous Au-Ag Alloy Particles Inlaid AgCl Membranes As Versatile Plasmonic Catalytic Interfaces with Simultaneous, in Situ SERS Monitoring.

    Science.gov (United States)

    Cao, Qi; Yuan, Kaiping; Liu, Qinghe; Liang, Chongyun; Wang, Xiang; Cheng, Yi-Feng; Li, Qingqing; Wang, Min; Che, Renchao

    2015-08-26

    We present a novel porous Au-Ag alloy particles inlaid AgCl membrane as plasmonic catalytic interfaces with real-time, in situ surface-enhanced Raman spectroscopy (SERS) monitoring. The Au-Ag alloy particles inlaid AgCl membranes were obtained via a facile two-step, air-exposed, and room-temperature immersion reaction with appropriate annealing process. Owing to the designed integration of semiconductor component AgCl and noble metal Au-Ag particles, both the catalytic reduction and visible-light-driven photocatalytic activities toward organic contaminants were attained. Specifically, the efficiencies of about 94% of 4-nitrophenol (4-NP, 5 × 10(-5) M) reduction after 8 min of reaction, and degradation of rhodamine 6G (R6G, 10(-5) M) after 12 min of visible light irradiation were demonstrated. Moreover, efficiencies of above 85% of conversion of 4-NP to 4-aminophenol (4-AP) and 90% of R6G degradation were achieved as well after 6 cycles of reactions, by which robust recyclability was confirmed. Further, with distinct SERS signals generated simultaneously from the surfaces of Au-Ag particles under laser excitation, in situ SERS monitoring of the process of catalytic reactions with superior sensitivity and linearity has been realized. Overall, the capability of the Au-Ag particles inlaid AgCl membranes to provide SERS monitored catalytic and visible-light-driven photocatalytic conversion of organic pollutants, along with their mild and cost-effective fabrication method, would make sense for in-depth understanding of the mechanisms of (photo)catalytic reactions, and also future development of potable, multifunctional and integrated catalytic and sensing devices.

  4. New directions for QA in basic research: The Fermilab/DOE-CH experience

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1989-09-01

    This paper addresses the underlying problems involved in developing institution-wide QA programs at DOE funded basic research facilities, and suggests concrete ways in which QA professionals and basic researchers can find common ground in describing and analyzing those activities to the satisfaction of both communities. The paper is designed to be a springboard into workshop discussions which can define a path for developing institution-wide QA programs based on the experience gained with DOE-CH and Fermilab.

  5. Ruhrgas AG. Business report 2000; Ruhrgas AG. Geschaeftsbericht 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    A detailed account of the situation of the international gas market provides the basis of the status report of Ruhrgas AG and the group of affiliated companies. Emphasis is placed on gas procurement aspects, sales volumes, the construction and operation of natural gas distribution systems, and on development, utilization and application aspects. The activities and situation of major Ruhrgas AG holding companies are described, and the annual financial statements are documented. (orig.) [German] Ausgehend von einer eingehenden Beschreibung des internationalen Gasmarktes wird ein Lagebericht des Konzerns sowie der Ruhrgas AG gegeben. Dabei wird insbesondere auf Fragen der Gasbeschaffung, des Gasabsatzes, des Baus und Betriebs von Erdgasverteilungsnetzen, sowie der Entwicklung und der Anwendungstechnik eingegangen. Ferner wird ueber den Geschaeftsverlauf wesentlicher Ruhrgas-Beteiligungsgesellschaften berichtet. Abschliessend wird der Jahresabschluss dokumentiert. (orig.)

  6. Variation of CH Stretch Frequencies with CH_4 Orientation in the CH_4 - F^- Complex: Multiple Resonances as Vibrational Conical Intersections

    Science.gov (United States)

    Thapaliya, Bishnu P.; Perry, David S.

    2016-06-01

    In the CH_4 - F^- complex, an adiabatic separation of the CH stretch frequencies from the CH_4 orientational coordinates allows the calculation of the four adiabatic CH stretch surfaces. These ab initio calculations reveal (i) a large variation of CH stretch frequencies (> 100 wn) in the orientational space and (ii) the existence of four symmetrically equivalent sets of vibrational conical intersections (CIs). Two sets of symmetry-allowed CIs are identified in addition to the symmetry-required CIs at the front- and back-side C3v geometries. These results have implications for the evolution of excited CH vibrations in methane during its approach to a potentially reactive surface.

