WorldWideScience

Sample records for facility personnel safety

  1. X-ray and nuclear radiation facilities: personnel safety features

    International Nuclear Information System (INIS)

    Mason, W.J.; Pipes, E.W.; Rucker, T.R.; Smith, D.N.; West, C.M.

    1976-10-01

    The Oak Ridge Y-12 Plant is a research and production installation. The nature and versatility of this work require the use of a large number and variety of x-ray and radiographic sources for nondestructive testing and material analyses. Presently, there are over 80 x-ray generators in the plant, which range in size from small, portable units which operate at a less than 50 kilovolts potential and 0.1 milliampere current to an electron linear accelerator which operates at 12-million electron volts and produces a radiation beam of such intensity that it could deliver a lethal dose to man in a fraction of a minute. There are also almost 50 gamma and neutron sources in use in the plant. These units range in size from a few millicuries to several hundred curies. Although the radiation safety at each of these facilities was considered adequate, the administrative and maintenance procedures became unduly complicated. Accordingly, engineering standards and uniform operating procedures were considered necessary to alleviate these complications and, in so doing, provide an improved measure of radiation safety. Development and implementation of these standards are described and the general philosophy and approach to these standards are outlined. Use of a matrix (type of installation versus radiation safety feature) to facilitate equipment classification and personnel safety feature requirements is presented. Included is a set of the standards showing formats, matrices, etc., and the detailed standards for each safety feature

  2. The laser Megajoule facility personnel security and safety interlocks

    International Nuclear Information System (INIS)

    Chapuis, J.C.; Arnoul, J.P.; Hurst, A.; Manson, M.

    2012-01-01

    The LMJ (Laser Megajoule) is designed to deliver about 1.4 MJ of 0.35 μm light to targets for high energy density physics experiments. Such an installation entails specific hazards related to the presence of intense laser beams, and high voltage power laser amplifiers. Furthermore, the thermonuclear fusion reactions induced by the experiment also produce different radiations and neutrons burst, and also activate various materials in the chamber environment. All these hazards could be lethal. The SSP (Personnel Safety System) was designed to prevent accidents and protect personnel working in the LMJ. To satisfy at the lowest cost the requirements of safety regulations and those of the operation management, the choice was made to implement a functional architecture built around two independent technological barriers when required by the risk level. Each technical barrier is composed of two subsets, one dedicated to hazard sources management, and the other one dedicated to worker presence management. The two completely independent barriers, even at the sensor or actuator level, are designed with different technologies adapted to the required Safety Integrity Level. The combination of these 2 barriers is equivalent to a unique barrier with a rate of dangerous failure of about 10 -6 per year

  3. An independent safety assessment of Department of Energy nuclear reactor facilities: Training of operating personnel and personnel selection

    International Nuclear Information System (INIS)

    Drain, J.F.

    1981-02-01

    This study has been prepared for the Department of Energy's Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee. Its purpose is to provide the Committee with background information on, and assessment of, the selection, training, and qualification of nuclear reactor operating personnel at DOE-owned facilities

  4. The personnel protection system for a Synchrotron Radiation Accelerator Facility: Radiation safety perspective

    International Nuclear Information System (INIS)

    Liu, J.C.

    1993-05-01

    The Personnel Protection System (PPS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed from the radiation safety point of view. The PPS, which is designed to protect people from radiation exposure to beam operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS), The ACS prevents people from being exposed to the very high radiation level inside the shielding housing (also called a PPS area). The ACS for a PPS area consists of the shielding housing and a standard entry module at every entrance. The BCS prevents people from being exposed to the radiation outside a PPS area due to normal and abnormal beam losses. The BCS consists of the shielding (shielding housing and metal shielding in local areas), beam stoppers, active current limiting devices, and an active radiation monitor system. The system elements for the ACS and BCS and the associated interlock network are described. The policies and practices in setting up the PPS are compared with some requirements in the US Department of Energy draft Order of Safety of Accelerator Facilities

  5. 49 CFR 193.2511 - Personnel safety.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Personnel safety. 193.2511 Section 193.2511 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  6. The Daresbury personnel safety system

    International Nuclear Information System (INIS)

    Poole, D.E.; Ring, T.

    1989-01-01

    The personnel safety system designed for the SRS at Daresbury is a unified system covering the three accelerators of the source itself, the beamlines and the experimental stations. The system has also been applied to the experimental areas of the Nuclear Structure Facility, and is therefore established as a site standard. A dual guardline interlock module forms a building block for a relay based interlock system completely independent of the machine control system, although comprehensive monitoring of the system status via the control system computer is a feature. An outline of the design criteria adopted for the system is presented together with a more detailed description of the philosophy of the guardline logic and the way this is implemented in a standard modular form. The emphasis is on the design features of a modern microprocessor based variant of the original SRS system. Experience with the original system during build-up and operation of the SRS facility is described. 2 refs., 4 figs

  7. NPP safety and personnel training. XII International conference. Abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    The 12th International conference NPP Safety and Personnel Training took place in Obninsk, October 4-7, 2011. The issues of nuclear technologies safety are considered.The problems of life-cycle management of nuclear facilities are discussed. The criteria of assessment of physical protection systems of nuclear facilities are presented [ru

  8. Personnel Safety for Future Magnetic Fusion Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee Cadwallader

    2009-07-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  9. Personnel Safety for Future Magnetic Fusion Power Plants

    International Nuclear Information System (INIS)

    Cadwallader, Lee

    2009-01-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  10. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2004-01-01

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging

  11. Personnel neutron dosimetry at Department of Energy facilities

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered

  12. Modular reliability modeling of the TJNAF personnel safety system

    International Nuclear Information System (INIS)

    Cinnamon, J.; Mahoney, K.

    1997-01-01

    A reliability model for the Thomas Jefferson National Accelerator Facility (formerly CEBAF) personnel safety system has been developed. The model, which was implemented using an Excel spreadsheet, allows simulation of all or parts of the system. Modularity os the model's implementation allows rapid open-quotes what if open-quotes case studies to simulate change in safety system parameters such as redundancy, diversity, and failure rates. Particular emphasis is given to the prediction of failure modes which would result in the failure of both of the redundant safety interlock systems. In addition to the calculation of the predicted reliability of the safety system, the model also calculates availability of the same system. Such calculations allow the user to make tradeoff studies between reliability and availability, and to target resources to improving those parts of the system which would most benefit from redesign or upgrade. The model includes calculated, manufacturer's data, and Jefferson Lab field data. This paper describes the model, methods used, and comparison of calculated to actual data for the Jefferson Lab personnel safety system. Examples are given to illustrate the model's utility and ease of use

  13. Unique safety manual for experimental personnel

    Energy Technology Data Exchange (ETDEWEB)

    Busick, D.D.; Warren, G.J.

    1979-01-01

    Within a few months of the discovery of x-rays the first radiation injuries were reported (ta71). During the past thirty years both the number and complexity of x-ray analytical units have increased markedly. The world-wide number of incidents leading to severe injury has also increased. For analytical x-ray machines the need for engineered and administrative safeguards has long been recognized. At Stanford Synchrotron Radiation Laboratory (SSRL) the personnel protection system has been carefully designed to maximize safety and minimize experimental interference. However, all possible experimental configurations cannot be anticipated and some interference is to be expected. There are means by which safeguards can be substituted as long as these substitutions do not degrade the existing degree of safety. any substitutions must be evaluated by the Radiation Safety Committee, the SSRL staff and Operational Health Physics. Some studies have indicated that between fifty and ninety percent of serious radiation accidents are directly related to human errors, i.e., ignoring administrative proccedures, by-passing engineered safeguards or by inadequate training. Lindell has estimated the annual probability of serious injury to be about 1:100 per macchine. No matter what the real probability of serious injury is the personnel protection system should reduce this risk to a value that approaches zero. It is hoped that this manual will bring into sharper focus some of the more serious results of unnecessary risk taking. We also hope that it will convey the very real necessity for safeguards which may at times appear to be arbitrary and unnecessary impediments to experimental purposes.

  14. The Patient Safety Attitudes among the Operating Room Personnel

    Directory of Open Access Journals (Sweden)

    Cherdsak Iramaneerat

    2016-07-01

    Full Text Available Background: The first step in cultivating the culture of safety in the operating room is the assessment of safety culture among operating room personnel. Objective: To assess the patient safety culture of operating room personnel at the Department of Surgery, Faculty of Medicine Siriraj Hospital, and compare attitudes among different groups of personnel, and compare them with the international standards. Methods: We conducted a cross-sectional survey of safety attitudes among 396 operating room personnel, using a short form of the Safety Attitudes Questionnaire (SAQ. The SAQ employed 30 items to assess safety culture in six dimensions: teamwork climate, safety climate, stress recognition, perception of hospital management, working conditions, and job satisfaction. The subscore of each dimension was calculated and converted to a scale score with a full score of 100, where higher scores indicated better safety attitudes. Results: The response rate was 66.4%. The overall safety culture score of the operating room personnel was 65.02, higher than an international average (61.80. Operating room personnel at Siriraj Hospital had safety attitudes in teamwork climate, safety climate, and stress recognition lower than the international average, but had safety attitudes in the perception of hospital management, working conditions, and job satisfaction higher than the international average. Conclusion: The safety culture attitudes of operating room personnel at the Department of Surgery, Siriraj Hospital were comparable to international standards. The safety dimensions that Siriraj Hospital operating room should try to improve were teamwork climate, safety climate, and stress recognition.

  15. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Sanders

    2004-09-10

    criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

  16. Safety of magnetic fusion facilities: Guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  17. Safety of magnetic fusion facilities: Guidance

    International Nuclear Information System (INIS)

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities

  18. Criticality safety and facility design considerations

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1991-06-01

    Operations with fissile material introduce the risk of a criticality accident that may be lethal to nearby personnel. In addition, concerns over criticality safety can result in substantial delays and shutdown of facility operations. For these reasons, it is clear that the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The emphasis of this report will be placed on engineering design considerations in the prevention of criticality. The discussion will not include other important aspects, such as the physics of calculating limits nor criticality alarm systems

  19. Safety analysis of the Los Alamos critical experiments facility

    International Nuclear Information System (INIS)

    Paxton, H.C.

    1975-10-01

    The safety of Pajarito Site critical assembly operations depends upon protection built into the facility, upon knowledgeable personnel, and upon good practice as defined by operating procedures and experimental plans. Distance, supplemented by shielding in some cases, would protect personnel against an extreme accident generating 10 19 fissions. During the facility's 28-year history, the direct cost of criticality accidents has translated to a risk of less than $200 per year

  20. Personnel radiation safety in nuclear power plants

    International Nuclear Information System (INIS)

    Elkert, J.

    1979-05-01

    The principal contributions to the radiation doses of the Swedish power reactor personnel are identified. The possi bilities to reduce these doses are examined. The radiation doses are analyzed according to different personnel categories, specific maintenance operations or inspections and to different radiation activities. Suggestions are given for reducing the radiation doses. (L.E.)

  1. Regulatory role and approach of BARC Safety Council in safety and occupational health in BARC facilities

    International Nuclear Information System (INIS)

    Rajdeep; Jayarajan, K.; Taly, Y.K.

    2016-01-01

    Bhabha Atomic Research Centre is involved in multidisciplinary research and developmental activities, related to peaceful use of nuclear energy and its societal benefits. In order to achieve high level of performance of these facilities, the best efforts are made to maintain good health of the plant personnel and good working conditions. BARC Safety Council (BSC), which is the regulatory body for BARC facilities, regulates radiation safety, industrial safety and surveillance of occupational health, by implementing various rules and guidelines in BARC facilities. BARC Safety framework consists of various committees in a 3-tier system. The first tier is BSC, which is the apex body authorized for issuing directives, permissions, consents and authorizations. It is having responsibility of ensuring protection and safety of public, environment, personnel and facilities of BARC through enforcement of radiation protection and industrial safety programmes. Besides the 18 committees in 2 nd tier, there are 6 other expert committees which assist in functioning of BSC. (author)

  2. Eye Safety Practices Among The Dental Personnel Of University Of ...

    African Journals Online (AJOL)

    Objective: The aim of this study was to determine the frequency of use of protective eye wear and hazards related to non compliance with recommended eye safety practice among the dental personnel of University of Benin Teaching Hospital. Methods: A questionnaire was distributed to the dental personnel of University of ...

  3. Safety culture assessment among laboratory personnel of a petrochemical company

    Directory of Open Access Journals (Sweden)

    M. Shekari

    2014-05-01

    .Conclusion: Strong and positive safety culture among laboratory personnel would prevent incidence of many occupational accidents. In another word, it would help organizations to facilitate access to higher standards.

  4. Radiological safety assessment of a reference INTOR facility

    International Nuclear Information System (INIS)

    Khan, T.A.; Stasko, R.R.; Watts, R.T.; Shaw, G.; Morrison, C.A.; Russell, S.; Kempe, T.; Zimmerman, R.

    1985-03-01

    This report consists of a number of separate studies all of which were performed in support of INTOR Critical Issue D: Tritium Containment and Personnel Access vs Remote Maintenance. The common thread running through these studies is the radiological safety element in the design and operation of the INTOR facility. The intent is to help establish a firm basis for comparisons between a reactor cell maintenance option which requires personnel access, and one which involves completely remote maintenance

  5. Nuclear materials facility safety initiative

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Nelson, P.; Roundhill, M.; Jardine, L.J.; Lazarev, L.; Moshkov, M.; Khromov, V.V.; Kruchkov, E.; Bolyatko, V.; Kazanskij, Yu.; Vorobeva, I.; Lash, T.R.; Newton, D.; Harris, B.

    2000-01-01

    Safety in any facility in the nuclear fuel cycle is a fundamental goal. However, it is recognized that, for example, should an accident occur in either the U.S. or Russia, the results could seriously delay joint activities to store and disposition weapons fissile materials in both countries. To address this, plans are underway jointly to develop a nuclear materials facility safety initiative. The focus of the initiative would be to share expertise which would lead in improvements in safety and safe practices in the nuclear fuel cycle.The program has two components. The first is a lab-to-lab initiative. The second involves university-to-university collaboration.The lab-to-lab and university-to-university programs will contribute to increased safety in facilities dealing with nuclear materials and related processes. These programs will support important bilateral initiatives, develop the next generation of scientists and engineers which will deal with these challenges, and foster the development of a safety culture

  6. Safety of magnetic fusion facilities: Volume 2, Guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment.

  7. Safety of magnetic fusion facilities: Volume 2, Guidance

    International Nuclear Information System (INIS)

    1995-01-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment

  8. 340 waste handling facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  9. 340 waste handling facility interim safety basis

    International Nuclear Information System (INIS)

    VAIL, T.S.

    1999-01-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people

  10. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    International Nuclear Information System (INIS)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment

  11. Training and certification of personnel who perform in-place filter tests at nuclear facilities

    International Nuclear Information System (INIS)

    First, M.W.

    1977-01-01

    Preoperational testing and periodic retesting of high efficiency filtration systems installed at nuclear facilities are well-accepted safety procedures and are a requirement of regulatory agencies. In-Place Filter Testing Workshops, conducted periodically by the Harvard Air Cleaning Laboratory, provide the only available organized instructional programs for training testing personnel and supervisors. The curriculum, of one week duration, consists of approximately equal parts devoted to classroom theory and to 'hands-on' practice in the Laboratory. The current curriculum will be outlined for purposes of discussion. Many testing personnel who have had no formal instruction in this technology are actively engaged in this activity. Therefore, steps are underway to organize a certifying body and to introduce certification as an essential qualifying step for personnel engaged in this activity. Current progress toward certification requirements and examination procedures will be reviewed for purposes of discussion

  12. Recruitment, qualification and training of personnel for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of this Safety Guide is to outline the various factors that should to be considered in order to ensure that the operating organization has a sufficient number of qualified personnel for safe operation of a nuclear power plant. In particular, the objective of this publication is to provide general recommendations on the recruitment and selection of plant personnel and on the training and qualification practices that have been adopted in the nuclear industry since the predecessor Safety Guide was published in 1991. In addition, this Safety Guide seeks to establish a framework for ensuring that all managers and staff employed at a nuclear power plant demonstrate their commitment to the management of safety to high professional standards. This Safety Guide deals specifically with those aspects of qualification and training that are important to the safe operation of nuclear power plants. It provides recommendations on the recruitment, selection, qualification, training and authorization of plant personnel. That is, of all personnel in all safety related functions and at all levels of the plant. Some parts or all of this Safety Guide may also be used, with due adaptation, as a guide to the recruitment, selection, training and qualification of staff for other nuclear installations (such as research reactors or nuclear fuel cycle facilities). Section 2 gives guidance on the recruitment and selection of suitable personnel for a nuclear power plant. Section 3 gives guidance on the establishment of personnel qualification, explains the relationship between qualification and competence, and identifies how competence may be developed through education, experience and training. Section 4 deals with general aspects of the training policy for nuclear power plant personnel: the systematic approach, training settings and methods, initial and continuing training, and the keeping of training records. Section 5 provides guidance on the main aspects of training programmes

  13. Recruitment, qualification and training of personnel for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this Safety Guide is to outline the various factors that should to be considered in order to ensure that the operating organization has a sufficient number of qualified personnel for safe operation of a nuclear power plant. In particular, the objective of this publication is to provide general recommendations on the recruitment and selection of plant personnel and on the training and qualification practices that have been adopted in the nuclear industry since the predecessor Safety Guide was published in 1991. In addition, this Safety Guide seeks to establish a framework for ensuring that all managers and staff employed at a nuclear power plant demonstrate their commitment to the management of safety to high professional standards. This Safety Guide deals specifically with those aspects of qualification and training that are important to the safe operation of nuclear power plants. It provides recommendations on the recruitment, selection, qualification, training and authorization of plant personnel; that is, of all personnel in all safety related functions and at all levels of the plant. Some parts or all of this Safety Guide may also be used, with due adaptation, as a guide to the recruitment, selection, training and qualification of staff for other nuclear installations (such as research reactors or nuclear fuel cycle facilities). Section 2 gives guidance on the recruitment and selection of suitable personnel for a nuclear power plant. Section 3 gives guidance on the establishment of personnel qualification, explains the relationship between qualification and competence, and identifies how competence may be developed through education, experience and training. Section 4 deals with general aspects of the training policy for nuclear power plant personnel: the systematic approach, training settings and methods, initial and continuing training, and the keeping of training records. Section 5 provides guidance on the main aspects of training programmes

  14. Analysis of personnel error occurrence reports across Defense Program facilities

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D.A.; Shurberg, D.A.; O`Brien, J.N.

    1994-05-01

    More than 2,000 reports from the Occurrence Reporting and Processing System (ORPS) database were examined in order to identify weaknesses in the implementation of the guidance for the Conduct of Operations (DOE Order 5480.19) at Defense Program (DP) facilities. The analysis revealed recurrent problems involving procedures, training of employees, the occurrence of accidents, planning and scheduling of daily operations, and communications. Changes to DOE 5480.19 and modifications of the Occurrence Reporting and Processing System are recommended to reduce the frequency of these problems. The primary tool used in this analysis was a coding scheme based on the guidelines in 5480.19, which was used to classify the textual content of occurrence reports. The occurrence reports selected for analysis came from across all DP facilities, and listed personnel error as a cause of the event. A number of additional reports, specifically from the Plutonium Processing and Handling Facility (TA55), and the Chemistry and Metallurgy Research Facility (CMR), at Los Alamos National Laboratory, were analyzed separately as a case study. In total, 2070 occurrence reports were examined for this analysis. A number of core issues were consistently found in all analyses conducted, and all subsets of data examined. When individual DP sites were analyzed, including some sites which have since been transferred, only minor variations were found in the importance of these core issues. The same issues also appeared in different time periods, in different types of reports, and at the two Los Alamos facilities selected for the case study.

  15. Communication and service platform for public safety personnel

    NARCIS (Netherlands)

    Schmidt, J.R.

    2005-01-01

    This paper describes a communication and service platform for public safety personnel. The platform demonstrates just in time provisioning of data and scalable communication services and operates in a heterogeneous network environment with high survivability. As an example use case the design is

  16. The aspect of personnel metal attitude in the production safety

    International Nuclear Information System (INIS)

    Joyosukarto, Priyanto M.

    2002-01-01

    The occurrence of an accident could always be traced to component/system failures and/or human error. The two factors are closely related to competency of the personnel's involved, in which mental attitude is a decisive factor. Furthermore mental attitude could be viewed as an element of Safety (S) Culture. Consequently, S. Culture could might created or at lea ts, be enhanced by the introduction of appropriate values, norms, as well as attitudes. The ABC and TBC of safety norm have been discussed briefly. Whereas mental attitude has been defined and discussed in detail and graded into six levels, namely: attending, responding, complying, accepting, preferring, and integrating. To assure highest level of safety, personnel must achieve integrating level of attitude, in the sense that he would merely do an action on the basis of safety values and/or norms prevailing in the system, not due to external pressure. Furthermore, considering the work as a physical and an emotional activity resulting in stress and strain on the body, Karate exercises have been promoted as an alternative for enhancing mental attitude by means of reducing personnel vulnerability to strain and stress. This method is accomplished by exploiting Roux's Low of conditioning effect and by implementation of an in-depth understanding on the spiritual aspect of Karate. It is concluded that in the field of production safety, there is a positive correlation between Karate, mental attitude, competence, performance, quality, and safety

  17. Monitor for safety engineering facility

    International Nuclear Information System (INIS)

    Sato, Akira; Kaneda, Mitsunori.

    1982-01-01

    Purpose: To improve the reactor safety and decrease misoperation upon periodical inspection by instantly obtaining the judgement for the stand-by states in engineering safety facilities of a nuclear power plant. Constitution: Process inputs representing the states of valves, pumps, flowrates or the likes of the facility are gathered into an input device and inputted to a status monitor. The status of the facility inputted to the input device are judged for each of the inputs in a judging section and recognized as a present system stand-by pattern of the system (Valve) to be inspected. While on the other hand, a normal system stand-by pattern previously stored in a memory unit is read out by an instruction from an operator console and judged by comparison with the system stand-by pattern in a comparison section. The results are displayed on a display device. Upon periodical inspection, inspection procedures stored in the memory unit are displayed on the display device by the instruction from the operator console. (Seki, T.)

  18. Personnel Risks in Ensuring Safety of Medical Activity

    Directory of Open Access Journals (Sweden)

    O. L. Zadvornaya

    2017-01-01

    Full Text Available Purpose: modern strategies of management of the organization require the formation of special management approaches based on the analysis of the mechanisms and processes of the organization of medical activities related to possible risks in activity of medical personnel. Based on international experience and own research the authors have identified features of a system of management of personnel risk in medical activities, examined approaches showing the sequence and contents of the main practical activities of the formation, maintenance and development of the system of management of personnel risks. Emphasized is the need for further research and implementation of the system of management of personnel risk in health care organizations. Study and assessment of personnel risks affecting the security of medical activities aimed at the development of the system of personnel risk management, development of a system of identification and monitoring of HR risk indicators with a purpose to improve institutional management and increase efficiency of activity of medical organizations. Methods: in the present study, the following methods were used: systemic approach, content analysis, methods of social diagnosis (questionnaires, interviews, comparative analysis, method of expert evaluations, method of statistical processing of information. Results: approaches to predict the occurrence and development of personnel risks have been reviewed and proposed. Conclusions and Relevance: patient safety is a global issue affecting countries at all levels of development. Each year, the WHO identifies a number of systemic and technical aspects and trends in the field of patient safety related to actions of medical workers. Existing imbalances in the staffing of the health system of the Russian Federation increase the probability of potential risks in medical practice. The personnel policy of healthcare of the Russian Federation requires further improvement and

  19. Status of safety at Areva group facilities. 2007 annual report

    International Nuclear Information System (INIS)

    2007-01-01

    This report describes the status of nuclear safety and radiation protection in the facilities of the AREVA group and gives information on radiation protection in the service operations, as observed through the inspection programs and analyses carried out by the General Inspectorate in 2007. Having been submitted to the group's Supervisory Board, this report is sent to the bodies representing the personnel. Content: 1 - A look back at 2007 by the AREVA General Inspector: Visible progress in 2007, Implementation of the Nuclear Safety Charter, Notable events; 2 - Status of nuclear safety and radiation protection in the nuclear facilities and service operations: Personnel radiation protection, Event tracking, Service operations, Criticality control, Radioactive waste and effluent management; 3 - Performance improvement actions; 4 - Description of the General Inspectorate; 5 - Glossary

  20. Environmental restoration contractor facility safety plan -- MO-561 100-D site remediation project

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1996-11-01

    This safety plan is applicable to Environmental Restoration Contractor personnel who are permanently assigned to MO-561 or regularly work in the facility. The MO-561 Facility is located in the 100-D Area at the Hanford Site in Richland, Washington. This plan will: (a) identify hazards potentially to be encountered by occupants of MO-561; (b) provide requirements and safeguards to ensure personnel safety and regulatory compliance; (c) provide information and actions necessary for proper emergency response

  1. Efficacy and safety of intravenous fentanyl administered by ambulance personnel

    DEFF Research Database (Denmark)

    Friesgaard, Kristian Dahl; Nikolajsen, Lone; Giebner, Matthias

    2016-01-01

    BACKGROUND: Management of pain in the pre-hospital setting is often inadequate. In 2011, ambulance personnel were authorized to administer intravenous fentanyl in the Central Denmark Region. The aim of this study was to evaluate the efficacy and safety of intravenous fentanyl administered...... by ambulance personnel. METHODS: Pre-hospital medical charts from 2348 adults treated with intravenous fentanyl by ambulance personnel during a 6-month period were reviewed. The primary outcome was the change in pain intensity on a numeric rating scale (NRS) from before fentanyl treatment to hospital arrival....... Secondary outcomes included the number of patients with reduction in pain intensity during transport (NRS ≥ 2), the number of patients with NRS > 3 at hospital arrival, and potential fentanyl-related side effects. RESULTS: Fentanyl reduced pain from before treatment (8, IQR 7-9) to hospital arrival (4, IQR...

  2. Radiation protection training for personnel employed in medical facilities

    International Nuclear Information System (INIS)

    McElroy, N.L.; Brodsky, A.

    1985-05-01

    This report provides information useful for planning and conducting radiation safety training in medical facilities to keep exposures as low as reasonably achievable, and to meet other regulatory, safety and loss prevention requirements in today's hospitals. A brief discussion of the elements and basic considerations of radation safety training programs is followed by a short bibliography of selected references and sample lecture (or session) outlines for various job categories. This information is intended for use by a professional who is thoroughly acquainted with the science and practice of radiation protection as well as the specific procedures and circumstances of the particular hospital's operations. Topics can be added or substracted, amplified or condensed as appropriate. 8 refs

  3. Organizational culture, safety culture, and safety performance at research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, William S.

    2000-07-30

    Organizational culture surveys of research facilities conducted several years ago and archival occupational injury reports were used to determine whether differences in safety performance are related to general organizational factors or to ''safety culture'' as reflected in specific safety-related dimensions. From among the organizations surveyed, a pair of facilities was chosen that were similar in size and scientific mission while differing on indices of work-related injuries. There were reliable differences in organizational style between the facilities, especially among workers in environment, safety, and health functions; differences between the facilities (and among job categories) on the safety scale were more modest and less regular.

  4. Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The objective of this Safety Guide is to provide recommendations on how to meet the requirements of the BSS with regard to irradiation facilities. This Safety Guide provides specific, practical recommendations on the safe design and operation of gamma, electron and X ray irradiators for use by operating organizations and the designers of these facilities, and by regulatory bodies. SCOPE. The facilities considered in this publication include five types of irradiator, whether operated on a commercial basis or for research and development purposes. This publication is concerned with radiation safety issues and not with the uses of irradiators, nor does it cover the irradiation of product or its quality management. The five types of irradiator are: - Panoramic dry source storage irradiators; - Underwater irradiators, in which both the source and the product being irradiated are under water; - Panoramic wet source storage irradiators; - Electron beam irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process; - X ray irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process. Consideration of non-radiation-related risks and of the benefits resulting from the operation of irradiators is outside the scope of this Safety Guide. The practices of radiotherapy and radiography are also outside the scope of this Safety Guide. Category I gamma irradiators (i.e. 'self-shielded' irradiators) are outside the scope of this Safety Guide

  5. Department of Energy's High Flux Isotope Reactor (HFIR), October 20--24, 1980: A special report prepared for the Nuclear Facilities Personnel Qualification and Training Committee: An independent on-site safety review

    International Nuclear Information System (INIS)

    1981-02-01

    The intent of this on-site safety review was to make a broad management assessment of HFIR operations, rather than conduct a detailed in-depth audit. The result of the review should only be considered as having identified trends or indications. The Team's observations and recommendations are based upon licensed reactor facility practices used to meet industry standards. For the most part, these standards form the basis for many of the comments in this report. The Team believes that a uniform minimum standard of performance should be achieved in the operation of DOE reactors. In order to assure that this is accomplished, clear standards are necessary. Consistent with the provisions of past AEC and ERDA policy, the Team has used the standards of the commercial nuclear power industry. It is recognized that this approach is conservative in that the HFIR reactor has a significantly greater degree of inherent safety (low temperature, low pressure, low power) than a licensed reactor

  6. Safety analysis of the existing 850 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 850 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives, which was classified as a moderate hazard per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  7. Safety analysis of the existing 851 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 851 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but two of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exceptions were the linear accelerator and explosives, which were classified as moderate hazards per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  8. Facilities management and industrial safety

    International Nuclear Information System (INIS)

    2003-06-01

    This book lists occupation safety and health acts with purpose, definition and management system of safety and health, enforcement ordinance of occupation safety and health acts and enforcement regulations such as general rules, safety and health cover, system of management on safety and health, regulation of management on safety and health, regulations of harmfulness and protection of danger, heath management for workers, supervisor and command and inspection of machine and equipment.

  9. Probabilistic safety assessment for food irradiation facility

    International Nuclear Information System (INIS)

    Solanki, R.B.; Prasad, M.; Sonawane, A.U.; Gupta, S.K.

    2012-01-01

    Highlights: ► Different considerations are required in PSA for Non-Reactor Nuclear Facilities. ► We carried out PSA for food irradiation facility as a part of safety evaluation. ► The results indicate that the fatal exposure risk is below the ‘acceptable risk’. ► Adequate operator training and observing good safety culture would reduce the risk. - Abstract: Probabilistic safety assessment (PSA) is widely used for safety evaluation of Nuclear Power Plants (NPPs) worldwide. The approaches and methodologies are matured and general consensus exists on using these approaches in PSA applications. However, PSA applications for safety evaluation for non-reactor facilities are limited. Due to differences in the processes in nuclear reactor facilities and non-reactor facilities, the considerations are different in application of PSA to these facilities. The food irradiation facilities utilize gamma irradiation sources, X-ray machines and electron accelerators for the purpose of radiation processing of variety of food items. This is categorized as Non-Reactor Nuclear Facility. In this paper, the application of PSA to safety evaluation of food irradiation facility is presented considering the ‘fatality due to radiation overexposure’ as a risk measure. The results indicate that the frequency of the fatal exposure is below the numerical acceptance guidance for the risk to the individual. Further, it is found that the overall risk to the over exposure can be reduced by providing the adequate operator training and observing good safety culture.

  10. Radiation protection and safety guide no. GRPB-G-1: qualification and certification of radiation protection personnel

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    A number of accidents with radiation sources are invariably due to human factors. The achievement and maintenance of proficiency in protection and safety in working with radiation devices is a necessary prerequisite. This guide specifies the national scheme and minimum requirements for qualification and certification of radiation protection personnel. The objective is to ensure adequate level of skilled personnel by continuous upgrading of knowledge and skill of personnel. The following sectors are covered by this guide: medicine, industry, research and training, nuclear facility operations, miscellaneous activities

  11. 14 CFR 437.51 - Rest rules for vehicle safety operations personnel.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Rest rules for vehicle safety operations... rules for vehicle safety operations personnel. A permittee must ensure that all vehicle safety...) No vehicle safety operations personnel may work more than: (1) 12 consecutive hours, (2) 60 hours in...

  12. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    International Nuclear Information System (INIS)

    Cerruti, S.J.

    1997-01-01

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S ampersand H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules

  13. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cerruti, S.J.

    1997-01-14

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.

  14. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  15. Personnel Radiation Protection at the ITER Nuclear Fusion Facility

    International Nuclear Information System (INIS)

    Coniglio, A.; Sandri, S.; D'Arienzo, M.

    2006-01-01

    safety solution anticipated in the projects. The computational tools are then considered and discussed. The results are presented in three stages: the activity inventory, the individual dose rate or the committed dose and the collective dose. The assessment of the collective dose due to scheduled and unscheduled maintenance, inspection and other working activities for the main systems of last ITER plant design is also analyzed and updated. As a consequence of the personnel dose results, a radiation protection program has been proposed for ITER. This scheme is outlined and discussed in the current review. (authors)

  16. Design an optimum safety policy for personnel safety management - A system dynamic approach

    International Nuclear Information System (INIS)

    Balaji, P.

    2014-01-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making

  17. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, P. [The Glocal University, Mirzapur Pole, Delhi- Yamuntori Highway, Saharanpur 2470001 (India)

    2014-10-06

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  18. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Science.gov (United States)

    Balaji, P.

    2014-10-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  19. Hot Cell Facility (HCF) Safety Analysis Report

    International Nuclear Information System (INIS)

    MITCHELL, GERRY W.; LONGLEY, SUSAN W.; PHILBIN, JEFFREY S.; MAHN, JEFFREY A.; BERRY, DONALD T.; SCHWERS, NORMAN F.; VANDERBEEK, THOMAS E.; NAEGELI, ROBERT E.

