WorldWideScience

Sample records for facility management system

  1. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  2. Systems management of facilities agreements

    International Nuclear Information System (INIS)

    Blundell, A.

    1998-01-01

    The various types of facilities agreements, the historical obstacles to implementation of agreement management systems and the new opportunities emerging as industry is beginning to make an effort to overcome these obstacles, are reviewed. Barriers to computerized agreement management systems (lack of consistency, lack of standards, scarcity of appropriate computer software) are discussed. Characteristic features of a model facilities agreement management system and the forces driving the changing attitudes towards such systems (e.g. mergers) are also described

  3. DKIST facility management system integration

    Science.gov (United States)

    White, Charles R.; Phelps, LeEllen

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.

  4. Improvement of management systems for nuclear facilities

    International Nuclear Information System (INIS)

    2005-01-01

    The area of Quality Management/ Quality Assurance has been changed dramatically over the past years. The nuclear facilities moved from the 'traditional' Quality Assurance approach towards Quality Management Systems, and later a new concept of Integrated Management Systems was introduced. The IAEA is developing a new set of Standards on Integrated Management Systems, which will replace the current 50-C-Q/SG-Q1-Q14 Code. The new set of document will require the integration of all management areas into one coherent management system. The new set of standards on Management Systems promotes the concept of the Integrated Management Systems. Based on new set a big number of documents are under preparation. These documents will address the current issues in the management systems area, e.g. Management of Change, Continuous Improvement, Self-assessment, and Attributes of effective management, etc. Currently NPES is providing a number of TC projects and Extra Budgetary Programmes to assist Member States in this area. The new Standards on Management Systems will be published in 2006. A number of Regulatory bodies already indicated that they would take the new Management System Standards as a basis for the national regulation. This fact will motivate a considerable change in the management of nuclear utilities, requiring a new approach. This activity is suitable for all IAEA Members States with large or limited nuclear capabilities. The service is directed to provide assistance for the management of all organizations carrying on or regulating nuclear activities and facilities

  5. Los Alamos Plutonium Facility Waste Management System

    International Nuclear Information System (INIS)

    Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

    1997-01-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process

  6. Computer-Aided Facilities Management Systems (CAFM).

    Science.gov (United States)

    Cyros, Kreon L.

    Computer-aided facilities management (CAFM) refers to a collection of software used with increasing frequency by facilities managers. The six major CAFM components are discussed with respect to their usefulness and popularity in facilities management applications: (1) computer-aided design; (2) computer-aided engineering; (3) decision support…

  7. Potential of Computerized Maintenance Management System in Facilities Management

    Directory of Open Access Journals (Sweden)

    Noor Farisya Azahar

    2014-07-01

    Full Text Available For some time it has been clear that managing buildings or estates has been carried out in the context of what has become known as facilities management. British Institute of Facilities Management defined facilities management is the integration of multi-disciplinary activities within the built environment and the management of their impact upon people and the workplace. Effective facilities management is vital to the success of an organisation by contributing to the delivery of its strategic and operational objectives. Maintenance of buildings should be given serious attention before (stage design, during and after a building is completed. But total involvement in building maintenance is after the building is completed and during its operations. Residents of and property owners require their building to look attractive, durable and have a peaceful indoor environment and efficient. The objective of the maintenance management system is to stream line the vast maintenance information system to improve the productivity of an industrial plant. a good maintenance management system makes equipment and facilities available. This paper will discuss the fundamental steps of maintenance management program and Computerized Maintenance Management System (CMMS

  8. Facility information management system; Shisetsu joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-10

    A facility management system (FMS) was developed as a tool for efficiently operating and managing building facilities and related equipment. The maintenance management data is designed to be collected through automatic formation of data base by using a work flow function and releasing the daily business from paper work. The data base thus formed can be retrieved and displayed by utilizing a network system. The plan view for construction facilities is made a minute plan comparable to the ground plan by taking in DXF type drawing data such as a completion drawing, making it a colored display for example to create an intuitive expression understandable at first sight. The plan is controlled by the level including equipment classification and is capable of superimposed display. Detailed management data is displayed by mouse clicking of registered icons, allowing required information to be readily taken out. (translated by NEDO)

  9. Drainage facility management system : final report, June 2009.

    Science.gov (United States)

    2009-06-01

    This research project identified requirements for a drainage facility management system for the Oregon Department of Transportation. It also estimated the personnel resources needed to collect the inventory to populate such a system with data. A tota...

  10. Information security management system planning for CBRN facilities

    International Nuclear Information System (INIS)

    Lenaeu, Joseph D.; O'Neil, Lori Ross; Leitch, Rosalyn M.; Glantz, Clifford S.; Landine, Guy P.; Bryant, Janet L.; Lewis, John; Mathers, Gemma; Rodger, Robert; Johnson, Christopher

    2015-01-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  11. Information security management system planning for CBRN facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lenaeu, Joseph D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Neil, Lori Ross [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leitch, Rosalyn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glantz, Clifford S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Landine, Guy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryant, Janet L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, John [National Nuclear Lab., Workington (United Kingdom); Mathers, Gemma [National Nuclear Lab., Workington (United Kingdom); Rodger, Robert [National Nuclear Lab., Workington (United Kingdom); Johnson, Christopher [National Nuclear Lab., Workington (United Kingdom)

    2015-12-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  12. The Management System for Facilities and Activities. Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States in establishing and implementing effective management systems that integrate all aspects of managing nuclear facilities and activities in a coherent manner. It details the planned and systematic actions necessary to provide adequate confidence that all these requirements are satisfied. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement.

  13. The ATF [Advanced Toroidal Facility] Data Management System: [Final report

    International Nuclear Information System (INIS)

    Kannan, K.L.; Baylor, L.R.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Data Management System (DMG) is a VAX-based software system that provides unified data access for ATF data acquisition and analysis. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. This paper describes the layered architecture of the system design, the system implementation, use, and the data file structure. 3 refs., 1 fig

  14. Implementing an environmental management system in a irradiation facility

    International Nuclear Information System (INIS)

    O'Doherty, James

    1998-01-01

    Environmental management is at different stages in the countries where there are commercial irradiation facilities. There are therefore differing perspectives on the role of an Environmental Management System, ranging from compliance with the Regulatory framework to a desire to be proactive. An effective Environmental Management System (EMS) facilitates compliance, while also providing the framework for assessment and improvement of a company's environmental impact and overall performance

  15. Bus systems: Integrated facility management; Bus-Systeme: Gewerkeuebergreifende Gebaeudeautomation

    Energy Technology Data Exchange (ETDEWEB)

    Baumgarth, S.; Heiser, M. [Fachhochschule Braunschweig-Wolfenbuettel, Wolfenbuettel (Germany)

    2000-03-01

    Optimisation of facility management relies indispensably on uncomplicated interactive communication between different systems by different producers. An example is described: The system comprises two closed-cycle cooling towers, a cold water set and two different loads (ventilators). Each system can be controlled separately. The trend in automation is in the direction of intelligence even at field level. [German] Unverzichtbare Voraussetzung fuer das Ausschoepfen von Optimierungspotentialen in der Gebaeudeautomation ist die unkomplizierte, wechselseitige Kommunikation zwischen Anlagen und Automatisierungsstationen verschiedener Gewerke und Hersteller. Am Beispiel einer komplexen Anlage, die aus zwei Kuehltuermen mit geschlossenem Kreislauf, einem Kaltwasserersatz sowie unterschiedlichen Verbrauchern (Lueftungsanlagen) besteht, soll die Verknuepfung kaeltetechnischer Gewerke naeher dargestellt werden. Jeder der Teilbereiche ist ueber eine umfangreiche Strategie zu regeln und zu steuern. Dabei geht die Entwicklung in der Gebaeudeautomation hin zu einer Verlagerung der Intelligenz in die Feldebene. (orig./AKF)

  16. Guidelines for Management Information Systems in Canadian Health Care Facilities

    Science.gov (United States)

    Thompson, Larry E.

    1987-01-01

    The MIS Guidelines are a comprehensive set of standards for health care facilities for the recording of staffing, financial, workload, patient care and other management information. The Guidelines enable health care facilities to develop management information systems which identify resources, costs and products to more effectively forecast and control costs and utilize resources to their maximum potential as well as provide improved comparability of operations. The MIS Guidelines were produced by the Management Information Systems (MIS) Project, a cooperative effort of the federal and provincial governments, provincial hospital/health associations, under the authority of the Canadian Federal/Provincial Advisory Committee on Institutional and Medical Services. The Guidelines are currently being implemented on a “test” basis in ten health care facilities across Canada and portions integrated in government reporting as finalized.

  17. Using Executive Information Systems to Manage Capital Projects and Facilities.

    Science.gov (United States)

    Kaynor, Robert

    1993-01-01

    In higher education, facilities data are essential for long-term capital and financial planning and for testing assumptions underlying anticipated policy change. Executive information systems should incorporate life-cycle considerations (planning, construction, renovation, and management) and resource linkages (describing interrelationships of…

  18. Sectoral innovation system foresight in practice: Nordic facilities management foresight

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Dahl Andersen, Allan; Jensen, Per Anker

    2014-01-01

    a proposal for a common Nordic facilities management research agenda. The paper finds that three elements of the innovation system literature are of particular interest for the practice of foresight: innovation systems and context dependency, learning and user-producer interactions, and the role of knowledge...... and knowledge production. These elements are embedded into a simple sectoral innovation system model (including actors, knowledge flows, and the strategic environment).......A number of studies have explored the interconnection between the foresight literature and the innovation system literature. This paper adds to these studies by investigating how theoretical elements of the innovation system approach can contribute to the design and practice of foresight processes...

  19. ETHEL's systems and facilities for safe management of tritiated wastes

    International Nuclear Information System (INIS)

    Mannone, F.; Dworschak, H.; Vassallo, G.

    1992-01-01

    The European Tritium Handling Experimental Laboratory (ETHEL) is a new tritium facility at the Commission of the European Community's Joint Research Centre, Ispra Site. The laboratory, destined to handle multigram amounts of tritium for safety related R and D purposes, is foreseen to start radioactive operations in late 1992. The general operation and maintenance of laboratory systems and future experiments will generate tritiated wastes in gaseous, liquid and solid forms. The management of such wastes under safe working conditions is a stringent laboratory requirement aimed at minimizing the risk of unacceptable tritium exposures to workers and the general public. This paper describes the main systems and facilities installed in ETHEL for the safe management of tritiated wastes

  20. Swedish spent fuel management systems, facilities and operating experiences

    International Nuclear Information System (INIS)

    Vogt, J.

    1998-01-01

    About 50% of the electricity in Sweden is generated by means of nuclear power from 12 LWR reactors located at four sites and with a total capacity of 10,000 MW. The four utilities have jointly created SKB, the Swedish Nuclear Fuel and Waste Management Company, which has been given the mandate to manage the spent fuel and radioactive waste from its origin at the reactors to the final disposal. SKB has developed a system for the safe handling of all kinds of radioactive waste from the Swedish nuclear power plants. The keystones now in operation of this system are a transport system, a central interim storage facility for spent nuclear fuel (CLAB), a final repository for short-lived, low and intermediate level waste (SFR). The remaining, system components being planned are an encapsulation plant for spent nuclear fuel and a deep repository for encapsulated spent fuel and other long-lived radioactive wastes. (author)

  1. National Ignition Facility Cryogenic Target Systems Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety and Health (ES and H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for

  2. VEHIL: a test facility for validation of fault management systems for advanced driver assistance systems

    NARCIS (Netherlands)

    Gietelink, O.J.; Ploeg, J.; Schutter, de B.; Verhaegen, M.H.

    2004-01-01

    We present a methodological approach for the validation of fault management systems for Advanced Driver Assistance Systems (ADAS). For the validation process the unique VEHIL facility, developed by TNO Automotive and currently situated in Helmond, The Netherlands, is applied. The VEHIL facility

  3. Radiation safety management system in a radioactive facility

    International Nuclear Information System (INIS)

    Amador, Zayda H.

    2008-01-01

    Full text: This paper illustrates the Cuban experience in implementing and promoting an effective radiation safety system for the Centre of Isotopes, the biggest radioactive facility of our country. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. All those areas of the radiation protection program are considered (e.g. licensing and training of the staff, occupational exposure, authorization of the practices, control of the radioactive material, radiological occurrences, monitoring equipment, radioactive waste management, public exposure due to airborne effluents, audits and safety costs). A set of indicators designed to monitor key aspects of operational safety performance are used. Their trends over a period of time are analyzed with the modern information technologies, because this can provide an early warning to plant management for searching causes behind the observed changes. In addition to analyze the changes and trends, these indicators are compared against identified targets and goals to evaluate performance strengths and weaknesses. A structured and proper radiation self-auditing system is seen as a basic requirement to meet the current and future needs in sustainability of radiation safety. The integrated safety management system establishment has been identified as a goal and way for the continuous improvement. (author)

  4. Radonclose - the system of Soviet designed regional waste management facilities

    International Nuclear Information System (INIS)

    Horak, W.C.; Reisman, A.; Purvis, E.E. III.

    1997-01-01

    The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30 years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities

  5. 25 CFR 170.806 - What is an IRR Transportation Facilities Maintenance Management System?

    Science.gov (United States)

    2010-04-01

    ... AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.806 What is an IRR Transportation Facilities Maintenance Management System? An IRR Transportation Facilities Maintenance Management... 25 Indians 1 2010-04-01 2010-04-01 false What is an IRR Transportation Facilities Maintenance...

  6. System Configuration Management Implementation Procedure for the Cold Vacuum Drying Facility Monitoring and Control System

    International Nuclear Information System (INIS)

    ANGLESEY, M.O.

    2000-01-01

    The purpose of this document is to establish the System Configuration Management Implementation Procedure (SCMIP) for the Cold Vacuum Drying Facility (CVDF) Monitoring and Control System (MCS). This procedure provides configuration management for the process control system. The process control system consists of equipment hardware and software that controls and monitors the instrumentation and equipment associated with the CVDF processes. Refer to SNF-3090, Cold Vacuum Drying Facility Monitoring and Control System Design Description, HNF-3553, Annex B, Safety Analysis Report for the Cold Vacuum Drying Facility, and AP-CM-6-037-00, SNF Project Process Automation Software and Equipment Configuration. This SCMIP identifies and defines the system configuration items in the control system, provides configuration control throughout the system life cycle, provides configuration status accounting, physical protection and control, and verifies the completeness and correctness of these items

  7. Waste receiving and processing facility module 1 data management system software project management plan

    International Nuclear Information System (INIS)

    Clark, R.E.

    1994-01-01

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  8. Using Decision Analysis to Select Facility Maintenance Management Information Systems

    Science.gov (United States)

    2010-03-01

    Hart, A., & Ratnieks, F. L. (2002). Waste management in the leaf-cutting ant Atta colombica. Behavioral Ecology , 224-231. Heintz, J., Pollin ... Pollin , & Garret-Peltier, 2009). Maintenance departments can help themselves by implementing an information system to help better manage personnel...Wastewater collection system infrastructure research needs in the USA. Urban Water , 21-29. Takata, S., Kimura, F., van Houten, F., Westkamper, E

  9. Development techniques of computerized maintenance management system for nuclear fuel cycle examination facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yon Woo; Kim, S D; Soong, W S; Kim, G H; Oh, W H; Kim, Y G

    2000-12-01

    Normal operation of the facility is one of the key factors in the accomplishments of research goals. As confirmed by a case study of the influence of the facility operation condition on the research results, emphasis should be put on the facility preserve management. Facilities should be maintained in solid operational condition and their malfunctions should be repaired as soon as possible. The purpose of this project is to make propositions on the development of the facility Preserve management system which is to maximize the efficiency of the budget execution, manpower organization and maintenance planning, and is to minimize the duration of the operational pause due to malfunctions with the least disbursement.

  10. Development techniques of computerized maintenance management system for nuclear fuel cycle examination facilities

    International Nuclear Information System (INIS)

    Oh, Yon Woo; Kim, S. D.; Soong, W. S.; Kim, G. H.; Oh, W. H.; Kim, Y. G.

    2000-12-01

    Normal operation of the facility is one of the key factors in the accomplishments of research goals. As confirmed by a case study of the influence of the facility operation condition on the research results, emphasis should be put on the facility preserve management. Facilities should be maintained in solid operational condition and their malfunctions should be repaired as soon as possible. The purpose of this project is to make propositions on the development of the facility Preserve management system which is to maximize the efficiency of the budget execution, manpower organization and maintenance planning, and is to minimize the duration of the operational pause due to malfunctions with the least disbursement

  11. 48 CFR 970.3770 - Facilities management.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management. ...

  12. Application of the Management System for Facilities and Activities. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication provides guidance for following the requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States to establish and implement effective management systems that coherently integrate all aspects of managing nuclear facilities and activities.

  13. Nuclear Facility Isotopic Content (NFIC) Waste Management System to provide input for safety envelope definition

    International Nuclear Information System (INIS)

    Genser, J.R.

    1992-01-01

    The Westinghouse Savannah River Company (WSRC) is aggressively applying environmental remediation and radioactive waste management activities at the US Department of Energy's Savannah River Site (SRS) to ensure compliance with today's challenging governmental laws and regulatory requirements. This report discusses a computer-based Nuclear Facility Isotopic Content (NFIC) Waste Management System developed to provide input for the safety envelope definition and assessment of site-wide facilities. Information was formulated describing the SRS ''Nuclear Facilities'' and their respective bounding inventories of nuclear materials and radioactive waste using the NFIC Waste Management System

  14. Technical Merits and Leadership in Facility Management

    National Research Council Canada - National Science Library

    Shoemaker, Jerry

    1997-01-01

    .... The document is divided into six chapters; the introduction, facility management and leadership, building systems, facility operations, facility maintenance strategies, and the conclusion and final analysis...

  15. Bureau of Indian Affairs Schools: New Facilities Management Information System Promising, but Improved Data Accuracy Needed.

    Science.gov (United States)

    General Accounting Office, Washington, DC.

    A General Accounting Office (GAO) study evaluated the Bureau of Indian Affairs' (BIA) new facilities management information system (FMIS). Specifically, the study examined whether the new FMIS addresses the old system's weaknesses and meets BIA's management needs, whether BIA has finished validating the accuracy of data transferred from the old…

  16. Application of the Management System for Facilities and Activities. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This publication provides guidance for following the requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States to establish and implement effective management systems that coherently integrate all aspects of managing nuclear facilities and activities. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement; Appendix I: Transition to an integrated management system; Appendix II: Activities in the document control process; Appendix III: Activities in the procurement process; Appendix IV: Performance of independent assessments; Annex I: Electronic document management system; Annex II: Media for record storage; Annex III: Record retention and storage; Glossary.

  17. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  18. Implementation of a quality management system at the PHOENIX facility (CryoMaK)

    International Nuclear Information System (INIS)

    Urbach, Elisabeth; Bagrets, Nadezda; Weiss, Klaus-Peter

    2013-01-01

    Within a variety of mechanical tests in the Cryogenic Material Test Facility Karlsruhe (CryoMaK) at Karlsruhe Institute of Technology (KIT) the PHOENIX facility was prepared for multiple standard tensile tests in liquid helium, liquid nitrogen and at room temperature. With the multiple specimens holder 10 specimens can be tested within one cool down one after another. A quality management system is needed for ensuring reproducible preconditions. For the guarantee of the competence of the laboratory and the measurement equipment, a quality management system was implemented and prepared for accreditation according to DIN EN ISO/IEC 17025 (ISO 17025). The implementation of a quality management system allows high precision test results included the estimation of measurement uncertainty. This paper gives an overview of the management and technical requirements for the accreditation of the PHOENIX testing facility

  19. Implementation of a quality management system at the PHOENIX facility (CryoMaK)

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, Elisabeth, E-mail: elisabeth.urbach@kit.edu; Bagrets, Nadezda; Weiss, Klaus-Peter

    2013-10-15

    Within a variety of mechanical tests in the Cryogenic Material Test Facility Karlsruhe (CryoMaK) at Karlsruhe Institute of Technology (KIT) the PHOENIX facility was prepared for multiple standard tensile tests in liquid helium, liquid nitrogen and at room temperature. With the multiple specimens holder 10 specimens can be tested within one cool down one after another. A quality management system is needed for ensuring reproducible preconditions. For the guarantee of the competence of the laboratory and the measurement equipment, a quality management system was implemented and prepared for accreditation according to DIN EN ISO/IEC 17025 (ISO 17025). The implementation of a quality management system allows high precision test results included the estimation of measurement uncertainty. This paper gives an overview of the management and technical requirements for the accreditation of the PHOENIX testing facility.

  20. A local area network and information management system for a submarine overhaul facility

    OpenAIRE

    Bushmire, Jeffrey D

    1990-01-01

    A preliminary design of a local area network for a submarine overhaul facility is developed using System Engineering concepts. SOFLAN, the Submarine Overhaul Facility Local Area Network, is necessary to provide more timely and accurate information to submarine overhaul managers in order to decrease the overhaul time period and become more competitive. The network is a microcomputer based system following the Ethernet and IEEE 802.3 standards with a server .. client architecture. SOFLAN serves...

  1. Fire protection system management in nuclear facilities: strengthening factor of integrated management system - a case study

    International Nuclear Information System (INIS)

    Santos, Joao Regis dos

    2005-01-01

    The present study investigated and analyzed the importance of a system of integrated safety manage, environment and health in a nuclear installation, having as perspective, the fire protection manage. The inquiry was made using a qualitative research involving a case study, where the considered environment was the Reconversion and UO 2 Plant of the Industrias Nucleares do Brasil (INB), located in Resende, Rio de Janeiro and the studied population, the managers and the staff directly involved with the aspects related to the safety of the industrial complex of the related company. The motivation for the research was the search of a bigger interaction of the questions related to the safety, environment and health in the nuclear industry having, as axle of the investigation, the fire protection. As a result, it was observed that in a nuclear installation, although dealing with diversified safety processes, integration is possible and necessary, since there are more reasons for integration than otherwise. (author)

  2. Systems engineering applied to integrated safety management for high consequence facilities

    International Nuclear Information System (INIS)

    Barter, R; Morais, B.

    1998-01-01

    Integrated Safety Management is a concept that is being actively promoted by the U.S. Department of Energy as a means of assuring safe operation of its facilities. The concept involves the integration of safety precepts into work planning rather than adjusting for safe operations after defining the work activity. The system engineering techniques used to design an integrated safety management system for a high consequence research facility are described. An example is given to show how the concepts evolved with the system design

  3. Economic analysis of including an MRS facility in the waste management system

    International Nuclear Information System (INIS)

    Williams, J.W.; Conner, C.; Leiter, A.J.; Ching, E.

    1992-01-01

    The MRS System Study Summary Report (System Study) in June 1989 concluded that an MRS facility would provide early spent fuel acceptance as well as flexibility for the waste management system. However, these advantages would be offset by an increase in the total system cost (i.e., total cost to the ratepayer) ranging from $1.3 billion to about $2.8 billion depending on the configuration of the waste management system. This paper discusses this new investigation which will show that, in addition to the advantages of an MRS facility described above, a basic (i.e., store-only) MRS facility may result in a cost savings to the total system, primarily due to the inclusion in the analysis of additional at-reactor operating costs for maintaining shutdown reactor sites

  4. Application of the management system for facilities and activities. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide supports the Safety Requirements publication on The Management System for Facilities and Activities. It provides generic guidance to aid in establishing, implementing, assessing and continually improving a management system that complies with the requirements established. In addition to this Safety Guide, there are a number of Safety Guides for specific technical areas. Together these provide all the guidance necessary for implementing these requirements. This publication supersedes Safety Series No. 50-SG-Q1-Q7 (1996). The guidance provided here may be used by organizations in the following ways: - To assist in the development of the management systems of organizations directly responsible for operating facilities and activities and providing services for: Nuclear facilities; Activities using sources of ionizing radiation; Radioactive waste management; The transport of radioactive material; Radiation protection activities; Any other practices or circumstances in which people may be exposed to radiation from naturally occurring or artificial sources; The regulation of such facilities and activities; - To assist in the development of the management systems of the relevant regulatory bodies; - By the operator, to specify to a supplier, via contractual documentation, any guidance of this Safety Guide that should be included in the supplier's management system for the supply and delivery of products

  5. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    Directory of Open Access Journals (Sweden)

    Baldwin Stephen A

    2011-03-01

    Full Text Available Abstract Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  6. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities.

    Science.gov (United States)

    Troshin, Peter V; Postis, Vincent Lg; Ashworth, Denise; Baldwin, Stephen A; McPherson, Michael J; Barton, Geoffrey J

    2011-03-07

    Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  7. Life cycle cost estimation and systems analysis of Waste Management Facilities

    International Nuclear Information System (INIS)

    Shropshire, D.; Feizollahi, F.

    1995-01-01

    This paper presents general conclusions from application of a system cost analysis method developed by the United States Department of Energy (DOE), Waste Management Division (WM), Waste Management Facilities Costs Information (WMFCI) program. The WMFCI method has been used to assess the DOE complex-wide management of radioactive, hazardous, and mixed wastes. The Idaho Engineering Laboratory, along with its subcontractor Morrison Knudsen Corporation, has been responsible for developing and applying the WMFCI cost analysis method. The cost analyses are based on system planning level life-cycle costs. The costs for life-cycle waste management activities estimated by WMFCI range from bench-scale testing and developmental work needed to design and construct a facility, facility permitting and startup, operation and maintenance, to the final decontamination, decommissioning, and closure of the facility. For DOE complex-wide assessments, cost estimates have been developed at the treatment, storage, and disposal module level and rolled up for each DOE installation. Discussions include conclusions reached by studies covering complex-wide consolidation of treatment, storage, and disposal facilities, system cost modeling, system costs sensitivity, system cost optimization, and the integration of WM waste with the environmental restoration and decontamination and decommissioning secondary wastes

  8. Use of the project management methodology to establish physical protection system at nuclear facility

    International Nuclear Information System (INIS)

    Gramotkin, F.; Kuzmyak, I.; Kravtsov, V.

    2015-01-01

    The paper considers the possibility of using the project management methodology developed by the Project Management Institute (USA) in nuclear security in terms of modernization or development of physical protection system at nuclear facility. It was demonstrated that this methodology allows competent and flexible management of the projects on physical protection, ensuring effective control of their timely implementation in compliance with the planned budget and quality

  9. Cost Implications of an Interim Storage Facility in the Waste Management System

    Energy Technology Data Exchange (ETDEWEB)

    Jarrell, Joshua J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joseph, III, Robert Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petersen, Gordon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nutt, Mark [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, Joe [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cotton, Thomas [Complex Systems Group, Bozeman, MT (United States)

    2016-09-01

    This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.

  10. Investigation of development and management of treatment planning systems for BNCT at foreign facilities

    International Nuclear Information System (INIS)

    2001-03-01

    A new computational dosimetry system for BNCT: JCDS is developed by JAERI in order to carry out BNCT with epithermal neutron beam at present. The development and management situation of computational dosimetry system, which are developed and are used in BNCT facilities in foreign countries, were investigated in order to accurately grasp functions necessary for preparation of the treatment planning and its future subjects. In present state, 'SERA', which are developed by Idaho National Engineering and Environmental Laboratory (INEEL), is used in many BNCT facilities. Followings are necessary for development and management of the treatment planning system. (1) Reliability confirmation of system performance by verification as comparison examination of calculated value with actual experimental measured value. (2) Confirmation systems such as periodic maintenance for retention of the system quality. (3) The improvement system, which always considered relative merits and demerits with other computational dosimetry system. (4) The development of integrated system with patient setting. (author)

  11. Exploration Systems Health Management Facilities and Testbed Workshop

    Science.gov (United States)

    Wilson, Scott; Waterman, Robert; McCleskey, Carey

    2004-01-01

    Presentation Agenda : (1) Technology Maturation Pipeline (The Plan) (2) Cryogenic testbed (and other KSC Labs) (2a) Component / Subsystem technologies (3) Advanced Technology Development Center (ATDC) (3a) System / Vehic1e technologies (4) EL V Flight Experiments (Flight Testbeds).

  12. Construction of BIM-based SMART-ITL Facility Management System

    International Nuclear Information System (INIS)

    Jeon, Woo-Jin; Yi, Sung-Jae; Park, Hyun-Sik; Ryu, Sung-Uk; Bae, Hwang; Hwang, Sang-Chul; Min, Byung-Eui

    2015-01-01

    The flow area and volume are scaled down to 1/49. The ratio of the hydraulic diameter is 1/7. Therefore, SMART-ITL is a large-scale thermalhydraulic test facility with about 45 m height, which is consisted of 10 m underground and 35 m from the ground level. Until now, the management of design data and maintenance of large scale test facilities have been managed based on hard-copy information. Recently, Thermal Hydraulics Safety Research Division (THSRD) at Korea Atomic Energy Research Institute (KAERI) has developed Facility Management System (FMS) based Building Information Modeling (BIM) to manage its design data more effectively for these large scale test facilities of SMART-ITL and ATLAS, and this BIM technology has been applied to SMART-ITL at the first. This study proposed a method of effective management and maintenance of design data applied to the SMART-ITL. That is, a FMS was developed based on the BIM technology for SMART-ITL. Figure 2 shows an overview of FMS development process based on BIM technology. SMART-ITL FMS facilitates its management and maintenance more effectively and accurately by 3- dimensional visualization. It enables the shape information of large scale test facilities to be visualized intuitively in a virtual space, and the efficient maintenance of data and instruments is possible by linking 3D shape information

  13. Construction of BIM-based SMART-ITL Facility Management System

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Woo-Jin; Yi, Sung-Jae; Park, Hyun-Sik; Ryu, Sung-Uk; Bae, Hwang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hwang, Sang-Chul; Min, Byung-Eui [DDRsoft Co., Daejeon (Korea, Republic of)

    2015-10-15

    The flow area and volume are scaled down to 1/49. The ratio of the hydraulic diameter is 1/7. Therefore, SMART-ITL is a large-scale thermalhydraulic test facility with about 45 m height, which is consisted of 10 m underground and 35 m from the ground level. Until now, the management of design data and maintenance of large scale test facilities have been managed based on hard-copy information. Recently, Thermal Hydraulics Safety Research Division (THSRD) at Korea Atomic Energy Research Institute (KAERI) has developed Facility Management System (FMS) based Building Information Modeling (BIM) to manage its design data more effectively for these large scale test facilities of SMART-ITL and ATLAS, and this BIM technology has been applied to SMART-ITL at the first. This study proposed a method of effective management and maintenance of design data applied to the SMART-ITL. That is, a FMS was developed based on the BIM technology for SMART-ITL. Figure 2 shows an overview of FMS development process based on BIM technology. SMART-ITL FMS facilitates its management and maintenance more effectively and accurately by 3- dimensional visualization. It enables the shape information of large scale test facilities to be visualized intuitively in a virtual space, and the efficient maintenance of data and instruments is possible by linking 3D shape information.

  14. Technical merits and leadership in facility management

    OpenAIRE

    Shoemaker, Jerry J

    1997-01-01

    After almost ten years of experience and formal education in design, construction, and facility operations and maintenance, the challenges and complexity of facility management still seem overwhelming and intangible. This document explores those complexities and challenges, and presents several philosophies and strategies practiced in facility management. The document is divided into six chapters; the introduction, facility management and leadership, building systems, facility operations, fac...

  15. Screensaver: an open source lab information management system (LIMS for high throughput screening facilities

    Directory of Open Access Journals (Sweden)

    Nale Jennifer

    2010-05-01

    Full Text Available Abstract Background Shared-usage high throughput screening (HTS facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. Results We have developed Screensaver, a free, open source, web-based lab information management system (LIMS, to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. Conclusions The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.

  16. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities.

    Science.gov (United States)

    Tolopko, Andrew N; Sullivan, John P; Erickson, Sean D; Wrobel, David; Chiang, Su L; Rudnicki, Katrina; Rudnicki, Stewart; Nale, Jennifer; Selfors, Laura M; Greenhouse, Dara; Muhlich, Jeremy L; Shamu, Caroline E

    2010-05-18

    Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.

  17. Samarbejdsformer og Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten

    Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges.......Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges....

  18. Sustainable Facilities Management

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten; Hoffmann, Birgitte

    2004-01-01

    The Danish public housing sector has more than 20 years of experience with sustainable facilities management based on user involvement. The paper outlines this development in a historical perspective and gives an analysis of different approaches to sustainable facilities management. The focus...... is on the housing departments and strateies for the management of the use of resources. The research methods used are case studies based on interviews in addition to literature studies. The paper explores lessons to be learned about sustainable facilities management in general, and points to a need for new...

  19. Waste management facilities cost information: System cost model product description. Revision 2

    International Nuclear Information System (INIS)

    Lundeen, A.S.; Hsu, K.M.; Shropshire, D.E.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities

  20. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    International Nuclear Information System (INIS)

    Rosnick, C.K.

    1996-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  1. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    International Nuclear Information System (INIS)

    Brann, E.C. II.

    1994-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  2. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  3. Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Coobs, J.H.

    1983-01-01

    This is the second of two programs that are concerned with the management of surplus facilities. The facilities in this program are those related to commercial activities, which include the three surplus experimental and test reactors [(MSRE, HRE-2, and the Low Intensity Test Reactor (LITR)] and seven experimental loops at the ORR. The program is an integral part of the Surplus Facilities Management Program, which is a national program administered for DOE by the Richland Operations Office. Very briefly reported here are routine surveillance and maintenance of surplus radioactively contaminated DOE facilities awaiting decommissioning

  4. The Management System for the Development of Disposal Facilities for Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    Currently, many Member States are safely operating near surface disposal facilities and some are in the initial or advanced stages of planning geological repositories. As for other nuclear facilities and their operational phase, all activities associated with the disposal of radioactive waste need to be carefully planned and systematic actions undertaken in order to maintain adequate confidence that disposal systems will meet performance as well as prescribed safety requirements and objectives. The effective development and application of a management system (integrating requirements for safety, protection of health and the environment, security, quality and economics into one coherent system) which addresses every stage of repository development is essential. It provides assurance that the objectives for repository performance and safety, as well as environmental and quality criteria, will be met. For near surface repositories, a management system also provides the opportunity to re-evaluate existing disposal systems with respect to new safety, environmental or societal requirements which could arise during the operational period of a facility. The topic of waste management and disposal continues to generate public interest and scrutiny. Implementation of a formal management system provides documentation, transparency and accountability for the various activities and processes associated with radioactive waste disposal. This information can contribute to building public confidence and acceptance of disposal facilities. The objective of this report is to provide Member States with practical guidance and relevant information on management system principles and expectations for management systems that can serve as a basis for developing and implementing a management system for three important stages; the design, construction/upgrading and operation of disposal facilities. To facilitate the understanding of management system implementation at the different stages of a

  5. Monitoring System for Storm Readiness and Recovery of Test Facilities: Integrated System Health Management (ISHM) Approach

    Science.gov (United States)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera; Schmalzel, John

    2010-01-01

    Severe weather events are likely occurrences on the Mississippi Gulf Coast. It is important to rapidly diagnose and mitigate the effects of storms on Stennis Space Center's rocket engine test complex to avoid delays to critical test article programs, reduce costs, and maintain safety. An Integrated Systems Health Management (ISHM) approach and technologies are employed to integrate environmental (weather) monitoring, structural modeling, and the suite of available facility instrumentation to provide information for readiness before storms, rapid initial damage assessment to guide mitigation planning, and then support on-going assurance as repairs are effected and finally support recertification. The system is denominated Katrina Storm Monitoring System (KStorMS). Integrated Systems Health Management (ISHM) describes a comprehensive set of capabilities that provide insight into the behavior the health of a system. Knowing the status of a system allows decision makers to effectively plan and execute their mission. For example, early insight into component degradation and impending failures provides more time to develop work around strategies and more effectively plan for maintenance. Failures of system elements generally occur over time. Information extracted from sensor data, combined with system-wide knowledge bases and methods for information extraction and fusion, inference, and decision making, can be used to detect incipient failures. If failures do occur, it is critical to detect and isolate them, and suggest an appropriate course of action. ISHM enables determining the condition (health) of every element in a complex system-of-systems or SoS (detect anomalies, diagnose causes, predict future anomalies), and provide data, information, and knowledge (DIaK) to control systems for safe and effective operation. ISHM capability is achieved by using a wide range of technologies that enable anomaly detection, diagnostics, prognostics, and advise for control: (1

  6. Developing Mobile- and BIM-Based Integrated Visual Facility Maintenance Management System

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Lin

    2013-01-01

    Full Text Available Facility maintenance management (FMM has become an important topic for research on the operation phase of the construction life cycle. Managing FMM effectively is extremely difficult owing to various factors and environments. One of the difficulties is the performance of 2D graphics when depicting maintenance service. Building information modeling (BIM uses precise geometry and relevant data to support the maintenance service of facilities depicted in 3D object-oriented CAD. This paper proposes a new and practical methodology with application to FMM using BIM technology. Using BIM technology, this study proposes a BIM-based facility maintenance management (BIMFMM system for maintenance staff in the operation and maintenance phase. The BIMFMM system is then applied in selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FMM practice. Using the BIMFMM system, maintenance staff can access and review 3D BIM models for updating related maintenance records in a digital format. Moreover, this study presents a generic system architecture and its implementation. The combined results demonstrate that a BIMFMM-like system can be an effective visual FMM tool.

  7. Microvax-based data management and reduction system for the regional planetary image facilities

    Science.gov (United States)

    Arvidson, R.; Guinness, E.; Slavney, S.; Weiss, B.

    1987-01-01

    Presented is a progress report for the Regional Planetary Image Facilities (RPIF) prototype image data management and reduction system being jointly implemented by Washington University and the USGS, Flagstaff. The system will consist of a MicroVAX with a high capacity (approx 300 megabyte) disk drive, a compact disk player, an image display buffer, a videodisk player, USGS image processing software, and SYSTEM 1032 - a commercial relational database management package. The USGS, Flagstaff, will transfer their image processing software including radiometric and geometric calibration routines, to the MicroVAX environment. Washington University will have primary responsibility for developing the database management aspects of the system and for integrating the various aspects into a working system.

  8. An information management system for a spent nuclear fuel interim storage facility

    International Nuclear Information System (INIS)

    Horak, K.; Giles, T.; Finch, R.; Jow, H.N.; Chiu, H.L.

    2010-01-01

    We describe an integrated information management system for an independent spent fuel dry-storage installation (ISFSI) that can provide for (1) secure and authenticated data collection, (2) data analysis, (3) dissemination of information to appropriate stakeholders via a secure network, and (4) increased public confidence and support of the facility licensing and operation through increased transparency. This information management system is part of a collaborative project between Sandia National Laboratories, Taiwan Power Co., and the Fuel Cycle Materials Administration of Taiwan's Atomic Energy Council, which is investigating how to implement this concept.

