WorldWideScience

Sample records for facility management rationelle

  1. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  2. Samarbejdsformer og Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten

    Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges.......Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges....

  3. Sustainable Facilities Management

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten; Hoffmann, Birgitte

    2004-01-01

    The Danish public housing sector has more than 20 years of experience with sustainable facilities management based on user involvement. The paper outlines this development in a historical perspective and gives an analysis of different approaches to sustainable facilities management. The focus...... is on the housing departments and strateies for the management of the use of resources. The research methods used are case studies based on interviews in addition to literature studies. The paper explores lessons to be learned about sustainable facilities management in general, and points to a need for new...

  4. Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Coobs, J.H.

    1983-01-01

    This is the second of two programs that are concerned with the management of surplus facilities. The facilities in this program are those related to commercial activities, which include the three surplus experimental and test reactors [(MSRE, HRE-2, and the Low Intensity Test Reactor (LITR)] and seven experimental loops at the ORR. The program is an integral part of the Surplus Facilities Management Program, which is a national program administered for DOE by the Richland Operations Office. Very briefly reported here are routine surveillance and maintenance of surplus radioactively contaminated DOE facilities awaiting decommissioning

  5. FACILITIES MANAGEMENT AT CERN

    CERN Multimedia

    2002-01-01

    Recently we have been confronted with difficulties concerning services which are part of a new contract for facilities management. Please see below for some information about this contract. Following competitive tendering and the Finance Committee decision, the contract was awarded to the Swiss firm 'Facilities Management Network (FMN)'. The owners of FMN are two companies 'M+W Zander' and 'Avireal', both very experienced in this field of facilities management. The contract entered into force on 1st July 2002. CERN has grouped together around 20 different activities into this one contract, which was previously covered by separate contracts. The new contract includes the management and execution of many activities, in particular: Guards and access control; cleaning; operation and maintenance of heating plants, cooling and ventilation equipment for buildings not related to the tunnel or the LHC; plumbing; sanitation; lifts; green areas and roads; waste disposal; and includes a centralised helpdesk for these act...

  6. Facility Management Innovation (FMI)

    NARCIS (Netherlands)

    Mobach, Mark P.; Nardelli, Giulia; Kok, Herman; Konkol, Jennifer; Alexander, Keith; Alexander, Keith

    2014-01-01

    This current green paper deals with innovation in facility management (FM), a subject which is at the heart of Working Group 3, in benefit of the EuroFM Research Network. It aims to stimulate discussion and further collaborative work, and to generate new knowledge for the European FM community. We

  7. World Class Facilities Management

    DEFF Research Database (Denmark)

    Malmstrøm, Ole Emil; Jensen, Per Anker

    2013-01-01

    Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet.......Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet....

  8. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  9. New Ideas on Facilities Management.

    Science.gov (United States)

    Grimm, James C.

    1986-01-01

    Examines trends in facilities management relating to products and people. Reviews new trends in products, including processes, techniques, and programs that are being expounded by business and industry. Discusses the "people factors" involved in facilities management. (ABB)

  10. Capital Ideas for Facilities Management.

    Science.gov (United States)

    Golding, Stephen T.; Gordon, Janet; Gravina, Arthur

    2001-01-01

    Asserting that just like chief financial officers, higher education facilities specialists must maximize the long-term performance of assets under their care, describes strategies for strategic facilities management. Discusses three main approaches to facilities management (insourcing, cosourcing, and outsourcing) and where boards of trustees fit…

  11. Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  12. A Program Management Framework for Facilities Managers

    Science.gov (United States)

    King, Dan

    2012-01-01

    The challenge faced by senior facility leaders is not how to execute a single project, but rather, how to successfully execute a large program consisting of hundreds of projects. Senior facilities officers at universities, school districts, hospitals, airports, and other organizations with extensive facility inventories, typically manage project…

  13. 48 CFR 970.3770 - Facilities management.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management. ...

  14. Systems management of facilities agreements

    International Nuclear Information System (INIS)

    Blundell, A.

    1998-01-01

    The various types of facilities agreements, the historical obstacles to implementation of agreement management systems and the new opportunities emerging as industry is beginning to make an effort to overcome these obstacles, are reviewed. Barriers to computerized agreement management systems (lack of consistency, lack of standards, scarcity of appropriate computer software) are discussed. Characteristic features of a model facilities agreement management system and the forces driving the changing attitudes towards such systems (e.g. mergers) are also described

  15. CLAIMS OF SUSTAINABLE FACILITIES MANAGEMENT

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev

    Purpose: The purpose of the paper is to provide an overview of current practices within the emergent management discipline: Sustainable Facilities Management (SFM). Background: To develop a sustainable society, facilities managers must become change agents for sustainability in the built...... environment. Facilities Management (FM) is contributing to the environmental, social and economical problems, but can at the same time also be a part of the solution. However, to integrate sustainability in FM is still an emergent niche within FM, and the examples of SFM so far seems to come out of very......-creating of new socio-technical services and technologies These SFM understandings are concluded to be coexisting claims of SFM definitions. Practical Implications: Facilities managers will be able to identify the mindset behind different services and technologies that are promoted as SFM. But maybe just...

  16. Technical Merits and Leadership in Facility Management

    National Research Council Canada - National Science Library

    Shoemaker, Jerry

    1997-01-01

    .... The document is divided into six chapters; the introduction, facility management and leadership, building systems, facility operations, facility maintenance strategies, and the conclusion and final analysis...

  17. Facility management in kinderschoenen : Facility management in de kinderopvang

    NARCIS (Netherlands)

    Ronald Beckers

    2008-01-01

    Begin dit jaar heft Academie Diedenoort FM aan de Hogeschool van Arnhem en Nijmegen, tijdens een studiemiddag een toelichting gegeven op het vakgebied facility management aan een aantal financiële managers van organisaties die zich bezighouden met kinderopvang. In die branche staat het fm-vakgebid

  18. Technical merits and leadership in facility management

    OpenAIRE

    Shoemaker, Jerry J

    1997-01-01

    After almost ten years of experience and formal education in design, construction, and facility operations and maintenance, the challenges and complexity of facility management still seem overwhelming and intangible. This document explores those complexities and challenges, and presents several philosophies and strategies practiced in facility management. The document is divided into six chapters; the introduction, facility management and leadership, building systems, facility operations, fac...

  19. COGEMA's UMF [Uranium Management Facility

    International Nuclear Information System (INIS)

    Lamorlette, G.; Bertrand, J.P.

    1988-01-01

    The French government-owned corporation, COGEMA, is responsible for the nuclear fuel cycle. This paper describes the activities at COGEMA's Pierrelatte facility, especially its Uranium Management Facility. UF6 handling and storage is described for natural, enriched, depleted, and reprocessed uranium. UF6 quality control specifications, sampling, and analysis (halocarbon and volatile fluorides, isotopic analysis, uranium assay, and impurities) are described. In addition, the paper discusses the filling and cleaning of containers and security at UMF

  20. Facility management i fremtidens bankdrift

    OpenAIRE

    Vollan, Silje Steen

    2015-01-01

    Facility Management (FM) er et relativt ungt fagområde som er i sterk utvikling. Bank og finansbransjen har hatt en tradisjon med å eie og forvalte egne bygninger, noe som har gitt et underbevisst fokus på FM. Økt digitalisering fører til at bankene står overfor nye utfordringer og muligheter. Nye produkter og tjenester dukker opp og dette fører til at FM enheten utfordres med høyere krav til profesjonalitet og effektivitet. Internasjonale trender i markedet viser at flere facility management...

  1. Utilizing Interns in Facilities Management

    Science.gov (United States)

    Judkins, Clarissa; Morris, John P.; Molocznik, Chuck

    2011-01-01

    Facilities management is rapidly changing and developing from a position an individual stumbles into--or work one's way up through--to a discipline and vocation all of its own. There is a need for a collaborative strategy among leaders in practice, education, and research to share knowledge and experience and to establish professional and ethical…

  2. Facility Management's Role in Organizational Sustainability

    Science.gov (United States)

    Adams, Gregory K.

    2013-01-01

    Facility managers have questions about sustainability. How do an organization's physical facilities--its built environment--and the management of them, influence the sustainability of the organization or institution as a whole? How important is Facility Management (FM) to the overall sustainability profile of an organization? Facility managers…

  3. Knowledge Map of Facilities Management

    DEFF Research Database (Denmark)

    Nenonen, Suvi; Jensen, Per Anker; Lindahl, Göran

    2014-01-01

    both the research community and FM-practitioners can develop new models for identifying knowledge needs and gaps and to improve knowledge sharing and knowledge flow and thus the fulfilment of their mission and goals. Knowledge maps can also help in organizing research activities and analysing......Purpose This paper aims to draft a knowledge map of the fragmented and multidisciplinary research of and relevant to FM. Facilities management knowledge map is a tool for presenting what relevant data and knowledge, a.k.a. knowledge, resides in different disciplines. Knowledge mapping is a step...... in creating an inventory of knowledge (i.e. the knowledge base) and developing/improving the processes of knowledge sharing in research, education and practice. Theory Knowledge mapping is discussed in terms of knowledge management. The research is connected to knowledge mapping in the facilities management...

  4. DKIST facility management system integration

    Science.gov (United States)

    White, Charles R.; Phelps, LeEllen

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.

  5. The future of facility management in Finland

    OpenAIRE

    Boateng, Ernest

    2011-01-01

    The objective of this study was to investigate the feasible future of facility management in Finland in order to provide an overview of the future of facility management. This is intended to serve as a guideline for the educational sector, facility management service companies, and the Facility management association in Finland (FIFMA) for future development. Qualitative method, precisely semi-structured/unstructured interview was adopted to address the problems in this study. The study c...

  6. 7 CFR 210.13 - Facilities management.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Facilities management. 210.13 Section 210.13... Participation § 210.13 Facilities management. Link to an amendment published at 74 FR 66216, Dec. 15, 2009. (a..., the added text is set forth as follows: § 210.13 Facilities management. (c) Food safety program. The...

  7. Computer-Aided Facilities Management Systems (CAFM).

    Science.gov (United States)

    Cyros, Kreon L.

    Computer-aided facilities management (CAFM) refers to a collection of software used with increasing frequency by facilities managers. The six major CAFM components are discussed with respect to their usefulness and popularity in facilities management applications: (1) computer-aided design; (2) computer-aided engineering; (3) decision support…

  8. The mixed waste management facility

    International Nuclear Information System (INIS)

    Streit, R.D.

    1995-10-01

    During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory's Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to ∼$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at ∼$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability

  9. Facilities Management and Added Value

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2010-01-01

    Aim: This paper aims to present different models of the concept of the added value of Facilities Management (FM), including the FM Value Map, which forms the basis of research group in EuroFM, and to present some of the results of this research collaboration. Approach and methodology: The paper...... is based on literature reviews of the most influential journals within the academic fields of FM, Corporate Real Estate Management and Business to Business Marketing and discussions between participants of the research group working on a further exploration and testing of the FM Value Map. Conclusions......: The research shows a number of different definitions and focus points of Added Value of FM, dependent on the academic field and the area of application. The different research perspectives explored a holistic view on the added value of FM by the integration of an external market based view (with a focus...

  10. New Trends in Facility Asset Management.

    Science.gov (United States)

    Adams, Matt

    2000-01-01

    Explains new, positive trends in facility asset management that encompasses greater acceptance and involvement of facility managers in the financial planning process, greater awareness of the need for maintenance, and facility administrators taking a greater role with business officers. The new climate for alternative renewal financing proposals…

  11. Technical Merits and Leadership in Facility Management

    National Research Council Canada - National Science Library

    Shoemaker, Jerry

    1997-01-01

    After almost ten years of experience and formal education in design, construction, and facility operations and maintenance, the challenges and complexity of facility management still seem overwhelming and intangible...

  12. OPG Western Waste Management Facility

    Energy Technology Data Exchange (ETDEWEB)

    Julian, J. [Ontario Power Generation, Western Waste Management Facility, Tiverton, ON (Canada)

    2011-07-01

    The Ontario Power Generation (OPG) Western Waste Management Facility (WWMF) uses a computer based Supervisory Control and Data Acquisition (SCADA) system to monitor its facility, and control essential equipment. In 2007 the WWMF Low and Intermediate Level Waste (L&ILW) technical support section conducted a review of outstanding corrective maintenance work. Technical support divided all work on a system by system basis. One system under review was the Waste Volume Reduction Building (WVRB) control room SCADA system. Technical support worked with control maintenance staff to assess all outstanding work orders on the SCADA system. The assessment identified several deficiencies in the SCADA system. Technical support developed a corrective action plan for the SCADA system deficiencies, and in February of 2008 developed an engineering change package to correct the observed deficiencies. OPG Nuclear Waste Engineering approved the change package and the WVRB Control Room Upgrades construction project started in January of 2009. The WVRB control room upgrades construction work was completed in February of 2009. This paper provides the following information regarding the WWMF SCADA system and the 2009 WVRB Control Room Upgrades Project: A high-level explanation of SCADA system technology, and the various SCADA system components installed in the WVRB; A description of the state of the WVRB SCADA system during the work order assessment, identifying all deficiencies; A description of the new design package; A description of the construction project; and, A list of lessons learned during construction and commissioning, and a path forward for future upgrades. (author)

  13. OPG Western Waste Management Facility

    International Nuclear Information System (INIS)

    Julian, J.

    2011-01-01

    The Ontario Power Generation (OPG) Western Waste Management Facility (WWMF) uses a computer based Supervisory Control and Data Acquisition (SCADA) system to monitor its facility, and control essential equipment. In 2007 the WWMF Low and Intermediate Level Waste (L&ILW) technical support section conducted a review of outstanding corrective maintenance work. Technical support divided all work on a system by system basis. One system under review was the Waste Volume Reduction Building (WVRB) control room SCADA system. Technical support worked with control maintenance staff to assess all outstanding work orders on the SCADA system. The assessment identified several deficiencies in the SCADA system. Technical support developed a corrective action plan for the SCADA system deficiencies, and in February of 2008 developed an engineering change package to correct the observed deficiencies. OPG Nuclear Waste Engineering approved the change package and the WVRB Control Room Upgrades construction project started in January of 2009. The WVRB control room upgrades construction work was completed in February of 2009. This paper provides the following information regarding the WWMF SCADA system and the 2009 WVRB Control Room Upgrades Project: A high-level explanation of SCADA system technology, and the various SCADA system components installed in the WVRB; A description of the state of the WVRB SCADA system during the work order assessment, identifying all deficiencies; A description of the new design package; A description of the construction project; and, A list of lessons learned during construction and commissioning, and a path forward for future upgrades. (author)

  14. Design Integration of Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2009-01-01

    One of the problems in the building industry is a limited degree of learning from experiences of use and operation of existing buildings. Development of professional facilities management (FM) can be seen as the missing link to bridge the gap between building operation and building design....... Strategies, methods and barriers for the transfer and integration of operational knowledge into the design process are discussed. Multiple strategies are needed to improve the integration of FM in design. Building clients must take on a leading role in defining and setting up requirements and procedures...... on literature studies and case studies from the Nordic countries in Europe, including research reflections on experiences from a main case study, where the author, before becoming a university researcher, was engaged in the client organization as deputy project director with responsibility for the integration...

  15. Mitigating risks related to facilities management.

    Science.gov (United States)

    O'Neill, Daniel P; Scarborough, Sydney

    2013-07-01

    By looking at metrics focusing on the functionality, age, capital investment, transparency, and sustainability (FACTS) of their organizations' facilities, facilities management teams can build potential business cases to justify upgrading the facilities. A FACTS analysis can ensure that capital spent on facilities will produce a higher or more certain ROI than alternatives. A consistent process for managing spending helps to avoid unexpected spikes that cost the enterprise more in the long run.

  16. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  17. ICT Adoption in Facilities Management Supply Chain

    DEFF Research Database (Denmark)

    Scupola, Ada

    2012-01-01

    This article involves a qualitative study of factors impacting the adoption of ICT solutions in the Danish facility management supply chain. The results show that there are a number of drivers and barriers that influence the adoption of ICT solutions in this service sector. These have been grouped...... concerned with ICT adoption, operations and service management (especially facilities management) as well as operation managers and ICT managers....

  18. Integrated Facilities Management and Fixed Asset Accounting.

    Science.gov (United States)

    Golz, W. C., Jr.

    1984-01-01

    A record of a school district's assets--land, buildings, machinery, and equipment--can be a useful management tool that meets accounting requirements and provides appropriate information for budgeting, forecasting, and facilities management. (MLF)

  19. Does PDC Belong in Facilities Management?

    Science.gov (United States)

    Dessoff, Alan

    2012-01-01

    Whether planning, design, and construction (PDC) of buildings should be part of facilities management, with its traditional operations and maintenance functions, or separated from it, has been a divisive question on many campuses for a long time. Now, although it is not happening everywhere, facilities managers at a number of institutions, public…

  20. Facility management research in the Netherlands

    NARCIS (Netherlands)

    Thijssen, Thomas; van der Voordt, Theo; Mobach, Mark P.

    This article provides a brief overview of the history and development of facility management research in the Netherlands and indicates future directions. Facility management as a profession has developed from single service to multi-services and integral services over the past 15 years.

  1. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  2. Sport Facility Planning and Management. Sport Management Library.

    Science.gov (United States)

    Farmer, Peter J.; Mulrooney, Aaron L.; Ammon, Rob, Jr.

    Students of sports facilities management will need to acquire a wide variety of managerial skills and knowledge in order to be adequately prepared to plan and manage these facilities. This textbook offers students a mix of practical examples and recognized theory to help them in the planning, constructing, promoting, and managing of sports…

  3. Facilities management and industrial safety

    International Nuclear Information System (INIS)

    2003-06-01

    This book lists occupation safety and health acts with purpose, definition and management system of safety and health, enforcement ordinance of occupation safety and health acts and enforcement regulations such as general rules, safety and health cover, system of management on safety and health, regulation of management on safety and health, regulations of harmfulness and protection of danger, heath management for workers, supervisor and command and inspection of machine and equipment.

  4. Location - Managed Facility - St. Paul District (MVP)

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — St. Paul District - US Army Corps of Engineers Managed Facility locations. District headquarters, Natural Resource, Recreation, Lock and Dam, and Regulatory offices...

  5. Managing Educational Facilities and Students' Enrolment in ...

    African Journals Online (AJOL)

    DR Nneka

    Indexed African Journals Online: www.ajol.info. An International ... Key Words: Students Enrolment, Managing, Educational Facilities, Nigeria ... positive relationship with standard and quality of educational system (Nwagwu, 1978: Adesina ...

  6. Service quality for facilities management in hospitals

    CERN Document Server

    Sui Pheng, Low

    2016-01-01

    This book examines the Facilities Management (FM) of hospitals and healthcare facilities, which are among the most complex, costly and challenging kind of buildings to manage. It presents and evaluates the FM service quality standards in Singapore’s hospitals from the patient’s perspective, and provides recommendations on how to successfully improve FM service quality and achieve higher patient satisfaction. The book also features valuable supplementary materials, including a checklist of 32 key factors for successful facilities management and another checklist of 24 service attributes for hospitals to achieve desirable service quality in connection with facilities management. The book adopts a unique approach of combining service quality and quality theory to provide a more holistic view of how FM service quality can be achieved in hospitals. It also integrates three instruments, namely the SERVQUAL model, the Kano model and the QFD model to yield empirical results from surveys for implementation in hosp...

  7. Data management facility for JT-60

    International Nuclear Information System (INIS)

    Ohasa, K.; Kurimoto, K.; Mochizuki, O.

    1983-01-01

    This study considers the Data Management Facility which is provided for unified management of various diagnostics data with JT-60 experiments. This facility is designed for the purpose of data access. There are about 30 kinds of diagnostic devices that are classified by diagnostic objects equipped for JT-60 facility. It gathers the diagnostic date about 10 Mega Byte per each discharge. Those diagnostic data are varied qualitatively and quantitatively by experimental purpose. Other fundamental information like discharge condition, adjustive value for diagnostic devices is required to process those gathered data

  8. Legal regime of water management facilities

    Directory of Open Access Journals (Sweden)

    Salma Jožef

    2013-01-01

    Full Text Available The paper analyzes the legal regime of water management facilities in the light of Serbian, foreign and European law. Different divisions of water management facilities are carried out (to public and private ones, natural and artificial ones, etc., with determination of their legal relevance. Account is taken of the issue of protection from harmful effects of waters to such facilities, as well. The paper points also to rules on the water management facilities, from acts of planning, to individual administrative acts and measures for maintenance of required qualitative and quantitative condition of waters, depending on their purpose (general use or special, commercial use o waters. Albeit special rules on water management facilities exist, due to the natural interlocking between all the components of the environment (water, air and soil, a comprehensive approach is required. A reference is made to other basic principles of protection of water management facilities as well, such as the principle of prevention, principle of sustainable development and the principle "polluter pays". The last one represents the achievement of contemporary law, which deviates from the idea accepted in the second half of 20th century that supported the socialization of risk from harmful effects of waters.

  9. Improvement of management systems for nuclear facilities

    International Nuclear Information System (INIS)

    2005-01-01

    The area of Quality Management/ Quality Assurance has been changed dramatically over the past years. The nuclear facilities moved from the 'traditional' Quality Assurance approach towards Quality Management Systems, and later a new concept of Integrated Management Systems was introduced. The IAEA is developing a new set of Standards on Integrated Management Systems, which will replace the current 50-C-Q/SG-Q1-Q14 Code. The new set of document will require the integration of all management areas into one coherent management system. The new set of standards on Management Systems promotes the concept of the Integrated Management Systems. Based on new set a big number of documents are under preparation. These documents will address the current issues in the management systems area, e.g. Management of Change, Continuous Improvement, Self-assessment, and Attributes of effective management, etc. Currently NPES is providing a number of TC projects and Extra Budgetary Programmes to assist Member States in this area. The new Standards on Management Systems will be published in 2006. A number of Regulatory bodies already indicated that they would take the new Management System Standards as a basis for the national regulation. This fact will motivate a considerable change in the management of nuclear utilities, requiring a new approach. This activity is suitable for all IAEA Members States with large or limited nuclear capabilities. The service is directed to provide assistance for the management of all organizations carrying on or regulating nuclear activities and facilities

  10. Best Practices in Facility Management

    National Research Council Canada - National Science Library

    Neve, Trevor

    1999-01-01

    .... While the Logistics Management Institute's benchmark database has served as a cornerstone in helping to initiate change, data and metrics go only so far in implementing better ways of doing business...

  11. Daily storage management of hydroelectric facilities

    NARCIS (Netherlands)

    Chappin, E.J.L.; Ferrero, M.; Lazzeroni, P.; Lukszo, Z.; Olivero, M.; Repetto, M.

    2012-01-01

    This work presents a management procedure for hydroelectric facilities with daily storage. The water storage gives an additional degree of freedom allowing to shift in time power production when it is more convenient and to work at the maximum efficiency of hydraulic turbine. The management is

  12. Managing facilities in a Scandinavian manner:

    DEFF Research Database (Denmark)

    Elle, Morten; Engelmark, Jesper; Jørgensen, Bo

    2004-01-01

    Presents the aims and needs of research in facilities management (FM) at the section of Planning and Management of Building Processes at BYG*DTU. As the building stock in Denmark is rapidly increasing, socio-demographic developments implies profound changes in both the needs of inhabitants and th...

  13. How can facility managers add value?

    DEFF Research Database (Denmark)

    Jensen, Per Anker; van der Voordt, Theo

    2015-01-01

    Recent years have seen a growing interest in the concept of added value of facilities management (FM) and corporate real estate management (CREM), and how to attain and measure it. There is a wide variety of definitions in use, and recognition of different types of added value, such as user value...

  14. Los Alamos Plutonium Facility Waste Management System

    International Nuclear Information System (INIS)

    Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

    1997-01-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process

  15. XML Based Scientific Data Management Facility

    Science.gov (United States)

    Mehrotra, P.; Zubair, M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The World Wide Web consortium has developed an Extensible Markup Language (XML) to support the building of better information management infrastructures. The scientific computing community realizing the benefits of XML has designed markup languages for scientific data. In this paper, we propose a XML based scientific data management ,facility, XDMF. The project is motivated by the fact that even though a lot of scientific data is being generated, it is not being shared because of lack of standards and infrastructure support for discovering and transforming the data. The proposed data management facility can be used to discover the scientific data itself, the transformation functions, and also for applying the required transformations. We have built a prototype system of the proposed data management facility that can work on different platforms. We have implemented the system using Java, and Apache XSLT engine Xalan. To support remote data and transformation functions, we had to extend the XSLT specification and the Xalan package.

  16. Potential of Computerized Maintenance Management System in Facilities Management

    Directory of Open Access Journals (Sweden)

    Noor Farisya Azahar

    2014-07-01

    Full Text Available For some time it has been clear that managing buildings or estates has been carried out in the context of what has become known as facilities management. British Institute of Facilities Management defined facilities management is the integration of multi-disciplinary activities within the built environment and the management of their impact upon people and the workplace. Effective facilities management is vital to the success of an organisation by contributing to the delivery of its strategic and operational objectives. Maintenance of buildings should be given serious attention before (stage design, during and after a building is completed. But total involvement in building maintenance is after the building is completed and during its operations. Residents of and property owners require their building to look attractive, durable and have a peaceful indoor environment and efficient. The objective of the maintenance management system is to stream line the vast maintenance information system to improve the productivity of an industrial plant. a good maintenance management system makes equipment and facilities available. This paper will discuss the fundamental steps of maintenance management program and Computerized Maintenance Management System (CMMS

  17. Håndbog i Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    Facilities Management (FM) er et nyt nøgleord som mange nu anvender i forskellige forbindelser og sammenhænge. Dette hænger i høj grad sammen med manglen på en fælles dansk referenceramme for FM, der har givet frit spillerum for de mange forskellige definitioner af det engelske ord. Dansk...... Facilities Management netværk (DFM netværk) har i mange år arbejdet for en fælles definition af begrebet sammen med arbejdet for udbredelsen af kendskabet til FM, herunder uddannelse, erfaringsudveksling m.v. DFM netværk har udgivet en Håndbog i Facilities Management i samarbejde med bogens forfatter Per...

  18. Safe waste management practices in beryllium facilities

    International Nuclear Information System (INIS)

    Bhat, P.N.; Soundararajan, S.; Sharma, D.N.

    2012-01-01

    Beryllium, an element with the atomic symbol Be, atomic number 4, has very high stiffness to weight ratio and low density. It has good electrical conductive properties with low coefficient of thermal expansion. These properties make the metal beryllium very useful in varied technological endeavours, However, beryllium is recognised as one of the most toxic metals. Revelation of toxic effects of beryllium resulted in institution of stringent health and safety practices in beryllium handling facilities. The waste generated in such facilities may contain traces of beryllium. Any such waste should be treated as toxic waste and suitable safe waste management practices should be adopted. By instituting appropriate waste management practice and through a meticulously incorporated safety measures and continuous surveillance exercised in such facilities, total safety can be ensured. This paper broadly discusses health hazards posed by beryllium and safe methods of management of beryllium bearing wastes. (author)

  19. 20 CFR 638.303 - Site selection and facilities management.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Site selection and facilities management. 638... Facilities Management § 638.303 Site selection and facilities management. (a) The Job Corps Director shall... center, facilities engineering and real estate management will be conducted by the Job Corps Director or...

  20. Quality management in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Garonis, Omar H.

    2002-01-01

    Internationally, the decommissioning organizations of nuclear facilities carry out the decommissioning according to the safety requirements established for the regulatory bodies. Some of them perform their activities in compliance with a quality assurance system. This work establishes standardization through a Specifications Requirement Document, for the management system of the nuclear facilities decommissioning organizations. It integrates with aspects of the quality, environmental, occupational safety and health management systems, and also makes these aspects compatible with all the requirements of the nuclear industry recommended for the International Atomic Energy Agency (IAEA). (author)

  1. Application of Facility Management in Brownfield Conversion

    Directory of Open Access Journals (Sweden)

    Wernerová Eva

    2016-12-01

    Full Text Available The subject of this paper covers two issues, namely the issue of brownfields and their conversion and the issue of Facility Management, which offers the possibility of applying its principles and tools for extending the benefit of the construction works as a tool for active access to care for the property. This paper aims to link these two topics and to identify the possibility of applying Facility Management in the conversation process of revitalization of brownfields so that subsequent commissioning eliminates the risk of future costly operation and relapse of the revitalized building into the category of brownfields.