    2000-01-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  20. Hot Cell Facility (HCF) Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  1. Safety assessment for spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Practice has been prepared as part of the IAEA's programme on the safety assessment of interim spent fuel storage facilities which are not an integral part of an operating nuclear power plant. This report provides general guidance on the safety assessment process, discussing both deterministic and probabilistic assessment methods. It describes the safety assessment process for normal operation and anticipated operational occurrences and also related to accident conditions. 10 refs, 2 tabs

  2. Safety Culture and Best Practices at Japan's Fusion Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Rule, Keith [PPPL

    2014-05-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  3. Radiation safety training for accelerator facilities

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1997-02-01

    In November 1992, a working group was formed within the U.S. Department of Energy's (DOE's) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise

  4. Safety Management for Water Play Facilities.

    Science.gov (United States)

    Thompson, Claude

    1986-01-01

    Modern aquatic facilities, which include wave pools, water slides, and shallow water activity play pools, have a greater potential for injuries and lawsuits than conventional swimming pools. This article outlines comprehensive safety management for such facilities, including potential accident identification and injury control planning. (MT)

  5. NIF conventional facilities construction health and safety plan

    International Nuclear Information System (INIS)

    Benjamin, D W

    1998-01-01

    The purpose of this Plan is to outline the minimum health and safety requirements to which all participating Lawrence Livermore National Laboratory (LLNL) and non-LLNL employees (excluding National Ignition Facility [NIF] specific contractors and subcontractors covered under the construction subcontract packages (e.g., CSP-9)-see Construction Safety Program for the National Ignition Facility [CSP] Section I.B. ''NIF Construction Contractors and Subcontractors'' for specifics) shall adhere to for preventing job-related injuries and illnesses during Conventional Facilities construction activities at the NIF Project. For the purpose of this Plan, the term ''LLNL and non-LLNL employees'' includes LLNL employees, LLNL Plant Operations staff and their contractors, supplemental labor, contract labor, labor-only contractors, vendors, DOE representatives, personnel matrixed/assigned from other National Laboratories, participating guests, and others such as visitors, students, consultants etc., performing on-site work or services in support of the NIF Project. Based upon an activity level determination explained in Section 1.2.18, in this document, these organizations or individuals may be required by site management to prepare their own NIF site-specific safety plan. LLNL employees will normally not be expected to prepare a site-specific safety plan. This Plan also outlines job-specific exposures and construction site safety activities with which LLNL and non-LLNL employees shall comply

  6. Occupational Safety Review of High Technology Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee Cadwallader

    2005-01-31

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  7. Management concepts and safety applications for nuclear fuel facilities

    Energy Technology Data Exchange (ETDEWEB)

    Eisner, H.; Scotti, R.S. [George Washington Univ., Washington, DC (United States). School of Engineering and Applied Science; Delicate, W.S. [KEVRIC Co., Inc., Silver Spring, MD (United States)

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities.

  8. Management concepts and safety applications for nuclear fuel facilities

    International Nuclear Information System (INIS)

    Eisner, H.; Scotti, R.S.

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities

  9. Implementing partnerships in nonreactor facility safety analyses

    International Nuclear Information System (INIS)

    Courtney, J.C.; Perry, W.H.; Phipps, R.D.

    1996-01-01

    Faculty and students from LSU have been participating in nuclear safety analyses and radiation protection projects at ANL-W at INEL since 1973. A mutually beneficial relationship has evolved that has resulted in generation of safety-related studies acceptable to Argonne and DOE, NRC, and state regulatory groups. Most of the safety projects have involved the Hot Fuel Examination Facility or the Fuel Conditioning Facility; both are hot cells that receive spent fuel from EBR-II. A table shows some of the major projects at ANL-W that involved LSU students and faculty

  10. Quality assurance for external personnel monitoring in nuclear industrial facilities, CNNC

    International Nuclear Information System (INIS)

    Zhang Yansheng; Dai Jun; Li Taosheng

    1993-01-01

    More than 6000 personnel are currently being monitored for occupational exposure in CNNC, China. Personnel monitoring is one of the important items of radiation protection. The data of individual dose are not only indispensable for radiation safety assessment but also the basis for radiation protection measures to be taken. Possibly, it could provide basic information for epidemiological studies, optimization procedure of radiation protection (risk/benefit analyses) and medical or legal purposes. Obviously, personnel monitoring and its quality assurance are very significant

  11. Capability challenges of facility management (FM) personnel toward sustainability agenda

    Science.gov (United States)

    Halim, Ahmad Ilyas Ahmad; Sarpin, Norliana; Kasim, Narimah Binti; Zainal, Rozlin Binti

    2017-10-01

    The industries business play a significant role to contribute toward economic growth in develop and developing country. However, they always face serious problems such as time overrun, waste generation, and cost overrun during their operation and maintenance. Traditional practice is found unable to control that situation. These challenges accent the need for practitioners to rethink and improve their process management. This show that industries business has major potential when applying sustainable development by focusing on three pillars (economic, environment, and social). By adopting sustainability, it can reduce energy consumption and waste, while increasing productivity, financial return and corporate standing in community. FM personnel are most suitable position to lead organizations toward sustainability implementation. However, lack of skill and capability among FM personnel to achieve sustainable goal had become barrier that need to overcome. This paper focus to identify capability challenges of FM personnel toward sustainability. A multiple researches were conducted and data were gathered through literature review from previous studies.

  12. Upgrading safety systems of industrial irradiation facilities

    International Nuclear Information System (INIS)

    Gomes, R.S.; Gomes, J.D.R.L.; Costa, E.L.C.; Costa, M.L.L.; Thomé, Z.D.

    2017-01-01

    The first industrial irradiation facility in operation in Brazil was designed in the 70s. Nowadays, twelve commercial and research facilities are in operation and two already decommissioned. Minor modifications and upgrades, as sensors replacement, have been introduced in these facilities, in order to reduce the technological gap in the control and safety systems. The safety systems are designed in agreement with the codes and standards at the time. Since then, new standards, codes and recommendations, as well as lessons learned from accidents, have been issued by various international committees or regulatory bodies. The rapid advance of the industry makes the safety equipment used in the original construction become obsolete. The decreasing demand for these older products means that they are no longer produced, which can make it impossible or costly to obtain spare parts and the expansion of legacy systems to include new features. This work aims to evaluate existing safety systems at Brazilian irradiation facilities, mainly the oldest facilities, taking into account the recommended IAEA's design requirements. Irrespective of the fact that during its operational period no event with victims have been recorded in Brazilian facilities, and that the regulatory inspections do not present any serious deviations regarding the safety procedures, it is necessary an assessment of safety system with the purpose of bringing their systems to 'the state of the art', avoiding their rapid obsolescence. This study has also taken into account the knowledge, concepts and solutions developed to upgrading safety system in irradiation facilities throughout the world. (author)

  13. Upgrading safety systems of industrial irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, R.S.; Gomes, J.D.R.L.; Costa, E.L.C.; Costa, M.L.L., E-mail: rogeriog@cnen.gov.br, E-mail: jlopes@cnen.gov.br, E-mail: evaldo@cnen.gov.br, E-mail: mara@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear; Thomé, Z.D., E-mail: zielithome@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    The first industrial irradiation facility in operation in Brazil was designed in the 70s. Nowadays, twelve commercial and research facilities are in operation and two already decommissioned. Minor modifications and upgrades, as sensors replacement, have been introduced in these facilities, in order to reduce the technological gap in the control and safety systems. The safety systems are designed in agreement with the codes and standards at the time. Since then, new standards, codes and recommendations, as well as lessons learned from accidents, have been issued by various international committees or regulatory bodies. The rapid advance of the industry makes the safety equipment used in the original construction become obsolete. The decreasing demand for these older products means that they are no longer produced, which can make it impossible or costly to obtain spare parts and the expansion of legacy systems to include new features. This work aims to evaluate existing safety systems at Brazilian irradiation facilities, mainly the oldest facilities, taking into account the recommended IAEA's design requirements. Irrespective of the fact that during its operational period no event with victims have been recorded in Brazilian facilities, and that the regulatory inspections do not present any serious deviations regarding the safety procedures, it is necessary an assessment of safety system with the purpose of bringing their systems to 'the state of the art', avoiding their rapid obsolescence. This study has also taken into account the knowledge, concepts and solutions developed to upgrading safety system in irradiation facilities throughout the world. (author)

  14. Enhancement of safety for reprocessing facilities

    International Nuclear Information System (INIS)

    2012-06-01

    The adequacy of the safety measures for utility loss accidents in nuclear fuel reprocessing facilities which have been formulated by the nuclear enterprises is investigated in JNES which organizes an advanced committee to specifically study this problem. The results are reviewed in the present report including the case of such severe accidents as in Fukushima Daiichi Nuclear Power Plant. The report also represents a tentative proposal for examination standards of such unimaginable severe accidents as 'station blackout,' urgent safety measures necessary for reoperation of nuclear power plants and requested by nuclear and industrial safety agency, and pointing out and clarification of the potential weakness from the safety point of view, and collective and composite evaluation of safety of the relevant facilities. Furthermore, the definition of accident management is given as of controlled condition and the authorized way of thinking for the cases of plural events happening at the same time and the cases when risks exist radioactivity emits with explosion. (S. Ohno)

  15. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  16. Safety analyses of surface facilities

    International Nuclear Information System (INIS)

    Anspach, W.; Baran, A.; Dorst, H.J.; Eifert, B.; Gruen, M.; Behrendt, V.; Berkhan, W.; Dincklage, R.D. v.; Doehler, J.; Bruecher, H.

    1981-01-01

    The investigations were carried out using the example of the Gorleben waste disposal center and the planning documents established for this center. The safety analyses refer to the transport of spent fuel elements, the water-cooled interin storage and the reprocessing stage. Regarding the risk analysis of the technical systems the dynamics of the courses of incidents can be better taken into account by doing a methodical development. (DG) [de

  17. Hot Fuel Examination Facility/North Facility safety report

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.M.; Hampson, D.C.; Ferguson, K.R.; Hylsky, E.

    1975-02-01

    Design and safety-related construction features of the Hot Fuel Examination Facility/North, located on the Argonne--West site at the Idaho National Engineering Laboratory are described. The proposed operations, the organizational structure, and emergency plans are given. Evaluations of potential accident situations are presented and it is concluded that HFEF/N can be operated safely and without undue hazard.

  18. Analysis of Critical Characteristics for Safety Graded Personnel Computers in the KNICS Architecture

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Dong Young

    2009-01-01

    Critical characteristics analysis of a safety related item is to identify characteristics to be verified to replace an original item with the dedicated item. It is sure that the dedicated item meeting critical characteristics would perform its intended safety function instead of the specified item. KNICS project developed two safety systems: IDiPS RPS (Reactor Protection System) and IDiPS ESF-CCS (Engineered Safety Features-Component Control System). Two safety systems of IDiPS are equipped with personnel computers, so-called COMs (Cabinet Operator Modules), in their cabinets. The personnel computers, COMs, are responsible for safety system monitoring, testing, and maintaining. Even though two safety systems are safety critical system, the personnel computers of two systems, i.e. COMs, are not graded as safety-graded items. Regulation requirements are expected to be strengthened, and the functions of the personnel computer may be enhanced to include safety-related functions and safety functions, it would be necessary that the grade of the personnel computers is adjusted to a higher level, the safety grade. To try to upgrade a non safety system, i.e. COMs, to a safety system, its safety functions and requirements, i.e. critical characteristics, must be identified and verified. This paper describes the process of the identification of critical characteristics and the results of analysis

  19. Safety assessment for radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Thanaletchumy Karuppiah; Mohd Abdul Wahab Yusof; Nik Marzuki Nik Ibrahim; Nurul Wahida Ahmad Khairuddin

    2008-08-01

    Safety assessments are used to evaluate the performance of a radioactive waste disposal facility and its impact on human health and the environment. This paper presents the overall information and methodology to carry out the safety assessment for a long term performance of a disposal system. A case study was also conducted to gain hands-on experience in the development and justification of scenarios, the formulation and implementation of models and the analysis of results. AMBER code using compartmental modeling approach was used to represent the migration and fate of contaminants in this training. This safety assessment is purely illustrative and it serves as a starting point for each development stage of a disposal facility. This assessment ultimately becomes more detail and specific as the facility evolves. (Author)

  20. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  1. Preliminary safety assessment of the WIPP facility

    International Nuclear Information System (INIS)

    Balestri, R.J.; Torres, B.W.; Pahwa, S.B.; Brannen, J.P.

    1979-01-01

    The efforts to perform a safety assessment of the WIPP facility being proposed for southeastern New Mexico are summarized. This preliminary safety assessment of the WIPP facility is limited to a consequence assessment in terms of the dose to a maximally exposed individual as a result of introducing the radionuclides into the biosphere. No attempt has been made to extend the consequences to population dose or to weight the dose with probability of the events. The general methodology, geosphere transport, and biosphere transport are described. The consequences of the various models developed to represent the loss of containment are summarized

  2. Laser safety at high profile laser facilities

    International Nuclear Information System (INIS)

    Barat, K.

    2010-01-01

    Complete text of publication follows. Laser safety has been an active concern of laser users since the invention of the laser. Formal standards were developed in the early 1970's and still continue to be developed and refined. The goal of these standards is to give users guidance on the use of laser and consistent safety guidance and requirements for laser manufacturers. Laser safety in the typical research setting (government laboratory or university) is the greatest challenge to the laser user and laser safety officer. This is due to two factors. First, the very nature of research can put the user at risk; consider active manipulation of laser optics and beam paths, and user work with energized systems. Second, a laser safety culture that seems to accept laser injuries as part of the graduate student educational process. The fact is, laser safety at research settings, laboratories and universities still has long way to go. Major laser facilities have taken a more rigid and serious view of laser safety, its controls and procedures. Part of the rationale for this is that these facilities draw users from all around the world presenting the facility with a work force of users coming from a wide mix of laser safety cultures. Another factor is funding sources do not like bad publicity which can come from laser accidents and a poor safety record. The fact is that injuries, equipment damage and lost staff time slow down progress. Hence high profile/large laser projects need to adapt a higher safety regimen both from an engineering and administrative point of view. This presentation will discuss all these points and present examples. Acknowledgement. This work has been supported by the University of California, Director, Office of Science.

  3. 33 CFR 105.210 - Facility personnel with security duties.

    Science.gov (United States)

    2010-07-01

    ... must have knowledge, through training or equivalent job experience, in the following, as appropriate... provisions of the Facility Security Plan (FSP); (l) Methods of physical screening of persons, personal...

  4. Operational and safety requirement of radiation facility

    International Nuclear Information System (INIS)

    Zulkafli Ghazali

    2007-01-01

    Gamma and electron irradiation facilities are the most common industrial sources of ionizing radiation. They have been used for medical, industrial and research purposes since the 1950s. Currently there are more than 160 gamma irradiation facilities and over 600 electron beam facilities in operation worldwide. These facilities are either used for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, or the eradication of insect infestation. Irradiation with electron beam, gamma ray or ultra violet light can also destroy complex organic contaminants in both liquid and gaseous waste. EB systems are replacing traditional chemical sterilization methods in the medical supply industry. The ultra-violet curing facility, however, has found more industrial application in printing and furniture industries. Gamma and electron beam facilities produce very high dose rates during irradiation, and thus there is a potential of accidental exposure in the irradiation chamber which can be lethal within minutes. Although, the safety record of this industry has been relatively very good, there have been fatalities recorded in Italy (1975), Norway (1982), El Salvador (1989) and Israel (1990). Precautions against uncontrolled entry into irradiation chamber must therefore be taken. This is especially so in the case of gamma irradiation facilities those contain large amounts of radioactivity. If the mechanism for retracting the source is damaged, the source may remain exposed. This paper will, to certain extent, describe safety procedure and system being installed at ALURTRON, Nuclear Malaysia to eliminate accidental exposure of electron beam irradiation. (author)

  5. Safety overview of the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.J.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.

    1996-01-01

    The National Ignition Facility (NIF) is a proposed US Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium- tritium target located at the center of a spherical target chamber. The NIF mission is to achieve inertial confinement fusion (ICF) ignition, access physical conditions in matter of interest to nuclear weapons physics, provide an above ground simulation capability for nuclear weapons effects testing, and contribute to the development of inertial fusion for electrical power production. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996. This paper summarizes the safety issues associated with the operation of the NIF. It provides an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low

  6. [RADIATION SAFETY DURING REMEDIATION OF THE "SEVRAO" FACILITIES].

    Science.gov (United States)

    Shandala, N K; Kiselev, S M; Titov, A V; Simakov, A V; Seregin, V A; Kryuchkov, V P; Bogdanova, L S; Grachev, M I

    2015-01-01

    Within a framework of national program on elimination of nuclear legacy, State Corporation "Rosatom" is working on rehabilitation at the temporary waste storage facility at Andreeva Bay (Northwest Center for radioactive waste "SEVRAO"--the branch of "RosRAO"), located in the North-West of Russia. In the article there is presented an analysis of the current state of supervision for radiation safety of personnel and population in the context of readiness of the regulator to the implementation of an effective oversight of radiation safety in the process of radiation-hazardous work. Presented in the article results of radiation-hygienic monitoring are an informative indicator of the effectiveness of realized rehabilitation measures and characterize the radiation environment in the surveillance zone as a normal, without the tendency to its deterioration.

  7. Standards for psychological assessment of nuclear facility personnel. Technical report

    International Nuclear Information System (INIS)

    Frank, F.D.; Lindley, B.S.; Cohen, R.A.

    1981-07-01

    The subject of this study was the development of standards for the assessment of emotional instability in applicants for nuclear facility positions. The investigation covered all positions associated with a nuclear facility. Conclusions reached in this investigation focused on the ingredients of an integrated selection system including the use of personality tests, situational simulations, and the clinical interview; the need for professional standards to ensure quality control; the need for a uniform selection system as organizations vary considerably in terms of instruments presently used; and the need for an on-the-job behavioral observation program

  8. National Ignition Facility Project Site Safety Program

    International Nuclear Information System (INIS)

    Dun, C

    2003-01-01

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES and H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES and H requirements are consistent with the ''LLNL ES and H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B

  9. ESRD QIP - National Healthcare Safety Network Healthcare Personnel Influenza Vaccination - Payment Year 2018

    Data.gov (United States)

    U.S. Department of Health & Human Services — This dataset includes facility details, measure score, and the state and national average measure scores for the NHSN healthcare personnel influenza vaccination...

  10. Uranium Production Safety Assessment Team. UPSAT. An international peer review service for uranium production facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The IAEA Uranium Production Safety Assessment Team (UPSAT) programme is designed to assist Member States to improve the safe operation of uranium production facilities. This programme facilitates the exchange of knowledge and experience between team members and industry personnel. An UPSAT mission is an international expert review, conducted outside of any regulatory framework. The programme is implemented in the spirit of voluntary co-operation to contribute to the enhancement of operational safety and practices where it is most effective, at the facility itself. An UPSAT review supplements other facility and regulatory efforts which may have the same objective

  11. 33 CFR 150.627 - Must material safety data sheets be available to all personnel?

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Must material safety data sheets... Health Hazard Communication Program § 150.627 Must material safety data sheets be available to all personnel? (a) The person in charge must ensure that a material safety data sheet (MSDS) for each hazardous...

  12. Cold Vacuum Drying facility personnel monitoring system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) instrument air (IA) system that provides instrument quality air to the CVDF. The IA system provides the instrument quality air used in the process, HVAC, and HVAC instruments. The IA system provides the process skids with air to aid in the purging of the annulus of the transport cask. The IA system provides air for the solenoid-operated valves and damper position controls for isolation, volume, and backdraft in the HVAC system. The IA system provides air for monitoring and control of the HVAC system, process instruments, gas-operated valves, and solenoid-operated instruments. The IA system also delivers air for operating hand tools in each of the process bays

  13. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2005-01-01

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  14. Safety problems with abandoned explosive facilities

    International Nuclear Information System (INIS)

    Courtright, W.C.

    1969-01-01

    Procedures were developed for the safe removal of explosive and radioactive contaminated materials structures and drains from abandoned sites, including explosives processing and service buildings with a goal to return the entire area to its natural state and to permit public access. The safety problems encountered in the cleanup and their solutions are applicable to modification and maintenance work in operating explosive facilities. (U.S.)

  15. NPP safety and personnel training. XII International conference. Abstracts. Volume 2

    International Nuclear Information System (INIS)

    2011-01-01

    The XII International conference NPP Safety and Personnel Training took place in Obninsk, October 4-7 2011. The problems of personnel training for nuclear industry are discussed. The innovation nuclear systems and fuel cycle are considered. The much attention has been given to NPP radiation safety and radioecology issues. The recent high-speed computation and simulation methods used in reactor technology are presented [ru

  16. Evaluating the effectiveness of training for nuclear facility personnel. Proceedings of the specialists' meeting

    International Nuclear Information System (INIS)

    2003-01-01

    One of the essential requirements for safe and reliable nuclear power plant operation and maintenance is the availability of competent personnel. The systematic approach to training (SAT) is recognized world-wide as the international best practice for attaining and maintaining the qualification and competence of nuclear power plant personnel. Many countries have applied and are now implementing or enhancing the use of SAT in their training systems, as demonstrated by the results of the IAEA World Survey on Nuclear Power Plant Personnel Training published in the beginning of 1999. Among the major challenges of human resource professionals is the need to measure the effectiveness of their training programs. Most training programs in the nuclear industry are effective because they are meeting legitimate needs and are conducted by competent, professional staff. Unfortunately, the extent of the impact of teaming is usually unknown or vague at best. Measurement and evaluation processes and procedures are usually inadequate or need further development and refinement. The IAEA has already been addressing the NPP personnel teaming problem during the last several years. Nevertheless, the scope of the problem is widening and new solutions are being developed. Therefore, the IAEA has decided to invite teaming professionals to a Specialists' Meeting to learn about and discuss NPP personnel training trends. The topic of this meeting, evaluating the effectiveness of training for nuclear facility personnel, was selected by the IAEA International Working Group on Training and Qualification of Nuclear Power Plant Personnel. A Specialists' Meeting on Evaluating the Effectiveness of Training for Nuclear Facility Personnel, organized in co-operation with EXITECH Corporation, the US DOE was attended by participants from 12 countries presenting 21 papers

  17. Safety case for Baita-Bihor facility

    International Nuclear Information System (INIS)

    Vladescu, G.; Banciu, O.

    2001-01-01

    Radioactive wastes need to be disposed in the special facilities, in a safe manner, that protects human health and the environment. During the licensing process of radioactive waste disposal facilities, scientific studies and experimental analyses, safety analyses and environmental impact studies are required to demonstrate both confinement capability and radioactive protection of repository. As basis of these studies and analyses, an evolution scenario system must be developed. During the licensing process, from this evolution scenario system, the representative scenarios will be chosen and evaluated, in the specific Safety Cases. The generic purpose of a Safety Case is to calculate concentration of representative radionuclides, which could be released from repository into biosphere, and doses for public. For Baita Bihor Facility, the paper presents 3 scenarios, based on the FEP List for this Facility, described as follows: - Migration through near field, far field and biosphere of a representative radionuclide from Repository, Cs-137; - Transport of Cs-137 with water, by a rock fracture, in a river; - In the river, a part of flow river is used as drinking water for human and animals and we consider also evaporation of water and deposition of radionuclide on sediments; - Migration of Cs -137 in biosphere. Generic exposure pathways taking into account are: - Consumption of drinking water by human and animals; - Consumption of animal products (milk and meat) by human; - Ingestion of contaminated material (sediments) by animals; - External exposure from soil (sediments). The assessment of scenarios is obtained AMBER computer code. AMBER is a flexible software tool that allows users to build their own dynamic behavior models to represent the migration and pathways of contaminants in a system. This computer code can be used to assess normal and abnormal evolution scenario. Taking into account the above described scenarios, radionuclide concentration in water and food

  18. Relation of management, supervision, and personnel practices to nuclear power plant safety

    International Nuclear Information System (INIS)

    Layton, W.L.; Turnage, J.J.

    1980-01-01

    The knowledge base of industrial/organization psychology suggests three major areas of research with important implications for nuclear power plant safety. These areas are: Management and Supervision: Personnel Selection, Training and Placement; and Organizational Climate. Evidence drawn from several Three Mile Island investigations confirms that organizational structure of plants and supervisory practices, the selection and training of personnel, and organizational climate are important factors. Difficulties in decision making and coordination of personnel are pinpointed. Deficiencies in training are highlighted and the climate of working atmosphere is discussed. These matters are related to nuclear power plant safety. Future research directions are presented

  19. Study on personnel qualification for non-destructive tests in the field of reactor safety

    International Nuclear Information System (INIS)

    Trusch, K.; Wuestenberg, H.

    1977-01-01

    The training system for non-destructive testing is described, and the available and necessary personnel is analyzed; the personnel required for reactor safety problems is treated separately. On this basis, the subjects discussed in the study - available personnel, personnel requirements, training, training requirements, and suggestions for realisation - are treated in a general manner to begin with and afterwards with a view to specific problems of reactor safety. The methods employed are adapted to this situation. To obtain the necessary empirical data, questionnaires were set up and distributed, and experts in selected business companies and institutions were interviewed who work in the field of reactor safety or do same training in non-destructive testing. (orig.) [de

  20. Complementary safety assessment assessment of nuclear facilities - Tricastin facility - AREVA

    International Nuclear Information System (INIS)

    2011-01-01

    This complementary safety assessment analyses the robustness of the Areva part of the Tricastin nuclear site to extreme situations such as those that led to the Fukushima accident. This study includes the following facilities: Areva NC Pierrelatte, EURODIF production, Comurhex Pierrelatte, Georges Besse II plant and Socatri. Robustness is the ability for the plant to withstand events beyond which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accidental sequence. Moreover, safety is not only a matter of design or engineered systems but also a matter of organizing: task organization (including subcontracting) as well as the setting of emergency plans or the inventory of nuclear materials are taken into consideration in this assessment. This report is divided into 10 main chapters: 1) the feedback experience of the Fukushima accident; 2) description of the site and its surroundings; 3) featuring of the site's activities and installations; 4) accidental sequences; 5) protection from earthquakes; 6) protection from floods; 7) protection from other extreme natural disasters; 8) the loss of electrical power and of the heat sink; 9) the management of severe accidents; and 10) subcontracting policy. This analysis has identified 5 main measures to be taken to limit the risks linked to natural disasters: -) continuing the program for replacing the current conversion plant and the enrichment plant; -) renewing the storage of hydrofluoric acid at the de-fluorination workshop; -) assessing the seismic behaviour of some parts of the de-fluorination workshop and of the fluorine fabrication workshop; -) improving the availability of warning and information means in case of emergency; and -) improving the means to mitigate accidental gaseous releases. (A.C.)

  1. Assessment of public safety around EDF facilities

    Energy Technology Data Exchange (ETDEWEB)

    Poupart, M. [Electricite de France, Paris (France)

    2004-09-01

    Electricite de France (EDF) recognizes that a dam's structural resistance and its capacity to withstand heavy flooding are 2 of the most significant safety aspects for hydroelectric power stations. However, in addition to dam failure, there are safety risks for the public who frequent the rivers up and down stream from the dam, as well as on property and the environment. A fatal accident which occurred in 1995 down river from EDF's Monteynard hydroelectric facility on the Drac River prompted the utility to take measures to improve control over this type of hazard. Collaboration with public authorities led to an action plan to educate the public about possible danger areas and to improve methods of reducing risks. Regulations regarding access to these areas were also studied along with ways of informing and warning the public. All the stretches of river directly above and below the power stations and dams were listed systematically and a qualitative analysis was carried out of any possible dangers. This led to changes in operating rules, technical instructions and power plant operating regulations. Certain areas are designated as prohibited areas, such as places subject to hazards caused by violent and unexpected water discharges. This paper outlined the Hydraulic Safety Significant Event (HSSE) classification which relates to an operational event related to water that is liable to affect human beings, the environment, water level or flow rate. 9 figs.

  2. Facilities and procedures used for the performance testing of DOE personnel dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, P.L.; Fox, R.A.; Hogan, R.T.; Holbrook, K.L.; Hooker, C.D.; Yoder, R.C.

    1983-04-01

    Radiological calibration facilities for personnel dosimeter testing were developed at the Pacific Northwest Laboratory (PNL) for the Department of Energy (DOE) to provide a capability for evaluating the performance of DOE personnel dosimetry systems. This report includes the testing methodology used. The informational presented here meets requirements specified in draft ANSI N13.11 for the testing laboratory. The capabilities of these facilities include sealed source irradiations for /sup 137/Cs, several beta-particle emitters, /sup 252/Cf, and machine-generated x-ray beams. The x-ray beam capabilities include filtered techniques maintained by the National Bureau of Standards (NBS) and K-fluorescent techniques. The calibration techniques, dosimeter irradiation procedures, and dose-equivalent calculation methods follow techniques specified by draft ANSI N13.11 where appropriate.

  3. 78 FR 48029 - Improving Chemical Facility Safety and Security

    Science.gov (United States)

    2013-08-07

    ... Improving Chemical Facility Safety and Security By the authority vested in me as President by the... at reducing the safety risks and security risks associated with hazardous chemicals. However... to further improve chemical facility safety and security in coordination with owners and operators...

  4. Occupational safety and health textbook for radiological personnel employed in structural material testing

    International Nuclear Information System (INIS)

    Abraham, J.

    1981-01-01

    The comprehensive textbook for X-ray and radiological testing personnel includes requirements and rules of occupational safety and health on the basis of Hungarian and international (mainly German) literature. In the chapter Fundamentals, X-ray and radioactive radiations, their measurements and biological effects, doses etc are described. In the chapter Occupational safety and health, the jobs representing radiation hazards are listed and safety regulations for them are reported. Finally, information for prevention and first aid is presented. Control questions are added to each part. The Appendix contains safety standards and regulations, information on legal aspects of safety and radiation protection as well as recommendations. (Sz.J.)

  5. Methicillin-resistant Staphylococcus aureus isolates from surfaces and personnel at a hospital laundry facility.

    Science.gov (United States)

    Michael, K E; No, D; Roberts, M C

    2016-09-01

    Examine a clinical laundry facility for the presence of methicillin-resistant Staphylococcus aureus (MRSA) on environmental surfaces and among personnel. Nasal and face samples along with surface samples were collected four times in 2015. MRSA isolates were confirmed using standardized biochemical assays and molecular characterization. MRSA was identified in 33/120 (28%) samples from the dirty and 3/120 (3%) samples from the clean environmental areas. MRSA isolates included: (dirty) ST5 SCCmec type II, ST8 SCCmec type IV, ST231 SCCmec type II, ST239 SCCmec type III, ST239 SCCmec type IV, ST256 SCCmec type IV and (clean) ST5 SCCmec type II and ST8 SCCmec type IV. Five different employees were MRSA positive, 4/8 (50%) from the dirty: and 1/15 (6·7%) from the clean, but there was a 10-fold higher MRSA carriage 6/22 (27%) dirty vs 1/38 (2·6%) clean when all 50 human samples were combined. MRSA prevalence was significantly higher (28 vs 3%) in dirty vs clean areas within the laundry facility suggesting a greater risk for personnel on the dirty side. This is the first report of isolation and characterization of MRSA from surfaces and personnel from a clinical laundry facility. © 2016 The Society for Applied Microbiology.

  6. Radiological safety management in medical cyclotron facilities

    International Nuclear Information System (INIS)

    Senthilkumar, M.; Nagalakshmi, B.; Manisha, V.I.; Pushpangadan, K.D.; Agarwal, S.P.

    2005-01-01

    A new era of Nuclear Medicine diagnosis has started with Medical Cyclotron technology. Medical Cyclotron produces positron emitters, which can be used in molecular imaging of the organs. In Medical Cyclotron, particles such as protons, deuterons are accelerated and made to bombard with suitable target material to produce radioisotopes, which are positron emitters. The positron emitters are produced by the (p,α), (p,n) or (d,n) reaction. The neutron activation of the surrounding medium draws the major attention in radiation safety. The license for such medical cyclotron facilities is issued by Atomic Energy Regulatory Board in India on the basis of regulations drawn from Radiation Protection Rules 1971 promulgated by Govt. of India under Atomic Energy Act, 1962. In this paper, the following aspects i) the steps involved in cyclotron installation ii) Design, Operational specifications and other features of various medical cyclotrons iii) Regulatory requirements for a cyclotron installation have been discussed

  7. Specification ''E'' of the CEFRI concerning the enterprises employing personnel of A or B category working in nuclear facilities

    International Nuclear Information System (INIS)

    2002-01-01

    This document aims to specify the organization dispositions which have to bee taken by the enterprises employing personnel of A or B category to work in nuclear facilities. These dispositions should allow to respect the demands of the CEFRI in matter of formation, medical control and personnel dosimetry. (A.L.B.)

  8. An independent safety assessment of Department of Energy nuclear reactor facilities: Safety overview and management function

    International Nuclear Information System (INIS)

    Booth, M.; Brodsky, R.S.; Frankhouser, W.L.

    1981-02-01

    The Under Secretary of Energy established the Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee in October, 1979, in the aftermath of the Three Mile Island (TMI) nuclear accident, to assess the adequacy of training of personnel at DOE nuclear facilities. Subsequently, in February, 1980, the charge to this Committee was modified to assess all implications of the Kemeny Commission report on TMI with regard to DOE nuclear reactors, excluding those in the Division of Naval Reactors. The modified charge was also limited, for the time being, to reactor facilities instead of all nuclear facilities. This report describes the portion of the revised assessment activities that was assigned to the Assessment Support Team

  9. Some safety aspects of nuclear facilities

    International Nuclear Information System (INIS)

    Kocic, A.; Marsicanin, B.; Milosevic, M.

    1977-01-01

    In this paper the Safety Analysis Report is considered as a source of information on the safety, availability and behaviour of similar nuclear plants. The human factor contribution to the safety system is pointed out (author)

  10. Safety protection of nuclear facilities and nuclear materials

    International Nuclear Information System (INIS)

    Lukavsky, J.

    1987-01-01

    Safety protection is discussed of nuclear facilities and of nuclear materials, which is a specific element of guaranteeing nuclear safety. Its task is to maximally restrict the risk of misuse of nuclear facilities and nuclear materials for endangering human lives and health and the environment. Concrete requirements for the barriers and technical means and for security of nuclear facilities and nuclear materials are based on this approach. In the CSSR, a legal norm is being prepared that will enact the said requirements for safety protection of nuclear facilities and nuclear materials. (Z.M.)

  11. Personnel reliability impact on petrochemical facilities monitoring system's failure skipping probability

    Science.gov (United States)

    Kostyukov, V. N.; Naumenko, A. P.

    2017-08-01

    The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under

  12. Radon exposure levels of water supply facility personnel in Southern Germany

    International Nuclear Information System (INIS)

    Trautmannsheimer, M.