  9. An information management system for a spent nuclear fuel interim storage facility.

    Energy Technology Data Exchange (ETDEWEB)

    Finch, Robert J.; Chiu, Hsien-Lang (Taiwan Power Co., Taipei, 10016 Taiwan); Giles, Todd; Horak, Karl Emanuel; Jow, Hong-Nian (Jow International, Kirkland, WA)

    2010-12-01

    We describe an integrated information management system for an independent spent fuel dry-storage installation (ISFSI) that can provide for (1) secure and authenticated data collection, (2) data analysis, (3) dissemination of information to appropriate stakeholders via a secure network, and (4) increased public confidence and support of the facility licensing and operation through increased transparency. This information management system is part of a collaborative project between Sandia National Laboratories, Taiwan Power Co., and the Fuel Cycle Materials Administration of Taiwan's Atomic Energy Council, which is investigating how to implement this concept.

  10. Progress on management business system of LLW generated from research and industrial nuclear facilities

    International Nuclear Information System (INIS)

    Izumida, Tatsuo

    2014-01-01

    RANDEC has been studying a management business system of LLW (Low Level Waste) generated from research and industrial facilities since 2008. To examine economical problems, the income and expenditure of LLW treatment business was simulated. As a result, raising method of the funds which is required in preparatory stage of LLW treatment business is an obvious issue to carry out as public utility works. (author)

  11. Application of personal computer to development of entrance management system for radiating facilities

    International Nuclear Information System (INIS)

    Suzuki, Shogo; Hirai, Shouji

    1989-01-01

    The report describes a system for managing the entrance and exit of personnel to radiating facilities. A personal computer is applied to its development. Major features of the system is outlined first. The computer is connected to the gate and two magnetic card readers provided at the gate. The gate, which is installed at the entrance to a room under control, opens only for those who have a valid card. The entrance-exit management program developed is described next. The following three files are used: ID master file (random file of the magnetic card number, name, qualification, etc., of each card carrier), entrance-exit management file (random file of time of entrance/exit, etc., updated everyday), and entrance-exit record file (sequential file of card number, name, date, etc.), which are stored on floppy disks. A display is provided to show various lists including a list of workers currently in the room and a list of workers who left the room at earlier times of the day. This system is useful for entrance management of a relatively small facility. Though small in required cost, it requires only a few operators to perform effective personnel management. (N.K.)

  12. Development of decommissioning management system for nuclear fuel cycle facilities (DECMAN)

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichirou; Ishijima, Noboru; Tanimoto, Ken-ichi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-04-01

    In making a plan of decommissioning of nuclear fuel facilities, it is important to optimize the plan on the standpoint of a few viewpoints, that is, the amount of working days, workers, radioactive waste, exposure dose of worker, and cost (they are called evaluation indexes). In the midst of decommissioning, the decommissioning plan would be modified suitably to optimize the evaluation indexes adjusting to progress of the decommissioning. The decommissioning management code (DECMAN), that is support system on computer, has been developed to assist the decommissioning planning. The system calculates the evaluation indexes quantitatively. The system consists of three fundamental codes, facility information database code, technical know-how database code and index evaluation code, they are composed using Oracle' database and 'G2' expert system. The functions of the system are as follows. (1) Facility information database code. Information of decommissioning facility and its rooms, machines and pipes in the code. (2) Technical know-how database code. Technical Information of tools to use in decommissioning work, cutting, dose measure, and decontamination are there. (3) Index evaluation code. User build decommissioning program using above two database codes. The code evaluates five indexes, the amount of working days, workers, radioactive waste, exposure dose of worker, and cost, on planning decommissioning program. Results of calculation are shown in table, chart, and etc. (author)

  13. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    International Nuclear Information System (INIS)

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO's quality standards during the software maintenance phase. 8 refs., 1 tab

  14. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO`s quality standards during the software maintenance phase. 8 refs., 1 tab.

  15. Evaluation of a hybrid paper-electronic medication management system at a residential aged care facility.

    Science.gov (United States)

    Elliott, Rohan A; Lee, Cik Yin; Hussainy, Safeera Y

    2016-06-01

    Objectives The aims of the study were to investigate discrepancies between general practitioners' paper medication orders and pharmacy-prepared electronic medication administration charts, back-up paper charts and dose-administration aids, as well as delays between prescribing, charting and administration, at a 90-bed residential aged care facility that used a hybrid paper-electronic medication management system. Methods A cross-sectional audit of medication orders, medication charts and dose-administration aids was performed to identify discrepancies. In addition, a retrospective audit was performed of delays between prescribing and availability of an updated electronic medication administration chart. Medication administration records were reviewed retrospectively to determine whether discrepancies and delays led to medication administration errors. Results Medication records for 88 residents (mean age 86 years) were audited. Residents were prescribed a median of eight regular medicines (interquartile range 5-12). One hundred and twenty-five discrepancies were identified. Forty-seven discrepancies, affecting 21 (24%) residents, led to a medication administration error. The most common discrepancies were medicine omission (44.0%) and extra medicine (19.2%). Delays from when medicines were prescribed to when they appeared on the electronic medication administration chart ranged from 18min to 98h. On nine occasions (for 10% of residents) the delay contributed to missed doses, usually antibiotics. Conclusion Medication discrepancies and delays were common. Improved systems for managing medication orders and charts are needed. What is known about the topic? Hybrid paper-electronic medication management systems, in which prescribers' orders are transcribed into an electronic system by pharmacy technicians and pharmacists to create medication administration charts, are increasingly replacing paper-based medication management systems in Australian residential aged care

  16. Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  17. FACILITIES MANAGEMENT AT CERN

    CERN Multimedia

    2002-01-01

    Recently we have been confronted with difficulties concerning services which are part of a new contract for facilities management. Please see below for some information about this contract. Following competitive tendering and the Finance Committee decision, the contract was awarded to the Swiss firm 'Facilities Management Network (FMN)'. The owners of FMN are two companies 'M+W Zander' and 'Avireal', both very experienced in this field of facilities management. The contract entered into force on 1st July 2002. CERN has grouped together around 20 different activities into this one contract, which was previously covered by separate contracts. The new contract includes the management and execution of many activities, in particular: Guards and access control; cleaning; operation and maintenance of heating plants, cooling and ventilation equipment for buildings not related to the tunnel or the LHC; plumbing; sanitation; lifts; green areas and roads; waste disposal; and includes a centralised helpdesk for these act...

  18. Assessing the Added Value of information systems supporting facilities management business processes

    DEFF Research Database (Denmark)

    Ebbesen, Poul; Jensen, Per Anker

    2017-01-01

    Purpose: To present a method for assessing the added value of Information Systems (IS), which are implemented to support the business processes in Facilities Management (FM). Theory: The method is based on a supply chain management model of FM, general value dimensions such as efficiency...... illustrates that implementing IS includes both organisational and technological changes and demonstrates that the proposed assessment method is applicable to practice. Originality/value: This is the first paper using a supply chain management model of FM, general value dimensions, VAM and Functional...... and effectiveness and the concepts of Value Adding Management (VAM) and Functional Affordances of IS. Design/methodology/approach: From case studies of IS implementation processes in FM in different countries, a general picture of the expressed added value of IS in FM was established. Based on this insight a method...

  19. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

    Directory of Open Access Journals (Sweden)

    Beaudoing Emmanuel

    2006-09-01

    Full Text Available Abstract Background High throughput gene expression profiling (GEP is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking, data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for

  20. A questionnaire about radiation safety management of the draining-water system at nuclear medicine facilities

    International Nuclear Information System (INIS)

    Shizukuishi, Kazuya; Narita, Hiroto

    2004-01-01

    We conducted a questionnaire survey about radiation-safety management condition in Japanese nuclear medicine facilities to make materials of proposition for more reasonable management of medical radioactive waste. We distributed a questionnaire to institutions equipped with Nuclear Medicine facilities. Of 1,125 institutions, 642 institutes (52.8%) returned effective answers. The questionnaire covered the following areas: scale of an institution, presence of enforcement of radiotherapy, system of a tank, size and number of each tank, a form of draining-water system, a displacement in a radioactive rays management area, a measurement method of the concentration of medical radioactive waste in draining water system, planned and used quantity of radioisotopes for medical examination and treatment, an average displacement of hospital for one month. In most institutions, a ratio of dose limitation of radioisotope in draining-water system was less than 1.0, defined as an upper limitation in ordinance. In 499 hospitals without facilities of hospitalization for unsealed radioisotope therapy, 473 hospitals reported that sum of ratios of dose limits in a draining-water system was less than 1.0. It was calculated by used dose of radioisotope and monthly displacement from hospital, on the premise that all used radioisotope entered in the general draining-water system. When a drainage including radioactivity from a controlled area join with that from other area before it flows out of a institution, it may be diluted and its radioactive concentration should be less than its upper limitation defined in the rule. Especially, in all institutions with a monthly displacement of more than 25,000 m 3 , the sum of ratio of the concentration of each radionuclide to the concentration limit dose calculated by used dose of radioisotope, indicated less than 1.0. (author)

  1. Development and application of computerized maintenance management system at a nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yon Woo; Kim, S D; Jang, K D; Kim, Y G

    2001-12-01

    In order to accomplish the purpose of research, it is the most important for the equipment to work well. The computerized maintenance management system proven by the case-studies can have an effect on the research and it can be one of the most major elements to assist the research at the research laboratory. To prevent the breakdown of the equipment at the research facility which can hinder the improvement of the research work, it is essential to maintain the equipment of facility without the sudden breakdown and to short the recovery time. If these elements such as the causes of the breakdown were well-managed and suvervised with care, this recovery time could be minimized. The aims of this research, therefore, are to introduce the development of the computerized maintenance management system and to apply it at the field in order to minimize the breakdown of the equipment and the recovery time and in order to perform the equipment maintenance service with the minimized expense and maximize the service efficiency through the planned management of the budget, the manpower and the service00.

  2. Development and application of computerized maintenance management system at a nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Oh, Yon Woo; Kim, S. D.; Jang, K. D.; Kim, Y. G.

    2001-12-01

    In order to accomplish the purpose of research, it is the most important for the equipment to work well. The computerized maintenance management system proven by the case-studies can have an effect on the research and it can be one of the most major elements to assist the research at the research laboratory. To prevent the breakdown of the equipment at the research facility which can hinder the improvement of the research work, it is essential to maintain the equipment of facility without the sudden breakdown and to short the recovery time. If these elements such as the causes of the breakdown were well-managed and suvervised with care, this recovery time could be minimized. The aims of this research, therefore, are to introduce the development of the computerized maintenance management system and to apply it at the field in order to minimize the breakdown of the equipment and the recovery time and in order to perform the equipment maintenance service with the minimized expense and maximize the service efficiency through the planned management of the budget, the manpower and the service

  3. The Mirror Fusion Test Facility cryogenic system: Performance, management approach, and present equipment status

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) is a 14-kW, 4.35-K helium refrigeration system that proved to be highly successful and cost-effective. All operating objectives were met, while remaining within a few percent of initial cost and schedule plans. The management approach used in MFTF allowed decisions to be made quickly and effectively, and it helped keep costs down. Manpower levels, extent and type of industrial participation, key aspects of subcontractor specifications, and subcontractor interactions are reviewed, as well as highlights of the system tests, operation, and present equipment status. Organizations planning large, high-technology systems may benefit from this experience with the MFTF cryogenic system

  4. Facility Management Innovation (FMI)

    NARCIS (Netherlands)

    Mobach, Mark P.; Nardelli, Giulia; Kok, Herman; Konkol, Jennifer; Alexander, Keith; Alexander, Keith

    2014-01-01

    This current green paper deals with innovation in facility management (FM), a subject which is at the heart of Working Group 3, in benefit of the EuroFM Research Network. It aims to stimulate discussion and further collaborative work, and to generate new knowledge for the European FM community. We

  5. Integration of knowledge management system for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Iguchi, Yukihiro; Yanagihara, Satoshi

    2016-01-01

    The decommissioning of a nuclear facility is a long term project, handling information which begins from the design, construction and operation. Moreover, the decommissioning project is likely to be extended because of the lack of the waste disposal site especially in Japan. In this situation, because the transfer of knowledge and education to the next generation is a crucial issue, integration and implementation of a system for knowledge management is necessary in order to solve it. For this purpose, the total system of decommissioning knowledge management system (KMS) is proposed. In this system, we have to arrange, organize and systematize the data and information of the plant design, maintenance history, trouble events, waste management records etc. The collected data, information and records should be organized by computer support system e.g. data base system. It becomes a base of the explicit knowledge. Moreover, measures of extracting tacit knowledge from retiring employees are necessary. The experience of the retirees should be documented as much as possible through effective questionnaire or interview process. The integrated knowledge mentioned above should be used for the planning, implementation of dismantlement or education for the future generation. (author)

  6. Migrating the facility profile information management system into the world wide web

    Energy Technology Data Exchange (ETDEWEB)

    Kero, R.E.; Swietlik, C.E.

    1994-09-01

    The Department of Energy - Office of Special Projects and Argonne National Laboratory (ANL), along with the Department of Energy - office of Scientific and Technical Information have previously designed and implemented the Environment, Safety and Health Facility Profile Information Management System (FPIMS) to facilitate greater efficiency in searching, analyzing and disseminating information found within environment, safety and health oversight documents. This information retrieval based system serves as a central repository for full-text electronic oversight documents, as well as a management planning and decision making tool that can assist in trend and root cause analyses. Continuous improvement of environment, safety and health programs are currently aided through this personal computer-based system by providing a means for the open communication of lessons learned across the department. Overall benefits have included reductions in costs and improvements in past information management capabilities. Access to the FPIMS has been possible historically through a headquarters-based local area network equipped with modems. Continued demand for greater accessibility of the system by remote DOE field offices and sites, in conjunction with the Secretary of Energy` s call for greater public accessibility to Department of Energy (DOE) information resources, has been the impetus to expand access through the use of Internet technologies. Therefore, the following paper will discuss reasons for migrating the FPIMS system into the World Wide Web (Web), various lessons learned from the FPIMS migration effort, as well as future plans for enhancing the Web-based FPIMS.

  7. Approaches of Knowledge Management System for the Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    Iguchi, Y.; Yanagihara, S.; Kato, Y.; Tezuka, M.; Koda, Y.

    2016-01-01

    Full text: The decommissioning of a nuclear facility is a long term project, handling information beginning with design, construction and operation. Moreover, the decommissioning project is likely to be extended because of the lack of the waste disposal site. In this situation, as the transfer of knowledge to the next generation is a crucial issue, approaches of knowledge management (KM) are necessary. For this purpose, the total system of decommissioning knowledge management system (KMS) is proposed. In this system, we should arrange, organize and systematize the data and information of the plant design, maintenance history, trouble events, waste management records etc. The collected data, information and records should be organized by computer support systems. It becomes a base of the explicit knowledge. Moreover, measures of extracting tacit knowledge from retiring employees are necessary. The experience of the retirees should be documented as much as possible through effective questionnaire or interview process. In this way, various KM approaches become an integrated KMS as a whole. The system should be used for daily accumulation of knowledge thorough the planning, implementation and evaluation of decommissioning activities and it will contribute to the transfer of knowledge. (author

  8. Automatic Management Systems for the Operation of the Cryogenic Test Facilities for LHC Series Superconducting Magnets

    CERN Document Server

    Tovar-Gonzalez, A; Herblin, L; Lamboy, J P; Vullierme, B

    2006-01-01

    Prior to their final preparation before installation in the tunnel, the ~1800 series superconducting magnets of the LHC machine shall be entirely tested at reception on modular test facilities. The operation 24 hours per day of the cryogenic test facilities is conducted in turn by 3-operator teams, assisted in real time by the use of the Test Bench Priorities Handling System, a process control application enforcing the optimum use of cryogenic utilities and of the "Tasks Tracking System", a web-based e-traveller application handling 12 parallel 38-task test sequences. This paper describes how such computer-based management systems can be used to optimize operation of concurrent test benches within technical boundary conditions given by the cryogenic capacity, and how they can be used to study the efficiency of the automatic steering of all individual cryogenic sub-systems. Finally, this paper presents the overall performance of the cryomagnet test station for the first complete year of operation at high produ...

  9. World Class Facilities Management

    DEFF Research Database (Denmark)

    Malmstrøm, Ole Emil; Jensen, Per Anker

    2013-01-01

    Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet.......Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet....

  10. New Ideas on Facilities Management.

    Science.gov (United States)

    Grimm, James C.

    1986-01-01

    Examines trends in facilities management relating to products and people. Reviews new trends in products, including processes, techniques, and programs that are being expounded by business and industry. Discusses the "people factors" involved in facilities management. (ABB)

  11. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    Science.gov (United States)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  12. A novel microgrid demand-side management system for manufacturing facilities

    Science.gov (United States)

    Harper, Terance J.

    Thirty-one percent of annual energy consumption in the United States occurs within the industrial sector, where manufacturing processes account for the largest amount of energy consumption and carbon emissions. For this reason, energy efficiency in manufacturing facilities is increasingly important for reducing operating costs and improving profits. Using microgrids to generate local sustainable power should reduce energy consumption from the main utility grid along with energy costs and carbon emissions. Also, microgrids have the potential to serve as reliable energy generators in international locations where the utility grid is often unstable. For this research, a manufacturing process that had approximately 20 kW of peak demand was matched with a solar photovoltaic array that had a peak output of approximately 3 KW. An innovative Demand-Side Management (DSM) strategy was developed to manage the process loads as part of this smart microgrid system. The DSM algorithm managed the intermittent nature of the microgrid and the instantaneous demand of the manufacturing process. The control algorithm required three input signals; one from the microgrid indicating the availability of renewable energy, another from the manufacturing process indicating energy use as a percent of peak production, and historical data for renewable sources and facility demand. Based on these inputs the algorithm had three modes of operation: normal (business as usual), curtailment (shutting off non-critical loads), and energy storage. The results show that a real-time management of a manufacturing process with a microgrid will reduce electrical consumption and peak demand. The renewable energy system for this research was rated to provide up to 13% of the total manufacturing capacity. With actively managing the process loads with the DSM program alone, electrical consumption from the utility grid was reduced by 17% on average. An additional 24% reduction was accomplished when the microgrid

  13. The Implementation of Performance Measurement System (PMS: Malaysian Facilities Management (FM Industry

    Directory of Open Access Journals (Sweden)

    Myeda N.E.

    2014-01-01

    Full Text Available Performance Measurement System (PMS is an effective performance measurement tool and technique that is being widely implemented in the global industries. Literature has suggested the significant contributions of its implementation in enhancing the strategic service delivery and performance. However, there is little study undertaken to explore the PMS implementation in Facilities Management (FM industry, particularly focusing on Malaysia. This study explores the PMS practice among FM practitioners and their knowledge in Performance Measurement (PM generally. Findings from this study also proposed the 20 contributing factors that the FM practitioners believed are the barriers in implementing PMS. This research also suggests the future research opportunities in developing a PMS framework that can be used as guidance for FM service delivery in Malaysia.

  14. Preliminary assessment of radiological doses in alternative waste management systems without an MRS facility

    International Nuclear Information System (INIS)

    Schneider, K.J.; Pelto, P.J.; Daling, P.M.; Lavender, J.C.; Fecht, B.A.

    1986-06-01

    This report presents generic analyses of radiological dose impacts of nine hypothetical changes in the operation of a waste management system without a monitored retrievable storage (MRS) facility. The waste management activities examined in this study include those for handling commercial spent fuel at nuclear power reactors and at the surface facilities of a deep geologic repository, and the transportation of spent fuel by rail and truck between the reactors and the repository. In the reference study system, the radiological doses to the public and to the occupational workers are low, about 170 person-rem/1000 metric ton of uranium (MTU) handled with 70% of the fuel transported by rail and 30% by truck. The radiological doses to the public are almost entirely from transportation, whereas the doses to the occupational workers are highest at the reactors and the repository. Operating alternatives examined included using larger transportation casks, marshaling rail cars into multicar dedicated trains, consolidating spent fuel at the reactors, and wet or dry transfer options of spent fuel from dry storage casks. The largest contribution to radiological doses per unit of spent fuel for both the public and occupational workers would result from use of truck transportation casks, which are smaller than rail casks. Thus, reducing the number of shipments by increasing cask sizes and capacities (which also would reduce the number of casks to be handled at the terminals) would reduce the radiological doses in all cases. Consolidating spent fuel at the reactors would reduce the radiological doses to the public but would increase the doses to the occupational workers at the reactors

  15. Towards a Unified Environmental Monitoring, Control and Data Management System for Irradiation Facilities: the CERN IRRAD Use Case

    CERN Document Server

    Gkotse, Blerina; Jouvelot, Pierre; Matli, Emanuele; Pezzullo, Giuseppe; Ravotti, Federico

    2017-01-01

    The qualification of materials, electronic components and equipment for the CERN High Energy Physics experiments and beyond requires testing against possible radiation effects. These quite complex tests are performed by specialized teams working in irradiation facilities such as IRRAD, the Proton Irradiation Facility at CERN. Building upon the details of the overall irradiation control, monitoring, and logistical systems of IRRAD as a use case, we introduce the motivations for and general architecture of its new data management framework, currently under development at CERN. This infrastructure is intended to allow for the seamless and comprehensive handling of IRRAD irradiation experiments and to help manage all aspects of the facility. Its architecture, currently focused on the specific requirements of the IRRAD facility, is intended to be upgraded to a general framework that could be used in other irradiation facilities within the radiation effects community, as well as for other applications.

  16. A discussion on establishment of GIP management system for food irradiation facilities

    International Nuclear Information System (INIS)

    Lu Jiang; Shi Hua; Li Ruisong; Li Shurong; Zhou Hongjie; Ha Yiming

    2005-01-01

    This article analyses the hazard factors and selects Critical Control Point (CCP) for food irradiation process (including staff, facilities and processing) using HACCP version. The principles and method of GIP system for food irradiation plant are also discussed. (authors)

  17. Capital Ideas for Facilities Management.

    Science.gov (United States)

    Golding, Stephen T.; Gordon, Janet; Gravina, Arthur

    2001-01-01

    Asserting that just like chief financial officers, higher education facilities specialists must maximize the long-term performance of assets under their care, describes strategies for strategic facilities management. Discusses three main approaches to facilities management (insourcing, cosourcing, and outsourcing) and where boards of trustees fit…

  18. Innovation-system foresight in practice: A Nordic facilities management foresight

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Andersen, Allan Dahl; Jensen, Per Anker

    2012-01-01

    foresight processes. The paper originates in a practical foresight project in the Nordic fa-cilities management (FM) industry. The goal of the foresight project was to identify possible futures of the FM sector in the Nordic countries (Denmark, Finland, Norway, and Sweden) and, based on the findings...

  19. Evolution of the Building Management System in the INFN CNAF Tier-1 data center facility.

    Science.gov (United States)

    Ricci, Pier Paolo; Donatelli, Massimo; Falabella, Antonio; Mazza, Andrea; Onofri, Michele

    2017-10-01

    The INFN CNAF Tier-1 data center is composed by two different main rooms containing IT resources and four additional locations that hosts the necessary technology infrastructures providing the electrical power and cooling to the facility. The power supply and continuity are ensured by a dedicated room with three 15,000 to 400 V transformers in a separate part of the principal building and two redundant 1.4MW diesel rotary uninterruptible power supplies. The cooling is provided by six free cooling chillers of 320 kW each with a N+2 redundancy configuration. Clearly, considering the complex physical distribution of the technical plants, a detailed Building Management System (BMS) was designed and implemented as part of the original project in order to monitor and collect all the necessary information and for providing alarms in case of malfunctions or major failures. After almost 10 years of service, a revision of the BMS system was somewhat necessary. In addition, the increasing cost of electrical power is nowadays a strong motivation for improving the energy efficiency of the infrastructure. Therefore the exact calculation of the power usage effectiveness (PUE) metric has become one of the most important factors when aiming for the optimization of a modern data center. For these reasons, an evolution of the BMS system was designed using the Schneider StruxureWare infrastructure hardware and software products. This solution proves to be a natural and flexible development of the previous TAC Vista software with advantages in the ease of use and the possibility to customize the data collection and the graphical interfaces display. Moreover, the addition of protocols like open standard Web services gives the possibility to communicate with the BMS from custom user application and permits the exchange of data and information through the Web between different third-party systems. Specific Web services SOAP requests has been implemented in our Tier-1 monitoring system in

  20. Rapid assessment of infrastructure of primary health care facilities - a relevant instrument for health care systems management.

    Science.gov (United States)

    Scholz, Stefan; Ngoli, Baltazar; Flessa, Steffen

    2015-05-01

    Health care infrastructure constitutes a major component of the structural quality of a health system. Infrastructural deficiencies of health services are reported in literature and research. A number of instruments exist for the assessment of infrastructure. However, no easy-to-use instruments to assess health facility infrastructure in developing countries are available. Present tools are not applicable for a rapid assessment by health facility staff. Therefore, health information systems lack data on facility infrastructure. A rapid assessment tool for the infrastructure of primary health care facilities was developed by the authors and pilot-tested in Tanzania. The tool measures the quality of all infrastructural components comprehensively and with high standardization. Ratings use a 2-1-0 scheme which is frequently used in Tanzanian health care services. Infrastructural indicators and indices are obtained from the assessment and serve for reporting and tracing of interventions. The tool was pilot-tested in Tanga Region (Tanzania). The pilot test covered seven primary care facilities in the range between dispensary and district hospital. The assessment encompassed the facilities as entities as well as 42 facility buildings and 80 pieces of technical medical equipment. A full assessment of facility infrastructure was undertaken by health care professionals while the rapid assessment was performed by facility staff. Serious infrastructural deficiencies were revealed. The rapid assessment tool proved a reliable instrument of routine data collection by health facility staff. The authors recommend integrating the rapid assessment tool in the health information systems of developing countries. Health authorities in a decentralized health system are thus enabled to detect infrastructural deficiencies and trace the effects of interventions. The tool can lay the data foundation for district facility infrastructure management.

  1. Decommissioning Facility Characterization DB System

    International Nuclear Information System (INIS)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S.

    2010-01-01

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  2. Decommissioning Facility Characterization DB System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  3. OPG Western Waste Management Facility

    Energy Technology Data Exchange (ETDEWEB)

    Julian, J. [Ontario Power Generation, Western Waste Management Facility, Tiverton, ON (Canada)

    2011-07-01

    The Ontario Power Generation (OPG) Western Waste Management Facility (WWMF) uses a computer based Supervisory Control and Data Acquisition (SCADA) system to monitor its facility, and control essential equipment. In 2007 the WWMF Low and Intermediate Level Waste (L&ILW) technical support section conducted a review of outstanding corrective maintenance work. Technical support divided all work on a system by system basis. One system under review was the Waste Volume Reduction Building (WVRB) control room SCADA system. Technical support worked with control maintenance staff to assess all outstanding work orders on the SCADA system. The assessment identified several deficiencies in the SCADA system. Technical support developed a corrective action plan for the SCADA system deficiencies, and in February of 2008 developed an engineering change package to correct the observed deficiencies. OPG Nuclear Waste Engineering approved the change package and the WVRB Control Room Upgrades construction project started in January of 2009. The WVRB control room upgrades construction work was completed in February of 2009. This paper provides the following information regarding the WWMF SCADA system and the 2009 WVRB Control Room Upgrades Project: A high-level explanation of SCADA system technology, and the various SCADA system components installed in the WVRB; A description of the state of the WVRB SCADA system during the work order assessment, identifying all deficiencies; A description of the new design package; A description of the construction project; and, A list of lessons learned during construction and commissioning, and a path forward for future upgrades. (author)

  4. OPG Western Waste Management Facility

    International Nuclear Information System (INIS)

    Julian, J.

    2011-01-01

    The Ontario Power Generation (OPG) Western Waste Management Facility (WWMF) uses a computer based Supervisory Control and Data Acquisition (SCADA) system to monitor its facility, and control essential equipment. In 2007 the WWMF Low and Intermediate Level Waste (L&ILW) technical support section conducted a review of outstanding corrective maintenance work. Technical support divided all work on a system by system basis. One system under review was the Waste Volume Reduction Building (WVRB) control room SCADA system. Technical support worked with control maintenance staff to assess all outstanding work orders on the SCADA system. The assessment identified several deficiencies in the SCADA system. Technical support developed a corrective action plan for the SCADA system deficiencies, and in February of 2008 developed an engineering change package to correct the observed deficiencies. OPG Nuclear Waste Engineering approved the change package and the WVRB Control Room Upgrades construction project started in January of 2009. The WVRB control room upgrades construction work was completed in February of 2009. This paper provides the following information regarding the WWMF SCADA system and the 2009 WVRB Control Room Upgrades Project: A high-level explanation of SCADA system technology, and the various SCADA system components installed in the WVRB; A description of the state of the WVRB SCADA system during the work order assessment, identifying all deficiencies; A description of the new design package; A description of the construction project; and, A list of lessons learned during construction and commissioning, and a path forward for future upgrades. (author)

  5. [Road map for health and safety management systems in healthcare facilities, according to the OHSAS 18001:2007 standard].

    Science.gov (United States)

    Pugliese, F; Albini, E; Serio, O; Apostoli, P

    2011-01-01

    The 81/2008 Act has defined a model of a health and safety management system that can contribute to prevent the occupational health and safety risks. We have developed the structure of a health and safety management system model and the necessary tools for its implementation in health care facilities. The realization of a model is structured in various phases: initial review, safety policy, planning, implementation, monitoring, management review and continuous improvement. Such a model, in continuous evolution, is based on the responsibilities of the different corporate characters and on an accurate analysis of risks and involved norms.

  6. A Program Management Framework for Facilities Managers

    Science.gov (United States)

    King, Dan

    2012-01-01

    The challenge faced by senior facility leaders is not how to execute a single project, but rather, how to successfully execute a large program consisting of hundreds of projects. Senior facilities officers at universities, school districts, hospitals, airports, and other organizations with extensive facility inventories, typically manage project…

  7. Model for deployment of a Quality Assurance System in the nuclear fuel cycle facilities using Project Management techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Ricardo F.; Ribeiro, Saulo F.Q., E-mail: rflage@gmail.com, E-mail: quintao.saulo@gmail.com [Industrias Nucleares do Brasil (INB), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The Nuclear Safety is the main goal in any nuclear facility. In this sense the Norm CNEN-NN-1.16 classifies the quality assurance issue as a management system to be deployed and implemented by the organization to achieving security goals. Quality Assurance is a set of systematic and planned actions necessary to provide adequate confidence ensuring that a structure, system, component or installation will work satisfactorily in s. Hence, the Quality Assurance System (QAS) is a complete and comprehensive methodology, going far beyond a management plan quality from the perspective of project management. The fundamental of QAS requirements is all activities that influence the quality, involving organizational, human resources, procurement, nuclear safety, projects, procedures and communication. Coordination of all these elements requires a great effort by the team responsible because it usually involves different areas and different levels of hierarchy within the organization. The objectives and desired benefits should be well set for everyone to understand what it means to be achieved and how to achieve. The support of senior management is critical at this stage, providing guidelines and resources necessary to get the job elapse clearly and efficiently, on time, cost and certain scope. The methodology of project management processes can be applied to facilitate and expedite the implementation of this system. Many of the principles of the QAS are correlated with knowledge areas of project management. The proposed model for implementation of a QAS in the nuclear fuel cycle facilities considered the best project management practices according to the Project Management Book of Knowledge (PMBOK - 5th edition) of the Project Management Institute (PMI). This knowledge is considered very good practices around the world. Since the model was defined, the deployment process becomes more practical and efficient, providing reduction in deployment time, better management of human

  8. Model for deployment of a Quality Assurance System in the nuclear fuel cycle facilities using Project Management techniques

    International Nuclear Information System (INIS)

    Lage, Ricardo F.; Ribeiro, Saulo F.Q.

    2015-01-01

    The Nuclear Safety is the main goal in any nuclear facility. In this sense the Norm CNEN-NN-1.16 classifies the quality assurance issue as a management system to be deployed and implemented by the organization to achieving security goals. Quality Assurance is a set of systematic and planned actions necessary to provide adequate confidence ensuring that a structure, system, component or installation will work satisfactorily in s. Hence, the Quality Assurance System (QAS) is a complete and comprehensive methodology, going far beyond a management plan quality from the perspective of project management. The fundamental of QAS requirements is all activities that influence the quality, involving organizational, human resources, procurement, nuclear safety, projects, procedures and communication. Coordination of all these elements requires a great effort by the team responsible because it usually involves different areas and different levels of hierarchy within the organization. The objectives and desired benefits should be well set for everyone to understand what it means to be achieved and how to achieve. The support of senior management is critical at this stage, providing guidelines and resources necessary to get the job elapse clearly and efficiently, on time, cost and certain scope. The methodology of project management processes can be applied to facilitate and expedite the implementation of this system. Many of the principles of the QAS are correlated with knowledge areas of project management. The proposed model for implementation of a QAS in the nuclear fuel cycle facilities considered the best project management practices according to the Project Management Book of Knowledge (PMBOK - 5th edition) of the Project Management Institute (PMI). This knowledge is considered very good practices around the world. Since the model was defined, the deployment process becomes more practical and efficient, providing reduction in deployment time, better management of human

  9. Use of a Graded Approach in the Application of the Management System Requirements for Facilities and Activities

    International Nuclear Information System (INIS)

    2014-06-01

    IAEA Safety Standards Series No. GS-R-3, The Management System for Facilities and Activities, defines the requirements for establishing, implementing, assessing and continually improving a management system that integrates safety, health, environmental, security, quality and economical elements. It details the need to grade the application of the management system requirements to ensure that resources are deployed and appropriate controls are applied on the basis of the consideration of: the significance and complexity of each product or activity; the hazards and the magnitude of the potential impact (risks) associated with the safety, health, environmental, security, quality and economical elements of each product or activity; and the possible consequences if a product fails or an activity is carried out incorrectly. The grading of the application of the requirements detailed in IAEA Safety Standards Series No. GS-R-3 is especially essential when they are implemented in smaller facilities and activities. The grading is done to ensure that the management system for smaller facilities and activities are suitably tailored to the hazards and the magnitude of the potential impact of the facilities and activities. Detailed guidance on how the grading requirements of IAEA Safety Standards Series No. GS-R-3 can be met and how to ensure that grading is performed in a consistent manner can be found in IAEA Safety Standards Series No. GS-G-3.1, Application of the Management System for Facilities and Activities. In addition, it contains guidance on systematic grading methods which will reduce the likelihood and consequences of improper grading. This publication provides an overview of grading fundamentals, the grading process, the role of classification in the process and the typical controls that can be graded. It also provides practical guidance and examples of grading as required by IAEA Safety Standards Series No. GS-R-3 to develop and apply a method of grading

  10. Managing Educational Facilities and Students' Enrolment in ...

    African Journals Online (AJOL)

    DR Nneka

    Indexed African Journals Online: www.ajol.info. An International ... Key Words: Students Enrolment, Managing, Educational Facilities, Nigeria ... positive relationship with standard and quality of educational system (Nwagwu, 1978: Adesina ...

  11. ISO 9001 and ISO 14001: An Integrated Quality Management System for an MTR Facility SAFARI-1 Research Reactor

    International Nuclear Information System (INIS)

    Du Bruyn, J.F.; Piani, C.S.B.

    2005-01-01

    The SAFARI-1 research reactor, owned and operated by the South African Nuclear Energy Corporation (Necsa), initially obtained ISO 9001 accreditation of its Quality, Health, Safety and Environmental (QHSE) management system via international affiliation from the South African Bureau of Standards (SABS) during 1998 and re-certification according to ISO 9001 (2000) in 2003. With ever-increasing demands on nuclear facilities to demonstrate conformance to environmental policies, SAFARI-1 has now developed an Environmental Management System (EMS) that is compliant with ISO 14001 (1996) and is fully integrated with the SAFARI-1 Quality Management System (QMS). The dynamic involvement of SAFARI-1 in commercial applications demanded that any transition of the original QMS to a fully incorporated QHSE system had to be done in a way that would ensure sustained delivery of a safe and reliable service with continuous quality. At the same time, the primary vision of operating a facility under an efficient financial management programme was essential. The criteria established by the original ISO 9001 compliant QMS were appraised against the additional requirements of ISO 14001 and a suitable superstructure derived for generation and implementation of an inclusive EMS. The transitional integration of this system was planned so as to produce a QMS suitable to quality, environmental and other management related issues for application to the unique function of a nuclear research reactor. (author)

  12. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    Science.gov (United States)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  13. Manitoba Hydro's environmental management system and its application to hydraulic facilities and operations

    International Nuclear Information System (INIS)

    Windsor, D. C.

    1996-01-01

    Development at Manitoba Hydro of a series of environmental practices manuals, as part of the public utilities' approach to environmental management, were described. Experiences gained during the process of developing these manuals were described. It has been found that to be accepted environmental practices must: (1) support existing facilities, operations and procedures, (2) be presented in an easily accessible form, (3) have an evident purpose, (4) be stated clearly; (5) be practical and feasible, and (6) have implementation clearly defined. The audience level of detail, style of presentation, implementation, frequency of revision and update were also summarized. A detailed outline of the current policy of Manitoba Hydro was included in the appendices

  14. The changing flow of management information systems in long-term care facilities.

    Science.gov (United States)

    Stokes, D F

    1997-08-01

    Over the past three decades, the long-term care community has seen continual increases in the complexity and sophistication of management information systems. These changes have been brought about by the ever-increasing demands on owners and managers to provide accurate and timely data to both regulators and financial investors. The evolution of these systems has increased rapidly in recent years as the nation attempts to reinvent the funding mechanisms for long-term care.

  15. CLAIMS OF SUSTAINABLE FACILITIES MANAGEMENT

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev

    Purpose: The purpose of the paper is to provide an overview of current practices within the emergent management discipline: Sustainable Facilities Management (SFM). Background: To develop a sustainable society, facilities managers must become change agents for sustainability in the built...... environment. Facilities Management (FM) is contributing to the environmental, social and economical problems, but can at the same time also be a part of the solution. However, to integrate sustainability in FM is still an emergent niche within FM, and the examples of SFM so far seems to come out of very......-creating of new socio-technical services and technologies These SFM understandings are concluded to be coexisting claims of SFM definitions. Practical Implications: Facilities managers will be able to identify the mindset behind different services and technologies that are promoted as SFM. But maybe just...

  16. The mixed waste management facility

    International Nuclear Information System (INIS)

    Streit, R.D.

    1995-10-01

    During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory's Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to ∼$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at ∼$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability

  17. Research on adoption of graphic processing system into electric power facilities operation management. Denryoku setsubi kanri gyomu ni okeru zukei shori system no tekiyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Jitsubuchi, Yoshiyasu; Uryu, Kenji; Terasaki, Naoaki (Kyushu Electric Power Co., Inc., Fukuoka (Japan))

    1989-03-30

    In the technical department of electric power companies, there are innumerable single line diagram, machinery arrangement plan and other facilities drawings. Based on those drawings, facilities planning, work design, construction plan, maintenance and management data, etc. are made, for which making heightening is desired in efficiency of drawing filing management. Therefore, research was made on the adoption of CAD technology through modeling power transmission line, and power generating and transforming station operation management. First for the application of power transmission facilities, the power transmission line plan and facilities information were planned to be unified in management. Ie., the power transmission line plan and profile being shown on the display, symbols of steel towers, cable lines, etc. were further picked by mouth to easily substantiate the facilities. While image input and CAD of drawing were made in combined treatment. Then for the application to the power generating and transforming facilities, the single line diagram and facilities information were unified in management, together with demonstration of data interchangeability among different kinds of CAD system. 13 figs., 9 tabs.