  2. Value Adding Management: A New Facilities Management Concept

    DEFF Research Database (Denmark)

    Jensen, Per Anker; Katchamart, Akarapong

    2011-01-01

    Purpose: To investigate how Facilities Management (FM) can add value and develop a management concept that can assist facilities managers in implementing value adding strategies and practices. Theory: The study is based on the management model for FM included in the European FM standards, recent...... is investigated, tested and discussed based on a case study of an international corporation. Findings: The study shows that the management model for FM creates a relevant starting point but also that stakeholder and relationship management is an essential aspect of Value Adding Management. The case study confirms...... the relevance of the basic concept and provides an important example of how Value Adding Management can be implemented and added value measured. Originality/value: The study develops a concept of Value Adding Management, which is new in FM literature. It is expected to increase the awareness of the impacts...

  3. Sustainability and the facilities management in Malaysia

    Directory of Open Access Journals (Sweden)

    Asbollah Asra Zaliza

    2016-01-01

    Full Text Available Facilities Management (FM in the industry of environment involves numerous expertise, especially from the management side. Other than that, technology and finance are the other factors involved as well. One essential aspect of FM, other than the emphasis on technical operation, is its performance. In parallel, the performance does impact occupant behaviour and, at the same time, this performance does affect the environment. In short, this indicates that FM is in a key position to participate in delivering a sustainable environment for the industry of built environment. Sustainable facilities Management (SFM is crucial because buildings consume more resources which will, in consequence, negatively impact the environment and generate large amounts of waste. This justifies the importance of sustainability under the umbrella of facilities management. However, FM is quite new in Malaysia’s environment. Government agencies, such as JKR, have adopted and are practicing FM at the moment. Fortunately, there has been an increasing trend and awareness of SFM adoption. Therefore, this paper aims to understand and identify the contribution and practices of Sustainable Facilities Management (SFM in Malaysia; focusing on the development taken in regards to SFM.

  4. Facility management and energy efficiency -- analysis and recommendations; Facility Management und Energieeffizienz: Analyse und Handlungsempfehlungen

    Energy Technology Data Exchange (ETDEWEB)

    Staub, P.; Weibel, K.; Zaugg, T. [Pom and Consulting Ltd., Zuerich (Switzerland); Lang, R. [Gruenberg and Partner Ltd., Zuerich (Switzerland); Frei, Ch. [Herzog Kull Group, Aarau (Switzerland)

    2001-07-01

    This final report presents the results of a study made on how facility management (FM) is positioned in enterprises and on how energy management can be integrated into the facility management process. Also, recommendations are made on the actions that are considered necessary to improve the understanding of facility management and energy management. The findings of an analysis made of the results of a survey among 200 enterprises, 20 interviews and 5 case studies are presented. The authors state that, in spite of the relatively small sample taken - mostly larger enterprises - trends in facility management and energy management could be shown. The findings of the survey, such as the relative importance of the integration of energy topics in facility management and the need for standardised indicators and benchmarking, are discussed in detail. Also, it is noted that the success of FM is in part due to delegation of responsibility to smaller business units or even to individual employees. The market potential for FM services is examined, with yearly growth rates of up to 20%. The importance of anchoring FM strategies at the top level of management is stressed, as is the need for promotion of the idea of facility management and training concepts for those responsible for its implementation.

  5. SLIMarray: Lightweight software for microarray facility management

    Directory of Open Access Journals (Sweden)

    Marzolf Bruz

    2006-10-01

    Full Text Available Abstract Background Microarray core facilities are commonplace in biological research organizations, and need systems for accurately tracking various logistical aspects of their operation. Although these different needs could be handled separately, an integrated management system provides benefits in organization, automation and reduction in errors. Results We present SLIMarray (System for Lab Information Management of Microarrays, an open source, modular database web application capable of managing microarray inventories, sample processing and usage charges. The software allows modular configuration and is well suited for further development, providing users the flexibility to adapt it to their needs. SLIMarray Lite, a version of the software that is especially easy to install and run, is also available. Conclusion SLIMarray addresses the previously unmet need for free and open source software for managing the logistics of a microarray core facility.

  6. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  7. Waste Management Facilities Cost Information Report

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options

  8. Facilities Management research in the Nordic Countries

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2011-01-01

    to the establishment of the Centre for Facilities Management – Realdania Research (CFM), and updated information from keynote contributions to CFM’s Nordic FM Conference on 22-23 August 2011 by Suvi Nenonen (Finland), Jan Bröchner (Sweden), Geir K Hansen (Norway) and Per Anker Jensen (Denmark)....

  9. The strategic facilities management organisation in housing

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Jensen, Per Anker; Jensen, Jesper Ole

    2012-01-01

    implementation of sustainable facilities management in housing administration. The concept provides a frame for understanding the roles and relations of tenants, owners, administrators and operators. The paper is based on a Danish research project on environmentally sound building operation including literature...

  10. Environmental Management Guide for Educational Facilities

    Science.gov (United States)

    APPA: Association of Higher Education Facilities Officers, 2017

    2017-01-01

    Since 1996, APPA and CSHEMA, the Campus Safety Health and Environmental Management Association, have collaborated to produce guidance documents to help educational facilities get ahead of the moving target that is environmental compliance. This new 2017 edition will help you identify which regulations pertain to your institution, and assist in…

  11. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  12. FFTF [Fast Flux Test Facility] management

    International Nuclear Information System (INIS)

    Bennett, C.L.

    1986-11-01

    Fuel Management at the Fast Flux Test Facility (FFTF) involves more than just the usual ex-core and in-core management of standard fuel and non-fuel components between storage locations and within the core since it is primarily an irradiation test facility. This mission involves testing an ever increasing variety of fueled and non-fueled experiments, each having unique requirements on the reactor core as well as having its own individual impact on the reload design. This paper describes the fuel management process used by the Westinghouse Hanford Company Core Engineering group that has led to the successful reload design of nine operating cycles and the irradiation of over 120 tests

  13. Waste management facility acceptance - some findings

    International Nuclear Information System (INIS)

    Sigmon, B.

    1987-01-01

    Acceptance of waste management facilities remains a significant problem, despite years of efforts to reassure potential host communities. The tangible economic benefits from jobs, taxes, and expenditures are generally small, while the intangible risks of environmental or other impacts are difficult to evaluate and understand. No magic formula for winning local acceptance has yet been found. Limited case study and survey work does suggest some pitfalls to be avoided and some directions to be pursued. Among the most significant is the importance that communities place on controlling their own destiny. Finding a meaningful role for communities in the planning and operation of waste management facilities is a challenge that would-be developers should approach with the same creativity that characterizes their technical efforts

  14. Criticality management of Tokai reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Ichiro [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-01-01

    In fuel cycle centers a number of equipment and vessels of various types and of complex design are used in several processes, i.e. dissolution of spent fuels, separation and storage of uranium and plutonium from fission products and transuranium elements. For each processes, Monte Carlo codes are frequently applied to manage the fuel criticality. Safety design depends largely on specific features of each facilities. The present report describes status of criticality management for main processes in Tokai Reprocessing Facility, JNC, and the criticality conditions specifically existing there. The guiding principle throughout consists of mass control, volume control, design (form) control, concentration control, and control due to employment of neutron poisons. (S. Ohno)

  15. National Ignition Facility Configuration Management Plan

    International Nuclear Information System (INIS)

    Cabral, S G; Moore, T L

    2002-01-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  16. Innovative Procurement and Partnerships in Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2010-01-01

    strong requirements on the management style and company culture. Limitations of the research: The research is only based on two case studies, which obviously limits the possibility to generalize the results. Practical applications: The research presents two specific examples of innovative procurement......Aim: The aim of the paper is to present, analyse and identify learning from two case studies of innovative procurement in Facilities Management (FM) concerning the establishments of partnerships between clients and providers. Approach and methodology: A major study of FM best practice covering 36...

  17. Life Management and Safety of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S.; Diluch, A.; Vega, G., E-mail: fabbri@cnea.gov.ar [Comisión Nacional de Energía Atómica, Buenos Aires (Argentina)

    2014-10-15

    The nuclear programme in Argentina includes: nuclear power and related supplies, medical and industrial applications, waste management, research and development and human training. Nuclear facilities require life management programs that allow a safe operation. Safety is the first priority for designers and operators. This can be attained with defence in depth: regular inspections and maintenance procedures to minimize failure risks. CNEA objectives in this area are to possess the necessary capability to give safe and fast technical support. Within this scheme, one of the main activities undertaken by CNEA is to provide technological assistance to the nuclear plants and research reactors. As a consequence of an increasing concern about safety and ageing a Life Management Department for safe operation was created to take care of these subjects. The goal is to elaborate a Safety Evaluation Process for the critical components of nuclear plants and other facilities. The overall objectives of a safety process are to ensure a continuous safe, reliable and effective operation of nuclear facilities and it means the implementation of the defence in deep concept to enhance safety for the protection of the public, the workers and the environment. (author)

  18. Screening criteria for siting waste management facilities: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    The Midwest Interstate Low-Level Radioactive Waste Commission (Midwest Compact) seeks to define and place into operation a system for low-level waste management that will protect the public health and safety and the environment from the time the waste leaves its point of origin. Once the system is defined it will be necessary to find suitable sites for the components of that waste management system. The procedure for siting waste management facilities that have been chosen by the compact is one in which a host state is chosen for each facility. The host state is then given the freedom to select the site. Sites will be needed of low-level waste disposal facilities. Depending on the nature of the waste management system chosen by the host state, sites may also be needed for regional waste treatment facilities, such as compactors or incinerators. This report provides example criteria for use in selecting sites for low-level radioactive waste treatment and disposal facilities. 14 refs

  19. Federal facilities compliance act waste management

    International Nuclear Information System (INIS)

    Bowers, J.; Gates-Anderson, D.; Hollister, R.; Painter, S.

    1999-01-01

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal

  20. Integration of Biosafety into Core Facility Management

    Science.gov (United States)

    Fontes, Benjamin

    2013-01-01

    This presentation will discuss the implementation of biosafety policies for small, medium and large core laboratories with primary shared objectives of ensuring the control of biohazards to protect core facility operators and assure conformity with applicable state and federal policies, standards and guidelines. Of paramount importance is the educational process to inform core laboratories of biosafety principles and policies and to illustrate the technology and process pathways of the core laboratory for biosafety professionals. Elevating awareness of biohazards and the biosafety regulatory landscape among core facility operators is essential for the establishment of a framework for both project and material risk assessment. The goal of the biohazard risk assessment process is to identify the biohazard risk management parameters to conduct the procedure safely and in compliance with applicable regulations. An evaluation of the containment, protective equipment and work practices for the procedure for the level of risk identified is facilitated by the establishment of a core facility registration form for work with biohazards and other biological materials with potential risk. The final step in the biocontainment process is the assumption of Principal Investigator role with full responsibility for the structure of the site-specific biosafety program plan by core facility leadership. The presentation will provide example biohazard protocol reviews and accompanying containment measures for core laboratories at Yale University.

  1. 7 CFR 205.271 - Facility pest management practice standard.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Facility pest management practice standard. 205.271... Requirements § 205.271 Facility pest management practice standard. (a) The producer or handler of an organic facility must use management practices to prevent pests, including but not limited to: (1) Removal of pest...

  2. 40 CFR 160.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Testing facility management. 160.31... GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 160.31 Testing facility management. For each study, testing facility management shall: (a) Designate a study director as described in § 160.33...

  3. 40 CFR 792.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Testing facility management. 792.31... facility management. For each study, testing facility management shall: (a) Designate a study director as... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  4. Usability: managing facilities for social outcomes

    DEFF Research Database (Denmark)

    Alexander, Keith; Blakstad, Siri; Hansen, Geir

    2013-01-01

    The paper argues for the development of usability concepts, methodologies and tools, in considering the effects of the built environment from a user, organisational and community perspective, in order to have a positive influence on social outcomes. Since it was formed over ten years ago, the CIB W......111 on Usability has been exploring concepts, methods and tools, developed in the evaluation of all kinds of consumer products, applied to the built environment. In the most recent phase of this work, conducted over the past three years, an international network of partners has collaborated to focus...... properties of a workplace, they could better manage and design the facilities for improved social outcomes. Interpretation and analysis of the built environment (and support services) based on how it is socially constructed will enable integration of organisational use and the facilities provided to arrive...

  5. Innovative Procurement and Partnerships in Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2011-01-01

    A major study of facilities management best practice covering 36 cases from the Nordic countries in Europe shows, that the most outstanding examples of innovation in FM are initiated from the demand side and involves new forms of procurement with long term contracts. This paper considers in depth......-called operational partnerships with private providers concerning all municipal buildings and sports facilities in parts of a city. Each of the case studies has involved both the client and the provider side of the collaboration. The cases show that an essential element in a successful procurement and partnership...... is that the client allows the providers freedom to plan their activities. Thereby the providers can optimize the use of their productive capacity and utilize their competences with incentives to profit from such improvements. A major challenge is to balance the risks between the client and provider and to create...

  6. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  7. National Ignition Facility Site Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, V.

    1997-09-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1{degree}C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  8. National Ignition Facility Site Management Plan

    International Nuclear Information System (INIS)

    Roberts, V.

    1997-01-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1 degree C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  9. Fast flux test facility noise data management

    International Nuclear Information System (INIS)

    Thie, J.A.

    1988-01-01

    An extensive collection of spectra from an automated data collection system at the Fast Flux Facility has features from neutron data extracted and managed by database software. Inquiry techniques, including screening, applied to database results show the influences of control rods on wideband noise and, more generally, abilities to detect diverse types of off-normal noise. Uncovering a temporary 0.1-Hz resonance shift gave additional diagnostic information on a 13-Hz mechanical motion characterized by the interference of two resonances. The latter phenomenon is discussed generically for possible application to other reactor types. (author)

  10. The notion of strategy in facility management

    DEFF Research Database (Denmark)

    Holzweber, Markus

    2013-01-01

    and components of strategy in Facility Management (FM). Since strategy refers to a complex network of thoughts, insights, experiences, expertise, and expectations that provide general guidance for management action, organizations must keep pace with the changing environment to increase market shares and business......Strategy implementation is critical for any type of organization. Strategy implementation is complex despite previous research describing mechanisms related to the construction of strategy and strategy use of organizations. In this article I attempt to fill this vacuity by examining strategy...... success. Based on a literature review, the findings of the study report a service-strategy classification grid. Such a service-strategy grid provides for a better understanding of the business environment. The study findings are intended to enhance business managers’ understandings of the issues behind FM...

  11. The facilities management market in Denmark

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2010-01-01

    for researching the market but particular the definition of space including acquisition as well as development, administration, operation, maintenance and utilities in the same main product is problematic. Research limitations/implications: The market research is limited to the Danish market, but the results......Purpose: To present the results of market surveys in Denmark, which have been based on and used to test a proposal for a new European standard for a taxonomy of Facilities Management (FM). Design/methodology: The market research included surveys of both the client side and the provider side...... and was carried out by a management consultant company by telephone interviews based on definitions developed from drafts for the European FM taxonomy standard by a university researcher, who is a member of the standardisation work group. Findings: The proposed taxonomy for FM is in general a good basis...

  12. Risk management activities at the DOE Class A reactor facilities

    International Nuclear Information System (INIS)

    Sharp, D.A.; Hill, D.J.; Linn, M.A.; Atkinson, S.A.; Hu, J.P.

    1993-01-01

    The probabilistic risk assessment (PRA) and risk management group of the Association for Excellence in Reactor Operation (AERO) develops risk management initiatives and standards to improve operation and increase safety of the DOE Class A reactor facilities. Principal risk management applications that have been implemented at each facility are reviewed. The status of a program to develop guidelines for risk management programs at reactor facilities is presented

  13. ATF [Advanced Toroidal Facility] data management

    International Nuclear Information System (INIS)

    Kannan, K.L.; Baylor, L.R.

    1988-01-01

    Data management for the Advanced Toroidal Facility (ATF), a stellarator located at Oak Ridge National Laboratory (ORNL), is provided by DMG, a locally developed, VAX-based software system. DMG is a data storage and retrieval software system that provides the user interface to ATF raw and analyzed data. Data are described in terms of data models and data types and are organized as signals into files, which are internally documented. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. Extensibility features include compatibility with ATF as it moves from pulsed to steady-state operation and capability for use of the DMG system with experiments other than ATF. DMG is implemented as a run-time library of routines available as a shareable image. General-purpose and specialized data acquisition and analysis applications have been developed using the DMG system. This paper describes the DMG system and the interfaces to it. 4 refs., 2 figs

  14. Technical Facilities Management, Loan Pool, and Calibration

    Science.gov (United States)

    Smith, Jacob

    2011-01-01

    My work at JPL for the SURF program began on June 11, 2012 with the Technical Facilities Management group (TFM). As well as TFM, I worked with Loan Pool and Metrology to help them out with various tasks. Unlike a lot of other interns, I did not have a specific project rather many different tasks to be completed over the course of the 10 weeks.The first task to be completed was to sort through old certification reports in 6 different boxes to locate reports that needed to be archived into a digital database. There were no reports within these boxes that needed to be archived but rather were to be shredded. The reports went back to the early 1980's and up to the early 2000's. I was looking for reports dated from 2002 to 2012

  15. 21 CFR 58.31 - Testing facility management.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing facility management. 58.31 Section 58.31... management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  16. Metering management at the plutonium research and development facilities

    International Nuclear Information System (INIS)

    Hirata, Masaru; Miyamoto, Fujio; Kurosawa, Makoto; Abe, Jiro; Sakai, Haruyuki; Suzuki, Tsuneo.

    1996-01-01

    Nuclear fuel research laboratory of the Oarai Research Laboratory of the Japan Atomic Energy Research Institute is an R and D facility to treat with plutonium and processes various and versatile type samples in chemical and physical form for use of various experimental researches even though on much small amount. Furthermore, wasted and plutonium samples are often transported to other KMP and MBA such as radioactive waste management facility, nuclear reactor facility and so forth. As this facility is a place to treat plutonium important on the safeguards, it is a facility necessary for detection and allowance actions and for detail managements on the metering management data to report to government and IAEA in each small amount sample and different configuration. In this paper, metering management of internationally regulated matters and metering management system using a work station newly produced in such small scale facility were introduced. (G.K.)

  17. A guide to the management of tailings facilities

    International Nuclear Information System (INIS)

    Bedard, C.; Ferguson, K.; Gladwin, D.; Lang, D.; Maltby, J.; McCann, M.; Poirier, P.; Schwenger, R.; Vezina, S.; West, S.; Duval, J.; Gardiner, E.; Jansons, K.; Lewis, B.; Matthews, J.; Mchaina, D.; Puro, M.; Siwik, R.; Welch, D.

    1998-01-01

    The 'Guide to the Management of Tailings Facilities' has been developed by the Mining Association of Canada in an effort to provide guidance to its member companies on sound practices for the safe and environmentally responsible management of tailings facilities. The guide is a reference tool to help companies ensure that they are managing their tailings facilities responsibly, integrating environmental and safety considerations in a consistent manner, with continuous improvement in the operation of tailings facilities. The key to managing tailings responsibly is consistent application of engineering capabilities through the full life cycle. The guide provides a basis for the development of customized tailings management systems to address specific needs at individual operations, and deals with environmental impacts, mill tailing characteristics, tailings facility studies and plans, dam and related structure design, and control and monitoring. Aspects relating to tailings facility siting, design, construction, operation, decommissioning and closure are also fully treated. 1 tab., 3 figs

  18. Vehicle Thermal Management Facilities | Transportation Research | NREL

    Science.gov (United States)

    Integration Facility The Vehicle Testing and Integration Facility features a pad to conduct vehicle thermal station next to the pad provides a continuous data stream on temperature, humidity, wind speed, and solar

  19. A Framework for Managing Core Facilities within the Research Enterprise

    OpenAIRE

    Haley, Rand

    2009-01-01

    Core facilities represent increasingly important operational and strategic components of institutions' research enterprises, especially in biomolecular science and engineering disciplines. With this realization, many research institutions are placing more attention on effectively managing core facilities within the research enterprise. A framework is presented for organizing the questions, challenges, and opportunities facing core facilities and the academic units and institutions in which th...

  20. Waste management practices in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Dickson, H.W.

    1979-01-01

    Several thousand sites exist in the United States where nuclear activities have been conducted over the past 30 to 40 years. Questions regarding potential public health hazards due to residual radioactivity and radiation fields at abandoned and inactive sites have prompted careful ongoing review of these sites by federal agencies including the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). In some instances, these reviews are serving to point out poor low-level waste management practices of the past. Many of the sites in question lack adequate documentation on the radiological conditions at the time of release for unrestricted use or were released without appropriate restrictions. Recent investigations have identified residual contamination and radiation levels on some sites which exceed present-day standards and guidelines. The NRC, DOE, and Environmental Protection Agency are all involved in developing decontamination and decommissioning (D and D) procedures and guidelines which will assure that nuclear facilities are decommissioned in a manner that will be acceptable to the nuclear industry, various regulatory agencies, other stakeholders, and the general public

  1. Management of Decommissioning on a Multi-Facility Site

    International Nuclear Information System (INIS)

    Laraia, Michele; McIntyre, Peter; Visagie, Abrie

    2008-01-01

    The management of the decommissioning of multi-facility sites may be inadequate or inappropriate if based on approaches and strategies developed for sites consisting of only a single facility. The varied nature of activities undertaken, their interfaces and their interdependencies are likely to complicate the management of decommissioning. These issues can be exacerbated where some facilities are entering the decommissioning phase while others are still operational or even new facilities are being built. Multi-facility sites are not uncommon worldwide but perhaps insufficient attention has been paid to optimizing the overall site decommissioning in the context of the entire life cycle of facilities. Decommissioning management arrangements need to be established taking a view across the whole site. A site-wide decommissioning management system is required. This should include a project evaluation and approval process and specific arrangements to manage identified interfaces and interdependencies. A group should be created to manage decommissioning across the site, ensuring adequate and consistent practices in accordance with the management system. Decommissioning management should be aimed at the entire life cycle of facilities. In the case of multi facility sites, the process becomes more complex and decommissioning management arrangements need to be established with a view to the whole site. A site decommissioning management system, a group that is responsible for decommissioning on site, a site project evaluation and approval process and specific arrangements to manage the identified interfaces are key areas of a site decommissioning management structure that need to be addressed to ensure adequate and consistent decommissioning practices. A decommissioning strategy based on single facilities in a sequential manner is deemed inadequate

  2. Healthcare waste management: current practices in selected healthcare facilities, Botswana.

    Science.gov (United States)

    Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew

    2008-01-01

    Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.

  3. ESCO as Innovative Facilities Management in Danish Municipalities

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole; Oesten, Pimmie; Nielsen, Susanne Balslev

    2010-01-01

     Purpose:  Increasing energy efficiency of existing buildings is high on the Facility Management (FM) agenda, therefore building owners and FM Managers need insight into a variety of organizational possibilities for energy renovation projects. This paper explores how ESCO can foster innovative....... It is the first publication from the project "Energy Service Concepts" carried out at the Danish Centre for Facilities Management (www.cfm.dtu.dk). Results have not been published before....

  4. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  5. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  6. State Wildlife Management Area Public Facilities - points

    Data.gov (United States)

    Minnesota Department of Natural Resources — This point theme contains facilities and features for WMAs that are best represented as points. WMAs are part of the Minnesota state recreation system created to...

  7. State Wildlife Management Area Public Facilities - lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — This line theme contains facilities and features for WMAs that are best represented as lines. WMAs are part of the Minnesota state recreation system created to...

  8. Study on archive management for nuclear facility decommissioning projects

    International Nuclear Information System (INIS)

    Huang Ling; Gong Jing; Luo Ning; Liao Bing; Zhou Hao

    2011-01-01

    This paper introduces the main features and status of the archive management for nuclear facility decommissioning projects, and explores and discusses the countermeasures in its archive management. Taking the practice of the archive management system of a reactor decommissioning project as an example, the paper illustrates the establishment of archive management system for the nuclear facility decommissioning projects. The results show that the development of a systematic archive management principle and system for nuclear decommissioning projects and the construction of project archives for the whole process from the design to the decommissioning by digitalized archive management system are one effective route to improve the complete, accurate and systematic archiving of project documents, to promote the standardization and effectiveness of the archive management and to ensure the traceability of the nuclear facility decommissioning projects. (authors)

  9. Public Facilities Management and Action Research for Sustainability

    DEFF Research Database (Denmark)

    Galamba, Kirsten Ramskov

    Current work is the main product of a PhD study with the initial working title ‘Sustainable Facilities Management’ at Centre for Facilities Management – Realdania Research, DTU Management 1. December 2008 – 30. November 2011. Here the notion of Public Sustainable Facilities Management (FM......) is analysed in the light of a change process in a Danish Municipal Department of Public Property. Three years of Action Research has given a unique insight in the reality in a Municipal Department of Public Property, and as to how a facilitated change process can lead to a more holistic and sustainable...

  10. Operational performance management of priced facilities

    Science.gov (United States)

    2011-03-01

    The Texas Department of Transportation and its agency partners have implemented various forms of lane management and pricing over the past three decades, including HOV lanes, managed lanes, and toll roads. As more of these complex transportation faci...

  11. An Application of Business Process Management to Health Care Facilities.

    Science.gov (United States)

    Hassan, Mohsen M D

    The purpose of this article is to help health care facility managers and personnel identify significant elements of their facilities to address, and steps and actions to follow, when applying business process management to them. The ABPMP (Association of Business Process Management Professionals) life-cycle model of business process management is adopted, and steps from Lean, business process reengineering, and Six Sigma, and actions from operations management are presented to implement it. Managers of health care facilities can find in business process management a more comprehensive approach to improving their facilities than Lean, Six Sigma, business process reengineering, and ad hoc approaches that does not conflict with them because many of their elements can be included under its umbrella. Furthermore, the suggested application of business process management can guide and relieve them from selecting among these approaches, as well as provide them with specific steps and actions that they can follow. This article fills a gap in the literature by presenting a much needed comprehensive application of business process management to health care facilities that has specific steps and actions for implementation.

  12. Information security management system planning for CBRN facilities

    International Nuclear Information System (INIS)

    Lenaeu, Joseph D.; O'Neil, Lori Ross; Leitch, Rosalyn M.; Glantz, Clifford S.; Landine, Guy P.; Bryant, Janet L.; Lewis, John; Mathers, Gemma; Rodger, Robert; Johnson, Christopher

    2015-01-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  13. The added value of Facility management in the educational environment

    NARCIS (Netherlands)

    Kok, H.B.; Mobach, M.; Omta, S.W.F.

    2011-01-01

    Purpose – The purpose of this paper is to define the added value of facility management (FM) in general and to develop a typology of facility services based on their added value in the educational environment. Design/methodology/approach – This paper is based on a literature review and first

  14. Information security management system planning for CBRN facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lenaeu, Joseph D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Neil, Lori Ross [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leitch, Rosalyn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glantz, Clifford S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Landine, Guy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryant, Janet L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, John [National Nuclear Lab., Workington (United Kingdom); Mathers, Gemma [National Nuclear Lab., Workington (United Kingdom); Rodger, Robert [National Nuclear Lab., Workington (United Kingdom); Johnson, Christopher [National Nuclear Lab., Workington (United Kingdom)

    2015-12-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  15. Institutional Management of Core Facilities during Challenging Financial Times

    OpenAIRE

    Haley, Rand

    2011-01-01

    The economic downturn is likely to have lasting effects on institutions of higher education, prioritizing proactive institutional leadership and planning. Although by design, core research facilities are more efficient and effective than supporting individual pieces of research equipment, cores can have significant underlying financial requirements and challenges. This paper explores several possible institutional approaches to managing core facilities during challenging financial times.

  16. Institutional management of core facilities during challenging financial times.

    Science.gov (United States)

    Haley, Rand

    2011-12-01

    The economic downturn is likely to have lasting effects on institutions of higher education, prioritizing proactive institutional leadership and planning. Although by design, core research facilities are more efficient and effective than supporting individual pieces of research equipment, cores can have significant underlying financial requirements and challenges. This paper explores several possible institutional approaches to managing core facilities during challenging financial times.