    2001-01-01

    As part of a study covering the whole of Bavaria (South Germany) water supply facilities were studied as regards radon concentrations in ground water and indoor air and the radon exposure to the staff working in these buildings. A questionnaire was sent to each water supply facility in Bavaria. 2600 facilities were asked to provide information about numbers, types and water extraction methods in their facilities. Every person working in the facilities was asked to answer questions about his duration of stay and his typical working procedures in the elevated reservoirs and in the water purification buildings. Bavaria can be divided into ten geological regions. >From each region a number of water supply facilities proportional to the size of the region were selected for measurements. Over 500 water supply facilities were to take a 1 litre groundwater sample and expose several track-etch detectors in order to obtain the mean room concentration of the main working places of the staff. In addition, for a period of two months, the personnel had to wear a track-etch detector during their stay in the supply facilities in order to get an estimation of his individual effective dose, caused by radon and its progenies. In the East Bavarian crystalline region, indoor radon gas concentrations of up to 300 kBq/m 3 were observed. About 10 percent of the processing plant workers in this region are subjected to an annual effective dose of more than 20 mSv. Effective means to reduce the radon exposure levels of these persons are already being implemented. (author)

  13. Higher operational safety of nuclear power plants by evaluating the behaviour of operating personnel

    International Nuclear Information System (INIS)

    Mertins, M.; Glasner, P.

    1990-01-01

    In the GDR power reactors have been operated since 1966. Since that time operational experiences of 73 cumulative reactor years have been collected. The behaviour of operating personnel is an essential factor to guarantee the safety of operation of the nuclear power plant. Therefore a continuous analysis of the behaviour of operating personnel has been introduced at the GDR nuclear power plants. In the paper the overall system of the selection, preparation and control of the behaviour of nuclear power plant operating personnel is presented. The methods concerned are based on recording all errors of operating personnel and on analyzing them in order to find out the reasons. The aim of the analysis of reasons is to reduce the number of errors. By a feedback of experiences the nuclear safety of the nuclear power plant can be increased. All data necessary for the evaluation of errors are recorded and evaluated by a computer program. This method is explained thoroughly in the paper. Selected results of error analysis are presented. It is explained how the activities of the personnel are made safer by means of this analysis. Comparisons with other methods are made. (author). 3 refs, 4 figs

  14. Study of fast reactor safety test facilities. Preliminary report

    International Nuclear Information System (INIS)

    Bell, G.I.; Boudreau, J.E.; McLaughlin, T.; Palmer, R.G.; Starkovich, V.; Stein, W.E.; Stevenson, M.G.; Yarnell, Y.L.

    1975-05-01

    Included are sections dealing with the following topics: (1) perspective and philosophy of fast reactor safety analysis; (2) status of accident analysis and experimental needs; (3) experiment and facility definitions; (4) existing in-pile facilities; (5) new facility options; and (6) data acquisition methods

  15. Safety assessment and surveillance of decommissioning operations at DOE's nuclear facilities

    International Nuclear Information System (INIS)

    Cowgill, M.G.; Prochnow, D.; Worthington, P.R.

    1995-01-01

    A description is provided of a systematic approach currently being developed and deployed at the Department of Energy to obtain assurance that post-operational activities at nuclear facilities will be conducted in a safe manner. Using this approach, personnel will have available a formalized set of safety principles and associated question sets to assist them in the conducting of safety assessments and surveillance. Information gathered through this means will also be analyzed to determine if there are any generic complex-wide strengths or deficiencies associated with decommissioning activities and to which attention should be drawn

  16. Safety Analysis (SA) of the decontamination facility, Building 419, at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Odell, B.N.

    1980-01-01

    This safety analysis was performed for the Manager, Plant Services at LLNL and fulfills the requirements of DOE Order 5481.1. The analysis was based on field inspections, document review, computer calculations, and extensive input from Waste Management personnel. It was concluded that the maximum quantities of radioactive materials that safety procedures allow to be handled in this building do not pose undue risks on- or off-site even in postulated severe accidents. Risk from the various hazards at this facility vary from low to moderate as specified in DOE Order 5481.1. Recommendations are made for improvements that will reduce risks even further

  17. Facts about food irradiation: Safety of irradiation facilities

    International Nuclear Information System (INIS)

    1991-01-01

    This fact sheet considers the safety of industrial irradiation facilities. Although there have been accidents, none of them has endangered public health or environmental safety, and the radiation processing industry is considered to have a very good safety record. Gamma irradiators do not produce radioactive waste, and the radiation sources at the facilities cannot explode nor in any other way release radioactivity into the environment. 3 refs

  18. Safety analysis report for the Waste Storage Facility. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  19. Status of safety at Areva group facilities. 2006 annual report

    International Nuclear Information System (INIS)

    2006-01-01

    This report presents a snapshot of nuclear safety and radiation protection conditions in the AREVA group's nuclear installations in France and abroad, as well as of radiation protection aspects in service activities, as identified over the course of the annual inspections and analyses program carried out by the General Inspectorate in 2006. This report is presented to the AREVA Supervisory Board, communicated to the labor representation bodies concerned, and made public. In light of the inspections, appraisals and coordination missions it has performed, the General Inspectorate considers that the nuclear safety level of the AREVA group's nuclear installations is satisfactory. It particularly noted positive changes on numerous sites and efforts in the field of continuous improvement that have helped to strengthen nuclear safety. This has been possible through the full involvement of management teams, an improvement effort initiated by upper management, actions to increase personnel awareness of nuclear safety culture, and supervisors' heightened presence around operators. However, the occurrence of certain events in facilities has led us to question the nuclear safety repercussions that the changes to activities or organization on some sites have had. In these times of change, drifts in nuclear safety culture have been identified. The General Inspectorate considers that a preliminary analysis of the human and organizational factors of these changes, sized to match the impact the change has on nuclear safety, should be made to ensure that a guaranteed level of nuclear safety is maintained (allowance for changes to references, availability of the necessary skills, resources of the operating and support structures, etc.). Preparations should also be made to monitor the changes and spot any telltale signs of drift in the application phase. Managers should be extra vigilant and the occurrence of any drift should be systematically dealt with ahead of implementing

  20. Criticality Safety Evaluation of Hanford Tank Farms Facility

    International Nuclear Information System (INIS)

    WEISS, E.V.

    2000-01-01

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste

  1. Safety evaluation for regulatory management of Australian radioisotope production facilities.

    Science.gov (United States)

    Sarkar, S

    2009-01-01

    This paper describes the approach of Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) in the regulatory management of Radioisotope Production facilities in Australia. ARPANSA is the regulatory authority for commonwealth entities operating nuclear installations including Radioisotope Production facilities. In assessing the application for operating nuclear installations the ARPANSA assessors prepare a Safety Evaluation Report, which is a recommendation to the Chief Executive Officer (CEO) of ARPANSA whether to issue a licence to site, construct, operate and decommission facilities. In particular, the CEO must take into account international best practice in radiation protection and nuclear safety when making licence decisions.

  2. LMFBR safety testing needs and the conceptual design of a new safety research experiment facility

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Matlock, R.G.; Goldman, A.J.

    1975-09-01

    Experiment needs for the LMFBR safety program are reviewed. The screening of reactor concepts which would meet the needs is described and a conceptual design for a new safety research experiment facility is presented

  3. Design lessons from using programmable controllers in the MFTF-BETA Personnel Safety and Interlocks System

    International Nuclear Information System (INIS)

    Branum, J.D.

    1983-01-01

    Applying programmable controllers in critical applications such as personnel safety and interlocks systems requires special considerations in the design of both hardware and software. All modern programmable controller systems feature extensive internal diagnostic capabilities to protect against problems such as program memory errors; however most, if not all present designs lack an intrinsic capability for detecting and countering failures on the ''field-side'' of their I/O modules. Many of the most common styles of I/O modules can also introduce potentially dangerous sneak circuits, even without component failure. This paper presents the most significant lessons learned to date in the design of the MFTF-BETA Personnel Safety and Interlocks System, which utilizes two non-redundant programmable controllers with over 800 I/O points each. Specific problems recognized during the design process as well as those discovered during initial testing and operation are discussed along with their specific solutions in hardware and software

  4. Design lessons from using programmable controllers in the MFTF-B personnel safety and interlocks system

    International Nuclear Information System (INIS)

    Branum, J.D.

    1983-01-01

    Applying programmable controllers in critical applications such as personnel safety and interlocks systems requires special considerations in the design of both hardware and software. All modern programmable controller systems feature extensive internal diagnostic capabilities to protect against problems such as program memory errors; however most, if not all present designs lack an intrinsic capability for detecting and countering failures on the field-side of their I/O modules. Many of the most common styles of I/O modules can also introduce potentially dangerous sneak circuits, even without component failure. This paper presents the most significant lessons learned to date in the design of the MFTF-B Personnel Safety and Interlocks System, which utilizes two non-redundant programmable controllers with over 800 I/O points each. Specific problems recognized during the design process as well as those discovered during initial testing and operation are discussed along with their specific solutions in hardware and software

  5. Design of concrete structures important to safety of nuclear facilities

    International Nuclear Information System (INIS)

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety standard for civil engineering structures important to safety of nuclear facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design of concrete structures important to safety

  6. Hanford surplus facilities hazards identification document

    International Nuclear Information System (INIS)

    Egge, R.G.

    1997-01-01

    This document provides general safety information needed by personnel who enter and work in surplus facilities managed by Bechtel Hanford, Inc. The purpose of the document is to enhance access control of surplus facilities, educate personnel on the potential hazards associated with these facilities prior to entry, and ensure that safety precautions are taken while in the facility

  7. Explotation of irradiation facilities. Safety handbook

    International Nuclear Information System (INIS)

    Prieto Miranda, Enrique Franscisco; Melo Crespo, Jose Carlos

    1997-01-01

    At present in the world there are more of 160 gamma radiation facilities and more of 600 electron bean accelerators in operation, at least one in each member state of International Atomic Energy Agency. In this paper is elaborated a Manual with the security criteria to operation of these facility types

  8. 78 FR 69433 - Executive Order 13650 Improving Chemical Facility Safety and Security Listening Sessions

    Science.gov (United States)

    2013-11-19

    ... Chemical Facility Safety and Security Listening Sessions AGENCY: National Protection and Programs... from stakeholders on issues pertaining to Improving Chemical Facility Safety and Security (Executive... regulations, guidance, and policies; and identifying best practices in chemical facility safety and security...

  9. Radiological and the other safety aspects in the operation of electron beam facility

    International Nuclear Information System (INIS)

    Loterina, Roel Alamares

    2003-01-01

    The radiological safety aspects of the operation of an electron beam facility in general and the 3 MeV ALURTRON electron beam facility of the Malaysian Institute of Nuclear Technology Research (MINT) in particular were reviewed and evaluated. Evaluation was made based on existing records as well as actual monitoring around facility. Area monitoring results using TLDs are within permissible levels. The maximum reading of 7.29 mSv measured in year 2000 is very low as compared to the annual dose limit of 50 mSv/year. In general, the shielding for the installation is adequate and no significant radiation leakage were detected based on radiation survey results. However, measured radiation levels with a maximum of 1.9 mSv/h at the sampling ports easily exceed the limit of 25μSv/h. The facility is equipped with safety features, such as interlocked system, adequate shielding, engineered safety design of irradiation and accelerator rooms, and accessories such as conveyor system and product handling system. Warning lights and signals are adequately installed around the facility. Other identified hazards that may affect the operator, workers, and personnel were also evaluated based on previous records of monitoring. The ozone concentration levels with a maximum reading of 0.05 ppm measured in the environment of the facility are within the threshold limit value of 0.1 ppm. The measured noise levels at all locations around facility are generally below the maximum permissible level of 80dB. The ALURTRON has achieved a minimum safety requirement to warrant its full operation without relying on administrative controls and procedures to ensure safety in operation. (Auth.)

  10. Radiation Safety of Accelerator Facility with Regard to Regulation

    International Nuclear Information System (INIS)

    Dedi Sunaryadi; Gloria Doloresa

    2003-01-01

    The radiation safety of accelerator facility and the status of the facilities according to licensee in Indonesia as well as lesson learned from the accidents are described. The atomic energy Act No. 10 of 1997 enacted by the Government of Indonesia which is implemented in Radiation Safety Government Regulation No. 63 and 64 as well as practice-specific model regulation for licensing request are discussed. (author)

  11. Preliminary design of safety and interlock system for indian test facility of diagnostic neutral beam

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Himanshu, E-mail: htyagi@iter-india.org [ITER-India, Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Soni, Jignesh [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Yadav, Ratnakar; Bandyopadhyay, Mainak; Rotti, Chandramouli [ITER-India, Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Gahlaut, Agrajit [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Joshi, Jaydeep; Parmar, Deepak [ITER-India, Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2016-11-15

    Highlights: • Indian Test Facility being built to characterize DNB for ITER delivery. • Interlock system required to safeguard the investment incurred in building the facility and protecting ITER deliverable components. • Interlock levels upto 3IL-3 identified. • Safety instrumented system for occupational safety being designed. Safety I&C functions of SIL-2 identified. • The systems are based on ITER PIS and PSS design guidelines. - Abstract: Indian Test Facility (INTF) is being built in Institute For Plasma Research to characterize Diagnostic Neutral Beam in co-operation with ITER Organization. INTF is a complex system which consists of several plant systems like beam source, gas feed, vacuum, cryogenics, high voltage power supplies, high power RF generators, mechanical systems and diagnostics systems. Out of these, several INTF components are ITER deliverable, that is, beam source, beam line components and power supplies. To ensure successful operation of INTF involving integrated operation of all the constituent plant systems a matured Data Acquisition and Control System (DACS) is required. The INTF DACS is based on CODAC platform following on PCDH (Plant Control Design Handbook) guidelines. The experimental phases involve application of HV power supplies (100 KV) and High RF power (∼800 KW) which will produce energetic beam of maximum power 6MW within the facility for longer durations. Hence the entire facility will be exposed tohigh heat fluxes and RF radiations. To ensure investment protection and to provide occupational safety for working personnel a matured Safety and Interlock system is required for INTF. The Safety and Interlock systems are high-reliability I&C systems devoted completely to the specific functions. These systems will be separate from the conventional DACS of INTF which will handle the conventional control and acquisition functions. Both, the Safety and Interlock systems are based on IEC 61511 and IEC 61508 standards as

  12. Preliminary design of safety and interlock system for indian test facility of diagnostic neutral beam

    International Nuclear Information System (INIS)

    Tyagi, Himanshu; Soni, Jignesh; Yadav, Ratnakar; Bandyopadhyay, Mainak; Rotti, Chandramouli; Gahlaut, Agrajit; Joshi, Jaydeep; Parmar, Deepak; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2016-01-01

    Highlights: • Indian Test Facility being built to characterize DNB for ITER delivery. • Interlock system required to safeguard the investment incurred in building the facility and protecting ITER deliverable components. • Interlock levels upto 3IL-3 identified. • Safety instrumented system for occupational safety being designed. Safety I&C functions of SIL-2 identified. • The systems are based on ITER PIS and PSS design guidelines. - Abstract: Indian Test Facility (INTF) is being built in Institute For Plasma Research to characterize Diagnostic Neutral Beam in co-operation with ITER Organization. INTF is a complex system which consists of several plant systems like beam source, gas feed, vacuum, cryogenics, high voltage power supplies, high power RF generators, mechanical systems and diagnostics systems. Out of these, several INTF components are ITER deliverable, that is, beam source, beam line components and power supplies. To ensure successful operation of INTF involving integrated operation of all the constituent plant systems a matured Data Acquisition and Control System (DACS) is required. The INTF DACS is based on CODAC platform following on PCDH (Plant Control Design Handbook) guidelines. The experimental phases involve application of HV power supplies (100 KV) and High RF power (∼800 KW) which will produce energetic beam of maximum power 6MW within the facility for longer durations. Hence the entire facility will be exposed tohigh heat fluxes and RF radiations. To ensure investment protection and to provide occupational safety for working personnel a matured Safety and Interlock system is required for INTF. The Safety and Interlock systems are high-reliability I&C systems devoted completely to the specific functions. These systems will be separate from the conventional DACS of INTF which will handle the conventional control and acquisition functions. Both, the Safety and Interlock systems are based on IEC 61511 and IEC 61508 standards as

  13. A security/safety survey of long term care facilities.

    Science.gov (United States)

    Acorn, Jonathan R

    2010-01-01

    What are the major security/safety problems of long term care facilities? What steps are being taken by some facilities to mitigate such problems? Answers to these questions can be found in a survey of IAHSS members involved in long term care security conducted for the IAHSS Long Term Care Security Task Force. The survey, the author points out, focuses primarily on long term care facilities operated by hospitals and health systems. However, he believes, it does accurately reflect the security problems most long term facilities face, and presents valuable information on security systems and practices which should be also considered by independent and chain operated facilities.

  14. System reliability as perceived by maintenance personnel on petroleum production facilities

    International Nuclear Information System (INIS)

    Antonovsky, A.; Pollock, C.; Straker, L.

    2016-01-01

    The aim of this research was to understand the relationship between maintenance staff perceptions of organisational effectiveness and operational reliability in petroleum operations. Engineering measures exist that assess the effectiveness of maintenance and reliability of equipment. These measures are typically retrospective and may not provide insight into what impedes system reliability. Perceptions of organisational effectiveness by the workforce may provide a predictive measure that could improve our understanding of the human factors that influence system reliability. Maintenance personnel (n=133) from nine petroleum production facilities completed a survey as part of a study of human factors and maintenance reliability. 69 respondents (51.9%) provided comments to an open-ended question in the survey, and these data were analysed using Interpretive Phenomenological Analysis to extract themes. Four super-ordinate themes were identified from the analysis: 1) Communication and access to information, 2) Efficiency of current work systems, 3) Need for better workgroup support, and 4) Management impacts on the workplace. We found a significant relationship between the frequency of the four super-ordinate themes and the facility reliability level as measured by ‘Mean Time Between Failures’: χ 2 (6,N=158)=16.2, p=.013. These results demonstrated that operational effectiveness might be differentiated on the basis of survey-derived perceptions of maintenance personnel. - Highlights: • Thematic analysis of survey comments provided insights into workplace reliability • Worker’s comments on reliability related to technical data on time between failures • Management decision-making was the main theme in the lower reliability workplaces • Improving efficiency was the main theme in the higher reliability workplaces • Communication and better workgroup support were themes at all reliability levels

  15. Nuclear criticality safety program at the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Fujita, E.K.; Tracy, D.B.; Klann, R.T.; Imel, G.R.; Benedict, R.W.; Rigg, R.H.

    1994-01-01

    The Fuel Cycle Facility (FCF) is designed to demonstrate the feasibility of a novel commercial-scale remote pyrometallurgical process for metallic fuels from liquid metal-cooled reactors and to show closure of the Integral Fast Reactor (IFR) fuel cycle. Requirements for nuclear criticality safety impose the most restrictive of the various constraints on the operation of FCF. The upper limits on batch sizes and other important process parameters are determined principally by criticality safety considerations. To maintain an efficient operation within appropriate safety limits, it is necessary to formulate a nuclear criticality safety program that integrates equipment design, process development, process modeling, conduct of operations, a measurement program, adequate material control procedures, and nuclear criticality analysis. The nuclear criticality safety program for FCF reflects this integration, ensuring that the facility can be operated efficiently without compromising safety. The experience gained from the conduct of this program in the Fuel cycle Facility will be used to design and safely operate IFR facilities on a commercial scale. The key features of the nuclear criticality safety program are described. The relationship of these features to normal facility operation is also described

  16. Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities

    International Nuclear Information System (INIS)

    Batandjieva, B.; Torres-Vidal, C.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Coordinated research program ''Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities'' (ISAM) has developed improved safety assessment methodology for near surface disposal facilities. The program has been underway for three years and has included around 75 active participants from 40 countries. It has also provided examples for application to three safety cases--vault, Radon type and borehole radioactive waste disposal facilities. The program has served as an excellent forum for exchange of information and good practices on safety assessment approaches and methodologies used worldwide. It also provided an opportunity for reaching broad consensus on the safety assessment methodologies to be applied to near surface low and intermediate level waste repositories. The methodology has found widespread acceptance and the need for its application on real waste disposal facilities has been clearly identified. The ISAM was finalized by the end of 2000, working material documents are available and an IAEA report will be published in 2002 summarizing the work performed during the three years of the program. The outcome of the ISAM program provides a sound basis for moving forward to a new IAEA program, which will focus on practical application of the safety assessment methodologies to different purposes, such as licensing radioactive waste repositories, development of design concepts, upgrading existing facilities, reassessment of operating repositories, etc. The new program will also provide an opportunity for development of guidance on application of the methodology that will be of assistance to both safety assessors and regulators

  17. Status of safety at Areva group facilities. 2007 annual report; Areva, etat de surete des installations nucleaires. Rapport annuel 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This report describes the status of nuclear safety and radiation protection in the facilities of the AREVA group and gives information on radiation protection in the service operations, as observed through the inspection programs and analyses carried out by the General Inspectorate in 2007. Having been submitted to the group's Supervisory Board, this report is sent to the bodies representing the personnel. Content: 1 - A look back at 2007 by the AREVA General Inspector: Visible progress in 2007, Implementation of the Nuclear Safety Charter, Notable events; 2 - Status of nuclear safety and radiation protection in the nuclear facilities and service operations: Personnel radiation protection, Event tracking, Service operations, Criticality control, Radioactive waste and effluent management; 3 - Performance improvement actions; 4 - Description of the General Inspectorate; 5 - Glossary.

  18. CP-50 calibration facility radiological safety assessment document

    International Nuclear Information System (INIS)

    Chilton, M.W.; Hill, R.L.; Eubank, B.F.

    1980-03-01

    The CP-50 Calibration Facility Radiological Safety Assessment document, prepared at the request of the Nevada Operations Office of the US Department of Energy to satisfy provisions of ERDA Manual Chapter 0531, presents design features, systems controls, and procedures used in the operation of the calibration facility. Site and facility characteristics and routine and non-routine operations, including hypothetical incidents or accidents are discussed and design factors, source control systems, and radiation monitoring considerations are described

  19. CP-50 calibration facility radiological safety assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Chilton, M.W.; Hill, R.L.; Eubank, B.F.

    1980-03-01

    The CP-50 Calibration Facility Radiological Safety Assessment document, prepared at the request of the Nevada Operations Office of the US Department of Energy to satisfy provisions of ERDA Manual Chapter 0531, presents design features, systems controls, and procedures used in the operation of the calibration facility. Site and facility characteristics and routine and non-routine operations, including hypothetical incidents or accidents are discussed and design factors, source control systems, and radiation monitoring considerations are described.

  20. Safety of fuel cycle facilities. Topical issues paper no. 3

    International Nuclear Information System (INIS)

    Ranguelova, V.; Niehaus, F.; Delattre, D.

    2001-01-01

    A wide range of nuclear fuel cycle facilities are in operation. These installations process, use, store and dispose of radioactive material and cover: mining and milling, conversion, enrichment, fuel fabrication (including mixed oxide fuel), reactor, interim spent fuel storage, reprocessing, waste treatment and waste disposal facilities. For the purposes of this paper, reactors and waste disposal facilities are not considered. The term 'fuel cycle facilities' covers only the remainder of the installations listed above. The IAEA Secretariat maintains a database of fuel cycle facilities in its Member States. Known as the Nuclear Fuel Cycle Information System (NFCIS), it is available as an on-line service through the Internet. More than 500 such facilities have been reported under this system. The facilities are listed by facility type and operating status. Approximately one third of all of the facilities are located in developing States. About half of all facilities are reported to be operating, of which approximately 40% are operating in developing States. In addition, some 60 facilities are either in the design stage or under construction. Although the radioactive source term for most fuel cycle facilities is lower than the source term for reactors, which results in less severe consequences to the public from potential accidents at these fuel cycle installations, recent events at some fuel cycle facilities have given rise to public concern which has to be addressed adequately by national regulatory bodies and at the international level. Worldwide, operational experience feedback warrants improvements in the safety of these facilities. Some of the hazards are similar for reactor and non-reactor facilities. However, the differences between these installations give rise to specific safety concerns at fuel cycle facilities. In particular, these concerns include: criticality, radiation protection of workers, chemical hazards, fire and explosion hazards. It is recognized

  1. Transuranic storage and assay facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    Porten, D.R., Fluor Daniel Hanford

    1997-02-12

    The Transuranic Waste Storage and Assay Facility (TRUSAF) Interim Safety Basis document provides the authorization basis for the interim operation and restriction on interim operations for the TRUSAF. The TRUSAF ISB demonstrates that the TRUSAF can be operated safely, protecting the workers, the public, and the environment. The previous safety analysis document TRUSAF Hazards Identification and Evaluation (WHC 1987) is superseded by this document.

  2. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  3. Waste Encapsulation and Storage Facility interim operational safety requirements

    CERN Document Server

    Covey, L I

    2000-01-01

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  4. Preliminary safety analysis report for the Waste Characterization Facility

    International Nuclear Information System (INIS)

    1994-10-01

    This safety analysis report outlines the safety concerns associated with the Waste Characterization Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are to: define and document a safety basis for the Waste Characterization Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume. 142 refs., 38 figs., 39 tabs

  5. Critical experiments facility and criticality safety programs at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Miyoshi, Yoshinori; Nomura, Yasushi

    1985-10-01

    The nuclear criticality safety is becoming a key point in Japan in the safety considerations for nuclear installations outside reactors such as spent fuel reprocessing facilities, plutonium fuel fabrication facilities, large scale hot alboratories, and so on. Especially a large scale spent fuel reprocessing facility is being designed and would be constructed in near future, therefore extensive experimental studies are needed for compilation of our own technical standards and also for verification of safety in a potential criticality accident to obtain public acceptance. Japan Atomic Energy Research Institute is proceeding a construction program of a new criticality safety experimental facility where criticality data can be obtained for such solution fuels as mainly handled in a reprocessing facility and also chemical process experiments can be performed to investigate abnormal phenomena, e.g. plutonium behavior in solvent extraction process by using pulsed colums. In FY 1985 detail design of the facility will be completed and licensing review by the government would start in FY 1986. Experiments would start in FY 1990. Research subjects and main specifications of the facility are described. (author)

  6. Technical Safety Requirements for the Gamma Irradiation Facility (GIF)

    CERN Document Server

    Mahn, J A E M J G

    2003-01-01

    This document provides the Technical Safety Requirements (TSR) for the Sandia National Laboratories Gamma Irradiation Facility (GIF). The TSR is a compilation of requirements that define the conditions, the safe boundaries, and the administrative controls necessary to ensure the safe operation of a nuclear facility and to reduce the potential risk to the public and facility workers from uncontrolled releases of radioactive or other hazardous materials. These requirements constitute an agreement between DOE and Sandia National Laboratories management regarding the safe operation of the Gamma Irradiation Facility.

  7. Preliminary safety evaluation (PSE) for Sodium Storage Facility at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Bowman, B.R.

    1994-01-01

    This evaluation was performed for the Sodium Storage Facility (SSF) which will be constructed at the Fast Flux Test Facility (FFTF) in the area adjacent to the South and West Dump Heat Exchanger (DHX) pits. The purpose of the facility is to allow unloading the sodium from the FFTF plant tanks and piping. The significant conclusion of this Preliminary Safety Evaluation (PSE) is that the only Safety Class 2 components are the four sodium storage tanks and their foundations. The building, because of its imminent risk to the tanks under an earthquake or high winds, will be Safety Class 3/2, which means the building has a Safety Class 3 function with the Safety Class 2 loads of seismic and wind factored into the design

  8. Performance comparisons of selected personnel-dosimetry systems in use at Department of Energy facilities

    International Nuclear Information System (INIS)

    Roberson, P.L; Holbrook, K.L.; Yoder, R.C.; Fox, R.A.; Hadley, R.T.; Hogan, B.T.; Hooker, C.D.

    1983-10-01

    Dosimeter performance data were collected to help develop a uniform approach to the calibration and use of personnel dosimetry systems for Department of Energy (DOE) laboratories. Eleven DOE laboratories participated in six months of testing using the American National Draft Standard, Criteria for Testing Personnel Dosimetry Performance, ANSI N13.11, and additional testing categories. The tests described in ANSI N13.11 used a pass/fail system to determine compliance with the draft standard. Recalculation to PNL irradiations showed that the 137 Cs, 90 Sr/ 90 Y, and 252 Cf categories can be recalibrated to have acceptable performance for nearly all participant systems. Deficient dosimeter design or handling techniques caused poor performance in the x-ray category for nearly half of the participants. Too little filtration for the deep-dose element caused poor performance in the beta/photon mixture category for one participant. Two participants had excessively high standard deviations in the neutron category due to dosimeter design or handling deficiencies. The participating dosimetry systems were separated into three categories on their dose evaluation procedure for low-energy photons. These were film dosimeters, fixed-calibration thermoluminescent (TL) dosimeters, and variable-calibration TL dosimeters. The performance of the variable-calibration design was best while the film dosimeters performed considerably worse than either TL dosimeter design. Beta energy dependence studies confirmed a strong correlation between sensitive element thickness, shallow element filtration and low-energy beta response. Studies of neutron calibration conditions for each participant suggested a relationship between response and calibration facility design

  9. Safety assessment for the rf Test Facility

    International Nuclear Information System (INIS)

    Nagy, A.; Beane, F.

    1984-08-01

    The Radio Frequency Test Facility (RFTF) is a part of the Magnetic Fusion Program's rf Heating Experiments. The goal of the Magnetic Fusion Program (MFP) is to develop and demonstrate the practical application of fusion. RFTF is an experimental device which will provide an essential link in the research effort aiming at the realization of fusion power. This report was compiled as a summary of the analysis done to ensure the safe operation of RFTF

  10. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option research center

    International Nuclear Information System (INIS)

    2002-01-01

    This document describes the specific dispositions relative to the Research Center, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the Research Center and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  11. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor

    International Nuclear Information System (INIS)

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  12. Radiation safety of gamma and electron irradiation facilities

    International Nuclear Information System (INIS)

    1992-01-01

    There are currently some 160 gamma irradiation facilities and over 600 electron beam facilities in operation throughout virtually all Member States of the IAEA. The most widespread uses of these facilities are for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, and the eradication of insect infestation. The safety record of this industry has been very good. Nevertheless, there is a potential for accidents with serious consequences. Gamma and electron beam facilities produce very high dose rates during irradiation, so that a person accidentally present in the irradiation chamber can receive a lethal dose within minutes or seconds. Precautions against uncontrolled entry must therefore be taken. Furthermore, gamma irradiation facilities contain large amounts of radioactivity and if the mechanism for retracting the source is damaged, the source may remain exposed, inhibiting direct access to carry out remedial work. Contamination can result from corroded or damaged sources, and decontamination can be very expensive. These aspects clearly indicate the need to achieve a high degree of safety and reliability in the facilities. This can be accomplished by effective quality control together with careful design, manufacture, installation, operation and decommissioning. The guidance in this Safety Series publication is intended for competent authorities responsible for regulating the use of radiation sources as well as the manufacturers, suppliers, installers and users of gamma and electron beam facilities. 20 refs, 6 figs

  13. Data used for safety assessment of reprocessing facilities

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Suzuki, Atsuyuki; Kanagawa, Akira

    1990-08-01

    For safety assessment of a reprocessing facility, it is important to know performance of radioactive materials in their accidental release and transfer. Accordingly, it is necessary to collect and prepare data for use in analyses for their performance. In JAERI, experiments such as for data acquisition, for source-term evaluation and for radioactive material transfer, are now planned to be performed. Prior to these experiments, it is decided to investigate data in use for accidental safety assessment of reprocessing plants and their based experimental data, thus to make it possible to recommend reasonable values for safety analysis parameters by evaluating the investigated results, to select the experimental items, to edit a safety assessment handbook and so on. In this line of objectives, JAERI rewarded a two-year contract of investigation to Nuclear Safety Research Association, to make a working group under a special committee on data investigation for reprocessing facility safety assessment. This report is a collection of results reviewed and checked by the working group. The contents consist of two parts, one for investigation and review of data used for safety assessment of domestic or oversea reprocessing facilities, and the other for investigation, review and evaluation of ANSI recommended American standard data reported by E. Walker together with their based experimental data resorting to the original referred reports. (author)

  14. Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea

    Directory of Open Access Journals (Sweden)

    Jongtae Jeong

    2016-12-01

    Full Text Available A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI, Daejeon, Korea. We considered two kinds of wastes: (1 operation wastes generated from the routine operation of facilities; and (2 decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  15. A safety system for personnel and equipment protection at the AGS and RHIC

    International Nuclear Information System (INIS)

    Zitvogel, E.P.

    1994-01-01

    Brookhaven's Booster and AGS accelerators will soon be operating in a mode whereby different particle species and intensities are alternately accelerated within the same machine during different machine cycles. This will allow the AGS to feed the experimental program and act as a RHIC injector when needed. Along with this great flexibility comes the burden of ensuring the safety of AGS and RHIC personnel and equipment by preventing the inadvertent acceleration of high intensity beam during a period intended for low intensity beam. The Co-injection monitoring system, under development now at BNL, will meet this need. This safety system will sense the intensity of the beam by integrating the beam current signal from a transformer and trip off the accelerator if the intensity exceeds a preset level. The system is dual redundant and contains self-test circuitry to ensure its functionality. This paper describes the Co-injection system. Where available, results of the initial operation will be presented

  16. Ventilation safety of facilities comprising nuclear reactors

    International Nuclear Information System (INIS)

    Guirlet, J.

    1982-01-01

    The reliability of the ventilation is one of the most important aspects in the prevention of the nuisances that a nuclear installation can provide, since the ventilation is located at the last barrier. A certain number of essential points have been recalled here. But it is necessary to bear in mind other requirements such as the limitation in the number of crossovers, the answers to be found should the system fail, the need to show that ventilation systems do not in themselves bring other nuisances such as noise, irradiation or contamination hazards, likelyhood of recycling the contamination, vibrations, fire. Finally, it is absolutely essential, right from the project stage, that the design ensures that very good accessibility, very easy dismantling and handling, as well as all the facilities needed to make sure of the initial and periodic tests, are guaranteed [fr

  17. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.

    1993-01-01

    Probabilistic safety assessment methodology is being applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results from facilities used by the first 16 reactors is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  18. A bicycle safety index for evaluating urban street facilities.

    Science.gov (United States)

    Asadi-Shekari, Zohreh; Moeinaddini, Mehdi; Zaly Shah, Muhammad

    2015-01-01

    The objectives of this research are to conceptualize the Bicycle Safety Index (BSI) that considers all parts of the street and to propose a universal guideline with microscale details. A point system method comparing existing safety facilities to a defined standard is proposed to estimate the BSI. Two streets in Singapore and Malaysia are chosen to examine this model. The majority of previous measurements to evaluate street conditions for cyclists usually cannot cover all parts of streets, including segments and intersections. Previous models also did not consider all safety indicators and cycling facilities at a microlevel in particular. This study introduces a new concept of a practical BSI to complete previous studies using its practical, easy-to-follow, point system-based outputs. This practical model can be used in different urban settings to estimate the level of safety for cycling and suggest some improvements based on the standards.