  18. Waste Receiving and Processing Facility PMS Test Report/DMS-Y2K/System Security DMS (Data Management System)

    International Nuclear Information System (INIS)

    PALMER, M.E.

    1999-01-01

    Test Plan HNF-4351 defines testing requirements for installation of a new server in the WRAP Facility. This documents shows the results of the test reports on the DMS-Y2K and DMS-F81 (Security) systems

  19. Mirror fusion test facility cryogenic system - performance, management approach, and present equipment status

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.

    1988-01-01

    The cryogenic system for the MFTF is a helium refrigeration system that proved to be successful and cost effective. All operating objectives were met while remaining within a few percent of the initial cost and schedule plans. The management approach used at MFTF is assessed. Manpower levels, extent and type of industrial participation, and subcontractor specifications and interactions are reviewed along with highlights of system testing, documentation, and operation

  20. Facility management in kinderschoenen : Facility management in de kinderopvang

    NARCIS (Netherlands)

    Ronald Beckers

    2008-01-01

    Begin dit jaar heft Academie Diedenoort FM aan de Hogeschool van Arnhem en Nijmegen, tijdens een studiemiddag een toelichting gegeven op het vakgebied facility management aan een aantal financiële managers van organisaties die zich bezighouden met kinderopvang. In die branche staat het fm-vakgebid

  1. Retention-tank systems: A unique operating practice for managing complex waste streams at research and development facilities

    International Nuclear Information System (INIS)

    Brigdon, S.

    1996-01-01

    The importance of preventing the introduction of prohibited contaminants to the sanitary sewer is critical to the management of large federal facilities such as the Lawrence Livermore National Laboratory (LLNL). LLNL operates 45 retention-tank systems to control wastewater discharges and to maintain continued compliance with environmental regulations. LLNL's unique internal operation practices successfully keep prohibited contaminants out of the sanitary waste stream and maintain compliance with federal, state, and local regulations, as well as determining appropriate wastewater-disposal options. Components of the system include sampling and analysis of the waste stream, evaluation of the data, discharge approval, and final disposition of the waste stream

  2. An assessment of maintainability of elevator system to improve facilities management knowledge-base

    Science.gov (United States)

    Siti, N. A.; Asmone, A. S.; Chew, M. Y. L.

    2018-02-01

    Elevator system is a highly specialized machinery that requires technicians that have a wider array of knowledge in maintaining the system to be safe and reliable. While attaining reliable data of elevator malfunction become challenges, this study has filled the gap by gathering the management-maintenance issues and operational defects of elevator system. Forty-three types of operation defects were found and the consequence defects and their possible causes of occurrences were discussed. To respond to the prime challenges of maintaining elevator system provided by the industry players’ perspective, a theoretical framework is established as a recommendation to improve knowledge base of defects in elevator system which comprises good practices, and solutions to rectify each defects found. Hence, this research paper has theoretically improved the knowledge base of maintainability of elevator system and provide meaningful guidelines in practical senses to the industry professionals.

  3. Piloting laboratory quality system management in six health facilities in Nigeria.

    Directory of Open Access Journals (Sweden)

    Henry Mbah

    Full Text Available Achieving accreditation in laboratories is a challenge in Nigeria like in most African countries. Nigeria adopted the World Health Organization Regional Office for Africa Stepwise Laboratory (Quality Improvement Process Towards Accreditation (WHO/AFRO- SLIPTA in 2010. We report on FHI360 effort and progress in piloting WHO-AFRO recognition and accreditation preparedness in six health facility laboratories in five different states of Nigeria.Laboratory assessments were conducted at baseline, follow up and exit using the WHO/AFRO- SLIPTA checklist. From the total percentage score obtained, the quality status of laboratories were classified using a zero to five star rating, based on the WHO/AFRO quality improvement stepwise approach. Major interventions include advocacy, capacity building, mentorship and quality improvement projects.At baseline audit, two of the laboratories attained 1- star while the remaining four were at 0- star. At follow up audit one lab was at 1- star, two at 3-star and three at 4-star. At exit audit, four labs were at 4- star, one at 3-star and one at 2-star rating. One laboratory dropped a 'star' at exit audit, while others consistently improved. The two weakest elements at baseline; internal audit (4% and occurrence/incidence management (15% improved significantly, with an exit score of 76% and 81% respectively. The elements facility and safety was the major strength across board throughout the audit exercise.This effort resulted in measurable and positive impact on the laboratories. We recommend further improvement towards a formal international accreditation status and scale up of WHO/AFRO- SLIPTA implementation in Nigeria.

  4. Facilities projects performance measurement system

    International Nuclear Information System (INIS)

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  5. Waste management system functional requirements for Interim Waste Management Facilities (IWMFs) and technology demonstrations, LLWDDD [Low-Level Disposal Development and Demonstration] Program

    International Nuclear Information System (INIS)

    1988-03-01

    The purpose of this report is to build upon the preceding decisions and body of information to prepare draft system functional requirements for each classification of waste disposal currently proposed for Low-Level Waste Disposal Development Demonstration (LLWDDD) projects. Functional requirements identify specific information and data needs necessary to satisfy engineering design criteria/objectives for Interim Waste Management Facilities. This draft will suppor the alternatives evaluation process and will continue to evolve as strategy is implemented, regulatory limits are established, technical and economic uncertainties are resolved, and waste management plans are being implemented. This document will become the planning basis for the new generation of solid LLW management facilities on new sites on the Reservation. Eighteen (18) general system requirements are identified which are applicable to all four Low-Level Waste (LLW) disposal classifications. Each classification of LLW disposal is individually addressed with respect ot waste characteristics, site considerations, facility operations, facility closure/post-closure, intruder barriers, institutional control, and performance monitoring requirements. Three initial LLW disposal sites have been proposed as locations on the ORR for the first demonstrations

  6. COGEMA's UMF [Uranium Management Facility

    International Nuclear Information System (INIS)

    Lamorlette, G.; Bertrand, J.P.

    1988-01-01

    The French government-owned corporation, COGEMA, is responsible for the nuclear fuel cycle. This paper describes the activities at COGEMA's Pierrelatte facility, especially its Uranium Management Facility. UF6 handling and storage is described for natural, enriched, depleted, and reprocessed uranium. UF6 quality control specifications, sampling, and analysis (halocarbon and volatile fluorides, isotopic analysis, uranium assay, and impurities) are described. In addition, the paper discusses the filling and cleaning of containers and security at UMF

  7. Quality management in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Garonis, Omar H.

    2002-01-01

    Internationally, the decommissioning organizations of nuclear facilities carry out the decommissioning according to the safety requirements established for the regulatory bodies. Some of them perform their activities in compliance with a quality assurance system. This work establishes standardization through a Specifications Requirement Document, for the management system of the nuclear facilities decommissioning organizations. It integrates with aspects of the quality, environmental, occupational safety and health management systems, and also makes these aspects compatible with all the requirements of the nuclear industry recommended for the International Atomic Energy Agency (IAEA). (author)

  8. XML Based Scientific Data Management Facility

    Science.gov (United States)

    Mehrotra, P.; Zubair, M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The World Wide Web consortium has developed an Extensible Markup Language (XML) to support the building of better information management infrastructures. The scientific computing community realizing the benefits of XML has designed markup languages for scientific data. In this paper, we propose a XML based scientific data management ,facility, XDMF. The project is motivated by the fact that even though a lot of scientific data is being generated, it is not being shared because of lack of standards and infrastructure support for discovering and transforming the data. The proposed data management facility can be used to discover the scientific data itself, the transformation functions, and also for applying the required transformations. We have built a prototype system of the proposed data management facility that can work on different platforms. We have implemented the system using Java, and Apache XSLT engine Xalan. To support remote data and transformation functions, we had to extend the XSLT specification and the Xalan package.

  9. Assessment of national systems for obtaining local siting acceptance of nuclear-waste-management facilities (1981). Final report

    International Nuclear Information System (INIS)

    1981-01-01

    There is a rich mixture of formal and informal approaches being used in our sister nuclear democracies in their attempts to deal with the difficulties in obtaining local siting acceptance of national waste management facilities. Some of these are meeting with a degree of success not yet achieved in the US. Although this survey documents and assesses many of these approaches, the scope of the study did not include an assessment of their relevance to common problems in the US. It would appear that in addition to a periodic updating of the approaches and progress of other countries in dealing with the siting of nuclear waste facilities, an assessment of the applicability of the more successful of these approaches to the US political system could make good use of the information developed in the preparation of this report

  10. Facility management i fremtidens bankdrift

    OpenAIRE

    Vollan, Silje Steen

    2015-01-01

    Facility Management (FM) er et relativt ungt fagområde som er i sterk utvikling. Bank og finansbransjen har hatt en tradisjon med å eie og forvalte egne bygninger, noe som har gitt et underbevisst fokus på FM. Økt digitalisering fører til at bankene står overfor nye utfordringer og muligheter. Nye produkter og tjenester dukker opp og dette fører til at FM enheten utfordres med høyere krav til profesjonalitet og effektivitet. Internasjonale trender i markedet viser at flere facility management...

  11. Assessment of laboratory logistics management information system practice for HIV/AIDS and tuberculosis laboratory commodities in selected public health facilities in Addis Ababa, Ethiopia

    OpenAIRE

    Desale, Adino; Taye, Bineyam; Belay, Getachew; Nigatu, Alemayehu

    2013-01-01

    Introduction Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. Methods A cross-sectional descriptive study was conducted from September 2010-January 2011 at selected public health facilities. A stratified random sampling method was used to include a t...

  12. W-026, Waste Receiving and Processing Facility data management system validation and verification report

    International Nuclear Information System (INIS)

    Palmer, M.E.

    1997-01-01

    This V and V Report includes analysis of two revisions of the DMS [data management system] System Requirements Specification (SRS) and the Preliminary System Design Document (PSDD); the source code for the DMS Communication Module (DMSCOM) messages; the source code for selected DMS Screens, and the code for the BWAS Simulator. BDM Federal analysts used a series of matrices to: compare the requirements in the System Requirements Specification (SRS) to the specifications found in the System Design Document (SDD), to ensure the design supports the business functions, compare the discreet parts of the SDD with each other, to ensure that the design is consistent and cohesive, compare the source code of the DMS Communication Module with the specifications, to ensure that the resultant messages will support the design, compare the source code of selected screens to the specifications to ensure that resultant system screens will support the design, compare the source code of the BWAS simulator with the requirements to interface with DMS messages and data transfers relating to the BWAS operations

  13. W-026, Waste Receiving and Processing Facility data management system validation and verification report

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, M.E.

    1997-12-05

    This V and V Report includes analysis of two revisions of the DMS [data management system] System Requirements Specification (SRS) and the Preliminary System Design Document (PSDD); the source code for the DMS Communication Module (DMSCOM) messages; the source code for selected DMS Screens, and the code for the BWAS Simulator. BDM Federal analysts used a series of matrices to: compare the requirements in the System Requirements Specification (SRS) to the specifications found in the System Design Document (SDD), to ensure the design supports the business functions, compare the discreet parts of the SDD with each other, to ensure that the design is consistent and cohesive, compare the source code of the DMS Communication Module with the specifications, to ensure that the resultant messages will support the design, compare the source code of selected screens to the specifications to ensure that resultant system screens will support the design, compare the source code of the BWAS simulator with the requirements to interface with DMS messages and data transfers relating to the BWAS operations.

  14. Power Systems Development Facility

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell

  15. Utilizing Interns in Facilities Management

    Science.gov (United States)

    Judkins, Clarissa; Morris, John P.; Molocznik, Chuck

    2011-01-01

    Facilities management is rapidly changing and developing from a position an individual stumbles into--or work one's way up through--to a discipline and vocation all of its own. There is a need for a collaborative strategy among leaders in practice, education, and research to share knowledge and experience and to establish professional and ethical…

  16. Assessment of national systems for obtaining local siting acceptance of nuclear waste management facilities (October 1, 1985). Volume I. Political structure and formal system for obtaining approvals for siting waste management facilities

    International Nuclear Information System (INIS)

    Paige, H.W.; Numark, N.J.

    1985-01-01

    This report is the fourth in a series of periodic surveys of approaches and progress in other countries in dealing with the problems of obtaining local acceptance for siting of waste management facilities. This volume contains the following sections: Nation's political/industrial structure for obtaining waste management siting decisions; and Nation's formal legal procedure for obtaining necessary approvals for siting nuclear waste management facilities. Two of the countries visited, Finland and Sweden, have had major changes in the past two years in their formal/legal procedures for obtaining waste management siting decisions. (LM)

  17. Facility Management's Role in Organizational Sustainability

    Science.gov (United States)

    Adams, Gregory K.

    2013-01-01

    Facility managers have questions about sustainability. How do an organization's physical facilities--its built environment--and the management of them, influence the sustainability of the organization or institution as a whole? How important is Facility Management (FM) to the overall sustainability profile of an organization? Facility managers…

  18. Knowledge Map of Facilities Management

    DEFF Research Database (Denmark)

    Nenonen, Suvi; Jensen, Per Anker; Lindahl, Göran

    2014-01-01

    both the research community and FM-practitioners can develop new models for identifying knowledge needs and gaps and to improve knowledge sharing and knowledge flow and thus the fulfilment of their mission and goals. Knowledge maps can also help in organizing research activities and analysing......Purpose This paper aims to draft a knowledge map of the fragmented and multidisciplinary research of and relevant to FM. Facilities management knowledge map is a tool for presenting what relevant data and knowledge, a.k.a. knowledge, resides in different disciplines. Knowledge mapping is a step...... in creating an inventory of knowledge (i.e. the knowledge base) and developing/improving the processes of knowledge sharing in research, education and practice. Theory Knowledge mapping is discussed in terms of knowledge management. The research is connected to knowledge mapping in the facilities management...

  19. SLIMarray: Lightweight software for microarray facility management

    Directory of Open Access Journals (Sweden)

    Marzolf Bruz

    2006-10-01

    Full Text Available Abstract Background Microarray core facilities are commonplace in biological research organizations, and need systems for accurately tracking various logistical aspects of their operation. Although these different needs could be handled separately, an integrated management system provides benefits in organization, automation and reduction in errors. Results We present SLIMarray (System for Lab Information Management of Microarrays, an open source, modular database web application capable of managing microarray inventories, sample processing and usage charges. The software allows modular configuration and is well suited for further development, providing users the flexibility to adapt it to their needs. SLIMarray Lite, a version of the software that is especially easy to install and run, is also available. Conclusion SLIMarray addresses the previously unmet need for free and open source software for managing the logistics of a microarray core facility.

  20. Investigation of radiation safety management at nuclear medicine facilities in Japan. Contamination of radioactivity in the draining-water system

    International Nuclear Information System (INIS)

    Endo, Keigo; Koizumi, Mitsuru; Kinoshita, Fujimi; Nakazawa, Keiji

    1999-01-01

    Radiation-safety management condition in Japanese nuclear medicine facilities were investigated by the questionnaire method. The first questionnaire was asked in all Japanese 1,401 Nuclear Medicine facilities. Answers from 624 institutes (44.5%) were received and analyzed. The radiation-safety management in nuclear medicine institutes was considered to be very well performed everyday. Opinion for the present legal control of nuclear medicine institutes was that the regulation in Japan was too strict for the clinical use of radionuclides. The current regulation is based on the assumption that 1% of all radioactivity used in nuclear medicine institutes contaminates into the draining-water system. The second questionnaire detailing the contamination of radioactivity in the draining-water system was sent to 128 institutes, and 64 answers were received. Of them, 42 institutes were considered to be enough to evaluate the contamination of radioactivity in the draining-water system. There was no difference between 624 institutes answered to the first questionnaire and 42 institutes, where the radioactivity in the draining-water system measured, in the distribution of the institute size, draining-water system equipment and the radioactivity measuring method, and these 42 institutes seemed to be representative of Japanese nuclear medicine institutes. Contamination rate of radioactivity into the draining system was calculated by the value of radioactivity in the collecting tank divided by the amount of radionuclides used daily in each institute. The institutes were divided into two categories on the basis of nuclear medicine practice pattern; type A: in-vivo use only and type B: both in-vivo and in-vitro use. The contamination rate in 27 type A institutes did not exceed 0.01%, whereas in 15 type B institutes the contamination rate distributed widely from undetectable to above 1%. These results indicated that the present regulation for the draining-water system, which assumed

  1. Facilities management and industrial safety

    International Nuclear Information System (INIS)

    2003-06-01

    This book lists occupation safety and health acts with purpose, definition and management system of safety and health, enforcement ordinance of occupation safety and health acts and enforcement regulations such as general rules, safety and health cover, system of management on safety and health, regulation of management on safety and health, regulations of harmfulness and protection of danger, heath management for workers, supervisor and command and inspection of machine and equipment.

  2. FRS (Facility Registration System) Sites, Geographic NAD83, EPA (2007) [facility_registration_system_sites_LA_EPA_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — This dataset contains locations of Facility Registry System (FRS) sites which were pulled from a centrally managed database that identifies facilities, sites or...

  3. A web-based three-tier control and monitoring application for integrated facility management of photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Apostolos Meliones

    2014-01-01

    Full Text Available The architecture of a control system can be designed vertically with the distinction between functional levels. We adopt this layered approach for the design and implementation of a network-based control and monitoring application. In this paper we present the design and implementation of a network-based management application for controlling and monitoring the input and output data of remote equipment aiming at performance macro-observation, alarm detection, handling operation failures, installation security, access control, collection and recording of statistical data and provisioning of reports. The main services provided to the user and operating over the public internet and/or mobile network include control, monitoring, notification, reporting and data export. Our proposed system consists of a front-end for field (site-level control and monitoring as well as a service back-end which undertakes to collect, store and manage data from all remote installations. Hierarchical data acquisition methodology and performance macro-observation are according to the IEC 61724 standard. We have successfully used our control and monitoring application for integrated facility management of photovoltaic plant installations; nevertheless it can be easily migrated to other renewable energy generation installations and remote automation applications in general.

  4. Soil and crop management experiments in the Laboratory Biosphere: An analogue system for the Mars on Earth ® facility

    Science.gov (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J. P.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m 2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth ® facility (Silverstone et al., Development and research program for a soil

  5. Remediation and upgrading of old, inadequate waste management facilities. Integrated waste management system for rare earth and rare metal industry at Sillamaee, Estonia, former uranium facility

    International Nuclear Information System (INIS)

    Kaasik, Tonis; Siinmaa, Anti

    2001-01-01

    discontinuing the use of liquid waste depository and re-arranging completely entire waste management system. One of the most complicated and not yet properly regulated areas is radioactive waste management. The Silmet waste is unique in terms of radioactive waste categorization and applicable regulations. The reason being that its radioactivity levels is above NORM waste but below many TENORM radioactivity levels. How the waste will be treated from a regulatory standpoint has yet to be determined. A conceptual design of Silmet's Integrated Waste Management System defines 'cold top' vitrification technology as the best which converts all hazardous waste and reduces radioactive waste volume by approximately 50% and renders it inert and immobile in the environment. Waste material vitrification involves combining glass-forming compounds with the waste to be treated in a melt chamber heated to a temperature of 950 to 1,350 deg C. Organic compounds within the waste stream are destroyed or encapsulated with the glass matrix. Metals and radionuclides present in the waste are combined within the glass matrix. Unlike solidification/stabilization, which greatly increases final waste volume, this technology significantly reduces the final waste volume, similar to incineration. The resulting glass matrix is the most durable waste form currently known. In fact, the U.S. Environmental Protection Agency has labeled this technology the best demonstrated available technology (BDAT) for high level radioactive waste. (author)

  6. The future of facility management in Finland

    OpenAIRE

    Boateng, Ernest

    2011-01-01

    The objective of this study was to investigate the feasible future of facility management in Finland in order to provide an overview of the future of facility management. This is intended to serve as a guideline for the educational sector, facility management service companies, and the Facility management association in Finland (FIFMA) for future development. Qualitative method, precisely semi-structured/unstructured interview was adopted to address the problems in this study. The study c...

  7. 7 CFR 210.13 - Facilities management.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Facilities management. 210.13 Section 210.13... Participation § 210.13 Facilities management. Link to an amendment published at 74 FR 66216, Dec. 15, 2009. (a..., the added text is set forth as follows: § 210.13 Facilities management. (c) Food safety program. The...

  8. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  9. Screening criteria for siting waste management facilities: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    The Midwest Interstate Low-Level Radioactive Waste Commission (Midwest Compact) seeks to define and place into operation a system for low-level waste management that will protect the public health and safety and the environment from the time the waste leaves its point of origin. Once the system is defined it will be necessary to find suitable sites for the components of that waste management system. The procedure for siting waste management facilities that have been chosen by the compact is one in which a host state is chosen for each facility. The host state is then given the freedom to select the site. Sites will be needed of low-level waste disposal facilities. Depending on the nature of the waste management system chosen by the host state, sites may also be needed for regional waste treatment facilities, such as compactors or incinerators. This report provides example criteria for use in selecting sites for low-level radioactive waste treatment and disposal facilities. 14 refs

  10. Tritium Systems Test Facility

    International Nuclear Information System (INIS)

    Cafasso, F.A.; Maroni, V.A.; Smith, W.H.; Wilkes, W.R.; Wittenberg, L.J.

    1978-01-01

    This TSTF proposal has two principal objectives. The first objective is to provide by mid-FY 1981 a demonstration of the fuel cycle and tritium containment systems which could be used in a Tokamak Experimental Power Reactor for operation in the mid-1980's. The second objective is to provide a capability for further optimization of tritium fuel cycle and environmental control systems beyond that which is required for the EPR. The scale and flow rates in TSTF are close to those which have been projected for a prototype experimental power reactor (PEPR/ITR) and will permit reliable extrapolation to the conditions found in an EPR. The fuel concentrations will be the same as in an EPR. Demonstrations of individual components of the deuterium-tritium fuel cycle and of monitoring, accountability and containment systems and of a maintenance methodology will be achieved at various times in the FY 1979-80 time span. Subsequent to the individual component demonstrations--which will proceed from tests with hydrogen (and/or deuterium) through tracer levels of tritium to full operational concentrations--a complete test and demonstration of the integrated fuel processing and tritium containment facility will be performed. This will occur near the middle of FY 1981. Two options were considered for the TSTF: (1) The modification of an existing building and (2) the construction of a new facility

  11. Name It! Store It! Protect It!: A Systems Approach to Managing Data in Research Core Facilities.

    Science.gov (United States)

    DeVries, Matthew; Fenchel, Matthew; Fogarty, R E; Kim, Byong-Do; Timmons, Daniel; White, A Nicole

    2017-12-01

    As the capabilities of technology increase, so do the production of data and the need for data management. The need for data storage at many academic institutions is increasing exponentially. Technology is expanding rapidly, and institutions are recognizing the need to incorporate data management that can be available for future data sharing as a critical component of institutional services. The establishment of a process to manage the surge in data storage is complex and often hindered by not having a plan. Simple file naming-nomenclature-is also becoming ever more important to leave an established understanding of the contents in a file. This is especially the case as research experiences turnover from research projects and personnel. The indexing of files consistently also helps to identify past work. Finally, the protection of the data contents is becoming increasing challenging. As the genomic field expands, and medicine becomes more personalized, the identification of methods to protect the contents of data in both short- and long-term storage needs to be established so as not to risk the potential of revealing identifiable information. This is often something we do not consider in a nonclinical research environment. The need for establishing basic guidelines for institutions is critical, as individual research laboratories are unable to handle the scope of data storage required for their own research. In addition to the immediate needs for establishing guidelines on data storage and file naming and how to protect information, the recognition of the need for specialized support for data management supporting research cores and laboratories at academic institutions is becoming a critical component of institutional services. Here, we outline some case studies and methods that you may be able to adopt at your own institution.

  12. Facilities Management and Added Value

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2010-01-01

    Aim: This paper aims to present different models of the concept of the added value of Facilities Management (FM), including the FM Value Map, which forms the basis of research group in EuroFM, and to present some of the results of this research collaboration. Approach and methodology: The paper...... is based on literature reviews of the most influential journals within the academic fields of FM, Corporate Real Estate Management and Business to Business Marketing and discussions between participants of the research group working on a further exploration and testing of the FM Value Map. Conclusions......: The research shows a number of different definitions and focus points of Added Value of FM, dependent on the academic field and the area of application. The different research perspectives explored a holistic view on the added value of FM by the integration of an external market based view (with a focus...

  13. System for managing operation of instrument in atomic power plant facility

    International Nuclear Information System (INIS)

    Shinzawa, Katsuo.

    1982-01-01

    Purpose: To facilitate the management of the operating state of instruments operated in a site without necessity of large revision and additional cables of the instruments. Constitution: Tag-shaped instrument recognition indicators and instrument operation indicators for indicating the operating states of the respective instruments are mounted on the instruments such as openable valves. Each instrument recognition indicator represents the type and symbol of the instrument, and each instrument operation indicator represents the operating state such as open state or closed state of the valve of theinstrument. A reader reads a recorded data when the reader is touched to a magnetic plate and a magnetic sheet, and the data is recorded by a recorder on the magnetic tape. In this manner, the leakage of checking the data can be prevented, and the load of an operator can be alleviated. (Kamimura, M.)

  14. New Trends in Facility Asset Management.

    Science.gov (United States)

    Adams, Matt

    2000-01-01

    Explains new, positive trends in facility asset management that encompasses greater acceptance and involvement of facility managers in the financial planning process, greater awareness of the need for maintenance, and facility administrators taking a greater role with business officers. The new climate for alternative renewal financing proposals…

  15. Space Station Furnace Facility Management Information System (SSFF-MIS) Development

    Science.gov (United States)

    Mead, Robert M.

    1996-01-01

    Thios report summarizes the chronology, results, and lessons learned from the development of the SSFF-MIS. This system has been nearly two years in development and has yielded some valuable insights into specialized MIS development. Attachment A contains additions, corrections, and deletions by the COTR.

  16. Instrumentation, control and data management for the MIST (Modular Integrated Utility System) Facility

    Science.gov (United States)

    Celino, V. A.

    1977-01-01

    An appendix providing the technical data required for computerized control and/or monitoring of selected MIST subsystems is presented. Specific computerized functions to be performed are as follows: (1) Control of the MIST heating load simulator and monitoring of the diesel engine generators' cooling system; (2) Control of the MIST heating load simulator and MIST heating subsystem including the heating load simulator; and (3) Control of the MIST air conditioning load simulator subsystem and the MIST air conditioning subsystem, including cold thermal storage and condenser water flows.

  17. Technical Merits and Leadership in Facility Management

    National Research Council Canada - National Science Library

    Shoemaker, Jerry

    1997-01-01

    After almost ten years of experience and formal education in design, construction, and facility operations and maintenance, the challenges and complexity of facility management still seem overwhelming and intangible...

  18. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  19. Design Integration of Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2009-01-01

    One of the problems in the building industry is a limited degree of learning from experiences of use and operation of existing buildings. Development of professional facilities management (FM) can be seen as the missing link to bridge the gap between building operation and building design....... Strategies, methods and barriers for the transfer and integration of operational knowledge into the design process are discussed. Multiple strategies are needed to improve the integration of FM in design. Building clients must take on a leading role in defining and setting up requirements and procedures...... on literature studies and case studies from the Nordic countries in Europe, including research reflections on experiences from a main case study, where the author, before becoming a university researcher, was engaged in the client organization as deputy project director with responsibility for the integration...

  20. Mitigating risks related to facilities management.

    Science.gov (United States)

    O'Neill, Daniel P; Scarborough, Sydney

    2013-07-01

    By looking at metrics focusing on the functionality, age, capital investment, transparency, and sustainability (FACTS) of their organizations' facilities, facilities management teams can build potential business cases to justify upgrading the facilities. A FACTS analysis can ensure that capital spent on facilities will produce a higher or more certain ROI than alternatives. A consistent process for managing spending helps to avoid unexpected spikes that cost the enterprise more in the long run.

  1. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  2. ICT Adoption in Facilities Management Supply Chain

    DEFF Research Database (Denmark)

    Scupola, Ada

    2012-01-01

    This article involves a qualitative study of factors impacting the adoption of ICT solutions in the Danish facility management supply chain. The results show that there are a number of drivers and barriers that influence the adoption of ICT solutions in this service sector. These have been grouped...... concerned with ICT adoption, operations and service management (especially facilities management) as well as operation managers and ICT managers....

  3. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  4. Metering management at the plutonium research and development facilities

    International Nuclear Information System (INIS)

    Hirata, Masaru; Miyamoto, Fujio; Kurosawa, Makoto; Abe, Jiro; Sakai, Haruyuki; Suzuki, Tsuneo.

    1996-01-01

    Nuclear fuel research laboratory of the Oarai Research Laboratory of the Japan Atomic Energy Research Institute is an R and D facility to treat with plutonium and processes various and versatile type samples in chemical and physical form for use of various experimental researches even though on much small amount. Furthermore, wasted and plutonium samples are often transported to other KMP and MBA such as radioactive waste management facility, nuclear reactor facility and so forth. As this facility is a place to treat plutonium important on the safeguards, it is a facility necessary for detection and allowance actions and for detail managements on the metering management data to report to government and IAEA in each small amount sample and different configuration. In this paper, metering management of internationally regulated matters and metering management system using a work station newly produced in such small scale facility were introduced. (G.K.)

  5. A guide to the management of tailings facilities

    International Nuclear Information System (INIS)

    Bedard, C.; Ferguson, K.; Gladwin, D.; Lang, D.; Maltby, J.; McCann, M.; Poirier, P.; Schwenger, R.; Vezina, S.; West, S.; Duval, J.; Gardiner, E.; Jansons, K.; Lewis, B.; Matthews, J.; Mchaina, D.; Puro, M.; Siwik, R.; Welch, D.

    1998-01-01

    The 'Guide to the Management of Tailings Facilities' has been developed by the Mining Association of Canada in an effort to provide guidance to its member companies on sound practices for the safe and environmentally responsible management of tailings facilities. The guide is a reference tool to help companies ensure that they are managing their tailings facilities responsibly, integrating environmental and safety considerations in a consistent manner, with continuous improvement in the operation of tailings facilities. The key to managing tailings responsibly is consistent application of engineering capabilities through the full life cycle. The guide provides a basis for the development of customized tailings management systems to address specific needs at individual operations, and deals with environmental impacts, mill tailing characteristics, tailings facility studies and plans, dam and related structure design, and control and monitoring. Aspects relating to tailings facility siting, design, construction, operation, decommissioning and closure are also fully treated. 1 tab., 3 figs

  6. Assessment of laboratory logistics management information system practice for HIV/AIDS and tuberculosis laboratory commodities in selected public health facilities in Addis Ababa, Ethiopia.

    Science.gov (United States)

    Desale, Adino; Taye, Bineyam; Belay, Getachew; Nigatu, Alemayehu

    2013-01-01

    Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. A cross-sectional descriptive study was conducted from September 2010-January 2011 at selected public health facilities. A stratified random sampling method was used to include a total of 43 facilities which, were investigated through quantitative methods using structured questionnaires interviews. Focus group discussion with the designated supply chain managers and key informant interviews were conducted for the qualitative method. There exists a well-designed logistics system for laboratory commodities with trained pharmacy personnel, distributed standard LMIS formats and established inventory control procedures. However, majority of laboratory professionals were not trained in LMIS. Majority of the facilities (60.5%) were stocked out for at least one ART monitoring and TB laboratory reagents and the highest stock out rate was for chemistry reagents. Expired ART monitoring laboratory commodities were found in 25 (73.5%) of facilities. Fifty percent (50%) of the assessed hospitals and 54% of health centers were currently using stock/bin cards for all HIV/AIDS and TB laboratory commodities in main pharmacy store, among these only 25% and 20.8% of them were updated with accurate information matching with the physical count done at the time of visit for hospitals and health centers respectively. Even though there exists a well designed laboratory LMIS, keeping quality stock/bin cards and LMIS reports were very low. Key ART monitoring laboratory commodities were stock out at many facilities at the day of visit and during the past six months. Based on findings, training of laboratory personnel's managing laboratory commodities and keeping accurate inventory control procedures

  7. Assessment of laboratory logistics management information system practice for HIV/AIDS and tuberculosis laboratory commodities in selected public health facilities in Addis Ababa, Ethiopia

    Science.gov (United States)

    Desale, Adino; Taye, Bineyam; Belay, Getachew; Nigatu, Alemayehu

    2013-01-01

    Introduction Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. Methods A cross-sectional descriptive study was conducted from September 2010-January 2011 at selected public health facilities. A stratified random sampling method was used to include a total of 43 facilities which, were investigated through quantitative methods using structured questionnaires interviews. Focus group discussion with the designated supply chain managers and key informant interviews were conducted for the qualitative method. Results There exists a well-designed logistics system for laboratory commodities with trained pharmacy personnel, distributed standard LMIS formats and established inventory control procedures. However, majority of laboratory professionals were not trained in LMIS. Majority of the facilities (60.5%) were stocked out for at least one ART monitoring and TB laboratory reagents and the highest stock out rate was for chemistry reagents. Expired ART monitoring laboratory commodities were found in 25 (73.5%) of facilities. Fifty percent (50%) of the assessed hospitals and 54% of health centers were currently using stock/bin cards for all HIV/AIDS and TB laboratory commodities in main pharmacy store, among these only 25% and 20.8% of them were updated with accurate information matching with the physical count done at the time of visit for hospitals and health centers respectively. Conclusion Even though there exists a well designed laboratory LMIS, keeping quality stock/bin cards and LMIS reports were very low. Key ART monitoring laboratory commodities were stock out at many facilities at the day of visit and during the past six months. Based on findings, training of laboratory personnel's managing laboratory commodities and keeping

  8. 41 CFR 102-74.10 - What is the basic facility management policy?

    Science.gov (United States)

    2010-07-01

    ... facility management policy? 102-74.10 Section 102-74.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT General Provisions § 102-74.10 What is the basic facility management policy? Executive agencies...

  9. Integrated Facilities Management and Fixed Asset Accounting.

    Science.gov (United States)

    Golz, W. C., Jr.

    1984-01-01

    A record of a school district's assets--land, buildings, machinery, and equipment--can be a useful management tool that meets accounting requirements and provides appropriate information for budgeting, forecasting, and facilities management. (MLF)

  10. EPA Facility Registry System (FRS): NCES

    Science.gov (United States)

    This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to the National Center for Education Statistics (NCES). The primary federal database for collecting and analyzing data related to education in the United States and other Nations, NCES is located in the U.S. Department of Education, within the Institute of Education Sciences. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA00e2??s national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to NCES school facilities once the NCES data has been integrated into the FRS database. Additional information on FRS is available at the EPA website http://www.epa.gov/enviro/html/fii/index.html.

  11. ATF [Advanced Toroidal Facility] data management

    International Nuclear Information System (INIS)

    Kannan, K.L.; Baylor, L.R.

    1988-01-01

    Data management for the Advanced Toroidal Facility (ATF), a stellarator located at Oak Ridge National Laboratory (ORNL), is provided by DMG, a locally developed, VAX-based software system. DMG is a data storage and retrieval software system that provides the user interface to ATF raw and analyzed data. Data are described in terms of data models and data types and are organized as signals into files, which are internally documented. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. Extensibility features include compatibility with ATF as it moves from pulsed to steady-state operation and capability for use of the DMG system with experiments other than ATF. DMG is implemented as a run-time library of routines available as a shareable image. General-purpose and specialized data acquisition and analysis applications have been developed using the DMG system. This paper describes the DMG system and the interfaces to it. 4 refs., 2 figs

  12. Study on archive management for nuclear facility decommissioning projects

    International Nuclear Information System (INIS)

    Huang Ling; Gong Jing; Luo Ning; Liao Bing; Zhou Hao

    2011-01-01

    This paper introduces the main features and status of the archive management for nuclear facility decommissioning projects, and explores and discusses the countermeasures in its archive management. Taking the practice of the archive management system of a reactor decommissioning project as an example, the paper illustrates the establishment of archive management system for the nuclear facility decommissioning projects. The results show that the development of a systematic archive management principle and system for nuclear decommissioning projects and the construction of project archives for the whole process from the design to the decommissioning by digitalized archive management system are one effective route to improve the complete, accurate and systematic archiving of project documents, to promote the standardization and effectiveness of the archive management and to ensure the traceability of the nuclear facility decommissioning projects. (authors)

  13. Does PDC Belong in Facilities Management?

    Science.gov (United States)

    Dessoff, Alan

    2012-01-01

    Whether planning, design, and construction (PDC) of buildings should be part of facilities management, with its traditional operations and maintenance functions, or separated from it, has been a divisive question on many campuses for a long time. Now, although it is not happening everywhere, facilities managers at a number of institutions, public…

  14. Facility management research in the Netherlands

    NARCIS (Netherlands)

    Thijssen, Thomas; van der Voordt, Theo; Mobach, Mark P.

    This article provides a brief overview of the history and development of facility management research in the Netherlands and indicates future directions. Facility management as a profession has developed from single service to multi-services and integral services over the past 15 years.

  15. Management of Decommissioning on a Multi-Facility Site

    International Nuclear Information System (INIS)

    Laraia, Michele; McIntyre, Peter; Visagie, Abrie

    2008-01-01

    The management of the decommissioning of multi-facility sites may be inadequate or inappropriate if based on approaches and strategies developed for sites consisting of only a single facility. The varied nature of activities undertaken, their interfaces and their interdependencies are likely to complicate the management of decommissioning. These issues can be exacerbated where some facilities are entering the decommissioning phase while others are still operational or even new facilities are being built. Multi-facility sites are not uncommon worldwide but perhaps insufficient attention has been paid to optimizing the overall site decommissioning in the context of the entire life cycle of facilities. Decommissioning management arrangements need to be established taking a view across the whole site. A site-wide decommissioning management system is required. This should include a project evaluation and approval process and specific arrangements to manage identified interfaces and interdependencies. A group should be created to manage decommissioning across the site, ensuring adequate and consistent practices in accordance with the management system. Decommissioning management should be aimed at the entire life cycle of facilities. In the case of multi facility sites, the process becomes more complex and decommissioning management arrangements need to be established with a view to the whole site. A site decommissioning management system, a group that is responsible for decommissioning on site, a site project evaluation and approval process and specific arrangements to manage the identified interfaces are key areas of a site decommissioning management structure that need to be addressed to ensure adequate and consistent decommissioning practices. A decommissioning strategy based on single facilities in a sequential manner is deemed inadequate

  16. ACP Facility Safety Surveillance System Installation

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-10-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hotcell was built in the IMEF basement. All facilities which treat radioactive materials must manage CCTV system which is under control of Health Physics department. Three main points (including hotcell rear door area) have each camera, but operators who are in charge of facility management need to check the safety of the facility immediately through the network in his office. This needs introduce additional network cameras installation and this new surveillance system is expected to update the whole safety control ability with existing system

  17. Fast flux test facility noise data management

    International Nuclear Information System (INIS)

    Thie, J.A.