  17. Drainage facility management system : final report, June 2009.

    Science.gov (United States)

    2009-06-01

    This research project identified requirements for a drainage facility management system for the Oregon Department of Transportation. It also estimated the personnel resources needed to collect the inventory to populate such a system with data. A tota...

  18. Grout Treatment Facility Land Disposal Restriction Management Plan

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1991-01-01

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig

  19. Effective and Innovative Practices for Stronger Facilities Management.

    Science.gov (United States)

    Banick, Sarah

    2002-01-01

    Describes the five winners of the APPA's Effective & Innovative Practices Award. These facilities management programs and processes were recognized for enhancing service delivery, lowering costs, increasing productivity, improving customer service, generating revenue, or otherwise benefiting the educational institution. (EV)

  20. Can facility management contribute to study success?

    NARCIS (Netherlands)

    Kok, H.B; Mobach, Mark P.; Omta, S.W.F.; Alexander, K.

    2013-01-01

    Purpose– The present paper aims to explore to what extent the quality of facility services can be related to the differences in educational achievements in higher education. Design/methodology/approach - This paper is based on the first preliminary analyses of a national online survey among 1,752

  1. [Managing the cold chain in healthcare facilities].

    Science.gov (United States)

    Royer, Mathilde; Breton Marchand, Justine; Pons, David

    2017-11-01

    The storage of temperature-sensitive healthcare products requires control of the cold chain. Healthcare facilities must have the appropriate equipment at their disposal and ensure the traceability and monitoring of temperatures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Planning and Managing School Facilities for Agriculture

    Science.gov (United States)

    Staller, Bernie

    1976-01-01

    The Agribusiness Department at Janesville Parker Senior High in Wisconsin involves 360 students and three instructors in three different buildings. Facilities were provided through a variety of methods with major emphasis on utilizing the urban setting. Future Farmers of America students operate projects in orchards, greenhouse, gardens, and…

  3. The Management System for Facilities and Activities. Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States in establishing and implementing effective management systems that integrate all aspects of managing nuclear facilities and activities in a coherent manner. It details the planned and systematic actions necessary to provide adequate confidence that all these requirements are satisfied. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement.

  4. A review of sustainable facilities management knowledge and practice

    Directory of Open Access Journals (Sweden)

    Baaki Timothy Kurannen

    2016-01-01

    Full Text Available Sustainability is seen as a far-reaching issue now, and one which the facilities management [FM] profession cannot overlook. This paper explores current sustainable facilities management [SFM] knowledge and practice with specific focus on performance as part of a research focus toward proposing a sustainable FM performance management framework for sustainable healthcare waste management in Malaysia. This paper utilized a review of extant literature on the subject of SFM, FM performance and FM development in Malaysia as source of information. Findings reflect the increasing recognition of the need for the strategic FM function, and how facilities managers are best positioned to drive organizations’ sustainability agendas. In Malaysian context, this recognition is barely evident as findings show FM practice is still immature and predominantly operational. Unlike developed FM markets, FM relevance in Malaysia is being driven by the public sector. Also findings show a disharmony between organizations’ sustainability priority areas and the responsibilities for facilities managers to execute them where the sustainability policy of organizations prioritize one FM service and the facilities managers’ responsibilities prioritize another. As most of SFM implementation is driven by legislation this seems to strengthen the position that, organizations continue to view support services as non-value-adding, as unavoidable liabilities. The implication of this is the pressure on the FM function to continually express its strategic relevance to organizations by tangible value-adding performance output. This creates a new perspective to measuring and managing facilities performance. This paper therefore elevates the importance of FM performance management in SFM context taking into account the peculiar position of the facilities manager. This is seen as a way forward for FM to better express its value to the organization

  5. Westinghouse Hanford Company risk management strategy for retired surplus facilities

    International Nuclear Information System (INIS)

    Taylor, W.E.; Coles, G.A.; Shultz, M.V.; Egge, R.G.

    1993-09-01

    This paper describes an approach that facilitates management of personnel safety and environmental release risk from retired, surplus Westinghouse Hanford Company-managed facilities during the predemolition time frame. These facilities are located in the 100 and 200 Areas of the 1,450-km 2 (570-mi 2 ) Hanford Site in Richland, Washington. The production reactors are located in the 100 Area and the chemical separation facilities are located in the 200 Area. This paper also includes a description of the risk evaluation process, shows applicable results, and includes a description of comparison costs for different risk reduction options

  6. Biosafety and biosecurity measures: management of biosafety level 3 facilities.

    Science.gov (United States)

    Zaki, Adel N

    2010-11-01

    With the increasing biological threat from emerging infectious diseases and bioterrorism, it has become essential for governments around the globe to increase awareness and preparedness for identifying and containing those agents. This article introduces the basic concepts of laboratory management, laboratory biosafety and laboratory biosecurity. Assessment criteria for laboratories' biorisk should include both biosafety and biosecurity measures. The assessment requires setting specific goals and selecting management approaches. In order to implement technologies at the laboratory working level, a management team should be created whose role is to implement biorisk policies, rules and regulations appropriate for that facility. Rules and regulations required by government authorities are presented, with special emphasis on methods for air control, and liquid and solid waste management. Management and biorisk measures and appropriate physical facilities must keep pace, ensuring efficient facilities that protect workers, the environment, the product (research, diagnostic and/or vaccine) and the biological pathogen. Published by Elsevier B.V.

  7. Integration of Biosafety into Core Facility Management

    OpenAIRE

    Fontes, Benjamin

    2013-01-01

    This presentation will discuss the implementation of biosafety policies for small, medium and large core laboratories with primary shared objectives of ensuring the control of biohazards to protect core facility operators and assure conformity with applicable state and federal policies, standards and guidelines. Of paramount importance is the educational process to inform core laboratories of biosafety principles and policies and to illustrate the technology and process pathways of the core l...

  8. Risk management study for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-04-01

    Risk from retired surplus facilities has always been assumed to be low at the Hanford Site as the facilities are inactive and have few potentials for causing an offsite hazardous material release. However,the fatal accident that occurred in the spring of 1992 in which an employee fell through a deteriorated roof at the 105-F Reactor Building has raised the possibility that retired facilities represent a greater risk than was originally assumed. Therefore, Westinghouse Hanford Company and the US Department of Energy management have determined that facility risk management strategies and programmatic plans should be reevaluated to assure risks are identified and appropriate corrective action plans are developed. To evaluate risk management strategies, accurate risk information about the current and projected condition of the facilities must be developed. This work procedure has been created to address the development of accurate and timely risk information. By using the evaluation results in this procedure, it will be possible to create a prioritized baseline for managing facility risk until all retired surplus facilities are demolished

  9. Facilities Management Practices in Malaysia: A Literature Review

    Directory of Open Access Journals (Sweden)

    Isa Nordiana Mohd

    2016-01-01

    Full Text Available Facilities management in Malaysia has been practiced for decades. The development of its formal practice parallels the improvement of the built environment in the nation. Involvement of the public and private sectors teaming up in arranging the National Asset and Facilities Management (NAFAM in demonstrates the vital collaboration in the facilities management area in Malaysia. Facilities management is seen distinctively as indicated by diverse geographical locations, interests and schools of thought. Facilities management is delegated a service-based industry which gives proficient counsel and administration of clients’ building facilities including residential, commercial, industrial, airports terminals and offices. The aim of this paper is to review the gaps that exist, especially on how FM is being practice in comparison with the published FM body of knowledge. Very relying upon literature, this paper discovered a gap that is an unclear description of current FM applications. This research aims to give new bits of knowledge to upgrade comprehension of FM execution in Malaysia.

  10. Efficient radiologic diagnosis of pelvic and acetabular trauma; Rationelle bildgebende Diagnostik von Becken- und Azetabulumverletzungen

    Energy Technology Data Exchange (ETDEWEB)

    Kreitner, K.F.; Mildenberger, P.; Thelen, M. [Mainz Univ. (Germany). Klinik und Poliklinik fuer Radiologie; Rommens, P.M. [Mainz Univ. (Germany). Klinik und Poliklinik fuer Unfallchirurgie

    2000-01-01

    In spite of the widespread availability of CT scanners, conventional X-ray radiographs remain the basic imaging modality in patients with pelvic and/or acetabular trauma. However, the extent of their use will depend on local utilities (e.g., availability of CT scanners) and on the patient's clinical condition. Regarding the inaccuracy of conventional radiography in the diagnosis of injuries of the dorsal pelvic ring and of the acetabulum, computed tomography represents the most important imaging modality in the clinically stable patient. CT provides an exact staging of the extent of trauma and allows for differentiation of pelvic instabilities. CT clearly demonstrates the severity of acetabular trauma and is superior in the detection of local complicating factors, i.e., impressions fractures and (sub-)luxations of the femoral head as well as free intraarticular fragments. CT findings provide the basis for definite treatment regimens of the injured patient. By extension of the examination, all relevant organs and systems (craniospinal, cardiovascular, gastrointestinal, respiratory, genitourinary) can be imaged during one session. The speed of spiral CT scanners and their diagnostic accuracy will play a major role in the management of, especially, polytraumatized patients. The indication for angiography with the option of therapeutic embolization exists if a pelvic bleeding persists even after reposition and operative fixation of the injury. (orig.) [German] Bei der Klaerung einer Verletzung des Beckens oder des Azetabulums stellen konventionelle Uebersichtsaufnahmen weiterhin die Basis der bildgebenden Diagnostik dar. Art und Umfang werden bestimmt von lokalen Gegebenheiten (z.B. Verfuegbarkeit von CT-Geraeten) sowie vom klinischen Zustand des Patienten. Aufgrund der diagnostischen Ungenauigkeit der konventionellen Roentgendiagnostik gerade im Bereich des stabilitaetsbedeutsamen dorsalen Beckenringes und des Azetabulums schliesst sich beim klinisch stabilen

  11. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  12. Transuranic waste management program and facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PRFPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  13. Transuranic Waste Management Program and Facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-02-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PREPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  14. Management of tritium at nuclear facilities

    International Nuclear Information System (INIS)

    1984-01-01

    This report presents extending summaries of the works of the participants to an IAEA co-ordinated research programme, ''Handling Tritium - bearing effluents and wastes''. The subjects covered include production of tritium in nuclear power plants (mainly heavy water and light water reactors), as well as at reprocessing plants; removal and enrichment of tritium at nuclear facilities; conditioning methods and characteristics of immobilized tritium of low and high concentration; some potential methods of storage and disposal of tritium. In addition to the conclusions of this three-years work, possible activities in the field are recommended

  15. 41 CFR 102-74.15 - What are the facility management responsibilities of occupant agencies?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are the facility management responsibilities of occupant agencies? 102-74.15 Section 102-74.15 Public Contracts and Property... PROPERTY 74-FACILITY MANAGEMENT Facility Management § 102-74.15 What are the facility management...

  16. The Added Value of Facilities Management: Concepts, Findings and Perspectives

    DEFF Research Database (Denmark)

    expertise, the involvement in the process leading to this the book including a number of workshops, and a literature review of the development of their disciplinary fields: Facilities Management (FM), Corporate Real Estate Management (CREM) and Business to Business (B2B) Marketing. Findings: The difference...... by their particular theories and conceptual analyses, data, tools, and best practices, with a focus on respectively costs and benefits of facilities and services, alignment of corporate and public real estate to organizational objectives and organisational performance, and relationship management in market...

  17. Best practices for managing large CryoEM facilities.

    Science.gov (United States)

    Alewijnse, Bart; Ashton, Alun W; Chambers, Melissa G; Chen, Songye; Cheng, Anchi; Ebrahim, Mark; Eng, Edward T; Hagen, Wim J H; Koster, Abraham J; López, Claudia S; Lukoyanova, Natalya; Ortega, Joaquin; Renault, Ludovic; Reyntjens, Steve; Rice, William J; Scapin, Giovanna; Schrijver, Raymond; Siebert, Alistair; Stagg, Scott M; Grum-Tokars, Valerie; Wright, Elizabeth R; Wu, Shenping; Yu, Zhiheng; Zhou, Z Hong; Carragher, Bridget; Potter, Clinton S

    2017-09-01

    This paper provides an overview of the discussion and presentations from the Workshop on the Management of Large CryoEM Facilities held at the New York Structural Biology Center, New York, NY on February 6-7, 2017. A major objective of the workshop was to discuss best practices for managing cryoEM facilities. The discussions were largely focused on supporting single-particle methods for cryoEM and topics included: user access, assessing projects, workflow, sample handling, microscopy, data management and processing, and user training. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  18. Facility information management system; Shisetsu joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-10

    A facility management system (FMS) was developed as a tool for efficiently operating and managing building facilities and related equipment. The maintenance management data is designed to be collected through automatic formation of data base by using a work flow function and releasing the daily business from paper work. The data base thus formed can be retrieved and displayed by utilizing a network system. The plan view for construction facilities is made a minute plan comparable to the ground plan by taking in DXF type drawing data such as a completion drawing, making it a colored display for example to create an intuitive expression understandable at first sight. The plan is controlled by the level including equipment classification and is capable of superimposed display. Detailed management data is displayed by mouse clicking of registered icons, allowing required information to be readily taken out. (translated by NEDO)

  19. Decommissioning of nuclear facilities: Decontamination, disassembly and waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The term 'decommissioning', as used within the nuclear industry, means the actions taken at the end of a facility's useful life to retire the facility from service in a manner that provides adequate protection for the health and safety of the decommissioning workers, the general public, and for the environment. These actions can range from merely closing down the facility and a minimal removal of radioactive material coupled with continuing maintenance and surveillance, to a complete removal of residual radioactivity in excess of levels acceptable for unrestricted use of the facility and its site. This latter condition, unrestricted use, is the ultimate goal of all decommissioning actions at retired nuclear facilities. The purpose of this report is to provide an information base on the considerations important to decommissioning, the methods available for decontamination and disassembly of a nuclear facility, the management of the resulting radioactive wastes, and the areas of decommissioning methodology where improvements might be made. Specific sections are devoted to each of these topics, and conclusions are presented concerning the present status of each topic. A summary of past decommissioning experience in Member States is presented in the Appendix. The report, with its discussions of necessary considerations, available operational methods, and waste management practices, together with supporting references, provides an appreciation of the activities that comprise decommissioning of nuclear facilities. It is anticipated that the information presented in the report should prove useful to persons concerned with the development of plans for the decommissioning of retired nuclear facilities

  20. Case management redesign in an urban facility.

    Science.gov (United States)

    Almaden, Stefany; Freshman, Brenda; Quaye, Beverly

    2011-01-01

    To explore strategies for improving patient throughput and to redesign case management processes to facilitate level of care transitions and safe discharges. Large Urban Medical Center in South Los Angeles County, with 384 licensed beds that services poor, underserved communities. Both qualitative and quantitative methods were applied. Combined theoretical frameworks were used for needs assessment, intervention strategies, and change management. Observations, interviews, surveys, and database extraction methods were used. The sample consisted of case management staff members and several other staff from nursing, social work, and emergency department staff. Postintervention measures indicated improvement in reimbursements for services, reduction in length of stay, increased productivity, improved patients' access to care, and avoiding unnecessary readmission or emergency department visits. Effective change management strategies must consider multiple factors that influence daily operations and service delivery. Creating accountability by using performance measures associated with patient transitions is highlighted by the case study results. The authors developed a process model to assist in identifying and tracking outcome measures related to patient throughput, front-end assessments, and effective patient care transitions. This model can be used in future research to further investigate best case management practices.

  1. Radiation risk management at DOE accelerator facilities

    International Nuclear Information System (INIS)

    Dyck, O.B. van.

    1997-01-01

    The DOE accelerator contractors have been discussing among themselves and with the Department how to improve radiation safety risk management. This activity-how to assure prevention of unplanned high exposures-is separate from normal exposure management, which historically has been quite successful. The ad-hoc Committee on the Accelerator Safety Order and Guidance [CASOG], formed by the Accelerator Section of the HPS, has proposed a risk- based approach, which will be discussed. Concepts involved are risk quantification and comparison (including with non-radiation risk), passive and active (reacting) protection systems, and probabilistic analysis. Different models of risk management will be presented, and the changing regulatory environment will also be discussed

  2. 305 Building Cold Test Facility Management Plan

    International Nuclear Information System (INIS)

    Whitehurst, R.

    1994-01-01

    This document provides direction for the conduct of business in Building 305 for cold testing tools and equipment. The Cold Test Facility represents a small portion of the overall building, and as such, the work instructions already implemented in the 305 Building will be utilized. Specific to the Cold Test there are three phases for the tools and equipment as follows: 1. Development and feature tests of sludge/fuel characterization equipment, fuel containerization equipment, and sludge containerization equipment to be used in K-Basin. 2. Functional and acceptance tests of all like equipment to be installed and operated in K-Basin. 3. Training and qualification of K-Basin Operators on equipment to be installed and operated in the Basin

  3. STORMWATER BEST MANAGEMENT PRACTICES TEST FACILITY - SWALES

    Science.gov (United States)

    The NRMRL swale evaluation is part of a larger collection of long-term research projects that evaluates many Best Management Practices. EPA has ongoing research examining the performance of constructed wet lands, and detention and retention ponds. Other projects will evaluate ra...

  4. Saving Energy. Managing School Facilities, Guide 3.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  5. Fire Safety. Managing School Facilities, Guide 6.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This booklet discusses how United Kingdom schools can manage fire safety and minimize the risk of fire. The guide examines what legislation school buildings must comply with and covers the major risks. It also describes training and evacuation procedures and provides guidance on fire precautions, alarm systems, fire fighting equipment, and escape…

  6. Implementing an environmental management system in a irradiation facility

    International Nuclear Information System (INIS)

    O'Doherty, James

    1998-01-01

    Environmental management is at different stages in the countries where there are commercial irradiation facilities. There are therefore differing perspectives on the role of an Environmental Management System, ranging from compliance with the Regulatory framework to a desire to be proactive. An effective Environmental Management System (EMS) facilitates compliance, while also providing the framework for assessment and improvement of a company's environmental impact and overall performance

  7. ECOLOGICAL AND ECONOMICALLY OPTIMAL MANAGEMENT OF WASTE FROM HEALTHCARE FACILITIES

    OpenAIRE

    Halina Marczak

    2013-01-01

    Modern healthcare facilities generate more and more waste, and their management is a significant constitutes a significant cost of their functioning. The undertakings aimed at lowering the costs of expenses in waste management may have a positive influence on budgetary accounts in the institutions rendering health care services. On the example of a hospital in Lublin the costs of waste management and the possibilities to lower these costs by intensifying segregation procedures were presented....

  8. Managing LLRW from decommissioning of nuclear facilities - a Canadian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Donders, R E [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Hardy, D G [Frontenac Consulting Services, Deep River, ON (Canada); De, P L [Low-Level Radioactive Waste Management Office, Gloucester, ON (Canada)

    1994-03-01

    In Canada, considerable experience has been gained recently in decommissioning nuclear facilities and managing the resulting waste. This experience has raised important issues from both the decommissioning and waste management perspectives. This paper focuses on the waste management aspects of decommissioning. Past experience is reviewed, preliminary estimates of waste volumes and characteristics are provided, and the major technical and regulatory issues are discussed. (author). 5 refs., 1 tab., 2 figs.

  9. Facilities Management and Value Adding - The LEGO case

    DEFF Research Database (Denmark)

    Jensen, Per Anker; Katchamart, Akarapong

    on the management model for FM included in the European FM standards, recent theories on added value of FM and real estate and the related concept of Value Management from building projects. The paper outlines a preliminary theoretical based management concept, which is investigated, tested and discussed based...... on a case study of LEGO. Results: The study shows that the management model for FM creates a relevant starting point but also that stakeholder and relationship management is an essential aspect of Value Adding Management. The case study confirms the relevance of the basic concept and provides an important...... example of how Value Adding Management can be implemented and added value measured. Practical Implications: The concept of Value Adding Management is expected to increase the awareness of the impacts and strategic importance of FM for organisations and can be a practical tool for facilities managers...

  10. The Mixed Waste Management Facility. Preliminary design review

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones

  11. Knowledge management and information tools for building maintenance and facility management

    CERN Document Server

    Talamo, Cinzia

    2015-01-01

    This book describes the latest methods and tools for the management of information within facility management services and explains how it is possible to collect, organize, and use information over the life cycle of a building in order to optimize the integration of these services and improve the efficiency of processes. The coverage includes presentation and analysis of basic concepts, procedures, and international standards in the development and management of real estate inventories, building registries, and information systems for facility management. Models of strategic management are discussed and the functions and roles of the strategic management center, explained.  Detailed attention is also devoted to building information modeling (BIM) for facility management and potential interactions between information systems and BIM applications. Criteria for evaluating information system performance are identified, and guidelines of value in developing technical specifications for facility management service...

  12. Mixed Waste Management Facility closure at the Savannah River Site

    International Nuclear Information System (INIS)

    Bittner, M.F.

    1991-08-01

    The Mixed Waste Management Facility of the Savannah River Plant received hazardous and solid low level radioactive wastes from 1972 until 1986. Because this facility did not have a permit to receive hazardous wastes, a Resource Conservation and Recovery Act closure was performed between 1987 and 1990. This closure consisted of dynamic compaction of the waste trenches and placement of a 3-foot clay cap, a 2-foot soil cover, and a vegetative layer. Operations of the waste disposal facility, tests performed to complete the closure design, and the construction of the closure cap are discussed herein

  13. Guidelines for Management Information Systems in Canadian Health Care Facilities

    Science.gov (United States)

    Thompson, Larry E.

    1987-01-01

    The MIS Guidelines are a comprehensive set of standards for health care facilities for the recording of staffing, financial, workload, patient care and other management information. The Guidelines enable health care facilities to develop management information systems which identify resources, costs and products to more effectively forecast and control costs and utilize resources to their maximum potential as well as provide improved comparability of operations. The MIS Guidelines were produced by the Management Information Systems (MIS) Project, a cooperative effort of the federal and provincial governments, provincial hospital/health associations, under the authority of the Canadian Federal/Provincial Advisory Committee on Institutional and Medical Services. The Guidelines are currently being implemented on a “test” basis in ten health care facilities across Canada and portions integrated in government reporting as finalized.

  14. Software application for a total management of a radioactive facility

    International Nuclear Information System (INIS)

    Mirpuri, E.; Escudero, R.; Macias, M.T.; Perez, J.; Sanchez, A.; Usera, F.

    2008-01-01

    The use of radiological material and/or equipment that generate ionizing radiation is widely extended in biological research. In every laboratory there are a large variety of methods, operations, techniques, equipment, radioisotopes and users related to the work with ionizing radiation. In order to control the radioactive material, users and the whole facility a large number of documents, databases and information is necessary to be created by the manager of the Radioactivity Facility. This kind of information is characterized by a constant and persistent manipulation and includes information of great importance such as the general management of the radioactive material and waste management, exposed workers vigilance, controlled areas access, laboratory and equipment reservations, radiological inspections, etc. These activities are often complicated by the fact that the main manager of the radioactive facility is also in charge of bio-safety and working prevention issues so the documents to generate and manipulate and the procedures to develop are multiplied. A procedure to access and manage all these files is highly recommended in order to optimize the general management of the facility, avoiding loss of information, automating all the activities and allowing data necessary for control easily accessible. In this work we present a software application for a total management of the facility. This software has been developed by the collaboration of six of the most important research centers from Spain in coordination with the company 'Appize soluciones'. This is a flexible and versatile application that adapts to any specific need of every research center, providing the appropriate reports and checklist that speed up to general management and increase the ease of writing the official documents, including the Operations Book. (author)

  15. 41 CFR 102-74.10 - What is the basic facility management policy?

    Science.gov (United States)

    2010-07-01

    ... facility management policy? 102-74.10 Section 102-74.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT General Provisions § 102-74.10 What is the basic facility management policy? Executive agencies...

  16. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jang Hyung; Cho, Sung Won

    2013-01-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works such as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, supervision and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization, Gyeongju city, for adjusting technically interrelated work during construction. In this research, We completed the basic, detail, and field changed design of conventional facilities. Acquisition of necessary construction and atomic license, radiation safety analysis, site improvement, access road construction were successfully done as well. Also, we participated in the project host related work as follows: Project host organization and site selection, construction technical work for project host organization and procedure management, etc. Consequently, we so fulfilled all of the own goals which were set up in the beginning of this construction project that we could made contribution for installing and running PEFP's developed 100MeV 20mA linear accelerator

  17. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jin Sam; Lee, Jae Sang

    2008-05-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, audit and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization for adjusting technical issues of overall construction. In this research, We reviewed the basic design and made a detail design of conventional facilities. Preparation for construction license, site improvement and access road construction is fulfilled. Also, we made the technical support for project host as follows : selection of project host organization and host site selection, construction technical work for project host organization and procedure management

  18. Længerevarende samarbejder inden for Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten; Friis, Freja

    Længerevarende strategiske samarbejde er interessant, fordi det anses for en måde at fremme produktivitet og forretning for både kunder og leverandører. I rapportenfremlægges resultaterne fra en caseanalyse blandt leverandører og købere af Facilities Management.......Længerevarende strategiske samarbejde er interessant, fordi det anses for en måde at fremme produktivitet og forretning for både kunder og leverandører. I rapportenfremlægges resultaterne fra en caseanalyse blandt leverandører og købere af Facilities Management....

  19. Facilities Management a new strategy at CERN

    CERN Document Server

    Nonis, M; CERN. Geneva. ST Division

    2002-01-01

    Starting from 2002, the management of all the tertiary infrastructure of CERN in charge of ST Division shall be carried out through a single Contractor; this includes both maintenance activities on the buildings and their technical installations, and general services such as security, cleaning, gardening, and waste disposal. At present, all these activities are carried out by external contractors via several different contracts. The major purposes of the unification in one single contract is to transfer the coordination tasks of the contracts thus reducing the direct control operation costs, release internal resources in order to be better focused on the core business of the Division and the reduction of the costs of each activity by taking profit of the synergies among the different services. The authors will thoroughly report on the main aspects related to this new contract, focusing their attention in particular to the result oriented strategy through a Service Level Agreement, the key performance indicato...

  20. Operational experiences and upgradation of waste management facilities Trombay, India

    International Nuclear Information System (INIS)

    Chander, Mahesh; Bodke, S.B.; Bansal, N.K.

    2001-01-01

    Full text: Waste Management Facilities Trombay provide services for the safe management of radioactive wastes generated from the operation of non power sources at Bhabha Atomic Research Centre, India. The paper describes in detail the current operational experience and facility upgradation by way of revamping of existing processes equipment and systems and augmentation of the facility by way of introducing latest processes and technologies to enhance the safety. Radioactive wastes are generated from the operation of research reactors, fuel fabrication, spent fuel reprocessing, research labs. manufacture of sealed sources and labeled compounds. Use of radiation sources in the field of medical, agriculture and industry also leads to generation of assorted solid waste and spent sealed radiation sources which require proper waste management. Waste Management Facilities Trombay comprise of Effluent Treatment Plant (ETP), Decontamination Centre (DC) and Radioactive Solid Waste Management Site (RSMS). Low level radioactive liquid effluents are received at ETP. Plant has 100 M 3 /day treatment capacity. Decontamination of liquid effluents is effected by chemical treatment method using co- precipitation as a process. Plant has 1800 M 3 of storage capacity. Chemical treatment system comprises of clarifloculator, static mixer and chemical feed tanks. Plant has concentrate management facility where chemical sludge is centrifuged to effect volume reduction of more that 15. Thickened sludge is immobilized in cement matrix. Decontamination Centre caters to the need of equipment decontamination from research reactors. Process used is ultrasonic chemical decontamination. Besides this DC provides services for decontamination of protective wears. Radioactive Solid Waste Management Site is responsible for the safe management of solid waste generated at various research reactors, plants, laboratories in Bhabha Atomic Research Centre. Spent sealed radiation sources are also stored

  1. ECOLOGICAL AND ECONOMICALLY OPTIMAL MANAGEMENT OF WASTE FROM HEALTHCARE FACILITIES

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2013-04-01

    Full Text Available Modern healthcare facilities generate more and more waste, and their management is a significant constitutes a significant cost of their functioning. The undertakings aimed at lowering the costs of expenses in waste management may have a positive influence on budgetary accounts in the institutions rendering health care services. On the example of a hospital in Lublin the costs of waste management and the possibilities to lower these costs by intensifying segregation procedures were presented. Moreover, the article presents the influence of specific waste neutralisation on the costs of waste management.