  19. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  20. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  1. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  2. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  3. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    Majborn, B.; Aarkrog, A.; Brodersen, K.

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  4. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Heydorn, K.; Oelgaard, P.L.

    1997-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  5. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  6. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  7. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  8. Evaluation of Portable Multi-Gas Analyzers for use by Safety Personnel

    Science.gov (United States)

    Lueck, D. E.; Meneghelli, B. J.; Bardel, D. N.

    1998-01-01

    During confined space entry operations as well as Shuttle-safing operations, United Space Alliance (USA)/National Aeronautics and Space Administration (NASA) safety personnel use a variety of portable instrumentation to monitor for hazardous levels of compounds such as nitrogen dioxide (N%), monomethylhydrazine (NMM), FREON 21, ammonia (NH3), oxygen (O2), and combustibles (as hydrogen (H2)). Except for O2 and H2, each compound is monitored using a single analyzer. In many cases these analyzers are 5 to 10 years old and require frequent maintenance. In addition, they are cumbersome to carry and tend to make the job of personnel monitoring physically taxing. As part of an effort to upgrade the sensor technology background information was requested from a total of 27 manufacturers of portable multi-gas instruments. A set of criteria was established to determine which vendors would be selected for laboratory evaluation. These criteria were based on requests made by USA/NASA Safety personnel in order to meet requirements within their respective areas for confined-space and Shuttle-safing operations. Each of the 27 manufacturers of multi-gas analyzers was sent a copy of the criteria and asked to fill in the appropriate information pertaining to their instrumentation. Based on the results of the sensor criteria worksheets, a total of 9 vendors out of 27 surveyed manufacturers were chosen for evaluation. Each vendor included in the final evaluation process was requested to configure each of two analyzers with NO2, NH3, O2, and combustible sensors. A set of lab tests was designed in order to determine which of the multi-gas instruments under evaluation was best suited for use in both shuttle and confined space operations. These tests included linearity/repeatability, zero/span drift response/recovery, humidity, interference, and maintenance. At the conclusion of lab testing three vendors were selected for additional field testing. Based on the results of both the lab and

  9. Decommissioning of Medical, Industrial and Research Facilities. Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of medical, industrial and research facilities where radioactive materials and sources are produced, received, used and stored. It is intended to provide guidance to national authorities and operating organizations, particularly to those in developing countries (as such facilities are predominant in these countries), for the planning and safe management of the decommissioning of such facilities. The Safety Guide has been prepared through a series of Consultants meetings and a Technical Committee meeting

  10. Decommissioning of medical, industrial and research facilities. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of medical, industrial and research facilities where radioactive materials and sources are produced, received, used and stored. It is intended to provide guidance to national authorities and operating organizations, particularly to those in developing countries (as such facilities are predominant in these countries), for the planning and safe management of the decommissioning of such facilities. The Safety Guide has been prepared through a series of Consultants meetings and a Technical Committee meeting

  11. Safety at the End of a Nuclear Facility's Life

    International Nuclear Information System (INIS)

    Geis, John A.; McEahern, Patrice; Evans, Brad

    2004-01-01

    The objective of this paper is to capture the changes that are caused by the transition from nuclear operation through closure of defense nuclear facilities and convey lessons learned from their deactivation, decontamination and demolition. The specific area of discussion is focused on the planned reduction of safety equipment and consequent shift in hazard controls and safety management programs as the facility moves toward closure. The premise of the paper is that as the dominant hazards transition from nuclear to radiological and/or industrial, the facility control of the hazards and response to the potential upset conditions must transition as well to ensure safe and efficient operations. Using recent experience of the accelerated closure mission for U. S. Department of Energy (DOE) defense nuclear facilities at Rocky Flats Environmental Technology Site, the current culture with respect to developing and implementing hazard controls and response to upset conditions is illustrated. Several events have been documented that provide insight into the challenges facing line managers and safety professionals at the end of a facility's life cycle. Replacing permanent systems with temporary equipment challenges the traditional concept of reliability. Workers disassemble safety systems daily, but must rely on some of these components or redundant systems as work continues. Decisions governing upkeep of systems that await demolition balance the risk of running to failure against the cost benefit of maintenance and repair. This is further complicated as regulators and safety professionals are often unfamiliar with these new conditions and continue to view facility work activities and potential upset conditions from a nuclear operations perspective. The results of this paper evaluate the differences in how regulatory, safety basis, and operational practices must adapt to the dynamic environment of decontamination and decommissioning in contrast to the relatively constant

  12. PANDA: A Multipurpose Integral Test Facility for LWR Safety Investigations

    Directory of Open Access Journals (Sweden)

    Domenico Paladino

    2012-01-01

    Full Text Available The PANDA facility is a large scale, multicompartmental thermal hydraulic facility suited for investigations related to the safety of current and advanced LWRs. The facility is multipurpose, and the applications cover integral containment response tests, component tests, primary system tests, and separate effect tests. Experimental investigations carried on in the PANDA facility have been embedded in international projects, most of which under the auspices of the EU and OECD and with the support of a large number of organizations (regulatory bodies, technical dupport organizations, national laboratories, electric utilities, industries worldwide. The paper provides an overview of the research programs performed in the PANDA facility in relation to BWR containment systems and those planned for PWR containment systems.

  13. PANDA: A Multipurpose Integral Test Facility for LWR Safety Investigations

    International Nuclear Information System (INIS)

    Paladino, D.; Dreier, J.

    2012-01-01

    The PANDA facility is a large scale, multicompartmental thermal hydraulic facility suited for investigations related to the safety of current and advanced LWRs. The facility is multipurpose, and the applications cover integral containment response tests, component tests, primary system tests, and separate effect tests. Experimental investigations carried on in the PANDA facility have been embedded in international projects, most of which under the auspices of the EU and OECD and with the support of a large number of organizations (regulatory bodies, technical dupport organizations, national laboratories, electric utilities, industries) worldwide. The paper provides an overview of the research programs performed in the PANDA facility in relation to BWR containment systems and those planned for PWR containment systems.

  14. Extreme meteorological events and nuclear facilities safety

    International Nuclear Information System (INIS)

    Almeida, Patricia Moco Princisval

    2006-01-01

    An External Event is an event that originates outside the site and whose effects on the Nuclear Power Plants (NPP) should be considered. Such events could be of natural or human induced origin and should be identified and selected for design purposes during the site evaluation process. This work shows that the subtropics and mid latitudes of South America east of the Andes Mountain Range have been recognized as prone to severe convective weather. In Brazil, the events of tornadoes are becoming frequent; however there is no institutionalized procedure for a systematic documentation of severe weather. The information is done only for some scientists and by the newspapers. Like strong wind can affect the structural integrity of buildings or the pressure differential can affect the ventilation system, our concern is the safety of NPP and for this purpose the recommendations of International Atomic Energy Agency, Nuclear Regulatory Commission and Comissao Nacional de Energia Nuclear are showed and also a data base of tornadoes in Brazil is done. (author)

  15. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  16. Safety assessment for facilities and activities. General safety requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF 6 ; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  17. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    International Nuclear Information System (INIS)

    KRAHN, D.E.

    2000-01-01

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included

  18. Criticality safety training at the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

    1983-01-01

    HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program

  19. Transuranic waste storage and assay facility (TRUSAF) interim safety basis

    International Nuclear Information System (INIS)

    Gibson, K.D.

    1995-09-01

    The TRUSAF ISB is based upon current facility configuration and procedures. The purpose of the document is to provide the basis for interim operation or restrictions on interim operations and the authorization basis for the TRUSAF at the Hanford Site. The previous safety analysis document TRUSAF hazards Identification and Evaluation (WHC 1977) is superseded by this document

  20. The study on safety facility criteria for radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. H.; Choi, M. H.; Han, S. H. and others [Dongbang Electron Industry Corporation, (Korea, Republic of)

    1992-12-15

    The radioactive waste repository are necessary to install the engineered safety systems to secure the safety for operation of the repository in the event of fire and earthquake. Since the development of safety facility criteria requires a thorough understanding about the characteristics of the engineered safety systems, we should investigate by means of literature survey and visit SKB. In particular, definition, composition of the systems, functional requirement of the systems, engineered safety systems of foreign countries, system design, operation and maintenance requirement should be investigated : fire protection system, ventilation system, drainage system, I and C system, electric system, radiation monitoring system. This proposed criteria consist of purpose, scope of application, ventilation system, fire protection system, drainage system, electric system and this proposed criteria can be applied as a basic reference for the final criteria.

  1. The study on safety facility criteria for radioactive waste repository

    International Nuclear Information System (INIS)

    Lee, S. H.; Choi, M. H.; Han, S. H. and others

    1992-12-01

    The radioactive waste repository are necessary to install the engineered safety systems to secure the safety for operation of the repository in the event of fire and earthquake. Since the development of safety facility criteria requires a thorough understanding about the characteristics of the engineered safety systems, we should investigate by means of literature survey and visit SKB. In particular, definition, composition of the systems, functional requirement of the systems, engineered safety systems of foreign countries, system design, operation and maintenance requirement should be investigated : fire protection system, ventilation system, drainage system, I and C system, electric system, radiation monitoring system. This proposed criteria consist of purpose, scope of application, ventilation system, fire protection system, drainage system, electric system and this proposed criteria can be applied as a basic reference for the final criteria

  2. Safety in Elevators and Grain Handling Facilities. Module SH-27. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety in elevators and grain handling facilities is one of 50 modules concerned with job safety and health. Following the introduction, 15 objectives (each keyed to a page in the text) the student is expected to accomplish are listed (e.g., Explain how explosion suppression works). Then each objective is taught in detail,…

  3. Psychometric model for safety culture assessment in nuclear research facilities

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Andrade, D.A.; Mesquita, R.N. de

    2017-01-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  4. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  5. Documented Safety Analysis for the Waste Storage Facilities March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  6. Documented Safety Analysis for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  7. The state of radioactive waste management and of personnel radiation exposure in nuclear power generating facilities in fiscal 1983

    International Nuclear Information System (INIS)

    1985-01-01

    (1) The state of radioactive waste management in nuclear power generating facilities: In the nuclear power stations, the released quantities of radioactive gaseous and liquid wastes are all below the control objective levels. For the respective nuclear power stations, the released quantities of radioactive gaseous and liquid wastes in fiscal 1983 and the objective levels are given in table. And, the quantities of solid wastes taken into storage and the cumulative amounts are given. For reference, the results each year since fiscal 1974 are shown. (2) The state of personnel radiation exposure in nuclear power generating facilities: In the nuclear power stations, the personnel radiation exposures are all below the permissible levels. The dose distribution etc. in the respective nuclear power stations are given in table. For reference, the results each year since fiscal 1974 are shown. (Mori, K.)

  8. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable

  9. H.R. 3521: Nuclear Facilities Occupational Safety Improvement Act of 1989. Introduced in the House of Representatives, One Hundredth First Congress, First Session, October 25, 1989

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Bill H.R.3521 was introduced in the House of Representatives of the United States on October 25, 1989. The purpose of this Act and the amendments made by this Act are to improve and enforce standards for employee health and safety at Department of Energy nuclear facilities. Congress finds that worker health and safety at Department of Energy nuclear facilities could be made substantially safer by applying standards developed by experts in the field of occupational health and safety. A section-by-section analysis makes up most of the report with emphasis on the following: application of OSHA to DOE nuclear facilities; cooperation with inspections and investigations; transfer and allocation of appropriations and personnel; worker training requirements; performance of NIOSH functions at DOE nuclear facilities; medical examinations of employees; and labor-management health and safety committees at DOE nuclear facilities

  10. AREVA General Inspectorate Annual Report 2013 - Status of safety in nuclear facilities

    International Nuclear Information System (INIS)

    Oursel, Luc; Riou, Jean

    2014-06-01

    discipline. As in the previous year, the quality of relationship with the French nuclear safety regulator (ASN) and the management of the criticality risk were identified as areas for vigilance, as well as safety skills and resources, and sufficient managerial presence in the field. Other highlights of 2013 were the simplification of the group's legal structure, the continued roll-out of the new INB order, and the close attention paid to the conditions for implementing subcontracted work. Content: 1 - Context; 2 - Lessons learned from inspections; 3 - Radiological monitoring of personnel; 4 - Environmental monitoring; 5 - Operating experience from events; 6 - Crosscutting processes: Safety management, Safety of facilities, Operational safety; 7 - Areas for improvement and outlook; 8 - Glossary

  11. Enhancement of safety at nuclear facilities in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Hayat, T.; Azhar, W.

    2006-01-01

    Pakistan is benefiting from nuclear technology mostly in health and energy sectors as well as agriculture and industry and has an impeccable safety record. At the national level uses of nuclear technology started in 1955 resulting in the operation of Karachi Radioisotope Center, Karachi, in December 1960. Pakistan Nuclear Safety Committee (PNSC) was formulated in 1964 with subsequent promulgation of Pakistan Atomic Energy Commission (PAEC) Ordinance in 1965 to cope with the anticipated introduction of a research reactor, namely PARR-I, and a nuclear power plant, namely KANUPP. Since then Pakistan's nuclear program has expanded to include numerous nuclear facilities of varied nature. This program has definite economic and social impacts by producing electricity, treating and diagnosing cancer patients, and introducing better crop varieties. Appropriate radiation protection includes a number of measures including database of sealed radiation sources at PAEC operated nuclear facilities, see Table l, updated during periodic physical verification of these sources, strict adherence to the BSS-115, IAEA recommended enforcement of zoning at research reactors and NPPs, etc. Pakistan is party to several international conventions and treaties, such as Convention of Nuclear Safety and Early Notification, to improve and enhance safety at its nuclear facilities. In addition Pakistan generally and PAEC particularly believes in a blend of prudent regulations and good/best practices. This is described in this paper. (Author)

  12. Safety of Long-term Interim Storage Facilities - Workshop Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this workshop was to discuss and review current national activities, plans and regulatory approaches for the safety of long term interim storage facilities dedicated to spent nuclear fuel (SF), high level waste (HLW) and other radioactive materials with prolonged storage regimes. It was also intended to discuss results of experiments and to identify necessary R and D to confirm safety of fuel and cask during the long-term storage. Safety authorities and their Technical Support Organisation (TSO), Fuel Cycle Facilities (FCF) operating organisations and international organisations were invited to share information on their approaches, practices and current developments. The workshop was organised in an opening session, three technical sessions, and a conclusion session. The technical sessions were focused on: - National approaches for long term interim storage facilities; - Safety requirements, regulatory framework and implementation issues; - Technical issues and operational experience, needs for R and D. Each session consisted of a number of presentations followed by a panel discussion moderated by the session Chairs. A summary of each session and subsequent discussion that ensued are provided as well as a summary of the results of the workshop with the text of the papers given and presentations made

  13. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Laycak, D.T.

    2010-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  14. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.; Cameron, H.M.; Davies, A.R.; Hiscox, A.W.

    1995-01-01

    Probabilistic safety assessment methodology has been applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  15. Safety issues relating to the design of fusion power facilities

    International Nuclear Information System (INIS)

    Stasko, R.R.; Wong, K.Y.; Russell, S.B.

    1986-06-01

    In order to make fusion power a viable future source of energy, it will be necessary to ensure that the cost of power for fusion electric generation is competitive with advanced fission concepts. In addition, fusion power will have to live up to its original promise of being a more radiologically benign technology than fission, and be able to demonstrate excellent operational safety performance. These two requirements are interrelated, since the selection of an appropriate safety philosophy early in the design phase could greatly reduce or eliminate the capital costs of elaborate safety related and protective sytems. This paper will briefly overview a few of the key safety issues presently recognized as critical to the ultimate achievement of licensable, environmentally safe and socially acceptable fusion power facilities. 12 refs

  16. Documents pertaining to safety control of nuclear facilities

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls the safety of nuclear facilities in Finland. This control encompasses on one hand the evaluation of plant safety on the basis of plans and analyses pertaining to the plant and on the other hand the inspection of plant structures, systems and components as well as of operational activity. STUK also monitors plants operational experience feedback and technical developments in the field, as well as the development of safety research and takes the necessary measures on their basis. Guide YVL 1.1 describes how STUK controls the design, construction and operation of nuclear power plants. The documents to be submitted to STUK are described in the nuclear energy legislation and YVL guides. This guide presents the mode of delivery, quality, contents and number of documents to be submitted to STUK

  17. Radiation exposure of personnel in nuclear fuel facilities in fiscal 1981

    International Nuclear Information System (INIS)

    1983-01-01

    The owners of refining enterprises, fabrication enterprises and reprocessing enterprises and users are obligated by the law to keep the radiation exposure dose of personnel below the permissible level. In fiscal 1981 (from April, 1981, to March, 1982), the personnel exposure was far below this level. Exposure dose distribution, total exposure dose and average in the fiscal year are given for the personnel of the following enterprises and other personnel, respectively: refining enterprise - Power Reactor and Nuclear Fuel Development Corporation; fabrication enterprises - Mitsubishi Nuclear Fuel Co., Ltd., and four others; reprocessing enterprise - Power Reactor and Nuclear Fuel Development Corporation; users - Power Reactor and Nuclear Fuel Development Corporation, Japan Atomic Energy Research Institute, and four others. (Mori, K.)

  18. A proactive method for safety management in nuclear facilities

    International Nuclear Information System (INIS)

    Grecco, Claudio Henrique dos Santos; Carvalho, Paulo Victor Rodrigues de; Santos, Isaac Antonio Luquetti dos

    2014-01-01

    Due to the modern approach to address the safety of nuclear facilities which highlights that these organizations must be able to assess and proactively manage their activities becomes increasingly important the need for instruments to evaluate working conditions. In this context, this work presents a proactive method of managing organizational safety, which has three innovative features: 1) the use of predictive indicators that provide current information on the performance of activities, allowing preventive actions and not just reactive in safety management, different from safety indicators traditionally used (reactive indicators) that are obtained after the occurrence of undesired events; 2) the adoption of resilience engineering approach in the development of indicators - indicators are based on six principles of resilience engineering: top management commitment, learning, flexibility, awareness, culture of justice and preparation for the problems; 3) the adoption of the concepts and properties of fuzzy set theory to deal with subjectivity and consistency of human trials in the evaluation of the indicators. The fuzzy theory is used primarily to map qualitative models of decision-making, and inaccurate representation methods. The results of this study aim an improvement in performance and safety in organizations. The method was applied in a radiopharmaceutical shipping sector of a nuclear facility. The results showed that the method is a good monitoring tool objectively and proactively of the working conditions of an organizational domain

  19. Public's right to information: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Stokely, E.

    1981-02-01

    The events at TMI prompted the Under Secretary of the Department of Energy (DOE) to establish the Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee. This Committee was assigned the task of assessing the adequacy of nuclear facility personnel qualification and training at DOE-owned reactors in light of the Three Mile Island accident. The Committee was also asked to review recommendations and identify possible implications for DOE's nuclear facilities

  20. Safety Research Experiment Facility Project. Conceptual design report. Volume II. Building and facilities

    International Nuclear Information System (INIS)

    1975-12-01

    The conceptual design of Safety Research Experiment Facility (SAREF) site system includes a review and evaluation of previous geotechnical reports for the area where SAREF will be constructed and the conceptual design of access and in-plant roads, parking, experiment-transport-vehicle maneuvering areas, security fencing, drainage, borrow area development and restoration, and landscaping

  1. Success in behaviour-based safety at Los Alamos National Laboratory's plutonium facility

    International Nuclear Information System (INIS)

    Wieneke, R.E.; Balkey, J.J.; Kleinsteuber, J.F.

    2001-01-01

    Los Alamos National Laboratory's (LANL's) Plutonium Facility is responsible for a wide variety of actinide processing operations in support of the United States Department of Energy's (DOE's) stockpile stewardship of the nation's nuclear arsenal. Both engineered and administrative controls are used to mitigate hazards inherent in these activities. Nuclear facilities have engineered safety systems that are extensively evaluated and documented, and are monitored regularly for operability and performance. Personnel undergo comprehensive training, including annual recertification of their operations. They must thoroughly understand the hazards involved in their work and the controls that are in place to mitigate those hazards. A series of hazard-control plans and work instructions are used to define and authorize the work that is done. Primary hazards associated with chemicals and radioactive materials are well controlled with minimal risk to the workforce and public. The majority of injuries are physical or ergonomic in nature. In an effort to increase safety awareness and to decrease accidents and incidents, a program focusing on the identification and elimination of unsafe behaviours was initiated. Workers are trained on how to conduct safety observations and given guidance on specific behaviours to note. Observations are structured to have minimal impact upon workload and are shared by the entire workforce. This program has effectively decreased a low accident rate and will make long-term sustainability possible. (author)

  2. Maintenance of reactor safety and control computers at a large government facility

    International Nuclear Information System (INIS)

    Brady, H.G.

    1985-01-01

    In 1950 the US Government contracted the Du Pont Company to design, build, and operate the Savannah River Plant (SRP). At the time, it was the largest construction project ever undertaken by man. It is still the largest of the Department of Energy facilities. In the nearly 35 years that have elapsed, Du Pont has met its commitments to the US Government and set world safety records in the construction and operation of nuclear facilities. Contributing factors in achieving production goals and setting the safety records are a staff of highly qualified personnel, a well maintained plant, and sound maintenance programs. There have been many ''first ever'' achievements at SRP. These ''firsts'' include: (1) computer control of a nuclear rector, and (2) use of computer systems as safety circuits. This presentation discusses the maintenance program provided for these computer systems and all digital systems at SRP. An in-house computer maintenance program that was started in 1966 with five persons has grown to a staff of 40 with investments in computer hardware increasing from $4 million in 1970 to more than $60 million in this decade. 4 figs

  3. "Defense-in-Depth" Laser Safety and the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    King, J J

    2010-12-02

    The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious

  4. 'Defense-in-Depth' Laser Safety and the National Ignition Facility

    International Nuclear Information System (INIS)

    King, J.J.

    2010-01-01

    The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential

  5. In-pile experimental facility needs for LMFR safety research

    International Nuclear Information System (INIS)

    Kawata, Norio; Niwa, Hajime

    1994-01-01

    Although the achievement of the safety research during the past years has been significant, there still exists a strong need for future research, especially when there is prospect for future LMFR commercialization. In this paper, our current views are described on future research needs especially with a new in-pile experimental facility. The basic ideas and progress are outlined of a preliminary feasibility study. (author)

  6. Safety analysis of the existing 804 and 845 firing facilities

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 804 and 845 Firing Facilities at Site 300 could present undue hazards to the general public, peronnel at Site 300, or have an adverse effect on the environment. The normal operation and credible accident that might have an effect on these facilities or have off-site consequence were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives. Since this hazard has the potential for causing significant on-site and minimum off-site consequences, Bunkers 804 and 845 have been classified as moderate hazard facilties per DOE Order 5481.1A. This safety analysis concluded that the operation at these facilities will present no undue risk to the health and safety of LLNL employees or the public

  7. Developing a safety report for an existing conversion facility

    International Nuclear Information System (INIS)

    Carisse, Hess

    2013-01-01

    A review of the process used to meet the regulatory requirements for a Safety Report at an existing conversion facility is described. This paper will cover the establishment of the regulatory criteria, selection of appropriate methodologies, identification of events and modeling of credible events. Once established there is on-going maintenance to deal with design changes and the need for periodic reviews will also be discussed. Challenges in dealing with the various phases, including incorporation of historical licensing documents, and lessons learned are presented. Of specific interest is the failure of the selected methodology to deal with infrastructure issues. One aspect of lessons learned that will be explored is the lack of an available mechanism for sharing information with similar fuel cycle facilities which is compounded by the fact that there are a small number of fuel cycle facilities compared to nuclear power plants. Possible approaches to dealing with this issue are also discussed. (authors)

  8. Seismic safety of the LLL plutonium facility (Building 332)

    International Nuclear Information System (INIS)

    Torkarz, F.J.; Shaw, G.

    1980-01-01

    This report states the basis for the Lawrence Livermore Laboratory's assurance to the public that the plutonium operations at the Laboratory pose essentially no risk to anyone's health or safety, either under normal circumstances or in the event of an earthquake or a fire. The report is intended for a general audience, and so for the most part it is not highly technical. It summarizes the steps taken to ensure the seismic safety of the plutonium facility (Bldg. 332). It describes plutonium and its potential hazard and how the facility copes with that hazard. It recounts the geologic investigations and interpretations that led to the design-basis earthquake (DBE) for the Livermore site, and presents a summary analysis of the facility structure in relation to the DBE. An appendix presents a quantitative calculation of the health risk to the public associated with the worst-case hypothetical fire. The document supports the conclusions that the facility will continue to function safely after the maximum earthquake ground motion to which it may be subjected and that there is no evidence of a potential for surface offset under it

  9. Demonstration of safety of decommissioning of facilities using radioactive material

    International Nuclear Information System (INIS)

    Batandjieva, Borislava; O'Donnell, Patricio

    2008-01-01

    Full text:The development of nuclear industry worldwide in the recent years has particular impact on the approach of operators, regulators and interested parties to the implementation of the final phases (decommissioning) of all facilities that use radioactive material (from nuclear power plants, fuel fabrication facilities, research reactors to small research or medical laboratories). Decommissioning is becoming an increasingly important activity for two main reasons - termination of the practice in a safe manner with the view to use the facility or the site for other purposes, or termination of the practice and reuse the facility or site for new built nuclear facilities. The latter is of special relevance to multi-facility sites where for example new nuclear power plants and envisaged. However, limited countries have the adequate legal and regulatory framework, and experience necessary for decommissioning. In order to respond to this challenge of the nuclear industry and assist Member States in the adequate planning, conduct and termination of decommissioning of wide range of facilities, over the last decade the IAEA has implemented and initiated several projects in this field. One of the main focuses of this assistance to operators, regulators and specialists involved in decommissioning is the evaluation and demonstration of safety of decommissioning. This importance of these Agency activities was also highlighted in the International Action Plan on Decommissioning, during the second Joint Convention meeting in 2006 and the International Conference on Lessons Learned from Decommissioning in Athens in 2006. The IAEA has been providing technical support to its Member States in this field through several mechanisms: (1) the establishment of a framework of safety standards on decommissioning and development of a supporting technical documents; (2) the establishment of an international peer review mechanism for decommissioning; (3) the technical cooperation projects

  10. Safety analysis report for the cold vacuum drying facility, phase 2, supporting installation of process systems

    International Nuclear Information System (INIS)

    Pili-Vincens, C.

    1998-01-01

    SNF Project emergencies span the spectrum of identified emergencies for SNF Project facilities, from worker injury to general emergencies with potential public impact. Facility events include fire and/or explosion, radioactive material release, chlorine gas release, hazardous material release, loss of water in the fuel basins, and loss of electrical power. Natural events include seismic events, high winds, range fires, flooding, lightning strikes, tornado, and an aircraft crash. Security contingencies include bomb threat and/or explosive device, sabotage, and hostage situation and/or armed intruder as described in DOE/RL-94-02 (DOE 1997 b). This Chapter 15.0 applies to all operations, facilities, and personnel, including subcontractors, vendors, visitors, and any non-contractor tenants in SNF Project-controlled facilities. The EPP addresses both individual and organizational graded responses to the spectrum of emergencies, which includes hypothetical accidents with very low occurrence frequencies. The planning, accomplished in the EPP and the BEPs, provides the response actions for these emergencies. This chapter links the SNF Project EPP to DOE/RL-94-02 (DOE 1997 b), which provides the link to subsequent state and local off site EPPs. Integration of these programs links potential onsite events with onsite and offsite impacts. This integration assists in mitigation and recovery and provides for protection of the health and safety of the workers, the public, and the environment

  11. Safety requirements and safety experience of nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schnurer, H.L.

    1977-01-01

    Peaceful use of nuclear energy within the F.R.G. is rapidly growing. The Energy Programme of the Federal Government forecasts a capacity of up to 50.000 MW in 1985. Whereas most of this capacity will be of the LWR-Type, other activities are related to LMFBR - and HTGR - development, nuclear ships, and facilities of the nuclear fuel cycle. Safety of nuclear energy is the pacemaker for the realization of nuclear programmes and projects. Due to a very high population - and industrialisation density, safety has the priority before economical aspects. Safety requirements are therefore extremely stringent, which will be shown for the legal, the technical as well as for the organizational area. They apply for each nuclear facility, its site and the nuclear energy system as a whole. Regulatory procedures differ from many other countries, assigning executive power to state authorities, which are supervised by the Federal Government. Another particularity of the regulatory process is the large scope of involvement of independent experts within the licensing procedures. The developement of national safety requirements in different countries generates a necessity to collaborate and harmonize safety and radiation protection measures, at least for facilities in border areas, to adopt international standards and to assist nuclear developing countries. However, different nationally, regional or local situations might raise problems. Safety experience with nuclear facilities can be concluded from the positive construction and operation experience, including also a few accidents and incidents and the conclusions, which have been drawn for the respective factilities and others of similar design. Another tool for safety assessments will be risk analyses, which are under development by German experts. Final, a scope of future problems and developments shows, that safety of nuclear installations - which has reached a high performance - nevertheless imposes further tasks to be solved

  12. TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2005-01-01

    The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions

  13. RADON-type disposal facility safety case for the co-ordinated research project on improvement of safety assessment methodologies for near surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Guskov, A.; Batanjieva, B.; Kozak, M.W.; Torres-Vidal, C.

    2002-01-01

    The ISAM safety assessment methodology was applied to RADON-type facilities. The assessments conducted through the ISAM project were among the first conducted for these kinds of facilities. These assessments are anticipated to lead to significantly improved levels of safety in countries with such facilities. Experience gained though this RADON-type Safety Case was already used in Russia while developing national regulatory documents. (author)

  14. Spallation Neutron Source Accelerator Facility Target Safety and Non-safety Control Systems

    International Nuclear Information System (INIS)

    Battle, Ronald E.; DeVan, B.; Munro, John K. Jr.

    2006-01-01

    The Spallation Neutron Source (SNS) is a proton accelerator facility that generates neutrons for scientific researchers by spallation of neutrons from a mercury target. The SNS became operational on April 28, 2006, with first beam on target at approximately 200 W. The SNS accelerator, target, and conventional facilities controls are integrated by standardized hardware and software throughout the facility and were designed and fabricated to SNS conventions to ensure compatibility of systems with Experimental Physics Integrated Control System (EPICS). ControlLogix Programmable Logic Controllers (PLCs) interface to instruments and actuators, and EPICS performs the high-level integration of the PLCs such that all operator control can be accomplished from the Central Control room using EPICS graphical screens that pass process variables to and from the PLCs. Three active safety systems were designed to industry standards ISA S84.01 and IEEE 603 to meet the desired reliability for these safety systems. The safety systems protect facility workers and the environment from mercury vapor, mercury radiation, and proton beam radiation. The facility operators operated many of the systems prior to beam on target and developed the operating procedures. The safety and non-safety control systems were tested extensively prior to beam on target. This testing was crucial to identify wiring and software errors and failed components, the result of which was few problems during operation with beam on target. The SNS has continued beam on target since April to increase beam power, check out the scientific instruments, and continue testing the operation of facility subsystems

  15. [Working conditions and professional risk for operational personnel of energy facilities].

    Science.gov (United States)

    Amirov, N Kh; Ilyukhin, N E; Rusin, M N; Krasnoshchekova, V N

    2013-01-01

    Features of working conditions and a state of health of operation personnel of the network companies of power industry were studied for the purpose of justification and introduction of preventive actions for the decrease in influence of factors of professional risk.

  16. The Development of the Code Safety Valve Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Kim, Young Ae; Park, Jong Woon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2007-07-01

    The Pressurizer Safety Valves (PSV) in Pressurized Water Reactors (PWRs) are required to provide the overpressure protection for the Reactor Coolant System (RCS) during the overpressure transients. According to the ASME OM code, all safety valves should be tested every 5 years with the acceptance tolerance of 1%. If one valve failed to meet this criterion, other two additional valves should be tested and if these valves don't meet the requirement, all valves should be tested. These frequent tests may make the valves decrepit and become a cause of leak. Therefore, increase of the acceptance tolerance is vital for the safe operation of the plant. In the United States, the acceptance tolerances are enlarged up to about 3% in most plants. This requires re-analysis of relevant accidents in FSAR. Also, the technical background data for the valve pop-up characteristics and the loop seal dynamics (if the plant has the loop seal in the upstream of PSV) are needed for the new safety analysis. Korea Hydro and Nuclear Power Company (KHNP) plans to build the PSV test facility for the purpose of providing the background data. This paper describes the preliminary design of the facility and studies on the system dynamics using GOTHIC-7.2a code to verify the pressure vessel capacities and to find the best operating condition.

  17. Final safety analysis report (FSAR) for waste receiving and processing (WRAP) facility

    International Nuclear Information System (INIS)

    Weidert, J.R.

    1997-01-01

    This safety analysis report provides a summary description of the WRAP Facility, focusing on significant safety-related characteristics of the location and facility design. This report demonstrates that adherence to the safety basis wi11 ensure necessary operational safety considerations have been addressed sufficiently and justifies the adequacy of the safety basis in protecting the health and safety of the public, workers, and the environment

  18. Organization and staffing of the regulatory body for nuclear facilities. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this safety guide is to provide recommendations for national authorities on the appropriate management system, organization and staffing for the regulatory body responsible for the regulation of nuclear facilities in order to achieve compliance with the applicable safety requirements. This safety guide covers the organization and staffing in relation to nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And radioactive waste management facilities such as treatment, storage and disposal facilities. This safety guide also covers issues related to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation

  19. The technological safety in facilities that manage radioactive sources

    International Nuclear Information System (INIS)

    Lizcano, D.

    2014-10-01

    The sealed radioactive sources are used inside a wide range of applications in the medicine, industry and investigation around the world. These sources can contain a great radionuclides variety, exhibiting a wide spectrum of activities and radiological half lives. This way, we can find pattern sources of radionuclides as Americium-241, Plutonium-238, Plutonium-239, Thorium-228 and Thorium-230, etc., with some activity of kBq in research laboratories, Iridium-192 and Cesium-137 sources used in brachytherapy with GBq activities, until sources with P Bq activities in industrial irradiators of Cobalt-60 and Cesium-137. This document approach the physical safety that entities like the IAEA recommends for the facilities that contain sealed sources, especially the measures that are taking in the Instituto Nacional de Investigaciones Nucleares (ININ) and others government facilities. (Author)

  20. Present status of the Waste Safety Testing Facility

    International Nuclear Information System (INIS)

    Kikuchi, A.; Yamada, N.