    1988-01-01

    An extensive collection of spectra from an automated data collection system at the Fast Flux Facility has features from neutron data extracted and managed by database software. Inquiry techniques, including screening, applied to database results show the influences of control rods on wideband noise and, more generally, abilities to detect diverse types of off-normal noise. Uncovering a temporary 0.1-Hz resonance shift gave additional diagnostic information on a 13-Hz mechanical motion characterized by the interference of two resonances. The latter phenomenon is discussed generically for possible application to other reactor types. (author)

  18. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  19. Sport Facility Planning and Management. Sport Management Library.

    Science.gov (United States)

    Farmer, Peter J.; Mulrooney, Aaron L.; Ammon, Rob, Jr.

    Students of sports facilities management will need to acquire a wide variety of managerial skills and knowledge in order to be adequately prepared to plan and manage these facilities. This textbook offers students a mix of practical examples and recognized theory to help them in the planning, constructing, promoting, and managing of sports…

  20. Subsurface Facility System Description Document

    International Nuclear Information System (INIS)

    Eric Loros

    2001-01-01

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation

  1. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  2. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab

  3. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  4. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  5. Healthcare waste management: current practices in selected healthcare facilities, Botswana.

    Science.gov (United States)

    Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew

    2008-01-01

    Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.

  6. Location - Managed Facility - St. Paul District (MVP)

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — St. Paul District - US Army Corps of Engineers Managed Facility locations. District headquarters, Natural Resource, Recreation, Lock and Dam, and Regulatory offices...

  7. Service quality for facilities management in hospitals

    CERN Document Server

    Sui Pheng, Low

    2016-01-01

    This book examines the Facilities Management (FM) of hospitals and healthcare facilities, which are among the most complex, costly and challenging kind of buildings to manage. It presents and evaluates the FM service quality standards in Singapore’s hospitals from the patient’s perspective, and provides recommendations on how to successfully improve FM service quality and achieve higher patient satisfaction. The book also features valuable supplementary materials, including a checklist of 32 key factors for successful facilities management and another checklist of 24 service attributes for hospitals to achieve desirable service quality in connection with facilities management. The book adopts a unique approach of combining service quality and quality theory to provide a more holistic view of how FM service quality can be achieved in hospitals. It also integrates three instruments, namely the SERVQUAL model, the Kano model and the QFD model to yield empirical results from surveys for implementation in hosp...

  8. Knowledge management and information tools for building maintenance and facility management

    CERN Document Server

    Talamo, Cinzia

    2015-01-01

    This book describes the latest methods and tools for the management of information within facility management services and explains how it is possible to collect, organize, and use information over the life cycle of a building in order to optimize the integration of these services and improve the efficiency of processes. The coverage includes presentation and analysis of basic concepts, procedures, and international standards in the development and management of real estate inventories, building registries, and information systems for facility management. Models of strategic management are discussed and the functions and roles of the strategic management center, explained.  Detailed attention is also devoted to building information modeling (BIM) for facility management and potential interactions between information systems and BIM applications. Criteria for evaluating information system performance are identified, and guidelines of value in developing technical specifications for facility management service...

  9. Data management facility for JT-60

    International Nuclear Information System (INIS)

    Ohasa, K.; Kurimoto, K.; Mochizuki, O.

    1983-01-01

    This study considers the Data Management Facility which is provided for unified management of various diagnostics data with JT-60 experiments. This facility is designed for the purpose of data access. There are about 30 kinds of diagnostic devices that are classified by diagnostic objects equipped for JT-60 facility. It gathers the diagnostic date about 10 Mega Byte per each discharge. Those diagnostic data are varied qualitatively and quantitatively by experimental purpose. Other fundamental information like discharge condition, adjustive value for diagnostic devices is required to process those gathered data

  10. Legal regime of water management facilities

    Directory of Open Access Journals (Sweden)

    Salma Jožef

    2013-01-01

    Full Text Available The paper analyzes the legal regime of water management facilities in the light of Serbian, foreign and European law. Different divisions of water management facilities are carried out (to public and private ones, natural and artificial ones, etc., with determination of their legal relevance. Account is taken of the issue of protection from harmful effects of waters to such facilities, as well. The paper points also to rules on the water management facilities, from acts of planning, to individual administrative acts and measures for maintenance of required qualitative and quantitative condition of waters, depending on their purpose (general use or special, commercial use o waters. Albeit special rules on water management facilities exist, due to the natural interlocking between all the components of the environment (water, air and soil, a comprehensive approach is required. A reference is made to other basic principles of protection of water management facilities as well, such as the principle of prevention, principle of sustainable development and the principle "polluter pays". The last one represents the achievement of contemporary law, which deviates from the idea accepted in the second half of 20th century that supported the socialization of risk from harmful effects of waters.

  11. Best Practices in Facility Management

    National Research Council Canada - National Science Library

    Neve, Trevor

    1999-01-01

    .... While the Logistics Management Institute's benchmark database has served as a cornerstone in helping to initiate change, data and metrics go only so far in implementing better ways of doing business...

  12. Daily storage management of hydroelectric facilities

    NARCIS (Netherlands)

    Chappin, E.J.L.; Ferrero, M.; Lazzeroni, P.; Lukszo, Z.; Olivero, M.; Repetto, M.

    2012-01-01

    This work presents a management procedure for hydroelectric facilities with daily storage. The water storage gives an additional degree of freedom allowing to shift in time power production when it is more convenient and to work at the maximum efficiency of hydraulic turbine. The management is

  13. Managing facilities in a Scandinavian manner:

    DEFF Research Database (Denmark)

    Elle, Morten; Engelmark, Jesper; Jørgensen, Bo

    2004-01-01

    Presents the aims and needs of research in facilities management (FM) at the section of Planning and Management of Building Processes at BYG*DTU. As the building stock in Denmark is rapidly increasing, socio-demographic developments implies profound changes in both the needs of inhabitants and th...

  14. How can facility managers add value?

    DEFF Research Database (Denmark)

    Jensen, Per Anker; van der Voordt, Theo

    2015-01-01

    Recent years have seen a growing interest in the concept of added value of facilities management (FM) and corporate real estate management (CREM), and how to attain and measure it. There is a wide variety of definitions in use, and recognition of different types of added value, such as user value...

  15. Håndbog i Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    Facilities Management (FM) er et nyt nøgleord som mange nu anvender i forskellige forbindelser og sammenhænge. Dette hænger i høj grad sammen med manglen på en fælles dansk referenceramme for FM, der har givet frit spillerum for de mange forskellige definitioner af det engelske ord. Dansk...... Facilities Management netværk (DFM netværk) har i mange år arbejdet for en fælles definition af begrebet sammen med arbejdet for udbredelsen af kendskabet til FM, herunder uddannelse, erfaringsudveksling m.v. DFM netværk har udgivet en Håndbog i Facilities Management i samarbejde med bogens forfatter Per...

  16. Safe waste management practices in beryllium facilities

    International Nuclear Information System (INIS)

    Bhat, P.N.; Soundararajan, S.; Sharma, D.N.

    2012-01-01

    Beryllium, an element with the atomic symbol Be, atomic number 4, has very high stiffness to weight ratio and low density. It has good electrical conductive properties with low coefficient of thermal expansion. These properties make the metal beryllium very useful in varied technological endeavours, However, beryllium is recognised as one of the most toxic metals. Revelation of toxic effects of beryllium resulted in institution of stringent health and safety practices in beryllium handling facilities. The waste generated in such facilities may contain traces of beryllium. Any such waste should be treated as toxic waste and suitable safe waste management practices should be adopted. By instituting appropriate waste management practice and through a meticulously incorporated safety measures and continuous surveillance exercised in such facilities, total safety can be ensured. This paper broadly discusses health hazards posed by beryllium and safe methods of management of beryllium bearing wastes. (author)

  17. 20 CFR 638.303 - Site selection and facilities management.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Site selection and facilities management. 638... Facilities Management § 638.303 Site selection and facilities management. (a) The Job Corps Director shall... center, facilities engineering and real estate management will be conducted by the Job Corps Director or...

  18. Management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Crump, K.

    1978-01-01

    An Australian university architect studying management information systems programs at academic institutions in the United States visited 26 universities and colleges and nine educational and professional associations, including extended visits at the University of Wisconsin and the National Center of Higher Education Management Systems. During these visits, he investigated university and college space utilization programs, gained operational and developmental experience at institutions with education philosophies similar to those in Australia, and examined trends in low cost student housing. This report of his observations focusses on management information systems projects throughout the academic community, resource accountability, energy conservation, facilities planning for the handicapped, student housing, and interdisciplinary approaches to education.

  19. Application of Facility Management in Brownfield Conversion

    Directory of Open Access Journals (Sweden)

    Wernerová Eva

    2016-12-01

    Full Text Available The subject of this paper covers two issues, namely the issue of brownfields and their conversion and the issue of Facility Management, which offers the possibility of applying its principles and tools for extending the benefit of the construction works as a tool for active access to care for the property. This paper aims to link these two topics and to identify the possibility of applying Facility Management in the conversation process of revitalization of brownfields so that subsequent commissioning eliminates the risk of future costly operation and relapse of the revitalized building into the category of brownfields.

  20. Value Adding Management: A New Facilities Management Concept

    DEFF Research Database (Denmark)

    Jensen, Per Anker; Katchamart, Akarapong

    2011-01-01

    Purpose: To investigate how Facilities Management (FM) can add value and develop a management concept that can assist facilities managers in implementing value adding strategies and practices. Theory: The study is based on the management model for FM included in the European FM standards, recent...... is investigated, tested and discussed based on a case study of an international corporation. Findings: The study shows that the management model for FM creates a relevant starting point but also that stakeholder and relationship management is an essential aspect of Value Adding Management. The case study confirms...... the relevance of the basic concept and provides an important example of how Value Adding Management can be implemented and added value measured. Originality/value: The study develops a concept of Value Adding Management, which is new in FM literature. It is expected to increase the awareness of the impacts...

  1. Sustainability and the facilities management in Malaysia

    Directory of Open Access Journals (Sweden)

    Asbollah Asra Zaliza

    2016-01-01

    Full Text Available Facilities Management (FM in the industry of environment involves numerous expertise, especially from the management side. Other than that, technology and finance are the other factors involved as well. One essential aspect of FM, other than the emphasis on technical operation, is its performance. In parallel, the performance does impact occupant behaviour and, at the same time, this performance does affect the environment. In short, this indicates that FM is in a key position to participate in delivering a sustainable environment for the industry of built environment. Sustainable facilities Management (SFM is crucial because buildings consume more resources which will, in consequence, negatively impact the environment and generate large amounts of waste. This justifies the importance of sustainability under the umbrella of facilities management. However, FM is quite new in Malaysia’s environment. Government agencies, such as JKR, have adopted and are practicing FM at the moment. Fortunately, there has been an increasing trend and awareness of SFM adoption. Therefore, this paper aims to understand and identify the contribution and practices of Sustainable Facilities Management (SFM in Malaysia; focusing on the development taken in regards to SFM.

  2. Facility management and energy efficiency -- analysis and recommendations; Facility Management und Energieeffizienz: Analyse und Handlungsempfehlungen

    Energy Technology Data Exchange (ETDEWEB)

    Staub, P.; Weibel, K.; Zaugg, T. [Pom and Consulting Ltd., Zuerich (Switzerland); Lang, R. [Gruenberg and Partner Ltd., Zuerich (Switzerland); Frei, Ch. [Herzog Kull Group, Aarau (Switzerland)

    2001-07-01

    This final report presents the results of a study made on how facility management (FM) is positioned in enterprises and on how energy management can be integrated into the facility management process. Also, recommendations are made on the actions that are considered necessary to improve the understanding of facility management and energy management. The findings of an analysis made of the results of a survey among 200 enterprises, 20 interviews and 5 case studies are presented. The authors state that, in spite of the relatively small sample taken - mostly larger enterprises - trends in facility management and energy management could be shown. The findings of the survey, such as the relative importance of the integration of energy topics in facility management and the need for standardised indicators and benchmarking, are discussed in detail. Also, it is noted that the success of FM is in part due to delegation of responsibility to smaller business units or even to individual employees. The market potential for FM services is examined, with yearly growth rates of up to 20%. The importance of anchoring FM strategies at the top level of management is stressed, as is the need for promotion of the idea of facility management and training concepts for those responsible for its implementation.

  3. State Wildlife Management Area Public Facilities - points

    Data.gov (United States)

    Minnesota Department of Natural Resources — This point theme contains facilities and features for WMAs that are best represented as points. WMAs are part of the Minnesota state recreation system created to...

  4. State Wildlife Management Area Public Facilities - lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — This line theme contains facilities and features for WMAs that are best represented as lines. WMAs are part of the Minnesota state recreation system created to...

  5. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  6. EPA Facility Registry System (FRS): NCES

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  7. EPA Facility Registry System (FRS): NEPT

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  8. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  9. Waste Management Facilities Cost Information Report

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options

  10. Facilities Management research in the Nordic Countries

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2011-01-01

    to the establishment of the Centre for Facilities Management – Realdania Research (CFM), and updated information from keynote contributions to CFM’s Nordic FM Conference on 22-23 August 2011 by Suvi Nenonen (Finland), Jan Bröchner (Sweden), Geir K Hansen (Norway) and Per Anker Jensen (Denmark)....

  11. The strategic facilities management organisation in housing

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Jensen, Per Anker; Jensen, Jesper Ole

    2012-01-01

    implementation of sustainable facilities management in housing administration. The concept provides a frame for understanding the roles and relations of tenants, owners, administrators and operators. The paper is based on a Danish research project on environmentally sound building operation including literature...

  12. Environmental Management Guide for Educational Facilities

    Science.gov (United States)

    APPA: Association of Higher Education Facilities Officers, 2017

    2017-01-01

    Since 1996, APPA and CSHEMA, the Campus Safety Health and Environmental Management Association, have collaborated to produce guidance documents to help educational facilities get ahead of the moving target that is environmental compliance. This new 2017 edition will help you identify which regulations pertain to your institution, and assist in…

  13. The Mixed Waste Management Facility. Preliminary design review

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones

  14. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  15. FFTF [Fast Flux Test Facility] management

    International Nuclear Information System (INIS)

    Bennett, C.L.

    1986-11-01

    Fuel Management at the Fast Flux Test Facility (FFTF) involves more than just the usual ex-core and in-core management of standard fuel and non-fuel components between storage locations and within the core since it is primarily an irradiation test facility. This mission involves testing an ever increasing variety of fueled and non-fueled experiments, each having unique requirements on the reactor core as well as having its own individual impact on the reload design. This paper describes the fuel management process used by the Westinghouse Hanford Company Core Engineering group that has led to the successful reload design of nine operating cycles and the irradiation of over 120 tests

  16. Strategies for healthcare facilities, construction, and real estate management.

    Science.gov (United States)

    Lee, James G

    2012-05-01

    Adventist HealthCare offers the following lessons learned in improving the value of healthcare facilities, construction, and real estate management: Use an integrated approach. Ensure that the objectives of the approach align the hospital or health system's mission and values. Embrace innovation. Develop a plan that applies to the whole organization, rather than specific business units. Ensure commitment of senior leaders.

  17. Adding Value to Facilities Management with Information Technology

    DEFF Research Database (Denmark)

    Ebbesen, Poul

    2016-01-01

    This PhD project investigates implementation and use of Information Systems (IS) and Information Technologies (IT) in the Facilities management (FM) business domain. This investigation is relevant because implementation and use of IS/IT in FM has potentials for improvements which can provide...

  18. Waste management facility acceptance - some findings

    International Nuclear Information System (INIS)

    Sigmon, B.

    1987-01-01

    Acceptance of waste management facilities remains a significant problem, despite years of efforts to reassure potential host communities. The tangible economic benefits from jobs, taxes, and expenditures are generally small, while the intangible risks of environmental or other impacts are difficult to evaluate and understand. No magic formula for winning local acceptance has yet been found. Limited case study and survey work does suggest some pitfalls to be avoided and some directions to be pursued. Among the most significant is the importance that communities place on controlling their own destiny. Finding a meaningful role for communities in the planning and operation of waste management facilities is a challenge that would-be developers should approach with the same creativity that characterizes their technical efforts

  19. Criticality management of Tokai reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Ichiro [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-01-01

    In fuel cycle centers a number of equipment and vessels of various types and of complex design are used in several processes, i.e. dissolution of spent fuels, separation and storage of uranium and plutonium from fission products and transuranium elements. For each processes, Monte Carlo codes are frequently applied to manage the fuel criticality. Safety design depends largely on specific features of each facilities. The present report describes status of criticality management for main processes in Tokai Reprocessing Facility, JNC, and the criticality conditions specifically existing there. The guiding principle throughout consists of mass control, volume control, design (form) control, concentration control, and control due to employment of neutron poisons. (S. Ohno)

  20. National Ignition Facility Configuration Management Plan

    International Nuclear Information System (INIS)

    Cabral, S G; Moore, T L

    2002-01-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  1. Innovative Procurement and Partnerships in Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2010-01-01

    strong requirements on the management style and company culture. Limitations of the research: The research is only based on two case studies, which obviously limits the possibility to generalize the results. Practical applications: The research presents two specific examples of innovative procurement......Aim: The aim of the paper is to present, analyse and identify learning from two case studies of innovative procurement in Facilities Management (FM) concerning the establishments of partnerships between clients and providers. Approach and methodology: A major study of FM best practice covering 36...

  2. Operational experiences and upgradation of waste management facilities Trombay, India

    International Nuclear Information System (INIS)

    Chander, Mahesh; Bodke, S.B.; Bansal, N.K.

    2001-01-01

    Full text: Waste Management Facilities Trombay provide services for the safe management of radioactive wastes generated from the operation of non power sources at Bhabha Atomic Research Centre, India. The paper describes in detail the current operational experience and facility upgradation by way of revamping of existing processes equipment and systems and augmentation of the facility by way of introducing latest processes and technologies to enhance the safety. Radioactive wastes are generated from the operation of research reactors, fuel fabrication, spent fuel reprocessing, research labs. manufacture of sealed sources and labeled compounds. Use of radiation sources in the field of medical, agriculture and industry also leads to generation of assorted solid waste and spent sealed radiation sources which require proper waste management. Waste Management Facilities Trombay comprise of Effluent Treatment Plant (ETP), Decontamination Centre (DC) and Radioactive Solid Waste Management Site (RSMS). Low level radioactive liquid effluents are received at ETP. Plant has 100 M 3 /day treatment capacity. Decontamination of liquid effluents is effected by chemical treatment method using co- precipitation as a process. Plant has 1800 M 3 of storage capacity. Chemical treatment system comprises of clarifloculator, static mixer and chemical feed tanks. Plant has concentrate management facility where chemical sludge is centrifuged to effect volume reduction of more that 15. Thickened sludge is immobilized in cement matrix. Decontamination Centre caters to the need of equipment decontamination from research reactors. Process used is ultrasonic chemical decontamination. Besides this DC provides services for decontamination of protective wears. Radioactive Solid Waste Management Site is responsible for the safe management of solid waste generated at various research reactors, plants, laboratories in Bhabha Atomic Research Centre. Spent sealed radiation sources are also stored

  3. National Ignition Facility system design requirements conventional facilities SDR001

    International Nuclear Information System (INIS)

    Hands, J.

    1996-01-01

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions

  4. Nike Facility Diagnostics and Data Acquisition System

    Science.gov (United States)

    Chan, Yung; Aglitskiy, Yefim; Karasik, Max; Kehne, David; Obenschain, Steve; Oh, Jaechul; Serlin, Victor; Weaver, Jim

    2013-10-01

    The Nike laser-target facility is a 56-beam krypton fluoride system that can deliver 2 to 3 kJ of laser energy at 248 nm onto targets inside a two meter diameter vacuum chamber. Nike is used to study physics and technology issues related to laser direct-drive ICF fusion, including hydrodynamic and laser-plasma instabilities, material behavior at extreme pressures, and optical and x-ray diagnostics for laser-heated targets. A suite of laser and target diagnostics are fielded on the Nike facility, including high-speed, high-resolution x-ray and visible imaging cameras, spectrometers and photo-detectors. A centrally-controlled, distributed computerized data acquisition system provides robust data management and near real-time analysis feedback capability during target shots. Work supported by DOE/NNSA.

  5. Life Management and Safety of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S.; Diluch, A.; Vega, G., E-mail: fabbri@cnea.gov.ar [Comisión Nacional de Energía Atómica, Buenos Aires (Argentina)

    2014-10-15

    The nuclear programme in Argentina includes: nuclear power and related supplies, medical and industrial applications, waste management, research and development and human training. Nuclear facilities require life management programs that allow a safe operation. Safety is the first priority for designers and operators. This can be attained with defence in depth: regular inspections and maintenance procedures to minimize failure risks. CNEA objectives in this area are to possess the necessary capability to give safe and fast technical support. Within this scheme, one of the main activities undertaken by CNEA is to provide technological assistance to the nuclear plants and research reactors. As a consequence of an increasing concern about safety and ageing a Life Management Department for safe operation was created to take care of these subjects. The goal is to elaborate a Safety Evaluation Process for the critical components of nuclear plants and other facilities. The overall objectives of a safety process are to ensure a continuous safe, reliable and effective operation of nuclear facilities and it means the implementation of the defence in deep concept to enhance safety for the protection of the public, the workers and the environment. (author)

  6. Building a medical system for nuclear facilities

    International Nuclear Information System (INIS)

    Maeda, Mitsuya

    2016-01-01

    To build a medical system for nuclear facilities, I explained what kinds of actions were performed with the TEPCO Fukushima Daiichi Nuclear Power Plant Accident and what kinds of actions are going to be performed in the future. We examined the health and medical care of the emergency workers in nuclear facilities including TEPCO Fukushima Daiichi Nuclear Power Plant from 2014 to 2015 in the Ministry of Health, Labour and Welfare (MHLW). We carried out a detailed hearing from stakeholders of electric companies and medical institutions about the medical system in nuclear facilities carrying out urgent activities. It has been said that the electric company is responsible to maintain the medical system for affected workers in nuclear facilities. However, TEPCO could not find the medical staff, such as doctors, by their own effort at the TEPCO Fukushima Daiichi Nuclear Power Plant Accident. The network of doctors familiar with emergency medical care support dispatched the medical staff after July of 2011. The stakeholders indicated that the following six tasks must be resolved: (1) the fact that no electric company performs the action of bringing up medical staff who can be dispatched into nuclear facilities in emergencies in 2015; (2) bringing up personnel in charge of radiation management and logistics other than the medical staff, such as doctors; (3) cooperation with the community medicine system given the light and shade by nuclear facilities; (4) performing training for the many concurrent wounded based on the scenario of a severe accident; (5) indicating both the condition of the contract and the guarantee of status that is appropriate for dispatched medical staffs; and (6) clarifying the organization of the network of stakeholders. The stakeholders showed the future directionality as follows: (1) To recruit the medical staff expected to be dispatched into nuclear facilities, (2) to carry out the discussion and conveyance training to strengthen cooperation with

  7. Assessment of national systems for obtaining local siting acceptance of nuclear waste management facilities (October 1, 1985). Volume 2. Summary of principal new (April 1, 1983-October 1, 1985) developments relating to the siting of waste management facilities

    International Nuclear Information System (INIS)

    Paige, H.W.; Numark, N.J.

    1985-01-01

    This report is the fourth in a series of periodic surveys of approaches and progress in other countries in dealing with the problems of obtaining local acceptance for siting of waste management facilities. Of the countries visited (Belgium, FRG, Finland, Sweden, Switzerland, and the UK) all have been engaged in recent years in the process of selecting and obtaining state and local acceptance of sites for new LLW repositories. Only Sweden has been successful thus far. Success has been understandably even more elusive in the siting of HLW repositories. Although there is also one country, FRG, that has gotten provisional site approval by the state and local governments for a HLW repository, the political process by which this was achieved does not appear to be one that could be duplicated elsewhere, and all other countries are still years away from making a site-specific selection or recommendation. Fortunately this need not create a serious safety, political or logistical problem. For those countries not having their spent fuel reprocessed, the spent fuel storage cask concept is available for safe storage of spent fuel at the point of origin for as long as needed until a HLW repository is available. For those countries which will be having to dispose of HLW resulting from reprocessing, air cooled and water cooled surface storage facilities are proven and acceptable options for interim long-term (decades) storage awaiting permanent disposal in repositories when available. One country has recently successfully sited a new reprocessing plant. After several years of rejection by state authorities, FRG now has two states willing and anxious to have a reprocessing plant. Construction is now underway at one of the sites

  8. Federal facilities compliance act waste management

    International Nuclear Information System (INIS)

    Bowers, J.; Gates-Anderson, D.; Hollister, R.; Painter, S.

    1999-01-01

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal

  9. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  10. Integration of Biosafety into Core Facility Management

    Science.gov (United States)

    Fontes, Benjamin

    2013-01-01

    This presentation will discuss the implementation of biosafety policies for small, medium and large core laboratories with primary shared objectives of ensuring the control of biohazards to protect core facility operators and assure conformity with applicable state and federal policies, standards and guidelines. Of paramount importance is the educational process to inform core laboratories of biosafety principles and policies and to illustrate the technology and process pathways of the core laboratory for biosafety professionals. Elevating awareness of biohazards and the biosafety regulatory landscape among core facility operators is essential for the establishment of a framework for both project and material risk assessment. The goal of the biohazard risk assessment process is to identify the biohazard risk management parameters to conduct the procedure safely and in compliance with applicable regulations. An evaluation of the containment, protective equipment and work practices for the procedure for the level of risk identified is facilitated by the establishment of a core facility registration form for work with biohazards and other biological materials with potential risk. The final step in the biocontainment process is the assumption of Principal Investigator role with full responsibility for the structure of the site-specific biosafety program plan by core facility leadership. The presentation will provide example biohazard protocol reviews and accompanying containment measures for core laboratories at Yale University.

  11. 7 CFR 205.271 - Facility pest management practice standard.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Facility pest management practice standard. 205.271... Requirements § 205.271 Facility pest management practice standard. (a) The producer or handler of an organic facility must use management practices to prevent pests, including but not limited to: (1) Removal of pest...

  12. 40 CFR 160.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Testing facility management. 160.31... GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 160.31 Testing facility management. For each study, testing facility management shall: (a) Designate a study director as described in § 160.33...

  13. 40 CFR 792.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Testing facility management. 792.31... facility management. For each study, testing facility management shall: (a) Designate a study director as... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  14. Usability: managing facilities for social outcomes

    DEFF Research Database (Denmark)

    Alexander, Keith; Blakstad, Siri; Hansen, Geir

    2013-01-01

    The paper argues for the development of usability concepts, methodologies and tools, in considering the effects of the built environment from a user, organisational and community perspective, in order to have a positive influence on social outcomes. Since it was formed over ten years ago, the CIB W......111 on Usability has been exploring concepts, methods and tools, developed in the evaluation of all kinds of consumer products, applied to the built environment. In the most recent phase of this work, conducted over the past three years, an international network of partners has collaborated to focus...... properties of a workplace, they could better manage and design the facilities for improved social outcomes. Interpretation and analysis of the built environment (and support services) based on how it is socially constructed will enable integration of organisational use and the facilities provided to arrive...

  15. Innovative Procurement and Partnerships in Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2011-01-01

    A major study of facilities management best practice covering 36 cases from the Nordic countries in Europe shows, that the most outstanding examples of innovation in FM are initiated from the demand side and involves new forms of procurement with long term contracts. This paper considers in depth......-called operational partnerships with private providers concerning all municipal buildings and sports facilities in parts of a city. Each of the case studies has involved both the client and the provider side of the collaboration. The cases show that an essential element in a successful procurement and partnership...... is that the client allows the providers freedom to plan their activities. Thereby the providers can optimize the use of their productive capacity and utilize their competences with incentives to profit from such improvements. A major challenge is to balance the risks between the client and provider and to create...

  16. Waste Receiving and Processing (WRAP) Facility PMS Test Report For Data Management System (DMS) Security Test DMS-Y2K

    Energy Technology Data Exchange (ETDEWEB)

    PALMER, M.E.

    1999-09-21

    Test Plan HNF-4351 defines testing requirements for installation of a new server in the WRAP Facility. This document shows the results of the test reports on the DMS-Y2K and DMS-F81 (Security) systems.

  17. National Ignition Facility Site Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, V.

    1997-09-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1{degree}C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  18. National Ignition Facility Site Management Plan

    International Nuclear Information System (INIS)

    Roberts, V.

    1997-01-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1 degree C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  19. Biosecurity measures in 48 isolation facilities managing highly infectious diseases.

    Science.gov (United States)

    Puro, Vincenzo; Fusco, Francesco M; Schilling, Stefan; Thomson, Gail; De Iaco, Giuseppina; Brouqui, Philippe; Maltezou, Helena C; Bannister, Barbara; Gottschalk, René; Brodt, Hans-Rheinhard; Ippolito, Giuseppe

    2012-06-01

    Biosecurity measures are traditionally applied to laboratories, but they may also be usefully applied in highly specialized clinical settings, such as the isolation facilities for the management of patients with highly infectious diseases (eg, viral hemorrhagic fevers, SARS, smallpox, potentially severe pandemic flu, and MDR- and XDR-tuberculosis). In 2009 the European Network for Highly Infectious Diseases conducted a survey in 48 isolation facilities in 16 European countries to determine biosecurity measures for access control to the facility. Security personnel are present in 39 facilities (81%). In 35 facilities (73%), entrance to the isolation area is restricted; control methods include electronic keys, a PIN system, closed-circuit TV, and guards at the doors. In 25 facilities (52%), identification and registration of all staff entering and exiting the isolation area are required. Access control is used in most surveyed centers, but specific lacks exist in some facilities. Further data are needed to assess other biosecurity aspects, such as the security measures during the transportation of potentially contaminated materials and measures to address the risk of an "insider attack."

  20. Design, placement, and sampling of groundwater monitoring wells for the management of hazardous waste disposal facilities

    International Nuclear Information System (INIS)

    Tsai, S.Y.

    1988-01-01

    Groundwater monitoring is an important technical requirement in managing hazardous waste disposal facilities. The purpose of monitoring is to assess whether and how a disposal facility is affecting the underlying groundwater system. This paper focuses on the regulatory and technical aspects of the design, placement, and sampling of groundwater monitoring wells for hazardous waste disposal facilities. Such facilities include surface impoundments, landfills, waste piles, and land treatment facilities. 8 refs., 4 figs

  1. The notion of strategy in facility management

    DEFF Research Database (Denmark)

    Holzweber, Markus

    2013-01-01

    and components of strategy in Facility Management (FM). Since strategy refers to a complex network of thoughts, insights, experiences, expertise, and expectations that provide general guidance for management action, organizations must keep pace with the changing environment to increase market shares and business......Strategy implementation is critical for any type of organization. Strategy implementation is complex despite previous research describing mechanisms related to the construction of strategy and strategy use of organizations. In this article I attempt to fill this vacuity by examining strategy...... success. Based on a literature review, the findings of the study report a service-strategy classification grid. Such a service-strategy grid provides for a better understanding of the business environment. The study findings are intended to enhance business managers’ understandings of the issues behind FM...

  2. The facilities management market in Denmark

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2010-01-01

    for researching the market but particular the definition of space including acquisition as well as development, administration, operation, maintenance and utilities in the same main product is problematic. Research limitations/implications: The market research is limited to the Danish market, but the results......Purpose: To present the results of market surveys in Denmark, which have been based on and used to test a proposal for a new European standard for a taxonomy of Facilities Management (FM). Design/methodology: The market research included surveys of both the client side and the provider side...... and was carried out by a management consultant company by telephone interviews based on definitions developed from drafts for the European FM taxonomy standard by a university researcher, who is a member of the standardisation work group. Findings: The proposed taxonomy for FM is in general a good basis...

  3. High level radioactive waste management facility design criteria

    International Nuclear Information System (INIS)

    Sheikh, N.A.; Salaymeh, S.R.

    1993-01-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding

  4. Health Systems Readiness to Manage the Hypertension Epidemic in Primary Health Care Facilities in the Western Cape, South Africa: A Study Protocol.

    Science.gov (United States)

    Deuboué Tchialeu, Rodrigue Innocent; Yaya, Sanni; Labonté, Ronald

    2016-02-29

    (IDRC). The study is currently in the data analysis phase and results are expected during the first half of 2016. This investigation will highlight the detailed processes in place for the care of hypertensive patients in primary health care facilities, and thus also identify the challenges. It will also describe the drug supply chain management systems in place and identify their strengths and weaknesses. The findings, along with the estimates from modeling and simulation, will inform the health system minimum requirements to scale-up interventions to manage and control the hypertension epidemic in the Western Cape province of South Africa.

  5. Program management system manual

    International Nuclear Information System (INIS)

    1989-08-01

    OCRWM has developed a program management system (PMS) to assist in organizing, planning, directing and controlling the Civilian Radioactive Waste Management Program. A well defined management system is necessary because: (1) the Program is a complex technical undertaking with a large number of participants, (2) the disposal and storage facilities to be developed by the Program must be licensed by the Nuclear Regulatory Commission (NRC) and hence are subject to rigorous quality assurance (QA) requirements, (3) the legislation mandating the Program creates a dichotomy between demanding schedules of performance and a requirement for close and continuous consultation and cooperation with external entities, (4) the various elements of the Program must be managed as parts of an integrated waste management system, (5) the Program has an estimated total system life cycle cost of over $30 billion, and (6) the Program has a unique fiduciary responsibility to the owners and generators of the nuclear waste for controlling costs and minimizing the user fees paid into the Nuclear Waste Fund. This PMS Manual is designed and structured to facilitate strong, effective Program management by providing policies and requirements for organizing, planning, directing and controlling the major Program functions

  6. Risk management activities at the DOE Class A reactor facilities

    International Nuclear Information System (INIS)

    Sharp, D.A.; Hill, D.J.; Linn, M.A.; Atkinson, S.A.; Hu, J.P.

    1993-01-01

    The probabilistic risk assessment (PRA) and risk management group of the Association for Excellence in Reactor Operation (AERO) develops risk management initiatives and standards to improve operation and increase safety of the DOE Class A reactor facilities. Principal risk management applications that have been implemented at each facility are reviewed. The status of a program to develop guidelines for risk management programs at reactor facilities is presented

  7. Exploring how different modes of governance act across health system levels to influence primary healthcare facility managers' use of information in decision-making: experience from Cape Town, South Africa.

    Science.gov (United States)

    Scott, Vera; Gilson, Lucy

    2017-09-15

    Governance, which includes decision-making at all levels of the health system, and information have been identified as key, interacting levers of health system strengthening. However there is an extensive literature detailing the challenges of supporting health managers to use formal information from health information systems (HISs) in their decision-making. While health information needs differ across levels of the health system there has been surprisingly little empirical work considering what information is actually used by primary healthcare facility managers in managing, and making decisions about, service delivery. This paper, therefore, specifically examines experience from Cape Town, South Africa, asking the question: How is primary healthcare facility managers' use of information for decision-making influenced by governance across levels of the health system? The research is novel in that it both explores what information these facility managers actually use in decision-making, and considers how wider governance processes influence this information use. An academic researcher and four facility managers worked as co-researchers in a multi-case study in which three areas of management were served as the cases. There were iterative cycles of data collection and collaborative analysis with individual and peer reflective learning over a period of three years. Central governance shaped what information and knowledge was valued - and, therefore, generated and used at lower system levels. The central level valued formal health information generated in the district-based HIS which therefore attracted management attention across the levels of the health system in terms of design, funding and implementation. This information was useful in the top-down practices of planning and management of the public health system. However, in facilities at the frontline of service delivery, there was a strong requirement for local, disaggregated information and experiential

  8. Software Manages Documentation in a Large Test Facility

    Science.gov (United States)

    Gurneck, Joseph M.

    2001-01-01

    The 3MCS computer program assists and instrumentation engineer in performing the 3 essential functions of design, documentation, and configuration management of measurement and control systems in a large test facility. Services provided by 3MCS are acceptance of input from multiple engineers and technicians working at multiple locations;standardization of drawings;automated cross-referencing; identification of errors;listing of components and resources; downloading of test settings; and provision of information to customers.

  9. Stores, Weight and Inertial System Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides stores weight, center of gravity, and inertia measurements in support of weapon/aircraft compatibility testing. System provides store weight...

  10. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    International Nuclear Information System (INIS)

    Fritz, R.L.

    1995-01-01

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities

  11. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, R.L.

    1995-01-11

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

  12. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers; Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.

    2001-05-16

    Greening Federal Facilities, Second Edition, is a nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the performance of Federal buildings and facilities. The guide highlights practical actions that facility managers, design and construction staff, procurement officials, and facility planners can take to save energy and money, improve the comfort and productivity of employees, and benefit the environment. It supports a national effort to promote energy and environmental efficiency in the nation's 500,000 Federal buildings and facilities. Topics covered include current Federal regulations; environmental and energy decision-making; site and landscape issues; building design; energy systems; water and wastewater; materials; waste management, and recycling; indoor environmental quality; and managing buildings.

  13. Environmental Management System

    Science.gov (United States)

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management Stewardship » Environmental Protection » Environmental Management System Environmental Management System An Environmental Management System is a systematic method for assessing mission activities, determining the

  14. Technical Facilities Management, Loan Pool, and Calibration

    Science.gov (United States)

    Smith, Jacob

    2011-01-01

    My work at JPL for the SURF program began on June 11, 2012 with the Technical Facilities Management group (TFM). As well as TFM, I worked with Loan Pool and Metrology to help them out with various tasks. Unlike a lot of other interns, I did not have a specific project rather many different tasks to be completed over the course of the 10 weeks.The first task to be completed was to sort through old certification reports in 6 different boxes to locate reports that needed to be archived into a digital database. There were no reports within these boxes that needed to be archived but rather were to be shredded. The reports went back to the early 1980's and up to the early 2000's. I was looking for reports dated from 2002 to 2012

  15. Transuranic waste management program and facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PRFPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  16. Transuranic Waste Management Program and Facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-02-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PREPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  17. 21 CFR 58.31 - Testing facility management.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing facility management. 58.31 Section 58.31... management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  18. Study on HVAC system in nuclear facility

    International Nuclear Information System (INIS)

    Baeg, S. Y.; Song, W. S.; Oh, Y. O.; Ju, Y. S.; Hong, K. P.

    2003-01-01

    Heating, Ventilation and Air Conditioning (HVAC) system in nuclear facility should be equipped and constructed more stable and allowable than that in common facility. The purpose of HVAC system is the maintenance of optimum working environment, the protection of worker against a contaminated air and the prevention of atmospheric contamination due to an outward ventilation, etc.. The basic scheme of a safety operation of nuclear facility is to prevent the atmospheric contamination even in low level. The adaptability of HVAC system which is in operation. In this study, the design requirements of HVAC system in nuclear facility and the HVAC systems in foreign countries are reviewed, and the results can be utilized in the design of HVAC system in nuclear facility

  19. Management control system description

    Energy Technology Data Exchange (ETDEWEB)

    Bence, P. J.