  2. Organization and management for decommissioning of large nuclear facilities

    International Nuclear Information System (INIS)

    2000-01-01

    For nuclear facilities, decommissioning is the final phase in the life-cycle after siting, design, construction, commissioning and operation. It is a complex process involving operations such as detailed surveys, decontamination and dismantling of plant equipment and facilities, demolition of buildings and structures, and management of resulting waste and other materials, whilst taking into account aspects of health and safety of the operating personnel and the general public, and protection of the environment. Careful planning and management is essential to ensure that decommissioning is accomplished in a safe and cost effective manner. Guidance on organizational aspects may lead to better decision making, reductions in time and resources, lower doses to the workers and reduced impact on public health and the environment. The objective of this report is to provide information and guidance on the organization and management aspects for the decommissioning of large nuclear facilities which will be useful for licensees responsible for discharging these responsibilities. The information contained in the report may also be useful to policy makers, regulatory bodies and other organizations interested in the planning and management of decommissioning. In this report, the term 'decommissioning' refers to those actions that are taken at the end of the useful life of a nuclear facility in withdrawing it from service with adequate regard for the health and safety of workers and members of the public and for the protection of the environment. The term 'large nuclear facilities' involves nuclear power plants, large nuclear research reactors and other fuel cycle facilities such as reprocessing plants, fuel conversion, fabrication and enrichment plants, as well as spent fuel storage and waste management plants. Information on the planning and management for decommissioning of smaller research reactors or other small nuclear facilities can be found elsewhere. The report covers

  3. INFRASTRUCTURE FACILITIES FOR MONITORING AND INTELLECTUAL ROAD TRAFFIC MANAGEMENT

    Directory of Open Access Journals (Sweden)

    G. Belov

    2014-10-01

    Full Text Available Review of automatic management of road traffic technologies in major cities of Ukraine is carried out in the given article. Priority directions of studies are determined for producing modern and perspective technologies in the given area. The facilities for monitoring and intelligence management of the road traffic on the basis of the programmed logical controller, using the device of fuzzy logic are considered.

  4. Biosecurity measures in 48 isolation facilities managing highly infectious diseases.

    Science.gov (United States)

    Puro, Vincenzo; Fusco, Francesco M; Schilling, Stefan; Thomson, Gail; De Iaco, Giuseppina; Brouqui, Philippe; Maltezou, Helena C; Bannister, Barbara; Gottschalk, René; Brodt, Hans-Rheinhard; Ippolito, Giuseppe

    2012-06-01

    Biosecurity measures are traditionally applied to laboratories, but they may also be usefully applied in highly specialized clinical settings, such as the isolation facilities for the management of patients with highly infectious diseases (eg, viral hemorrhagic fevers, SARS, smallpox, potentially severe pandemic flu, and MDR- and XDR-tuberculosis). In 2009 the European Network for Highly Infectious Diseases conducted a survey in 48 isolation facilities in 16 European countries to determine biosecurity measures for access control to the facility. Security personnel are present in 39 facilities (81%). In 35 facilities (73%), entrance to the isolation area is restricted; control methods include electronic keys, a PIN system, closed-circuit TV, and guards at the doors. In 25 facilities (52%), identification and registration of all staff entering and exiting the isolation area are required. Access control is used in most surveyed centers, but specific lacks exist in some facilities. Further data are needed to assess other biosecurity aspects, such as the security measures during the transportation of potentially contaminated materials and measures to address the risk of an "insider attack."

  5. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  6. Strategies for healthcare facilities, construction, and real estate management.

    Science.gov (United States)

    Lee, James G

    2012-05-01

    Adventist HealthCare offers the following lessons learned in improving the value of healthcare facilities, construction, and real estate management: Use an integrated approach. Ensure that the objectives of the approach align the hospital or health system's mission and values. Embrace innovation. Develop a plan that applies to the whole organization, rather than specific business units. Ensure commitment of senior leaders.

  7. Facility management progettare, misurare, gestire e remunerare i servizi

    CERN Document Server

    Tronconi, Oliviero

    2014-01-01

    Il valore aggiunto del Facility Management consiste in una nuova dimensione e importanza dell'organizzazione: quella del fornitore che si affianca all'azienda/cliente per supportarla e risolvere qualsiasi problema inerente ai suoi diversi servizi/bisogni. Questo valore deriva da una maggior capacità di coordinamento e gestione del fornitore/partner e da una più elevata motivazione e qualità professionale delle risorse impiegate. Ma il contributo più significativo risiede della capacità di incrementare la qualità delle informazioni e, quindi, la conoscenza sui processi attuati e sui risultati raggiunti. Il Facility Management è, nella sua accezione più evoluta, il passaggio dal "fare artigianale" alla "gestione delle informazioni che sono causa ed effetto del fare". Una gestione sistematica che deve originare un più alto livello di conoscenza dei processi e che costituisce l'essenza, il nucleo fondamentale del Facility Management. Nella chiave di lettura proposta dal volume, il Facility Management è ...

  8. Information Technology in Facilities Management - A Literature Review

    DEFF Research Database (Denmark)

    Ebbesen, Poul

    2015-01-01

    Purpose : The aim of this paper is to present the state of the art of research in Information Technology (IT) in Facilities Management (FM). Background : Initial studies indicate that investments into IT in FM often do not add the expected value, neither to the FM department itself nor...

  9. Innovation process and innovativeness of facility management organizations

    NARCIS (Netherlands)

    Mudrak, T.; Wagenberg, van A.F.; Wubben, E.F.M.

    2005-01-01

    Purpose - The innovation patterns and processes in facility management (FM) organizations are crucial for the development of FM as a discipline, but they are not yet fully explored and understood. This paper aims to clarify FM innovation from the perspective of innovation processes and the

  10. Stocking the Toolbox: Ideas for Successful Facility Management

    Science.gov (United States)

    Gadzikowski, Ann

    2005-01-01

    From snow removal to dishwasher repair, from pest control to playground renovations, there are countless demands on a child care director's time and attention. A child care director is required to juggle a wide variety of roles and expectations related to facility management, often with very little training or expertise in this area. Some child…

  11. Nye udbudsformer og partnerskaber inden for Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2010-01-01

    I de senere år er der sket en stærk udvikling af nye udbuds- og samarbejdsformer inden for Facilities Management (FM). Velkendte eksempler er Offentlig-Private Partnerskaber (OPP ), hvor der sammen med FM-ydelser over typisk 30 år også indgår levering og finansiering af en bygning og ESCO (Energy...

  12. De ontwikkeling van bedrijfskundige kennis in het vakgebied facility management

    NARCIS (Netherlands)

    Keizer, J.A.; Vosselman, E.G.J.

    1994-01-01

    Afgezien van een onlangs gestarte postdoctorale opleiding voor Facility Management in Eindhoven blijft het wetenschappelijk onderwijs in deze sector tot op heden ver achter. In dit artikel wordt een aantal ideeën uitgewerkt voor het intensiveren van de onderzoeksinspanningen op het terrein van

  13. Adding Value to Facilities Management with Information Technology

    DEFF Research Database (Denmark)

    Ebbesen, Poul

    2016-01-01

    This PhD project investigates implementation and use of Information Systems (IS) and Information Technologies (IT) in the Facilities management (FM) business domain. This investigation is relevant because implementation and use of IS/IT in FM has potentials for improvements which can provide...

  14. Community management and sustainability of rural water facilities in Tanzania

    NARCIS (Netherlands)

    Mandara, C.G.; Butijn, C.A.A.; Niehof, Anke

    2013-01-01

    This paper addresses the question of whether community management in water service delivery affects the sustainability of rural water facilities (RWFs) at village level, in terms of their technical and managerial aspects, and what role capacity building of users and providers plays in this process.

  15. Using Executive Information Systems to Manage Capital Projects and Facilities.

    Science.gov (United States)

    Kaynor, Robert

    1993-01-01

    In higher education, facilities data are essential for long-term capital and financial planning and for testing assumptions underlying anticipated policy change. Executive information systems should incorporate life-cycle considerations (planning, construction, renovation, and management) and resource linkages (describing interrelationships of…

  16. Ureterolithiasis: Management in an environment with limited facilities

    African Journals Online (AJOL)

    Background: In the past 2–3 decades, there has been a dramatic development in the techniques of stone removal. This study highlights the management of symptomatic ureteral stones in an environment without such facilities. Materials and Methods: Sixty‑nine patients, comprising 53 (76.8%) males and 16 (23.2%) females ...

  17. The ATF [Advanced Toroidal Facility] Data Management System: [Final report

    International Nuclear Information System (INIS)

    Kannan, K.L.; Baylor, L.R.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Data Management System (DMG) is a VAX-based software system that provides unified data access for ATF data acquisition and analysis. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. This paper describes the layered architecture of the system design, the system implementation, use, and the data file structure. 3 refs., 1 fig

  18. 41 CFR 102-72.40 - What are facility management delegations?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are facility management delegations? 102-72.40 Section 102-72.40 Public Contracts and Property Management Federal Property... AUTHORITY Delegation of Authority § 102-72.40 What are facility management delegations? Facility management...

  19. 41 CFR 102-192.135 - Must we have a mail center manager at our facility?

    Science.gov (United States)

    2010-07-01

    ... center manager at our facility? 102-192.135 Section 102-192.135 Public Contracts and Property Management... PROGRAMS 192-MAIL MANAGEMENT Mail Center Manager Requirements § 102-192.135 Must we have a mail center manager at our facility? Yes, every facility that has more than two full time people dedicated to...

  20. Conceptual development of a test facility for spent fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs.

  1. Conceptual development of a test facility for spent fuel management

    International Nuclear Information System (INIS)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G.

    1997-01-01

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs

  2. Guidelines for operator competence - Optimising facility management processes; Leitfaden Betreiberkompetenz. Schritt fuer Schritt Facility Management Prozesse optimieren

    Energy Technology Data Exchange (ETDEWEB)

    Moser, R

    2005-06-15

    This brochure issued by IFMA (International Facility Management Association) Switzerland and the Swiss Federal Office of Energy (SFOE) presents interactive guidelines for energy management in the area of facility management. These guidelines are based on the results of a project carried out by the International Energy Agency's Annex 40 'Operator competence'. The guidelines provide a step-by-step guide from initial analysis through to successful project completion and answer many questions that may crop up during the process. The focus is placed on energy aspects. Tools and 14 sample process descriptions are provided along with practical examples. Theoretical aspects are also presented and discussed, including models for operator roles and the processes involved. Also, change, risk and knowledge management are examined. Notes and information on possibilities for further education are presented.

  3. Guidelines for operator competence - Optimising facility management processes; Leitfaden Betreiberkompetenz. Schritt fuer Schritt Facility Management Prozesse optimieren

    Energy Technology Data Exchange (ETDEWEB)

    Moser, R.

    2005-06-15

    This brochure issued by IFMA (International Facility Management Association) Switzerland and the Swiss Federal Office of Energy (SFOE) presents interactive guidelines for energy management in the area of facility management. These guidelines are based on the results of a project carried out by the International Energy Agency's Annex 40 'Operator competence'. The guidelines provide a step-by-step guide from initial analysis through to successful project completion and answer many questions that may crop up during the process. The focus is placed on energy aspects. Tools and 14 sample process descriptions are provided along with practical examples. Theoretical aspects are also presented and discussed, including models for operator roles and the processes involved. Also, change, risk and knowledge management are examined. Notes and information on possibilities for further education are presented.

  4. Adaptive management: a paradigm for remediation of public facilities

    Energy Technology Data Exchange (ETDEWEB)

    Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

    2009-01-01

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area

  5. Adaptive Management: A Paradigm for Remediation of Public Facilities

    International Nuclear Information System (INIS)

    Janecky, D.R.; Whicker, J.J.; Doerr, T.B.

    2009-01-01

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simultaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a

  6. Management support and perceived consumer satisfaction in skilled nursing facilities.

    Science.gov (United States)

    Metlen, Scott; Eveleth, Daniel; Bailey, Jeffrey J

    2005-08-01

    How managers 'manage' employees influences important firm outcomes. Heskett, Sasser, and Schlesinger contend that the level of internal support for service workers will influence consumer satisfaction. This study empirically explores how skilled nursing facility (SNF) managers affect consumer satisfaction by encouraging employee effectiveness and listening to employees to determine how to improve employee effectiveness. We extend previous research by proposing management as a form of internal support and demonstrating its relationship to service process integration, as a distinct form of internal support. The results of our individual-level investigation of 630 nursing assistants from 45 SNFs provide support for our two-part hypothesis. First, active management support and process integration, as elements of internal support, do lead to increased employee satisfaction and employee effectiveness. Second, the increased employee satisfaction and effectiveness was positively related to consumer satisfaction, as evaluated by the service workers. Thus, there is a positive influence of management's internal support of nursing assistants on perceived consumer satisfaction.

  7. Development of a Commonwealth Radioactive Waste Management Facility in Australia

    International Nuclear Information System (INIS)

    Hesterman, R.

    2006-01-01

    Full text: The Australian Government has commenced a process to build a Commonwealth Radioactive Waste Management Facility in the Northern Territory for management of radioactive wastes produced by Australian Government agencies. The Government is committed to safely managing its relatively small volume of low level radioactive waste (approximately 3800 cubic metres) and even smaller volume of intermediate level waste (around 400 cubic metres) that have been generated since the early 1950s from the research, medical and industrial use of radioactive materials. Australia has no high level radioactive waste as it does not have any nuclear power reactors. Australian states and territories are responsible for the safe and secure management of low level and intermediate level waste generated within their jurisdictions. They have jointly generated approximately 200 cubic metres of low level radioactive waste and under 100 cubic metres of intermediate level for the same period. In July 2004, the Prime Minister announced that the Australian Government would examine the suitability of Commonwealth land holdings, both onshore and offshore, for establishing the Facility. An initial assessment of offshore territories by the Department of Education, Science and Training (DEST) did not find any sufficiently suitable sites for hosting the Facility. This was due to the low elevation of most territories, inadequate infrastructure and incompatibility with existing land uses. In July 2005, Dr Nelson, then the Minister for Education, Science and Training, announced that three Department of Defence properties in the Northern Territory would be investigated for siting the Facility. The three properties are Fishers Ridge, about 43 kilometres southeast of Katherine; Harts Range, 100 kilometres directly northeast of Alice Springs; and Mt Everard, about 27 kilometres directly northwest of Alice Springs. In addition, the Commonwealth Radioactive Waste Management Act 2005, enacted in December

  8. Hydrologic management at the Hanford nuclear waste facility

    International Nuclear Information System (INIS)

    Deju, R.A.; Gephart, R.E.

    1975-05-01

    Since 1944 the Hanford Reservation, located in south-central Washington, has been a site for radioactive waste storage and disposal. Many Hanford research programs are directed toward minimizing and managing the release of radionuclides into the environment. Hydrologic management of the Hanford facility involves such activities as regional and local geohydrologic characterization studies, environmental monitoring, groundwater management, and specific hydrologic research programs. This paper briefly examines each of these activities and reviews the progress to date in understanding the hydrologic flow regime existing beneath the Reservation. (U.S.)

  9. Development of Experimental Facilities for Advanced Spent Fuel Management Technology

    Energy Technology Data Exchange (ETDEWEB)

    You, G. S.; Jung, W. M.; Ku, J. H. [and others

    2004-07-01

    The advanced spent fuel management process(ACP), proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel, is under research and development. This technology convert spent fuels into pure metal-base uranium with removing the highly heat generating materials(Cs, Sr) efficiently and reducing of the decay heat, volume, and radioactivity from spent fuel by 1/4. In the next phase(2004{approx}2006), the demonstration of this technology will be carried out for verification of the ACP in a laboratory scale. For this demonstration, the hot cell facilities of {alpha}-{gamma} type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of {beta}-{gamma} type will be refurbished to minimize construction expenditures of hot cell facility. In this study, the design requirements are established, and the process detail work flow was analysed for the optimum arrangement to ensure effective process operation in hot cell. And also, the basic and detail design of hot cell facility and process, and safety analysis was performed to secure conservative safety of hot cell facility and process.

  10. High level radioactive waste management facility design criteria

    International Nuclear Information System (INIS)

    Sheikh, N.A.; Salaymeh, S.R.

    1993-01-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding

  11. Radiological risks of transports to central waste management facilities

    International Nuclear Information System (INIS)

    Lange, F.

    1997-01-01

    Transports of radioactive waste from nuclear facilities have been a matter of frequent public concern in the recent past. News reports, protests and questions concerning the radiological risk tended to concentrate on transports to and from central waste management facilities, e.g. transports of spent fuel elements to reprocessing plants abroad (France, England), transports to intermediate storage sites (Ahaus, Gorleben), transports to operative (Morsleben) and projected (Konrad) final storage sites, and transports of vitrified high-activity waste from reprocessing plants to the intermediate storage site (Gorleben). (orig.) [de

  12. A Supply Chain Design Problem Integrated Facility Unavailabilities Management

    Directory of Open Access Journals (Sweden)

    Fouad Maliki

    2016-08-01

    Full Text Available A supply chain is a set of facilities connected together in order to provide products to customers. The supply chain is subject to random failures caused by different factors which cause the unavailability of some sites. Given the current economic context, the management of these unavailabilities is becoming a strategic choice to ensure the desired reliability and availability levels of the different supply chain facilities. In this work, we treat two problems related to the field of supply chain, namely the design and unavailabilities management of logistics facilities. Specifically, we consider a stochastic distribution network with consideration of suppliers' selection, distribution centres location (DCs decisions and DCs’ unavailabilities management. Two resolution approaches are proposed. The first approach called non-integrated consists on define the optimal supply chain structure using an optimization approach based on genetic algorithms (GA, then to simulate the supply chain performance with the presence of DCs failures. The second approach called integrated approach is to consider the design of the supply chain problem and unavailabilities management of DCs in the same model. Note that, we replace each unavailable DC by performing a reallocation using GA in the two approaches. The obtained results of the two approaches are detailed and compared showing their effectiveness.

  13. Strategic aspects on waste management in decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Rannemalm, T.; Eliasson, S.; Larsson, A.; Lidar, P.; Bergh, N.; Hedin, G.

    2017-01-01

    A team composed of experts from the facility owner OKG, Westinghouse and Studsvik (today Cyclife Sweden and Studsvik Consulting) was asked to develop a basis for decision on an overall strategy for the management of the material and waste arising from the decommissioning of two BWR NPPs at the Oskarshamn site in Sweden. To be able to provide a good basis for decision the full waste management chain from generation to disposition, i.e. clearance or disposal had to be assessed, categorised, quantified and analysed with regards to costs, environmental impact and risks. A systematic approach was applied taking benefit of the decommissioning studies made previously for the two facilities, the decommissioning concepts developed by Ndcon (the partnership in decommissioning between Studsvik and Westinghouse) and the combined knowledge and experience in the project team. In total 4 different waste management concepts were compared individually and in combinations. The four concepts evaluated were based on: direct disposal in the national geological repository; treatment of the waste for volume reduction and where applicable clearance in an external waste treatment facility; decontamination and clearance in an on-site waste treatment facility; direct disposal in a near surface repository at the NPP site. It was important to be able to compare the different options in a quantifiable way. Therefore the project team set up a matrix with parameters for the different options gained from the utility, the national waste management company, external vendors and the experience of the team. In this way a quantitative analysis could be done with the four different waste management options. In addition to the quantitative analysis the team summarised decades of experience in radioactive waste management and decommissioning recommendations and risk analyses. Special attention was given to risk mitigation and redundancy in the waste management chain. The development of an overall waste

  14. Crisis Management training at nuclear facilities: Simulations in bomb threats

    International Nuclear Information System (INIS)

    Barton, L.

    1993-01-01

    Substantial enhancements to the study of the theoretical and applied foundations of crisis management have been achieved in recent years. Whereas risk managers study 'the probability that a harmful consequence of a particular event will occur during a given time,' crisis management explores unexpected, potentially negative events with short or long-term implications involving injury to life or property. In this regard, crisis management focuses on the mitigation of organizational after-shock; risk management is preventative in scope. While the risk management function of nuclear facilities has been addressed widely in the literature, comparatively little has been written that addresses the myriad, interdisciplinary challenges associated with managing organizational disarray. The issue of crisis management has assumed paramount importance in recent years due to unexpected geopolitical events (e.g., Persian Gulf War), rampant violence facing organizations (e.g., mass shootings in Killeen, Texas and several U.S. Post Offices) and an acceleration of serious crisis impacting large organizations (e.g., Three Mile Island, Chernobyl, Exxon Valdez, NASA Challenger disaster). Without question, the public is increasingly demanding that organizational managers possess a fundamental understanding of crisis management and its principal underpinnings: effective public communication regarding the event and a return to normalcy, employee and public safety and evacuation measures, and other mitigation measures will protect life and property

  15. Risk management program for the 283-W water treatment facility

    International Nuclear Information System (INIS)

    Green, W.E.

    1999-01-01

    This Risk Management (RM) Program covers the 283-W Water Treatment Facility (283W Facility), located in the 200 West Area of the Hanford Site. A RM Program is necessary for this facility because it stores chlorine, a listed substance, in excess of or has the potential to exceed the threshold quantities defined in Title 40 of the Code of Federal Regulations (CFR) Part 68 (EPA, 1998). The RM Program contains data that will be used to prepare a RM Plan, which is required by 40 CFR 68. The RM Plan is a summary of the RM Program information, contained within this document, and will be submitted to the U.S. Environmental Protection Agency (EPA) ultimately for distribution to the public. The RM Plan will be prepared and submitted separately from this document

  16. The grand challenge of managing the petascale facility.

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, R. J.; Mathematics and Computer Science

    2007-02-28

    This report is the result of a study of networks and how they may need to evolve to support petascale leadership computing and science. As Dr. Ray Orbach, director of the Department of Energy's Office of Science, says in the spring 2006 issue of SciDAC Review, 'One remarkable example of growth in unexpected directions has been in high-end computation'. In the same article Dr. Michael Strayer states, 'Moore's law suggests that before the end of the next cycle of SciDAC, we shall see petaflop computers'. Given the Office of Science's strong leadership and support for petascale computing and facilities, we should expect to see petaflop computers in operation in support of science before the end of the decade, and DOE/SC Advanced Scientific Computing Research programs are focused on making this a reality. This study took its lead from this strong focus on petascale computing and the networks required to support such facilities, but it grew to include almost all aspects of the DOE/SC petascale computational and experimental science facilities, all of which will face daunting challenges in managing and analyzing the voluminous amounts of data expected. In addition, trends indicate the increased coupling of unique experimental facilities with computational facilities, along with the integration of multidisciplinary datasets and high-end computing with data-intensive computing; and we can expect these trends to continue at the petascale level and beyond. Coupled with recent technology trends, they clearly indicate the need for including capability petascale storage, networks, and experiments, as well as collaboration tools and programming environments, as integral components of the Office of Science's petascale capability metafacility. The objective of this report is to recommend a new cross-cutting program to support the management of petascale science and infrastructure. The appendices of the report document current and projected

  17. Graphics-based nuclear facility modeling and management

    International Nuclear Information System (INIS)

    Rod, S.R.

    1991-07-01

    Nuclear waste management facilities are characterized by their complexity, many unprecedented features, and numerous competing design requirements. This paper describes the development of comprehensive descriptive databases and three-dimensional models of nuclear waste management facilities and applies the database/model to an example facility. The important features of the facility database/model are its abilities to (1) process large volumes of site data, plant data, and nuclear material inventory data in an efficient, integrated manner; (2) produce many different representations of the data to fulfill information needs as they arise; (3) create a complete three-dimensional solid model of the plant with all related information readily accessible; and (4) support complete, consistent inventory control and plant configuration control. While the substantive heart of the system is the database, graphic visualization of the data vastly improves the clarity of the information presented. Graphic representations are a convenient framework for the presentation of plant and inventory data, allowing all types of information to be readily located and presented in a manner that is easily understood. 2 refs., 5 figs., 1 tab

  18. OPP og indkøb af Facilities Management ydelser

    DEFF Research Database (Denmark)

    Kristiansen, Kristian

    Dette er den 3. og sidste rapport i forskningsprojektet om OPP og indkøb af Facilities Management ydelser. Fokus er denne gang rettet mod bestræbelserne på at skabe større integration i byggeprocessen. Det vil blive undersøgt, hvorvidt sådanne bestræbelser – som der kan findes eksempler på både i...... UK og i Danmark – vil kunne fremme en inddragelse af Facilities Management viden i planlægning, projektering og udførelse. Denne problemstilling skal ses i forlængelse af det forudgående arbejde i forskningsprojektet....

  19. ETHEL's systems and facilities for safe management of tritiated wastes

    International Nuclear Information System (INIS)

    Mannone, F.; Dworschak, H.; Vassallo, G.

    1992-01-01

    The European Tritium Handling Experimental Laboratory (ETHEL) is a new tritium facility at the Commission of the European Community's Joint Research Centre, Ispra Site. The laboratory, destined to handle multigram amounts of tritium for safety related R and D purposes, is foreseen to start radioactive operations in late 1992. The general operation and maintenance of laboratory systems and future experiments will generate tritiated wastes in gaseous, liquid and solid forms. The management of such wastes under safe working conditions is a stringent laboratory requirement aimed at minimizing the risk of unacceptable tritium exposures to workers and the general public. This paper describes the main systems and facilities installed in ETHEL for the safe management of tritiated wastes

  20. Realising the potential of shared space in facilities management

    DEFF Research Database (Denmark)

    Brinkø, Rikke

    individuals or groups from different organisational contexts, and this PhD investigates the intricate processes con-cerning shared space in a facilities management context. The overall aim is divided in a theoretical and a practical part, with the theoretical focused on contributing with new knowledge...... of shared space, building towards a new method for efficient and sustainable facilities management operation of buildings and properties. The practical part is focused on connecting this new knowledge to practical applications and developing tools that can be used to work with shared spaces in a practice...... categories according to degree of sharing, and lists a number of characteristics of shared spaces to provide a starting point for discussing, developing and working with shared space in both academia and practice. The guide on the other hand synthesises the theoretical knowledge resulting from the study...

  1. Management concepts and safety applications for nuclear fuel facilities

    International Nuclear Information System (INIS)

    Eisner, H.; Scotti, R.S.

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities

  2. Management concepts and safety applications for nuclear fuel facilities

    Energy Technology Data Exchange (ETDEWEB)

    Eisner, H.; Scotti, R.S. [George Washington Univ., Washington, DC (United States). School of Engineering and Applied Science; Delicate, W.S. [KEVRIC Co., Inc., Silver Spring, MD (United States)

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities.

  3. Study on Customer Satisfaction with Facilities Management Services in Lithuania

    Science.gov (United States)

    Lepkova, Natalija; Žūkaitė-Jefimovienė, Giedrė

    2012-12-01

    The article introduces the concept and content of facilities management (FM) services. The paper presents the concept of customer satisfaction and discusses the key factors which influence the opinions of customers and their satisfaction or dissatisfaction with the services provided. The article presents two studies: a brief survey of several FM service providers and a survey of customer satisfaction with FM services in Lithuania. The conclusions are given at the end of the article.

  4. Supervision of radiation environment management of nuclear facilities

    International Nuclear Information System (INIS)

    Luo Mingyan

    2013-01-01

    Through literature and documents, the basis, content and implementation of the supervision of radiation environment management of nuclear facilities were defined. Such supervision was extensive and complicated with various tasks and overlapping duties, and had large social impact. Therefore, it was recommend to make further research on this supervision should be done, clarify and specify responsibilities of the executor of the supervision so as to achieve institutionalization, standardization and routinization of the supervision. (author)

  5. Software Manages Documentation in a Large Test Facility

    Science.gov (United States)

    Gurneck, Joseph M.

    2001-01-01

    The 3MCS computer program assists and instrumentation engineer in performing the 3 essential functions of design, documentation, and configuration management of measurement and control systems in a large test facility. Services provided by 3MCS are acceptance of input from multiple engineers and technicians working at multiple locations;standardization of drawings;automated cross-referencing; identification of errors;listing of components and resources; downloading of test settings; and provision of information to customers.