    1993-01-01

    The Waste Safety Testing Facility (WASTEF) was established in 1981, in which the objective was to evaluate the confinement performance of glass and Synroc waste forms including high level waste (HLW). To this target, the following examinations have been typically carried out ; the fabrication and characterization of waste forms, the volatility test as a storage behavior and the leachability test as a disposal behavior. The facility is composed of three beta/gamma concrete cells, two alpha/gamma concrete cells, one lead cell and five glove boxes. The lead cell and glove boxes are of alpha/gamma type and attached to the alpha/gamma concrete cells No. 4 and No. 5, respectively. Several kinds of testing apparatus, measuring instruments and analytical equipments are located in the cells, the glove boxes and the examination rooms in the service area and operation room in the facility. Comparing with the other hot examination facilities in JAERI, WASTEF especially attends to different and particular works for investigating chemical behavior of waste forms. (author)

  1. Proceedings of the eighth symposium on training of nuclear facility personnel

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    This conference brought together those persons in the nuclear industry who have a vital interest in the training and licensing of nuclear reactor and nuclear fuel processing plant operators, senior operators, and support personnel for the purpose of an exchange of ideas and information related to the various aspects of training, retraining, examination, and licensing. The document contains 64 papers; each paper was abstracted for the data.

  2. Proceedings of the eighth symposium on training of nuclear facility personnel

    International Nuclear Information System (INIS)

    1989-04-01

    This conference brought together those persons in the nuclear industry who have a vital interest in the training and licensing of nuclear reactor and nuclear fuel processing plant operators, senior operators, and support personnel for the purpose of an exchange of ideas and information related to the various aspects of training, retraining, examination, and licensing. The document contains 64 papers; each paper was abstracted for the data

  3. Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments

    International Nuclear Information System (INIS)

    Tomberlin, T.A.

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to ''major modifications'' and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed

  4. 242-A Evaporator crystallizer facility integrated annual safety appraisal

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides the results of the Fiscal Year (FY) 1991 Annual Integrated Safety Appraisal of the 242-A Evaporator Crystallizer Facility in the Hanford 200 East Area. The appraisal was conducted in December 1990 and January 1991, by the Waste Tank Safety Assurance (WTSA) organizations in conjunction with Radiological Engineering, Criticality Safety, Packaging and Shipping Safety, Emergency Preparedness, Environmental Compliance, and Quality Assurance. Reports of these eight organizations are presented as Sections 2 through 7 of this report. The purpose of the appraisal was to verify that the 242-A Evaporator meets US Department of Energy (DOE) and Westinghouse Hanford Company (WHC) requirements and current industry standards of good practice for the areas being appraised. A further purpose was to identify areas in which program effectiveness could be improved. In accordance with the guidance of WHC Management Requirements and Procedures (MRP)5.6, previously identified deficiencies which are being resolved by line management were not repeated as Findings or Observations unless progress or intended disposition was considered to be unsatisfactory

  5. Safety distance between underground natural gas and water pipeline facilities

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Yusof, M.Z.

    2014-01-01

    A leaking water pipe bursting high pressure water jet in the soil will create slurry erosion which will eventually erode the adjacent natural gas pipe, thus causing its failure. The standard 300 mm safety distance used to place natural gas pipe away from water pipeline facilities needs to be reviewed to consider accidental damage and provide safety cushion to the natural gas pipe. This paper presents a study on underground natural gas pipeline safety distance via experimental and numerical approaches. The pressure–distance characteristic curve obtained from this experimental study showed that the pressure was inversely proportional to the square of the separation distance. Experimental testing using water-to-water pipeline system environment was used to represent the worst case environment, and could be used as a guide to estimate appropriate safety distance. Dynamic pressures obtained from the experimental measurement and simulation prediction mutually agreed along the high-pressure water jetting path. From the experimental and simulation exercises, zero effect distance for water-to-water medium was obtained at an estimated horizontal distance at a minimum of 1500 mm, while for the water-to-sand medium, the distance was estimated at a minimum of 1200 mm. - Highlights: • Safe separation distance of underground natural gas pipes was determined. • Pressure curve is inversely proportional to separation distance. • Water-to-water system represents the worst case environment. • Measured dynamic pressures mutually agreed with simulation results. • Safe separation distance of more than 1200 mm should be applied

  6. H.R. 2098: This Act may be cited as the Nuclear Facilities Occupational Safety Improvement Act of 1991, introduced in the US House of Representatives, One Hundred Second Congress, First Session, April 25, 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Worker health and safety at Department of Energy nuclear facilities could be made substantially safer by applying standards developed by experts in the field of occupational health and safety. This bill was introduced into the US House of Representatives on April 25, 1991 to amend the Occupational Safety and Health Act of 1970 to improve and enforce standards for employee health and safety at Department of Energy nuclear facilities. Individual sections address the following: application of OSHA to DOE nuclear facilities; cooperation with inspections and investigations; transfer and allocation of appropriations and personnel; worker training requirements; performance of NIOSH functions at DOE nuclear facilities; medical examinations of employees at DOE nuclear facilities; and labor-management health and safety committees at Doe nuclear facilities

  7. 78 FR 29759 - Chemical Facility Anti-Terrorism Standards Personnel Surety Program

    Science.gov (United States)

    2013-05-21

    ... CVI see 6 CFR 27.400 and the CVI Procedural Manual at http://www.dhs.gov/xlibrary/assets/chemsec_cvi... hours), and the estimated burden cost necessary to implement the Chemical Facility Anti-Terrorism...

  8. Safety Analysis (SA) of the Hazardous Waste Disposal Facilities (Buildings 514, 612, and 614) at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Odell, B.N.; Toy, A.J.

    1979-01-01

    This safety analysis was performed for the Manager of Plant Operations at LLL and fulfills the requirements of DOE Order 5481.1. The analysis was based on field inspections, document review, computer calculations, and extensive input from Waste Management personnel. It was concluded that the quantities of materials handled do not pose undue risks on- or off-site, even in postulated severe accidents. Risks from the various hazards at these facilities vary from low to moderate as specified in DOE Order 5481.1. Recommendations are made for additional management and technical support of waste disposal operations

  9. Safety analysis of the 700-horsepower combustion test facility

    Energy Technology Data Exchange (ETDEWEB)

    Berkey, B.D.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

  10. Safety hazards in abdominal surgery related to communication between surgical and anesthesia unit personnel found in a Swedish nationwide survey.

    Science.gov (United States)

    Göransson, Katarina; Lundberg, Johan; Ljungqvist, Olle; Ohlsson, Elisabet; Sandblom, Gabriel

    2016-01-01

    Many adverse events occur due to poor communication between surgical and anesthesia unit personnel. The aim of this study was to identify strategies to reduce risks unveiled by a national survey on patient safety. During 2011-2015, specially trained survey teams visited the surgery departments at Swedish hospitals and documented routines concerning safety in abdominal surgery. The reports from the first seventeen visits were reviewed by an independent group in order to extract findings related to routines in communication between anesthesia and surgical unit personnel. In general, routines regarding preoperative risk assessment were safe and well- coordinated. On the other hand, routines regarding medication prior to surgery, reporting between the different units, and systems for reporting and providing feedback on adverse events were poor or missing. Strategies with highest priority include: 1. a uniform national health declaration form; 2. consistent use of admission notes; 3. systems for documenting all important medical information, that is accessible to everyone; 4. a multidisciplinary forum for the evaluation of high-risk patients; 5. weekly and daily scheduling of surgical programs; 6. application of the WHO check list; 7. open dialog during surgery; 8. reporting based on SBAR; 9. oral and written reports from the surgeon to the postoperative unit; and 10. combined mortality and morbidity conferences. One repeatedly occurring hazard endangering patient safety was related to communication between surgical and anesthesia unit personnel. Strategies to reduce this hazard are suggested, but further research is required to test their effectiveness.

  11. Examination on establishment of safety culture for operating nuclear facilities

    International Nuclear Information System (INIS)

    Taniguchi, Taketoshi

    1997-01-01

    For safely operating nuclear power facilities, in addition to the technical countermeasures, the performance of the organizations that operate and manage them is important. In this paper, the spontaneous cooperation type management system that supported the introduction and development of nuclear power generation in electric power business is analyzed from the viewpoints of organization science and behavioral psychology, and based on the results of the investigation of the sense of value and psychological characteristics of young organization members who bear future nuclear power generation, on how to foster and establish safety culture which is called second safety principle in organizations, the subjects for hereafter are discussed from the viewpoints of respect of individuals and their integration with organizations, upbringing of talents and systematic learning. The factors which compose the safety culture are shown. The form of operating and managing the organizations are seen in first generation nuclear power generation, the similarity to Japanese type enterprise operation system, the change of the prerequisite of spontaneous cooperation type management and the difference of conscience among the generations of organization members are discussed. The above subjects for hereafter are discussed. (K.I.)

  12. Commissioning of the cryogenic safety test facility PICARD

    Science.gov (United States)

    Heidt, C.; Schön, H.; Stamm, M.; Grohmann, S.

    2015-12-01

    The sizing of cryogenic safety relief devices requires detailed knowledge on the evolution of the pressure increase in cryostats following hazardous incidents such as the venting of the insulating vacuum with atmospheric air. Based on typical design and operating conditions in liquid helium cryostats, the new test facility PICARD, which stands for Pressure Increase in Cryostats and Analysis of Relief Devices, has been constructed. The vacuum-insulated test stand has a cryogenic liquid volume of 100 liters and a nominal design pressure of 16 bar(g). This allows a broad range of experimental conditions with cryogenic fluids. In case of helium, mass flow rates through safety valves and rupture disks up to about 4kg/s can be measured. Beside flow rate measurements under various conditions (venting diameter, insulation, working fluid, liquid level, set pressure), the test stand will be used for studies on the impact of two-phase flow and for the measurement of flow coefficients of safety devices at low temperature. This paper describes the operating range, layout and instrumentation of the test stand and presents the status of the commissioning phase.

  13. 20 CFR 638.530 - Emergency use of personnel, equipment and facilities.

    Science.gov (United States)

    2010-04-01

    ... facilities. 638.530 Section 638.530 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER TITLE IV-B OF THE JOB TRAINING PARTNERSHIP ACT Center Operations § 638.530... shall be borne, to the extent possible, by the benefiting organization. ...

  14. Checking the special professional qualification of selected personnel of Czechoslovak nuclear power facilities

    International Nuclear Information System (INIS)

    Kovar, P.; Bahnova, V.

    1990-01-01

    The system of examinations of selected staff members of Czechoslovak nuclear power plants for their special professional quanlification is described in detail. This selected personnel includes secondary circuit operators, primary circuit operators, graduate shift leaders as well as reactor unit managers. Attention is paid to the structure, methodology, contents and criteria of evaluation of the written, oral and practical parts of the examination, which is sat for before the State Examination Commission. Based on the results of the examinations, the Czechoslovak Atomic Energy Commission grants, prolongs or cancels licenses for the particular functions. Over the period from 1985 to March 1989, 394 new licenses were issued, 93 licenses were prolonged and 4 were withdrawn. (Z.M.). 7 figs., 3 tabs., 3 refs

  15. National ignition facility environment, safety, and health management plan

    International Nuclear Information System (INIS)

    1995-11-01

    The ES ampersand H Management Plan describes all of the environmental, safety, and health evaluations and reviews that must be carried out in support of the implementation of the National Ignition Facility (NIF) Project. It describes the policy, organizational responsibilities and interfaces, activities, and ES ampersand H documents that will be prepared by the Laboratory Project Office for the DOE. The only activity not described is the preparation of the NIF Project Specific Assessment (PSA), which is to be incorporated into the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (PEIS). This PSA is being prepared by Argonne National Laboratory (ANL) with input from the Laboratory participants. As the independent NEPA document preparers ANL is directly contracted by the DOE, and its deliverables and schedule are agreed to separately with DOE/OAK

  16. Construction safety program for the National Ignition Facility, July 30, 1999 (NIF-0001374-OC)

    International Nuclear Information System (INIS)

    Benjamin, D. W.

    1999-01-01

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules-Code of Safe Practices shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S and H A-l that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Rules-Code of Safe Practices. (An interpreter must brief those employees who do not speak or read English fluently.) In addition, all contractors and subcontractors shall adopt a written General Rules-Code of Safe Practices that relates to their operations. The General Rules-Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory employee who shall have it readily available. Copies of the General Rules-Code of Safe Practices can also be included in employee safety pamphlets

  17. Report to Congress on innovative safety and security technology solutions for alternative transportation facilities

    Science.gov (United States)

    2017-05-01

    This research collected information on the frequency and impact of safety and security incidents (threats) at selected facilities and identified priority incidents at each facility. A customized all hazards approach was used to determine the ha...

  18. Results of operation and current safety performance of nuclear facilities located in the Russian Federation

    Science.gov (United States)

    Kuznetsov, V. M.; Khvostova, M. S.

    2016-12-01

    After the NPP radiation accidents in Russia and Japan, a safety statu of Russian nuclear power plants causes concern. A repeated life time extension of power unit reactor plants, designed at the dawn of the nuclear power engineering in the Soviet Union, power augmentation of the plants to 104-109%, operation of power units in a daily power mode in the range of 100-70-100%, the use of untypical for NPP remixed nuclear fuel without a careful study of the results of its application (at least after two operating periods of the research nuclear installations), the aging of operating personnel, and many other management actions of the State Corporation "Rosatom", should attract the attention of the Federal Service for Ecological, Technical and Atomic Supervision (RosTekhNadzor), but this doesn't happen. The paper considers safety issues of nuclear power plants operating in the Russian Federation. The authors collected statistical information on violations in NPP operation over the past 25 years, which shows that even after repeated relaxation over this period of time of safety regulation requirements in nuclear industry and highly expensive NPP modernization, the latter have not become more safe, and the statistics confirms this. At a lower utilization factor high-power pressure-tube reactors RBMK-1000, compared to light water reactors VVER-440 and 1000, have a greater number of violations and that after annual overhauls. A number of direct and root causes of NPP mulfunctions is still high and remains stable for decades. The paper reveals bottlenecks in ensuring nuclear and radiation safety of nuclear facilities. Main outstanding issues on the storage of spent nuclear fuel are defined. Information on emissions and discharges of radioactive substances, as well as fullness of storages of solid and liquid radioactive waste, located at the NPP sites are presented. Russian NPPs stress test results are submitted, as well as data on the coming removal from operation of NPP

  19. Nuclear space power safety and facility guidelines study

    International Nuclear Information System (INIS)

    Mehlman, W.F.

    1995-01-01

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an open-quotes Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missionsclose quotes. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system

  20. Nuclear space power safety and facility guidelines study

    Energy Technology Data Exchange (ETDEWEB)

    Mehlman, W.F.

    1995-09-11

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  1. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  2. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    International Nuclear Information System (INIS)

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included

  3. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    International Nuclear Information System (INIS)

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice

  4. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  5. Improving human performance in maintenance personnel

    International Nuclear Information System (INIS)

    Gonzalez Anez, Francisco; Agueero Agueero, Jorge

    2010-01-01

    The continuous evolution and improvement of safety-related processes has included the analysis, design and development of training plans for the qualification of maintenance nuclear power plant personnel. In this respect, the international references in this area recommend the establishment of systematic qualification programmes for personnel performing functions or carrying out safety related tasks. Maintenance personnel qualification processes have improved significantly, and training plans have been designed and developed based on Systematic Approach to Training methodology to each job position. These improvements have been clearly reflected in recent training programmes with new training material and training facilities focused not only on developing technical knowledge and skills but also on improving attitudes and safety culture. The objectives of maintenance training facilities such as laboratories, mock-ups real an virtual, hydraulic loops, field simulators and other training material to be used in the maintenance training centre are to cover training necessities for initial and continuous qualification. Evidently, all these improvements made in the qualification of plant personnel should be extended to include supplemental personnel (external or contracted) performing safety-related tasks. The supplemental personnel constitute a very spread group, covering the performance of multiple activities entailing different levels of responsibility. Some of these activities are performed permanently at the plant, while others are occasional or sporadic. In order to establish qualification requirements for these supplemental workers, it is recommended to establish a rigorous analysis of job positions and tasks. The objective will be to identify the qualification requirements to assure competence and safety. (authors)

  6. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  7. The State Surveillance over Nuclear Safety of Nuclear Facilities Act No. 28/1984

    International Nuclear Information System (INIS)

    1995-01-01

    The Act lays down responsibilities of the Czechoslovak Atomic Energy Commission in the field of state surveillance over nuclear safety of nuclear facilities; determines the responsibilities of nuclear safety inspectors in their inspection activities; specifies duties of bodies and corporations responsible for nuclear safety of nuclear facilities; stipulates the obligation to set up emergency plans; and specifies penalties imposed on corporations and individuals for noncompliance with nuclear safety provisions. The Act entered into force on 4 April 1984. (J.B.)

  8. Risk-informed approaches to assess ecological safety of facilities with radioactive waste

    International Nuclear Information System (INIS)

    Vashchenko, V.N.; Zlochevskij, V.V.; Skalozubov, V.I.

    2011-01-01

    Ingenious risk-informed methods to assess ecological safety of facilities with radioactive waste are proposed in the paper. Probabilistic norms on lethal outcomes and reliability of safety barriers are used as safety criteria. Based on the probability measures, it is established that ecological safety conditions are met for the standard criterion of lethal outcomes

  9. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    International Nuclear Information System (INIS)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces

  10. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  11. Technical safety requirements for the Annular Core Research Reactor Facility (ACRRF)

    International Nuclear Information System (INIS)

    Boldt, K.R.; Morris, F.M.; Talley, D.G.; McCrory, F.M.

    1998-01-01

    The Technical Safety Requirements (TSR) document is prepared and issued in compliance with DOE Order 5480.22, Technical Safety Requirements. The bases for the TSR are established in the ACRRF Safety Analysis Report issued in compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. The TSR identifies the operational conditions, boundaries, and administrative controls for the safe operation of the facility

  12. Cold Vacuum Drying facility personnel monitoring system design description (SYS 12); FINAL

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) instrument air (IA) system that provides instrument quality air to the CVDF. The IA system provides the instrument quality air used in the process, HVAC, and HVAC instruments. The IA system provides the process skids with air to aid in the purging of the annulus of the transport cask. The IA system provides air for the solenoid-operated valves and damper position controls for isolation, volume, and backdraft in the HVAC system. The IA system provides air for monitoring and control of the HVAC system, process instruments, gas-operated valves, and solenoid-operated instruments. The IA system also delivers air for operating hand tools in each of the process bays

  13. Manpower, Personnel, Training, and Safety Guidance and Control for Weapon System Acquisitions

    Science.gov (United States)

    1987-10-01

    was recognized in the recent Akman Associates report [21] on the design of Air Force systems for Readiness Achieved through Manpower Personnel...ATC, Maxwell AFB, AL). 24. Akman Associates, Inc. (1987, May). RAMPARTS handbcok: A alueprint for enhanced MPTS planning. Silver Spring, MD: Akman

  14. Crew and patient safety in ambulances: results of a personnel survey and experimental side impact crash test.

    Science.gov (United States)

    Fournier, Marc; Chenaitia, Hichem; Masson, Catherine; Michelet, Pierre; Behr, Michel; Auffray, Jean-Pierre

    2013-08-01

    Ambulance drivers often travel under stressful conditions at high speed while using vehicles with poor high-speed maneuverability. The occupant safety of ambulance vehicles has not yet been addressed by the automotive safety paradigm; particularly for the rear patient compartment. This study had two objectives: (1) to assess by survey the French Emergency Medical Services (EMS) to determine the layout of the vehicle most often used and the EMS personnel's behavior during transport; and (2) to conduct a crash test to analyze the injuries which may affect EMS personnel and patients in the rear patient compartment. Firstly, a survey was distributed to the 50 largest metropolitan French EMS programs. Secondly, a crash test was performed with a Mobile Intensive Care Unit (MICU) in conditions closest to reality. Forty-nine of the 50 biggest metropolitan French EMS programs responded to the survey. This represents 108 French MICUs. During the last three years, 12 of 49 EMS programs (24%) identified at least one accident with an MICU, and six of these 12 (50%) suffered at least one death in those accidents. A crash test using a typical French EMS MICU showed that after impact of a collision, the ambulance was moved more than five meters with major consequences for all passengers. A study-approved human cadaver placed in the position of a potential patient was partially thrown from the stretcher with a head impact. The accelerometric reaction of the anthropomorphic manikin head was measured at 48G. The crash test demonstrated a lack of safety for EMS personnel and patients in the rear compartment. It would be preferable if each piece of medical equipment were provided with a quick release system resistant to three-dimensional 10G forces. The kinetic changes undergone by the "patient" substitute on the stretcher would probably have an effect of causing injury pathology. This study highlights the need for more research and development in this area.

  15. Impact in the facilities design and the personnel formation of the hybrid equipment s: PET-CT

    International Nuclear Information System (INIS)

    Hernandez, R.; Soler, K.; Alonso, I.

    2014-08-01

    The Positron Emission Tomography-Computed Tomography (PET-CT), in the last years has demonstrated to be an image technique very effective for the diagnosis and the treatments continuation in different medical applications, because provides a valuable clinical information for the patient handling. The PET-CT is a technology used in the nuclear medicine for diagnostic, because integrates two different image techniques in an only device and in a single exam or study combine the results of both techniques. Also, is a hybrid tomograph that provides in a single image the biochemical information of a technique and the anatomical information of the other, what means that unifies the spatial resolution of a technique and the contrast resolution of the other, allowing this way to obtain a more precise and detailed diagnostic information, opening new opportunities in diagnostic, Radiotherapy planning and treatments continuation to the patients, being generated new links among the different radiological medical specialties. In nuclear medicine facilities with PET-CT, the radiological protection presents particular characteristics, due to the photons coexistence of 511 keV (generated by the annihilation of the emitted positrons from the different exposure sources) together to the X-rays emitted by the CT, what impacts in a direct way in those design requirements of the areas. On the other hand, this combination of the two image techniques imposes additional requirements to the learning and training of personnel, not considered until the present time. In this article are exposed the general principles that should be considered in the design of a Nuclear Medicine Area with PET-CT, and the existent problems related to the learning and training of personnel to assume this new technology are also approached. (Author)

  16. Development of an auditable safety analysis in support of a radiological facility classification

    International Nuclear Information System (INIS)

    Kinney, M.D.; Young, B.

    1995-01-01

    In recent years, U.S. Department of Energy (DOE) facilities commonly have been classified as reactor, non-reactor nuclear, or nuclear facilities. Safety analysis documentation was prepared for these facilities, with few exceptions, using the requirements in either DOE Order 5481.1B, Safety Analysis and Review System; or DOE Order 5480.23, Nuclear Safety Analysis Reports. Traditionally, this has been accomplished by development of an extensive Safety Analysis Report (SAR), which identifies hazards, assesses risks of facility operation, describes and analyzes adequacy of measures taken to control hazards, and evaluates potential accidents and their associated risks. This process is complicated by analysis of secondary hazards and adequacy of backup (redundant) systems. The traditional SAR process is advantageous for DOE facilities with appreciable hazards or operational risks. SAR preparation for a low-risk facility or process can be cost-prohibitive and quite challenging because conventional safety analysis protocols may not readily be applied to a low-risk facility. The DOE Office of Environmental Restoration and Waste Management recognized this potential disadvantage and issued an EM limited technical standard, No. 5502-94, Hazard Baseline Documentation. This standard can be used for developing documentation for a facility classified as radiological, including preparation of an auditable (defensible) safety analysis. In support of the radiological facility classification process, the Uranium Mill Tailings Remedial Action (UMTRA) Project has developed an auditable safety analysis document based upon the postulation criteria and hazards analysis techniques defined in DOE Order 5480.23

  17. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor-borne

    International Nuclear Information System (INIS)

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor-borne domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor-borne and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  18. Procedures for conducting probabilistic safety assessment for non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    2002-01-01

    A well performed and adequately documented safety assessment of a nuclear facility will serve as a basis to determine whether the facility complies with the safety objectives, principles and criteria as stipulated by the national regulatory body of the country where the facility is in operation. International experience shows that the practices and methodologies used to perform safety assessments and periodic safety re-assessment for non-reactor nuclear facilities differ significantly from county to country. Most developing countries do not have methods and guidance for safety assessment that are prescribed by the regulatory body. Typically the safety evaluation for the facility is based on a case by case assessment. Whilst conservative deterministic analyses are predominantly used as a licensing basis in many countries, recently probabilistic safety assessment (PSA) techniques have been applied as a useful complementary tool to support safety decision making. The main benefit of PSA is to provide insights into the safety aspects of facility design and operation. PSA points up the potential environmental impacts of postulated accidents, including the dominant risk contributors, and enables safety analysts to compare options for reducing risk. In order to advise on how to apply PSA methodology for the safety assessment of non-reactor nuclear facilities, the IAEA organized several consultants meetings, which led to the preparation of this TECDOC. This document is intended as guidance for the conduct of PSA in non-nuclear facilities. The main emphasis here is on the general procedural steps of a PSA that is specific for a non-reactor nuclear facility, rather than the details of the specific methods. The report is directed at technical staff managing or performing such probabilistic assessments and to promote a standardized framework, terminology and form of documentation for these PSAs. It is understood that the level of detail implied in the tasks presented in this

  19. Development of the Human Error Management Criteria and the Job Aptitude Evaluation Criteria for Rail Safety Personnel

    International Nuclear Information System (INIS)

    Koo, In Soo; Seo, Sang Mun; Park, Geun Ok

    2008-08-01

    It has been estimated that up to 90% of all workplace accidents have human error as a cause. Human error has been widely recognized as a key factor in almost all the highly publicized accidents, including Daegu subway fire of February 18, 2003 killed 198 people and injured 147. Because most human behavior is 'unintentional', carried out automatically, root causes of human error should be carefully investigated and regulated by a legal authority. The final goal of this study is to set up some regulatory guidance that are supposed to be used by the korean rail organizations related to safety managements and the contents are : - to develop the regulatory guidance for managing human error, - to develop the regulatory guidance for managing qualifications of rail drivers - to develop the regulatory guidance for evaluating the aptitude of the safety-related personnel

  20. Development of the Human Error Management Criteria and the Job Aptitude Evaluation Criteria for Rail Safety Personnel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Seo, Sang Mun; Park, Geun Ok (and others)

    2008-08-15

    It has been estimated that up to 90% of all workplace accidents have human error as a cause. Human error has been widely recognized as a key factor in almost all the highly publicized accidents, including Daegu subway fire of February 18, 2003 killed 198 people and injured 147. Because most human behavior is 'unintentional', carried out automatically, root causes of human error should be carefully investigated and regulated by a legal authority. The final goal of this study is to set up some regulatory guidance that are supposed to be used by the korean rail organizations related to safety managements and the contents are : - to develop the regulatory guidance for managing human error, - to develop the regulatory guidance for managing qualifications of rail drivers - to develop the regulatory guidance for evaluating the aptitude of the safety-related personnel.

  1. Safety report content and development for test loop facility on MARIA reactor

    International Nuclear Information System (INIS)

    Konechko, A.; Shumskij, A.M.; Mikul'ahin, V.E.

    1982-01-01

    A 600 kW test loop facility for investigatin.o safety problems is realized on MARIA reactor in Poland together with USSR organizations. Safety reports have been developed in two steps at the designstage. The 1st report being essentially a preliminary safety analysis was developed within the scope of the feasibility study. At the engineering design stage the preliminary test loop facility safety report had been prepared considering measures excluding the possibility of the MARIA reactor damage. The test loop facility safety report is fulfilled for normal, transient and emergency operation regimes. Separate safety basing for each group of experiments will be prepared. The report presents the test loop facility safety criteria coordinated by the nuclear safety comission. They contains the preliminary reports on the test loop facility safety. At the final stage of construction and at thecommitioning stage the start-up safety report will be developed which after required correction and adding up the putting into operation data will turn into operation safety report [ru

  2. Improving the regulation of safety at DOE nuclear facilities. Final report

    International Nuclear Information System (INIS)

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE's nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation

  3. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    International Nuclear Information System (INIS)

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE's nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation

  4. Improving the regulation of safety at DOE nuclear facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  5. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  6. Risk management for existing energy facilities. A global approach to numerical safety goals

    International Nuclear Information System (INIS)

    Pate-Cornell, M.E.

    1993-01-01

    This paper presents a structured set of numerical safety goals for risk management of existing energy facilities. The rationale behind these safety goals is based on principles of equity and economic efficiency. Some of the issues involved when using probabilistic risk analyses results for safety decisions are discussed. A brief review of existing safety targets and open-quotes floating numbersclose quotes is presented, and a set of safety goals for industrial risk management is proposed. Relaxation of these standards for existing facilities, the relevance of the lifetime of the plant, the treatment of uncertainties, and problems of failure dependencies are discussed briefly. 17 refs., 1 fig

  7. Requirements of on-site facilities

    International Nuclear Information System (INIS)

    Burchardt, H.

    1977-01-01

    1) Requirements of on-site facilities: a) brief description of supplying the site with electricity and water; communication facilities, b) necessary facilities for containment and pipeline installation, c) necessary facilities for storage, safety, accommodation of personnel, housing; workshops; 2) Site management: a) Organisation schedules for 'turn-key-jobs' and 'single commission', b) Duties of the supervisory staff. (orig.) [de

  8. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24

  9. Criticality safety evaluation of the fuel cycle facility electrorefiner

    International Nuclear Information System (INIS)

    Lell, R.M.; Mariani, R.D.; Fujita, E.K.; Benedict, R.W.; Turski, R.B.

    1993-01-01

    The integral Fast Reactor (IFR) being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal cooled reactors and a closed-loop fuel cycle. Some of the primary advantages are passive safety for the reactor and resistance to diversion for the heavy metal in the fuel cycle. in addition, the IFR pyroprocess recycles all the long-lived actinide activation products for casting into new fuel pins so that they may be burned in the reactor. A key component in the Fuel Cycle Facility (FCF) recycling process is the electrorefiner (ER) in which the actinides are separated from the fission products. In the process, the metal fuel is electrochemically dissolved into a high-temperature molten salt, and electrorefined uranium or uranium/plutonium products are deposited at cathodes. This report addresses the new and innovative aspects of the criticality analysis ensuing from processing metallic fuel, rather than metal oxide fuel, and from processing the spent fuel in batch operations. in particular, the criticality analysis employed a mechanistic approach as opposed to a probabilistic one. A probabilistic approach was unsuitable because of a lack of operational experience with some of the processes, rendering the estimation of accident event risk factors difficult. The criticality analysis also incorporated the uncertainties in heavy metal content attending the process items by defining normal operations envelopes (NOES) for key process parameters. The goal was to show that reasonable process uncertainties would be demonstrably safe toward criticality for continuous batch operations provided the key process parameters stayed within their NOES. Consequently the NOEs became the point of departure for accident events in the criticality analysis

  10. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants; nuclear power plants; other reactors such as research reactors and critical assemblies; spent fuel reprocessing plants; and facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  11. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  12. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  13. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  14. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  15. Nuclear safety and radiation protection report of Cruas-Meysse nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  16. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  17. Nuclear safety and radiation protection report of Dampierre-En-Burly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  18. Nuclear safety and radiation protection report of Civaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  19. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  20. Nuclear safety and radiation protection report of Golfech nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  1. Nuclear safety and radiation protection report of Nogent-Sur-Seine nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  2. Nuclear safety and radiation protection report of Penly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  3. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  4. Nuclear safety and radiation protection report of Saint-Alban Saint-Maurice nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 119 and 120). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  5. Nuclear safety and radiation protection report of Belleville-Sur-Loire nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  6. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  7. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  8. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  9. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  10. Nuclear safety and radiation protection report of Blayais nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  11. Nuclear safety and radiation protection report of Fessenheim nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  12. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  13. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  14. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  15. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  16. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  17. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  18. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  19. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  20. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  1. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  2. Radiological controls and worker and public health and safety: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Tew, J.L.; Miles, M.E.; Knuth, D.; Boyd, R.

    1981-02-01

    DOE has formed a Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee to assess the implications of the Report of the President's Commission on the Accident at Three Mile Island that are applicable to DOE's nuclear reactor operations. Thirteen DOE nuclear reactors were reviewed by the Committee. This report was prepared to provide a measure of how the radiological control and environmental practices at the 13 individual DOE reactor facilities measure up to (1) the recommendations contained in the Report of the President's Commission on the Accident at Three Mile Island, (2) the requirements and guidelines contained, and (3) the requirements of the applicable Title and Part of the Code of Federal Regulations

  3. Use of risk-matrix methods in the radiation safety analysis of PET/CT facilities

    International Nuclear Information System (INIS)

    Calderón Marín, Carlos F.; González González, Joaquín J.; Quesada Cepero, Waldo; Sinconegui Gómez, Belkys; Solá Rodríguez, Yeline; Duménigo Ámbar, Cruz; Guerrero Cancio, Mayka

    2016-01-01

    Introduction. Radiological safety is essential during clinical applications of ionizing radiations. Cuban legislation considers it mandatory to carry out risk analysis during safety assessments of facilities where Nuclear Medicine practices are performed. The Risk Matrix (R-M) method has been used in risk assessments in Radiotherapy and some experiences in Nuclear Medicine have been reported. In the present work the results of the safety evaluation, using the M-R method, of the first PET / CT center constructed at the Institute of Oncology and Radiobiology in Havana, are shown. The facilities will work as a satellite center and the production of radioactive drugs of 68 Ga will be conceived. The images will be acquired with a Philips Gemini TF64 scanner. Several stages and sub-stages were considered, including the design of the facility, quality control programs, review of the relevance of study requests, radiopharmaceutical reception and fractionation, 68 Ga radiopharmaceuticals production, management of Patient during the administration of radiopharmaceuticals and patient positioning. Initiating events (IEs), available barriers, as well as measures for the reduction of frequency (RFMs) of IEs and consequences (RCMs) were identified. In addition, IEs sequences are considered for CT scans. The incidence of risk reduction was assessed by the ratio of the number of times they were used and the total number of IEs. The calculation of the R-M was made by modeling the practice with the SEVRRA code R iskAssessmentSystem . Results. As a result, 76 IEs were identified with a distribution of 72% affecting patients, 7.9% in the Public and 19.7% on Occupationally Exposed Workers (TOEs). 89.5% of IEs are caused by human errors. Barriers and consequences and frequency reducers produced a risk distribution of 2.6% of high risk IEs, 64.5% medium risk and 32.9% low risk. The high-risk IEs are related to errors in the calculation of the shielding requirements of the facility that

  4. Safety effects of bicycle facilities: The Dutch experience.

    NARCIS (Netherlands)

    Wegman, F.C.M.