    1990-10-01

    This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.

  20. Saving Energy. Managing School Facilities, Guide 3.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  1. Fire Safety. Managing School Facilities, Guide 6.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This booklet discusses how United Kingdom schools can manage fire safety and minimize the risk of fire. The guide examines what legislation school buildings must comply with and covers the major risks. It also describes training and evacuation procedures and provides guidance on fire precautions, alarm systems, fire fighting equipment, and escape…

  2. Quality management system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mu Sung

    2009-08-15

    This book deals with ISO9001 quality management system which includes summary of this system such as classification of quality, principle of quality management, and definition, requirement and procedure of quality management system, introduction of ISO9001 system like model of ISO9001 quality management system, ISO certificate system, structure of ISO9001 standard, requirement of ISO9001 quality management system, process approach and documentation of system, propel cases of ISO9001 quality management system.

  3. Quality management system

    International Nuclear Information System (INIS)

    Lee, Mu Sung

    2009-08-01

    This book deals with ISO9001 quality management system which includes summary of this system such as classification of quality, principle of quality management, and definition, requirement and procedure of quality management system, introduction of ISO9001 system like model of ISO9001 quality management system, ISO certificate system, structure of ISO9001 standard, requirement of ISO9001 quality management system, process approach and documentation of system, propel cases of ISO9001 quality management system.

  4. Brayton Isotope Power System (BIPS) facility specification

    International Nuclear Information System (INIS)

    1976-01-01

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included

  5. Brayton Isotope Power System (BIPS) facility specification

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-31

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included.

  6. Quality management systems in radiology

    Directory of Open Access Journals (Sweden)

    Geoffrey K. Korir

    2013-08-01

    Objective: To assess the level of quality management systems in X-ray medical facilities in Kenya. Methods: Quality management inspection, quality control performance tests and patient radiation exposure were assessed in 54 representative X-ray medical facilities. Additionally, a survey of X-ray examination frequency was conducted in 140 hospitals across the country. Results: The overall findings placed the country’s X-ray imaging quality management systems at 61±3% out of a possible 100%. The most and the least quality assurance performance indicators were general radiography X-ray equipment quality control tests at 88±4%, and the interventional cardiology adult examinations below diagnostic reference level at 25±1%, respectively. Conclusions: The study used a systematic evidence-based approach for the assessment of national quality management systems in radiological practice in clinical application, technical conduct of the procedure, image quality criteria, and patient characteristics as part of the quality management programme.

  7. Professional Development through Organizational Assessment: Using APPA's Facilities Management Evaluation Program

    Science.gov (United States)

    Medlin, E. Lander; Judd, R. Holly

    2013-01-01

    APPA's Facilities Management Evaluation Program (FMEP) provides an integrated system to optimize organizational performance. The criteria for evaluation not only provide a tool for organizational continuous improvement, they serve as a compelling leadership development tool essential for today's facilities management professional. The senior…

  8. Decommissioning Work Modeling System for Nuclear Facility Decommissioning Design

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, W. H.; Choi, Y. D.; Moon, J. K.

    2012-01-01

    During the decommissioning activities of the KRR-1 and 2 (Korea Research Reactor 1 and 2) and UCP (Uranium Conversion Plant), all information and data, which generated from the decommissioning project, were record, input and managed at the DECOMMIS (DECOMMissioning Information management System). This system was developed for the inputting and management of the data and information of the man-power consumption, operation time of the dismantling equipment, the activities of the radiation control, dismantled waste management and Q/A activities. When a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste volume and estimating the cost of the decommissioning project. That is why, the DEFACS (DEcommissioning FAcility Characterization DB System) was established for the management of the facility characterization data. The DEWOCS (DEcommissioning WOrk-unit productivity Calculation System) was developed for the calculation of the workability on the decommissioning activities. The work-unit productivities are calculated through this system using the data from the two systems, DECOMMIS and DEFACS. This result, the factors of the decommissioning work-unit productivities, will be useful for the other nuclear facility decommissioning planning and engineering. For this, to set up the items and plan for the decommissioning of the new objective facility, the DEMOS (DEcommissioning work Modeling System) was developed. This system is for the evaluation the cost, man-power consumption of workers and project staffs and technology application time. The factor of the work-unit productivities from the DEWOCS and governmental labor cost DB and equipment rental fee DB were used for the calculation the result of the DEMOS. And also, for the total system, DES (Decommissioning Engineering System), which is now

  9. THE COMBINED USE OF BUSINESS MANAGEMENT WITH FACILITY MANAGEMENT AS AN OPTION FOR INTELLIGENT BUILDING

    Directory of Open Access Journals (Sweden)

    Andreas Dittmar Weise

    2014-01-01

    Full Text Available Words like Business Management (BM and Facility Management (FM are well known as separate management methods. FM offers transparency about their property costs and exploitation, starting from the planning phase until its demolition. The investor sees this in the property invested capital and its recoverable yield. This means they also want a profit with their real estates. Besides this, changes in the social and environmental requirements become necessary to adapt the properties. The solution is called Intelligent Building. Its primary aim is to collect and select previous knowledge and information about Facility Management and Business Management. It is an application, mainly with sight to characterize and describe the possibilities of use of intelligent buildings as a combination of Facility and Business Management. This paper is an indirect survey carried out through a documental procedure in the form of a bibliographic research and theoretician study. Intelligent Building as combination of FM and BM is new, but in our times necessary to satisfy the needs of the demand. This type of building needs to be flexible in its structure and services, open for changes in environmental requirements, e.g. saving energy, and needs a lot of technology to realize their functions. Consequently, it will be sustainable for a value enhancement. With a Computer Aided Facilities Management system this is possible and the company will be more flexible in relation to the competitors and future changes.

  10. Graphics-based nuclear facility modeling and management

    International Nuclear Information System (INIS)

    Rod, S.R.

    1991-07-01

    Nuclear waste management facilities are characterized by their complexity, many unprecedented features, and numerous competing design requirements. This paper describes the development of comprehensive descriptive databases and three-dimensional models of nuclear waste management facilities and applies the database/model to an example facility. The important features of the facility database/model are its abilities to (1) process large volumes of site data, plant data, and nuclear material inventory data in an efficient, integrated manner; (2) produce many different representations of the data to fulfill information needs as they arise; (3) create a complete three-dimensional solid model of the plant with all related information readily accessible; and (4) support complete, consistent inventory control and plant configuration control. While the substantive heart of the system is the database, graphic visualization of the data vastly improves the clarity of the information presented. Graphic representations are a convenient framework for the presentation of plant and inventory data, allowing all types of information to be readily located and presented in a manner that is easily understood. 2 refs., 5 figs., 1 tab

  11. Nuclear facilities maintenance in the core of management-advanced trend in IBM Maximo asset management applications

    International Nuclear Information System (INIS)

    Seino, Satoshi; Ujihara, Satoshi; Kikuyama, Kaoru

    2009-01-01

    European and US plant owners have attached importance to plant maintenance, such as prompt grasp of plant states, implementation of maintenance and planning of maintenance programs, as one of asset management. The US advanced trend was introduced in this feature article through the applications of IBM Maximo Asset Management for nuclear facilities maintenance. World trends of nuclear power and related problems, need of nuclear facilities management, key items for introduction of maintenance management systems, required systems for nuclear maintenance management and introduction of functions of the IBM strategic asset management solution-Maximo were described respectively. (T. Tanaka)

  12. Tritium and ignition target management at the National Ignition Facility.

    Science.gov (United States)

    Draggoo, Vaughn

    2013-06-01

    Isotopic mixtures of hydrogen constitute the basic fuel for fusion targets of the National Ignition Facility (NIF). A typical NIF fusion target shot requires approximately 0.5 mmoles of hydrogen gas and as much as 750 GBq (20 Ci) of 3H. Isotopic mix ratios are specified according to the experimental shot/test plan and the associated test objectives. The hydrogen isotopic concentrations, absolute amounts, gas purity, configuration of the target, and the physical configuration of the NIF facility are all parameters and conditions that must be managed to ensure the quality and safety of operations. An essential and key step in the preparation of an ignition target is the formation of a ~60 μm thick hydrogen "ice" layer on the inner surface of the target capsule. The Cryogenic Target Positioning System (Cryo-Tarpos) provides gas handling, cyro-cooling, x-ray imaging systems, and related instrumentation to control the volumes and temperatures of the multiphase (solid, liquid, and gas) hydrogen as the gas is condensed to liquid, admitted to the capsule, and frozen as a single spherical crystal of hydrogen in the capsule. The hydrogen fuel gas is prepared in discrete 1.7 cc aliquots in the LLNL Tritium Facility for each ignition shot. Post-shot hydrogen gas is recovered in the NIF Tritium Processing System (TPS). Gas handling systems, instrumentation and analytic equipment, material accounting information systems, and the shot planning systems must work together to ensure that operational and safety requirements are met.

  13. Large laser system facility design

    International Nuclear Information System (INIS)

    Gilmartin, T.J.

    1983-01-01

    Optical stability of foundations and support structures, environmental control, close-in subsystem integration, spatial organization, materiel flow and access to remote subsystems is discussed and compared for four laser facilities: The Special Isotope Separation Laboratory, Argus, Shiva/Nova, and Firepond

  14. Vehicle Thermal Management Facilities | Transportation Research | NREL

    Science.gov (United States)

    Integration Facility The Vehicle Testing and Integration Facility features a pad to conduct vehicle thermal station next to the pad provides a continuous data stream on temperature, humidity, wind speed, and solar

  15. Radiation risk management at DOE accelerator facilities

    International Nuclear Information System (INIS)

    Dyck, O.B. van.

    1997-01-01

    The DOE accelerator contractors have been discussing among themselves and with the Department how to improve radiation safety risk management. This activity-how to assure prevention of unplanned high exposures-is separate from normal exposure management, which historically has been quite successful. The ad-hoc Committee on the Accelerator Safety Order and Guidance [CASOG], formed by the Accelerator Section of the HPS, has proposed a risk- based approach, which will be discussed. Concepts involved are risk quantification and comparison (including with non-radiation risk), passive and active (reacting) protection systems, and probabilistic analysis. Different models of risk management will be presented, and the changing regulatory environment will also be discussed

  16. A Framework for Managing Core Facilities within the Research Enterprise

    OpenAIRE

    Haley, Rand

    2009-01-01

    Core facilities represent increasingly important operational and strategic components of institutions' research enterprises, especially in biomolecular science and engineering disciplines. With this realization, many research institutions are placing more attention on effectively managing core facilities within the research enterprise. A framework is presented for organizing the questions, challenges, and opportunities facing core facilities and the academic units and institutions in which th...

  17. A Study on Governance and Human Resources for Cooperative Road Facilities Management

    Science.gov (United States)

    Ohno, Sachiko; Takagi, Akiyoshi; Kurauchi, Fumitaka; Demura, Yoshifumi

    Within today's infrastructure management, Asset Management systems are becoming a mainstream feature. For region where the risk is low, it is necessary to create a "cooperative road facilities management system". This research both examined and suggested what kind of cooperative road facilities management system should be promoted by the regional society. Concretely, this study defines the operational realities of a previous case. It discusses the problem of the road facilities management as a governance. Furthermore, its realization depends on "the cooperation between municipalities", "the private-sector initiative", and "residents participation" .Also, it discusses the problem of human resources for governance. Its realization depends on "the engineers' promotion", and "creation of a voluntary activity of the resident" as a human resources. Moreover, it defines that the intermediary is important because the human resources tied to the governance. As a result, the prospect of the road facilities management is shown by the role of the player and the relation among player.

  18. Materials management information systems.

    Science.gov (United States)

    1996-01-01

    The hospital materials management function--ensuring that goods and services get from a source to an end user--encompasses many areas of the hospital and can significantly affect hospital costs. Performing this function in a manner that will keep costs down and ensure adequate cash flow requires effective management of a large amount of information from a variety of sources. To effectively coordinate such information, most hospitals have implemented some form of materials management information system (MMIS). These systems can be used to automate or facilitate functions such as purchasing, accounting, inventory management, and patient supply charges. In this study, we evaluated seven MMISs from seven vendors, focusing on the functional capabilities of each system and the quality of the service and support provided by the vendor. This Evaluation is intended to (1) assist hospitals purchasing an MMIS by educating materials managers about the capabilities, benefits, and limitations of MMISs and (2) educate clinical engineers and information system managers about the scope of materials management within a healthcare facility. Because software products cannot be evaluated in the same manner as most devices typically included in Health Devices Evaluations, our standard Evaluation protocol was not applicable for this technology. Instead, we based our ratings on our observations (e.g., during site visits), interviews we conducted with current users of each system, and information provided by the vendor (e.g., in response to a request for information [RFI]). We divided the Evaluation into the following sections: Section 1. Responsibilities and Information Requirements of Materials Management: Provides an overview of typical materials management functions and describes the capabilities, benefits, and limitations of MMISs. Also includes the supplementary article, "Inventory Cost and Reimbursement Issues" and the glossary, "Materials Management Terminology." Section 2. The

  19. Management of the high-level nuclear power facilities

    International Nuclear Information System (INIS)

    Preda, Marin

    2003-05-01

    This thesis approaches current issues in the management of the high power nuclear facilities and as such it appears to be important particularly for nuclear power plant operation topics. Of special interest are the failure events entailing possible catastrophic situations. The contents is structured onto ten chapters. The first chapter describes the operation regimes of the nuclear high power facilities. Highlighted here are the thesis scope and the original features of the work. The second chapter deals with operational policies developed in order to ensure the preventive maintenance of the nuclear installations. Also managing structures are described devoted to practical warranting the equipment safety function of non-classical power stations. In the third chapter cases of nuclear accidents are analyzed especially stressing the probabilistic risk and the operation regimes having in view the elimination of catastrophic events. In the fourth and fifth chapters the control of nuclear radiation emission is treated focusing the quality issue of nuclear installations required to avoid hazardous effects at level of nuclear reactor operation stage. At the same time set of operational measures is given here for preventing risks, catastrophes and chaotic situations. The chapter five presents both theoretical and practical approaches of the nuclear reactor core management concerning particularly the fuel testing, the water primary system and the quality of the involved equipment. In the sixth and seventh chapters issues of risk-quality correlations are approached as well as the structure of expert systems for monitoring the operational regimes of nuclear facilities. The efficiency of the power systems with nuclear injection is discussed and some original ideas developed in this work are evidenced in the eighth and ninth chapters. Presented are here both the operational principles and models of raising the efficiency of the interconnected nuclear stations and prices' policy

  20. Bridge Management Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper bridge management systems are discussed with special emphasis on management systems for reinforced concrete bridges. Management systems for prestressed concrete bridges, steel bridges, or composite bridges can be developed in a similar way....

  1. Waste management practices in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Dickson, H.W.

    1979-01-01

    Several thousand sites exist in the United States where nuclear activities have been conducted over the past 30 to 40 years. Questions regarding potential public health hazards due to residual radioactivity and radiation fields at abandoned and inactive sites have prompted careful ongoing review of these sites by federal agencies including the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). In some instances, these reviews are serving to point out poor low-level waste management practices of the past. Many of the sites in question lack adequate documentation on the radiological conditions at the time of release for unrestricted use or were released without appropriate restrictions. Recent investigations have identified residual contamination and radiation levels on some sites which exceed present-day standards and guidelines. The NRC, DOE, and Environmental Protection Agency are all involved in developing decontamination and decommissioning (D and D) procedures and guidelines which will assure that nuclear facilities are decommissioned in a manner that will be acceptable to the nuclear industry, various regulatory agencies, other stakeholders, and the general public

  2. National Ignition Facility and managing location, component, and state

    Energy Technology Data Exchange (ETDEWEB)

    Foxworthy, Cemil, E-mail: foxworthy3@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Fung, Tracy; Beeler, Rich; Li, Joyce; Dugorepec, Jasna; Chang, Cathy [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer NIF in comprised of over 100k serialized parts that must be tracked and maintained. Black-Right-Pointing-Pointer We discuss a web-based integrated parts management system designed for NIF. Black-Right-Pointing-Pointer The parts database stores associated calibration data with effective dates. Black-Right-Pointing-Pointer The system interfaces with the NIF control system and performance models. Black-Right-Pointing-Pointer Work activity (Permits, Problem Logs, Work Orders) are managed by the system. - Abstract: The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-MJ, 500-TW, ultraviolet laser system coupled with a 10-m diameter target chamber. There are over 6200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements

  3. National Ignition Facility and managing location, component, and state

    International Nuclear Information System (INIS)

    Foxworthy, Cemil; Fung, Tracy; Beeler, Rich; Li, Joyce; Dugorepec, Jasna; Chang, Cathy

    2012-01-01

    Highlights: ► NIF in comprised of over 100k serialized parts that must be tracked and maintained. ► We discuss a web-based integrated parts management system designed for NIF. ► The parts database stores associated calibration data with effective dates. ► The system interfaces with the NIF control system and performance models. ► Work activity (Permits, Problem Logs, Work Orders) are managed by the system. - Abstract: The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-MJ, 500-TW, ultraviolet laser system coupled with a 10-m diameter target chamber. There are over 6200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  4. A systems approach to nuclear facility monitoring

    International Nuclear Information System (INIS)

    Argo, P.E.; Doak, J.E.; Howse, J.W.

    1996-01-01

    Sensor technology for use in nuclear facility monitoring has reached an advanced stage of development. Research on where to place these sensors in a facility and how to combine their outputs in a meaningful fashion does not appear to be keeping pace. In this paper, the authors take a global view of the problem where sensor technology is viewed as only one piece of a large puzzle. Other pieces of this puzzle include the optimal location and type of sensors used in a specific facility, the rate at which sensors record information, and the risk associated with the materials/processes at a facility. If the data are analyzed off-site, how will they be transmitted? Is real-time analysis necessary? Is one monitoring only the facility itself, or might one also monitor the processing that occurs there (e.g., tank levels and concentrations)? How is one going to combine the outputs from the various sensors to give us an accurate picture of the state of the facility? This paper will not try to answer all these questions, but rather it will attempt to stimulate thought in this area by formulating a systems approach to the problem demonstrated by a prototype system and a system proposed for an actual facility. The focus will be on the data analysis aspect of the problem. Future work in this area should focus on recommendations and guidelines for a monitoring system based upon the type of facility and processing that occurs there

  5. Small supermarket management system

    Institute of Scientific and Technical Information of China (English)

    曹正

    2016-01-01

    This system USES the Java language in the MyEclipse platform development tool, SQL2005 as the database platform for data and data, the SQL2005 required for the user operating system. It mainly implements the daily management of goods, including purchase management, inventory management, sales management, personnel management and supplier management. The system can also complete the functions of browsing, querying, adding, deleting and modifying relevant information. This topic is the core of the stock management, inventory management and sales management, at the same time, the system also has the full user management and permissions management function..

  6. Physics detector simulation facility system software description

    International Nuclear Information System (INIS)

    Allen, J.; Chang, C.; Estep, P.; Huang, J.; Liu, J.; Marquez, M.; Mestad, S.; Pan, J.; Traversat, B.

    1991-12-01

    Large and costly detectors will be constructed during the next few years to study the interactions produced by the SSC. Efficient, cost-effective designs for these detectors will require careful thought and planning. Because it is not possible to test fully a proposed design in a scaled-down version, the adequacy of a proposed design will be determined by a detailed computer model of the detectors. Physics and detector simulations will be performed on the computer model using high-powered computing system at the Physics Detector Simulation Facility (PDSF). The SSCL has particular computing requirements for high-energy physics (HEP) Monte Carlo calculations for the simulation of SSCL physics and detectors. The numerical calculations to be performed in each simulation are lengthy and detailed; they could require many more months per run on a VAX 11/780 computer and may produce several gigabytes of data per run. Consequently, a distributed computing environment of several networked high-speed computing engines is envisioned to meet these needs. These networked computers will form the basis of a centralized facility for SSCL physics and detector simulation work. Our computer planning groups have determined that the most efficient, cost-effective way to provide these high-performance computing resources at this time is with RISC-based UNIX workstations. The modeling and simulation application software that will run on the computing system is usually written by physicists in FORTRAN language and may need thousands of hours of supercomputing time. The system software is the ''glue'' which integrates the distributed workstations and allows them to be managed as a single entity. This report will address the computing strategy for the SSC

  7. Communication Facilities for Distributed Systems

    Directory of Open Access Journals (Sweden)

    V. Barladeanu

    1997-01-01

    Full Text Available The design of physical networks and communication protocols in Distributed Systems can have a direct impact on system efficiency and reliability. This paper tries to identify efficient mechanisms and paradigms for communication in distributed systems.

  8. Facility specialists and inspectorate staff of the nuclear regulatory authority training in the field of management systems in compliance with the latest IAEA standards

    International Nuclear Information System (INIS)

    Kapralov, E.; Kapralov, Y.; Kozlov, V.; Filimonov, G.

    2007-01-01

    A problem of reducing a human factor negative influence reduction upon nuclear safety should be solved on the whole at the expense of introducing integrated management systems with a comprehensive application of regulatory control, training and inspections. This paper covers FSUE VO Safety and Training and Methodical Center of Nuclear and Radiation Safety approach towards training matters, which is one of the key factors in implementing quality and safety management systems. (author)

  9. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  10. Use of fire hazard analysis to cost effectively manage facility modifications

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, K., E-mail: kkruger@plcfire.com [PLC Fire Safety Solutions, Fredericton, NB (Canada); Cronk, R., E-mail: rcronk@plcfire.com [PLC Fire Safety Solutions, Mississauga, ON (Canada)

    2014-07-01

    In Canada, licenced Nuclear power facilities, or facilities that process, handle or store nuclear material are required by the Canadian Nuclear Safety Commission to have a change control process in place. These processes are in place to avoid facility modifications that could result in an increase in fire hazards, or degradation of fire protection systems. Change control processes can have a significant impact on budgets associated with plant modifications. A Fire Hazard Analysis (FHA) is also a regulatory requirement for licenced facilities in Canada. An FHA is an extensive evaluation of a facility's construction, nuclear safety systems, fire hazards, and fire protection features. This paper is being presented to outline how computer based data management software can help organize facilities' fire safety information, manage this information, and reduce the costs associated with preparation of FHAs as well as facilities' change control processes. (author)

  11. Modern technology for psychological well-being. Facility management systems at the psychiatric therapy center `Hard` at Embrach; Moderne Technik fuer gute Psyche. Einsatz von Gebaeudeautomation im Psychiatrie-Zentrum Hard in Embrach

    Energy Technology Data Exchange (ETDEWEB)

    Boxler, C. [Boxler MSRL-Engineering fuer Gebaeudeautomation AG, Jona (Switzerland)

    1998-04-01

    The central heating system of Hard hospital center was due for modernisation. The new control systems were to be integrated in the existing facility management system. The contribution describes the modernisation and reconstruction project, from the preliminary projecting stages to the start-up of the new system. (orig.) [Deutsch] Bei der Klinik Hard musste die Heizzentrale saniert und die Waermeerzeugung modernisiert werden. Dabei sollte die Regel- und Steuerungstechnik in das bestehende Gebaeudeautomationssystem integriert werden. Der folgende Beitrag erlaeutert das entsprechende Projekt fuer die Sanierung und den Umbau der Heizzentrale, von der MSRL-Planung bis hin zur Gewerkeuebergabe. (orig.)

  12. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.

    1993-01-01

    Probabilistic safety assessment methodology is being applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results from facilities used by the first 16 reactors is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  13. Risk communication on the siting of radioactive waste management facility

    International Nuclear Information System (INIS)

    Okoshi, Minoru; Torii, Hiroyuki; Fujii, Yasuhiko

    2007-01-01

    Siting of radioactive waste management facilities frequently raise arguments among stakeholders such as a municipal government and the residents. Risk communication is one of the useful methods of promoting mutual understanding on related risks among stakeholders. In Finland and Sweden, siting selection procedures of repositories for spent nuclear fuels have been carried out successfully with risk communication. The success reasons are analyzed based on the interviews with those who belong to the regulatory authorities and nuclear industries in both countries. Also, in this paper, risk communication among the Japan Radioisotope Association (JRIA), a local government and the general public, which was carried out during the establishment process of additional radioactive waste treatment facilities in Takizawa Village, Iwate Prefecture, is analyzed based on articles in newspapers and interviews with persons concerned. The analysis results showed that good risk communication was not carried out because of the lack of confidence on the JRIA, decision making rules, enough communication chances and economic benefits. In order to make good use of these experiences for the future establishment of radioactive waste management facilities, the lessons learned from these cases are summarized and proposals for good risk communication (establishment of exploratory committee and technical support system for decision making, and measurements to increase familiarity of radioactive waste) are discussed. (author)

  14. Grenada Education Management Information System

    OpenAIRE

    Porta, Emilio; Klein, Jennifer; Arcia, Gustavo; Nannyonjo, Harriet

    2012-01-01

    The Education Management Information System (EMIS) country report for Grenada includes the following headings: background which includes education data in Grenada, EMIS staff, facilities and equipment, EMIS data, and publications; prerequisites of quality; assurances of integrity; methodological soundness; accuracy and reliability; serviceability; and accessibility.

  15. Analysis of environment, safety, and health (ES{ampersand}H) management systems for Department of Energy (DOE) Defense Programs (DP) facilities

    Energy Technology Data Exchange (ETDEWEB)

    Neglia, A. V., LLNL

    1998-03-01

    The purpose of this paper is to provide a summary analysis and comparison of various environment, safety, and health (ES&H) management systems required of, or suggested for use by, the Departrnent of Energy Defense Programs` sites. The summary analysis is provided by means of a comparison matrix, a set of Vean diagrams that highlights the focus of the systems, and an `End Gate` filter diagram that integrates the three Vean diagrams. It is intended that this paper will act as a starting point for implementing a particular system or in establishing a comprehensive site-wide integrated ES&H management system. Obviously, the source documents for each system would need to be reviewed to assure proper implementation of a particular system. The matrix compares nine ES&H management systems against a list of elements generated by identifying the unique elements of all the systems. To simplify the matrix, the elements are listed by means of a brief title. An explanation of the matrix elements is provided in Attachment 2 entitled, `Description of System Elements.` The elements are categorized under the Total Quality Management (TQM) `Plan, Do, Check, Act` framework with the added category of `Policy`. (The TQM concept is explained in the `DOE Quality Management implementation Guidelines,` July 1997 (DOE/QM- 0008)). The matrix provides a series of columns and rows to compare the unique elements found in each of the management systems. A `V` is marked if the element is explicitly identified as part of the particular ES&H management system. An `X` is marked if the element is not found in the particular ES&H management system, or if it is considered to be inadequately addressed. A `?` is marked if incorporation of the element is not clear. Attachment I provides additional background information which explains the justification for the marks in the matrix cells. Through the Vean diagrams and the `End Gate` filter in Section 3, the paper attempts to pictorially display the focus of

  16. Facility information system `SOINS-IIS`; Shisetsu joho kanri system `SOINS-IIS`

    Energy Technology Data Exchange (ETDEWEB)

    Shimaoka, S.; Watanabe, M.; Mizuno, Y. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1998-07-10

    With the informatization in the industry, office space is becoming the center of business activities. Also as to the facility control, a facility control system is required which is added with functions of information service to users and the management support system, in addition to the conventional system used mainly for equipment maintenance. Fuji Electric Co. developed a facility information control system, SOINS-IIS (social information system-infrastructure information system), into which the above-mentioned functions were integrated. The features of the system were presented in examples of the introduction to Ichibankan, YRP (Yokosuka Research Park) Center and R and D Center, NTT DoCoMo. The system roughly has an information service function for facility users, function of management for office staff such as tenant management and bill management, management support function for facility owners and planning departments. Beside the above-mentioned functions, in case of YRP Center, for example, the system has functions of management of reservation of meeting rooms, etc., terminal display of common use information and terminal display of information, and many other management support functions. 10 figs.

  17. Testing lifting systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kling, H.; Laug, R.

    1984-01-01

    Lifting systems in nuclear facilities must be inspected at regular intervals after having undergone their first acceptance test. These inspections are frequently carried out by service firms which not only employ the skilled personnel required for such jobs but also make available the necessary test equipment. The inspections in particular include a number of sophisticated load tests for which test load systems have been developed to allow lifting systems to be tested so that reactor specific boundary conditions are taken into account. In view of the large number of facilities to be inspected, the test load system is a modular system. (orig.) [de

  18. Management Of Experiments And Data At The National Ignition Facility

    International Nuclear Information System (INIS)

    Azevedo, S.; Casey, A.; Beeler, R.; Bettenhausen, R.; Bond, E.; Chandrasekaran, H.; Foxworthy, C.; Hutton, M.; Krammen, J.; Liebman, J.; Marsh, A.; Pannell, T.; Rhodes, J.; Tappero, J.; Warrick, A.

    2011-01-01

    Experiments, or 'shots', conducted at the National Ignition Facility (NIF) are discrete events that occur over a very short time frame (tens of nanoseconds) separated by many hours. Each shot is part of a larger campaign of shots to advance scientific understanding in high-energy-density physics. In one campaign, scientists use energy from the 192-beam, 1.8-Megajoule pulsed laser in the NIF system to symmetrically implode a hydrogen-filled target, thereby creating conditions similar to the interior of stars in a demonstration of controlled fusion. Each NIF shot generates gigabytes of data from over 30 diagnostics that measure optical, x-ray, and nuclear phenomena from the imploding target. We have developed systems to manage all aspects of the shot cycle. Other papers will discuss the control of the lasers and targets, while this paper focuses on the setup and management of campaigns and diagnostics. Because of the low duty cycle of shots, and the thousands of adjustments for each shot (target type, composition, shape; laser beams used, their power profiles, pointing; diagnostic systems used, their configuration, calibration, settings) it is imperative that we accurately define all equipment prior to the shot. Following the shot, and capture of the data by the automatic control system, it is equally imperative that we archive, analyze and visualize the results within the required 30 minutes post-shot. Results must be securely archived, approved, web-visible and downloadable in order to facilitate subsequent publication. To-date NIF has successfully fired over 2,500 system shots, as well as thousands of test firings and dry-runs. We will present an overview of the highly-flexible and scalable campaign management systems and tools employed at NIF that control experiment configuration of the facility all the way through presentation of analyzed results.

  19. Development techniques of computerized maintenance Management system

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yon Woo; Kim, S D; Soong, W S; Kim, G H; Oh, W H; Kim, Y G

    2000-05-01

    Normal operation of the facility is one of the key factors in the accomplishments of research goals. As confirmed by a case study of the influence of the facility operation condition on the research results, emphasis should be put on the facility preserve management. Facilities should be maintained in solid operational condition and their malfunctions should be repaired as soon as possible. The purpose of this project is to make propositions on the development of the facility preserve management system which is to maximize the efficiency of the budget execution, manpower organization and maintenance planning, and is to minimize the duration of the operational pause due to malfunctions with the least disbursement.

  20. Development techniques of computerized maintenance Management system

    International Nuclear Information System (INIS)

    Oh, Yon Woo; Kim, S.D.; Soong, W.S.; Kim, G.H.; Oh, W.H.; Kim, Y.G.

    2000-05-01

    Normal operation of the facility is one of the key factors in the accomplishments of research goals. As confirmed by a case study of the influence of the facility operation condition on the research results, emphasis should be put on the facility preserve management. Facilities should be maintained in solid operational condition and their malfunctions should be repaired as soon as possible. The purpose of this project is to make propositions on the development of the facility preserve management system which is to maximize the efficiency of the budget execution, manpower organization and maintenance planning, and is to minimize the duration of the operational pause due to malfunctions with the least disbursement

  1. Understanding and Managing Aging of Spent Nuclear Fuel and Facility Components in Wet Storage

    International Nuclear Information System (INIS)

    Johnson, A. B.

    2007-01-01

    Storage of nuclear fuel after it has been discharged from reactors has become the leading spent fuel management option. Many storage facilities are being required to operate longer than originally anticipated. Aging is a term that has emerged to focus attention on the consequences of extended operation on systems, structures, and components that comprise the storage facilities. The key to mitigation of age-related degradation in storage facilities is to implement effective strategies to understand and manage aging of the facility materials. A systematic approach to preclude serious effects of age-related degradation is addressed in this paper, directed principally to smaller facilities (test and research reactors). The first need is to assess the materials that comprise the facility and the environments that they are subject to. Access to historical data on facility design, fabrication, and operation can facilitate assessment of expected materials performance. Methods to assess the current condition of facility materials are summarized in the paper. Each facility needs an aging management plan to define the scope of the management program, involving identification of the materials that need specific actions to manage age-related degradation. For each material identified, one or more aging management programs are developed and become part of the plan Several national and international organizations have invested in development of comprehensive and systematic approaches to aging management. A method developed by the US Nuclear Regulatory Commission is recommended as a concise template to organize measures to effectively manage age-related degradation of storage facility materials, including the scope of inspection, surveillance, and maintenance that is needed to assure successful operation of the facility over its required life. Important to effective aging management is a staff that is alert for evidence of materials degradation and committed to carry out the aging

  2. 1995 Baseline solid waste management system description

    International Nuclear Information System (INIS)

    Anderson, G.S.; Konynenbelt, H.S.

    1995-09-01

    This provides a detailed solid waste system description that documents the treatment, storage, and disposal (TSD) strategy for managing Hanford's solid low-level waste, low-level mixed waste, transuranic and transuranic mixed waste, and greater-than-Class III waste. This system description is intended for use by managers of the solid waste program, facility and system planners, as well as system modelers. The system description identifies the TSD facilities that constitute the solid waste system and defines these facilities' interfaces, schedules, and capacities. It also provides the strategy for treating each of the waste streams generated or received by the Hanford Site from generation or receipt through final destination

  3. ESCO as Innovative Facilities Management in Danish Municipalities

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole; Oesten, Pimmie; Nielsen, Susanne Balslev

    2010-01-01

     Purpose:  Increasing energy efficiency of existing buildings is high on the Facility Management (FM) agenda, therefore building owners and FM Managers need insight into a variety of organizational possibilities for energy renovation projects. This paper explores how ESCO can foster innovative....... It is the first publication from the project "Energy Service Concepts" carried out at the Danish Centre for Facilities Management (www.cfm.dtu.dk). Results have not been published before....

  4. Research notes : drainage facility asset management : more than an inventory of pipes.

    Science.gov (United States)

    2007-04-01

    The primary objectives for the research project were twofold: 1) To develop and implement an Oregon-specific system for inventorying and evaluating the condition of pipes, culverts, and stormwater facilities based on the FHWA Culvert Management Syste...

  5. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  6. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    International Nuclear Information System (INIS)

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included

  7. Laboratory information management system proposal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.; Schweitzer, S.; Adams, C.; White, S. [Tennessee Univ., Knoxville, TN (United States)

    1992-08-01

    The objectives of this paper is design a user friendly information management system using a relational database in order to: allow customers direct access to the system; provide customers with direct sample tracking capabilities; provide customers with more timely, consistent reporting; better allocate costs for analyses to appropriate customers; eliminate cumbersome and costly papertrails; and enhance facility utilization by laboratory personnel. The resultant savings through increased efficiency provided by this system should more than offset its cost in the long-term.

  8. Laboratory information management system proposal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.; Schweitzer, S.; Adams, C.; White, S. (Tennessee Univ., Knoxville, TN (United States))

    1992-01-01

    The objectives of this paper is design a user friendly information management system using a relational database in order to: allow customers direct access to the system; provide customers with direct sample tracking capabilities; provide customers with more timely, consistent reporting; better allocate costs for analyses to appropriate customers; eliminate cumbersome and costly papertrails; and enhance facility utilization by laboratory personnel. The resultant savings through increased efficiency provided by this system should more than offset its cost in the long-term.

  9. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Graf, F.A. Jr.

    1995-02-27

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System`s pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System.

  10. A system approach to nuclear facility monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.E.; Doak, J.E.; Howse, J.W.

    1996-09-01

    Sensor technology for use in nuclear facility monitoring has reached and advanced stage of development. Research on where to place these sensors in a facility and how to combine their outputs in a meaningful fashion does not appear to be keeping pace. In this paper, we take a global view of the problem where sensor technology is viewed as only one piece of a large puzzle. Other pieces of this puzzle include the optimal location and type of sensors used in a specific facility, the rate at which sensors record information, and the risk associated with the materials/processes at a facility. If the data are analyzed off-site, how will they be transmitted? Is real-time analysis necessary? Are we monitoring only the facility itself, or might we also monitor the processing that occurs there? How are we going to combine the output from the various sensors to give us an accurate picture of the state of the facility? This paper will not try to answer all these questions, but rather it will attempt to stimulate thought in this area by formulating a systems approach to the problem demonstrated by a prototype system and a systems proposed for an actual facility. Our focus will be on the data analysis aspect of the problem.

  11. Design of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dae Yong; Lee, Byung Doo; Kwack, Eun Ho; Choi, Young Myong

    2001-05-01

    We are developing Safeguards Information Treatment System at the facility level(SITS) to manage synthetically safeguards information and to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, we described the contents of the detailed design of SITS such as database, I/O layout and program. In the present, we are implementing the SITS based on the contents of the design of SITS, and then we plan to provide the system for the facilities after we finish implementing and testing the system.

  12. Design of safeguards information treatment system at the facility level

    International Nuclear Information System (INIS)

    Song, Dae Yong; Lee, Byung Doo; Kwack, Eun Ho; Choi, Young Myong

    2001-05-01

    We are developing Safeguards Information Treatment System at the facility level(SITS) to manage synthetically safeguards information and to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, we described the contents of the detailed design of SITS such as database, I/O layout and program. In the present, we are implementing the SITS based on the contents of the design of SITS, and then we plan to provide the system for the facilities after we finish implementing and testing the system

  13. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  14. Device configuration-management system

    International Nuclear Information System (INIS)

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information

  15. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  16. Radiation management computer system for Monju

    International Nuclear Information System (INIS)

    Aoyama, Kei; Yasutomo, Katsumi; Sudou, Takayuki; Yamashita, Masahiro; Hayata, Kenichi; Ueda, Hajime; Hosokawa, Hideo

    2002-01-01

    Radiation management of nuclear power research institutes, nuclear power stations and other such facilities are strictly managed under Japanese laws and management policies. Recently, the momentous issues of more accurate radiation dose management and increased work efficiency has been discussed. Up to now, Fuji Electric Company has supplied a large number of Radiation Management Systems to nuclear power stations and related nuclear facilities. We introduce the new radiation management computer system with adopted WWW technique for Japan Nuclear Cycle Development Institute, MONJU Fast Breeder Reactor (MONJU). (author)

  17. Facility Management as a Way of Reducing Costs in Transport Companies

    Science.gov (United States)

    Matusova, Dominika; Gogolova, Martina

    2017-10-01

    For facility management exists a several interpretations. These interpretations emerged progressively. At the time of the notion of facility management was designed to manage an administrative building, in the United States (US). They can ensure their operation and maintenance. From the US, this trend is further moved to Europe and now it start becoming a current and actual topic also in Slovakia. Facility management is contractually agreed scheme of services, semantically recalls traditional building management. There by finally pushed for activities related to real estates. For facility management is fundamental - certification and certification systems. Therefore, is essential to know, the cost structure of certification. The most commonly occurring austerity measures include: heat pumps, use of renewable energy, solar panels and water savings. These measures can reduce the cost.