  6. Delivering Sustainable Facilities Management in Danish Housing Estates

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Jensen, Jesper Ole; Jensen, Per Anker

    2009-01-01

    Housing plays a central role in sustainable development due to large resource consumption and as transition agent towards sustainable lifestyles. The aim is to evaluate current practice of housing administration in Denmark in order to evaluate if and how sustainable facilities management is suppo......Housing plays a central role in sustainable development due to large resource consumption and as transition agent towards sustainable lifestyles. The aim is to evaluate current practice of housing administration in Denmark in order to evaluate if and how sustainable facilities management...... is supporting social, economical and environmental sustainable development. Sustainable facility management (SFM) is as an 'umbrella' for various ways of reducing flows of energy, water and waste in the daily operation of the buildings, for instance by regular monitoring the consumption, by using 'green......-setting including the ownership of the building, the organisation of daily operation, the roles and relation between stakeholders are equally important in order to utilise the monitoring as a mean for transformation towards sustainable buildings and lifestyles....

  7. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    International Nuclear Information System (INIS)

    Fritz, R.L.

    1995-01-01

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities

  8. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, R.L.

    1995-01-11

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

  9. Use of information technology for medication management in residential care facilities: correlates of facility characteristics.

    Science.gov (United States)

    Bhuyan, Soumitra S; Chandak, Aastha; Powell, M Paige; Kim, Jungyoon; Shiyanbola, Olayinka; Zhu, He; Shiyanbola, Oyewale

    2015-06-01

    The effectiveness of information technology in resolving medication problems has been well documented. Long-term care settings such as residential care facilities (RCFs) may see the benefits of using such technologies in addressing the problem of medication errors among their resident population, who are usually older and have numerous chronic conditions. The aim of this study was two-fold: to examine the extent of use of Electronic Medication Management (EMM) in RCFs and to analyze the organizational factors associated with the use of EMM functionalities in RCFs. Data on RCFs were obtained from the 2010 National Survey of Residential Care Facilities. The association between facility, director and staff, and resident characteristics of RCFs and adoption of four EMM functionalities was assessed through multivariate logistic regression. The four EMM functionalities included were maintaining lists of medications, ordering for prescriptions, maintaining active medication allergy lists, and warning of drug interactions or contraindications. About 12% of the RCFs adopted all four EMM functionalities. Additionally, maintaining lists of medications had the highest adoption rate (34.5%), followed by maintaining active medication allergy lists (31.6%), ordering for prescriptions (19.7%), and warning of drug interactions or contraindications (17.9%). Facility size and ownership status were significantly associated with adoption of all four EMM functionalities. Medicaid certification status, facility director's age, education and license status, and the use of personal care aides in the RCF were significantly associated with the adoption of some of the EMM functionalities. EMM is expected to improve the quality of care and patient safety in long-term care facilities including RCFs. The extent of adoption of the four EMM functionalities is relatively low in RCFs. Some RCFs may strategize to use these functionalities to cater to the increasing demands from the market and also to

  10. Management of Excess Material in the Navys Real Time Reutilization Asset Management Facilities Needs Improvement

    Science.gov (United States)

    2017-01-23

    Commands, that originally purchased the material from the command’s operational and maintenance fund. A flowchart of the RRAM material management process...streamlines business operations for financial and supply chain management . 22 SECNAVINST 4440.33A. The Navy retained excess material stored in 10 of...No. DODIG-2017-043 J A N U A R Y 2 3 , 2 0 1 7 Management of Excess Material in the Navy’s Real-Time Reutilization Asset Management Facilities

  11. Management and Development of the RT Research Facilities and Infrastructures

    International Nuclear Information System (INIS)

    Kim, Won Ho; Nho, Young Chang; Kim, Jae Sung

    2009-01-01

    The purpose of this project are to operate the core facilities of the research for the Radiation Technology in stable and to assist the research activities efficiently in the industry, academic, and research laboratory. By developing the infrastructure of the national radio technology industry, we can activate the researching area of the RT and the related industry, and obtain the primary and original technology. The key point in the study of the RT and the assistance of the industry, academic, and research laboratory for the RT area smoothly, is managing the various of unique radiation facilities in our country. The gamma Phytotron and Gene Bank are essential in the agribiology because these facilities are used to preserve and utilize the genes and to provide an experimental field for the environment and biotechnology. The Radiation Fusion Technology research supporting facilities are the core support facilities, and are used to develop the high-tech fusion areas. In addition, the most advanced analytical instruments, whose costs are very high, should be managed in stable and be utilized in supporting works, and the experimental animal supporting laboratory and Gamma Cell have to be maintained in high level and managed in stable also. The ARTI have been developed the 30MeV cyclotron during 2005∼2006, aimed to produce radioisotopes and to research the beam applications as a result of the project, 'Establishment of the Infrastructure for the Atomic Energy Research Expansion', collaborated with the Korea Institute of Radiological and Medical Sciences. In addition, the ARTI is in the progress of establishing cyclotron integrated complex as a core research facility, using a proton beam to produce radioisotopes and to support a various research areas. The measurement and evaluation of the irradiation dose, and irradiation supporting technology of the Good Irradiation Practice(GIP) are essential in various researching areas. One thing to remember is that the publicity

  12. WIPP Facility Work Plan for Solid Waste Management Units

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2001-02-25

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  13. Management challenges faced by managers of New Zealand long-term care facilities.

    Science.gov (United States)

    Madas, E; North, N

    2000-01-01

    This article reports on a postal survey of 78 long-term care managers in one region of New Zealand, of whom 45 (58%) responded. Most long-term care managers (73.2%) were middle-aged females holding nursing but not management qualifications. Most long-term care facilities (69%) tended to be stand-alone facilities providing a single type of care (rest home or continuing care hospital). The most prominent issues facing managers were considered to be inadequate funding to match the growing costs of providing long-term care and occupancy levels. Managers believed that political/regulatory, economic and social factors influenced these issues. Despite a turbulent health care environment and the challenges facing managers, long-term care managers reported they were coping well and valued networking.

  14. A proactive method for safety management in nuclear facilities

    International Nuclear Information System (INIS)

    Grecco, Claudio Henrique dos Santos; Carvalho, Paulo Victor Rodrigues de; Santos, Isaac Antonio Luquetti dos

    2014-01-01

    Due to the modern approach to address the safety of nuclear facilities which highlights that these organizations must be able to assess and proactively manage their activities becomes increasingly important the need for instruments to evaluate working conditions. In this context, this work presents a proactive method of managing organizational safety, which has three innovative features: 1) the use of predictive indicators that provide current information on the performance of activities, allowing preventive actions and not just reactive in safety management, different from safety indicators traditionally used (reactive indicators) that are obtained after the occurrence of undesired events; 2) the adoption of resilience engineering approach in the development of indicators - indicators are based on six principles of resilience engineering: top management commitment, learning, flexibility, awareness, culture of justice and preparation for the problems; 3) the adoption of the concepts and properties of fuzzy set theory to deal with subjectivity and consistency of human trials in the evaluation of the indicators. The fuzzy theory is used primarily to map qualitative models of decision-making, and inaccurate representation methods. The results of this study aim an improvement in performance and safety in organizations. The method was applied in a radiopharmaceutical shipping sector of a nuclear facility. The results showed that the method is a good monitoring tool objectively and proactively of the working conditions of an organizational domain

  15. Severe accident analysis and management in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Golshan, Mina

    2013-01-01

    Within the UK regulatory regime, assessment of risks arising from licensee's activities are expected to cover both normal operations and fault conditions. In order to establish the safety case for fault conditions, fault analysis is expected to cover three forms of analysis: design basis analysis (DBA), probabilistic safety assessment (PSA) and severe accident analysis (SAA). DBA should provide a robust demonstration of the fault tolerance of the engineering design and the effectiveness of the safety measures on a conservative basis. PSA looks at a wider range of fault sequences (on a best estimate basis) including those excluded from the DBA. SAA considers significant but unlikely accidents and provides information on their progression and consequences, within the facility, on the site and off site. The assessment of severe accidents is not limited to nuclear power plants and is expected to be carried out for all plant states where the identified dose targets could be exceeded. This paper sets out the UK nuclear regulatory expectation on what constitutes a severe accident, irrespective of the type of facility, and describes characteristics of severe accidents focusing on nuclear fuel cycle facilities. Key rules in assessment of severe accidents as well as the relationship to other fault analysis techniques are discussed. The role of SAA in informing accident management strategies and offsite emergency plans is covered. The paper also presents generic examples of scenarios that could lead to severe accidents in a range of nuclear fuel cycle facilities. (authors)

  16. Facilities management and corporate real estate management : FM/CREM or FREM?

    NARCIS (Netherlands)

    van der Voordt, Theo

    2017-01-01

    Purpose: This paper aims to explore similarities and dissimilarities between facilities management (FM) and corporate real estate management (CREM) regarding its history and key issues, and whether the similarities may result in a further integration of FM and CREM. Design/methodology/approach:

  17. Risk communication on the siting of radioactive waste management facility

    International Nuclear Information System (INIS)

    Okoshi, Minoru; Torii, Hiroyuki; Fujii, Yasuhiko

    2007-01-01

    Siting of radioactive waste management facilities frequently raise arguments among stakeholders such as a municipal government and the residents. Risk communication is one of the useful methods of promoting mutual understanding on related risks among stakeholders. In Finland and Sweden, siting selection procedures of repositories for spent nuclear fuels have been carried out successfully with risk communication. The success reasons are analyzed based on the interviews with those who belong to the regulatory authorities and nuclear industries in both countries. Also, in this paper, risk communication among the Japan Radioisotope Association (JRIA), a local government and the general public, which was carried out during the establishment process of additional radioactive waste treatment facilities in Takizawa Village, Iwate Prefecture, is analyzed based on articles in newspapers and interviews with persons concerned. The analysis results showed that good risk communication was not carried out because of the lack of confidence on the JRIA, decision making rules, enough communication chances and economic benefits. In order to make good use of these experiences for the future establishment of radioactive waste management facilities, the lessons learned from these cases are summarized and proposals for good risk communication (establishment of exploratory committee and technical support system for decision making, and measurements to increase familiarity of radioactive waste) are discussed. (author)

  18. Solid Waste Management Facilities with Permits by the Iowa DNR

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  19. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.

    1993-01-01

    Probabilistic safety assessment methodology is being applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results from facilities used by the first 16 reactors is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  20. Socio-economic aspects of waste management facilities

    International Nuclear Information System (INIS)

    Ruetter, H.

    2008-01-01

    Besides technical aspects and those of safety, it is the economic and social environment of a future underground geologic repository which plays a major role. Compared to other large scale technical plants, facilities for radioactive waste management must overcome incomparably greater obstacles. All the more care must be taken in clarifying the issues affecting the public and the economy in the region of a potential site. On behalf of the Swiss Federal Office for Energy (BFE), Ruetter + Partner conducted a basic study which, in a number of case studies, dealt with the socio-economic aspects of experiences with existing and planned facilities in Switzerland and abroad. The study focused on these main points, which are outlined briefly in the article: - Socio-economic issues in the site selection procedure. - Methodological approach. - Findings made in the case studies. - Factors influencing the acceptance of a repository. (orig.)

  1. CHANGE OF CONTRACTOR FOR THE FACILITIES MANAGEMENT ACTIVITIES AT CERN

    CERN Document Server

    2003-01-01

    The Facilities Management contract at CERN, under the responsibility of ST Division, Group FM, is in charge of the maintenance and minor works on tertiary installations (i.e. all structures and installations that have no direct relation to the running of the accelerators) for the following trades: - Technical: heating, ventilation, air conditioning, plumbing, electricity, civil engineering (painting, roofing, glazing, blinds, fencing, masonry etc.), cleansing, passenger and goods lifts, automatic and powered doors, kitchen equipment, roads, signs, keys and locks, office furniture, - Services: waste collection, security, green areas, cleaning and sanitary supplies, disinfection, rodent control and insect control. Starting from the 1st June the present contractor will stop some activities that will be taken under its responsibility by the new one, INGEST Facility. Others activities will be moved on the 1st July. Minor perturbation in the service might occur. The contact number will not change and will be opera...

  2. CHANGE OF CONTRACTOR FOR THE FACILITIES MANAGEMENT ACTIVITIES AT CERN

    CERN Document Server

    2003-01-01

    The Facilities Management contract at CERN, under the responsibility of ST Division, Group FM, is in charge of the maintenance and minor works on tertiary installations (i.e. all structures and installations that have no direct relation to the running of the accelerators) for the following trades: - Technical: heating, ventilation, air conditioning, plumbing, electricity, civil engineering (painting, roofing, glazing, blinds, fencing, masonry etc.), cleansing, passenger and goods lifts, automatic and powered doors, kitchen equipment, roads, signs, keys and locks, office furniture, - Services: waste collection, security, green areas, cleaning and sanitary supplies, disinfection, rodent control and insect control. Starting from the 1st June the present contractor will stop some activities that will be taken under its responsibility by the new one, INGEST Facility. The remaining activities (including cleaning) will be moved on the 1st July. Minor perturbation in the service might occur. The contact number will ...

  3. THE COMBINED USE OF BUSINESS MANAGEMENT WITH FACILITY MANAGEMENT AS AN OPTION FOR INTELLIGENT BUILDING

    Directory of Open Access Journals (Sweden)

    Andreas Dittmar Weise

    2014-01-01

    Full Text Available Words like Business Management (BM and Facility Management (FM are well known as separate management methods. FM offers transparency about their property costs and exploitation, starting from the planning phase until its demolition. The investor sees this in the property invested capital and its recoverable yield. This means they also want a profit with their real estates. Besides this, changes in the social and environmental requirements become necessary to adapt the properties. The solution is called Intelligent Building. Its primary aim is to collect and select previous knowledge and information about Facility Management and Business Management. It is an application, mainly with sight to characterize and describe the possibilities of use of intelligent buildings as a combination of Facility and Business Management. This paper is an indirect survey carried out through a documental procedure in the form of a bibliographic research and theoretician study. Intelligent Building as combination of FM and BM is new, but in our times necessary to satisfy the needs of the demand. This type of building needs to be flexible in its structure and services, open for changes in environmental requirements, e.g. saving energy, and needs a lot of technology to realize their functions. Consequently, it will be sustainable for a value enhancement. With a Computer Aided Facilities Management system this is possible and the company will be more flexible in relation to the competitors and future changes.

  4. National Ignition Facility Cryogenic Target Systems Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety and Health (ES and H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for

  5. The combined use of business management with facility management as an option for intelligent building

    OpenAIRE

    Weise, Andreas Dittmar; Schultz, Charles Albino; Trierweiller, Andréa Cristina; Rocha, Rudimar Antunes da; Peixe, Blênio Cesar Severo

    2014-01-01

    Words like Business Management (BM) and Facility Management (FM) are well known as separate management methods. FM offers transparency about their property costs and exploitation, starting from the planning phase until its demolition. The investor sees this in the property invested capital and its recoverable yield. This means they also want a profit with their real estates. Besides this, changes in the social and environmental requirements become necessary to adapt the properties. The soluti...

  6. WIPP Facility Work Plan for Solid Waste Management Units

    International Nuclear Information System (INIS)

    2000-01-01

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility's's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A

  7. Nuclear Security Management for Research Reactors and Related Facilities

    International Nuclear Information System (INIS)

    2016-03-01

    This publication provides a single source guidance to assist those responsible for the implementation of nuclear security measures at research reactors and associated facilities in developing and maintaining an effective and comprehensive programme covering all aspects of nuclear security on the site. It is based on national experience and practices as well as on publications in the field of nuclear management and security. The scope includes security operations, security processes, and security forces and their relationship with the State’s nuclear security regime. The guidance is provided for consideration by States, competent authorities and operators

  8. Sectoral innovation system foresight in practice: Nordic facilities management foresight

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Dahl Andersen, Allan; Jensen, Per Anker

    2014-01-01

    a proposal for a common Nordic facilities management research agenda. The paper finds that three elements of the innovation system literature are of particular interest for the practice of foresight: innovation systems and context dependency, learning and user-producer interactions, and the role of knowledge...... and knowledge production. These elements are embedded into a simple sectoral innovation system model (including actors, knowledge flows, and the strategic environment).......A number of studies have explored the interconnection between the foresight literature and the innovation system literature. This paper adds to these studies by investigating how theoretical elements of the innovation system approach can contribute to the design and practice of foresight processes...

  9. Management of the high-level nuclear power facilities

    International Nuclear Information System (INIS)

    Preda, Marin

    2003-05-01

    This thesis approaches current issues in the management of the high power nuclear facilities and as such it appears to be important particularly for nuclear power plant operation topics. Of special interest are the failure events entailing possible catastrophic situations. The contents is structured onto ten chapters. The first chapter describes the operation regimes of the nuclear high power facilities. Highlighted here are the thesis scope and the original features of the work. The second chapter deals with operational policies developed in order to ensure the preventive maintenance of the nuclear installations. Also managing structures are described devoted to practical warranting the equipment safety function of non-classical power stations. In the third chapter cases of nuclear accidents are analyzed especially stressing the probabilistic risk and the operation regimes having in view the elimination of catastrophic events. In the fourth and fifth chapters the control of nuclear radiation emission is treated focusing the quality issue of nuclear installations required to avoid hazardous effects at level of nuclear reactor operation stage. At the same time set of operational measures is given here for preventing risks, catastrophes and chaotic situations. The chapter five presents both theoretical and practical approaches of the nuclear reactor core management concerning particularly the fuel testing, the water primary system and the quality of the involved equipment. In the sixth and seventh chapters issues of risk-quality correlations are approached as well as the structure of expert systems for monitoring the operational regimes of nuclear facilities. The efficiency of the power systems with nuclear injection is discussed and some original ideas developed in this work are evidenced in the eighth and ninth chapters. Presented are here both the operational principles and models of raising the efficiency of the interconnected nuclear stations and prices' policy

  10. Uplatnění metody benchmarking v rámci Facility management

    OpenAIRE

    Jiroutová, Monika

    2009-01-01

    This bachelor study dissertates about the possibilities of benchmarking application in the field of Facility Management. Theoretical part describes basic characteristics and elementary terms and methods of benchmarking process in Facility Management. In the practical part ten companies providing facility services are compared on the basis of a number of indices. Every company is briefly described. On the results of performed analysis the evolution of the Facility Management in Czech Republic ...

  11. Tritium and ignition target management at the National Ignition Facility.

    Science.gov (United States)

    Draggoo, Vaughn

    2013-06-01

    Isotopic mixtures of hydrogen constitute the basic fuel for fusion targets of the National Ignition Facility (NIF). A typical NIF fusion target shot requires approximately 0.5 mmoles of hydrogen gas and as much as 750 GBq (20 Ci) of 3H. Isotopic mix ratios are specified according to the experimental shot/test plan and the associated test objectives. The hydrogen isotopic concentrations, absolute amounts, gas purity, configuration of the target, and the physical configuration of the NIF facility are all parameters and conditions that must be managed to ensure the quality and safety of operations. An essential and key step in the preparation of an ignition target is the formation of a ~60 μm thick hydrogen "ice" layer on the inner surface of the target capsule. The Cryogenic Target Positioning System (Cryo-Tarpos) provides gas handling, cyro-cooling, x-ray imaging systems, and related instrumentation to control the volumes and temperatures of the multiphase (solid, liquid, and gas) hydrogen as the gas is condensed to liquid, admitted to the capsule, and frozen as a single spherical crystal of hydrogen in the capsule. The hydrogen fuel gas is prepared in discrete 1.7 cc aliquots in the LLNL Tritium Facility for each ignition shot. Post-shot hydrogen gas is recovered in the NIF Tritium Processing System (TPS). Gas handling systems, instrumentation and analytic equipment, material accounting information systems, and the shot planning systems must work together to ensure that operational and safety requirements are met.

  12. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    International Nuclear Information System (INIS)

    1993-03-01

    During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year

  13. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers; Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.

    2001-05-16

    Greening Federal Facilities, Second Edition, is a nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the performance of Federal buildings and facilities. The guide highlights practical actions that facility managers, design and construction staff, procurement officials, and facility planners can take to save energy and money, improve the comfort and productivity of employees, and benefit the environment. It supports a national effort to promote energy and environmental efficiency in the nation's 500,000 Federal buildings and facilities. Topics covered include current Federal regulations; environmental and energy decision-making; site and landscape issues; building design; energy systems; water and wastewater; materials; waste management, and recycling; indoor environmental quality; and managing buildings.

  14. Swedish spent fuel management systems, facilities and operating experiences

    International Nuclear Information System (INIS)

    Vogt, J.

    1998-01-01

    About 50% of the electricity in Sweden is generated by means of nuclear power from 12 LWR reactors located at four sites and with a total capacity of 10,000 MW. The four utilities have jointly created SKB, the Swedish Nuclear Fuel and Waste Management Company, which has been given the mandate to manage the spent fuel and radioactive waste from its origin at the reactors to the final disposal. SKB has developed a system for the safe handling of all kinds of radioactive waste from the Swedish nuclear power plants. The keystones now in operation of this system are a transport system, a central interim storage facility for spent nuclear fuel (CLAB), a final repository for short-lived, low and intermediate level waste (SFR). The remaining, system components being planned are an encapsulation plant for spent nuclear fuel and a deep repository for encapsulated spent fuel and other long-lived radioactive wastes. (author)

  15. Controlling changes - lessons learned from waste management facilities

    International Nuclear Information System (INIS)

    Johnson, B.M.; Koplow, A.S.; Stoll, F.E.; Waetje, W.D.

    1995-01-01

    This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-level waste through compaction, incineration, and sizing operations. WROC and WERF's efforts aim to improve change control processes that have worked inefficiently in the past

  16. Organisation of facilities management in relation to core business

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2011-01-01

    as mainly a specific customer orientation. It is concluded that a market relationship – internally or externally – is appropriate for non-strategic functions, while it is important to create a kind of coalition between strategic FM functions and the core business management. Originality/value: The paper......Purpose: The purpose of this article is to clarify the organisational relationships between Facilities Management (FM) and core business and how these relationships vary for strategic and operational support functions. Approach: The research takes a starting point in Michael Porter’s theory...... of value chains but also draws on theory of strategic FM, governance and forms of coordination. The value chains for core businesses and support functions are analysed and related to empirical data from a case study on a broadcasting corporation during a major relocation. Findings: A particular support...

  17. Impacts of building information modeling on facility maintenance management

    Energy Technology Data Exchange (ETDEWEB)

    Ahamed, Shafee; Neelamkavil, Joseph; Canas, Roberto [Centre for Computer-assisted Construction Technologies, National Research Council of Canada, London, Ontario (Canada)

    2010-07-01

    Building information modeling (BIM) is a digital representation of the physical and functional properties of a building; it has been used by construction professionals for a long time and stakeholders are now using it in different aspects of the building lifecycle. This paper intends to present how BIM impacts the construction industry and how it can be used for facility maintenance management. The maintenance and operations of buildings are in most cases still managed through the use of drawings and spreadsheets although life cycle costs of a building are significantly higher than initial investment costs; thus, the use of BIM could help in achieving a higher efficiency and so important benefits. This study is part of an ongoing research project, the nD modeling project, which aims at predicting building energy consumption with better accuracy.

  18. National ignition facility environment, safety, and health management plan

    International Nuclear Information System (INIS)

    1995-11-01

    The ES ampersand H Management Plan describes all of the environmental, safety, and health evaluations and reviews that must be carried out in support of the implementation of the National Ignition Facility (NIF) Project. It describes the policy, organizational responsibilities and interfaces, activities, and ES ampersand H documents that will be prepared by the Laboratory Project Office for the DOE. The only activity not described is the preparation of the NIF Project Specific Assessment (PSA), which is to be incorporated into the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (PEIS). This PSA is being prepared by Argonne National Laboratory (ANL) with input from the Laboratory participants. As the independent NEPA document preparers ANL is directly contracted by the DOE, and its deliverables and schedule are agreed to separately with DOE/OAK

  19. Introducing Systematic Aging Management for Interim Storage Facilities in Germany

    International Nuclear Information System (INIS)

    Spieth-Achtnich, Angelika; Schmidt, Gerhard

    2014-01-01

    In Germany twelve at-reactor and three central (away from reactor) dry storage facilities are in operation, where the fuel is stored in combined transport-and-storage casks. The safety of the storage casks and facilities has been approved and is licensed for up to 40 years operating time. If the availability of a final disposal facility for the stored wastes (spent fuel and high-level wastes from reprocessing) will be further delayed the renewal of the licenses can become necessary in future. Since 2001 Germany had a regulatory guideline for at-reactor dry interim storage of spent fuel. In this guideline some elements of ageing were implemented, but no systematic approach was made for a state-of-the-art ageing management. Currently the guideline is updated to include all kind of storage facilities (central storages as well) and all kinds of high level waste (also waste from reprocessing). Draft versions of the update are under discussion. In these drafts a systematic ageing management is seen as an instrument to upgrade the available technical knowledge base for possible later regulatory decisions, should it be necessary to prolong storage periods to beyond the currently approved limits. It is further recognized as an instrument to prevent from possible and currently unrecognized ageing mechanisms. The generation of information on ageing can be an important basis for the necessary safety-relevant verifications for long term storage. For the first time, the demands for a systematic monitoring of ageing processes for all safety-related components of the storage system are described. In addition, for inaccessible container components such as the seal system, the neutron shielding, the baskets and the waste inventory, the development of a monitoring program is recommended. The working draft to the revised guideline also contains recommendations on non-technical ageing issues such as the long-term preservation of knowledge, long term personnel planning and long term

  20. Risk management plan for the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.; Lane, M.; Smith, C.; Yatabe, J.

    1998-01-01

    The National Ignition Facility (NIF) is a U.S. Department of Energy inertial confinement laser fusion facility, currently under construction at the Lawrence Livermore National Laboratory (LLNL). NIF is a critical tool for the Department of Energy (DOE) science- based Stockpile Stewardship and Management Program. In addition, it represents a major step towards realizing inertial confinement fusion as a source of energy. The NIF will focus 192 laser beams onto spherical targets containing a mixture of deuterium and tritium, causing them to implode. This will create the high temperatures and pressures necessary for these targets to undergo fusion. The plan is for NIF to achieve ignition (i.e., self-heating of the fuel) and energy gain (i.e., more fusion energy produced than laser energy deposited) in the laboratory for the first time. A Risk Management Plan was prepared for the NIF design and construction Project. The plan was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide. The objectives of the plan were to: (1) identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule, (2) assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES ampersand H (environment, safety and health), costs, and schedule, and (3) address each risk in terms of suitable risk management measures. Major risk elements were identified for the NIF Project. A risk assessment methodology was developed, which was utilized to rank the Project risks with respect to one another. Those elements presenting greater risk were readily identified by this process. This paper describes that methodology and the results

  1. Analysis of fuel management in the KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Zhaopeng, E-mail: zzhong@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Gohar, Yousry; Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2011-05-15

    Research highlights: > Fuel management of KIPT ADS was analyzed. > Core arrangement was shuffled in stage wise. > New fuel assemblies was added into core periodically. > Beryllium reflector could also be utilized to increase the fuel life. - Abstract: Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility consisting of an electron accelerator driven sub-critical assembly. The neutron source driving the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The sub-critical assembly surrounding the target is fueled with low enriched WWR-M2 type hexagonal fuel assemblies. The U-235 enrichment of the fuel material is <20%. The facility will be utilized for basic and applied research, producing medical isotopes, and training young specialists. With the 100 KW electron beam power, the total thermal power of the facility is {approx}360 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products continuously reduce the system reactivity during the operation, decrease the neutron flux level, and consequently impact the facility performance. To preserve the neutron flux level during the operation, the fuel assemblies should be added and shuffled for compensating the lost reactivity caused by burnup. Beryllium reflector could also be utilized to increase the fuel life time in the sub-critical core. This paper studies the fuel cycles and shuffling schemes of the fuel assemblies of the sub-critical assembly to preserve the system reactivity and the neutron flux level during the operation.