    1988-01-01

    General characteristics of bicycle and moped use, including safety aspects of cycling and moped riding, in the Netherlands, are presented. The Dutch governmental policy regarding safety of cyclists and moped riders is explained. The results of evaluations concerning the safety of cycle lanes and

  5. Safety analysis of IFR fuel processing in the Argonne National Laboratory Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Charak, I; Pedersen, D.R.; Forrester, R.J.; Phipps, R.D.

    1993-01-01

    The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory (ANL) includes on-site processing and recycling of discharged core and blanket fuel materials. The process is being demonstrated in the Fuel Cycle Facility (FCF) at ANL's Idaho site. This paper describes the safety analyses that were performed in support of the FCF program; the resulting safety analysis report was the vehicle used to secure authorization to operate the facility and carry out the program, which is now under way. This work also provided some insights into safety-related issues of a commercial IFR fuel processing facility. These are also discussed

  6. Interim Safety Basis for Fuel Supply Shutdown Facility

    Energy Technology Data Exchange (ETDEWEB)

    BENECKE, M.W.

    2000-09-07

    This ISB, in conjunction with the IOSR, provides the required basis for interim operation or restrictions on interim operations and administrative controls for the facility until a SAR is prepared in accordance with the new requirements or the facility is shut down. It is concluded that the risks associated with tha current and anticipated mode of the facility, uranium disposition, clean up, and transition activities required for permanent closure, are within risk guidelines.

  7. Interim Safety Basis for Fuel Supply Shutdown Facility

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    This ISB, in conjunction with the IOSR, provides the required basis for interim operation or restrictions on interim operations and administrative controls for the facility until a SAR is prepared in accordance with the new requirements or the facility is shut down. It is concluded that the risks associated with tha current and anticipated mode of the facility, uranium disposition, clean up, and transition activities required for permanent closure, are within risk guidelines

  8. Enhancing nuclear safety verification ability for personnel of regulatory body in Vietnam

    International Nuclear Information System (INIS)

    Tu, Nguyen Hoang; Choi, Kwang Sik

    2012-01-01

    A major issue dominating the nuclear energy development program is the availability of sufficient human resources. Vietnam needs to have significant numbers of engineers, technicians, and scientists in order to support and ensure the safety of nuclear power plant which will be paramount as the government's goal. In particular, to ensure safety in utilization of nuclear energy, a country embarking on a nuclear power program should consider the early establishment of a regulatory body which regulates nuclear power plants at all stages to protect public from radiation hazards and to preserve the environment. In this paper, some lessons learned and the status of human resource development for nuclear safety in Vietnam is presented. Some recommendations, proposed ideas are given on strategy development of human resource

  9. Interim safety basis for fuel supply shutdown facility

    International Nuclear Information System (INIS)

    Brehm, J.R.; Deobald, T.L.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    This ISB in conjunction with the new TSRs, will provide the required basis for interim operation or restrictions on interim operations and administrative controls for the Facility until a SAR is prepared in accordance with the new requirements. It is concluded that the risk associated with the current operational mode of the Facility, uranium closure, clean up, and transition activities required for permanent closure, are within Risk Acceptance Guidelines. The Facility is classified as a Moderate Hazard Facility because of the potential for an unmitigated fire associated with the uranium storage buildings

  10. [Effectiveness and safety of antiviral therapy of military personnel suffering from chronic hepatitis C].

    Science.gov (United States)

    Zhdanov, K V; Gusev, D A; Kozlov, K V; Shishkin, M K; Sukachev, V S; Shakhmanov, D M; Zhabrov, S S

    2015-04-01

    In order to evaluate effectiveness and safety of antiviral therapy schemes examined and treated 191 patients with chronic bepatitis C were assigned standard interferon and ribavirin, pegslated interferon and ribavirin, the total duration of the course coput 24-48 weeks. Based on clinical and laboratory parameters evaluated the safety of antiviral therapy. Formation of sustainable viral response, depending on the genotype observed, was given at 58,9-70%.of patients. In case of insufficient. antiviral therapy was prescribed a second course that will improve the effectiveness of treatment to 90-95%. Correction of adverse events was held lower dosages of interferon and/or ribavirin.

  11. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    Science.gov (United States)

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  12. Design, fabrication and erection of steel structures important to safety of nuclear facilities

    International Nuclear Information System (INIS)

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety Standard for Civil Engineering Structures Important to Safety of Nuclear Facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design, fabrication and erection of steel structures important to safety

  13. Guidance for preparation of safety analysis reports for nonreactor facilities and operations

    International Nuclear Information System (INIS)

    1992-01-01

    Department of Energy (DOE) Orders 5480.23, ''Nuclear Safety Analysis Reports,'' and 5481.1B, ''Safety Analysis and Review System'' require the preparation of appropriate safety analyses for each DOE operation and subsequent significant modifications including decommissioning, and independent review of each safety analysis. The purpose of this guide is to assist in the preparation and review of safety documentation for Oak Ridge Field Office (OR) nonreactor facilities and operation. Appendix A lists DOE Orders, NRC Regulatory Guides and other documents applicable to the preparation of safety analysis reports

  14. The exogenous factors determining aggressive behavior among reformatories’ inmates toward staff. The problem of personnel safety

    Directory of Open Access Journals (Sweden)

    Piotr Chomczyński

    2013-06-01

    Full Text Available The aim of this paper is to present the selected exogenous conditions influencing the safety of staff in Polish reformatories for juvenile delinquents. There are discussed the circumstances linked with staff and inmates’ activities raising the risk of extraordinary events occurrence. The article posses the empirical character and the results presented here base on qualitative techniques..

  15. Knowledge and stigma regarding methadone maintenance treatment among personnel of methadone maintenance treatment and non-methadone maintenance treatment addiction facilities in Israel.

    Science.gov (United States)

    Shidlansik, Lia; Adelson, Miriam; Peles, Einat

    2017-01-01

    Stigma attached to methadone maintenance treatment is very common. The objective of the current article is to evaluate the presence of stigma and its relation to the extent of knowledge about methadone maintenance treatment. The authors conducted a survey among methadone maintenance treatment and non-methadone maintenance treatment addiction therapists from different treatment centers in Israel, including methadone maintenance treatment clinics (Ministry of Health) and non-methadone maintenance treatment addiction facilities (Ministry of Social Services), using an anonymous questionnaire about methadone maintenance treatment stigma and knowledge. There were 63 therapists from methadone maintenance treatment clinics (63%) and 46 therapists from the social services department (SSD) non-methadone maintenance treatment addiction facilities (9.2%) who responded. Methadone maintenance treatment versus social services department personnel were older (42.7 ± 12.8 versus 37.5 ± 8.2 years; p = 0.03), with fewer females (48 versus 75%; p = 0.006), and 50% were social workers compared to 100% social workers in the SSD group (p methadone maintenance treatment personnel compared to the social services department personnel (3 ± 2.5 versus 5.0 ± 3.5; p = 0.0001), while the knowledge score about methadone maintenance treatment was higher among the methadone maintenance treatment personnel (10.3 ± 2.9 versus 7.7 ± 2.8; p methadone maintenance treatment (R = -0.5, p methadone maintenance treatment, with ignorance and stigma against methadone maintenance treatment being more pronounced among social services department personnel. An educational intervention, especially among social services department personnel, may benefit people who use opioids and improve the overall quality of treatment for opioid addiction in Israel.

  16. The Psychological Aspect of Safety Culture: Application of the Theory of Generations for the Formation of Safety Culture Among Personnel

    International Nuclear Information System (INIS)

    Melnitckaia, T.B.

    2016-01-01

    The formation of safety culture is an attempt of constructive influence on the socio psychological atmosphere of the team and the behavior of employees. By way of creating specific settings, the value system for the organization staff as part of the organizational culture, it is possible to forecast, plan and promote the desired behavior. However, it is necessary to take into account the corporate culture spontaneously established in the organization. The leaders often try to establish a safety culture, where the progressive values, norms are declared, and the results obtained are not those expected. This is partly because the organizational norms and values implemented come into conflict with reality and, therefore, are actively rejected by many members of the organization. The theory of generations developed by the American scientists (N. Howe, W. Strauss) helps in the analysis and consideration of the staff values formed under the influence of many factors, depending on the age of employees, in the course of safety culture formation. (author)

  17. Construction safety program for the National Ignition Facility, Appendix A

    International Nuclear Information System (INIS)

    Cerruti, S.J.

    1997-01-01

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction

  18. Construction safety program for the National Ignition Facility, Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    Cerruti, S.J.

    1997-06-26

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  19. Effects of government policies on the work of home care personnel and their occupational health and safety.

    Science.gov (United States)

    Cloutier, Esther; David, Hélène; Ledoux, Elise; Bourdouxhe, Madeleine; Gagnon, Isabelle; Ouellet, François

    2008-01-01

    The health sector in Québec (Canada) is dealing with profound macro-economic and macro-organizational changes. This article is interested in the impact of these changes on the work of home health aides (HHAs) and home care nurses and their occupational health and safety (OHS). The study was carried out in the home care services (HCS) of four local community service centres (CLSC) with different organizational characteristics. It is based on an analysis by triangulation of 66 individual and group interviews, 22 observed workdays and 35 observed multidisciplinary or professional meetings, as well as on administrative documents. HHAs are experiencing an erosion of their job because the relational and affective aspects of their work are disappearing. This may be due to an increase in their physical workload, leading to an increase in musculoskeletal problems and, to a lesser extent, in psychological health problems. Nurses are seeing an increase in the volume of invisible work that they have to do, which also has the effect of decreasing the relational aspects of their activity. The increasingly numerous psychological health problems are the consequence of this change in their profession. This study also shows that managers' decisions at the local level can reduce or increase the work constraints of HHAs and nurses. Examples of good practices for HHAs are the stabilization of clienteles and the possibility of organizing their itinerary, while for nurses, it is in how clientele follow-up tools are implemented. This article discusses the effects of government policies and decisions on the work and OHS of home care personnel. To address this subject, we use a specific analysis of the workload of home health aides (HHAs) and nurses. We will show the relationships between managers' organizational choices to respond to governmental constraints and the resulting work changes. We will also look at their consequences on occupational health and safety (OHS) and on the work of

  20. Non-technical issues in safety assessments for nuclear disposal facilities

    International Nuclear Information System (INIS)

    Kallenbach-Herbert, Beate; Brohmann, Bettina

    2010-09-01

    The paper highlights that a comprehensive approach to safety affords the consideration of technology, organisation, personnel and social environment. In several safety relevant contexts of nuclear waste disposal these fields are closely interrelated. The approach for the consideration of socio-scientific aspects which is sketched in this paper supports the systematic treatment of safety relevant non-technical issues in the safety case or in safety assessments for a disposal project. Furthermore it may foster the dialogue among specialists from the technical, the natural- and the socio-scientific field on questions of disposal safety. In this way it may contribute to a better understanding among the affected scientific disciplines in nuclear waste disposal.

  1. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.

  2. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    International Nuclear Information System (INIS)

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A

  3. Overview of the Preliminary Safety Analysis of the National Ignition Facility

    Science.gov (United States)

    Brereton, S.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.; Yatabe, J.

    1997-06-01

    The National Ignition Facility (NIF) is a proposed U.S. Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, New Mexico, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 individual laser beams onto a tiny deuterium-tritium target located at the center of a spherical target chamber. The NIF has been classified as a low hazard, radiological facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis report be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A Preliminary Safety Analysis Report (PSAR) has been approved, which documents and evaluates the safety issues associated with the construction, operation, and decommissioning of the NIF.

  4. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    International Nuclear Information System (INIS)

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography

  5. Do provisions to advance chemical facility safety also advance chemical facility security? An analysis of possible synergies

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2012-01-01

    The European Commission has launched a study on the applicability of existing chemical industry safety provisions to enhancing security of chemical facilities covering the situation in 18 EU Member States. This paper reports some preliminary analytical findings regarding the extent to which...... existing provisions that have been put into existence to advance safety objectives due to synergy effects could be expected advance security objectives as well. The paper provides a conceptual definition of safety and security and presents a framework of their essential components. Key differences...... are presented. A safety framework is examined with the intent to identify security elements potentially covered. Vice versa, a security framework is examined with the intent to identify safety elements potentially covered. It is concluded that synergies are largely absent at the preventive level. Synergies...

  6. Safety evaluation report. Fast Flux Test Facility. Project No. 448

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    Information on the safety of the FFTF Reactor is presented under the following chapter headings: site characteristics; design of structures, components, equipment, and systems; reactor; reactor coolant system and connected systems; engineered safety features; electric power; auxiliary systems; radioactive waste management systems; radiation protection; conduct of operations; initial test programs; accident analysis; and quality assurance.

  7. Construction safety program for the National Ignition Facility, Appendix B

    International Nuclear Information System (INIS)

    Cerruti, S.J.

    1997-01-01

    This Appendix contains material from the LLNL Health and Safety Manual as listed below. For sections not included in this list, please refer to the Manual itself. The areas covered are: asbestos, lead, fire prevention, lockout, and tag program confined space traffic safety

  8. Safety evaluation report. Fast Flux Test Facility. Project No. 448

    International Nuclear Information System (INIS)

    1978-01-01

    Information on the safety of the FFTF Reactor is presented under the following chapter headings: site characteristics; design of structures, components, equipment, and systems; reactor; reactor coolant system and connected systems; engineered safety features; electric power; auxiliary systems; radioactive waste management systems; radiation protection; conduct of operations; initial test programs; accident analysis; and quality assurance

  9. Construction safety program for the National Ignition Facility, Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    Cerruti, S.J.

    1997-06-26

    This Appendix contains material from the LLNL Health and Safety Manual as listed below. For sections not included in this list, please refer to the Manual itself. The areas covered are: asbestos, lead, fire prevention, lockout, and tag program confined space traffic safety.

  10. Final safety analysis report for the irradiated fuels storage facility

    International Nuclear Information System (INIS)

    Bingham, G.E.; Evans, T.K.

    1976-01-01

    A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1 1 / 2 cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100 0 F is reached

  11. Status of safety in nuclear facilities - 2012. AREVA General Inspectorate Annual report

    International Nuclear Information System (INIS)

    2013-05-01

    After a message from the Areva's Chief Executive Officer and a message from the senior Vice President of safety, health, security, sustainable development, a text by the inspector general comments the key safety results (events, dose levels, radiological impacts), the inspection findings, the areas of vigilance (relationship with the ASN, the management of the criticality risk, and facility compliance), some significant topics after the Fukushima accident. Then this report addresses the status of nuclear safety and radiation protection in the group's facilities and operations. It more specifically addresses the context and findings (lessons learned from the inspections, operating experience from event, employee radiation monitoring, environmental monitoring), crosscutting processes (safety management, controlling facility compliance, subcontractor guidance and management, crisis management), specific risks (criticality risk, fire hazards, transportation safety, radioactive waste management, pollution prevention, liability mitigation and dismantling), and areas for improvement and outlook

  12. Operational safety assessment of underground test facilities for mined geologic waste disposal

    International Nuclear Information System (INIS)

    Elder, H.K.

    1993-01-01

    This paper describes the operational safety assessment for the underground facilities for the exploratory studies facility (ESF) at the Yucca Mountain Project. The systematic identification and evaluation of hazards related to the ESF is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach based on the analysis of potential accidents was used since radiological safety analysis was not required. The risk assessment summarized credible accident scenarios and the design provides mitigation of the risks to a level that the facility can be constructed and operated with an adequate level of safety. The risk assessment also provides reasonable assurance that all identifiable major accident scenarios have been reviewed and design mitigation features provided to ensure an adequate level of safety

  13. Auditable Safety Analysis and Final Hazard Classification for the 105-N Reactor Zone and 109-N Steam Generator Zone Facility

    International Nuclear Information System (INIS)

    Kloster, G.L.

    1998-07-01

    This document is a graded auditable safety analysis (ASA) and final hazard classification (FHC) for the Reactor/Steam Generator Zone Segment. The Reactor/Steam Generator Zone Segment, part of the N Reactor Complex, that is also known as the Reactor Building and Steam Generator Cells. The installation of the modifications described within to support surveillance and maintenance activities are to be completed by July 1, 1999. The surveillance and maintenance activities addressed within are assumed to continue for the next 15- 20 years, until the initiation of facility D ampersand D (i.e., Interim Safe Storage). The graded ASA in this document is in accordance with EDPI-4.30-01, Rev. 1, Safety Analysis Documentation, (BHI-DE-1) and is consistent with guidance provided by the U.S. Department of Energy. This ASA describes the hazards within the facility and evaluates the adequacy of the measures taken to reduce, control, or mitigate the identified hazards. This document also serves as the FHC for the Reactor/Steam Generator Zone Segment. This FHC is developed through the use of bounding accident analyses that envelope the potential exposures to personnel

  14. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Bugey nuclear power plant (Ain (FR)): 4 PWR reactors in operation (INB 78 and 89), one partially dismantled graphite-gas reactor (INB 45), an inter-regional fuel storage facility (MIR, INB 102), and a radioactive waste storage and conditioning facility under construction (ICEDA, INB 173). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 78, 89 (NPPs in operation), 465 (NPP under deconstruction), 102 (fuel storage facility), and 173 (radioactive waste conditioning and storage facility under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  16. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 78, 89 (NPPs in operation), 465 (NPP under deconstruction), 102 (fuel storage facility), and 173 (radioactive waste conditioning and storage facility under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  17. Predisposal Management of Radioactive Waste from Nuclear Fuel Cycle Facilities. Specific Safety Guide

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Guide provides guidance on the predisposal management of all types of radioactive waste (including spent nuclear fuel declared as waste and high level waste) generated at nuclear fuel cycle facilities. These waste management facilities may be located within larger facilities or may be separate, dedicated waste management facilities (including centralized waste management facilities). The Safety Guide covers all stages in the lifetime of these facilities, including their siting, design, construction, commissioning, operation, and shutdown and decommissioning. It covers all steps carried out in the management of radioactive waste following its generation up to (but not including) disposal, including its processing (pretreatment, treatment and conditioning). Radioactive waste generated both during normal operation and in accident conditions is considered

  18. Safety and environmental process for the design and construction of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brereton, S.J., LLNL

    1998-05-27

    The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

  19. Perceptions and culture of safety among helicopter emergency medical service personnel in the UK.

    Science.gov (United States)

    Chesters, Adam; Grieve, Philip H; Hodgetts, Timothy J

    2016-11-01

    The use of helicopter emergency medical services (HEMS) has increased significantly in the UK since 1987. To date there has been no research that addresses HEMS pilots and medical crews' own ideas on the risks that they view as inherent in their line of work and how to mitigate these risks. The aim of this survey is to describe and compare the attitudes and perceptions towards risk in HEMS operations of these staff. A questionnaire was administered electronically to a representative selection of HEMS doctors, paramedics and pilots in the UK. A number of questions were grouped into common themes, and presented as Likert scales and ranking where appropriate. Descriptive and comparative results were presented and statistically analysed. The target sample of 100 consecutive respondents was achieved. All questionnaires were entirely completed. Respondents attributed the most risk to night HEMS operations without the use of night vision goggles, commercial pressure and mechanical aircraft failure. There was no statistical difference in overall perception of safety and years of experience (p=0.58) or between professions (p=0.08). Those who had experienced a crash were more likely to believe that HEMS operations are not inherently safe (p=0.05). We have surveyed a cross-section of the HEMS operational community in the UK in order to describe their perceptions of safety and risk within their professional life. Two-thirds of respondents believed that HEMS operations were inherently safe. Those who did not seemed to be influenced by personal experience of a crash or serious incident. We support increased operational training for clinical crewmembers, an increased emphasis on incident reporting and a culture of safety, and careful attention to minimum training and equipment requirements for all HEMS missions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Presentation of the process External communications on the nuclear facilities operation of the Adjunct Head Office of Nuclear Safety of Comision Nacional de Seguridad Nuclear y Salvaguardias

    International Nuclear Information System (INIS)

    Espinosa V, J. M.

    2012-10-01

    The Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) in use of their attributions granted by the Regulation Law of the constitutional Art. 27 in nuclear matter began the development of the called process External communications on the nuclear facilities operation, with the purpose of negotiating the evaluation of the concerns related with the safety of the nuclear facilities received these of external people to the CNSNS. The process External communications on the nuclear facilities operation will allow to the public's members and the workers that carry out activities inside the mark regulator imposed by the CNSNS that report to this Commission their concerns related with safety for several means (for example, directly to the personnel of the assigned Office, official and public statements, phone communication, electronic mail, etc.) The present article presents the legal mark confers the CNSNS the attributions to develop the mentioned process and exposes the most important elements that compose it. The term External communication on the nuclear facilities operation is defined and also is described how these communications are received, evaluated and closed by the assigned Office. Of equal way the objectives that intents to reach this process are indicated. The intention of the mentioned process is to strengthen the actions that the CNSNS carries out in the execution of its functions to maintain the safety standards in the operation of the nuclear facilities in Mexico. (Author)

  1. Implementing a pre-operative checklist to increase patient safety: a 1-year follow-up of personnel attitudes.

    Science.gov (United States)

    Nilsson, L; Lindberget, O; Gupta, A; Vegfors, M

    2010-02-01

    The operating room is a complex work environment with a high potential for adverse events. Protocols for perioperative verification processes have increasingly been recommended by professional organizations during the last few years. We assessed personnel attitudes to a pre-operative checklist ('time out') immediately before start of the operative procedure. 'Time out' was implemented in December 2007 as an additional safety barrier in two Swedish hospitals. One year later, in order to assess how the checklist was perceived, a questionnaire was sent by e-mail to 704 persons in the operating departments, including surgeons, anesthesiologists, operation and anesthetic nurses and nurse assistants. In order to identify differences in response between professions, each alternative in the questionnaire was assigned a numerical value. The questionnaire was answered by 331 (47%) persons and 93% responded that 'time out' contributes to increased patient safety. Eighty-six percent thought that 'time out' gave an opportunity to identify and solve problems. Confirmation of patient identity, correct procedure, correct side and checking of allergies or contagious diseases were considered 'very important' by 78-84% of the responders. Attitudes to checking of patient positioning, allergies and review of potential critical moments were positive but differed significantly between the professions. Attitudes to a similar checklist at the end of surgery were positive and 72-99% agreed to the different elements. Staff attitudes toward a surgical checklist were mostly positive 1 year after their introduction in two large hospitals in central Sweden.

  2. Analysis of Paks NPP Personnel Activity during Safety Related Event Sequences

    International Nuclear Information System (INIS)

    Bareith, A.; Hollo, Elod; Karsa, Z.; Nagy, S.

    1998-01-01

    Within the AGNES Project (Advanced Generic and New Evaluation of Safety) the Level-1 PSA model of the Paks NPP Unit 3 was developed in form of a detailed event tree/fault tree structure (53 initiating events, 580 event sequences, 6300 basic events are involved). This model gives a good basis for quantitative evaluation of potential consequences of actually occurred safety-related events, i.e. for precursor event studies. To make these studies possible and efficient, the current qualitative event analysis practice should be reviewed and a new additional quantitative analysis procedure and system should be developed and applied. The present paper gives an overview of the method outlined for both qualitative and quantitative analyses of the operator crew activity during off-normal situations. First, the operator performance experienced during past operational events is discussed. Sources of raw information, the qualitative evaluation process, the follow-up actions, as well as the documentation requirements are described. Second, the general concept of the proposed precursor event analysis is described. Types of modeled interactions and the considered performance influences are presented. The quantification of the potential consequences of the identified precursor events is based on the task-oriented, Level-1 PSA model of the plant unit. A precursor analysis system covering the evaluation of operator activities is now under development. Preliminary results gained during a case study evaluation of a past historical event are presented. (authors)

  3. Critical safety function guidelines for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    As fusion experiments proceed toward deuterium-tritium operation, more attention is being given to public safety. This paper presents the four classes of functions that fusion experiments must provide to assure safe, stable shutdown and retention of radionuclides. These functions are referred to as critical safety functions (CSFs). Selecting CSFs is an important step in probabilistic risk assessment (PRA). An example of CSF selection and usage for the Compact Ignition Tokamak (CIT) is also presented. 10 refs., 6 figs

  4. 76 FR 45820 - Food Safety Modernization Act Domestic and Foreign Facility Reinspections, Recall, and Importer...

    Science.gov (United States)

    2011-08-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0528] Food Safety Modernization Act Domestic and Foreign Facility Reinspections, Recall, and Importer... FD&C Act, is materially related to food safety may depend on the facts of a particular situation. FDA...

  5. Safety assessments for centralized waste treatment and disposal facility in Puspokszilagy Hungary

    International Nuclear Information System (INIS)

    Berci, K.; Hauszmann, Z.; Ormai, P.

    2002-01-01

    The centralized waste treatment and disposal facility Puspokszilagy is a shallow land, near surface engineered type disposal unit. The site, together with its geographic, geological and hydrogeological characteristics, is described. Data are given on the radioactive inventory. The operational safety assessment and the post-closure safety assessment is outlined. (author)

  6. PANDA a multi-purpose thermal-hydraulics facility devoted to nuclear reactor containment safety analysis

    International Nuclear Information System (INIS)

    Paladino, Domenico

    2014-01-01

    This paper presents the multi purpose facility PANDA devised for the safety analysis of nuclear reactor containment. The passive safety systems for LWRs have been explained with details about the PAssive Nachzerfallswärmeabfuhr und Druck-Abbau Testanlage (PANDA)

  7. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Separate review of NMP-NCS-930058, open-quotes Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility (U), August 17, 1993,close quotes was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility's Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2x2x1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion

  8. Construction safety program for the National Ignition Facility

    International Nuclear Information System (INIS)

    Cerruti, S.J.

    1997-01-01

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF. During this period, all workers are required to implement measures to create a universal awareness which promotes safe practice at the work site, and which will achieve NIF's management objectives in preventing accidents and illnesses. Construction safety for NIF is predicated on everyone performing their jobs in a manner which prevents job-related disabling injuries and illnesses. The CSP outlines the minimum environment, safety, and health (ES ampersand H) standards, LLNL policies and the Construction Industry Institute (CII) Zero Injury Techniques requirements that all workers at the NIF construction site shall adhere to during the construction period of NIF. It identifies the safety requirements which the NIF organizational Elements, construction contractors and construction subcontractors must include in their safety plans for the construction period of NIF, and presents safety protocols and guidelines which workers shall follow to assure a safe and healthful work environment. The CSP also identifies the ES ampersand H responsibilities of LLNL employees, non-LLNL employees, construction contractors, construction subcontractors, and various levels of management within the NIF Program at LLNL. In addition, the CSP contains the responsibilities and functions of ES ampersand H support organizations and administrative groups, and describes their interactions with the NIF Program

  9. Construction safety program for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerruti, S.J.

    1997-01-01

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF. During this period, all workers are required to implement measures to create a universal awareness which promotes safe practice at the work site, and which will achieve NIF`s management objectives in preventing accidents and illnesses. Construction safety for NIF is predicated on everyone performing their jobs in a manner which prevents job-related disabling injuries and illnesses. The CSP outlines the minimum environment, safety, and health (ES&H) standards, LLNL policies and the Construction Industry Institute (CII) Zero Injury Techniques requirements that all workers at the NIF construction site shall adhere to during the construction period of NIF. It identifies the safety requirements which the NIF organizational Elements, construction contractors and construction subcontractors must include in their safety plans for the construction period of NIF, and presents safety protocols and guidelines which workers shall follow to assure a safe and healthful work environment. The CSP also identifies the ES&H responsibilities of LLNL employees, non-LLNL employees, construction contractors, construction subcontractors, and various levels of management within the NIF Program at LLNL. In addition, the CSP contains the responsibilities and functions of ES&H support organizations and administrative groups, and describes their interactions with the NIF Program.

  10. Yearly program of safety research for nuclear facilities and others

    International Nuclear Information System (INIS)

    1987-01-01

    The development of FBRs in Japan has steadily progressed, and subsequently to the experimental reactor 'Joyo' and the prototype reactor 'Monju', by promoting the construction of a demonstration reactor, the stage of verifying and acquiring skill of the electricity generation plant technology of practical scale, improving the performance and establishing the economical efficiency is about to begin. The development of FBRs in Japan has been advanced independently as a national project, and the method of preventing accidents in the actual reactors has been thoroughly taken. 'On the way of thinking in the safety evaluation of FBRs' was decided by the Nuclear Safety Commission. When the safety research from 1987 is systematized, as the constituents of safety logic, the way of thinking of the defense in depth, the way of thinking of the classification according to importance, the way of thinking of multilayer barriers against radioactive substances, and the way of thinking on severe accidents were investigated. The research concerning the decision of safety design and evaluation policy, and the safety research regarding accident prevention and relaxation, accident evaluation and severe accidents are reported. (Kako, I.)

  11. Implementation plan for the Defense Nuclear Facilities Safety Board Recommendation 90-7. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Borsheim, G.L.; Cash, R.J.; Dukelow, G.T.

    1992-12-01

    This document revises the original plan submitted in March 1991 for implementing the recommendations made by the Defense Nuclear Facilities Safety Board in their Recommendation 90-7 to the US Department of Energy. Recommendation 90-7 addresses safety issues of concern for 24 single-shell, high-level radioactive waste tanks containing ferrocyanide compounds at the Hanford Site. The waste in these tanks is a potential safety concern because, under certain conditions involving elevated temperatures and low concentrations of nonparticipating diluents, ferrocyanide compounds in the presence of oxidizing materials can undergo a runaway (propagating) chemical reaction. This document describes those activities underway by the Hanford Site contractor responsible for waste tank safety that address each of the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7. This document also identifies the progress made on these activities since the beginning of the ferrocyanide safety program in September 1990. Revised schedules for planned activities are also included.

  12. Evaluation questions ''E'' concerning the enterprises employing personnel of A or B category working in nuclear facilities

    International Nuclear Information System (INIS)

    2002-01-01

    This document is a reference evaluation of a list of questions on the following subject: management, organization, medical survey, formation and information of the personnel, radiation protection, contract dispositions, CEFRI demands respect control. (A.L.B.)

  13. Evaluation questions ''I'' concerning the interim job enterprises proposing personnel of A or B category to work in nuclear facilities

    International Nuclear Information System (INIS)

    2002-01-01

    This document is a reference evaluation of a list of questions on the following subject: management, organization, medical survey, formation and information of the personnel, contract dispositions, CEFRI demands respect control. (A.L.B.)

  14. OECD/NEA WGFCS Workshop: Safety Assessment of Fuel Cycle Facilities - Regulatory Approaches and Industry Perspectives

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear fuel is produced, processed, and stored mainly in industrial-scale facilities. Uranium ores are processed and refined to produce a pure uranium salt stream, Uranium is converted and enriched, nuclear fuel is fabricated (U fuel and U/Pu fuel for the closed cycle option); and spent fuel is stored and reprocessed in some countries (close cycle option). Facilities dedicated to the research and development of new fuel or new processes are also considered as Fuel Cycle Facilities. The safety assessment of nuclear facilities has often been led by the methodology and techniques initially developed for Nuclear Power Plants. As FCFs cover a wide diversity of installations the various approaches of national regulators, and their technical support organizations, for the Safety Assessment of Fuel Cycle Facilities are also diverse, as are the approaches by their industries in providing safety justifications for their facilities. The objective of the Working Group on Fuel Cycle Safety is to advance the understanding for both regulators and operators of relevant aspects of nuclear fuel cycle safety in member countries. A large amount of experience is available in safety assessment of FCFs, which should be shared to develop ideas in this field. To contribute to this task, the Workshop on 'Safety Assessment of Fuel Cycle Facilities - Regulatory Approaches and Industry Perspectives' was held in Toronto, on 27 - 29 September 2011. The workshop was hosted by Canadian Nuclear Safety Commission. The current proceedings provide summary of the results of the workshop with the text of the papers given and presentations made

  15. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  16. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    Energy Technology Data Exchange (ETDEWEB)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

  17. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement

  18. Prediction of the safety level in a tritium processing facility through predictive maintenance

    International Nuclear Information System (INIS)

    Anghel, Vasile

    2007-01-01

    Full text: The safety level of a nuclear facility for personnel and environment depends generally on the technological process quality of operation and maintenance and particularly on several technical, technological, economic, and human factors. The role of maintenance is fundamental because it is determined by all the technical, economic and human elements as parts of an integrated system dominated by an important feedback from upstream activities which eventually define the life cycle of the nuclear facility considered. In the maintenance activity as in case of any dynamic area, new elements may appear which, sometimes, require new methods of approach. For considered installation which is a Nuclear Detritiation Plant (NDP) operating as a division of the National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI, Rm.Valcea, in order to ensure a safety level in operation as high as possible through predictive maintenance, the fuzzy theory and software LabVIEW were applied. The final aim is to achieve the best practices in maintenance of the tritium processing plant. The safety in operation of the NDP equipment and installations is directly related with the maintenance achieved by improving the reliability through methods and advanced techniques. The maintainability is the capacity of an industrial product, in given utilization conditions, to be maintained and re-established up to achieve specified functions. In general the reliability on some interval is a probability conditioned by good operation at the beginning of the interval, representing thus the probability as the element which operated at t = t 0 to operate in the interval (t 0 , t 1 ). The failure is a fundamental event in the reliability theory. Breakdown (failure) is understood as the stop process of the function required from a given product, the failure representing the effect upon that process. The operation of a product on a certain duration can be a 'success' or a

  19. Use of the event tree method for evaluate the safety of radioactive facilities

    International Nuclear Information System (INIS)

    Hernandez S, A.; Cornejo D, N.; Callis F, E.