  18. Upgrading safety systems of industrial irradiation facilities

    International Nuclear Information System (INIS)

    Gomes, R.S.; Gomes, J.D.R.L.; Costa, E.L.C.; Costa, M.L.L.; Thomé, Z.D.

    2017-01-01

    The first industrial irradiation facility in operation in Brazil was designed in the 70s. Nowadays, twelve commercial and research facilities are in operation and two already decommissioned. Minor modifications and upgrades, as sensors replacement, have been introduced in these facilities, in order to reduce the technological gap in the control and safety systems. The safety systems are designed in agreement with the codes and standards at the time. Since then, new standards, codes and recommendations, as well as lessons learned from accidents, have been issued by various international committees or regulatory bodies. The rapid advance of the industry makes the safety equipment used in the original construction become obsolete. The decreasing demand for these older products means that they are no longer produced, which can make it impossible or costly to obtain spare parts and the expansion of legacy systems to include new features. This work aims to evaluate existing safety systems at Brazilian irradiation facilities, mainly the oldest facilities, taking into account the recommended IAEA's design requirements. Irrespective of the fact that during its operational period no event with victims have been recorded in Brazilian facilities, and that the regulatory inspections do not present any serious deviations regarding the safety procedures, it is necessary an assessment of safety system with the purpose of bringing their systems to 'the state of the art', avoiding their rapid obsolescence. This study has also taken into account the knowledge, concepts and solutions developed to upgrading safety system in irradiation facilities throughout the world. (author)

  19. Upgrading safety systems of industrial irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, R.S.; Gomes, J.D.R.L.; Costa, E.L.C.; Costa, M.L.L., E-mail: rogeriog@cnen.gov.br, E-mail: jlopes@cnen.gov.br, E-mail: evaldo@cnen.gov.br, E-mail: mara@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear; Thomé, Z.D., E-mail: zielithome@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    The first industrial irradiation facility in operation in Brazil was designed in the 70s. Nowadays, twelve commercial and research facilities are in operation and two already decommissioned. Minor modifications and upgrades, as sensors replacement, have been introduced in these facilities, in order to reduce the technological gap in the control and safety systems. The safety systems are designed in agreement with the codes and standards at the time. Since then, new standards, codes and recommendations, as well as lessons learned from accidents, have been issued by various international committees or regulatory bodies. The rapid advance of the industry makes the safety equipment used in the original construction become obsolete. The decreasing demand for these older products means that they are no longer produced, which can make it impossible or costly to obtain spare parts and the expansion of legacy systems to include new features. This work aims to evaluate existing safety systems at Brazilian irradiation facilities, mainly the oldest facilities, taking into account the recommended IAEA's design requirements. Irrespective of the fact that during its operational period no event with victims have been recorded in Brazilian facilities, and that the regulatory inspections do not present any serious deviations regarding the safety procedures, it is necessary an assessment of safety system with the purpose of bringing their systems to 'the state of the art', avoiding their rapid obsolescence. This study has also taken into account the knowledge, concepts and solutions developed to upgrading safety system in irradiation facilities throughout the world. (author)

  20. Public Facilities Management and Action Research for Sustainability

    DEFF Research Database (Denmark)

    Galamba, Kirsten Ramskov

    Current work is the main product of a PhD study with the initial working title ‘Sustainable Facilities Management’ at Centre for Facilities Management – Realdania Research, DTU Management 1. December 2008 – 30. November 2011. Here the notion of Public Sustainable Facilities Management (FM......) is analysed in the light of a change process in a Danish Municipal Department of Public Property. Three years of Action Research has given a unique insight in the reality in a Municipal Department of Public Property, and as to how a facilitated change process can lead to a more holistic and sustainable...

  1. National Ignition Facility and Managing Location, Component, and State

    Energy Technology Data Exchange (ETDEWEB)

    Foxworthy, C; Fung, T; Beeler, R; Li, J; Dugorepec, J; Chang, C

    2011-07-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  2. National Ignition Facility and Managing Location, Component, and State

    International Nuclear Information System (INIS)

    Foxworthy, C.; Fung, T.; Beeler, R.; Li, J.; Dugorepec, J.; Chang, C.

    2011-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  3. Controlling changes - lessons learned from waste management facilities

    International Nuclear Information System (INIS)

    Johnson, B.M.; Koplow, A.S.; Stoll, F.E.; Waetje, W.D.

    1995-01-01

    This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-level waste through compaction, incineration, and sizing operations. WROC and WERF's efforts aim to improve change control processes that have worked inefficiently in the past

  4. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    International Nuclear Information System (INIS)

    Graf, F.A. Jr.

    1995-01-01

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System's pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System

  5. Design of radioisotope power systems facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.C.; Wiemers, M.J.

    1991-01-01

    Radioisotope power systems currently produced for the U.S. Department of Energy Office of Special Applications by the Mound Laboratory at Miamisburg, Ohio, have been used in a variety of configurations by the Department of Defense and the National Aeronautics and Space Administration. A forecast of fugure radioisotope power systems requirements showed a need for an increased production rate beyond the capability of the existing Mound Laboratory. Westinghouse Hanford Company is modifying the Fuels and Materials Examination Facility on the Hanford Site near Richland, Washington, to install the new Radioisotope Power Systems Facility for assembling future radioisotope power systems. The facility is currently being prepared to assemble the radioisotope thermoelectric generators required by the National Aeronautics and Space Administration missions for Comet Rendezvous Asteroid Flyby in 1995 and Cassini, an investigation of Saturn and its moons, in 1996

  6. Operational performance management of priced facilities

    Science.gov (United States)

    2011-03-01

    The Texas Department of Transportation and its agency partners have implemented various forms of lane management and pricing over the past three decades, including HOV lanes, managed lanes, and toll roads. As more of these complex transportation faci...

  7. An Application of Business Process Management to Health Care Facilities.

    Science.gov (United States)

    Hassan, Mohsen M D

    The purpose of this article is to help health care facility managers and personnel identify significant elements of their facilities to address, and steps and actions to follow, when applying business process management to them. The ABPMP (Association of Business Process Management Professionals) life-cycle model of business process management is adopted, and steps from Lean, business process reengineering, and Six Sigma, and actions from operations management are presented to implement it. Managers of health care facilities can find in business process management a more comprehensive approach to improving their facilities than Lean, Six Sigma, business process reengineering, and ad hoc approaches that does not conflict with them because many of their elements can be included under its umbrella. Furthermore, the suggested application of business process management can guide and relieve them from selecting among these approaches, as well as provide them with specific steps and actions that they can follow. This article fills a gap in the literature by presenting a much needed comprehensive application of business process management to health care facilities that has specific steps and actions for implementation.

  8. Advancement adopted for physical protection system at BARC facilities Tarapur

    International Nuclear Information System (INIS)

    Jaroli, Manish; Ameta, Rohit; Patil, V.H.; Dubey, K.

    2015-01-01

    Considering the prevailing security situation and threat perception to the nuclear installations in particular, it has become essential to strengthen security system at BARC Tarapur in an effective manner to avert any attempt of sabotage and to ensure smooth functioning of security and safety of the nuclear installations. International Atomic Energy Agency (IAEA) and Atomic Energy Regulatory Board (AERB) have provided various security guides for the physical protection system (PPS) for nuclear installations and there has been advancement in physical and personnel protection system due to evolution of new technologies. In line with this, latest technologies have been adopted in PPS for BARC facilities, Tarapur recently. This includes state of art RFID card based access control, visitor and contractor management system, electronic key management system. Digital signature based biometric visitor and contractor management system; Digital signature based leave management system; Distress alarm system (DAS); Guard tour monitoring system (GTMS); Secure network access system (SNAS) as well as multilayered access control system at plant level. This will strengthen the surveillance and monitoring of personnel and visitors at BARC facilities. (author)

  9. Analysis of fuel management in the KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Zhaopeng, E-mail: zzhong@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Gohar, Yousry; Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2011-05-15

    Research highlights: > Fuel management of KIPT ADS was analyzed. > Core arrangement was shuffled in stage wise. > New fuel assemblies was added into core periodically. > Beryllium reflector could also be utilized to increase the fuel life. - Abstract: Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility consisting of an electron accelerator driven sub-critical assembly. The neutron source driving the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The sub-critical assembly surrounding the target is fueled with low enriched WWR-M2 type hexagonal fuel assemblies. The U-235 enrichment of the fuel material is <20%. The facility will be utilized for basic and applied research, producing medical isotopes, and training young specialists. With the 100 KW electron beam power, the total thermal power of the facility is {approx}360 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products continuously reduce the system reactivity during the operation, decrease the neutron flux level, and consequently impact the facility performance. To preserve the neutron flux level during the operation, the fuel assemblies should be added and shuffled for compensating the lost reactivity caused by burnup. Beryllium reflector could also be utilized to increase the fuel life time in the sub-critical core. This paper studies the fuel cycles and shuffling schemes of the fuel assemblies of the sub-critical assembly to preserve the system reactivity and the neutron flux level during the operation.

  10. Analysis of fuel management in the KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong Zhaopeng; Gohar, Yousry; Talamo, Alberto

    2011-01-01

    Research highlights: → Fuel management of KIPT ADS was analyzed. → Core arrangement was shuffled in stage wise. → New fuel assemblies was added into core periodically. → Beryllium reflector could also be utilized to increase the fuel life. - Abstract: Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility consisting of an electron accelerator driven sub-critical assembly. The neutron source driving the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The sub-critical assembly surrounding the target is fueled with low enriched WWR-M2 type hexagonal fuel assemblies. The U-235 enrichment of the fuel material is <20%. The facility will be utilized for basic and applied research, producing medical isotopes, and training young specialists. With the 100 KW electron beam power, the total thermal power of the facility is ∼360 kW including the fission power of ∼260 kW. The burnup of the fissile materials and the buildup of fission products continuously reduce the system reactivity during the operation, decrease the neutron flux level, and consequently impact the facility performance. To preserve the neutron flux level during the operation, the fuel assemblies should be added and shuffled for compensating the lost reactivity caused by burnup. Beryllium reflector could also be utilized to increase the fuel life time in the sub-critical core. This paper studies the fuel cycles and shuffling schemes of the fuel assemblies of the sub-critical assembly to preserve the system reactivity and the neutron flux level during the operation.

  11. Tritium Systems Test Facility. Volume I

    International Nuclear Information System (INIS)

    Anderson, G.W.; Battleson, K.W.; Bauer, W.

    1976-10-01

    Sandia Laboratories proposes to build and operate a Tritium Systems Test Facility (TSTF) in its newly completed Tritium Research Laboratory at Livermore, California (see frontispiece). The facility will demonstrate at a scale factor of 1:200 the tritium fuel cycle systems for an Experimental Power Reactor (EPR). This scale for each of the TSTF subsystems--torus, pumping system, fuel purifier, isotope separator, and tritium store--will allow confident extrapolation to EPR dimensions. Coolant loop and reactor hall cleanup facilities are also reproduced, but to different scales. It is believed that all critical details of an EPR tritium system will be simulated correctly in the facility. Tritium systems necessary for interim devices such as the Ignition Test Reactor (ITR) or The Next Step (TNS) can also be simulated in TSTF at other scale values. The active tritium system will be completely enclosed in an inert atmosphere glove box which will be connected to the existing Gas Purification System (GPS) of the Tritium Research Laboratory. In effect, the GPS will become the scaled environmental control system which otherwise would have to be built especially for the TSTF

  12. The BNL Accelerator Test Facility control system

    International Nuclear Information System (INIS)

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package

  13. The added value of Facility management in the educational environment

    NARCIS (Netherlands)

    Kok, H.B.; Mobach, M.; Omta, S.W.F.

    2011-01-01

    Purpose – The purpose of this paper is to define the added value of facility management (FM) in general and to develop a typology of facility services based on their added value in the educational environment. Design/methodology/approach – This paper is based on a literature review and first

  14. Institutional Management of Core Facilities during Challenging Financial Times

    OpenAIRE

    Haley, Rand

    2011-01-01

    The economic downturn is likely to have lasting effects on institutions of higher education, prioritizing proactive institutional leadership and planning. Although by design, core research facilities are more efficient and effective than supporting individual pieces of research equipment, cores can have significant underlying financial requirements and challenges. This paper explores several possible institutional approaches to managing core facilities during challenging financial times.

  15. Institutional management of core facilities during challenging financial times.

    Science.gov (United States)

    Haley, Rand

    2011-12-01

    The economic downturn is likely to have lasting effects on institutions of higher education, prioritizing proactive institutional leadership and planning. Although by design, core research facilities are more efficient and effective than supporting individual pieces of research equipment, cores can have significant underlying financial requirements and challenges. This paper explores several possible institutional approaches to managing core facilities during challenging financial times.

  16. Approaches to the management of waste from health care facilities in Czech Republic and Kazakhstan

    OpenAIRE

    Kaireshev, Ruslan

    2015-01-01

    Waste from healthcare facilities or similar facilities includes components of various physical, chemical and biological character that require special approaches during the handling, specifically with regard to possible risks to human health and the environment. Nowadays a challenge for waste management system becomes waste produced in healthcare facilities and contributes too many reasons, such as population growth and rising life expectancy. The rate of waste production from healthcare faci...

  17. Fire protection system management in nuclear facilities: strengthening factor of integrated management system - a case study; Gestao de sistema de protecao contra incendio em instalacoes nucleares: fator de fortalecimento do sistema de gestao integrada - um estudo de caso

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Joao Regis dos

    2005-07-01

    The present study investigated and analyzed the importance of a system of integrated safety manage, environment and health in a nuclear installation, having as perspective, the fire protection manage. The inquiry was made using a qualitative research involving a case study, where the considered environment was the Reconversion and UO{sub 2} Plant of the Industrias Nucleares do Brasil (INB), located in Resende, Rio de Janeiro and the studied population, the managers and the staff directly involved with the aspects related to the safety of the industrial complex of the related company. The motivation for the research was the search of a bigger interaction of the questions related to the safety, environment and health in the nuclear industry having, as axle of the investigation, the fire protection. As a result, it was observed that in a nuclear installation, although dealing with diversified safety processes, integration is possible and necessary, since there are more reasons for integration than otherwise. (author)

  18. Introducing Systematic Aging Management for Interim Storage Facilities in Germany

    International Nuclear Information System (INIS)

    Spieth-Achtnich, Angelika; Schmidt, Gerhard

    2014-01-01

    In Germany twelve at-reactor and three central (away from reactor) dry storage facilities are in operation, where the fuel is stored in combined transport-and-storage casks. The safety of the storage casks and facilities has been approved and is licensed for up to 40 years operating time. If the availability of a final disposal facility for the stored wastes (spent fuel and high-level wastes from reprocessing) will be further delayed the renewal of the licenses can become necessary in future. Since 2001 Germany had a regulatory guideline for at-reactor dry interim storage of spent fuel. In this guideline some elements of ageing were implemented, but no systematic approach was made for a state-of-the-art ageing management. Currently the guideline is updated to include all kind of storage facilities (central storages as well) and all kinds of high level waste (also waste from reprocessing). Draft versions of the update are under discussion. In these drafts a systematic ageing management is seen as an instrument to upgrade the available technical knowledge base for possible later regulatory decisions, should it be necessary to prolong storage periods to beyond the currently approved limits. It is further recognized as an instrument to prevent from possible and currently unrecognized ageing mechanisms. The generation of information on ageing can be an important basis for the necessary safety-relevant verifications for long term storage. For the first time, the demands for a systematic monitoring of ageing processes for all safety-related components of the storage system are described. In addition, for inaccessible container components such as the seal system, the neutron shielding, the baskets and the waste inventory, the development of a monitoring program is recommended. The working draft to the revised guideline also contains recommendations on non-technical ageing issues such as the long-term preservation of knowledge, long term personnel planning and long term

  19. Grout Treatment Facility Land Disposal Restriction Management Plan

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1991-01-01

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig

  20. Effective and Innovative Practices for Stronger Facilities Management.

    Science.gov (United States)

    Banick, Sarah

    2002-01-01

    Describes the five winners of the APPA's Effective & Innovative Practices Award. These facilities management programs and processes were recognized for enhancing service delivery, lowering costs, increasing productivity, improving customer service, generating revenue, or otherwise benefiting the educational institution. (EV)

  1. Can facility management contribute to study success?

    NARCIS (Netherlands)

    Kok, H.B; Mobach, Mark P.; Omta, S.W.F.; Alexander, K.

    2013-01-01

    Purpose– The present paper aims to explore to what extent the quality of facility services can be related to the differences in educational achievements in higher education. Design/methodology/approach - This paper is based on the first preliminary analyses of a national online survey among 1,752

  2. [Managing the cold chain in healthcare facilities].

    Science.gov (United States)

    Royer, Mathilde; Breton Marchand, Justine; Pons, David

    2017-11-01

    The storage of temperature-sensitive healthcare products requires control of the cold chain. Healthcare facilities must have the appropriate equipment at their disposal and ensure the traceability and monitoring of temperatures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Planning and Managing School Facilities for Agriculture

    Science.gov (United States)

    Staller, Bernie

    1976-01-01

    The Agribusiness Department at Janesville Parker Senior High in Wisconsin involves 360 students and three instructors in three different buildings. Facilities were provided through a variety of methods with major emphasis on utilizing the urban setting. Future Farmers of America students operate projects in orchards, greenhouse, gardens, and…

  4. Nuclear power project management information system

    International Nuclear Information System (INIS)

    Zou Lailong; Zhang Peng; Xiao Ziyan; Chun Zengjun; Huang Futong

    2001-01-01

    Project Management Information System is an important infrastructure facility for the construction and operation of Nuclear Power Station. Based on the practice of Lingao nuclear power project management information system (NPMIS), the author describes the NPMIS design goals, system architecture and software functionality, points out the outline issues during the development and deployment of NPMIS

  5. Does identity shape leadership and management practice? Experiences of PHC facility managers in Cape Town, South Africa

    Science.gov (United States)

    Daire, Judith; Gilson, Lucy

    2014-01-01

    In South Africa, as elsewhere, Primary Health Care (PHC) facilities are managed by professional nurses. Little is known about the dimensions and challenges of their job, or what influences their managerial practice. Drawing on leadership and organizational theory, this study explored what the job of being a PHC manager entails, and what factors influence their managerial practice. We specifically considered whether the appointment of professional nurses as facility managers leads to an identity transition, from nurse to manager. The overall intention was to generate ideas about how to support leadership development among PHC facility managers. Adopting case study methodology, the primary researcher facilitated in-depth discussions (about their personal history and managerial experiences) with eight participating facility managers from one geographical area. Other data were collected through in-depth interviews with key informants, document review and researcher field notes/journaling. Analysis involved data triangulation, respondent and peer review and cross-case analysis. The experiences show that the PHC facility manager’s job is dominated by a range of tasks and procedures focused on clinical service management, but is expected to encompass action to address the population and public health needs of the surrounding community. Managing with and through others, and in a complex system, requiring self-management, are critical aspects of the job. A range of personal, professional and contextual factors influence managerial practice, including professional identity. The current largely facility-focused management practice reflects the strong nursing identity of managers and broader organizational influences. However, three of the eight managers appear to self-identify an emerging leadership identity and demonstrate related managerial practices. Nonetheless, there is currently limited support for an identity transition towards leadership in this context. Better

  6. Management systems in production operations

    International Nuclear Information System (INIS)

    Walters, K.B.; Henderson, G.

    1993-01-01

    The Cullen Enquiry into the Piper Alpha disaster in the U.K. North Sea recommended that an operator should formally present it's company Management System and demonstrate how safety is achieved throughout the life cycle of a platform, from design through operation to abandonment. Brunei Shell Petroleum has prepared a corporate level Safety Management System. As part of Safety Case work, the corporate system is being extended to include the development of specific Management Systems with particular emphasis on offshore production operations involving integrated oil and gas facilities. This paper will describe the development of Management Systems, which includes an intensive Business Process Analysis and will comment upon it's applicability and relationship to ISO 9000. The paper will further describe the applicability and benefits of Management Systems and offer guidance on required effort. The paper will conclude that development of structured Management Systems for safety critical business processes is worthwhile but prioritization of effort will be necessary. As such the full adoption of Management Systems will be directional in nature

  7. Accountability control system in plutonium fuel facility

    International Nuclear Information System (INIS)

    Naruki, Kaoru; Aoki, Minoru; Mizuno, Ohichi; Mishima, Tsuyoshi

    1979-01-01

    More than 30 tons of plutonium-uranium mixed-oxide fuel have been manufactured at the Plutonium Facility in PNC for JOYO, FUGEN and DCA (Deuterium Critical Assembly) and for the purpose of irradiation tests. This report reviews the nuclear material accountability control system adopted in the Plutonium Facility. Initially, the main objective of the system was the criticality control of fissible materials at various stages of fuel manufacturing. The first part of this report describes the functions and the structure of the control system. A flow chart is provided to show the various stages of material flow and their associated computer files. The system is composed of the following three sub-systems: procedures of nuclear material transfer; PIT (Physical Inventory Taking); data retrieval, report preparation and file maintenance. OMR (Optical Mark Reader) sheets are used to record the nuclear material transfer. The MUF (Materials Unaccounted For) are evaluated by PIT every three months through computer processing based on the OMR sheets. The MUF ratio of Pu handled in the facility every year from 1966 to 1977 are presented by a curve, indicating that the MUF ratio was kept well under 0.5% for every project (JOYO, FUGEN, and DCA). As for the Pu safeguards, the MBA (Material Balance Area) and the KMP (Key Measurement Point) in the facility of PNC are illustrated. The general idea of the projected PINC (Plutonium Inventory Control) system in PNC is also shortly explained. (Aoki, K.)

  8. A review of sustainable facilities management knowledge and practice

    Directory of Open Access Journals (Sweden)

    Baaki Timothy Kurannen

    2016-01-01

    Full Text Available Sustainability is seen as a far-reaching issue now, and one which the facilities management [FM] profession cannot overlook. This paper explores current sustainable facilities management [SFM] knowledge and practice with specific focus on performance as part of a research focus toward proposing a sustainable FM performance management framework for sustainable healthcare waste management in Malaysia. This paper utilized a review of extant literature on the subject of SFM, FM performance and FM development in Malaysia as source of information. Findings reflect the increasing recognition of the need for the strategic FM function, and how facilities managers are best positioned to drive organizations’ sustainability agendas. In Malaysian context, this recognition is barely evident as findings show FM practice is still immature and predominantly operational. Unlike developed FM markets, FM relevance in Malaysia is being driven by the public sector. Also findings show a disharmony between organizations’ sustainability priority areas and the responsibilities for facilities managers to execute them where the sustainability policy of organizations prioritize one FM service and the facilities managers’ responsibilities prioritize another. As most of SFM implementation is driven by legislation this seems to strengthen the position that, organizations continue to view support services as non-value-adding, as unavoidable liabilities. The implication of this is the pressure on the FM function to continually express its strategic relevance to organizations by tangible value-adding performance output. This creates a new perspective to measuring and managing facilities performance. This paper therefore elevates the importance of FM performance management in SFM context taking into account the peculiar position of the facilities manager. This is seen as a way forward for FM to better express its value to the organization

  9. Integrating incident investigation into the management system

    International Nuclear Information System (INIS)

    Peterson, E.E.

    1992-01-01

    In the last 10 yr, the size and frequency of incidents affecting the communities and environment surrounding chemical processing facilities has increased. The chemical process industry, which has always concerned itself with the safety of its facilities, has responded by committing to stricter standards of operation and management. A critical element of these management practices is the use of a structured incident investigation program. Many facilities have implemented and disciplined themselves to perform good investigation of incidents. However, most of these facilities maintain incident investigation as part of their safety management programs. This allows the process to be disconnected from the management system that deals with the day-to-day business of the facility. The first step of integration is understanding the objectives and functions of the management system into which the integration is to occur. To begin, a common definition of management is needed. Management, for the purposes of this discussion, is defined as the system of activities used to control, coordinate, and improve the flow of work within a facility or organization. This definition refers to several concepts that need further development in order to understand how incident investigation can be integrated into a management system, including (a) flow of work, (b) control, and (c) improvement. Application can be made to the nuclear industry

  10. Westinghouse Hanford Company risk management strategy for retired surplus facilities

    International Nuclear Information System (INIS)

    Taylor, W.E.; Coles, G.A.; Shultz, M.V.; Egge, R.G.

    1993-09-01

    This paper describes an approach that facilitates management of personnel safety and environmental release risk from retired, surplus Westinghouse Hanford Company-managed facilities during the predemolition time frame. These facilities are located in the 100 and 200 Areas of the 1,450-km 2 (570-mi 2 ) Hanford Site in Richland, Washington. The production reactors are located in the 100 Area and the chemical separation facilities are located in the 200 Area. This paper also includes a description of the risk evaluation process, shows applicable results, and includes a description of comparison costs for different risk reduction options

  11. The scenario-based system of workers training to prevent accidents during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, ByungSeon; Moon, JeiKwon; Hyun, DongJun; Lee, JongHwan; Kim, IkJune; Kim, GeunHo; Seo, JaeSeok

    2014-01-01

    Highlights: • This paper is meant to develop the training system to prevent accidents during decommissioning of nuclear facilities. • Requirements of the system were suggested. • Data management modules of the system were designed. • The system was developed on virtual reality environment. - Abstract: This paper is meant to develop the training system to prevent accidents during decommissioning of nuclear facilities. Requirements of the system were suggested. Data management modules of the system were designed. The system was developed on virtual reality environment. The performance test of the system was proved to be appropriate to decommissioning of nuclear facilities

  12. Biosafety and biosecurity measures: management of biosafety level 3 facilities.

    Science.gov (United States)

    Zaki, Adel N

    2010-11-01

    With the increasing biological threat from emerging infectious diseases and bioterrorism, it has become essential for governments around the globe to increase awareness and preparedness for identifying and containing those agents. This article introduces the basic concepts of laboratory management, laboratory biosafety and laboratory biosecurity. Assessment criteria for laboratories' biorisk should include both biosafety and biosecurity measures. The assessment requires setting specific goals and selecting management approaches. In order to implement technologies at the laboratory working level, a management team should be created whose role is to implement biorisk policies, rules and regulations appropriate for that facility. Rules and regulations required by government authorities are presented, with special emphasis on methods for air control, and liquid and solid waste management. Management and biorisk measures and appropriate physical facilities must keep pace, ensuring efficient facilities that protect workers, the environment, the product (research, diagnostic and/or vaccine) and the biological pathogen. Published by Elsevier B.V.

  13. The mixed waste management facility: Cost-benefit for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Brinker, S.D.; Streit, R.D.

    1996-04-01

    The Mixed Waste Management Facility, or MWMF, has been proposed as a national testbed facility for the demonstration and evaluation of technologies that are alternatives to incineration for the treatment of mixed low-level waste. The facility design will enable evaluation of technologies at pilot scale, including all aspects of the processes, from receiving and feed preparation to the preparation of final forms for disposal. The MWMF will reduce the risk of deploying such technologies by addressing the following: (1) Engineering development and scale-up. (2) Process integration and activation of the treatment systems. (3) Permitting and stakeholder issues. In light of the severe financial constraints imposed on the DOE and federal programs, DOE/HQ requested a study to assess the cost benefit for the MWMF given other potential alternatives to meet waste treatment needs. The MVVMF Project was asked to consider alternatives specifically associated with commercialization and privatization of the DOE site waste treatment operations and the acceptability (or lack of acceptability) of incineration as a waste treatment process. The result of this study will be one of the key elements for a DOE decision on proceeding with the MWMF into Final Design (KD-2) vs. proceeding with other options

  14. Integration of Biosafety into Core Facility Management

    OpenAIRE

    Fontes, Benjamin

    2013-01-01

    This presentation will discuss the implementation of biosafety policies for small, medium and large core laboratories with primary shared objectives of ensuring the control of biohazards to protect core facility operators and assure conformity with applicable state and federal policies, standards and guidelines. Of paramount importance is the educational process to inform core laboratories of biosafety principles and policies and to illustrate the technology and process pathways of the core l...

  15. Risk management study for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-04-01

    Risk from retired surplus facilities has always been assumed to be low at the Hanford Site as the facilities are inactive and have few potentials for causing an offsite hazardous material release. However,the fatal accident that occurred in the spring of 1992 in which an employee fell through a deteriorated roof at the 105-F Reactor Building has raised the possibility that retired facilities represent a greater risk than was originally assumed. Therefore, Westinghouse Hanford Company and the US Department of Energy management have determined that facility risk management strategies and programmatic plans should be reevaluated to assure risks are identified and appropriate corrective action plans are developed. To evaluate risk management strategies, accurate risk information about the current and projected condition of the facilities must be developed. This work procedure has been created to address the development of accurate and timely risk information. By using the evaluation results in this procedure, it will be possible to create a prioritized baseline for managing facility risk until all retired surplus facilities are demolished

  16. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  17. [Implementation of quality management in medical rehabilitation--current challenges for rehabilitation facilities].

    Science.gov (United States)

    Enge, M; Koch, A; Müller, T; Vorländer, T

    2010-12-01

    The legal responsibilities imposed upon rehabilitation facilities under section 20 (2a) SGB IX, necessitate fundamental decisions to be taken regarding the development of quality management systems over and above the existing framework. This article is intended to provide ideas and suggestions to assist rehabilitation facilities in implementing a quality management system, which is required in addition to participation in the quality assurance programmes stipulated by the rehabilitation carriers. In this context, the additional internal benefit a functioning quality management system can provide for ensuring a high level of quality and for maintaining the competitiveness of the rehabilitation facility should be taken into account. The core element of these observations, hence, is a list of requirements which enables assessment of the quality of consultants' performance in setting up a quality management system. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Facilities Management Practices in Malaysia: A Literature Review

    Directory of Open Access Journals (Sweden)

    Isa Nordiana Mohd

    2016-01-01

    Full Text Available Facilities management in Malaysia has been practiced for decades. The development of its formal practice parallels the improvement of the built environment in the nation. Involvement of the public and private sectors teaming up in arranging the National Asset and Facilities Management (NAFAM in demonstrates the vital collaboration in the facilities management area in Malaysia. Facilities management is seen distinctively as indicated by diverse geographical locations, interests and schools of thought. Facilities management is delegated a service-based industry which gives proficient counsel and administration of clients’ building facilities including residential, commercial, industrial, airports terminals and offices. The aim of this paper is to review the gaps that exist, especially on how FM is being practice in comparison with the published FM body of knowledge. Very relying upon literature, this paper discovered a gap that is an unclear description of current FM applications. This research aims to give new bits of knowledge to upgrade comprehension of FM execution in Malaysia.

  19. Feasibility study for a transportation operations system cask maintenance facility

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  20. Feasibility study for a transportation operations system cask maintenance facility

    International Nuclear Information System (INIS)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs

  1. 25 CFR 170.807 - What must BIA include when it develops an IRR Transportation Facilities Maintenance Management...

    Science.gov (United States)

    2010-04-01

    ... Transportation Facilities Maintenance Management System? 170.807 Section 170.807 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.807 What must BIA include when it develops an IRR Transportation Facilities Maintenance Management System...

  2. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  3. Credit Management System

    Data.gov (United States)

    US Agency for International Development — Credit Management System. Outsourced Internet-based application. CMS stores and processes data related to USAID credit programs. The system provides information...

  4. Management of tritium at nuclear facilities

    International Nuclear Information System (INIS)

    1984-01-01

    This report presents extending summaries of the works of the participants to an IAEA co-ordinated research programme, ''Handling Tritium - bearing effluents and wastes''. The subjects covered include production of tritium in nuclear power plants (mainly heavy water and light water reactors), as well as at reprocessing plants; removal and enrichment of tritium at nuclear facilities; conditioning methods and characteristics of immobilized tritium of low and high concentration; some potential methods of storage and disposal of tritium. In addition to the conclusions of this three-years work, possible activities in the field are recommended

  5. 41 CFR 102-74.15 - What are the facility management responsibilities of occupant agencies?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are the facility management responsibilities of occupant agencies? 102-74.15 Section 102-74.15 Public Contracts and Property... PROPERTY 74-FACILITY MANAGEMENT Facility Management § 102-74.15 What are the facility management...

  6. Management systems for regulatory authorities

    International Nuclear Information System (INIS)

    Mpandanyama, Rujeko Lynette

    2015-02-01

    For a regulatory body to fulfil its statutory obligations, there is need to develop and implement a regulatory management system that has the necessary arrangements for achieving and maintaining high quality performance in regulating the safety of nuclear and radiation facilities under its authority. Hence, the regulatory management system needs to fully integrate the human resources, processes and physical resources of the organization. This study sought to provide an understanding of the concept, principles, policies and fundamentals of management systems as they relate to regulatory systems in the field of radiation protection and to make appropriate recommendations to ensure that an effective management system exists for the control of ionizing radiation and radiation sources and addresses all relevant stakeholders in Zimbabwe. A comparative analysis was done on the current management status and the ideal management system, which led to the identification of the gaps existing. The main key that was found to be of significance was lack of linkages between processes and management tools within the institution. (au)

  7. ISO 55000: Creating an asset management system.

    Science.gov (United States)

    Bradley, Chris; Main, Kevin

    2015-02-01

    In the October 2014 issue of HEJ, Keith Hamer, group vice-president, Asset Management & Engineering at Sodexo, and marketing director at Asset Wisdom, Kevin Main, argued that the new ISO 55000 standards present facilities managers with an opportunity to create 'a joined-up, whole lifecycle approach' to managing and delivering value from assets. In this article, Kevin Main and Chris Bradley, who runs various asset management projects, examine the process of creating an asset management system.

  8. Remote maintenance system for nuclear facilities

    International Nuclear Information System (INIS)

    Maeda, Masafumi

    1993-01-01

    In the facilities related to atomic energy, from the viewpoint of the reduction of radiation exposure of workers and the heightening of the rate of operation of the facilities, the development of remote maintenance system is regarded as important. Meidensha Electric Manufacturing Co., Ltd. developed the bilateral control type manipulator, BILARM-83, in 1979, and has developed high performance manipulator systems. As the design of the plant that realizes the remote operation maintenance of process machinery and equipment during plant operation, the remote maintenance system by canyon cell techniques, which was adopted in Savannah River plant, USA, and has been operated for nearly 50 years, has been known. The concept of the full remote maintenance system by large scale cell techniques was shown and has been developed by Power Reactor and Nuclear Fuel Development Corp. In order to realize the remote maintenance of such large scale cells, Meidensha is developing the both arm type bilateral servo manipulator, the single arm type power manipulator, the transport system for moving them, the power and signal system and so on. Those systems were adopted for the glass solidification facilities. (K.I.)

  9. The Added Value of Facilities Management: Concepts, Findings and Perspectives

    DEFF Research Database (Denmark)

    expertise, the involvement in the process leading to this the book including a number of workshops, and a literature review of the development of their disciplinary fields: Facilities Management (FM), Corporate Real Estate Management (CREM) and Business to Business (B2B) Marketing. Findings: The difference...... by their particular theories and conceptual analyses, data, tools, and best practices, with a focus on respectively costs and benefits of facilities and services, alignment of corporate and public real estate to organizational objectives and organisational performance, and relationship management in market...

  10. Best practices for managing large CryoEM facilities.

    Science.gov (United States)

    Alewijnse, Bart; Ashton, Alun W; Chambers, Melissa G; Chen, Songye; Cheng, Anchi; Ebrahim, Mark; Eng, Edward T; Hagen, Wim J H; Koster, Abraham J; López, Claudia S; Lukoyanova, Natalya; Ortega, Joaquin; Renault, Ludovic; Reyntjens, Steve; Rice, William J; Scapin, Giovanna; Schrijver, Raymond; Siebert, Alistair; Stagg, Scott M; Grum-Tokars, Valerie; Wright, Elizabeth R; Wu, Shenping; Yu, Zhiheng; Zhou, Z Hong; Carragher, Bridget; Potter, Clinton S

    2017-09-01

    This paper provides an overview of the discussion and presentations from the Workshop on the Management of Large CryoEM Facilities held at the New York Structural Biology Center, New York, NY on February 6-7, 2017. A major objective of the workshop was to discuss best practices for managing cryoEM facilities. The discussions were largely focused on supporting single-particle methods for cryoEM and topics included: user access, assessing projects, workflow, sample handling, microscopy, data management and processing, and user training. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  11. National Ignition Facility environmental protection systems

    International Nuclear Information System (INIS)

    Mintz, J.M.; Reitz, T.C.; Tobin, M.T.

    1994-06-01

    The conceptual design of Environmental Protection Systems (EPS) for the National Ignition Facility (NIF) is described. These systems encompass tritium and activated debris handling, chamber, debris shield and general decontamination, neutron and gamma monitoring, and radioactive, hazardous and mixed waste handling. Key performance specifications met by EPS designs include limiting the tritium inventory to 300 Ci and total tritium release from NIF facilities to less than 10 Ci/yr. Total radiation doses attributable to NIF shall remain below 10 mrem/yr for any member of the general public and 500 mrem/yr for NIF staff. ALARA-based design features and operational procedures will, in most cases, result in much lower measured exposures. Waste minimization, improved cycle time and reduced exposures all result from the proposed CO2 robotic arm cleaning and decontamination system, while effective tritium control is achieved through a modern system design based on double containment and the proven detritiation technology

  12. Decommissioning of nuclear facilities: Decontamination, disassembly and waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The term 'decommissioning', as used within the nuclear industry, means the actions taken at the end of a facility's useful life to retire the facility from service in a manner that provides adequate protection for the health and safety of the decommissioning workers, the general public, and for the environment. These actions can range from merely closing down the facility and a minimal removal of radioactive material coupled with continuing maintenance and surveillance, to a complete removal of residual radioactivity in excess of levels acceptable for unrestricted use of the facility and its site. This latter condition, unrestricted use, is the ultimate goal of all decommissioning actions at retired nuclear facilities. The purpose of this report is to provide an information base on the considerations important to decommissioning, the methods available for decontamination and disassembly of a nuclear facility, the management of the resulting radioactive wastes, and the areas of decommissioning methodology where improvements might be made. Specific sections are devoted to each of these topics, and conclusions are presented concerning the present status of each topic. A summary of past decommissioning experience in Member States is presented in the Appendix. The report, with its discussions of necessary considerations, available operational methods, and waste management practices, together with supporting references, provides an appreciation of the activities that comprise decommissioning of nuclear facilities. It is anticipated that the information presented in the report should prove useful to persons concerned with the development of plans for the decommissioning of retired nuclear facilities

  13. Case management redesign in an urban facility.

    Science.gov (United States)

    Almaden, Stefany; Freshman, Brenda; Quaye, Beverly

    2011-01-01

    To explore strategies for improving patient throughput and to redesign case management processes to facilitate level of care transitions and safe discharges. Large Urban Medical Center in South Los Angeles County, with 384 licensed beds that services poor, underserved communities. Both qualitative and quantitative methods were applied. Combined theoretical frameworks were used for needs assessment, intervention strategies, and change management. Observations, interviews, surveys, and database extraction methods were used. The sample consisted of case management staff members and several other staff from nursing, social work, and emergency department staff. Postintervention measures indicated improvement in reimbursements for services, reduction in length of stay, increased productivity, improved patients' access to care, and avoiding unnecessary readmission or emergency department visits. Effective change management strategies must consider multiple factors that influence daily operations and service delivery. Creating accountability by using performance measures associated with patient transitions is highlighted by the case study results. The authors developed a process model to assist in identifying and tracking outcome measures related to patient throughput, front-end assessments, and effective patient care transitions. This model can be used in future research to further investigate best case management practices.