  7. Structure of nearly degenerate dipole bands in {sup 108}Ag

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, J. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Palit, R., E-mail: palit@tifr.res.in [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Saha, S.; Trivedi, T. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhat, G.H.; Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Datta, P. [Ananda Mohan College, Kolkata 700009 (India); Carroll, J.J. [US Army Research Laboratory, Adelphi, MD 20783 (United States); Chattopadhyay, S. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Donthi, R. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Garg, U. [University of Notre Dame, Notre Dame, IN 46556 (United States); Jadhav, S.; Jain, H.C. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Karamian, S. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Kumar, S. [University of Delhi, Delhi 110007 (India); Litz, M.S. [US Army Research Laboratory, Adelphi, MD 20783 (United States); Mehta, D. [Panjab University, Chandigarh 160014 (India); Naidu, B.S. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Naik, Z. [Sambalpur University, Sambalpur 143005 (India); Sihotra, S. [Panjab University, Chandigarh 160014 (India); and others

    2013-08-09

    The high spin negative parity states of {sup 108}Ag have been investigated with the {sup 11}B + {sup 100}Mo reaction at 39 MeV beam energy using the INGA facility at TIFR, Mumbai. From the γ–γ coincidence analysis, an excited negative parity band has been established and found to be nearly degenerate with the ground state band. The spin and parity of the levels are assigned using angular correlation and polarization measurements. This pair of degenerate bands in {sup 108}Ag is studied using the recently developed microscopic triaxial projected shell model approach. The observed energy levels and the ratio of the electromagnetic transition probabilities of these bands in this isotope are well reproduced by the present model. Further, it is shown that the partner band has a different quasiparticle structure as compared to the yrast band.

  8. Current Profile Measurements from Moderate to Strong Lower Hybrid Single-Pass Damping on Alcator C-Mod

    Science.gov (United States)

    Mumgaard, R. T.; Wallace, G. M.; Scott, S. D.; Shiraiwa, S.; Faust, I.; Parker, R. R.

    2015-11-01

    Lower Hybrid Current Drive (LHCD) is an effective tool to non-inductively drive up to 100% of the plasma current on Alcator C-Mod. Measurements with an upgraded MSE diagnostic show that the fast-electron current profile is broader than the Ohmic current profile but still located the plasma core in agreement with strongly centrally peaked fast electron bremsstrahlung (FEB) measurements. Scans in a regime of high current drive efficiency across a range of density, LHCD power, launched n||, and plasma current show the driven current profile, FEB profile shapes, and current drive efficiency are sensitive only to total plasma current. Simulations using ray-tracing Fokker Planck codes show that the rays make 1-3 bounces through the plasma edge to bridge the spectral gap. Although in agreement with the total current, the simulations qualitatively disagree with experiment regarding current and FEB profiles as well as sensitivity to power and density. Simulations at higher plasma temperature and current predict stronger single-pass damping and preliminary experiments show increased current drive efficiency. Experiments to determine if the profile discrepancies persist when the ray bounces play a reduced role are planned, including companion experiments in D and He resulting in different edge plasma conditions. This work was performed on the Alcator C-Mod tokamak, a DoE Office of Science user facility, and is supported by USDoE awards DE-FC02-99ER54512 and DE-AC02-09CH11466.

  9. Measurements of electron density profiles using an angular filter refractometer

    Energy Technology Data Exchange (ETDEWEB)

    Haberberger, D., E-mail: dhab@lle.rochester.edu; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14636 (United States)

    2014-05-15

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10{sup 21} cm{sup −3} with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres.

  10. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir; Seifi, A.