  2. Analysis of fuel management in the KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong Zhaopeng; Gohar, Yousry; Talamo, Alberto

    2011-01-01

    Research highlights: → Fuel management of KIPT ADS was analyzed. → Core arrangement was shuffled in stage wise. → New fuel assemblies was added into core periodically. → Beryllium reflector could also be utilized to increase the fuel life. - Abstract: Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility consisting of an electron accelerator driven sub-critical assembly. The neutron source driving the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The sub-critical assembly surrounding the target is fueled with low enriched WWR-M2 type hexagonal fuel assemblies. The U-235 enrichment of the fuel material is <20%. The facility will be utilized for basic and applied research, producing medical isotopes, and training young specialists. With the 100 KW electron beam power, the total thermal power of the facility is ∼360 kW including the fission power of ∼260 kW. The burnup of the fissile materials and the buildup of fission products continuously reduce the system reactivity during the operation, decrease the neutron flux level, and consequently impact the facility performance. To preserve the neutron flux level during the operation, the fuel assemblies should be added and shuffled for compensating the lost reactivity caused by burnup. Beryllium reflector could also be utilized to increase the fuel life time in the sub-critical core. This paper studies the fuel cycles and shuffling schemes of the fuel assemblies of the sub-critical assembly to preserve the system reactivity and the neutron flux level during the operation.

  3. 41 CFR 102-74.155 - What energy conservation policy must Federal agencies follow in the management of facilities?

    Science.gov (United States)

    2010-07-01

    ... policy must Federal agencies follow in the management of facilities? 102-74.155 Section 102-74.155 Public... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.155 What energy conservation policy must Federal agencies follow in the management of facilities...

  4. 25 CFR 170.806 - What is an IRR Transportation Facilities Maintenance Management System?

    Science.gov (United States)

    2010-04-01

    ... AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.806 What is an IRR Transportation Facilities Maintenance Management System? An IRR Transportation Facilities Maintenance Management... 25 Indians 1 2010-04-01 2010-04-01 false What is an IRR Transportation Facilities Maintenance...

  5. The mixed waste management facility: Cost-benefit for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Brinker, S.D.; Streit, R.D.

    1996-04-01

    The Mixed Waste Management Facility, or MWMF, has been proposed as a national testbed facility for the demonstration and evaluation of technologies that are alternatives to incineration for the treatment of mixed low-level waste. The facility design will enable evaluation of technologies at pilot scale, including all aspects of the processes, from receiving and feed preparation to the preparation of final forms for disposal. The MWMF will reduce the risk of deploying such technologies by addressing the following: (1) Engineering development and scale-up. (2) Process integration and activation of the treatment systems. (3) Permitting and stakeholder issues. In light of the severe financial constraints imposed on the DOE and federal programs, DOE/HQ requested a study to assess the cost benefit for the MWMF given other potential alternatives to meet waste treatment needs. The MVVMF Project was asked to consider alternatives specifically associated with commercialization and privatization of the DOE site waste treatment operations and the acceptability (or lack of acceptability) of incineration as a waste treatment process. The result of this study will be one of the key elements for a DOE decision on proceeding with the MWMF into Final Design (KD-2) vs. proceeding with other options

  6. Management Of Experiments And Data At The National Ignition Facility

    International Nuclear Information System (INIS)

    Azevedo, S.; Casey, A.; Beeler, R.; Bettenhausen, R.; Bond, E.; Chandrasekaran, H.; Foxworthy, C.; Hutton, M.; Krammen, J.; Liebman, J.; Marsh, A.; Pannell, T.; Rhodes, J.; Tappero, J.; Warrick, A.

    2011-01-01

    Experiments, or 'shots', conducted at the National Ignition Facility (NIF) are discrete events that occur over a very short time frame (tens of nanoseconds) separated by many hours. Each shot is part of a larger campaign of shots to advance scientific understanding in high-energy-density physics. In one campaign, scientists use energy from the 192-beam, 1.8-Megajoule pulsed laser in the NIF system to symmetrically implode a hydrogen-filled target, thereby creating conditions similar to the interior of stars in a demonstration of controlled fusion. Each NIF shot generates gigabytes of data from over 30 diagnostics that measure optical, x-ray, and nuclear phenomena from the imploding target. We have developed systems to manage all aspects of the shot cycle. Other papers will discuss the control of the lasers and targets, while this paper focuses on the setup and management of campaigns and diagnostics. Because of the low duty cycle of shots, and the thousands of adjustments for each shot (target type, composition, shape; laser beams used, their power profiles, pointing; diagnostic systems used, their configuration, calibration, settings) it is imperative that we accurately define all equipment prior to the shot. Following the shot, and capture of the data by the automatic control system, it is equally imperative that we archive, analyze and visualize the results within the required 30 minutes post-shot. Results must be securely archived, approved, web-visible and downloadable in order to facilitate subsequent publication. To-date NIF has successfully fired over 2,500 system shots, as well as thousands of test firings and dry-runs. We will present an overview of the highly-flexible and scalable campaign management systems and tools employed at NIF that control experiment configuration of the facility all the way through presentation of analyzed results.

  7. National Ignition Facility and managing location, component, and state

    Energy Technology Data Exchange (ETDEWEB)

    Foxworthy, Cemil, E-mail: foxworthy3@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Fung, Tracy; Beeler, Rich; Li, Joyce; Dugorepec, Jasna; Chang, Cathy [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer NIF in comprised of over 100k serialized parts that must be tracked and maintained. Black-Right-Pointing-Pointer We discuss a web-based integrated parts management system designed for NIF. Black-Right-Pointing-Pointer The parts database stores associated calibration data with effective dates. Black-Right-Pointing-Pointer The system interfaces with the NIF control system and performance models. Black-Right-Pointing-Pointer Work activity (Permits, Problem Logs, Work Orders) are managed by the system. - Abstract: The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-MJ, 500-TW, ultraviolet laser system coupled with a 10-m diameter target chamber. There are over 6200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements

  8. National Ignition Facility and managing location, component, and state

    International Nuclear Information System (INIS)

    Foxworthy, Cemil; Fung, Tracy; Beeler, Rich; Li, Joyce; Dugorepec, Jasna; Chang, Cathy

    2012-01-01

    Highlights: ► NIF in comprised of over 100k serialized parts that must be tracked and maintained. ► We discuss a web-based integrated parts management system designed for NIF. ► The parts database stores associated calibration data with effective dates. ► The system interfaces with the NIF control system and performance models. ► Work activity (Permits, Problem Logs, Work Orders) are managed by the system. - Abstract: The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-MJ, 500-TW, ultraviolet laser system coupled with a 10-m diameter target chamber. There are over 6200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  9. WIPP Facility Work Plan for Solid Waste Management Units

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2000-02-25

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED’s guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA

  10. Facilities Management and Corporate Real Estate Management as Value Drivers: How to Manage and Measure Adding Value

    DEFF Research Database (Denmark)

    Facilities Management (FM) and Corporate Real Estate Management (CREM) are two closely related and relatively new management disciplines with developing international professions and increasing academic attention. Both disciplines have from the outset a strong focus on controlling and reducing cost...... for real estate, facilities and related services. In recent years there has been a change towards putting more focus on how FM/CREM can add value to the organisation. The book is research based with a focus on guidance to practice. It offers a transdisciplinary approach, integrating academic knowledge from...

  11. National Ignition Facility risk management plan, rev. 1

    International Nuclear Information System (INIS)

    Brereton, S J; Lane, M A

    1998-01-01

    The initial release of the National Ignition Facility (AUF) Risk Management Plan (LLNL, 1997a) was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide (DOE, 1996a) and supported Critical Decision 3 (CD3), Approval to Initiate Construction (DOE, 1997a). The objectives of the plan were to: (1) Identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule. (2) Assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES and H (environmental, safety and health), costs, and schedule. (3) Address suitable risk mitigation measures for each identified risk. This revision of the Risk Management Plan considers project risks and vulnerabilities after CD3 (DOE, 1997a) was approved by the Secretary of Energy. During the one-year period since the initial release, the vulnerabilities of greatest concern have been the litigation of the Programmatic Environmental Impact Statement (PEIS) (DOE, 1996b) by a group of environmental organizations led by the Natural Resources Defense Council; the finding and successful clean-up of polychlorinated biphenyl (PCB)-filled electrical capacitors at the NIF site excavation; the FY98 congressional budget authorization and request for the FY99 budget authorization; funding for Inertial Confinement Fusion (ICF)/NIF programmatic activities (including French and other sources of funding); and finally, progress in the core science and technology, and optics program that form the basis for the NIF design

  12. Health facility committees and facility management - exploring the nature and depth of their roles in Coast Province, Kenya

    Directory of Open Access Journals (Sweden)

    Kabare Margaret

    2011-09-01

    Full Text Available Abstract Background Community participation has been emphasized internationally as a way of enhancing accountability, as well as a means to enhance health goals in terms of coverage, access and effective utilization. In rural health facilities in Kenya, initiatives to increase community accountability have focused on Health Facility Committees (HFCs. In Coast Province the role of HFCs has been expanded with the introduction of direct funding of rural facilities. We explored the nature and depth of managerial engagement of HFCs at the facility level in two rural districts in this Coastal setting, and how this has contributed to community accountability Methods We conducted structured interviews with the health worker in-charge and with patients in 30 health centres and dispensaries. These data were supplemented with in-depth interviews with district managers, and with health workers and HFC members in 12 health centres and dispensaries. In-depth interviews with health workers and HFC members included a participatory exercise to stimulate discussion of the nature and depth of their roles in facility management. Results HFCs were generally functioning well and played an important role in facility operations. The breadth and depth of engagement had reportedly increased after the introduction of direct funding of health facilities which allowed HFCs to manage their own budgets. Although relations with facility staff were generally good, some mistrust was expressed between HFC members and health workers, and between HFC members and the broader community, partially reflecting a lack of clarity in HFC roles. Moreover, over half of exit interviewees were not aware of the HFC's existence. Women and less well-educated respondents were particularly unlikely to know about the HFC. Conclusions There is potential for HFCs to play an active and important role in health facility management, particularly where they have control over some facility level resources

  13. Health facility committees and facility management - exploring the nature and depth of their roles in Coast Province, Kenya.

    Science.gov (United States)

    Goodman, Catherine; Opwora, Antony; Kabare, Margaret; Molyneux, Sassy

    2011-09-22

    Community participation has been emphasized internationally as a way of enhancing accountability, as well as a means to enhance health goals in terms of coverage, access and effective utilization. In rural health facilities in Kenya, initiatives to increase community accountability have focused on Health Facility Committees (HFCs). In Coast Province the role of HFCs has been expanded with the introduction of direct funding of rural facilities. We explored the nature and depth of managerial engagement of HFCs at the facility level in two rural districts in this Coastal setting, and how this has contributed to community accountability We conducted structured interviews with the health worker in-charge and with patients in 30 health centres and dispensaries. These data were supplemented with in-depth interviews with district managers, and with health workers and HFC members in 12 health centres and dispensaries. In-depth interviews with health workers and HFC members included a participatory exercise to stimulate discussion of the nature and depth of their roles in facility management. HFCs were generally functioning well and played an important role in facility operations. The breadth and depth of engagement had reportedly increased after the introduction of direct funding of health facilities which allowed HFCs to manage their own budgets. Although relations with facility staff were generally good, some mistrust was expressed between HFC members and health workers, and between HFC members and the broader community, partially reflecting a lack of clarity in HFC roles. Moreover, over half of exit interviewees were not aware of the HFC's existence. Women and less well-educated respondents were particularly unlikely to know about the HFC. There is potential for HFCs to play an active and important role in health facility management, particularly where they have control over some facility level resources. However, to optimise their contribution, efforts are needed to

  14. National Ignition Facility and Managing Location, Component, and State

    Energy Technology Data Exchange (ETDEWEB)

    Foxworthy, C; Fung, T; Beeler, R; Li, J; Dugorepec, J; Chang, C

    2011-07-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  15. National Ignition Facility and Managing Location, Component, and State

    International Nuclear Information System (INIS)

    Foxworthy, C.; Fung, T.; Beeler, R.; Li, J.; Dugorepec, J.; Chang, C.

    2011-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  16. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.; Cameron, H.M.; Davies, A.R.; Hiscox, A.W.

    1995-01-01

    Probabilistic safety assessment methodology has been applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  17. The nature of innovation processes in Facility Management services

    DEFF Research Database (Denmark)

    Nardelli, Giulia

    Purpose: This work investigates the dynamics of interaction between stakeholders of Facilities Management (FM) innovation and improvement processes. The aim is to understand how the complex value chain of FM services influences innovation processes within this field. Theory: This study combines...... theories on innovation in services with research focused on the empirical field of FM. More specifically, the analytical framework for this study applies the differentiation between reactive and proactive innovation processes by Toivonen and Tuominen (2009) to the value chain identified by Coenen...... has a threefold impact on the nature of innovation processes within this field. Firstly, end-users of FM services are usually not involved in innovation processes, although they might sometimes play a role as initial drivers. Secondly, FM services are intangible but more easily reproducible than other...

  18. Waste Management Effluent Treatment Facility: Phase I. CAC basic data

    International Nuclear Information System (INIS)

    Gemar, D.W.; O'Leary, C.D.

    1984-01-01

    In order to expedite design and construction of the Waste Management Effluent Treatment Facility (WMETF), the project has been divided into two phases. Phase I consists of four storage basins and the associated transfer lines, diversion boxes, and control rooms. The design data pertaining to Phase I of the WMETF project are presented together with general background information and objectives for both phases. The project will provide means to store and decontaminate wastewater streams that are currently discharged to the seepage basins in F Area and H Area. This currently includes both routine process flows sent directly to the seepage basins and diversions of contaminated cooling water or storm water runoff that are stored in the retention basins before being pumped to the seepage basins

  19. Bus systems: Integrated facility management; Bus-Systeme: Gewerkeuebergreifende Gebaeudeautomation

    Energy Technology Data Exchange (ETDEWEB)

    Baumgarth, S.; Heiser, M. [Fachhochschule Braunschweig-Wolfenbuettel, Wolfenbuettel (Germany)

    2000-03-01

    Optimisation of facility management relies indispensably on uncomplicated interactive communication between different systems by different producers. An example is described: The system comprises two closed-cycle cooling towers, a cold water set and two different loads (ventilators). Each system can be controlled separately. The trend in automation is in the direction of intelligence even at field level. [German] Unverzichtbare Voraussetzung fuer das Ausschoepfen von Optimierungspotentialen in der Gebaeudeautomation ist die unkomplizierte, wechselseitige Kommunikation zwischen Anlagen und Automatisierungsstationen verschiedener Gewerke und Hersteller. Am Beispiel einer komplexen Anlage, die aus zwei Kuehltuermen mit geschlossenem Kreislauf, einem Kaltwasserersatz sowie unterschiedlichen Verbrauchern (Lueftungsanlagen) besteht, soll die Verknuepfung kaeltetechnischer Gewerke naeher dargestellt werden. Jeder der Teilbereiche ist ueber eine umfangreiche Strategie zu regeln und zu steuern. Dabei geht die Entwicklung in der Gebaeudeautomation hin zu einer Verlagerung der Intelligenz in die Feldebene. (orig./AKF)

  20. Strategic sourcing and procurement of facilities management services

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2017-01-01

    /methodology/approach: The paper investigates a strategic sourcing and procurement process in a large public organisation in Denmark based on participating in internal meetings, a workshop, document studies and interviews. The process is compared to a new ISO standard with guidance on strategic sourcing and development of FM......Purpose: The purpose it to provide insights into strategic sourcing concerning Facilities Management (FM) and how it can contribute to a sourcing decision that combines the benefits of internal and external provision with consideration of business risk and cost. Design...... agreements. Findings: A problem in the new ISO standard is that it is based on sequential model starting with detailing the demand and needs before investigating sourcing option. The case shows that the way needs are specified are depending on the chosen sourcing models. Based on a thorough analysis...

  1. An analytical model for computation of reliability of waste management facilities with intermediate storages

    International Nuclear Information System (INIS)

    Kallweit, A.; Schumacher, F.

    1977-01-01

    A high reliability is called for waste management facilities within the fuel cycle of nuclear power stations which can be fulfilled by providing intermediate storage facilities and reserve capacities. In this report a model based on the theory of Markov processes is described which allows computation of reliability characteristics of waste management facilities containing intermediate storage facilities. The application of the model is demonstrated by an example. (orig.) [de

  2. Managing risks during the construction of a power generation facility

    International Nuclear Information System (INIS)

    Loulakis, M.C.

    1992-01-01

    The construction of a power generation facility is a substantial undertaking that involves considerable risks to all parties involved. While contractors are accustomed to dealing with risks, construction owners are typically more naive about not only the risks they are assuming in the construction of a project, but also about the role they play on the project itself. Owners and developers of power facilities must understand at the outset that their role during the construction of a project is as integral to the success of the project as that of the designer and contractor. In addition, owners should also understand that there are virtually no risks on a construction project that cannot be shifted among the contracting parties as part of the business deal. Consequently, an owner may contractually be assuming the risks of (1) unusually severe weather, (2) unexpected subsurface conditions, (3) strikes at the turbine supplier's plant or (4) changes in law - as well as the increases in price and delays to project completion associated with such risks. In light of this, a prudent owner will evaluate more than just whether there is sufficient financing to complete the construction of a contemplated project. Prudent owners will conduct a risk management review of the project structure and the contracting terms, with the primary focus being (1) the identification and analysis of the most significant risks faced, (2) a determination of how such risks can be either mitigated or eliminated, and (3) the assessment of the financial exposure to the owner should the potential risk become a reality. This paper will present the framework that owners and developers of power generation projects can use in undertaking such a risk management review

  3. Design, placement, and sampling of groundwater monitoring wells for the management of hazardous waste disposal facilities

    International Nuclear Information System (INIS)

    Tsai, S.Y.

    1988-01-01

    Groundwater monitoring is an important technical requirement in managing hazardous waste disposal facilities. The purpose of monitoring is to assess whether and how a disposal facility is affecting the underlying groundwater system. This paper focuses on the regulatory and technical aspects of the design, placement, and sampling of groundwater monitoring wells for hazardous waste disposal facilities. Such facilities include surface impoundments, landfills, waste piles, and land treatment facilities. 8 refs., 4 figs

  4. Managing Human Performance to Improve Nuclear Facility Operation

    International Nuclear Information System (INIS)

    2013-01-01

    . It describes how human performance can be managed within an overall performance improvement model. The need for IAEA involvement in this area and to address key issues highlighted in IAEA Nuclear Energy Series No. NG-G-2.1 were reinforced during the meetings of the Technical Working Group on Managing Human Resources in the Field of Nuclear Energy (TWG-MHR) in 2008 and 2010. The importance of human performance in the safe operation of any nuclear facility is no longer in doubt. The contribution of human performance to the occurrence of significant events and, consequently, to overall performance in the nuclear field has been well documented. Monitoring and continually improving human performance has now become one of the key challenges in the management of human resources for nuclear facilities. To facilitate meeting the challenge of improving human performance, a model of performance improvement is presented that provides a framework which can be used to improve individual, process and organizational performance. It is generally postulated that without human performance improvement, a safe working environment is impossible to maintain. While there are many different perspectives from which safety issues might be addressed, there are several factors significant for human performance improvement that are consistent, useful and necessary to understand. This publication is not intended as an all encompassing guide to managing human performance, but, rather, provides a summary of concepts and good practices for organizations to consider in their design of various programmes and in the performance of activities. In addition, tools that are helpful for managing human performance are discussed, and references for more detailed information on these concepts and tools are provided

  5. Risk management study for the retired Hanford Site facilities: Risk management executive summary

    International Nuclear Information System (INIS)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1994-02-01

    This document provides a cost-comparison evaluation for implementing certain risk-reduction measures and their effect on the overall risk of the 100 and 200 Area retired, surplus facilities. The evaluation is based on conditions that existed at the time the risk evaluation team performed facility investigations, and does not acknowledge risk-reduction measures that occurred soon after risk identification. This evaluation is one part of an overall risk management study for these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1450-km 2 Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30 km southeast of the 200 Area. This document is the first in a four volume series that comprise the risk management study for the retired, surplus facilities. Volume 2 is the risk evaluation work procedure; volume 3 provides the results for the risk evaluation; and volume 4 is the risk-reduction cost comparison

  6. 77 FR 55843 - Office of Facilities Management and Program Services; Submission for OMB Review; Background...

    Science.gov (United States)

    2012-09-11

    ... of Facilities Management and Program Services; Submission for OMB Review; Background Investigations for Child Care Workers AGENCY: Office of Facilities Management and Program Services, Public Building... Act, the Regulatory Secretariat will be submitting to the Office of Management and Budget (OMB) a...

  7. A distributed data base management facility for the CAD/CAM environment

    Science.gov (United States)

    Balza, R. M.; Beaudet, R. W.; Johnson, H. R.

    1984-01-01

    Current/PAD research in the area of distributed data base management considers facilities for supporting CAD/CAM data management in a heterogeneous network of computers encompassing multiple data base managers supporting a variety of data models. These facilities include coordinated execution of multiple DBMSs to provide for administration of and access to data distributed across them.

  8. Radiation safety management system in a radioactive facility

    International Nuclear Information System (INIS)

    Amador, Zayda H.

    2008-01-01

    Full text: This paper illustrates the Cuban experience in implementing and promoting an effective radiation safety system for the Centre of Isotopes, the biggest radioactive facility of our country. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. All those areas of the radiation protection program are considered (e.g. licensing and training of the staff, occupational exposure, authorization of the practices, control of the radioactive material, radiological occurrences, monitoring equipment, radioactive waste management, public exposure due to airborne effluents, audits and safety costs). A set of indicators designed to monitor key aspects of operational safety performance are used. Their trends over a period of time are analyzed with the modern information technologies, because this can provide an early warning to plant management for searching causes behind the observed changes. In addition to analyze the changes and trends, these indicators are compared against identified targets and goals to evaluate performance strengths and weaknesses. A structured and proper radiation self-auditing system is seen as a basic requirement to meet the current and future needs in sustainability of radiation safety. The integrated safety management system establishment has been identified as a goal and way for the continuous improvement. (author)

  9. US DOE surplus facilities management program (SFMP). International technology exchange activities

    International Nuclear Information System (INIS)

    Broderick, J.

    1986-01-01

    The Surplus Facilities Management Program is one of five remedial action programs established by the US Department of Energy (DOE) to eliminate potential hazards to the public and environment from radioactive contamination. These programs provide remedial actions at various facilities and sites previously used by the US Government in national atomic energy programs. Included are uranium ore milling sites, nuclear materials production plants, and research and development facilities. The DOE's five remedial action programs are: the Grand Junction Remedial Action Project; the Formerly Utilized Sites Remedial Action Project; the West Valley Demonstration Project; and the Surplus Facilities Management Program. The Surplus Facilities Management Program (SWMP) was established by DOE in 1978. There are presently over 300 shutdown facilities in the SFMP located at sites across the United States and in Puerto Rico. In some cases, remedial action involves decontaminating and releasing a facility for some other use. In other instances, facilities are completely demolished and removed from the site

  10. Planning and managing future space facility projects. [management by objectives and group dynamics

    Science.gov (United States)

    Sieber, J. E.; Wilhelm, J. A.; Tanner, T. A.; Helmreich, R. L.; Burgenbauch, S. F.

    1979-01-01

    To learn how ground-based personnel of a space project plan and organize their work and how such planning and organizing relate to work outcomes, longitudinal study of the management and execution of the Space Lab Mission Development Test 3 (SMD 3) was performed at NASA Ames Research Center. A view of the problems likely to arise in organizations and some methods of coping with these problems are presented as well as the conclusions and recommendations that pertain strictly to SMD 3 management. Emphasis is placed on the broader context of future space facility projects and additional problems that may be anticipated. A model of management that may be used to facilitate problem solving and communication - management by objectives (MBO) is presented. Some problems of communication and emotion management that MBO does not address directly are considered. Models for promoting mature, constructive and satisfying emotional relationships among group members are discussed.

  11. The management of carbon-14 in Canadian nuclear facilities

    International Nuclear Information System (INIS)

    1995-07-01

    In Canada, Derived Emission Limits (DELs) for the release of radionuclides from nuclear facilities are set to ensure that the dose to a member of a critical group from one year's release does not exceed the limit on annual dose to a member of the public set by the Atomic Energy Control Regulations. The Advisory Committee on Radiological Protection (ACRP) has expressed concerns as to whether this procedure provides adequate protection to members of the public, including future generations, for certain radionuclides such as a carbon-14 ( 14 C), which can accumulate in the environment and which can be dispersed, through environmental processes, beyond the local region where the critical group is assumed to live. The ACRP subsequently established a Working Group to review the production, release, environmental levels, and waste management of 14 C arising in CANDU power reactors. The ACRP recommendations resulting from this review can be summarized as · Given the current levels of emissions from CANDU nuclear power stations resulting from the use of a carbon dioxide annulus gas and the limitations in the calculation and use of collective dose, the ACRP sees no need for and additional collective dose limit to be applied to these sources. · The AECB should require licensees of power reactors and waste management sites to provide an annual inventory of 14 C held within reactor buildings and waste management sites; to provide information on the stability of the ion exchange resins and their continuing ability to retain the 14 C; to demonstrate on an ongoing basis that releases of 14 C are maintained at a small fraction of the emission limits; and to report annually the critical group and local collective doses arising from releases of 14 C. 61 refs., 25 tabs., 4 figs

  12. Predisposal Management of Radioactive Waste from Nuclear Fuel Cycle Facilities. Specific Safety Guide

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Guide provides guidance on the predisposal management of all types of radioactive waste (including spent nuclear fuel declared as waste and high level waste) generated at nuclear fuel cycle facilities. These waste management facilities may be located within larger facilities or may be separate, dedicated waste management facilities (including centralized waste management facilities). The Safety Guide covers all stages in the lifetime of these facilities, including their siting, design, construction, commissioning, operation, and shutdown and decommissioning. It covers all steps carried out in the management of radioactive waste following its generation up to (but not including) disposal, including its processing (pretreatment, treatment and conditioning). Radioactive waste generated both during normal operation and in accident conditions is considered

  13. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    Harvego, Lisa; Bennett, Brion

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  14. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  15. Managing highly flexible facilities: an essential complementary asset at risk

    NARCIS (Netherlands)

    Tierney, Robert; Tierney, R.; Groen, Arend J.; Harms, Rainer; Luizink, M.; Hetherington, D.; Steward, H.; Walsh, Steven Thomas; Linton, Jonathan; Linton, J.D.

    2012-01-01

    Purpose: Twenty first century problems are increasingly being addressed by multi technology solutions developed by regional entrepreneurial and intreprepreneurial innovators. However, they require an expensive new type of fabrication facility. Multiple technology production facilities (MTPF) have

  16. Waste receiving and processing facility module 1 data management system software project management plan

    International Nuclear Information System (INIS)

    Clark, R.E.

    1994-01-01

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  17. Conceptual design of an in-space cryogenic fluid management facility, executive summary

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.

  18. Investigating the Optimal Management Strategy for a Healthcare Facility Maintenance Program

    National Research Council Canada - National Science Library

    Gaillard, Daria

    2004-01-01

    ...: strategic partnering with an equipment management firm. The objective of this study is to create a decision-model for selecting the optimal management strategy for a healthcare organization's facility maintenance program...

  19. Research on the Construction Management and Sustainable Development of Large-Scale Scientific Facilities in China

    Science.gov (United States)

    Guiquan, Xi; Lin, Cong; Xuehui, Jin

    2018-05-01

    As an important platform for scientific and technological development, large -scale scientific facilities are the cornerstone of technological innovation and a guarantee for economic and social development. Researching management of large-scale scientific facilities can play a key role in scientific research, sociology and key national strategy. This paper reviews the characteristics of large-scale scientific facilities, and summarizes development status of China's large-scale scientific facilities. At last, the construction, management, operation and evaluation of large-scale scientific facilities is analyzed from the perspective of sustainable development.

  20. Development techniques of computerized maintenance management system for nuclear fuel cycle examination facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yon Woo; Kim, S D; Soong, W S; Kim, G H; Oh, W H; Kim, Y G

    2000-12-01

    Normal operation of the facility is one of the key factors in the accomplishments of research goals. As confirmed by a case study of the influence of the facility operation condition on the research results, emphasis should be put on the facility preserve management. Facilities should be maintained in solid operational condition and their malfunctions should be repaired as soon as possible. The purpose of this project is to make propositions on the development of the facility Preserve management system which is to maximize the efficiency of the budget execution, manpower organization and maintenance planning, and is to minimize the duration of the operational pause due to malfunctions with the least disbursement.