  14. Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this Monitored Retrievable Storage (MRS) Project Systems Engineering Management Plan (SEMP) is to define and establish the MRS Project Systems Engineering process that implements the approved policy and requirements of the Office of Civilian Radioactive Waste Management (OCRWM) for the US Department of Energy (DOE). This plan is Volume 5 of the MRS Project Management Plan (PMP). This plan provides the framework for implementation of systems engineering on the MRS Project consistent with DOE Order 4700.1, the OCRWM Program Management System Manual (PMSM), and the OCRWM Systems Engineering Management Plan (SEMP)

  15. Risk Management Technique for design and operation of facilities and equipment

    Science.gov (United States)

    Fedor, O. H.; Parsons, W. N.; Coutinho, J. De S.

    1975-01-01

    The Risk Management System collects information from engineering, operating, and management personnel to identify potentially hazardous conditions. This information is used in risk analysis, problem resolution, and contingency planning. The resulting hazard accountability system enables management to monitor all identified hazards. Data from this system are examined in project reviews so that management can decide to eliminate or accept these risks. This technique is particularly effective in improving the management of risks in large, complex, high-energy facilities. These improvements are needed for increased cooperation among industry, regulatory agencies, and the public.

  16. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.; Cameron, H.M.; Davies, A.R.; Hiscox, A.W.

    1995-01-01

    Probabilistic safety assessment methodology has been applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  17. Maintenance and management system

    International Nuclear Information System (INIS)

    Ando, Yasumasa.

    1992-01-01

    Since highly reliable operation is required in a nuclear power plant, monitoring during operation and periodical inspection are conducted carefully. The present invention provides maintenance and management systems for providing an aid so that these systems are combined effectively and operated rationally based on unified information management. That is, the system contains data bases comprising information for the design of the equipments and pipelines of a plant, information for the exchange of equipment parts, information for the history of plant operation, information for the monitoring and inspection, and information for the management of repair operation. In addition, it has an equipment part history management sub-system for managing equipment part exchange information, an operation history management sub-system for managing the operation state of the plant, an operation history management sub-system for managing equipment monitoring inspection data and operation management sub-system for managing periodical inspection/ repairing operation. These sub-systems are collectively combined to manage the maintenance and management jobs of the plant unitarily. (I.S.)

  18. Assessment of laboratory logistics management information system ...

    African Journals Online (AJOL)

    Introduction: Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. Methods: ...

  19. A user's guide to the MultiMet Sensor Management and Calibration Facility

    OpenAIRE

    Pascal, R.W.; Williams, A.; Ahmed, R.

    1991-01-01

    The report describes the operating instructions and procedures for the MultiMet Sensor Management and Calibration Facility. This includes a description of the Meteological database ME'IDB, and the Sensor Management database which organises the large number of sensors required by the Multimet System. Calibration procedures and policies are also described for the various types of sensors used.

  20. 305 Building Cold Test Facility Management Plan

    International Nuclear Information System (INIS)

    Whitehurst, R.

    1994-01-01

    This document provides direction for the conduct of business in Building 305 for cold testing tools and equipment. The Cold Test Facility represents a small portion of the overall building, and as such, the work instructions already implemented in the 305 Building will be utilized. Specific to the Cold Test there are three phases for the tools and equipment as follows: 1. Development and feature tests of sludge/fuel characterization equipment, fuel containerization equipment, and sludge containerization equipment to be used in K-Basin. 2. Functional and acceptance tests of all like equipment to be installed and operated in K-Basin. 3. Training and qualification of K-Basin Operators on equipment to be installed and operated in the Basin

  1. Autonomously managed high power systems

    International Nuclear Information System (INIS)

    Weeks, D.J.; Bechtel, R.T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion

  2. STORMWATER BEST MANAGEMENT PRACTICES TEST FACILITY - SWALES

    Science.gov (United States)

    The NRMRL swale evaluation is part of a larger collection of long-term research projects that evaluates many Best Management Practices. EPA has ongoing research examining the performance of constructed wet lands, and detention and retention ponds. Other projects will evaluate ra...

  3. ECOLOGICAL AND ECONOMICALLY OPTIMAL MANAGEMENT OF WASTE FROM HEALTHCARE FACILITIES

    OpenAIRE

    Halina Marczak

    2013-01-01

    Modern healthcare facilities generate more and more waste, and their management is a significant constitutes a significant cost of their functioning. The undertakings aimed at lowering the costs of expenses in waste management may have a positive influence on budgetary accounts in the institutions rendering health care services. On the example of a hospital in Lublin the costs of waste management and the possibilities to lower these costs by intensifying segregation procedures were presented....

  4. Managing LLRW from decommissioning of nuclear facilities - a Canadian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Donders, R E [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Hardy, D G [Frontenac Consulting Services, Deep River, ON (Canada); De, P L [Low-Level Radioactive Waste Management Office, Gloucester, ON (Canada)

    1994-03-01

    In Canada, considerable experience has been gained recently in decommissioning nuclear facilities and managing the resulting waste. This experience has raised important issues from both the decommissioning and waste management perspectives. This paper focuses on the waste management aspects of decommissioning. Past experience is reviewed, preliminary estimates of waste volumes and characteristics are provided, and the major technical and regulatory issues are discussed. (author). 5 refs., 1 tab., 2 figs.

  5. Maintenance management systems

    International Nuclear Information System (INIS)

    Rohan, M. de

    1989-01-01

    This paper is concerned principally with Maintenance Management systems and their effective introduction into organisations. Maintenance improvement is basically a problem of managing the maintenance department in the broadest sense. Improvement does not only lie in the area of special techniques, systems or procedures; although they are valuable tools, but rather in a balanced attack, carefully guided by management. Over recent years, maintenance systems have received the major emphasis and in many instances the selection of the system has become a pre-occupation, whereas the importance of each maintenance function must be recognised and good management practices applied to all maintenance activities. The ingredients for success in the implementation of maintenance management systems are summarised as: having a management committee, clear objectives, project approach using project management techniques and an enthusiastic leader, user managed and data processing supported project, realistic budget and an understanding of the financial audit requirements. (author)

  6. Health and Safety Management for Small-scale Methane Fermentation Facilities

    Science.gov (United States)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  7. Business advertisements management system

    OpenAIRE

    Rekel, Ernest

    2017-01-01

    Business Advertisements Management System The main goal of the project was to create a business advertisements management system, where users could easily create and find business advertisements. To accomplish this goal exist- ing systems were analyzed as well as their limitations. The end result is a working system which is able to store and proccess huge amount of data.

  8. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Science.gov (United States)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  9. Forum Guide to Facilities Information Management: A Resource for State and Local Education Agencies. NFES 2012-808

    Science.gov (United States)

    National Forum on Education Statistics, 2012

    2012-01-01

    Safe and secure facilities that foster learning are crucial to providing quality education services, and developing and maintaining these facilities requires considerable resources and organization. Facility information systems allow education organizations to collect and manage data that can be used to inform and guide decisionmaking about the…

  10. Facilities Management and Value Adding - The LEGO case

    DEFF Research Database (Denmark)

    Jensen, Per Anker; Katchamart, Akarapong

    on the management model for FM included in the European FM standards, recent theories on added value of FM and real estate and the related concept of Value Management from building projects. The paper outlines a preliminary theoretical based management concept, which is investigated, tested and discussed based...... on a case study of LEGO. Results: The study shows that the management model for FM creates a relevant starting point but also that stakeholder and relationship management is an essential aspect of Value Adding Management. The case study confirms the relevance of the basic concept and provides an important...... example of how Value Adding Management can be implemented and added value measured. Practical Implications: The concept of Value Adding Management is expected to increase the awareness of the impacts and strategic importance of FM for organisations and can be a practical tool for facilities managers...

  11. Integrated waste management system costs in a MPC system

    International Nuclear Information System (INIS)

    Supko, E.M.

    1995-01-01

    The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility

  12. Mixed Waste Management Facility closure at the Savannah River Site

    International Nuclear Information System (INIS)

    Bittner, M.F.

    1991-08-01

    The Mixed Waste Management Facility of the Savannah River Plant received hazardous and solid low level radioactive wastes from 1972 until 1986. Because this facility did not have a permit to receive hazardous wastes, a Resource Conservation and Recovery Act closure was performed between 1987 and 1990. This closure consisted of dynamic compaction of the waste trenches and placement of a 3-foot clay cap, a 2-foot soil cover, and a vegetative layer. Operations of the waste disposal facility, tests performed to complete the closure design, and the construction of the closure cap are discussed herein

  13. Integrated management systems

    CERN Document Server

    Bugdol, Marek

    2015-01-01

    Examining the challenges of integrated management, this book explores the importance and potential benefits of using an integrated approach as a cross-functional concept of management. It covers not only standardized management systems (e.g. International Organization for Standardization), but also models of self-assessment, as well as different types of integration. Furthermore, it demonstrates how processes and systems can be integrated, and how management efficiency can be increased. The major part of this book focuses on management concepts which use integration as a key tool of management processes (e.g. the systematic approach, supply chain management, virtual and network organizations, processes management and total quality management). Case studies, illustrations, and tables are also provided to exemplify and illuminate the content, as well as examples of successful and failed integrations. Providing a particularly useful resource to managers and specialists involved in the improvement of organization...

  14. Audit Information Management System

    Data.gov (United States)

    US Agency for International Development — USAID/OIG has initiated its new Audit Information Management System (AIMS) to track OIG's audit recommendations and USAID's management decisions. OIG's in-house...

  15. Publications | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Photovoltaic Power Plant An Illustration of people in a park with wind turbines and solar panels Achieving a Management System Solar panels on home in Kaupuni Villiage in Oahu, Hawaii Hawaiian Electric Advanced

  16. Software application for a total management of a radioactive facility

    International Nuclear Information System (INIS)

    Mirpuri, E.; Escudero, R.; Macias, M.T.; Perez, J.; Sanchez, A.; Usera, F.

    2008-01-01

    The use of radiological material and/or equipment that generate ionizing radiation is widely extended in biological research. In every laboratory there are a large variety of methods, operations, techniques, equipment, radioisotopes and users related to the work with ionizing radiation. In order to control the radioactive material, users and the whole facility a large number of documents, databases and information is necessary to be created by the manager of the Radioactivity Facility. This kind of information is characterized by a constant and persistent manipulation and includes information of great importance such as the general management of the radioactive material and waste management, exposed workers vigilance, controlled areas access, laboratory and equipment reservations, radiological inspections, etc. These activities are often complicated by the fact that the main manager of the radioactive facility is also in charge of bio-safety and working prevention issues so the documents to generate and manipulate and the procedures to develop are multiplied. A procedure to access and manage all these files is highly recommended in order to optimize the general management of the facility, avoiding loss of information, automating all the activities and allowing data necessary for control easily accessible. In this work we present a software application for a total management of the facility. This software has been developed by the collaboration of six of the most important research centers from Spain in coordination with the company 'Appize soluciones'. This is a flexible and versatile application that adapts to any specific need of every research center, providing the appropriate reports and checklist that speed up to general management and increase the ease of writing the official documents, including the Operations Book. (author)

  17. Saturn facility oil transfer automation system

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Nathan R.; Thomas, Rayburn Dean; Lewis, Barbara Ann; Malagon, Hector Ricardo.

    2014-02-01

    The Saturn accelerator, owned by Sandia National Laboratories, has been in operation since the early 1980s and still has many of the original systems. A critical legacy system is the oil transfer system which transfers 250,000 gallons of transformer oil from outside storage tanks to the Saturn facility. The oil transfer system was iden- ti ed for upgrade to current technology standards. Using the existing valves, pumps, and relay controls, the system was automated using the National Instruments cRIO FGPA platform. Engineered safety practices, including a failure mode e ects analysis, were used to develop error handling requirements. The uniqueness of the Saturn Oil Automated Transfer System (SOATS) is in the graphical user interface. The SOATS uses an HTML interface to communicate to the cRIO, creating a platform independent control system. The SOATS was commissioned in April 2013.

  18. The European HST Science Data Archive. [and Data Management Facility (DMF)

    Science.gov (United States)

    Pasian, F.; Pirenne, B.; Albrecht, R.; Russo, G.

    1993-01-01

    The paper describes the European HST Science Data Archive. Particular attention is given to the flow from the HST spacecraft to the Science Data Archive at the Space Telescope European Coordinating Facility (ST-ECF); the archiving system at the ST-ECF, including the hardware and software system structure; the operations at the ST-ECF and differences with the Data Management Facility; and the current developments. A diagram of the logical structure and data flow of the system managing the European HST Science Data Archive is included.

  19. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jang Hyung; Cho, Sung Won

    2013-01-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works such as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, supervision and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization, Gyeongju city, for adjusting technically interrelated work during construction. In this research, We completed the basic, detail, and field changed design of conventional facilities. Acquisition of necessary construction and atomic license, radiation safety analysis, site improvement, access road construction were successfully done as well. Also, we participated in the project host related work as follows: Project host organization and site selection, construction technical work for project host organization and procedure management, etc. Consequently, we so fulfilled all of the own goals which were set up in the beginning of this construction project that we could made contribution for installing and running PEFP's developed 100MeV 20mA linear accelerator

  20. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jin Sam; Lee, Jae Sang

    2008-05-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, audit and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization for adjusting technical issues of overall construction. In this research, We reviewed the basic design and made a detail design of conventional facilities. Preparation for construction license, site improvement and access road construction is fulfilled. Also, we made the technical support for project host as follows : selection of project host organization and host site selection, construction technical work for project host organization and procedure management

  1. Længerevarende samarbejder inden for Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten; Friis, Freja

    Længerevarende strategiske samarbejde er interessant, fordi det anses for en måde at fremme produktivitet og forretning for både kunder og leverandører. I rapportenfremlægges resultaterne fra en caseanalyse blandt leverandører og købere af Facilities Management.......Længerevarende strategiske samarbejde er interessant, fordi det anses for en måde at fremme produktivitet og forretning for både kunder og leverandører. I rapportenfremlægges resultaterne fra en caseanalyse blandt leverandører og købere af Facilities Management....

  2. Construction of maintenance management system of atomic power plant

    International Nuclear Information System (INIS)

    Shibasaki, Naofumi; Ookawara, Koumei; Suzuki, Masashi

    2005-01-01

    This maintenance management system has the retrieval function of the variation conditions with the three dimensions models and repair history. The structure of system consists of the management data retrieval tool and the total facilities repair plan support tool. The system has the management function of facilities information, a bird's-eye view of three dimensions models, data recording function, output of various kinds of registers, pre-estimation of degradation and the repair plan support function. When the total facilities repair plan support tool is selected, the variation conditions of facilities, repair history and repair cost are shown, and each part of facility and materials is able to display. (S.Y.)

  3. Monitoring System with Two Central Facilities Protocol

    Directory of Open Access Journals (Sweden)

    Caesar Firdaus

    2017-03-01

    Full Text Available The security of data and information on government’s information system required proper way of defending against threat. Security aspect can be achieved by using cryptography algorithm, applying information hiding concept, and implementing security protocol. In this research, two central facilities protocol was implemented on Research and Development Center of Mineral and Coal Technology’s Cooperation Contract Monitoring System by utilizing AES and whitespace manipulation algorithm. Adjustment on the protocol by creating several rule of validation ID’s generation and checking processes could fulfill two of four cryptography objectives, consist of authentication and non-repudiation. The solid collaboration between central legitimization agency (CLA, central tabulating facility (CTF, and client is the main idea in two central facilities protocol. The utilization of AES algorithm could defend the data on transmission from man in the middle attack scenario. On the other hand, whitespace manipulation algorithm provided data integrity aspect of the document that is uploaded to the system itself. Both of the algorithm fulfill confidentiality, data integrity, and authentication.

  4. Managing hybrid marketing systems.

    Science.gov (United States)

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  5. Facilities Management a new strategy at CERN

    CERN Document Server

    Nonis, M; CERN. Geneva. ST Division

    2002-01-01

    Starting from 2002, the management of all the tertiary infrastructure of CERN in charge of ST Division shall be carried out through a single Contractor; this includes both maintenance activities on the buildings and their technical installations, and general services such as security, cleaning, gardening, and waste disposal. At present, all these activities are carried out by external contractors via several different contracts. The major purposes of the unification in one single contract is to transfer the coordination tasks of the contracts thus reducing the direct control operation costs, release internal resources in order to be better focused on the core business of the Division and the reduction of the costs of each activity by taking profit of the synergies among the different services. The authors will thoroughly report on the main aspects related to this new contract, focusing their attention in particular to the result oriented strategy through a Service Level Agreement, the key performance indicato...

  6. Management Information Systems Research.

    Science.gov (United States)

    Research on management information systems is illusive in many respects. Part of the basic research problem in MIS stems from the absence of standard...decision making. But the transition from these results to the realization of ’satisfactory’ management information systems remains difficult indeed. The...paper discusses several aspects of research on management information systems and reviews a selection of efforts that appear significant for future progress. (Author)

  7. ECOLOGICAL AND ECONOMICALLY OPTIMAL MANAGEMENT OF WASTE FROM HEALTHCARE FACILITIES

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2013-04-01

    Full Text Available Modern healthcare facilities generate more and more waste, and their management is a significant constitutes a significant cost of their functioning. The undertakings aimed at lowering the costs of expenses in waste management may have a positive influence on budgetary accounts in the institutions rendering health care services. On the example of a hospital in Lublin the costs of waste management and the possibilities to lower these costs by intensifying segregation procedures were presented. Moreover, the article presents the influence of specific waste neutralisation on the costs of waste management.

  8. NASA's Risk Management System

    Science.gov (United States)

    Perera, Jeevan S.

    2011-01-01

    Leadership is key to success. Phased-approach for implementation of risk management is necessary. Risk management system will be simple, accessible and promote communication of information to all relevant stakeholders for optimal resource allocation and risk mitigation. Risk management should be used by all team members to manage risks -- risk office personnel. Each group is assigned Risk Integrators who are facilitators for effective risk management. Risks will be managed at the lowest-level feasible, elevate only those risks that require coordination or management from above. Risk reporting and communication is an essential element of risk management and will combine both qualitative and quantitative elements. Risk informed decision making should be introduced to all levels of management. Provide necessary checks and balances to insure that risks are caught/identified and dealt with in a timely manner. Many supporting tools, processes & training must be deployed for effective risk management implementation. Process improvement must be included in the risk processes.

  9. Learning Content Management Systems

    Directory of Open Access Journals (Sweden)

    Tache JURUBESCU

    2008-01-01

    Full Text Available The paper explains the evolution of e-Learning and related concepts and tools and its connection with other concepts such as Knowledge Management, Human Resources Management, Enterprise Resource Planning, and Information Technology. The paper also distinguished Learning Content Management Systems from Learning Management Systems and Content Management Systems used for general web-based content. The newest Learning Content Management System, very expensive and yet very little implemented is one of the best tools that helps us to cope with the realities of the 21st Century in what learning concerns. The debates over how beneficial one or another system is for an organization, can be driven by costs involved, efficiency envisaged, and availability of the product on the market.

  10. Development of safeguards information treatment system at facility level in Korea

    International Nuclear Information System (INIS)

    So, D.S.; Lee, B.D.; Song, D.Y.

    2001-01-01

    Safeguards Information Treatment System (SITS) at Facility level was developed to implement efficiently the obligations under IAEA comprehensive Safeguards Agreement, bilateral nuclear cooperation Agreements with other countries and domestic law, and to manage efficiently the information related to safeguards implementation at facility level in Korea. Nuclear facilities in Korea are categorized into 8 types based on its accounting characteristics as follows: (1) Item counting facility or bulk handling facility; (2) Batch follow-up facility or not; (3) MUF (Material Unaccounted For) occurrence or not; (4) Nuclear production facility or not; (5) Operation status of facility; (6) Information management of nuclear material transfer status between KMPs or not; (7) Indication of inventory KMP on the inventory change of nuclear material is required or not. Hardware and Software for SITS can be loaded on a personal computer under operation system of Window 2000 or Window NT. MS SQL server 7 and MS Internet Information Server were adopted for database management system and Web server, respectively. Network environment of SITS was designed to include nuclear research institute, nuclear power plants of PWR and CANDU, nuclear fuel fabrication facilities and other facilities. SITS can be operated standalone or under the client-server system if intranet exists. More detailed contents of SITS are described elsewhere. Each module of SITS will be tested during incorporation of existing data into SITS and SITS will be distributed to nuclear facilities in Korea

  11. Organization and management for decommissioning of large nuclear facilities

    International Nuclear Information System (INIS)

    2000-01-01

    For nuclear facilities, decommissioning is the final phase in the life-cycle after siting, design, construction, commissioning and operation. It is a complex process involving operations such as detailed surveys, decontamination and dismantling of plant equipment and facilities, demolition of buildings and structures, and management of resulting waste and other materials, whilst taking into account aspects of health and safety of the operating personnel and the general public, and protection of the environment. Careful planning and management is essential to ensure that decommissioning is accomplished in a safe and cost effective manner. Guidance on organizational aspects may lead to better decision making, reductions in time and resources, lower doses to the workers and reduced impact on public health and the environment. The objective of this report is to provide information and guidance on the organization and management aspects for the decommissioning of large nuclear facilities which will be useful for licensees responsible for discharging these responsibilities. The information contained in the report may also be useful to policy makers, regulatory bodies and other organizations interested in the planning and management of decommissioning. In this report, the term 'decommissioning' refers to those actions that are taken at the end of the useful life of a nuclear facility in withdrawing it from service with adequate regard for the health and safety of workers and members of the public and for the protection of the environment. The term 'large nuclear facilities' involves nuclear power plants, large nuclear research reactors and other fuel cycle facilities such as reprocessing plants, fuel conversion, fabrication and enrichment plants, as well as spent fuel storage and waste management plants. Information on the planning and management for decommissioning of smaller research reactors or other small nuclear facilities can be found elsewhere. The report covers

  12. Expert systems for protective monitoring of facilities

    International Nuclear Information System (INIS)

    Carr, K.R.

    1987-01-01

    In complex plants, the possibility of serious operator error always exists to some extent, but, this can be especially true during an experiment or some other unusual exercise. Possible contributing factors to operational error include personnel fatigue, misunderstanding in communication, mistakes in executing orders, uncertainty about the delegated authority, pressure to meet a demanding schedule, and a lack of understanding of the possible consequences of deliberate violations of the facility's established operating procedures. Authoritative reports indicate that most of these factors were involved in the disastrous Russian Chernobyl-4 nuclear reactor accident in April 1986, which, ironically, occurred when a safety experiment was being conducted. Given the computer hardware and software now available for implementing expert systems together with integrated signal monitoring and communications, plant protection could be enhanced by an expert system with extended features to monitor the plant. The system could require information from the operators on a rigidly enforced schedule and automatically log in and report on a scheduled time basis to authorities at a central remote site during periods of safe operation. Additionally, the system could warn an operator or automatically shut down the plant in case of dangerous conditions, while simultaneously notifying independent, responsible, off-site personnel of the action taken. This approach would provide protection beyond that provided by typical facility scram circuits. This paper presents such an approach to implementing an expert system for plant protection, together with specific hardware and software configurations. The Chernobyl accident is used as the basis of discussion

  13. INFRASTRUCTURE FACILITIES FOR MONITORING AND INTELLECTUAL ROAD TRAFFIC MANAGEMENT

    Directory of Open Access Journals (Sweden)

    G. Belov

    2014-10-01

    Full Text Available Review of automatic management of road traffic technologies in major cities of Ukraine is carried out in the given article. Priority directions of studies are determined for producing modern and perspective technologies in the given area. The facilities for monitoring and intelligence management of the road traffic on the basis of the programmed logical controller, using the device of fuzzy logic are considered.

  14. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  15. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  16. Development of aging management standard guidelines for HVAC facilities of NPPs in Korea

    International Nuclear Information System (INIS)

    Won, Se Youl; Lee, Jae Gon; Oh, Seung Jin

    2014-01-01

    Inspection and maintenance activities for air conditioning facilities within the plant are managed mainly for active facilities, and as the years of operation pass, a method for detecting in advance aging-related integrity problems of passive facilities and taking necessary measures against them is required. Therefore, this paper establishes a standard aging management guideline for air conditioning facilities by selecting systems for which those facilities are to be managed, analyzing degradation mechanisms and reviewing the current status of aging degradation management. According to the review of additional equipment-specific aging degradation mechanisms and the current status of management to apply the aging degradation program to air conditioning facilities, it has been found that internal and external visual inspection procedures for fans, dampers, coils, filters and housings have to be added. It has been confirmed that among additional equipment s, fire dampers, fan bearings and belts and air cleaning/conditioning units with charcoal filters do not require additional inspection as they are periodically inspected. It has been found, however, that air cleaning/conditioning units without charcoal filters are to be inspected along with fans, ducts and coils

  17. Facility management progettare, misurare, gestire e remunerare i servizi

    CERN Document Server

    Tronconi, Oliviero

    2014-01-01

    Il valore aggiunto del Facility Management consiste in una nuova dimensione e importanza dell'organizzazione: quella del fornitore che si affianca all'azienda/cliente per supportarla e risolvere qualsiasi problema inerente ai suoi diversi servizi/bisogni. Questo valore deriva da una maggior capacità di coordinamento e gestione del fornitore/partner e da una più elevata motivazione e qualità professionale delle risorse impiegate. Ma il contributo più significativo risiede della capacità di incrementare la qualità delle informazioni e, quindi, la conoscenza sui processi attuati e sui risultati raggiunti. Il Facility Management è, nella sua accezione più evoluta, il passaggio dal "fare artigianale" alla "gestione delle informazioni che sono causa ed effetto del fare". Una gestione sistematica che deve originare un più alto livello di conoscenza dei processi e che costituisce l'essenza, il nucleo fondamentale del Facility Management. Nella chiave di lettura proposta dal volume, il Facility Management è ...

  18. Information Technology in Facilities Management - A Literature Review

    DEFF Research Database (Denmark)

    Ebbesen, Poul

    2015-01-01

    Purpose : The aim of this paper is to present the state of the art of research in Information Technology (IT) in Facilities Management (FM). Background : Initial studies indicate that investments into IT in FM often do not add the expected value, neither to the FM department itself nor...

  19. Innovation process and innovativeness of facility management organizations

    NARCIS (Netherlands)

    Mudrak, T.; Wagenberg, van A.F.; Wubben, E.F.M.

    2005-01-01

    Purpose - The innovation patterns and processes in facility management (FM) organizations are crucial for the development of FM as a discipline, but they are not yet fully explored and understood. This paper aims to clarify FM innovation from the perspective of innovation processes and the

  20. Stocking the Toolbox: Ideas for Successful Facility Management

    Science.gov (United States)

    Gadzikowski, Ann

    2005-01-01

    From snow removal to dishwasher repair, from pest control to playground renovations, there are countless demands on a child care director's time and attention. A child care director is required to juggle a wide variety of roles and expectations related to facility management, often with very little training or expertise in this area. Some child…

  1. Nye udbudsformer og partnerskaber inden for Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2010-01-01

    I de senere år er der sket en stærk udvikling af nye udbuds- og samarbejdsformer inden for Facilities Management (FM). Velkendte eksempler er Offentlig-Private Partnerskaber (OPP ), hvor der sammen med FM-ydelser over typisk 30 år også indgår levering og finansiering af en bygning og ESCO (Energy...

  2. De ontwikkeling van bedrijfskundige kennis in het vakgebied facility management

    NARCIS (Netherlands)

    Keizer, J.A.; Vosselman, E.G.J.

    1994-01-01

    Afgezien van een onlangs gestarte postdoctorale opleiding voor Facility Management in Eindhoven blijft het wetenschappelijk onderwijs in deze sector tot op heden ver achter. In dit artikel wordt een aantal ideeën uitgewerkt voor het intensiveren van de onderzoeksinspanningen op het terrein van

  3. Community management and sustainability of rural water facilities in Tanzania

    NARCIS (Netherlands)

    Mandara, C.G.; Butijn, C.A.A.; Niehof, Anke

    2013-01-01

    This paper addresses the question of whether community management in water service delivery affects the sustainability of rural water facilities (RWFs) at village level, in terms of their technical and managerial aspects, and what role capacity building of users and providers plays in this process.

  4. Ureterolithiasis: Management in an environment with limited facilities

    African Journals Online (AJOL)

    Background: In the past 2–3 decades, there has been a dramatic development in the techniques of stone removal. This study highlights the management of symptomatic ureteral stones in an environment without such facilities. Materials and Methods: Sixty‑nine patients, comprising 53 (76.8%) males and 16 (23.2%) females ...

  5. Airport Economics: Management Control Financial Reporting Systems

    Science.gov (United States)

    Buchbinder, A.

    1972-01-01

    The development of management control financial reporting systems for airport operation is discussed. The operation of the system to provide the reports required for determining the specific revenue producing facilities of airports is described. The organization of the cost reporting centers to show the types of information provided by the system is analyzed.

  6. An analysis of heating, ventilation and air conditioning system for nuclear facilities

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Kim, Byung Tae; Park, Seong Won; Cho, Soo Haeng; Lee, Yong Rae; Lee, Kyung Ku; Park, Seung Hyub; Hwang, Jeong Ki; Kim, Jeong Mook; Oh, Haeng Yoeb

    1988-12-01

    An analysis of HVAC system was made on various nuclear facilities such as the existing nuclear power plants in Korea, Post Irradiation Examination Facility at KAERI and Midwest Fuel Recovery Plant in USA, to get basic data and information for the design of the spent fuel interim storage facility to be implemented as one of the radwaste management projects. With the results of this study, the HVAC system to be applied to the spent fuel interim storage facility was selected and the major design considerations of the facility were suggested. (Author)

  7. NASA's Risk Management System

    Science.gov (United States)

    Perera, Jeevan S.

    2013-01-01

    Phased-approach for implementation of risk management is necessary. Risk management system will be simple, accessible and promote communication of information to all relevant stakeholders for optimal resource allocation and risk mitigation. Risk management should be used by all team members to manage risks - not just risk office personnel. Each group/department is assigned Risk Integrators who are facilitators for effective risk management. Risks will be managed at the lowest-level feasible, elevate only those risks that require coordination or management from above. Risk informed decision making should be introduced to all levels of management. ? Provide necessary checks and balances to insure that risks are caught/identified and dealt with in a timely manner. Many supporting tools, processes & training must be deployed for effective risk management implementation. Process improvement must be included in the risk processes.

  8. 41 CFR 102-72.40 - What are facility management delegations?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are facility management delegations? 102-72.40 Section 102-72.40 Public Contracts and Property Management Federal Property... AUTHORITY Delegation of Authority § 102-72.40 What are facility management delegations? Facility management...

  9. 41 CFR 102-192.135 - Must we have a mail center manager at our facility?

    Science.gov (United States)

    2010-07-01

    ... center manager at our facility? 102-192.135 Section 102-192.135 Public Contracts and Property Management... PROGRAMS 192-MAIL MANAGEMENT Mail Center Manager Requirements § 102-192.135 Must we have a mail center manager at our facility? Yes, every facility that has more than two full time people dedicated to...

  10. Automated entry control system for nuclear facilities

    International Nuclear Information System (INIS)

    Ream, W.K.; Espinoza, J.

    1985-01-01

    An entry control system to automatically control access to nuclear facilities is described. The design uses a centrally located console, integrated into the regular security system, to monitor the computer-controlled passage into and out of sensitive areas. Four types of entry control points are used: an unmanned enclosed portal with metal and SNM detectors for contraband detection with positive personnel identification, a bypass portal for contraband search after a contraband alarm in a regular portal also with positive personnel identification, a single door entry point with positive personnel identification, and a single door entry point with only a magnetic card-type identification. Security force action is required only as a response to an alarm. The integration of the entry control function into the security system computer is also described. The interface between the entry control system and the monitoring security personnel utilizing a color graphics display with touch screen input is emphasized. 2 refs., 7 figs

  11. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  12. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  13. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  14. Management system requirements for small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.A., E-mail: kenneth.jones@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2013-07-01

    This abstract identifies the management system requirements for the life cycle of small reactors from initial conception through completion of decommissioning. For small reactors, the requirements for management systems remain the same as those for 'large' reactors regardless of the licensee' business model and objectives. The CSA N-Series of standards provides an interlinked set of requirements for the management of nuclear facilities. CSA N286 provides overall direction to management to develop and implement sound management practices and controls, while other CSA nuclear standards provide technical requirements and guidance that support the management system. CSA N286 is based on a set of principles. The principles are then supported by generic requirements that are applicable to the life cycle of nuclear facilities. CNSC regulatory documents provide further technical requirements and guidance. (author)

  15. Archival Information Management System.

    Science.gov (United States)

    1995-02-01

    management system named Archival Information Management System (AIMS), designed to meet the audit trail requirement for studies completed under the...are to be archived to the extent that future reproducibility and interrogation of results will exist. This report presents a prototype information

  16. Medical Information Management System

    Science.gov (United States)

    Alterescu, S.; Hipkins, K. R.; Friedman, C. A.

    1979-01-01

    On-line interactive information processing system easily and rapidly handles all aspects of data management related to patient care. General purpose system is flexible enough to be applied to other data management situations found in areas such as occupational safety data, judicial information, or personnel records.

  17. Supporting Facility Management Processes through End-Users’ Integration and Coordinated BIM-GIS Technologies

    Directory of Open Access Journals (Sweden)

    Claudio Mirarchi

    2018-05-01

    Full Text Available The integration of facility management and building information modelling (BIM is an innovative and critical undertaking process to support facility maintenance and management. Even though recent research has proposed various methods and performed an increasing number of case studies, there are still issues of communication processes to be addressed. This paper presents a theoretical framework for digital systems integration of virtual models and smart technologies. Based on the comprehensive analysis of existing technologies for indoor localization, a new workflow is defined and designed, and it is utilized in a practical case study to test the model performance. In the new workflow, a facility management supporting platform is proposed and characterized, featuring indoor positioning systems to allow end users to send geo-referenced reports to central virtual models. In addition, system requirements, information technology (IT architecture and application procedures are presented. Results show that the integration of end users in the maintenance processes through smart and easy tools can overcome the existing limits of barcode systems and building management systems for failure localization. The proposed framework offers several advantages. First, it allows the identification of every element of an asset including wide physical building elements (walls, floors, etc. without requiring a prior mapping. Second, the entire cycle of maintenance activities is managed through a unique integrated system including the territorial dimension. Third, data are collected in a standard structure for future uses. Furthermore, the integration of the process in a centralized BIM-GIS (geographical information system information management system admit a scalable representation of the information supporting facility management processes in terms of assets and supply chain management and monitoring from a spatial perspective.

  18. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  19. Conceptual development of a test facility for spent fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs.

  20. Conceptual development of a test facility for spent fuel management

    International Nuclear Information System (INIS)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G.

    1997-01-01

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs

  1. Guidelines for operator competence - Optimising facility management processes; Leitfaden Betreiberkompetenz. Schritt fuer Schritt Facility Management Prozesse optimieren

    Energy Technology Data Exchange (ETDEWEB)

    Moser, R

    2005-06-15

    This brochure issued by IFMA (International Facility Management Association) Switzerland and the Swiss Federal Office of Energy (SFOE) presents interactive guidelines for energy management in the area of facility management. These guidelines are based on the results of a project carried out by the International Energy Agency's Annex 40 'Operator competence'. The guidelines provide a step-by-step guide from initial analysis through to successful project completion and answer many questions that may crop up during the process. The focus is placed on energy aspects. Tools and 14 sample process descriptions are provided along with practical examples. Theoretical aspects are also presented and discussed, including models for operator roles and the processes involved. Also, change, risk and knowledge management are examined. Notes and information on possibilities for further education are presented.

  2. Guidelines for operator competence - Optimising facility management processes; Leitfaden Betreiberkompetenz. Schritt fuer Schritt Facility Management Prozesse optimieren

    Energy Technology Data Exchange (ETDEWEB)

    Moser, R.

    2005-06-15

    This brochure issued by IFMA (International Facility Management Association) Switzerland and the Swiss Federal Office of Energy (SFOE) presents interactive guidelines for energy management in the area of facility management. These guidelines are based on the results of a project carried out by the International Energy Agency's Annex 40 'Operator competence'. The guidelines provide a step-by-step guide from initial analysis through to successful project completion and answer many questions that may crop up during the process. The focus is placed on energy aspects. Tools and 14 sample process descriptions are provided along with practical examples. Theoretical aspects are also presented and discussed, including models for operator roles and the processes involved. Also, change, risk and knowledge management are examined. Notes and information on possibilities for further education are presented.

  3. Analysis of Operational and Management Cybersecurity Controls for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jin Seok; Ryou, Jae Cheol [Chungnam National University, Dajeon (Korea, Republic of)

    2014-08-15

    U.S. NRC developed this RG 5.71 by tailoring the baseline security controls described in NIST Special Publication 800-53 'Recommended Security Controls for Federal Information Systems and Organizations' to provide an acceptable method to comply with the 10 CFR 73.54. The purpose of this publication is to provide guidelines for selecting and specifying security controls for information systems. In this paper, we are going to analyze and compare the NRC RG 5.71 and the NIST SP800-53, in particular, for operational security controls and management security controls. If RG 5.71 omits the specific security control that is included in SP800-53, we would review that omitting is adequate or not. If RG 5.71 includes the specific security control that is not included in SP800-53, we would also review the rationale. And we are going to consider some security controls to strengthen cybersecurity of nuclear facilities.