    2006-01-01

    The work shows the validity of the use of Trees of Events like a quantitative method appropriate to carry out evaluations of radiological safety. Its were took like base the evaluations of safety of five Radiotherapy Departments, carried out in the mark of the process of authorization of these facilities. The risk values were obtained by means of the combination of the probabilities of occurrence of the events with its consequences. The use of the method allowed to suggest improvements to the existent safety systems, as well as to confirm that the current regulator requirements for this type of facilities to lead to practices with acceptable risk levels. (Author)

  20. Development of new irradiation facility for BWR safety research

    International Nuclear Information System (INIS)

    Okada, Yuji; Magome, Hirokatsu; Iida, Kazuhiro; Hanawa, Hiroshi; Ohmi, Masao

    2013-01-01

    In JAEA (Japan Atomic Energy Agency), about the irradiation embrittlement of the reactor pressure vessel and the stress corrosion cracking of reactor core composition apparatus concerning the long-term use of the light water reactor (BWR), in order to check the influence of the temperature, pressure, and water quality, etc on BWR condition. The water environmental control facility which performs irradiation assisted stress corrosion-cracking (IASCC) evaluation under BWR irradiation environment was fabricated in JMTR (Japan Materials Testing Reactor). This report is described the outline of manufacture of the water environmental control facility for doing an irradiation test using the saturation temperature capsule after JMTR re-operation. (author)

  1. Nuclear safety and radiation protection report of Chinon nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  2. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  3. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  4. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  5. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  6. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chinon nuclear power plant (Indre-et-Loire, 37 (FR)): 4 PWR reactors in operation (Chinon B, INB 107 and 132), 3 partially dismantled graphite-gas reactors (Chinon A, INB 133, 153 and 161), a workshop for irradiated materials (AMI, INB 94), and an inter-regional fuel storage facility (MIR, INB 99). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. Patient safety in maternal healthcare at secondary and tertiary level facilities in Delhi, India

    Directory of Open Access Journals (Sweden)

    Chandrakant Lahariya

    2015-01-01

    Full Text Available Background: There is insufficient information on causes of unsafe care at facility levels in India. This study was conducted to understand the challenges in government hospitals in ensuring patient safety and to propose solutions to improve patient care. Materials and Methods: Desk review, in-depth interviews, and focused group discussions were conducted between January and March 2014. Healthcare providers and nodal persons for patient safety in Gynecology and Obstetrics Departments of government health facilities from Delhi state of India were included. Data were analyzed using qualitative research methods and presented adopting the "health system approach." Results: The patient safety was a major concern among healthcare providers. The key challenges identified were scarcity of resources, overcrowding at health facilities, poor communications, patient handovers, delay in referrals, and the limited continuity of care. Systematic attention on the training of care providers involved in service delivery, prescription audits, peer reviews, facility level capacity building plan, additional financial resources, leadership by institutional heads and policy makers were suggested as possible solutions. Conclusions: There is increasing awareness and understanding about challenges in patient safety. The available local information could be used for selection, designing, and implementation of measures to improve patient safety at facility levels. A systematic and sustained approach with attention on all functions of health systems could be beneficial. Patient safety could be used as an entry point to improve the quality of health care services in India.

  8. Safety Analysis of Spent Nuclear Fuel and Radwaste Facilities

    International Nuclear Information System (INIS)

    Poskas, P.; Ragaisis, V.

    2001-01-01

    The overview of the activities in the Laboratory of Heat Transfer in Nuclear Reactors related with the assessment of thermal, neutronic and radiation characteristics in spent nuclear fuel and radwaste facilities are performed. Activities related with decommissioning of Ignalina NPP are also reviewed. (author)

  9. Radiation safety aspects of the AGOR superconducting cyclotron facility

    NARCIS (Netherlands)

    Beijers, JPM; de Meijer, RJ

    1996-01-01

    This paper describes shielding calculations and skyshine estimates for the new AGOR K=600 superconducting cyclotron facility. Both simple, semi-empirical models and Monte-Carlo simulations were used. The calculations are based on a 200 MeV proton beam incident on a trick aluminum target. Also the

  10. Development of radiation safety monitoring system at gamma greenhouse gamma facility

    International Nuclear Information System (INIS)

    Hairul Nizam Idris; Azimawati Ahmad, Ahmad Zaki Hussain; Ahmad Fairuz Mohd Nasir

    2009-01-01

    This paper is discussing about installation of radiation safety monitoring system at Gamma Greenhouse Gamma facility, Agrotechnology and Bioscience Division (BAB). This facility actually is an outdoor type irradiation facility, which first in Nuclear Malaysia and the only one in Malaysia. Source Cs-137 (801 Curie) was use as radiation source and it located at the centre of 30 metres diameter size of open irradiation area. The radiation measurement and monitoring system to be equipped in this facility were required the proper equipment and devices, specially purpose for application at outside of building. Research review, literature study and discussion with the equipment manufacturers was being carried out, in effort to identify the best system should be developed. Factors such as tropical climate, environment surrounding and security were considered during selecting the proper system. Since this facility involving with panoramic radiation type, several critical and strategic locations have been fixed with radiation detectors, up to the distance at 200 meter from the radiation source. Apart from that, this developed system also was built for capable to provide the online real-time reading (using internet). In general, it can be summarized that the radiation safety monitoring system for outdoor type irradiation facility was found much different and complex compared to the system for indoor type facility. Keyword: radiation monitoring, radiation safety, Gamma Greenhouse, outdoor irradiation facility, panoramic radiation. (Author)

  11. Safety and regulation aspects of nuclear facilities shutdown

    International Nuclear Information System (INIS)

    Clement, B.

    1977-01-01

    Technical dispositions that safety authorities will accept after shutdown of a nuclear installation and reglementation to use are examined. The different solutions from surveillance and maintenance, after removal of fissile materials and radioactive fluids, to dismantling are discussed especially for reactors. In each case the best solution has to be studied to ensure protection of public health and environment [fr

  12. Construction safety program for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerruti, S.J.

    1997-06-26

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF.

  13. Fast flux test facility final safety analysis report amendment 79

    International Nuclear Information System (INIS)

    Dautel, W.A.

    1999-01-01

    This document is provided to replace, remove, or add applicable pages to the chapters on: Heat Transport System; Containment and Structures; Auxiliary Systems; Reactor Refueling System; Conduct of Operations; Safety Analysis; Quality Assurance; FFTF Criticality Specifications; and Appendix H's TRIGA Fuel Storage System

  14. Technical safety appraisal of the Hanford Tank Farm Facility

    International Nuclear Information System (INIS)

    Brinkerhoff, L.C.

    1989-05-01

    This report presents the results of one in a series of TSAs being conducted at DOE nuclear operations by the Assistant Secretary for Environment, Safety, and Health, Office of Safety Appraisals. TSAs are one of the initiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE environment, safety and health program. This report provides the results of a TSA of the Tank Farm in the 200 East and 200 West Areas located on the Hanford site. The appraisal was conducted by a team of experts assembled by the DOE Office of Safety Appraisals and was conducted during onsite visits of March 20--24 and April 3--14, 1989. At the Tank Farm, the processing of spent reactor fuels to recover the useful radioactive products is accompanied by the production of radioactive waste. Because many of these wastes will retain radioactivity for many years, they must be safely handled, contained, and disposed with regard to protection of the environment, employees, and the public. Dilute low-level waste and five year ''cooled'' aging wastes are pumped to an evaporator for concentration. The radioactive liquid and solid wastes are stored in underground carbon steel tanks ranging in capacity from 55,000 to over one million gallons

  15. Construction safety program for the National Ignition Facility

    International Nuclear Information System (INIS)

    Cerruti, S.J.

    1997-01-01

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF

  16. Safety assessment for the above ground storage of Cadmium Safety and Control Rods at the Solid Waste Management Facility

    International Nuclear Information System (INIS)

    Shaw, K.W.

    1993-11-01

    The mission of the Savannah River Site is changing from radioisotope production to waste management and environmental restoration. As such, Reactor Engineering has recently developed a plan to transfer the safety and control rods from the C, K, L, and P reactor disassembly basin areas to the Transuranic (TRU) Waste Storage Pads for long-term, retrievable storage. The TRU pads are located within the Solid Waste Management Facilities at the Savannah River Site. An Unreviewed Safety Question (USQ) Safety Evaluation has been performed for the proposed disassembly basin operations phase of the Cadmium Safety and Control Rod Project. The USQ screening identified a required change to the authorization basis; however, the Proposed Activity does not involve a positive USQ Safety Evaluation. A Hazard Assessment for the Cadmium Safety and Control Rod Project determined that the above-ground storage of the cadmium rods results in no change in hazard level at the TRU pads. A Safety Assessment that specifically addresses the storage (at the TRU pads) phase of the Cadmium Safety and Control Rod Project has been performed. Results of the Safety Assessment support the conclusion that a positive USQ is not involved as a result of the Proposed Activity

  17. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    International Nuclear Information System (INIS)

    Batandjieva, B.; Metcalf, P.

    2003-01-01

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years

  18. ASAM - The international programme on application of safety assessment methodologies for near surface radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Batandjieva, B.

    2002-01-01

    The IAEA has launched a new Co-ordinated Research Project (CRP) on Application of Safety Assessment Methodologies for Near Surface Waste Disposal Facilities (ASAM). The CRP will focus on the practical application of the safety assessment methodology, developed under the ISAM programme, for different purposes, such as developing design concepts, licensing, upgrading existing repositories, reassessment of operating disposal facilities. The overall aim of the programme is to assist safety assessors, regulators and other specialists involved in the development and review of safety assessment for near surface disposal facilities in order to achieve transparent, traceable and defendable evaluation of safety of these facilities. (author)

  19. Current status and new trends in the methodology of safety assessment for near surface disposal facilities

    International Nuclear Information System (INIS)

    Ilie, Petre; Didita, Liana; Danchiv, Alexandru

    2008-01-01

    The main goal of this paper is to present the status of the safety assessment methodology at the end of IAEA CRP 'Application of Safety Assessment Methodology for Near-Surface Radioactive Waste Disposal Facilities (ASAM)', and the new trends outlined at the launch of the follow-up project 'Practical Implementation of Safety Assessment Methodologies in a Context of Safety Case of Near-Surface Facilities (PRISM)'. Over the duration of the ASAM project, the ISAM methodology was confirmed as providing a good framework for conducting safety assessment calculations. In contrast, ASAM project identified the limitations of the ISAM methodology as currently formulated. The major limitations are situated in the area of the use of safety assessment for informing practical decisions about alternative waste and risk management strategies for real disposal sites. As a result of the limitation of the ISAM methodology, the PRISM project is established as an extension of the ISAM and ASAM projects. Based on the outcomes of the ASAM project, the main objective of the PRISM project are: 1 - to develop an overview of what constitutes an adequate safety case and safety assessment with a view to supporting decision making processes; 2 - to provide practical illustrations of how the safety assessment methodology could be used for addressing some specific issues arising from the ASAM project and national cases; 3 - to support harmonization with the IAEA's international safety standards. (authors)

  20. Medical screening reference manual for security force personnel at fuel cycle facilities possessing formula quantities of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Arzino, P.A.; Brown, C.H. (California State Univ., Hayward, CA (United States). Foundation)

    1991-09-01

    The recommendations contained throughout this NUREG were provided to the Nuclear Regulatory Commission (NRC) as medical screening information that could be used by physicians who are evaluating the parameters of the safe participation of guards, Tactical Response Team members (TRTs), and all other armed response personnel in physical fitness training and in physical performance standards testing. The information provided in this NUREG will help licensees to determine if guards, TRTs, and other armed response personnel can effectively perform their normal and emergency duties without undue hazard to themselves, to fellow employees, to the plant site, and to the general public. The medical recommendations in this NUREG are similar in content to the medical standards contained in 10 CFR Part 1046 which, in part, specifies medical standards for the protective force personnel regulated by the Department of Energy. The guidelines contained in this NUREG are not requirements, and compliance is not required. 3 refs.

  1. Medical screening reference manual for security force personnel at fuel cycle facilities possessing formula quantities of special nuclear materials

    International Nuclear Information System (INIS)

    Arzino, P.A.; Brown, C.H.

    1991-09-01

    The recommendations contained throughout this NUREG were provided to the Nuclear Regulatory Commission (NRC) as medical screening information that could be used by physicians who are evaluating the parameters of the safe participation of guards, Tactical Response Team members (TRTs), and all other armed response personnel in physical fitness training and in physical performance standards testing. The information provided in this NUREG will help licensees to determine if guards, TRTs, and other armed response personnel can effectively perform their normal and emergency duties without undue hazard to themselves, to fellow employees, to the plant site, and to the general public. The medical recommendations in this NUREG are similar in content to the medical standards contained in 10 CFR Part 1046 which, in part, specifies medical standards for the protective force personnel regulated by the Department of Energy. The guidelines contained in this NUREG are not requirements, and compliance is not required. 3 refs

  2. Indicators of the management for the continuous improvement of the radiological safety in a radioactive facility

    International Nuclear Information System (INIS)

    Amador B, Z. H.

    2006-01-01

    The use of safety indicators is common in the nuclear industry. In this work the implementation of indicators for the efficiency analysis of the radiological safety management system of a radioactive installation is presented. Through the same ones the occupational exposure, the training Y authorization of the personnel, the control of practices Y radioactive inventory, the results of the radiological surveillance, the occurrence of radiological events, the aptitude of the monitoring equipment, the management of the radioactive waste, the public exposure, the audits Y the costs of safety are evaluated. Its study is included in the periodic training of the workers. Without this interrelation it is not possible to maintain the optimization of the safety neither to achieve a continuous improvement. (Author)

  3. Exploring Operational Safeguards, Safety, and Security by Design to Address Real Time Threats in Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Schanfein, Mark J.; Mladineo, Stephen V.

    2015-07-07

    Over the last few years, significant attention has been paid to both encourage application and provide domestic and international guidance for designing in safeguards and security in new facilities.1,2,3 However, once a facility is operational, safeguards, security, and safety often operate as separate entities that support facility operations. This separation is potentially a serious weakness should insider or outsider threats become a reality.Situations may arise where safeguards detects a possible loss of material in a facility. Will they notify security so they can, for example, check perimeter doors for tampering? Not doing so might give the advantage to an insider who has already, or is about to, move nuclear material outside the facility building. If outsiders break into a facility, the availability of any information to coordinate the facility’s response through segregated alarm stations or a failure to include all available radiation sensors, such as safety’s criticality monitors can give the advantage to the adversary who might know to disable camera systems, but would most likely be unaware of other highly relevant sensors in a nuclear facility.This paper will briefly explore operational safeguards, safety, and security by design (3S) at a high level for domestic and State facilities, identify possible weaknesses, and propose future administrative and technical methods, to strengthen the facility system’s response to threats.

  4. Safety test facilities. Needs and concepts. A French evaluation

    International Nuclear Information System (INIS)

    Tretiakoff, O.; Bailly, J.

    1976-01-01

    The fuel behaviour of LMFBRs in the event of an accident has been tested in-pile in the SCARABEE program (local blockage, sudden flow reduction and pump coast-down at constant power). These tests will be carried on in the framework of an international cooperation on irradiated fuels: this is the purpose of the CABRI and SCARABEE N programs. All those studies should enable to assess safety margins between accident conditions and the technical specifications of the reactor. The paper explains how a logical set of simple observations has led to the present state of the Cadarache in-pile experimental safety program and how it may help to find the way in a dense forest of both technical and psychological difficulties

  5. Probabilistic safety assessment of the nuclear facilities in Cuba

    International Nuclear Information System (INIS)

    Rivero O, J.J.; Salomon L, J.

    1991-01-01

    During 1986-1990 basis were established for further developing probabilistic safety assessment (PSA) of Juragua NPP. A team work was consolidated and carried out the preliminary studies of the small break LOCA initiating event. A significant achievement was the creation of the ANCON code, which allows the evaluation of complex fault trees in personal computers, and has been applied in PSA modelling, and specialist qualification. The paper describes the main results and future activities in this field. (author)

  6. Preliminary safety assessment of the disposal facility for spent sealed radiation sources in Korea

    International Nuclear Information System (INIS)

    Lee, Ji-Hoon; Park, Jin-Beak; Kim, Chang-Lak

    2005-01-01

    The suitable disposal plan for disused radioactive sealed sources should be required for their safe management. For assuring the safety of the long half lived spent sealed radioactive wastes on a borehole disposal facility, preliminary safety assessment was performed by SAGE(Safety Assessment of Groundwater Evaluation) code. Spent sealed radioactive sources such as Am-241, Ra-226 and C-14 are considered in safety assessment. Well water drinking scenario is used to calculate annual dose. Ra-226 results in higher annual dose than the other spent sealed sources in the far field. The total annual dose from the suggested borehole disposal system satisfied the regulated dose criteria

  7. Safety evaluation of the loss of fluid test facility project No. 394

    International Nuclear Information System (INIS)

    1975-05-01

    Assessment of the safety of the LOFT facility and subsequent recommendations have been based on a comparison of the LOFT facility to requirements for commercial power reactors. In this comparison, the many unique features of the LOFT facility were considered including the low power level, the limited operational use as a test reactor, and the remoteness of the site. Based on this assessment, it is concluded, that while the likelihood of an accidental release of fission products may be greater than for a commercial power reactor, the consequences of such a release are reduced by the lower fission product inventory, the remoteness of the site and the capability of evacuating the Idaho National Engineering Laboratory (INEL) and adjacent areas. There is reasonable assurance that the public health and safety will not be endangered due to operation of this facility, specifically: The INEL site is acceptable with respect to location, land use, population distribution, controlled access, hydrology, meteorology, geology and seismology. Sufficient engineered safety features have been included to assure that the potential offsite doses are well within 10 CFR Part 100 guidelines. The LOFT facility has been designed in general accordance with standards, guides and codes which are comparable to those applied to commercial power reactors and any exceptions to these have been based on the unique features of the LOFT facility. Certain matters including the final safety analyses based on detailed component designs, Technical Specifications, LOCE controls and detailed program plan have not been reviewed but we assume will properly be resolved by ERDA, which has the ultimate responsibility for the safety of this facility. Changes to the facility design or program plan such as removal of the fueled Mobile Test Assembly or blowdowns to the containment vessel also will require additional analyses and review. (U.S.)

  8. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary followed by the viewpoint of the Committees for health, safety and working conditions. (J.S.)

  13. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  14. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Nogent-sur-Seine nuclear power plant (INB 129 and 130, Aube (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  16. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cruas-Meysse nuclear power plant (INB 111 and 112, Ardeche (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Nuclear safety and radiation protection report of the nuclear facility of Brennilis - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Nuclear safety and radiation protection report of the Saint-Laurent-des-Eaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Laurent-des-Eaux nuclear power plant (Saint-Laurent-Nouan (FR)): 2 partially dismantled graphite-gas reactors and a graphite sleeves storage silo (INB 46 and 74), and 2 PWR reactors in operation (INB 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the nuclear facilities of Brennilis - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document ends with a glossary and no recommendation from the Committees for health, safety and working conditions. (J.S.)

  4. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  5. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Dampierre-en-Burly nuclear power plant (INB 84 and 85, Loiret, 45 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Dampierre-en-Burly nuclear power plant (INB 84 and 85, Loiret, 45 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Belleville-sur-Loire nuclear power plant (INB no. 127 - Belleville 1 and no. 128 - Belleville 2, Belleville-sur-Loire and Sury-pres-Lere - Cher (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the Tricastin nuclear facility (BCOT) - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, if some, are reported as well as the effluents discharge in the environment. Finally, the management of the radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Saint-Alban-Saint-Maurice nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Alban-Saint-Maurice nuclear power plant (INB 119 and 120, Isere (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Nuclear safety and radiation protection report of the Saint-Alban-Saint-Maurice nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Alban-Saint-Maurice nuclear power plant (INB 119 and 120, Isere (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  13. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  14. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  16. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cruas-Meysse nuclear power plant (INB 111 and 112, Ardeche (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Nuclear safety and radiation protection report of the CNPE EDF nuclear facilities of Tricastin - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  19. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Nuclear safety and radiation protection report of the Tricastin operational hot base nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  4. Nuclear safety and radiation protection report of the nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  5. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  6. Safety cases for the co-ordinated research project on improvement of safety assessment methodologies for near surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Kozak, M.W.; Torres-Vidal, C.; Kelly, E.; Guskov, A.; Blerk, J. van

    2002-01-01

    A Co-ordinated Research Project (CRP) has recently been completed on the Improvement of Safety Assessment Methodologies for Near-Surface Radioactive Waste Disposal Facilities (ISAM). A major aspect of the project was the use of safety cases for the practical application of safety assessment. An overview of the ISAM safety cases is given in this paper. (author)

  7. Proposal for a seismic facility for reactor safety research

    International Nuclear Information System (INIS)

    Anderson, C.A.; Dove, R.C.; Rhorer, R.L.

    1976-07-01

    Certain problem areas in the seismic analysis and design of nuclear reactors are enumerated and the way in which an experimental program might contribute to each area is examined. The use of seismic simulation testing receives particular attention, especially with regard to the verification of structural response analysis. The importance of scale modeling used in conjunction with seismic simulation is also stressed. The capabilities of existing seismic simulators are summarized, and a proposed facility is described which would considerably extend the ability to conduct, with confidence, confirmatory experiments on the behavior of reactor components when subjected to seismic excitation. Particular applications to gas-cooled and other reactor types are described

  8. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  9. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected

  10. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  11. Safety protection and technical improvement of 60Co irradiation facilities

    International Nuclear Information System (INIS)

    Zhou Yongxing; Liang Cannan

    1993-01-01

    To ensure personal safety, some improvements has been made in the design of 60 Co irradiation compartment. The shielding door was interlocked while the 60 Co source to be lifted to the irradiation position or lowered to the shielded position. A universal change-over switch was used to cut the power supply when the source moved beyond the limits. Both γ-ray alarm and a closed-TV system were adopted. The electromagnetic attraction method was employed to shift the 60 Co source from the Pb container to the source pipe

  12. Siting of nuclear facilities. Selections from Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.

    1976-07-01

    The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria.

  13. Siting of nuclear facilities. Selections from Nuclear Safety

    International Nuclear Information System (INIS)

    Buchanan, J.R.

    1976-07-01

    The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria

  14. A systematic review of the effects of euthanasia and occupational stress in personnel working with animals in animal shelters, veterinary clinics, and biomedical research facilities.

    Science.gov (United States)

    Scotney, Rebekah L; McLaughlin, Deirdre; Keates, Helen L

    2015-11-15

    The study of occupational stress and compassion fatigue in personnel working in animal-related occupations has gained momentum over the last decade. However, there remains incongruence in understanding what is currently termed compassion fatigue and the associated unique contributory factors. Furthermore, there is minimal established evidence of the likely influence of these conditions on the health and well-being of individuals working in various animal-related occupations. To assess currently available evidence and terminology regarding occupational stress and compassion fatigue in personnel working in animal shelters, veterinary clinics, and biomedical research facilities. Studies were identified by searching the following electronic databases with no publication date restrictions: ProQuest Research Library, ProQuest Social Science Journals, PsycARTICLES, Web of Science, Science Direct, Scopus, PsychINFO databases, and Google Scholar. Search terms included (euthanasia AND animals) OR (compassion fatigue AND animals) OR (occupational stress AND animals). Only articles published in English in peer-reviewed journals that included use of quantitative or qualitative techniques to investigate the incidence of occupational stress or compassion fatigue in the veterinary profession or animal-related occupations were included. On the basis of predefined criteria, 1 author extracted articles, and the data set was then independently reviewed by the other 2 authors. 12 articles met the selection criteria and included a variety of study designs and methods of data analysis. Seven studies evaluated animal shelter personnel, with the remainder evaluating veterinary nurses and technicians (2), biomedical research technicians (1), and personnel in multiple animal-related occupations (2). There was a lack of consistent terminology and agreed definitions for the articles reviewed. Personnel directly engaged in euthanasia reported significantly higher levels of work stress and lower

  15. A Survey on the HFE-related Technologies for the Improvements of Human Performance of Safety Personnel in Rail System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, I. S.; Park, G. O.; Suh, S. M.; Sim, Y. R.; Go, J. H.; Jeong, J. H.; Son, C. H

    2005-08-15

    Many studies have shown that the most cases of rail accidents have occurred because of performing his/her tasks in inappropriate way. It is generally recognised that the rail system without human element could never be happened quite long time. So human element in rail system is going to be the major factor to the next tragic accident. This state-of-the-art report describes three major HFE-related technologies, training simulator, the integrated test facility for human factors engineering, and human performance evaluation system, that are used in the other industries including nuclear power industry for the purpose of increasing rail safety through out the improvement of human task performance. Base on this report, the way of developing those technologies that should be applied to the korean rail system is presented.

  16. A Survey on the HFE-related Technologies for the Improvements of Human Performance of Safety Personnel in Rail System

    International Nuclear Information System (INIS)

    Koo, I. S.; Park, G. O.; Suh, S. M.; Sim, Y. R.; Go, J. H.; Jeong, J. H.; Son, C. H.

    2005-08-01

    Many studies have shown that the most cases of rail accidents have occurred because of performing his/her tasks in inappropriate way. It is generally recognised that the rail system without human element could never be happened quite long time. So human element in rail system is going to be the major factor to the next tragic accident. This state-of-the-art report describes three major HFE-related technologies, training simulator, the integrated test facility for human factors engineering, and human performance evaluation system, that are used in the other industries including nuclear power industry for the purpose of increasing rail safety through out the improvement of human task performance. Base on this report, the way of developing those technologies that should be applied to the korean rail system is presented

  17. Environmental Assessment for Demolition and Construction of Military Personnel Support Facilities Kirtland Air Force Base, New Mexico

    Science.gov (United States)

    2010-07-01

    researchers propose that these small groups hunted much smaller game, and gathered and scavenged foods comprised a significant portion of their diet ...facility are tied up simply tending separate inadequate facilities. For example, there are two old gyms with three worn-out basketball courts while...the need is one top-notch gym with two basketball courts; there are antiquated undersize men’s and women’s dressing room-locker-shower facilities at two

  18. Importance of the licensing process on the safety culture in the Brazilian nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Motta, E.S.; Sousa, A.L.B. de; Paiva, R.L.C. de; Mezrahi, A.

    2013-01-01

    The main objective of the Nuclear Fuel Cycle Facilities licensing processes is to ensure the safety of these installations in their entire life cycle (in the installation site selection, designing, construction, pre-operational tests, operational and decommissioning phases). The Brazilian licensing process requires from the operator, among others, before the operating license: (I) a Site Report and a Final Safety Analysis Report, ensuring that all safety related issues are adequately analyzed and understood; (II) a formal structured Management System focused on the installation safety; and (III) dissemination of safety related information to all involved operator employees and subcontractors. Therefore, these requirements reflect in an adequate operator actions and practices, ensuring a working environment with a high level of safety culture. (author)

  19. Importance of the licensing process on the safety culture in the Brazilian nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    Motta, E.S.; Sousa, A.L.B. de; Paiva, R.L.C. de; Mezrahi, A., E-mail: emotta@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The main objective of the Nuclear Fuel Cycle Facilities licensing processes is to ensure the safety of these installations in their entire life cycle (in the installation site selection, designing, construction, pre-operational tests, operational and decommissioning phases). The Brazilian licensing process requires from the operator, among others, before the operating license: (I) a Site Report and a Final Safety Analysis Report, ensuring that all safety related issues are adequately analyzed and understood; (II) a formal structured Management System focused on the installation safety; and (III) dissemination of safety related information to all involved operator employees and subcontractors. Therefore, these requirements reflect in an adequate operator actions and practices, ensuring a working environment with a high level of safety culture. (author)

  20. Closure of 324 Facility potential HEPA filter failure unreviewed safety questions

    International Nuclear Information System (INIS)

    Enghusen, M.B.

    1997-01-01

    This document summarizes the activities which occurred to resolve an Unreviewed Safety Question (USQ) for the 324 Facility [Waste Technology Engineering Laboratory] involving Potential HEPA Filter Breach. The facility ventilation system had the capacity to fail the HEPA filters during accident conditions which would totally plug the filters. The ventilation system fans were modified which lowered fan operating parameters and prevented HEPA filter failures which might occur during accident conditions

  1. Seismic qualification of safety class components in non-reactor nuclear facilities at Hanford site

    International Nuclear Information System (INIS)

    Ocoma, E.C.

    1989-01-01

    This paper presents the methods used during the walkdowns to compile as-built structural information to seismically qualify or verify the seismic adequacy of safety class components in the Plutonium Finishing Plant complex. The Plutonium finishing Plant is a non-reactor nuclear facility built during the 1950's and was designed to the Uniform Building Code criteria for both seismic and wind events. This facility is located at the US Department of Energy Hanford Site near Richland, Washington

  2. Safety of and regulations for nuclear fuel cycle facilities. Report of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-05-01

    In order to compile information on the nature of the safety concerns and current status of the regulations concerning nuclear fuel cycle facilities in Member States, an IAEA Technical Committee meeting on this topic was convened from 8 to 12 May 2000 in Vienna. The present publication contains the results of this meeting. The contributions of the participants in Annex 3 exemplify the work done in some Member States to develop an adequate regulatory framework to oversee the safe operation of these facilities

  3. Clinton P. Anderson Meson Physics Facility and its operational safety program

    International Nuclear Information System (INIS)

    Putnam, T.M.

    1975-01-01

    The Clinton P. Anderson Meson Physics Facility (LAMPF) at the Los Alamos Scientific Laboratory consists of/ (1) a medium-energy, high-intensity linear proton accelerator; (2) experimental areas designed to support a multidisciplined program of research and practical applications; and (3) support facilities for accelerator operations and the experimental program. The high-intensity primary and secondary beams at LAMPF and the varied research program create many interesting and challenging problems for the Health Physics staff. A brief overview of LAMPF is presented, and the Operational Safety Program is discussed, with emphasis on the radiological safety and health physics aspects

  4. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 5 tabs., 21 ills

  5. Contributions to safety assessment of the radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Ilie, Petre; Didita, Liana; Ionescu, Alice; Deaconu, Viorel

    2003-01-01

    The paper presents the progress in the frame of the safety assessments related to the potential near-surface Romanian National Repository, as well as to the geological repository in salt rock for CANDU spent fuel. The safety assessment of the near-surface repository follows the ISAM methodology. The repository design consists of a vault, in which the wastes resulted from the operation and decommissioning of the CANDU reactor from Cernavoda Nuclear Power Plant (CNPP) are disposed off. The repository is located nearby the CNPP. A layered unsaturated zone overlying a variable thickness confined aquifer, which consists of barremian limestones, characterizes the site. The interface with biosphere is considered to be the Danube-Black Sea Channel. The paper summarizes the results of the post-closure safety assessment for the design scenario and the prediction of the radionuclide release in the liquid phase. As to the final disposal of the CANDU spent fuel from the CNPP, we assumed that the repository is built in a salt dome. Romania has important salt formations, some of them being potentially suitable for hosting a repository. Up to now there are no detailed characterization studies of such formations in Romania, from the point of view of the suitability as a repository site. Therefore, generic data for hydrogeological characterization of the site have been used, coming from the Gorleben site in Germany. The spent fuel containers are disposed off in galleries, somewhere 500 m bellow the cap rock of the salt dome. The temporal loading scheme of the repository is based on a sequential filing of the disposal fields, with a delay of 10 years between filling of two neighbouring disposal areas. The disposal fields are accessed via a shaft. After filling of a disposal gallery, the remaining space is backfilled with salt powder and the gallery is sealed with compacted salt bricks. The access galleries are also backfilled and sealed. Only the reference scenario is considered, in

  6. Nuclear safety and radiation protection report of Tricastin nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the Tricastin NPPs (INBs no. 87 and 88). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  7. Nuclear safety and radiation protection report of Cattenom nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  8. Nuclear safety and radiation protection report of Chooz nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  9. Nuclear safety and radiation protection report of the Saint-Laurent-Des-Eaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 46, 74 and 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures carried out in 2013. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process) as well as the other pollutions. The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  10. Transuranic-contaminated solid waste Treatment Development Facility. Final safety analysis report

    International Nuclear Information System (INIS)

    Warner, C.L.

    1979-07-01

    The Final Safety Analysis Report (FSAR) for the Transuranic-Contaminated Solid-Waste Treatment Facility has been prepared in compliance with the Department of Energy (DOE) Manual Chapter 0531, Safety of Nonreactor Nuclear Facilities. The Treatment Development Facility (TDF) at the Los Alamos Scientific Laboratory is a research and development facility dedicated to the study of radioactive-waste-management processes. This analysis addresses site assessment, facility design and construction, and the design and operating characteristics of the first study process, controlled air incineration and aqueous scrub off-gas treatment with respect to both normal and accident conditions. The credible accidents having potentially serious consequences relative to the operation of the facility and the first process have been analyzed and the consequences of each postulated credible accident are presented. Descriptions of the control systems, engineered safeguards, and administrative and operational features designed to prevent or mitigate the consequences of such accidents are presented. The essential features of the operating and emergency procedures, environmental protection and monitoring programs, as well as the health and safety, quality assurance, and employee training programs are described

  11. ATPu facility - INB 32 - Complementary safety assessment in the light of the Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the ATPu facility to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. The ATPu facility, that stands on the Cadarache CEA's site, has been producing Mox fuel for light water reactors but now is entering a decommissioning phase. Robustness is the ability for the facility to withstand events beyond the level for which the facility was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence (cliff edge effect). Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like crisis organization and work organization via subcontracting are also taken into consideration. This report is divided into 9 main chapters: 1) main features of the ATPu facility, 2) identification of cliff edge risks as well as structures and equipment likely to be damaged, 3) earthquake risk, 4) flood risk, 5) risks due to other extreme natural disasters, 6) the loss of electrical power supplies, 7) management of severe accidents, 8) subcontracting policy, 9) synthesis. This study shows that the ATPu facility does not comply to current seismic standards and at the same time comforts the decision taken a few years ago to stop the installation definitely and recommends to evacuate the remaining radioactive materials and to begin the dismantlement as soon as possible. (A.C.)

  12. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Darby, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horak, Karl Emanuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaChance, Jeffrey L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tolk, Keith Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitehead, Donnie Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  13. Transuranic-contaminated solid waste Treatment Development Facility. Final safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Warner, C.L. (comp.)