  1. Development techniques of computerized maintenance management system for nuclear fuel cycle examination facilities

    International Nuclear Information System (INIS)

    Oh, Yon Woo; Kim, S. D.; Soong, W. S.; Kim, G. H.; Oh, W. H.; Kim, Y. G.

    2000-12-01

    Normal operation of the facility is one of the key factors in the accomplishments of research goals. As confirmed by a case study of the influence of the facility operation condition on the research results, emphasis should be put on the facility preserve management. Facilities should be maintained in solid operational condition and their malfunctions should be repaired as soon as possible. The purpose of this project is to make propositions on the development of the facility Preserve management system which is to maximize the efficiency of the budget execution, manpower organization and maintenance planning, and is to minimize the duration of the operational pause due to malfunctions with the least disbursement

  2. The Mixed Waste Management Facility, monthly report, February 1995

    International Nuclear Information System (INIS)

    Streit, R.D.

    1995-03-01

    Technical progress continued in general accordance with the Mixed Waste Management Facility (MWMF) FY95 Plan. Engineering development and design continued in support of preliminary design of MWMF major subsystems. Peer reviews have begun in preparation for system preliminary design reviews. Procurements in support of engineering design/development have continued to increase. Significant effort to provide technical and cost trade-off information for the Project Baseline Revision 1.2 (PB1.2) and FY97 Validation was completed. Management focus during February centered upon addressing the rebaseline for MWMF for the FY97 Validation in March, and upon completing the permitting strategy. We completed a consistent baseline plan for Validation that satisfied the DOE constraints of integration with DWTF, schedule stretchout, overall Project cost, and FY cost profiles. The revised permitting strategy was completed and reviewed by a number of stakeholders (LLNL, DOE, State). The proposed strategy involves no RCRA RD ampersand D permit, since all technology demonstrations can be done with surrogates and using limited treatability studies. The expenses for February continue to run somewhat below the plan due to the limited new hiring. This is a result of uncertain DOE funding and guidance to keep personnel to a minimum. However, the spending rate is picking up due to initiation of procurements for engineering development and a minimum of essential new hires. A significant imbalance in the OPEX/CENRTC funding split for FY95 exists (about $2.1M); DOE/OAK began to seek resolution this month. Critical-path items are DWTF construction, NEPA, and permitting (for both MWMF and DWTF). Contractual issues have delayed award of the A ampersand E contract for DWTF, but work-arounds are in progress to avoid schedule impact. NEPA and permitting issues are discussed below. Progress on preliminary design for MWMF is close to schedule

  3. Knowledge Management tools integration within DLR's concurrent engineering facility

    Science.gov (United States)

    Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.

    The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.

  4. Record of radiation management inside KUR facilities, no. 13 (1976)

    International Nuclear Information System (INIS)

    Katsurayama, Kosuke; Tsujimoto, Tadashi; Saito, Masahiro; Tsuruta, Takao; Fukui, Masami.

    1979-01-01

    The record of radiation management inside the KUR buildings in 1976 is reported. Relating to the routine radiation management inside the facilities, the spatial dose rate has been always monitored, utilizing the area monitors which are composed of GM survey meters and BF 3 neutron survey meters, inside the reactor building, the hot laboratory, the tracer building, the waste treatment building, the linear accelerator building, the gamma irradiation building, the solid waste storage and the research building. The measured dose rate at 5000 kW power level was about 2 mrem/h in the reactor building and about 4 mrem/h in the hot laboratory at maximum. Inside the other buildings, the dose rates were almost background level. The cumulative dose was measured utilizing film badges, and the measured maximum value was about 450 mrem in one month in the spent fuel storage pool. The surface contamination was monitored, and about 10 -7 μCi/cm 2 was obtained on the reactor top and in several places in the hot laboratory. The monitoring of radioactivity concentration in water was conducted, and the concentration almost exceeded 1 x 10 -5 μCi/cm 3 in low level water. The monitoring was conducted for radioactive dust concentration, and about 100 x 10 -11 μCi/cm 3 was obtained at maximum in the hot cave. The gas concentration in the reactor room showed about 6 x 10 -7 μCi/cm 3 as the mean value of a month. The external exposure dose around the site was about 2 mrem in one year as the mean value. The status of operation of the KUR, the radiation monitoring systems for spatial dose rate, the cumulative spatial dose, the surface contamination and so on, the monitoring equipments and the regular inspection are explained. (Nakai, Y.)

  5. Management aspects of Gemini's base facility operations project

    Science.gov (United States)

    Arriagada, Gustavo; Nitta, Atsuko; Adamson, A. J.; Nunez, Arturo; Serio, Andrew; Cordova, Martin

    2016-08-01

    Gemini's Base Facilities Operations (BFO) Project provided the capabilities to perform routine nighttime operations without anyone on the summit. The expected benefits were to achieve money savings and to become an enabler of the future development of remote operations. The project was executed using a tailored version of Prince2 project management methodology. It was schedule driven and managing it demanded flexibility and creativity to produce what was needed, taking into consideration all the constraints present at the time: Time available to implement BFO at Gemini North (GN), two years. The project had to be done in a matrix resources environment. There were only three resources assigned exclusively to BFO. The implementation of new capabilities had to be done without disrupting operations. And we needed to succeed, introducing the new operational model that implied Telescope and instrumentation Operators (Science Operations Specialists - SOS) relying on technology to assess summit conditions. To meet schedule we created a large number of concurrent smaller projects called Work Packages (WP). To be reassured that we would successfully implement BFO, we initially spent a good portion of time and effort, collecting and learning about user's needs. This was done through close interaction with SOSs, Observers, Engineers and Technicians. Once we had a clear understanding of the requirements, we took the approach of implementing the "bare minimum" necessary technology that would meet them and that would be maintainable in the long term. Another key element was the introduction of the "gradual descent" concept. In this, we increasingly provided tools to the SOSs and Observers to prevent them from going outside the control room during nighttime operations, giving them the opportunity of familiarizing themselves with the new tools over a time span of several months. Also, by using these tools at an early stage, Engineers and Technicians had more time for debugging

  6. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year's data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B

  7. Coupling and quantifying resilience and sustainability in facilities management

    DEFF Research Database (Denmark)

    Cox, Rimante Andrasiunaite; Nielsen, Susanne Balslev; Rode, Carsten

    2015-01-01

    Purpose – The purpose of this paper is to consider how to couple and quantify resilience and sustainability, where sustainability refers to not only environmental impact, but also economic and social impacts. The way a particular function of a building is provisioned may have significant repercus......Purpose – The purpose of this paper is to consider how to couple and quantify resilience and sustainability, where sustainability refers to not only environmental impact, but also economic and social impacts. The way a particular function of a building is provisioned may have significant...... repercussions beyond just resilience. The goal is to develop a decision support tool for facilities managers. Design/methodology/approach – A risk framework is used to quantify both resilience and sustainability in monetary terms. The risk framework allows to couple resilience and sustainability, so...... that the provisioning of a particular building can be investigated with consideration of functional, environmental, economic and, possibly, social dimensions. Findings – The method of coupling and quantifying resilience and sustainability (CQRS) is illustrated with a simple example that highlights how very different...

  8. Analysis of Operational and Management Cybersecurity Controls for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jin Seok; Ryou, Jae Cheol [Chungnam National University, Dajeon (Korea, Republic of)

    2014-08-15

    U.S. NRC developed this RG 5.71 by tailoring the baseline security controls described in NIST Special Publication 800-53 'Recommended Security Controls for Federal Information Systems and Organizations' to provide an acceptable method to comply with the 10 CFR 73.54. The purpose of this publication is to provide guidelines for selecting and specifying security controls for information systems. In this paper, we are going to analyze and compare the NRC RG 5.71 and the NIST SP800-53, in particular, for operational security controls and management security controls. If RG 5.71 omits the specific security control that is included in SP800-53, we would review that omitting is adequate or not. If RG 5.71 includes the specific security control that is not included in SP800-53, we would also review the rationale. And we are going to consider some security controls to strengthen cybersecurity of nuclear facilities.

  9. Analysis of Operational and Management Cybersecurity Controls for Nuclear Facilities

    International Nuclear Information System (INIS)

    Oh, Jin Seok; Ryou, Jae Cheol

    2014-01-01

    U.S. NRC developed this RG 5.71 by tailoring the baseline security controls described in NIST Special Publication 800-53 'Recommended Security Controls for Federal Information Systems and Organizations' to provide an acceptable method to comply with the 10 CFR 73.54. The purpose of this publication is to provide guidelines for selecting and specifying security controls for information systems. In this paper, we are going to analyze and compare the NRC RG 5.71 and the NIST SP800-53, in particular, for operational security controls and management security controls. If RG 5.71 omits the specific security control that is included in SP800-53, we would review that omitting is adequate or not. If RG 5.71 includes the specific security control that is not included in SP800-53, we would also review the rationale. And we are going to consider some security controls to strengthen cybersecurity of nuclear facilities

  10. Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters

  11. Understanding and Managing Aging of Spent Nuclear Fuel and Facility Components in Wet Storage

    International Nuclear Information System (INIS)

    Johnson, A. B.

    2007-01-01

    Storage of nuclear fuel after it has been discharged from reactors has become the leading spent fuel management option. Many storage facilities are being required to operate longer than originally anticipated. Aging is a term that has emerged to focus attention on the consequences of extended operation on systems, structures, and components that comprise the storage facilities. The key to mitigation of age-related degradation in storage facilities is to implement effective strategies to understand and manage aging of the facility materials. A systematic approach to preclude serious effects of age-related degradation is addressed in this paper, directed principally to smaller facilities (test and research reactors). The first need is to assess the materials that comprise the facility and the environments that they are subject to. Access to historical data on facility design, fabrication, and operation can facilitate assessment of expected materials performance. Methods to assess the current condition of facility materials are summarized in the paper. Each facility needs an aging management plan to define the scope of the management program, involving identification of the materials that need specific actions to manage age-related degradation. For each material identified, one or more aging management programs are developed and become part of the plan Several national and international organizations have invested in development of comprehensive and systematic approaches to aging management. A method developed by the US Nuclear Regulatory Commission is recommended as a concise template to organize measures to effectively manage age-related degradation of storage facility materials, including the scope of inspection, surveillance, and maintenance that is needed to assure successful operation of the facility over its required life. Important to effective aging management is a staff that is alert for evidence of materials degradation and committed to carry out the aging

  12. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Science.gov (United States)

    2010-07-01

    ... Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The State shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Requirements for hazardous waste...

  13. A research-based profile of a Dutch excellent facility manager

    NARCIS (Netherlands)

    Roos-Mink, Anke; Offringa, Johan; de Boer, Esther; Heijne-Penninga, Marjolein; Mobach, Mark P.; Wolfensberger, Marca; Balslev Nielsen, S.; Anker Jensen, P.

    2016-01-01

    Purpose - This paper aims to establish the profile of an excellent facility manager in The Netherlands.Design/methodology/approach − As part of a large-scale study on profiles of excellent professionals, a study was carried out to find the key characteristics of an excellent facility manager. Three

  14. A Qualitative Study Investigating Facility Managers' Perceptions of the Classroom Learning Environment

    Science.gov (United States)

    Parr, Eric Shannon

    2017-01-01

    Facility managers have the challenge of adhering to community college policies and procedures while fulfilling requirements of administration, students, and teachers concerning specific needs of classroom aesthetics. The role of facility manager and how specific entities affect perceptions of the design and implementation of classroom aesthetics…

  15. Professional Development through Organizational Assessment: Using APPA's Facilities Management Evaluation Program

    Science.gov (United States)

    Medlin, E. Lander; Judd, R. Holly

    2013-01-01

    APPA's Facilities Management Evaluation Program (FMEP) provides an integrated system to optimize organizational performance. The criteria for evaluation not only provide a tool for organizational continuous improvement, they serve as a compelling leadership development tool essential for today's facilities management professional. The senior…

  16. Success in siting low-level radioactive waste management facilities

    International Nuclear Information System (INIS)

    Brown, P.; McCauley, D.

    2001-01-01

    Full text: The Government of Canada is about to conclude a legal agreement with three municipalities that will result in a $260-million 10-year multi-phase project to cleanup low-level radioactive wastes and contaminated soils and establish long-term low-level radioactive waste management facilities. Over the last two decades, numerous efforts were undertaken to resolve this long-standing environmental issue. Finally, the communities where the wastes are located came forward with resolutions that they were willing to develop local solutions to the problem. All three municipalities, facilitated by Government funding and assistance, put forward their own local solution to their own waste problem. Government accepted the municipalities' proposals as the basis of a comprehensive approach for dealing with the local problem. Negotiations ensued on Principles of Understanding under which the cleanup would proceed and new long-term waste management facilities would be established. Government's acceptance of the negotiated Principles led to the preparation of a legal agreement that was subsequently signed by each of the municipalities and is now about to be ratified by the Government of Canada. Resolution of the issue will be a major milestone in the Government's environmental agenda. The project will result in an environmentally-responsible, safe, and publicly-accepted approach to the long-term management of the wastes and remove one of the largest contaminated sites issues from the Government's agenda. It also advances the Government's nuclear waste policy and indicates to waste producers that the Government is developing and implementing solutions for wastes for which it is responsible. A key lesson for the Government of Canada in this process has been the advantages of a locally-generated solution. Through the process, the Government empowered the local municipalities to develop their own solution to the local waste problem. It facilitated and supported that effort

  17. Radonclose - the system of Soviet designed regional waste management facilities

    International Nuclear Information System (INIS)

    Horak, W.C.; Reisman, A.; Purvis, E.E. III.

    1997-01-01

    The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30 years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities

  18. Nuclear facilities maintenance in the core of management-advanced trend in IBM Maximo asset management applications

    International Nuclear Information System (INIS)

    Seino, Satoshi; Ujihara, Satoshi; Kikuyama, Kaoru

    2009-01-01

    European and US plant owners have attached importance to plant maintenance, such as prompt grasp of plant states, implementation of maintenance and planning of maintenance programs, as one of asset management. The US advanced trend was introduced in this feature article through the applications of IBM Maximo Asset Management for nuclear facilities maintenance. World trends of nuclear power and related problems, need of nuclear facilities management, key items for introduction of maintenance management systems, required systems for nuclear maintenance management and introduction of functions of the IBM strategic asset management solution-Maximo were described respectively. (T. Tanaka)

  19. Facility management - from internal conditioner to successful business sector; Facility Management - vom internen Fitmacher zum erfolgreichen Geschaeftsfeld

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, I. [Mannheimer Versorgungs- und Verkehrsgesellschaft mbH (MVV), Mannheim (Germany)

    1999-04-01

    The deregulation of the energy markets has given rise to sustained motion in the prevailing structures and market conditions of the supply industry. Dramatic declines in profits in the electricity sector have, in many companies, prompted reflex-like cost reduction programs which, however, frequently prejudice long-term growth prospects and viable future structures in favour of the results of the next fiscal year. The danger of sacrificing all flexibility and therefore market perspectives by corporate anorexia nervosa is immense. The MVV Energie AG, Mannheim, has reacted speedily to this situation and is pursuing a growth-oriented strategy which regards the challenges of competition as opportunity for on-going development. (orig.) [Deutsch] Kapitaldienst oder Miete, Energie, Wartung und Instandsetzung technischer Anlagen, Gebaeudeunterhalt-, -reinigung, Sicherheitsdienste, Versicherungen und vieles mehr uebersteigen ueber Jahre hinweg kumuliert die Baukosten um ein vielfaches und erhoehen bei Immobilieneigentuemern und -nutzern den Kostendruck. Beim Facility Management (FM) stehen nicht mehr nur die Investitionskosten fuer ein Gebaeude im Vordergrund, sondern sein gesamter Lebenszyklus, beginnend mit Idee, Konzeption und Investitionsentscheidung ueber Planung und Errichtung. Nutzung inklusive spaeterer Umbauten und Sanierungen bis hin zu Abriss und Neubau. Mit ihrer Dienstleistung FM bietet die MVV Energie AG ihren Kunden Gesamtkonzeption von der Beratung ueber die Planung und Umsetzung bis hin zur Uebernahme des FM an. (orig.)

  20. The mixed waste management facility. Monthly report, October 1995

    International Nuclear Information System (INIS)

    Streit, R.D.

    1995-11-01

    A continuing concern over the last few months was resolved with the approval of the Environmental Assessment (EA) and signing of the Finding of No Significant Impact (FONSI). This was completed in time to allow approval of the DWTF Phase 1 KD-3 and subsequent award of the construction contract for this phase (site preparation). The Project continues to make progress toward the Project Preliminary Design Review (PDR), scheduled for November 15-16, 1995. We completed the conventional feed preparation and solid feed preparation demonstration technologies (telerobotic sorting) and conducted a prereview of the Analytical Services element. Molten Salt is scheduled for October 3-4, with Water Treatment and Analytical Services completing the reviews by October 12. While a number of design issues have been raised and are being tracked, the general level of engineering progress is consistent with completing the PDR on schedule. No show-stoppers have been identified, and all items requiring resolution before PDR will be completed. We completed the initial iteration of the cost roll-ups for the preliminary design and have developed a plan consistent with the guidance issued for the Project (level funding at ∼$10M/yr, reduced scope, integrated with the DWTF). This was accomplished by staging the completion of various elements (e.g., MSO in FY98, Telerobotics in FY99), and reducing to the extent possible project support functions. Two significant modifications will be noted in the Project Baseline Revision 2.0-Preliminary Design (PB2.0) relative to previous estimates: (1) the cost of the MSO system has increased due to a better understanding of the system needs (relative to CDR assessment), and (2) project management has increased owing to a restructuring of how LLNL distributes facility charge costs. However, both these increases have been offset by reduction in other elements and by a general lowering of Project contingency

  1. Risk management for operations of the LANL Critical Experiments Facility

    International Nuclear Information System (INIS)

    Paternoster, R.; Butterfield, K.

    1998-01-01

    The Los Alamos Critical Experiments Facility (LACEF) currently operates two burst reactors (Godiva-IV and Skua), one solution assembly [the Solution High-Energy Burst Assembly (SHEBA)], two fast-spectrum benchmark assemblies (Flattop and Big Ten), and five general-purpose remote assembly machines that may be configured with nuclear materials and assembled by remote control. Special nuclear materials storage vaults support these and other operations at the site. With this diverse set of operations, several approaches are possible in the analysis and management of risk. The most conservative approach would be to write a safety analysis report (SAR) for each assembly and experiment. A more cost-effective approach is to analyze the probability and consequences of several classes of operations representative of operations on each critical assembly machine and envelope the bounding case accidents. Although the neutron physics of these machines varies widely, the operations performed at LACEF fall into four operational modes: steady-state mode, approach-to-critical mode, prompt burst mode, and nuclear material operations, which can include critical assembly fuel loading. The operational sequences of each mode are very nearly identical, whether operated on one assembly machine or another. The use of an envelope approach to accident analysis is facilitated by the use of classes of operations and the use of bounding case consequence analysis. A simple fault tree analysis of operational modes helps resolve which operations are sensitive to human error and which are initiated by hardware of software failures. Where possible, these errors and failures are blocked by TSR LCOs. Future work will determine the probability of accidents with various initiators

  2. Use of fire hazard analysis to cost effectively manage facility modifications

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, K., E-mail: kkruger@plcfire.com [PLC Fire Safety Solutions, Fredericton, NB (Canada); Cronk, R., E-mail: rcronk@plcfire.com [PLC Fire Safety Solutions, Mississauga, ON (Canada)

    2014-07-01

    In Canada, licenced Nuclear power facilities, or facilities that process, handle or store nuclear material are required by the Canadian Nuclear Safety Commission to have a change control process in place. These processes are in place to avoid facility modifications that could result in an increase in fire hazards, or degradation of fire protection systems. Change control processes can have a significant impact on budgets associated with plant modifications. A Fire Hazard Analysis (FHA) is also a regulatory requirement for licenced facilities in Canada. An FHA is an extensive evaluation of a facility's construction, nuclear safety systems, fire hazards, and fire protection features. This paper is being presented to outline how computer based data management software can help organize facilities' fire safety information, manage this information, and reduce the costs associated with preparation of FHAs as well as facilities' change control processes. (author)

  3. Does identity shape leadership and management practice? Experiences of PHC facility managers in Cape Town, South Africa

    Science.gov (United States)

    Daire, Judith; Gilson, Lucy

    2014-01-01

    In South Africa, as elsewhere, Primary Health Care (PHC) facilities are managed by professional nurses. Little is known about the dimensions and challenges of their job, or what influences their managerial practice. Drawing on leadership and organizational theory, this study explored what the job of being a PHC manager entails, and what factors influence their managerial practice. We specifically considered whether the appointment of professional nurses as facility managers leads to an identity transition, from nurse to manager. The overall intention was to generate ideas about how to support leadership development among PHC facility managers. Adopting case study methodology, the primary researcher facilitated in-depth discussions (about their personal history and managerial experiences) with eight participating facility managers from one geographical area. Other data were collected through in-depth interviews with key informants, document review and researcher field notes/journaling. Analysis involved data triangulation, respondent and peer review and cross-case analysis. The experiences show that the PHC facility manager’s job is dominated by a range of tasks and procedures focused on clinical service management, but is expected to encompass action to address the population and public health needs of the surrounding community. Managing with and through others, and in a complex system, requiring self-management, are critical aspects of the job. A range of personal, professional and contextual factors influence managerial practice, including professional identity. The current largely facility-focused management practice reflects the strong nursing identity of managers and broader organizational influences. However, three of the eight managers appear to self-identify an emerging leadership identity and demonstrate related managerial practices. Nonetheless, there is currently limited support for an identity transition towards leadership in this context. Better

  4. Facility Management as a Way of Reducing Costs in Transport Companies

    Science.gov (United States)

    Matusova, Dominika; Gogolova, Martina

    2017-10-01

    For facility management exists a several interpretations. These interpretations emerged progressively. At the time of the notion of facility management was designed to manage an administrative building, in the United States (US). They can ensure their operation and maintenance. From the US, this trend is further moved to Europe and now it start becoming a current and actual topic also in Slovakia. Facility management is contractually agreed scheme of services, semantically recalls traditional building management. There by finally pushed for activities related to real estates. For facility management is fundamental - certification and certification systems. Therefore, is essential to know, the cost structure of certification. The most commonly occurring austerity measures include: heat pumps, use of renewable energy, solar panels and water savings. These measures can reduce the cost.

  5. A Study on Governance and Human Resources for Cooperative Road Facilities Management

    Science.gov (United States)

    Ohno, Sachiko; Takagi, Akiyoshi; Kurauchi, Fumitaka; Demura, Yoshifumi

    Within today's infrastructure management, Asset Management systems are becoming a mainstream feature. For region where the risk is low, it is necessary to create a "cooperative road facilities management system". This research both examined and suggested what kind of cooperative road facilities management system should be promoted by the regional society. Concretely, this study defines the operational realities of a previous case. It discusses the problem of the road facilities management as a governance. Furthermore, its realization depends on "the cooperation between municipalities", "the private-sector initiative", and "residents participation" .Also, it discusses the problem of human resources for governance. Its realization depends on "the engineers' promotion", and "creation of a voluntary activity of the resident" as a human resources. Moreover, it defines that the intermediary is important because the human resources tied to the governance. As a result, the prospect of the road facilities management is shown by the role of the player and the relation among player.

  6. A guideline for interpersonal capabilities enhancement to support sustainable facility management practice

    Science.gov (United States)

    Sarpin, Norliana; Kasim, Narimah; Zainal, Rozlin; Noh, Hamidun Mohd

    2018-04-01

    Facility management is the key phase in the development cycle of an assets and spans over a considerable length of time. Therefore, facility managers are in a commanding position to maximise the potential of sustainability through the development phases from construction, operation, maintenance and upgrade leading to decommission and deconstruction. Sustainability endeavours in facility management practices will contribute to reducing energy consumption, waste and running costs. Furthermore, it can also help in improving organisational productivity, financial return and community standing of the organisation. Facility manager should be empowered with the necessary knowledge and capabilities at the forefront facing sustainability challenge. However, literature studies show a gap between the level of awareness, specific knowledge and the necessary skills required to pursue sustainability in the facility management professional. People capability is considered as the key enabler in managing the sustainability agenda as well as being central to the improvement of competency and innovation in an organisation. This paper aims to develop a guidelines for interpersonal capabilities to support sustainability in facility management practice. Starting with a total of 7 critical interpersonal capabilities factors identified from previous questionnaire survey, the authors conducted an interview with 3 experts in facility management to assess the perceived importance of these factors. The findings reveal a set of guidelines for the enhancement of interpersonal capabilities among facility managers by providing what can be done to acquire these factors and how it can support the application of sustainability in their practice. The findings of this paper are expected to form the basis of a mechanism framework developed to equip facility managers with the right knowledge, to continue education and training and to develop new mind-sets to enhance the implementation of sustainability

  7. Supervision of waste management and environmental protection at the Swedish nuclear facilities 1999

    International Nuclear Information System (INIS)

    2000-03-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Institute in 1999. A summary of the inspections during 1999 and a description of important issues connected with the supervision of the nuclear facilities are given. The inspections during 1999 have focused on the management of liquid discharges and components containing induced activity at some of the nuclear facilities. Also, routines for filing environmental samples, discharge water samples and documents were inspected at all the different nuclear facilities. The Swedish Radiation Protection Institute finds that the operations are mainly performed according to current regulations

  8. Risk management technique for liquefied natural gas facilities

    Science.gov (United States)

    Fedor, O. H.; Parsons, W. N.

    1975-01-01

    Checklists have been compiled for planning, design, construction, startup and debugging, and operation of liquefied natural gas facilities. Lists include references to pertinent safety regulations. Methods described are applicable to handling of other hazardous materials.

  9. Správa nemovitosti versus facility management

    OpenAIRE

    Rázga, Štěpán

    2008-01-01

    Problematiku facility managementu a správy nemovitostí práce uceleně shrnuje a porovnává teoretické předpoklady a metodické postupy plynoucí z výuky facility managementu na VŠE v Praze s výkonem daných činností v praxi.

  10. Nuclear Facilities Management Section Mutsu Office, Aomori Research and Development Center operations report. FY 2012 and 2013

    International Nuclear Information System (INIS)

    Tajima, Yoshihiro; Kuwabara, Jun; Oyokawa, Atsushi; Kabuto, Shoji; Araya, Naoyuki; Kikuchi, Kaoru; Miyamoto, Shingo; Nemoto, Hideyuki; Ohe, Osamu

    2016-05-01

    Nuclear Facilities Management Section implements the operation, maintenance and decommissioning of the first nuclear ship “MUTSU” and the operation and maintenance of the liquid waste facility and the solid waste facility where a small amount of nuclear fuel is used. This is the report on the operations of the Nuclear Facilities Management Section for FY 2012 and FY 2013. (author)

  11. Nuclear Facility Isotopic Content (NFIC) Waste Management System to provide input for safety envelope definition

    International Nuclear Information System (INIS)

    Genser, J.R.

    1992-01-01

    The Westinghouse Savannah River Company (WSRC) is aggressively applying environmental remediation and radioactive waste management activities at the US Department of Energy's Savannah River Site (SRS) to ensure compliance with today's challenging governmental laws and regulatory requirements. This report discusses a computer-based Nuclear Facility Isotopic Content (NFIC) Waste Management System developed to provide input for the safety envelope definition and assessment of site-wide facilities. Information was formulated describing the SRS ''Nuclear Facilities'' and their respective bounding inventories of nuclear materials and radioactive waste using the NFIC Waste Management System

  12. Supervision of Waste Management and Environmental Protection at the Swedish Nuclear Facilities 2001

    CERN Document Server

    Persson, M

    2003-01-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Authority in 2001. A summary of the inspections and a description of important issues connected with the supervision of the nuclear facilities are given.The inspections during 2001 have focused on theme inspections of waste management, environmental inspections considering the environmental monitoring at the Swedish nuclear facilities and review safety analysis and research programs from the Swedish Nuclear Fuel and Waste Management Co.The Swedish Radiation Protection Authority finds that the operations are mainly performed according to current regulations

  13. Approaches to the management of waste from health care facilities in Czech Republic and Kazakhstan

    OpenAIRE

    Kaireshev, Ruslan

    2015-01-01

    Waste from healthcare facilities or similar facilities includes components of various physical, chemical and biological character that require special approaches during the handling, specifically with regard to possible risks to human health and the environment. Nowadays a challenge for waste management system becomes waste produced in healthcare facilities and contributes too many reasons, such as population growth and rising life expectancy. The rate of waste production from healthcare faci...