  4. Analysis of Operational and Management Cybersecurity Controls for Nuclear Facilities

    International Nuclear Information System (INIS)

    Oh, Jin Seok; Ryou, Jae Cheol

    2014-01-01

    U.S. NRC developed this RG 5.71 by tailoring the baseline security controls described in NIST Special Publication 800-53 'Recommended Security Controls for Federal Information Systems and Organizations' to provide an acceptable method to comply with the 10 CFR 73.54. The purpose of this publication is to provide guidelines for selecting and specifying security controls for information systems. In this paper, we are going to analyze and compare the NRC RG 5.71 and the NIST SP800-53, in particular, for operational security controls and management security controls. If RG 5.71 omits the specific security control that is included in SP800-53, we would review that omitting is adequate or not. If RG 5.71 includes the specific security control that is not included in SP800-53, we would also review the rationale. And we are going to consider some security controls to strengthen cybersecurity of nuclear facilities

  5. Adaptive management: a paradigm for remediation of public facilities

    Energy Technology Data Exchange (ETDEWEB)

    Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

    2009-01-01

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area

  6. Adaptive Management: A Paradigm for Remediation of Public Facilities

    International Nuclear Information System (INIS)

    Janecky, D.R.; Whicker, J.J.; Doerr, T.B.

    2009-01-01

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simultaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a

  7. School Operations and Maintenance: Best Practices For Controlling Energy Costs. A Guidebook for K-12 School System Business Officers and Facilities Managers

    Science.gov (United States)

    US Department of Energy, 2004

    2004-01-01

    Operations and maintenance (O&M) offers not only strategies for maintaining facilities, but also opportunities for reducing energy costs and increasing energy efficiency at existing schools, regardless of age. This Guidebook provides detailed and practical guidance on how K-12 school districts can plan and implement enhancements to their current…

  8. Management support and perceived consumer satisfaction in skilled nursing facilities.

    Science.gov (United States)

    Metlen, Scott; Eveleth, Daniel; Bailey, Jeffrey J

    2005-08-01

    How managers 'manage' employees influences important firm outcomes. Heskett, Sasser, and Schlesinger contend that the level of internal support for service workers will influence consumer satisfaction. This study empirically explores how skilled nursing facility (SNF) managers affect consumer satisfaction by encouraging employee effectiveness and listening to employees to determine how to improve employee effectiveness. We extend previous research by proposing management as a form of internal support and demonstrating its relationship to service process integration, as a distinct form of internal support. The results of our individual-level investigation of 630 nursing assistants from 45 SNFs provide support for our two-part hypothesis. First, active management support and process integration, as elements of internal support, do lead to increased employee satisfaction and employee effectiveness. Second, the increased employee satisfaction and effectiveness was positively related to consumer satisfaction, as evaluated by the service workers. Thus, there is a positive influence of management's internal support of nursing assistants on perceived consumer satisfaction.

  9. Vitrification Facility integrated system performance testing report

    International Nuclear Information System (INIS)

    Elliott, D.

    1997-01-01

    This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process

  10. Development of a Commonwealth Radioactive Waste Management Facility in Australia

    International Nuclear Information System (INIS)

    Hesterman, R.

    2006-01-01

    Full text: The Australian Government has commenced a process to build a Commonwealth Radioactive Waste Management Facility in the Northern Territory for management of radioactive wastes produced by Australian Government agencies. The Government is committed to safely managing its relatively small volume of low level radioactive waste (approximately 3800 cubic metres) and even smaller volume of intermediate level waste (around 400 cubic metres) that have been generated since the early 1950s from the research, medical and industrial use of radioactive materials. Australia has no high level radioactive waste as it does not have any nuclear power reactors. Australian states and territories are responsible for the safe and secure management of low level and intermediate level waste generated within their jurisdictions. They have jointly generated approximately 200 cubic metres of low level radioactive waste and under 100 cubic metres of intermediate level for the same period. In July 2004, the Prime Minister announced that the Australian Government would examine the suitability of Commonwealth land holdings, both onshore and offshore, for establishing the Facility. An initial assessment of offshore territories by the Department of Education, Science and Training (DEST) did not find any sufficiently suitable sites for hosting the Facility. This was due to the low elevation of most territories, inadequate infrastructure and incompatibility with existing land uses. In July 2005, Dr Nelson, then the Minister for Education, Science and Training, announced that three Department of Defence properties in the Northern Territory would be investigated for siting the Facility. The three properties are Fishers Ridge, about 43 kilometres southeast of Katherine; Harts Range, 100 kilometres directly northeast of Alice Springs; and Mt Everard, about 27 kilometres directly northwest of Alice Springs. In addition, the Commonwealth Radioactive Waste Management Act 2005, enacted in December

  11. Computerized system controls Canadian training facility

    International Nuclear Information System (INIS)

    Dingwall, K.

    1996-01-01

    The Petroleum Industry Training Service (PITS), a non-profit organization headquartered in Calgary, Alberta, Canada, has earned a reputation as the most sophisticated training organization of its kind. Backed by such resources as the $25-million Nisku Training Center, located on a 38-acre site near Edmonton, PITS provides present and future petroleum engineers/operators/administrators with on-the-job experience in every facet of oil/gas processing. Nearly 3,000 students attend the Nisku training facility each year. Courses range in length from one day to six months, on topics as diverse as petroleum engineering, field production, drilling and well service, safety, environmental impact and management. Designed to teach skills needed at all levels, the courses fulfill an important educational need for firms with both new hires and seasoned personnel. PITS certificates are well-recognized by industry and government agencies

  12. Thermionic system evaluated test (TSET) facility description

    Science.gov (United States)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  13. Application of life-cycle information for advancement in safety of nuclear fuel cycle facilities. Application of safety information to advanced safety management support system

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Ishida, Michihiko

    2005-08-01

    Risk management is major concern to nuclear energy reprocessing plants to improve plant and process reliability and ensure their safety. This is because we are required to predict potential risks before any accident or disaster occurs. The advancement of safety design and safety systems technologies showed large amount of useful safety-related knowledge that can be of great importance to plant operation to reduce operation risks and ensure safety. This research proposes safety knowledge modeling framework on the basis of ontology technologies to systematically construct plant knowledge model, which includes plant structure, operation, and the associated behaviors. In such plant knowledge model safety related information is defined and linked to the different elements of plant knowledge model. Ontology editor is employed to define the basic concepts and their inter-relations, which are used to capture and construct plant safety knowledge. In order to provide detailed safety knowledgebase, HAZOP results are analyzed and structured so that safety-related knowledge are identified and structured within the plant knowledgebase. The target safety knowledgebase includes: failures, deviations, causes, consequences, and fault propagation as mapped to plant knowledge. The proposed ontology-based safety framework is applied on case study nuclear plant to structure failures, causes, consequences, and fault propagation, which are used to support plant operation. (author)

  14. Hydrologic management at the Hanford nuclear waste facility

    International Nuclear Information System (INIS)

    Deju, R.A.; Gephart, R.E.

    1975-05-01

    Since 1944 the Hanford Reservation, located in south-central Washington, has been a site for radioactive waste storage and disposal. Many Hanford research programs are directed toward minimizing and managing the release of radionuclides into the environment. Hydrologic management of the Hanford facility involves such activities as regional and local geohydrologic characterization studies, environmental monitoring, groundwater management, and specific hydrologic research programs. This paper briefly examines each of these activities and reviews the progress to date in understanding the hydrologic flow regime existing beneath the Reservation. (U.S.)

  15. Risk assessment of several incidents in nuclear waste management facilities

    International Nuclear Information System (INIS)

    Buetow, E.; Memmert, G.; Storck, R.; Weymann, J.; Matthies, M.; Vogt, K.J.

    1981-01-01

    Regarding surface facilities two incidents of MAVA (failure of the filter in the exhaust gas system, fire in the bituminization system) and one incident in the Krypton storage and regarding underground systems the water inlet in the pit building have been evaluated. According to the calculations only the two nuclides Tc-99 and J-129 can involve a considerable exposure. The barrier system of overlying rocks and the pit system as a whole is largely redundant and diverse. (DG) [de

  16. 40 CFR 160.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... housed, facilities shall exist for the collection and disposal of all animal waste and refuse or for safe sanitary storage of waste before removal from the testing facility. Disposal facilities shall be so...

  17. INDICTORS OF RESTORATION OF PROGRAM FACILITY OF MECHATRONICS SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Frolov

    2009-01-01

    Full Text Available The determination of reliability indictors of program facilities of mechatronic systems are offered. The defaillance modes of program facilities are represent. A short review of model reliability of program facility is presented. The indictors of restoration, their mathematical determinations and application for the characteristics of program facility restoration are offered.

  18. Fast Flux Test Facility core system

    International Nuclear Information System (INIS)

    Ethridge, J.L.; Baker, R.B.; Leggett, R.D.; Pitner, A.L.; Waltar, A.E.

    1990-11-01

    A review of Liquid Metal Reactor (LMR) core system accomplishments provides an excellent road map through the maze of issues that faced reactor designers 10 years ago. At that time relatively large uncertainties were associated with fuel pin and fuel assembly performance, irradiation of structural materials, and performance of absorber assemblies. The extensive core systems irradiation program at the US Department of Energy's Fast Flux Test Facility (FFTF) has addressed each of these principal issues. As a result of the progress made, the attention of long-range LMR planners and designers can shift away from improving core systems and focus on reducing capital costs to ensure the LMR can compete economically in the 21st century with other nuclear reactor concepts. 3 refs., 6 figs., 1 tab

  19. Does identity shape leadership and management practice? Experiences of PHC facility managers in Cape Town, South Africa.

    Science.gov (United States)

    Daire, Judith; Gilson, Lucy

    2014-09-01

    In South Africa, as elsewhere, Primary Health Care (PHC) facilities are managed by professional nurses. Little is known about the dimensions and challenges of their job, or what influences their managerial practice. Drawing on leadership and organizational theory, this study explored what the job of being a PHC manager entails, and what factors influence their managerial practice. We specifically considered whether the appointment of professional nurses as facility managers leads to an identity transition, from nurse to manager. The overall intention was to generate ideas about how to support leadership development among PHC facility managers. Adopting case study methodology, the primary researcher facilitated in-depth discussions (about their personal history and managerial experiences) with eight participating facility managers from one geographical area. Other data were collected through in-depth interviews with key informants, document review and researcher field notes/journaling. Analysis involved data triangulation, respondent and peer review and cross-case analysis. The experiences show that the PHC facility manager's job is dominated by a range of tasks and procedures focused on clinical service management, but is expected to encompass action to address the population and public health needs of the surrounding community. Managing with and through others, and in a complex system, requiring self-management, are critical aspects of the job. A range of personal, professional and contextual factors influence managerial practice, including professional identity. The current largely facility-focused management practice reflects the strong nursing identity of managers and broader organizational influences. However, three of the eight managers appear to self-identify an emerging leadership identity and demonstrate related managerial practices. Nonetheless, there is currently limited support for an identity transition towards leadership in this context. Better

  20. Operations management system

    Science.gov (United States)

    Brandli, A. E.; Eckelkamp, R. E.; Kelly, C. M.; Mccandless, W.; Rue, D. L.

    1990-01-01

    The objective of an operations management system is to provide an orderly and efficient method to operate and maintain aerospace vehicles. Concepts are described for an operations management system and the key technologies are highlighted which will be required if this capability is brought to fruition. Without this automation and decision aiding capability, the growing complexity of avionics will result in an unmanageable workload for the operator, ultimately threatening mission success or survivability of the aircraft or space system. The key technologies include expert system application to operational tasks such as replanning, equipment diagnostics and checkout, global system management, and advanced man machine interfaces. The economical development of operations management systems, which are largely software, will require advancements in other technological areas such as software engineering and computer hardware.

  1. Development of Experimental Facilities for Advanced Spent Fuel Management Technology

    Energy Technology Data Exchange (ETDEWEB)

    You, G. S.; Jung, W. M.; Ku, J. H. [and others

    2004-07-01

    The advanced spent fuel management process(ACP), proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel, is under research and development. This technology convert spent fuels into pure metal-base uranium with removing the highly heat generating materials(Cs, Sr) efficiently and reducing of the decay heat, volume, and radioactivity from spent fuel by 1/4. In the next phase(2004{approx}2006), the demonstration of this technology will be carried out for verification of the ACP in a laboratory scale. For this demonstration, the hot cell facilities of {alpha}-{gamma} type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of {beta}-{gamma} type will be refurbished to minimize construction expenditures of hot cell facility. In this study, the design requirements are established, and the process detail work flow was analysed for the optimum arrangement to ensure effective process operation in hot cell. And also, the basic and detail design of hot cell facility and process, and safety analysis was performed to secure conservative safety of hot cell facility and process.

  2. Radiological risks of transports to central waste management facilities

    International Nuclear Information System (INIS)

    Lange, F.

    1997-01-01

    Transports of radioactive waste from nuclear facilities have been a matter of frequent public concern in the recent past. News reports, protests and questions concerning the radiological risk tended to concentrate on transports to and from central waste management facilities, e.g. transports of spent fuel elements to reprocessing plants abroad (France, England), transports to intermediate storage sites (Ahaus, Gorleben), transports to operative (Morsleben) and projected (Konrad) final storage sites, and transports of vitrified high-activity waste from reprocessing plants to the intermediate storage site (Gorleben). (orig.) [de

  3. Program Management System manual

    International Nuclear Information System (INIS)

    1986-01-01

    The Program Management System (PMS), as detailed in this manual, consists of all the plans, policies, procedure, systems, and processes that, taken together, serve as a mechanism for managing the various subprograms and program elements in a cohesive, cost-effective manner. The PMS is consistent with the requirements of the Nuclear Waste Policy Act of 1982 and the ''Mission Plan for the Civilian Radioactive Waste Management Program'' (DOE/RW-0005). It is based on, but goes beyond, the Department of Energy (DOE) management policies and procedures applicable to all DOE programs by adapting these directives to the specific needs of the Civilian Radioactive Waste Management program. This PMS Manual describes the hierarchy of plans required to develop and maintain the cost, schedule, and technical baselines at the various organizational levels of the Civilian Radioactive Waste Management Program. It also establishes the management policies and procedures used in the implementation of the Program. These include requirements for internal reports, data, and other information; systems engineering management; regulatory compliance; safety; quality assurance; and institutional affairs. Although expanded versions of many of these plans, policies, and procedures are found in separate documents, they are an integral part of this manual. The PMS provides the basis for the effective management that is needed to ensure that the Civilian Radioactive Waste Management Program fulfills the mandate of the Nuclear Waste Policy Act of 1982. 5 figs., 2 tabs

  4. MAINTENANCE MANAGEMENT ACCOUNTING SYSTEM OF WASTE WATER DISPOSAL SYSTEMS

    Science.gov (United States)

    Hori, Michihiro; Tsuruta, Takashi; Kaito, Kiyoyuki; Kobayashi, Kiyoshi

    Sewage works facilities consist of various assets groups. And there are many kinds of financial resources. In order to optimize the maintenance plan, and to secure the stability and sustainability of sewage works management, it is necessary to carry out financial simulation based on the life-cycle cost analysis. Furthermore, it is important to develop management accounting system that is interlinked with the financial accounting system, because many sewage administration bodies have their financial accounting systems as public enterprises. In this paper, a management accounting system, which is designed to provide basic information for asset management of sewage works facilities, is presented. Also the applicability of the management accounting system presented in this paper is examined through financial simulations.

  5. Clean Lead Facility Inventory System user's manual

    International Nuclear Information System (INIS)

    Garcia, J.F.

    1994-12-01

    The purpose of this user's manual is to provide instruction and guidance needed to enter and maintain inventory information for the Clean Lead Facility (CLF), PER-612. Individuals responsible for maintaining and using the system should study and understand the information provided. The user's manual describes how to properly use and maintain the CLF Inventory System. Annual, quarterly, monthly, and current inventory reports may be printed from the Inventory System for reporting purposes. Profile reports of each shipment of lead may also be printed for verification and documentation of lead transactions. The CLF Inventory System was designed on Microsoft Access version 2.0. Similar inventory systems are in use at the Idaho National Engineering Laboratory (INEL) to facilitate site-wide compilations of mixed waste data. The CLF Inventory System was designed for inventorying the clean or non-radioactive contaminated lead stored at the CLF. This data, along with the mixed waste data, will be compiled into the Idaho Mixed Waste Information (IMWI) system for reporting to the Department of Energy Idaho Office, Department of Energy Headquarters, and/or the State of Idaho

  6. Waste Management System Requirement document

    International Nuclear Information System (INIS)

    1990-04-01

    This volume defines the top level technical requirements for the Monitored Retrievable Storage (MRS) facility. It is designed to be used in conjunction with Volume 1, General System Requirements. Volume 3 provides a functional description expanding the requirements allocated to the MRS facility in Volume 1 and, when appropriate, elaborates on requirements by providing associated performance criteria. Volumes 1 and 3 together convey a minimum set of requirements that must be satisfied by the final MRS facility design without unduly constraining individual design efforts. The requirements are derived from the Nuclear Waste Policy Act of 1982 (NWPA), the Nuclear Waste Policy Amendments Act of 1987 (NWPAA), the Environmental Protection Agency's (EPA) Environmental Standards for the Management and Disposal of Spent Nuclear Fuel (40 CFR 191), NRC Licensing Requirements for the Independent Storage of Spent Nuclear and High-Level Radioactive Waste (10 CFR 72), and other federal statutory and regulatory requirements, and major program policy decisions. This document sets forth specific requirements that will be fulfilled. Each subsequent level of the technical document hierarchy will be significantly more detailed and provide further guidance and definition as to how each of these requirements will be implemented in the design. Requirements appearing in Volume 3 are traceable into the MRS Design Requirements Document. Section 2 of this volume provides a functional breakdown for the MRS facility. 1 tab

  7. A Supply Chain Design Problem Integrated Facility Unavailabilities Management

    Directory of Open Access Journals (Sweden)

    Fouad Maliki

    2016-08-01

    Full Text Available A supply chain is a set of facilities connected together in order to provide products to customers. The supply chain is subject to random failures caused by different factors which cause the unavailability of some sites. Given the current economic context, the management of these unavailabilities is becoming a strategic choice to ensure the desired reliability and availability levels of the different supply chain facilities. In this work, we treat two problems related to the field of supply chain, namely the design and unavailabilities management of logistics facilities. Specifically, we consider a stochastic distribution network with consideration of suppliers' selection, distribution centres location (DCs decisions and DCs’ unavailabilities management. Two resolution approaches are proposed. The first approach called non-integrated consists on define the optimal supply chain structure using an optimization approach based on genetic algorithms (GA, then to simulate the supply chain performance with the presence of DCs failures. The second approach called integrated approach is to consider the design of the supply chain problem and unavailabilities management of DCs in the same model. Note that, we replace each unavailable DC by performing a reallocation using GA in the two approaches. The obtained results of the two approaches are detailed and compared showing their effectiveness.

  8. Strategic aspects on waste management in decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Rannemalm, T.; Eliasson, S.; Larsson, A.; Lidar, P.; Bergh, N.; Hedin, G.

    2017-01-01

    A team composed of experts from the facility owner OKG, Westinghouse and Studsvik (today Cyclife Sweden and Studsvik Consulting) was asked to develop a basis for decision on an overall strategy for the management of the material and waste arising from the decommissioning of two BWR NPPs at the Oskarshamn site in Sweden. To be able to provide a good basis for decision the full waste management chain from generation to disposition, i.e. clearance or disposal had to be assessed, categorised, quantified and analysed with regards to costs, environmental impact and risks. A systematic approach was applied taking benefit of the decommissioning studies made previously for the two facilities, the decommissioning concepts developed by Ndcon (the partnership in decommissioning between Studsvik and Westinghouse) and the combined knowledge and experience in the project team. In total 4 different waste management concepts were compared individually and in combinations. The four concepts evaluated were based on: direct disposal in the national geological repository; treatment of the waste for volume reduction and where applicable clearance in an external waste treatment facility; decontamination and clearance in an on-site waste treatment facility; direct disposal in a near surface repository at the NPP site. It was important to be able to compare the different options in a quantifiable way. Therefore the project team set up a matrix with parameters for the different options gained from the utility, the national waste management company, external vendors and the experience of the team. In this way a quantitative analysis could be done with the four different waste management options. In addition to the quantitative analysis the team summarised decades of experience in radioactive waste management and decommissioning recommendations and risk analyses. Special attention was given to risk mitigation and redundancy in the waste management chain. The development of an overall waste

  9. Radiation monitoring system in medical facilities

    International Nuclear Information System (INIS)

    Matsuno, Kiyoshi

    1981-01-01

    (1) RI selective liquid effluent monitor is, in many cases, used at medical facilities to obtain data for density of radioactivity of six radionuclides. In comparison with the conventional gross measuring systems, over-evaluation is less, and the monitor is more practical. (2) Preventive monitor for loss of radium needle is a system which prevents missing of radium needle at a flush-toilet in radium treatment wards, and this monitor is capable of sensing a drop-off of radium needle of 0.5 mCi (minimum). (3) Short-lived positron gas measuring device belongs to a BABY CYCLOTRON installed in a hospital, and this device is used to measure density of radioactivity, radioactive impurity and chemical impurity of produced radioactive gas. (author)

  10. Crisis Management training at nuclear facilities: Simulations in bomb threats

    International Nuclear Information System (INIS)

    Barton, L.

    1993-01-01

    Substantial enhancements to the study of the theoretical and applied foundations of crisis management have been achieved in recent years. Whereas risk managers study 'the probability that a harmful consequence of a particular event will occur during a given time,' crisis management explores unexpected, potentially negative events with short or long-term implications involving injury to life or property. In this regard, crisis management focuses on the mitigation of organizational after-shock; risk management is preventative in scope. While the risk management function of nuclear facilities has been addressed widely in the literature, comparatively little has been written that addresses the myriad, interdisciplinary challenges associated with managing organizational disarray. The issue of crisis management has assumed paramount importance in recent years due to unexpected geopolitical events (e.g., Persian Gulf War), rampant violence facing organizations (e.g., mass shootings in Killeen, Texas and several U.S. Post Offices) and an acceleration of serious crisis impacting large organizations (e.g., Three Mile Island, Chernobyl, Exxon Valdez, NASA Challenger disaster). Without question, the public is increasingly demanding that organizational managers possess a fundamental understanding of crisis management and its principal underpinnings: effective public communication regarding the event and a return to normalcy, employee and public safety and evacuation measures, and other mitigation measures will protect life and property

  11. Risk management program for the 283-W water treatment facility

    International Nuclear Information System (INIS)

    Green, W.E.

    1999-01-01

    This Risk Management (RM) Program covers the 283-W Water Treatment Facility (283W Facility), located in the 200 West Area of the Hanford Site. A RM Program is necessary for this facility because it stores chlorine, a listed substance, in excess of or has the potential to exceed the threshold quantities defined in Title 40 of the Code of Federal Regulations (CFR) Part 68 (EPA, 1998). The RM Program contains data that will be used to prepare a RM Plan, which is required by 40 CFR 68. The RM Plan is a summary of the RM Program information, contained within this document, and will be submitted to the U.S. Environmental Protection Agency (EPA) ultimately for distribution to the public. The RM Plan will be prepared and submitted separately from this document

  12. Key ecological challenges for closed systems facilities

    Science.gov (United States)

    Nelson, Mark; Dempster, William F.; Allen, John P.

    2013-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems.

  13. Development of a quality system for a contract irradiation facility

    International Nuclear Information System (INIS)

    Siyakus, G.

    2002-01-01

    . Even, some conditions required by the primary producer may be impossible to apply because of the design parameters of the facility or economical reasons. The worst situation is, transforming the commodity to be processed into garbage, because of the any misapprehension among the customer and the organization running the facility, or any level of misleading among the internal communication chain of the organization. Therefore, every step of the process from delivery of the product by the principal manufacturer up to the release of the commodity after irradiation should be firmly defined, organized, documented, validated and certified. The purpose of the irradiation may be at variance from decontamination of a food commodity to the sterilization of a medical supply. To make things easier, the case study which will be presented in the scope of this paper is limited with the radiation sterilization of medical supplies at the Food Irradiation and Sterilization Department (FISD) of Ankara Nuclear Research Center of Agriculture and Animal Science (ANRCAAS). To meet the requirements stated by the contract, an appropriate quality management system should be implemented. Basic activities for implementing a quality management system should be: A policy for quality management, An appropriate work flow, Contract model to make certain the demand of the primary producer, Straightforward documentation of the management responsibilities, Suitable premises, equipment and materials, Well defined and documented procedures, processes to be applied on the product, Traceable batch, product and dosimetry records, Definitely the radiation, chemical and biological safety issues related to the personnel working in the quality control laboratories and irradiation facility are more essential issues than the above mentioned topics and should be included into the quality system

  14. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Thomas [NUKEM Technologies GmbH, Alzenau (Germany); NUKEM Technologies GmbH, Slavutich (Ukraine)

    2009-07-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  15. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    International Nuclear Information System (INIS)

    Pietsch, Thomas

    2009-01-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  16. The grand challenge of managing the petascale facility.

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, R. J.; Mathematics and Computer Science

    2007-02-28

    This report is the result of a study of networks and how they may need to evolve to support petascale leadership computing and science. As Dr. Ray Orbach, director of the Department of Energy's Office of Science, says in the spring 2006 issue of SciDAC Review, 'One remarkable example of growth in unexpected directions has been in high-end computation'. In the same article Dr. Michael Strayer states, 'Moore's law suggests that before the end of the next cycle of SciDAC, we shall see petaflop computers'. Given the Office of Science's strong leadership and support for petascale computing and facilities, we should expect to see petaflop computers in operation in support of science before the end of the decade, and DOE/SC Advanced Scientific Computing Research programs are focused on making this a reality. This study took its lead from this strong focus on petascale computing and the networks required to support such facilities, but it grew to include almost all aspects of the DOE/SC petascale computational and experimental science facilities, all of which will face daunting challenges in managing and analyzing the voluminous amounts of data expected. In addition, trends indicate the increased coupling of unique experimental facilities with computational facilities, along with the integration of multidisciplinary datasets and high-end computing with data-intensive computing; and we can expect these trends to continue at the petascale level and beyond. Coupled with recent technology trends, they clearly indicate the need for including capability petascale storage, networks, and experiments, as well as collaboration tools and programming environments, as integral components of the Office of Science's petascale capability metafacility. The objective of this report is to recommend a new cross-cutting program to support the management of petascale science and infrastructure. The appendices of the report document current and projected

  17. The Mixed Waste Management Facility, monthly report, February 1995

    International Nuclear Information System (INIS)

    Streit, R.D.

    1995-03-01

    Technical progress continued in general accordance with the Mixed Waste Management Facility (MWMF) FY95 Plan. Engineering development and design continued in support of preliminary design of MWMF major subsystems. Peer reviews have begun in preparation for system preliminary design reviews. Procurements in support of engineering design/development have continued to increase. Significant effort to provide technical and cost trade-off information for the Project Baseline Revision 1.2 (PB1.2) and FY97 Validation was completed. Management focus during February centered upon addressing the rebaseline for MWMF for the FY97 Validation in March, and upon completing the permitting strategy. We completed a consistent baseline plan for Validation that satisfied the DOE constraints of integration with DWTF, schedule stretchout, overall Project cost, and FY cost profiles. The revised permitting strategy was completed and reviewed by a number of stakeholders (LLNL, DOE, State). The proposed strategy involves no RCRA RD ampersand D permit, since all technology demonstrations can be done with surrogates and using limited treatability studies. The expenses for February continue to run somewhat below the plan due to the limited new hiring. This is a result of uncertain DOE funding and guidance to keep personnel to a minimum. However, the spending rate is picking up due to initiation of procurements for engineering development and a minimum of essential new hires. A significant imbalance in the OPEX/CENRTC funding split for FY95 exists (about $2.1M); DOE/OAK began to seek resolution this month. Critical-path items are DWTF construction, NEPA, and permitting (for both MWMF and DWTF). Contractual issues have delayed award of the A ampersand E contract for DWTF, but work-arounds are in progress to avoid schedule impact. NEPA and permitting issues are discussed below. Progress on preliminary design for MWMF is close to schedule

  18. Knowledge Management tools integration within DLR's concurrent engineering facility

    Science.gov (United States)

    Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.

    The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.

  19. Record of radiation management inside KUR facilities, no. 13 (1976)

    International Nuclear Information System (INIS)

    Katsurayama, Kosuke; Tsujimoto, Tadashi; Saito, Masahiro; Tsuruta, Takao; Fukui, Masami.

    1979-01-01

    The record of radiation management inside the KUR buildings in 1976 is reported. Relating to the routine radiation management inside the facilities, the spatial dose rate has been always monitored, utilizing the area monitors which are composed of GM survey meters and BF 3 neutron survey meters, inside the reactor building, the hot laboratory, the tracer building, the waste treatment building, the linear accelerator building, the gamma irradiation building, the solid waste storage and the research building. The measured dose rate at 5000 kW power level was about 2 mrem/h in the reactor building and about 4 mrem/h in the hot laboratory at maximum. Inside the other buildings, the dose rates were almost background level. The cumulative dose was measured utilizing film badges, and the measured maximum value was about 450 mrem in one month in the spent fuel storage pool. The surface contamination was monitored, and about 10 -7 μCi/cm 2 was obtained on the reactor top and in several places in the hot laboratory. The monitoring of radioactivity concentration in water was conducted, and the concentration almost exceeded 1 x 10 -5 μCi/cm 3 in low level water. The monitoring was conducted for radioactive dust concentration, and about 100 x 10 -11 μCi/cm 3 was obtained at maximum in the hot cave. The gas concentration in the reactor room showed about 6 x 10 -7 μCi/cm 3 as the mean value of a month. The external exposure dose around the site was about 2 mrem in one year as the mean value. The status of operation of the KUR, the radiation monitoring systems for spatial dose rate, the cumulative spatial dose, the surface contamination and so on, the monitoring equipments and the regular inspection are explained. (Nakai, Y.)

  20. Management aspects of Gemini's base facility operations project

    Science.gov (United States)

    Arriagada, Gustavo; Nitta, Atsuko; Adamson, A. J.; Nunez, Arturo; Serio, Andrew; Cordova, Martin

    2016-08-01

    Gemini's Base Facilities Operations (BFO) Project provided the capabilities to perform routine nighttime operations without anyone on the summit. The expected benefits were to achieve money savings and to become an enabler of the future development of remote operations. The project was executed using a tailored version of Prince2 project management methodology. It was schedule driven and managing it demanded flexibility and creativity to produce what was needed, taking into consideration all the constraints present at the time: Time available to implement BFO at Gemini North (GN), two years. The project had to be done in a matrix resources environment. There were only three resources assigned exclusively to BFO. The implementation of new capabilities had to be done without disrupting operations. And we needed to succeed, introducing the new operational model that implied Telescope and instrumentation Operators (Science Operations Specialists - SOS) relying on technology to assess summit conditions. To meet schedule we created a large number of concurrent smaller projects called Work Packages (WP). To be reassured that we would successfully implement BFO, we initially spent a good portion of time and effort, collecting and learning about user's needs. This was done through close interaction with SOSs, Observers, Engineers and Technicians. Once we had a clear understanding of the requirements, we took the approach of implementing the "bare minimum" necessary technology that would meet them and that would be maintainable in the long term. Another key element was the introduction of the "gradual descent" concept. In this, we increasingly provided tools to the SOSs and Observers to prevent them from going outside the control room during nighttime operations, giving them the opportunity of familiarizing themselves with the new tools over a time span of several months. Also, by using these tools at an early stage, Engineers and Technicians had more time for debugging

  1. OSPACS: Ultrasound image management system

    Directory of Open Access Journals (Sweden)

    Bessant Conrad

    2008-06-01

    Full Text Available Abstract Background Ultrasound scanning uses the medical imaging format, DICOM, for electronically storing the images and data associated with a particular scan. Large health care facilities typically use a picture archiving and communication system (PACS for storing and retrieving such images. However, these systems are usually not suitable for managing large collections of anonymized ultrasound images gathered during a clinical screening trial. Results We have developed a system enabling the accurate archiving and management of ultrasound images gathered during a clinical screening trial. It is based upon a Windows application utilizing an open-source DICOM image viewer and a relational database. The system automates the bulk import of DICOM files from removable media by cross-validating the patient information against an external database, anonymizing the data as well as the image, and then storing the contents of the file as a field in a database record. These image records may then be retrieved from the database and presented in a tree-view control so that the user can select particular images for display in a DICOM viewer or export them to external media. Conclusion This system provides error-free automation of ultrasound image archiving and management, suitable for use in a clinical trial. An open-source project has been established to promote continued development of the system.

  2. Portfolio Management System

    Data.gov (United States)

    US Agency for International Development — PfMS is an implementation of WorkLenz. WorkLenz is USAID's portfolio management system tool. It is a commercially available, off-the-shelf (COTS) package that...

  3. Environmental Management Systems

    Science.gov (United States)

    This site on Environmental Management Systems (EMS) provides information and resources related to EMS for small businesses and private industry, as well as local, state and federal agencies, including all the EPA offices and laboratories.

  4. Holdings Management System

    Data.gov (United States)

    National Archives and Records Administration — This system supports the physical management of permanent, hard-copy archival Records in the custody of National Archives and Records Administration program offices.

  5. Correspondence Management System

    Data.gov (United States)

    U.S. Environmental Protection Agency — CMS is EPA's correspondence tracking and workflow management system. It scans, logs, routes, tracks, and stores incoming and outgoing correspondence in all Program...

  6. Earned Value Management System

    Data.gov (United States)

    US Agency for International Development — EVMS is a system for measuring project performance and progress in an objective manner by supporting earned value management. EVMS has the ability to combine...

  7. A distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Verho, P.; Jaerventausta, P.; Kaerenlampi, M.; Paulasaari, H. [Tampere Univ. of Technology (Finland); Partanen, J. [Lappeenranta Univ. of Technology (Finland)

    1996-12-31

    The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion of the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the vendors of the other systems. In the research project this alternative is preferred and used in developing an independent distribution management system

  8. A distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Verho, P; Jaerventausta, P; Kaerenlampi, M; Paulasaari, H [Tampere Univ. of Technology (Finland); Partanen, J [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion of the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the vendors of the other systems. In the research project this alternative is preferred and used in developing an independent distribution management system

  9. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    Science.gov (United States)

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  10. OPP og indkøb af Facilities Management ydelser

    DEFF Research Database (Denmark)

    Kristiansen, Kristian

    Dette er den 3. og sidste rapport i forskningsprojektet om OPP og indkøb af Facilities Management ydelser. Fokus er denne gang rettet mod bestræbelserne på at skabe større integration i byggeprocessen. Det vil blive undersøgt, hvorvidt sådanne bestræbelser – som der kan findes eksempler på både i...... UK og i Danmark – vil kunne fremme en inddragelse af Facilities Management viden i planlægning, projektering og udførelse. Denne problemstilling skal ses i forlængelse af det forudgående arbejde i forskningsprojektet....

  11. Realising the potential of shared space in facilities management

    DEFF Research Database (Denmark)

    Brinkø, Rikke

    individuals or groups from different organisational contexts, and this PhD investigates the intricate processes con-cerning shared space in a facilities management context. The overall aim is divided in a theoretical and a practical part, with the theoretical focused on contributing with new knowledge...... of shared space, building towards a new method for efficient and sustainable facilities management operation of buildings and properties. The practical part is focused on connecting this new knowledge to practical applications and developing tools that can be used to work with shared spaces in a practice...... categories according to degree of sharing, and lists a number of characteristics of shared spaces to provide a starting point for discussing, developing and working with shared space in both academia and practice. The guide on the other hand synthesises the theoretical knowledge resulting from the study...

  12. Development of hull compaction system for nuclear recycle facility

    International Nuclear Information System (INIS)

    Manole, A.A.; Karkhanis, P.P.; Agarwal, Kailash; Basu, Sekhar

    2013-01-01

    India has adopted closed fuel cycle strategy for efficient management of available resources to meet long term energy requirements. Nuclear Recycle Facility (NRF) provides a vital link in three-stage Indian nuclear power programme. In a NRF for PHWR fuel cycle, reprocessing of spent fuel bundles from PHWRs is carried out using a chop-leach process where the spent fuel bundles are chopped into small pieces using a spent fuel chopper and the contents inside the zircaloy clad are dissolved using concentric nitric acid. This process generates empty zircaloy shells called 'hulls'. The present practice followed for management of hulls is to transfer them into SS drums and store these drums in underground RCC tile holes at a Waste Management Facility (WMF). This waste needs to be stored in an engineered WMF for at least 30-60 years before transferred to a final repository. The storage volumes required for this hull waste will keep increasing as the reprocessing capacity is being enhanced multi-folds. Compaction of hull waste has been employed internationally to reduce the volume required for storage. Hence indigenous development of hull compaction system was initiated by NRB to meet the future requirements. This is being achieved through a set of experiments and analysis with the available resources within the country. This paper describes the process of compaction, conceptualization of the system and benefits accrued from it. (author)

  13. Management concepts and safety applications for nuclear fuel facilities

    International Nuclear Information System (INIS)

    Eisner, H.; Scotti, R.S.

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities

  14. Management concepts and safety applications for nuclear fuel facilities

    Energy Technology Data Exchange (ETDEWEB)

    Eisner, H.; Scotti, R.S. [George Washington Univ., Washington, DC (United States). School of Engineering and Applied Science; Delicate, W.S. [KEVRIC Co., Inc., Silver Spring, MD (United States)

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities.

  15. 40 CFR 792.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas... waste and refuse or for safe sanitary storage of waste before removal from the testing facility...

  16. Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-04-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  17. Study on Customer Satisfaction with Facilities Management Services in Lithuania

    Science.gov (United States)

    Lepkova, Natalija; Žūkaitė-Jefimovienė, Giedrė

    2012-12-01

    The article introduces the concept and content of facilities management (FM) services. The paper presents the concept of customer satisfaction and discusses the key factors which influence the opinions of customers and their satisfaction or dissatisfaction with the services provided. The article presents two studies: a brief survey of several FM service providers and a survey of customer satisfaction with FM services in Lithuania. The conclusions are given at the end of the article.

  18. Supervision of radiation environment management of nuclear facilities

    International Nuclear Information System (INIS)

    Luo Mingyan

    2013-01-01

    Through literature and documents, the basis, content and implementation of the supervision of radiation environment management of nuclear facilities were defined. Such supervision was extensive and complicated with various tasks and overlapping duties, and had large social impact. Therefore, it was recommend to make further research on this supervision should be done, clarify and specify responsibilities of the executor of the supervision so as to achieve institutionalization, standardization and routinization of the supervision. (author)

  19. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  20. American Health Information Management Association. Position statement. Issue: managing health information in facility mergers and acquisitions.

    Science.gov (United States)

    1994-04-01

    Healthcare facility mergers and acquisitions are becoming more common as the industry consolidates. Many critical issues must be considered in mergers and acquisitions, including the management of patient health information. In addition to operational issues, licensure, regulatory, and accreditation requirements must be addressed. To ensure availability of health information to all legitimate users, patient records should be consolidated or linked in the master patient index. A record retention policy should be developed and implemented to meet user needs and assure compliance with legal, regulatory, and accreditation requirements. If health information from closed facilities will be stored for a period of time, its integrity and confidentiality must be preserved, and it must be readily accessible for patient care. The compatibility and functionality of existing information systems should be assessed, and a plan should be formulated for integration of the systems to the extent possible. Such integration may be essential for the organization to successfully meet the demands of integrated delivery systems. Existing databases should be maintained in an accessible form to meet anticipated future needs.