    1979-07-01

    The Final Safety Analysis Report (FSAR) for the Transuranic-Contaminated Solid-Waste Treatment Facility has been prepared in compliance with the Department of Energy (DOE) Manual Chapter 0531, Safety of Nonreactor Nuclear Facilities. The Treatment Development Facility (TDF) at the Los Alamos Scientific Laboratory is a research and development facility dedicated to the study of radioactive-waste-management processes. This analysis addresses site assessment, facility design and construction, and the design and operating characteristics of the first study process, controlled air incineration and aqueous scrub off-gas treatment with respect to both normal and accident conditions. The credible accidents having potentially serious consequences relative to the operation of the facility and the first process have been analyzed and the consequences of each postulated credible accident are presented. Descriptions of the control systems, engineered safeguards, and administrative and operational features designed to prevent or mitigate the consequences of such accidents are presented. The essential features of the operating and emergency procedures, environmental protection and monitoring programs, as well as the health and safety, quality assurance, and employee training programs are described.

  14. Health Facilities Safety in Natural Disasters: Experiences and Challenges from South East Europe

    OpenAIRE

    Vesela Radovic; Ksenija Vitale; Paul B. Tchounwou

    2012-01-01

    The United Nations named 2010 as a year of natural disasters, and launched a worldwide campaign to improve the safety of schools and hospitals from natural disasters. In the region of South East Europe, Croatia and Serbia have suffered the greatest impacts of natural disasters on their communities and health facilities. In this paper the disaster management approaches of the two countries are compared, with a special emphasis on the existing technological and legislative systems for safety an...

  15. Safety analysis report upgrade program at the Plutonium Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.

    1993-01-01

    Plutonium research and development activities have resided at the Los Alamos National Laboratory (LANL) since 1943. The function of the Plutonium Facility (PF-4) has been to perform basic special nuclear materials research and development and to support national defense and energy programs. The original Final Safety Analysis Report (FSAR) for PF-4 was approved by DOE in 1978. This FSAR analyzed design-basis and bounding accidents. In 1986, DOE/AL published DOE/AL Order 5481.1B, ''Safety Analysis and Review System'', as a requirement for preparation and review of safety analyses. To meet the new DOE requirements, the Facilities Management Group of the Nuclear Material Technology Division submitted a draft FSAR to DOE for approval in April 1991. This draft FSAR analyzed the new configurations and used a limited-scope probabilistic risk analysis for accident analysis. During the DOE review of the draft FSAR, DOE Order 5480.23 ''Nuclear Safety Analysis Reports'', was promulgated and was later officially released in April 1992. The new order significantly expands the scope, preparation, and maintenance efforts beyond those required in DOE/AL Order 5481.1B by requiring: description of institutional and human-factor safety programs; clear definitions of all facility-specific safety commitments; more comprehensive and detailed hazard assessment; use of new safety analysis methods; and annual updates of FSARs. This paper describes the safety analysis report (SAR) upgrade program at the Plutonium Facility in LANL. The SAR upgrade program is established to meet the requirements in DOE Order 5480.23. Described in this paper are the SAR background, authorization basis for operations, hazard classification, and technical program elements

  16. SAFETY

    CERN Document Server

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  17. Safety report for Central Interim Storage facility for radioactive waste from small producers

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    2004-01-01

    In 1999 the Agency for Radwaste Management took over the management of the Central Interim Storage (CIS) in Brinje, intended only for radioactive waste from industrial, medical and research applications. With the transfer of the responsibilities for the storage operation, ARAO, the new operator of the facility, received also the request from the Slovenian Nuclear Safety Administration for refurbishment and reconstruction of the storage and for preparation of the safety report for the storage with the operational conditions and limitations. In order to fulfill these requirements ARAO first thoroughly reviewed the existing documentation on the facility, the facility itself and the stored inventory. Based on the findings of this review ARAO prepared several basic documents for improvement of the current conditions in the storage facility. In October 2000 the Plan for refurbishment and modernization of the CIS was prepared, providing an integral approach towards remediation and refurbishment of the facility, optimization of the inventory arrangement and modernization of the storage and storing utilization. In October 2001 project documentation for renewal of electric installations, water supply and sewage system, ventilation system, the improvements of the fire protection and remediation of minor defects discovered in building were completed according to the Act on Construction. In July 2003 the safety report was prepared, based on the facility status after the completion of the reconstruction works. It takes into account all improvements and changes introduced by the refurbishment and reconstruction of the facility according to project documentation. Besides the basic characteristics of the location and its surrounding, it also gives the technical description of the facility together with proposed solutions for the renewal of electric installations, renovation of water supply and sewage system, refurbishment of the ventilation system, the improvement of fire

  18. Physical fitness training reference manual for security force personnel at fuel cycle facilities possessing formula quantities of special nuclear materials

    International Nuclear Information System (INIS)

    Arzino, P.A.; Caplan, C.S.; Goold, R.E.

    1991-09-01

    The recommendations contained throughout this NUREG are being provided to the Nuclear Regulatory Commission (NRC) as a reference manual which can be used by licensee management as they develop a program plan for the safe participation of guards, Tactical Response Team members (TRTs), and all other armed response personnel in physical fitness training and in physical performance standards testing. The information provided in this NUREG will help licensees to determine if guards, TRTs, and other armed response personnel can effectively perform their normal and emergency duties without undue hazard to themselves, to fellow employees, to the plant site, and to the general public. The recommendations in this NUREG are similar in part to those contained within the Department of Energy (DOE) Medical and Fitness Implementation Guide which was published in March 1991. The guidelines contained in this NUREG are not requirements, and compliance is not required. 25 refs

  19. Physical fitness training reference manual for security force personnel at fuel cycle facilities possessing formula quantities of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Arzino, P.A.; Caplan, C.S.; Goold, R.E. (California State Univ., Hayward, CA (United States). Foundation)

    1991-09-01

    The recommendations contained throughout this NUREG are being provided to the Nuclear Regulatory Commission (NRC) as a reference manual which can be used by licensee management as they develop a program plan for the safe participation of guards, Tactical Response Team members (TRTs), and all other armed response personnel in physical fitness training and in physical performance standards testing. The information provided in this NUREG will help licensees to determine if guards, TRTs, and other armed response personnel can effectively perform their normal and emergency duties without undue hazard to themselves, to fellow employees, to the plant site, and to the general public. The recommendations in this NUREG are similar in part to those contained within the Department of Energy (DOE) Medical and Fitness Implementation Guide which was published in March 1991. The guidelines contained in this NUREG are not requirements, and compliance is not required. 25 refs.

  20. Nuclear Facility Isotopic Content (NFIC) Waste Management System to provide input for safety envelope definition

    International Nuclear Information System (INIS)

    Genser, J.R.

    1992-01-01

    The Westinghouse Savannah River Company (WSRC) is aggressively applying environmental remediation and radioactive waste management activities at the US Department of Energy's Savannah River Site (SRS) to ensure compliance with today's challenging governmental laws and regulatory requirements. This report discusses a computer-based Nuclear Facility Isotopic Content (NFIC) Waste Management System developed to provide input for the safety envelope definition and assessment of site-wide facilities. Information was formulated describing the SRS ''Nuclear Facilities'' and their respective bounding inventories of nuclear materials and radioactive waste using the NFIC Waste Management System

  1. Safety analysis report for the Neutron Multiplier Facility, 329 Building

    International Nuclear Information System (INIS)

    Rieck, H.G.

    1978-09-01

    Neutron multiplication is a process wherein the flux of a neutron source such as 252 Cf is enhanced by fission reactions that occur in a subcritical assemblage of fissile material. The multiplication factor of the device depends upon the consequences of neutron reactions with matter and is independent of the initial number of neutrons present. Safe utilization of such a device demands that the fissile material assemblage be maintained in a subcritical state throughout all normal and credibly abnormal conditions. Examples of things that can alter the multiplication factor (and degree of subcriticality) are temperature fluctuations, changes in moderator material such as voiding or composition, addition of fissile materials, and change in assembly configuration. The Neutron Multiplier Facility (NMF) utilizes a multiplier- 252 Cf assembly to produce neutrons for activation analysis of organic and inorganic environmental samples and for on-line mass spectrometry analysis of fission products which diffuse from a stationary fissile target (less than or equal to 4 g fissile material) located in the Neutron Multiplier. The NMF annex to the 329 Building provides close proximity to related counting equipment, and delay between sample irradiation and counting is minimized

  2. Lessons learnt from ITER safety and licensing for DEMO and future nuclear fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Neill, E-mail: neill.taylor@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Cortes, Pierre [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France)

    2014-10-15

    Highlights: •The ITER safety and licensing process successfully reached the stage of the granting of the authorization to construct the facility. •Despite differences between ITER and DEMO, there are lessons to be learned for DEMO safety and licensing. •A number of issues have been identified where development is required for DEMO, strategies to be decided, technical issues to be resolved. -- Abstract: One of the strong motivations for pursuing the development of fusion energy is its potentially low environmental impact and very good safety performance. But this safety and environmental potential can only be fully realized by careful design choices. For DEMO and other fusion facilities that will require nuclear licensing, S and E objectives and criteria should be set at an early stage and taken into account when choosing basic design options and throughout the design process. Studies in recent decades of the safety of fusion power plant concepts give a useful basis on which to build the S and E approach and to assess the impact of design choices. The experience of licensing ITER is of particular value, even though there are some important differences between ITER and DEMO. The ITER project has developed a safety case, produced a preliminary safety report and had it examined by the French nuclear safety authorities, leading to the licence to construct the facility. The key technical issues that arose during this process are recalled, particularly those that may also have an impact on DEMO safety. These include issues related to postulated accident scenarios, environmental releases during operation, occupational radiation exposure, and radioactive waste.

  3. Evaluation of natural phenomena hazards as part of safety assessments for nuclear facilities

    International Nuclear Information System (INIS)

    Kot, C.A.; Hsieh, B.J.; Srinivasan, M.G.; Shin, Y.W.

    1995-02-01

    The continued operation of existing US Department of Energy (DOE) nuclear facilities and laboratories requires a safety reassessment based on current criteria and guidelines. This also includes evaluations for the effects of Natural Phenomena Hazards (NPH), for which these facilities may not have been designed. The NPH evaluations follow the requirements of DOE Order 5480.28, Natural Phenomena Hazards Mitigation (1993) which establishes NPH Performance Categories (PCs) for DOE facilities and associated target probabilistic performance goals. These goals are expressed as the mean annual probability of exceedance of acceptable behavior for structures, systems and components (SSCs) subjected to NPH effects. The assignment of an NPH Performance Category is based on the overall hazard categorization (low, moderate, high) of a facility and on the function of an SSC under evaluation (DOE-STD-1021, 1992). Detailed guidance for the NPH analysis and evaluation criteria are also provided (DOE-STD-1020, 1994). These analyses can be very resource intensive, and may not be necessary for the evaluation of all SSCs in existing facilities, in particular for low hazard category facilities. An approach relying heavily on screening inspections, engineering judgment and use of NPH experience data (S. J. Eder et al., 1993), can minimize the analytical effort, give reasonable estimates of the NPH susceptibilities, and yield adequate information for an overall safety evaluation of the facility. In the following sections this approach is described in more detail and is illustrated by an application to a nuclear laboratory complex

  4. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  5. Safety assessment of a borehole type disposal facility using the ISAM methodology

    International Nuclear Information System (INIS)

    Blerk, J.J. van; Yucel, V.; Kozak, M.W.; Moore, B.A.

    2002-01-01

    As part of the IAEA's Co-ordinated Research Project (CRP) on Improving Long-term of Safety Assessment Methodologies for Near Surface Waste Disposal Facilities (ISAM), three example cases were developed. The aim was to test the ISAM safety assessment methodology using as realistic as possible data. One of the Test Cases, the Borehole Test Case (BTC), related to a proposed future disposal option for disused sealed radioactive sources. This paper uses the various steps of the ISAM safety assessment methodology to describe the work undertaken by ISAM participants in developing the BTC and provides some general conclusions that can be drawn from the findings of their work. (author)

  6. Spent nuclear fuel project cold vacuum drying facility safety equipment list

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-02-24

    This document provides the safety equipment list (SEL) for the Cold Vacuum Drying Facility (CVDF). The SEL was prepared in accordance with the procedure for safety structures, systems, and components (SSCs) in HNF-PRO-516, ''Safety Structures, Systems, and Components,'' Revision 0 and HNF-PRO-097, Engineering Design and Evaluation, Revision 0. The SEL was developed in conjunction with HNF-SO-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998). The SEL identifies the SSCs and their safety functions, the design basis accidents for which they are required to perform, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. This SEL has been developed for the CVDF Phase 2 Safety Analysis Report (SAR) and shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR until the CVDF final SAR is approved.

  7. Spent nuclear fuel project cold vacuum drying facility safety equipment list

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the safety equipment list (SEL) for the Cold Vacuum Drying Facility (CVDF). The SEL was prepared in accordance with the procedure for safety structures, systems, and components (SSCs) in HNF-PRO-516, ''Safety Structures, Systems, and Components,'' Revision 0 and HNF-PRO-097, Engineering Design and Evaluation, Revision 0. The SEL was developed in conjunction with HNF-SO-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998). The SEL identifies the SSCs and their safety functions, the design basis accidents for which they are required to perform, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. This SEL has been developed for the CVDF Phase 2 Safety Analysis Report (SAR) and shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR until the CVDF final SAR is approved

  8. Materials-related issues in the safety and licensing of nuclear fusion facilities

    Science.gov (United States)

    Taylor, N.; Merrill, B.; Cadwallader, L.; Di Pace, L.; El-Guebaly, L.; Humrickhouse, P.; Panayotov, D.; Pinna, T.; Porfiri, M.-T.; Reyes, S.; Shimada, M.; Willms, S.

    2017-09-01

    Fusion power holds the promise of electricity production with a high degree of safety and low environmental impact. Favourable characteristics of fusion as an energy source provide the potential for this very good safety and environmental performance. But to fully realize the potential, attention must be paid in the design of a demonstration fusion power plant (DEMO) or a commercial power plant to minimize the radiological hazards. These hazards arise principally from the inventory of tritium and from materials that become activated by neutrons from the plasma. The confinement of these radioactive substances, and prevention of radiation exposure, are the primary goals of the safety approach for fusion, in order to minimize the potential for harm to personnel, the public, and the environment. The safety functions that are implemented in the design to achieve these goals are dependent on the performance of a range of materials. Degradation of the properties of materials can lead to challenges to key safety functions such as confinement. In this paper the principal types of material that have some role in safety are recalled. These either represent a potential source of hazard or contribute to the amelioration of hazards; in each case the related issues are reviewed. The resolution of these issues lead, in some instances, to requirements on materials specifications or to limits on their performance.

  9. Lessons learned - development of the tritium facilities 5480.23 safety analysis report and technical safety requirements

    International Nuclear Information System (INIS)

    Cappucci, A.J. Jr.; Bowman, M.E.; Goff, L.

    1997-01-01

    A review was performed which identified open-quotes Lessons Learnedclose quotes from the development of the 5480.23 Tritium Safety Analysis Report (SAR) and the Technical Safety Requirements (TSR) for the Tritium Facilities (TF). The open-quotes Lessons Learnedclose quotes were based on an evaluation of the use of the SRS procedures, processes, and work practices which contributed to the success or lack thereof. This review also identified recommendations and suggestions for improving the development of SARs and TSRs at SRS. The 5480.23 SAR describes the site for the TF, the various process systems in the process buildings, a complete hazards and accident analysis of the most significant hazards affecting the nearby offsite population, and the selection of safety systems, structures, and components to protect both the public and site workers. It also provides descriptions of important programs and processes which add defense in depth to public and worker protection

  10. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    International Nuclear Information System (INIS)

    Orndoff, J.D.; Paxton, H.C.; Wimett, T.F.

    1980-12-01

    Detailed consideration of the Skua burst assembly is provided, thereby supplementing the facility Safety Analysis Report covering the operation of other critical assemblies at the Los Alamos Scientific Laboratory. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public

  11. Criticality safety and sensitivity analyses of PWR spent nuclear fuel repository facilities

    NARCIS (Netherlands)

    Maucec, M; Glumac, B

    Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based

  12. Computer security at ukrainian nuclear facilities: interface between nuclear safety and security

    International Nuclear Information System (INIS)

    Chumak, D.; Klevtsov, O.

    2015-01-01

    Active introduction of information technology, computer instrumentation and control systems (I and C systems) in the nuclear field leads to a greater efficiency and management of technological processes at nuclear facilities. However, this trend brings a number of challenges related to cyber-attacks on the above elements, which violates computer security as well as nuclear safety and security of a nuclear facility. This paper considers regulatory support to computer security at the nuclear facilities in Ukraine. The issue of computer and information security considered in the context of physical protection, because it is an integral component. The paper focuses on the computer security of I and C systems important to nuclear safety. These systems are potentially vulnerable to cyber threats and, in case of cyber-attacks, the potential negative impact on the normal operational processes can lead to a breach of the nuclear facility security. While ensuring nuclear security of I and C systems, it interacts with nuclear safety, therefore, the paper considers an example of an integrated approach to the requirements of nuclear safety and security

  13. Safety analysis report for the cold vacuum drying facility, phase 1, supporting civil/structural construction

    International Nuclear Information System (INIS)

    Pili-Vincens, C.

    1998-01-01

    The Cold Vacuum Drying Facility is a subproject of the overall Spent Nuclear Fuel Project. This Phase 2 Safety Analysis Report incorporates the CVD systems design and will update the SAR per DOE Order 5480.23 for manual and other Hanford infrastructure changes

  14. Refresher training as an important factor affecting safety of atomic energy utilization facilities

    International Nuclear Information System (INIS)

    Kapralov, E.

    2005-01-01

    Refresher training appears to be one of the most important factors, affecting safety of atomic energy utilization facilities. To provide up-to-date refresher training programs and courses TC NRS implements best training practice based on the actual and perspective Russian national and international norms, regulations, standards and recommendations. (author)

  15. Principles of developing the knowledge portal on safety of nuclear facilities

    International Nuclear Information System (INIS)

    Klevtsov, A.; Orlov, V.Yu.; Trubchaninov, S.A.

    2010-01-01

    The general principles of developing the knowledge portal on safety of nuclear facilities are considered in the article. In future, these principles can be used for implementing the project on development of the knowledge portal for the State Nuclear Regulatory Committee of Ukraine.

  16. 75 FR 9196 - Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board...

    Science.gov (United States)

    2010-03-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board) Recommendation 2009-2 AGENCY: Department of Energy. ACTION: Notice. SUMMARY: The Department of Energy (DOE) is making...

  17. State-of-the-art WEB -technologies and ecological safety of nuclear power engineering facilities

    International Nuclear Information System (INIS)

    Batij, V.G.; Batij, E.V.; Rud'ko, V.M.; Kotlyarov, V.T.

    2004-01-01

    Prospects of web-technologies using in the field of improvement radiation safety level of nuclear power engineering facilities is seen. It is shown that application of such technologies will enable entirely using the data of all information systems of radiation control

  18. Safety assessment and quality control of medical x-ray facilities in some hospitals in Ghana

    International Nuclear Information System (INIS)

    Darko, E.O.; Charles, D.F.

    1998-01-01

    Safety assessment and quality control measurements of diagnostic x-ray installations were carried out in five hospitals in Ghana. The study was focused on the siting, design and construction of the buildings housing the x-ray units, assessment of safety systems and devices and measurements of the technical performance, and film processing conditions. The location, inadequacies in the design/construction, unavailability of relevant safety systems and devices, violation of basic safety principles and poor performance of some of the x-ray facilities indicate the need to improve quality control programmes, safety culture and enforcement of regulatory standards in diagnostic x-ray examinations in Ghana. (author). 8 refs., 11 tabs., 8 figs

  19. An overview of safety and environmental considerations in the selection of materials for fusion facilities

    International Nuclear Information System (INIS)

    Petti, D.A.; Piet, S.J.; Seki, Y.

    1996-01-01

    Safety and environmental considerations can play a large role in the selection of fusion materials. In this paper, we review the attributes of different structural, plasma facing, and breeding materials from a safety perspective and discuss some generic waste management issues as they relate to fusion materials in general. Specific safety concerns exist for each material that must be dealt with in fusion facility design. Low activation materials offer inherent safety benefits compared with conventional materials, but more work is needed before these materials have the requisite certified databases. In the interim, the international thermonuclear experimental reactor (ITER) has selected more conventional materials and is showing that the safety concerns with these materials can be addressed by proper attention to design. In the area of waste management disposal criteria differ by country. However, the criteria are all very strict making disposal of fusion components difficult. As a result, recycling has gained increasing attention. (orig.)

  20. Periodic Safety Review in Interim Storage Facilities - Current Regulation and Experiences in Germany

    International Nuclear Information System (INIS)

    Neles, Julia Mareike; Schmidt, Gerhard

    2014-01-01

    Periodic safety reviews in nuclear power plants in Germany have been performed since the end of the 1980's as an indirect follow-up of the accident in Chernobyl and, in the meantime, are formally required by law. During this process the guidelines governing this review were developed in stages and reached their final form in 1996. Interim storage facilities and other nuclear facilities at that time were not included, so the guidelines were solely focused on the specific safety issues of nuclear power plants. Following IAEA's recommendations, the Western European Nuclear Regulator Association (WENRA) introduced PSRs in its safety reference levels for storage facilities (current version in WGWD report 2.1 as of Feb 2011: SRLs 59 - 61). Based on these formulations, Germany improved its regulation in 2010 with a recommendation of the Nuclear Waste Management Commission (Entsorgungskommission, ESK), an expert advisory commission for the federal regulatory body BMU. The ESK formulated these detailed requirements in the 'ESK recommendation for guides to the performance of periodic safety reviews for interim storage facilities for irradiated fuel elements and heat-generating radioactive waste'. Before finalization of the guideline a test phase was introduced, aimed to test the new regulation in practice and to later include the lessons learned in the final formulation of the guideline. The two-year test phase started in October 2011 in which the performance of a PSR will be tested at two selected interim storage facilities. Currently these recommendations are discussed with interested/concerned institutions. The results of the test phase shall be considered for improvements of the draft and during the final preparation of guidelines. Currently the PSR for the first ISF is in an advanced stage, the second facility just started the process. Preliminary conclusions from the test phase show that the implementation of the draft guideline requires interpretation. The aim of a

  1. Hanford surplus facilities hazards identification document. Revision 2

    International Nuclear Information System (INIS)

    Egge, R.G.

    1996-02-01

    This document provides general safety information needed by personnel who enter and work in surplus facilities managed by Bechtel Hanford, Inc. (BHI). The purpose of the document is to enhance access control of surplus facilities, educate personnel on the potential hazards associated with these facilities prior to entry, and ensure that safety precautions are taken while in the facility. Questions concerning the currency of this information should be directed to the building administrator (as listed in BHI-FS-01, Field Support Administration, Section 1.1, ''Access Control for ERC Surplus Facilities'')

  2. Computer program for storage of historical and routine safety data related to radiologically controlled facilities

    International Nuclear Information System (INIS)

    Marsh, D.A.; Hall, C.J.

    1984-01-01

    A method for tracking and quick retrieval of radiological status of radiation and industrial safety systems in an active or inactive facility has been developed. The system uses a mini computer, a graphics plotter, and mass storage devices. Software has been developed which allows input and storage of architectural details, radiological conditions such as exposure rates, current location of safety systems, and routine and historical information on exposure and contamination levels. A blue print size digitizer is used for input. The computer program retains facility floor plans in three dimensional arrays. The software accesses an eight pen color plotter for output. The plotter generates color plots of the floor plans and safety systems on 8 1/2 x 11 or 20 x 30 paper or on overhead transparencies for reports and presentations

  3. Preclosure radiological safety assessment for the ground support system in the exploratory studies facility

    International Nuclear Information System (INIS)

    Smith, A.J.; Tsai, F.C.

    1995-01-01

    An initial probabilistic safety assessment was performed for the exploratory studies facility underground opening to determine whether the ground support system should be classified as an item important to safety. The initiating event was taken to be a rock fall in an operational facility impacting a loaded waste transporter. Rock fall probability rates were estimated from data reported by commercial mining operations. This information was retrieved from the data base compiled by the Mining Safety and Health Administration from the mandatory reporting of incidents. The statistical distribution of the rock fall magnitude was estimated from the horizontal and vertical spacing fractures measured at the Yucca Mountain repository horizon. Simple models were developed to estimate container deformation and radionuclide releases arising from the projected distribution of impacts. Accepted techniques were used to calculate atmospheric dispersion and obtain the committed dose to individuals

  4. Lessons learned from recent safety related incidents at A Canadian uranium conversion facility

    International Nuclear Information System (INIS)

    Jaferi, Jafir

    2013-01-01

    This paper presents the Canadian Nuclear Safety Commission's (CNSC) regulatory requirements for nuclear fuel facility licensees to report any situation or incident that results or is likely to result in a hazard to the health or safety of any person or the environment and to submit its incident investigation report with cause(s) of the incident and corrective actions taken or planned. In addition, the paper presents two recent safety-related incidents that occurred at a uranium conversion facility in Canada along with their consequences, causes, corrective actions and any lessons learned. The first incident resulted in a release of uranium hexafluoride (UF6) inside the UF6 cylinder filling station and the second one resulted in a spill of uranium tetrafluoride (UF 4 ) slurry inside the UF6 plant. Both incidents had no impact on the workers or the environment. (authors)

  5. Regulation of chemical safety at fuel cycle facilities by the United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Ramsey, Kevin M.

    2013-01-01

    When the U.S. Nuclear Regulatory Commission (NRC) was established in 1975, its regulations were based on radiation dose limits. Chemical hazards rarely influenced NRC regulations. After the Three Mile Island reactor accident in 1979, the NRC staff was directed to address emergency planning at non-reactor facilities. Several fuel cycle facilities were ordered to submit emergency plans consistent with reactor emergency plans because no other guidance was available. NRC published a notice that it was writing regulations to codify the requirements in the Orders and upgrade the emergency plans to address all hazards, including chemical hazards. The legal authority of NRC to regulate chemical safety was questioned. In 1986, an overfilled uranium hexafluoride cylinder ruptured and killed a worker. The NRC staff was directed to address emergency planning for hazardous chemicals in its regulations. The final rule included a requirement for fuel cycle facilities to certify compliance with legislation requiring local authorities to establish emergency plans for hazardous chemicals. As with emergency planning, NRC's authority to regulate chemical safety during routine operations was limited. NRC established memoranda of understanding (MOUs) with other regulatory agencies to encourage exchange of information between the agencies regarding occupational hazards. In 2000, NRC published new, performance-based, regulations for fuel cycle facilities. The new regulations required an integrated safety analysis (ISA) which used quantitative standards to assess chemical exposures. Some unique chemical exposure cases were addressed while implementing the new regulations. In addition, some gaps remain in the regulation of hazardous chemicals at fuel cycle facilities. The status of ongoing efforts to improve regulation of chemical safety at fuel cycle facilities is discussed. (authors)

  6. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    International Nuclear Information System (INIS)

    Christensen, Boyd D.

    2010-01-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  7. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  8. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  9. Corporate financial decision makers' perceptions of their company's safety performance, programs and personnel: Do company size and industry injury risk matter?

    Science.gov (United States)

    DeArmond, Sarah; Huang, Yueng-Hsiang; Chen, Peter Y; Courtney, Theodore K

    2010-01-01

    Top-level managers make important decisions about safety-related issues, yet little research has been done involving these individuals. The current study explored corporate financial decisions makers' perceptions of their company's safety and their justifications for these perceptions. This study also explored whether their perceptions and justifications varied as a function of company size or industry injury risk. A total of 404 individuals who were the most senior managers responsible for making decisions about property and casualty risk at their companies participated in this study. The participants took part in a telephone survey. The results suggest that corporate financial decision makers have positive views of safety at their companies relative to safety at other companies within their industries. Further, many believe their company's safety is influenced by the attention/emphasis placed on safety and the selection and training of safety personnel. Participants' perceptions varied somewhat based on the size of their company and the level of injury risk in their industry. While definitive conclusions about corporate financial decision makers' perceptions of safety cannot be reached as a result of this single study, this work does lay groundwork for future research aimed at better understanding the perceptions top-level managers.

  10. A Comparison of Work Health and Safety Incidents and Injuries in Part-Time and Full-Time Australian Army Personnel.

    Science.gov (United States)

    McDonald, Dylan; Orr, Robin M; Pope, Rodney

    2016-11-01

     Part-time personnel are an integral part of the Australian Army. With operational deployments increasing, it is essential that medical teams identify the patterns of injuries sustained by part-time personnel in order to mitigate the risks of injury and optimize deployability.  To compare the patterns of reported work health and safety incidents and injuries in part-time and full-time Australian Army personnel.  Retrospective cohort study.  The Australian Army.  Australian Army Reserve and Australian regular Army populations, July 1, 2012, through June 30, 2014.  Proportions of reported work health and safety incidents that resulted in injuries among Army Reserve and regular Army personnel and specifically the (a) body locations affected by incidents, (b) nature of resulting injuries, (c) injury mechanisms, and (d) activities being performed when the incidents occurred.  Over 2 years, 15 065 work health and safety incidents and 11 263 injuries were reported in Army Reserve and regular Army populations combined. In the Army Reserve population, 85% of reported incidents were classified as involving minor personal injuries; 4% involved a serious personal injury. In the regular Army population, 68% of reported incidents involved a minor personal injury; 5% involved a serious personal injury. Substantially lower proportions of Army reservist incidents involved sports, whereas substantially higher proportions were associated with combat training, manual handling, and patrolling when compared with regular Army incidents.  Army reservists had a higher proportion of injuries from Army work-related activities than did regular Army soldiers. Proportions of incidents arising from combat tasks and manual handling were higher in the Army Reserve. Understanding the sources of injuries will allow the medical teams to implement injury-mitigation strategies.

  11. Focus on the studies in support of fire safety analysis. IRSN modelling approach for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Espargilliere, Julien; Meyrand, Raphael; Vinot, Thierry [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)

    2015-12-15

    For a fire safety analysis, in order to comply with nuclear safety goals, a nuclear fuel facility operator has to define the elements important for safety to be maintained, even in the case of a fire. One of the key points of this fire analysis is the assessment of possible fire scenarios in the facility. This paper presents the IRSN method applied to a case study to assess fire scenarios which have the most harmful effects on safety targets. The layout consists in a central room (fire cell) containing three glove boxes with radioactive material and three electrical cabinets. This room is linked to two connecting compartments (the fire cell and these two compartments define the containment cell) and then to two corridors. Each room is equipped with a mechanical ventilation system, and a pressure cascade is established from the corridors to the central room. A fire scenario was studied with fire ignition occurring in an electrical cabinet. This scenario has a set of safety goals (prevention of fire cell and containment device failure, propagation of the fire). This case study was conducted with the IRSN code SYLVIA based on two zones modelling. Safety goals were associated with key parameters and performance criteria to be fulfilled. Modelling assumptions were defined in order to maximize physical effects of the fire. Sensitivity studies were also conducted on key parameters such as oxygen limitation, equivalent-fuel definition. Eventually, a critical analysis of the code models was carried out.

  12. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  13. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training.

  14. Current status of personnel exposure at nuclear power plants and other medical, industrial and educational facilities in JAPAN

    International Nuclear Information System (INIS)

    Sasaki, Fumiaki

    1991-01-01

    The state of radiation exposure of the workers engaging in radiation works in Japanese nuclear power stations, the factors of the radiation exposure of the workers engaging in radiation works, the countermeasures for reducing exposure in nuclear power stations, the state of radiation exposure of doctors, the workers engaging in radiation works, researchers and others in medical, industrial, research and educational and other facilities in Japan, the factors of their radiation exposure and the countermeasures for reducing the exposure, and the comparison of the exposure in nuclear power stations with that in medical, industrial, research and educational facilities are reported. (K.I.)

  15. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training

  16. Safety analysis report for the 238PuO2 fuel form facility

    International Nuclear Information System (INIS)

    Angerman, C.L.; Bickford, D.F.; Gould, T.H. Jr.; Smith, P.K.

    1977-08-01

    The Plutonium Fuel Form (PuFF) Facility has been constructed at the Savannah River Plant to manufacture 30 to 60 kg/yr of 238 Pu fuel forms for space power applications. This facility is located in the existing Building 235-F near the geographical center of the Savannah River Plant (SRP) site. Pilot production is scheduled to begin in July 1977, with full-scale production in April 1978. The process line of the facility consists of nine separate, interconnected shielded cells; five shielded wing cabinets or glove boxes; three hoods; and contained auxiliary equipment. These process enclosures will be, for the most part, under an atmosphere of recirculating inert gas. The products of the facility will be dense fuel forms manufactured from PuO 2 powder with a nominal isotopic composition of 80% 238 Pu-20% 239 Pu. This powder, made from calcined oxalate, has been produced safely at a rate of about 20 kg 238 Pu/yr in the H-Area B-Line in Building 221-H for approximately ten years. This report describes design objectives, nature of operations, potential hazards and limiting factors, facility response to postulated accidents and failures, and environmental effects. The results of the analyses described in this report indicate that the facility has the capacity to prevent or sufficiently reduce accidents that represent potential risks to health and safety. The safety analysis in conjunction with process requirements provides the bases for Technical Standards for operation. The analysis also documents the degree of conformance of the facility design with the General Design Criteria - Plutonium Facilities and the Environmental Statement

  17. Evaluation of replacement tritium facility (RTF) compliance with DOE safety goals using probabilistic consequence assessment methodology

    International Nuclear Information System (INIS)

    O'Kula, K.R.; East, J.M.; Moore, M.L.

    1993-01-01

    The Savannah River Site (SRS), operated by the Westinghouse Savannah River Company (WSRC) for the US Department of Energy (DOE), is a major center for the processing of nuclear materials for national defense, deep-space exploration, and medical treatment applications in the United States. As an integral part of the DOE's effort to modernize facilities, implement improved handling and processing technology, and reduce operational risk to the general public and onsite workers, transition of tritium processing at SRS from the Consolidated Tritium Facility to the Replacement Tritium Facility (RTF) began in 1993. To ensure that operation of new DOE facilities such as RTF present minimum involuntary and voluntary risks to the neighboring public and workers, indices of risk have been established to serve as target levels or safety goals of performance for assessing nuclear safety. These goals are discussed from a historical perspective in the initial part of this paper. Secondly, methodologies to quantify risk indices are briefly described. Lastly, accident, abnormal event, and normal operation source terms from RTF are evaluated for consequence assessment purposes relative to the safety targets

  18. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2004-02-28

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Department’s activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Department’s defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review of the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.

  19. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias, E-mail: amandaraso@hotmail.com, E-mail: vasconv@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: soaresw@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serviço de Tecnologia de Reatores

    2017-07-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  20. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    International Nuclear Information System (INIS)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias

    2017-01-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)