    2016-11-15

    Highlights: • Ag/ZnO was loaded in MMT support by green synthesis method. • MMT support increased absorption of dye and separation of electron-hole in ZnO. • Ag nanoparticles improved photocatalytic properties of ZnO-MMT. • The particles size of Ag in ZnO-MMT was 2–4 nm. • In contrast ZnO-MMT, Ag/ZnO-MMT was a visible light driven photocatalyst. - Abstract: The Ag/ZnO-MMT nanocomposite was prepared using urtica dioica leaf extract. To improve the photocatalytic properties of ZnO-MMT nanocomposite, silver metal nanoparticles was deposited over nanocomposite. Zn(CH{sub 3}COO){sub 2}, AgNO{sub 3} and Urtica dioica leaf extract were used as a zinc, silver precursor and reducing agent, respectively. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed that Ag/ZnO nanoparticles located on the surface MMT layers. The diffuse reflectance spectra of nanocomposite indicated a strong surface plasmon resonance (SPR) absorption band in the visible region, resulting from metallic Ag nanoparticles. TEM image demonstrated the presence of silver nanoparticles with an average size of 2–4 nm over both MMT and flower-shape ZnO. The photocatalytic activity of nanocomposite was studied for destructive reaction methylene blue dye under visible light. In addition, the effects of different parameters such as amount of nanocomposite, concentration of the dye and pH of the solution were studied. The results showed that modiffication of ZnO-MMT nanocomposite with silver nanoparticles increased the percentage of discoloration methylene blue (MB) from 38.95 to 91.95. MMT matrix showed an important role in the reduction of recombination of electron-hole in nanocomposite.

  11. Fabrication of Ag nanowire/polymer composite nanocables via direct electrospinning

    Science.gov (United States)

    Han, Ming-Chu; He, Hong-Wei; Zhang, Bin; Wang, Xiao-Xiong; Zhang, Jun; You, Ming-Hao; Yan, Shi-Ying; Long, Yun-Ze

    2017-07-01

    1D nanocables consisting of metal core with high conductivity and protective polymer shell are promising for electronic devices. In this paper, silver nanowire/polyvinylidene fluoride (AgNW/PVDF) composite nanocables with excellent thermal stability were successfully fabricated by facile direct electrospinning (e-spinning), in which a slurry of AgNWs were uniformly dispersed into N,N-dimethylformamide/acetone solution containing 20% PVDF to form the e-spinning precursor solution. The decomposed temperature of resultant AgNW/PVDF nanocables is up to 460 °C. Interestingly, the as-spun nanocables exhibit more β phase of PVDF than that of pure PVDF nanofibers. The as-spun AgNW/PVDF nanocables could be applied in fields of antibacterial, ultrathin cables and optoelectronic devices.

  12. Synthesis and Photocatalytic Activity of Ag3PO4 Triangular Prism

    Directory of Open Access Journals (Sweden)

    Pengyu Dong

    2015-01-01

    Full Text Available Ag3PO4 triangular prism was synthesized by a facile chemical precipitation approach by simply adjusting external ultrasonic condition. The as-synthesized Ag3PO4 triangular prism was characterized by X-ray diffraction pattern (XRD, field emission scanning electron microscopy (SEM, fourier transform infrared (FTIR spectra, and ultraviolet-visible diffuse reflectance (UV-vis DRS absorption spectra. The photocatalytic activity of Ag3PO4 triangular prism was evaluated by photodegradation of organic methylene blue (MB, rhodamine B (RhB, and phenol under visible light irradiation. Results showed that Ag3PO4 triangular prism exhibited higher photocatalytic activity than N-doped TiO2 and commercial TiO2 (P25 under visible light irradiation.

  13. Functional Ag porous films prepared by electrospinning

    Science.gov (United States)

    Dong, Guoping; Xiao, Xiudi; Liu, Xiaofeng; Qian, Bin; Liao, Yang; Wang, Chen; Chen, Danping; Qiu, Jianrong

    2009-06-01

    Face-centered cubic Ag porous films have been prepared directly from the heat treatment of AgNO 3-doped poly(vinyl alcohol) (PVA) electrospun nanofibers. Using Rhodamine B (RB) as the probing molecule, the surface-enhanced Raman scattering (SERS) effect of Ag porous films was demonstrated. The antibacterial activity of Ag porous films was also studied in this work. The propagation and biological activity of yeast cells were effectively inhibited by Ag porous films. These functional Ag porous films were expected to be applied in many fields, such as catalysis, diagnostics, sensors and antibacterial, etc.

  14. Double-shelled plasmonic Ag-TiO{sub 2} hollow spheres toward visible light-active photocatalytic conversion of CO{sub 2} into solar fuel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shichao; Wang, Meng; Li, Ping; Tu, Wenguang [National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing University, Nanjing 210093 (China); Zhou, Yong [National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing University, Nanjing 210093 (China); Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, Department of Physics, Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093 (China); Zou, Zhigang [National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093 (China)

    2015-10-01

    Double-shelled hollow hybrid spheres consisting of plasmonic Ag and TiO{sub 2} nanoparticles were successfully synthesized through a simple reaction process. The analysis reveals that Ag nanoparticles were dispersed uniformly in the TiO{sub 2} nanoparticle shell. The plasmonic Ag-TiO{sub 2} hollow sphere proves to greatly enhance the photocatalytic activity toward reduction of CO{sub 2} into renewable hydrocarbon fuel (CH{sub 4}) in the presence of water vapor under visible-light irradiation. The possible formation mechanism of the hollow sphere and related plasmon-enhanced photocatalytic performance were also briefly discussed.

  15. Association of U.S. Dialysis facility neighborhood characteristics with facility-level kidney transplantation.

    Science.gov (United States)

    Plantinga, Laura; Pastan, Stephen; Kramer, Michael; McClellan, Ann; Krisher, Jenna; Patzer, Rachel E

    2014-01-01

    Improving access to optimal healthcare may depend on the attributes of neighborhoods where patients receive healthcare services. We investigated whether the characteristics of dialysis facility neighborhoods--where most patients with end-stage renal disease are treated--were associated with facility-level kidney transplantation. We examined the association between census tract (neighborhood)-level sociodemographic factors and facility-level kidney transplantation rate in 3,983 U.S. dialysis facilities where kidney transplantation rates were high. Number of kidney transplants and total person-years contributed at the facility level in 2007-2010 were obtained from the Dialysis Facility Report and linked to the census tract data on sociodemographic characteristics from the American Community Survey 2006-2010 by dialysis facility location. We used multivariable Poisson models with generalized estimating equations to estimate the link between the neighborhood characteristics and transplant incidence. Dialysis facilities in the United States were located in neighborhoods with substantially greater proportions of black and poor residents, relative to the national average. Most facility neighborhood characteristics were associated with transplant, with incidence rate ratios (95% CI) for standardized increments (in percentage) of neighborhood exposures of: living in poverty, 0.88 (0.84-0.92), black race, 0.83 (0.78-0.89); high school graduates, 1.22 (1.17-1.26); and unemployed, 0.90 (0.85-0.95). Dialysis facility neighborhood characteristics may be modestly associated with facility rates of kidney transplantation. The success of dialysis facility interventions to improve access to kidney transplantation may partially depend on reducing neighborhood-level barriers. © 2014 S. Karger AG, Basel.

  16. Photosensitization of ZnO by AgBr and Ag2CO3: Nanocomposites with tandem n-n heterojunctions and highly enhanced visible-light photocatalytic activity.

    Science.gov (United States)

    Pirhashemi, Mahsa; Habibi-Yangjeh, Aziz

    2016-07-15

    Facile ultrasonic-irradiation method was applied for photosensitization of ZnO by combining with AgBr and Ag2CO3 particles through preparation of novel ternary nanocomposites. The prepared samples were characterized by XRD, SEM, TEM, EDX, UV-Vis DRS, FT-IR, BET, and PL techniques. Photocatalytic activity was investigated by degradation of rhodamine B under visible-light irradiation. It was found that photocatalytic activity of the ZnO was greatly enhanced by coupling with AgBr and Ag2CO3 particles, as narrow band gap semiconductors, through formation of tandem n-n heterojunctions. The nanocomposite with 20% of Ag2CO3 displayed the highest photocatalytic activity with the degradation rate constants which are nearly 122, 31, and 25 times higher than those of the ZnO, ZnO/AgBr, and ZnO/Ag2CO3 samples, respectively. Moreover, the trapping experiments confirmed that superoxide ion radicals and holes are the main active species responsible for the degradation reaction. Finally, it was also demonstrated that the ternary ZnO/AgBr/Ag2CO3 (20%) nanocomposite has enhanced activity in degradation of methylene blue and methyl orange. Hence, this work shows a great potential of the ternary photocatalyst for purification of contaminated water from organic pollutants.