  14. 48 CFR 801.602-80 - Legal and technical review-Office of Construction and Facilities Management and National Cemetery...

    Science.gov (United States)

    2010-10-01

    ...-Office of Construction and Facilities Management and National Cemetery Administration. 801.602-80 Section... Responsibilities 801.602-80 Legal and technical review-Office of Construction and Facilities Management and National Cemetery Administration. An Office of Construction and Facilities Management or National Cemetery...

  15. Managing public acceptance for a new enrichment facility

    International Nuclear Information System (INIS)

    Boyd, M.

    1992-01-01

    The Claiborne Enrichment Center has many first associated with it, and a solid nuclear-based community relations experience has been combined with fly-by-the-seat-of-your-pants techniques to successfully introduce a first-of-a-kind facility not only to Louisiana, but also to the US. The project is being developed by Louisiana Energy Services (LES), a limited partnership consisting of Urenco, the European enrichment consortium that operates centrifuge enrichment facilities in the United Kingdom, the Netherlands, and Germany; Fluor Daniel, an internationally known engineering and construction firm; and three utilities - Duke Power, Northern States Power, and Louisiana Power and Light (LP and L). Louisiana Energy will build the nation's first privately owned uranium enrichment facility. It will be the first commercial use of centrifuge technology for enrichment in the US. Some of the community relations challenges the project has had and their solutions are described

  16. Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Mission and Vision Statements for the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mission The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface. Vision To provide a detailed and accurate description of the Earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and Earth system models toward the development of sustainable solutions for the nation's energy and environmental challenges.

  17. SNL/CA Facilities Management Design Standards Manual

    Energy Technology Data Exchange (ETDEWEB)

    Rabb, David [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Clark, Eva [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-12-01

    At Sandia National Laboratories in California (SNL/CA), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/CA applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. The safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule.

  18. Using Construction Management for Public and Institutional Facilities.

    Science.gov (United States)

    Public Technology, Inc., Washington, DC.

    Construction management has been developed as an alternative to the traditional public building process and seeks to save an owner time and cost primarily through better activity coordination and project management. This report was developed to guide public agencies in their evaluation of construction management for their particular needs. It…

  19. Risk management study for the Hanford Site facilities: Risk reduction cost comparison for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Egge, R.G.; Senger, E.; Shultz, M.W.; Taylor, W.E.

    1994-02-01

    This document provides a cost-comparison evaluation for implementing certain risk-reduction measures and their effect on the overall risk of the 100 and 200 Area retired, surplus facilities. The evaluation is based on conditions that existed at the time the risk evaluation team performed facility investigations, and does not acknowledge risk-reduction measures that occurred soon after risk identification. This evaluation is one part of an overall risk management study for these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1450-km 2 Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30 km southeast of the 200 Area. This cost-comparison evaluation (1) determines relative costs for reducing risk to acceptable levels; (2) compares the cost of reducing risk using different risk-reduction options; and (3) compares the cost of reducing risks at different facilities. The result is an identification of the cost effective risk-reduction measures. Supporting information required to develop costs of the various risk-reduction options also is included

  20. Risk management study for the Hanford Site facilities: Risk reduction cost comparison for the retired Hanford Site facilities. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Coles, G.A.; Egge, R.G.; Senger, E.; Shultz, M.W.; Taylor, W.E.

    1994-02-01

    This document provides a cost-comparison evaluation for implementing certain risk-reduction measures and their effect on the overall risk of the 100 and 200 Area retired, surplus facilities. The evaluation is based on conditions that existed at the time the risk evaluation team performed facility investigations, and does not acknowledge risk-reduction measures that occurred soon after risk identification. This evaluation is one part of an overall risk management study for these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1450-km{sup 2} Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30 km southeast of the 200 Area. This cost-comparison evaluation (1) determines relative costs for reducing risk to acceptable levels; (2) compares the cost of reducing risk using different risk-reduction options; and (3) compares the cost of reducing risks at different facilities. The result is an identification of the cost effective risk-reduction measures. Supporting information required to develop costs of the various risk-reduction options also is included.

  1. Governance Change In Facilities Management: An Institutional Perspectives

    Directory of Open Access Journals (Sweden)

    Muhammad Kaleem Zahirul Hassan

    2012-12-01

    Full Text Available Governance of a specific field is shaped by not only the instrumental rationality but also the institutional rationality. In this research the instrumental rationality was manifested by the service providers and consultants who played a pivotal role in the construction of new governance in the field of facilities services in the Netherlands. Further, the role of institutional rationality was investigated wherein it was found that the logic of rationalization shaped the governance in the field of facilities services. Moreover, the implication for the explanation of practice variation by institutional theory is discussed.

  2. KSC facilities status and planned management operations. [for Shuttle launches

    Science.gov (United States)

    Gray, R. H.; Omalley, T. J.

    1979-01-01

    A status report is presented on facilities and planned operations at the Kennedy Space Center with reference to Space Shuttle launch activities. The facilities are essentially complete, with all new construction and modifications to existing buildings almost finished. Some activity is still in progress at Pad A and on the Mobile Launcher due to changes in requirements but is not expected to affect the launch schedule. The installation and testing of the ground checkout equipment that will be used to test the flight hardware is now in operation. The Launch Processing System is currently supporting the development of the applications software that will perform the testing of this flight hardware.

  3. Stress and Coping among Owners and Managers of Residential Care Facilities.

    Science.gov (United States)

    Walker, Hollie; And Others

    Stress and burnout are common in the caregiving professions. Stress negatively affects both the caregivers and patients. In order to help caregivers deal with stress effectively and to improve the care in residential care facilities, it is essential to learn more about the particular stressors that managers of such facilities experience. In this…

  4. VEHIL: a test facility for validation of fault management systems for advanced driver assistance systems

    NARCIS (Netherlands)

    Gietelink, O.J.; Ploeg, J.; Schutter, de B.; Verhaegen, M.H.

    2004-01-01

    We present a methodological approach for the validation of fault management systems for Advanced Driver Assistance Systems (ADAS). For the validation process the unique VEHIL facility, developed by TNO Automotive and currently situated in Helmond, The Netherlands, is applied. The VEHIL facility

  5. Co-ordinated management of two underground gas facilities in aquifer

    International Nuclear Information System (INIS)

    D'Haussy, P.L.

    1990-01-01

    Coordinated management of two underground natural gas storage facilities which are approximately 10 km apart is described. The essential part of service installations allowing their operation is provided at a single location and is common to both facilities, which contributes to ensuring safety gas supply in France

  6. Health and Safety Management for Small-scale Methane Fermentation Facilities

    Science.gov (United States)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  7. Radioactive Waste Management at the New Conversion Facility of 'TVEL'R Fuel Company - 13474

    International Nuclear Information System (INIS)

    Indyk, S.I.; Volodenko, A.V.; Tvilenev, K.A.; Tinin, V.V.; Fateeva, E.V.

    2013-01-01

    The project on the new conversion facility construction is being implemented by Joint Stock Company (JSC) 'Siberian Group of Chemical Enterprises' (SGChE) within TVEL R Fuel Company. The objective is to construct the up-to-date facility ensuring the industrial and environmental safety with the reduced impact on the community and environment in compliance with the Russian new regulatory framework on radioactive waste (RW) management. The history of the SGChE development, as well as the concepts and approaches to RW management implemented by now are shown. The SGChE future image is outlined, together with its objectives and concept on RW management in compliance with the new act 'On radioactive waste management' adopted in Russia in 2011. Possible areas of cooperation with international companies are discussed in the field of RW management with the purpose of deploying the best Russian and world practices on RW management at the new conversion facility. (authors)

  8. Characterization and environmental management of stormwater runoff from road-salt storage facilities.

    Science.gov (United States)

    2004-01-01

    The objectives of this study were to assess the quantity and quality of salt-contaminated water generated from stormwater runoff at VDOT's salt storage facilities and to evaluate management/treatment alternatives to reduce costs and better protect th...

  9. Research notes : drainage facility asset management : more than an inventory of pipes.

    Science.gov (United States)

    2007-04-01

    The primary objectives for the research project were twofold: 1) To develop and implement an Oregon-specific system for inventorying and evaluating the condition of pipes, culverts, and stormwater facilities based on the FHWA Culvert Management Syste...

  10. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  11. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    International Nuclear Information System (INIS)

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included

  12. Mixed Waste Management Facility Groundwater Monitoring Report, Fourth Quarter 1998 and 1998 Summary

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    During fourth quarter 1998, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells

  13. A randomized trial of heart failure disease management in skilled nursing facilities (SNF Connect): Lessons learned.

    Science.gov (United States)

    Daddato, Andrea; Wald, Heidi L; Horney, Carolyn; Fairclough, Diane L; Leister, Erin C; Coors, Marilyn; Capell, Warren H; Boxer, Rebecca S

    2017-06-01

    Conducting clinical trials in skilled nursing facilities is particularly challenging. This manuscript describes facility and patient recruitment challenges and solutions for clinical research in skilled nursing facilities. Lessons learned from the SNF Connect Trial, a randomized trial of a heart failure disease management versus usual care for patients with heart failure receiving post-acute care in skilled nursing facilities, are discussed. Description of the trial design and barriers to facility and patient recruitment along with regulatory issues are presented. The recruitment of Denver-metro skilled nursing facilities was facilitated by key stakeholders of the skilled nursing facilities community. However, there were still a number of barriers to facility recruitment including leadership turnover, varying policies regarding research, fear of litigation and of an increased workload. Engagement of facilities was facilitated by their strong interest in reducing hospital readmissions, marketing potential to hospitals, and heart failure management education for their staff. Recruitment of patients proved difficult and there were few facilitators. Identified patient recruitment challenges included patients being unaware of their heart failure diagnosis, patients overwhelmed with their illness and care, and frequently there was no available proxy for cognitively impaired patients. Flexibility in changing the recruitment approach and targeting skilled nursing facilities with higher rates of admissions helped to overcome some barriers. Recruitment of skilled nursing facilities and patients in skilled nursing facilities for clinical trials is challenging. Strategies to attract both facilities and patients are warranted. These include aligning study goals with facility incentives and flexible recruitment protocols to work with patients in "transition crisis."

  14. A Facilities Manager's Guide to Green Building Design.

    Science.gov (United States)

    Simpson, Walter

    2001-01-01

    Explains how the "green building" approach to educational facilities design creates healthy, naturally lit, attractive buildings with lower operating and life cycle costs. Tips on getting started on a green design and overcoming the barriers to the green design concept are discussed. (GR)

  15. Centralization and Decentralization of Schools' Physical Facilities Management in Nigeria

    Science.gov (United States)

    Ikoya, Peter O.

    2008-01-01

    Purpose: This research aims to examine the difference in the availability, adequacy and functionality of physical facilities in centralized and decentralized schools districts, with a view to making appropriate recommendations to stakeholders on the reform programmes in the Nigerian education sector. Design/methodology/approach: Principals,…

  16. An energetical and economic optimization of the facility management; Energetische und wirtschaftliche Optimierung der GA

    Energy Technology Data Exchange (ETDEWEB)

    Roon, Serafin von; Gobmaier, Thomas; Mauch, Wolfgang [Forschungsstelle fuer Energiewirtschaft e.V., Muenchen (Germany)

    2009-06-15

    In the context of a project promoted by the Federal Ministry of Economics and Technology (Berlin, Federal Republic of Germany), the data of the facility management of an office building were evaluated by means of computer assistance in order to determine the optimal operating parameters and connected energy potentials. The contribution under consideration reports on the approach used for the analysis of the data of facility management and illustrates them with the results of the project.

  17. Science facilities and stakeholder management: how a pan-European research facility ended up in a small Swedish university town

    Science.gov (United States)

    Thomasson, Anna; Carlile, Colin

    2017-06-01

    This is the story of how a large research facility of broad European and global interest, the European Spallation Source (ESS), ended up in the small university town of Lund in Sweden. This happened in spite of the fact that a number of influential European countries were at one time or another competitors to host the facility. It is also a story about politics which attempts to illustrate how closely intertwined politics and science are, and how the interplay between those interests affects scientific progress. ESS became an arena for individual ambitions and political manoeuvring. The different stakeholders, in their striving to ensure that their own interests were realised, in various ways and with different degrees of success over the years, have influenced the key decisions that, during the already 30 year history of ESS, have driven the course that this project has taken. What emerges is that the interests of the stakeholders and the interests of the project itself are frequently not in harmony. This imposes challenges on the management of large research facilities as they have to not only navigate in the scientific landscape, which they often are more familiar with, but also in the political landscape. This story is therefore an attempt to shed light on the role of managers of large research facilities and the often delicate balancing act they have to perform when trying to comply with the different and often conflicting stakeholder interests. What is especially worthwhile examining, as we do in this paper, is the role that individuals, and the interaction between individuals, have played in the process. This shows that the focus of stakeholder theory on organisations, rather than the people in the organisations, needs to be redirected on to the individuals representing those organisations and their inter-relationships. At the same time it is clear that the developing field of stakeholder management theory has not emerged into the consciousness of science

  18. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  19. Application of the Management System for Facilities and Activities. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication provides guidance for following the requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States to establish and implement effective management systems that coherently integrate all aspects of managing nuclear facilities and activities.

  20. American Health Information Management Association. Position statement. Issue: managing health information in facility mergers and acquisitions.

    Science.gov (United States)

    1994-04-01

    Healthcare facility mergers and acquisitions are becoming more common as the industry consolidates. Many critical issues must be considered in mergers and acquisitions, including the management of patient health information. In addition to operational issues, licensure, regulatory, and accreditation requirements must be addressed. To ensure availability of health information to all legitimate users, patient records should be consolidated or linked in the master patient index. A record retention policy should be developed and implemented to meet user needs and assure compliance with legal, regulatory, and accreditation requirements. If health information from closed facilities will be stored for a period of time, its integrity and confidentiality must be preserved, and it must be readily accessible for patient care. The compatibility and functionality of existing information systems should be assessed, and a plan should be formulated for integration of the systems to the extent possible. Such integration may be essential for the organization to successfully meet the demands of integrated delivery systems. Existing databases should be maintained in an accessible form to meet anticipated future needs.

  1. The technological safety in facilities that manage radioactive sources

    International Nuclear Information System (INIS)

    Lizcano, D.

    2014-10-01

    The sealed radioactive sources are used inside a wide range of applications in the medicine, industry and investigation around the world. These sources can contain a great radionuclides variety, exhibiting a wide spectrum of activities and radiological half lives. This way, we can find pattern sources of radionuclides as Americium-241, Plutonium-238, Plutonium-239, Thorium-228 and Thorium-230, etc., with some activity of kBq in research laboratories, Iridium-192 and Cesium-137 sources used in brachytherapy with GBq activities, until sources with P Bq activities in industrial irradiators of Cobalt-60 and Cesium-137. This document approach the physical safety that entities like the IAEA recommends for the facilities that contain sealed sources, especially the measures that are taking in the Instituto Nacional de Investigaciones Nucleares (ININ) and others government facilities. (Author)

  2. Predictive Analytics to Support Real-Time Management in Pathology Facilities.

    Science.gov (United States)

    Lessard, Lysanne; Michalowski, Wojtek; Chen Li, Wei; Amyot, Daniel; Halwani, Fawaz; Banerjee, Diponkar

    2016-01-01

    Predictive analytics can provide valuable support to the effective management of pathology facilities. The introduction of new tests and technologies in anatomical pathology will increase the volume of specimens to be processed, as well as the complexity of pathology processes. In order for predictive analytics to address managerial challenges associated with the volume and complexity increases, it is important to pinpoint the areas where pathology managers would most benefit from predictive capabilities. We illustrate common issues in managing pathology facilities with an analysis of the surgical specimen process at the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital, which processes all surgical specimens for the Eastern Ontario Regional Laboratory Association. We then show how predictive analytics could be used to support management. Our proposed approach can be generalized beyond the DPLM, contributing to a more effective management of pathology facilities and in turn to quicker clinical diagnoses.

  3. Predictive Analytics to Support Real-Time Management in Pathology Facilities

    Science.gov (United States)

    Lessard, Lysanne; Michalowski, Wojtek; Chen Li, Wei; Amyot, Daniel; Halwani, Fawaz; Banerjee, Diponkar

    2016-01-01

    Predictive analytics can provide valuable support to the effective management of pathology facilities. The introduction of new tests and technologies in anatomical pathology will increase the volume of specimens to be processed, as well as the complexity of pathology processes. In order for predictive analytics to address managerial challenges associated with the volume and complexity increases, it is important to pinpoint the areas where pathology managers would most benefit from predictive capabilities. We illustrate common issues in managing pathology facilities with an analysis of the surgical specimen process at the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital, which processes all surgical specimens for the Eastern Ontario Regional Laboratory Association. We then show how predictive analytics could be used to support management. Our proposed approach can be generalized beyond the DPLM, contributing to a more effective management of pathology facilities and in turn to quicker clinical diagnoses. PMID:28269873

  4. Robotics for radioactive waste management in AEA technology facilities

    International Nuclear Information System (INIS)

    Legg, S.A.; Watson, C.J.H.; Staples, A.

    1992-01-01

    This paper describes the use of robotic technology in two AEA Technology facilities. In the first application, the task is standardized and repetitive, and is undertaken using a conventional industrial robot, operating in teach-and-repeat mode. In the second application, the task is non-repetitive, and requires the use of a variety of different tools. it is therefore undertaken by a nuclear engineered telerobot, with a tool change station

  5. Risk assessment of several incidents in nuclear waste management facilities

    International Nuclear Information System (INIS)

    Buetow, E.; Memmert, G.; Storck, R.; Weymann, J.; Matthies, M.; Vogt, K.J.

    1981-01-01

    Regarding surface facilities two incidents of MAVA (failure of the filter in the exhaust gas system, fire in the bituminization system) and one incident in the Krypton storage and regarding underground systems the water inlet in the pit building have been evaluated. According to the calculations only the two nuclides Tc-99 and J-129 can involve a considerable exposure. The barrier system of overlying rocks and the pit system as a whole is largely redundant and diverse. (DG) [de

  6. Rainier Biogas Manure Management and Renewable Energy Generation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, John [King County, WA (United States)

    2017-06-06

    The Rainier Biogas project is a community manure processing and renewable energy generation facility. Construction was completed and operation initiated in 2012. It is owned and operated by Rainier Biogas, LLC in collaboration with local dairy farmers, Washington State University, and the King County Department of Natural Resources and Parks. The project receives manure from three to four partner dairy farms mostly by underground pipe. The project is located at 43218 208th Ave SE; Enumclaw, WA 98022.

  7. Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory.

    Science.gov (United States)

    Barton, Carrie L; Johnson, Eric W; Tanguay, Robert L

    2016-07-01

    The number of researchers and institutions moving to the utilization of zebrafish for biomedical research continues to increase because of the recognized advantages of this model. Numerous factors should be considered before building a new or retooling an existing facility. Design decisions will directly impact the management and maintenance costs. We and others have advocated for more rigorous approaches to zebrafish health management to support and protect an increasingly diverse portfolio of important research. The Sinnhuber Aquatic Research Laboratory (SARL) is located ∼3 miles from the main Oregon State University campus in Corvallis, Oregon. This facility supports several research programs that depend heavily on the use of adult, larval, and embryonic zebrafish. The new zebrafish facility of the SARL began operation in 2007 with a commitment to build and manage an efficient facility that diligently protects human and fish health. An important goal was to ensure that the facility was free of Pseudoloma neurophilia (Microsporidia), which is very common in zebrafish research facilities. We recognize that there are certain limitations in space, resources, and financial support that are institution dependent, but in this article, we describe the steps taken to build and manage an efficient specific pathogen-free facility.

  8. Are Health Facility Management Committees in Kenya ready to implement financial management tasks: findings from a nationally representative survey.

    Science.gov (United States)

    Waweru, Evelyn; Opwora, Antony; Toda, Mitsuru; Fegan, Greg; Edwards, Tansy; Goodman, Catherine; Molyneux, Sassy

    2013-10-10

    Community participation in peripheral public health facilities has in many countries focused on including community representatives in Health Facility Management Committees (HFMCs). In Kenya, HFMC roles are being expanded with the phased implementation of the Health Sector Services Fund (HSSF). Under HSSF, HFMCs manage facility funds which are dispersed directly from central level into facility bank accounts. We assessed how prepared HFMCs were to undertake this new role in advance of HSSF roll out, and considered the implications for Kenya and other similar settings. Data were collected through a nationally representative sample of 248 public health centres and dispensaries in 24 districts in 2010. Data collection included surveys with in-charges (n = 248), HFMC members (n = 464) and facility users (n = 698), and record reviews. These data were supplemented by semi-structured interviews with district health managers in each district. Some findings supported preparedness of HFMCs to take on their new roles. Most facilities had bank accounts and HFMCs which met regularly. HFMC members and in-charges generally reported positive relationships, and HFMC members expressed high levels of motivation and job satisfaction. Challenges included users' low awareness of HFMCs, lack of training and clarity in roles among HFMCs, and some indications of strained relations with in-charges. Such challenges are likely to be common to many similar settings, and are therefore important considerations for any health facility based initiatives involving HFMCs. Most HFMCs have the basic requirements to operate. However to manage their own budgets effectively and meet their allocated roles in HSSF implementation, greater emphasis is needed on financial management training, targeted supportive supervision, and greater community awareness and participation. Once new budget management roles are fully established, qualitative and quantitative research on how HFMCs are adapting to

  9. Does identity shape leadership and management practice? Experiences of PHC facility managers in Cape Town, South Africa.

    Science.gov (United States)

    Daire, Judith; Gilson, Lucy

    2014-09-01

    In South Africa, as elsewhere, Primary Health Care (PHC) facilities are managed by professional nurses. Little is known about the dimensions and challenges of their job, or what influences their managerial practice. Drawing on leadership and organizational theory, this study explored what the job of being a PHC manager entails, and what factors influence their managerial practice. We specifically considered whether the appointment of professional nurses as facility managers leads to an identity transition, from nurse to manager. The overall intention was to generate ideas about how to support leadership development among PHC facility managers. Adopting case study methodology, the primary researcher facilitated in-depth discussions (about their personal history and managerial experiences) with eight participating facility managers from one geographical area. Other data were collected through in-depth interviews with key informants, document review and researcher field notes/journaling. Analysis involved data triangulation, respondent and peer review and cross-case analysis. The experiences show that the PHC facility manager's job is dominated by a range of tasks and procedures focused on clinical service management, but is expected to encompass action to address the population and public health needs of the surrounding community. Managing with and through others, and in a complex system, requiring self-management, are critical aspects of the job. A range of personal, professional and contextual factors influence managerial practice, including professional identity. The current largely facility-focused management practice reflects the strong nursing identity of managers and broader organizational influences. However, three of the eight managers appear to self-identify an emerging leadership identity and demonstrate related managerial practices. Nonetheless, there is currently limited support for an identity transition towards leadership in this context. Better

  10. The Proposal of Key Performance Indicators in Facility Management and Determination the Weights of Significance

    Science.gov (United States)

    Rimbalová, Jarmila; Vilčeková, Silvia

    2013-11-01

    The practice of facilities management is rapidly evolving with the increasing interest in the discourse of sustainable development. The industry and its market are forecasted to develop to include non-core functions, activities traditionally not associated with this profession, but which are increasingly being addressed by facilities managers. The scale of growth in the built environment and the consequential growth of the facility management sector is anticipated to be enormous. Key Performance Indicators (KPI) are measure that provides essential information about performance of facility services delivery. In selecting KPI, it is critical to limit them to those factors that are essential to the organization reaching its goals. It is also important to keep the number of KPI small just to keep everyone's attention focused on achieving the same KPIs. This paper deals with the determination of weights of KPI of FM in terms of the design and use of sustainable buildings.

  11. Development of aging management standard guidelines for HVAC facilities of NPPs in Korea

    International Nuclear Information System (INIS)

    Won, Se Youl; Lee, Jae Gon; Oh, Seung Jin

    2014-01-01

    Inspection and maintenance activities for air conditioning facilities within the plant are managed mainly for active facilities, and as the years of operation pass, a method for detecting in advance aging-related integrity problems of passive facilities and taking necessary measures against them is required. Therefore, this paper establishes a standard aging management guideline for air conditioning facilities by selecting systems for which those facilities are to be managed, analyzing degradation mechanisms and reviewing the current status of aging degradation management. According to the review of additional equipment-specific aging degradation mechanisms and the current status of management to apply the aging degradation program to air conditioning facilities, it has been found that internal and external visual inspection procedures for fans, dampers, coils, filters and housings have to be added. It has been confirmed that among additional equipment s, fire dampers, fan bearings and belts and air cleaning/conditioning units with charcoal filters do not require additional inspection as they are periodically inspected. It has been found, however, that air cleaning/conditioning units without charcoal filters are to be inspected along with fans, ducts and coils

  12. Using Decision Analysis to Select Facility Maintenance Management Information Systems

    Science.gov (United States)

    2010-03-01

    Hart, A., & Ratnieks, F. L. (2002). Waste management in the leaf-cutting ant Atta colombica. Behavioral Ecology , 224-231. Heintz, J., Pollin ... Pollin , & Garret-Peltier, 2009). Maintenance departments can help themselves by implementing an information system to help better manage personnel...Wastewater collection system infrastructure research needs in the USA. Urban Water , 21-29. Takata, S., Kimura, F., van Houten, F., Westkamper, E

  13. Waste management facilities cost information for transuranic waste

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report's information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report

  14. Waste management facilities cost information for hazardous waste. Revision 1

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report's information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report

  15. Waste Management Facilities cost information for low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  16. Construction of BIM-based SMART-ITL Facility Management System

    International Nuclear Information System (INIS)

    Jeon, Woo-Jin; Yi, Sung-Jae; Park, Hyun-Sik; Ryu, Sung-Uk; Bae, Hwang; Hwang, Sang-Chul; Min, Byung-Eui

    2015-01-01

    The flow area and volume are scaled down to 1/49. The ratio of the hydraulic diameter is 1/7. Therefore, SMART-ITL is a large-scale thermalhydraulic test facility with about 45 m height, which is consisted of 10 m underground and 35 m from the ground level. Until now, the management of design data and maintenance of large scale test facilities have been managed based on hard-copy information. Recently, Thermal Hydraulics Safety Research Division (THSRD) at Korea Atomic Energy Research Institute (KAERI) has developed Facility Management System (FMS) based Building Information Modeling (BIM) to manage its design data more effectively for these large scale test facilities of SMART-ITL and ATLAS, and this BIM technology has been applied to SMART-ITL at the first. This study proposed a method of effective management and maintenance of design data applied to the SMART-ITL. That is, a FMS was developed based on the BIM technology for SMART-ITL. Figure 2 shows an overview of FMS development process based on BIM technology. SMART-ITL FMS facilitates its management and maintenance more effectively and accurately by 3- dimensional visualization. It enables the shape information of large scale test facilities to be visualized intuitively in a virtual space, and the efficient maintenance of data and instruments is possible by linking 3D shape information

  17. Construction of BIM-based SMART-ITL Facility Management System

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Woo-Jin; Yi, Sung-Jae; Park, Hyun-Sik; Ryu, Sung-Uk; Bae, Hwang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hwang, Sang-Chul; Min, Byung-Eui [DDRsoft Co., Daejeon (Korea, Republic of)

    2015-10-15

    The flow area and volume are scaled down to 1/49. The ratio of the hydraulic diameter is 1/7. Therefore, SMART-ITL is a large-scale thermalhydraulic test facility with about 45 m height, which is consisted of 10 m underground and 35 m from the ground level. Until now, the management of design data and maintenance of large scale test facilities have been managed based on hard-copy information. Recently, Thermal Hydraulics Safety Research Division (THSRD) at Korea Atomic Energy Research Institute (KAERI) has developed Facility Management System (FMS) based Building Information Modeling (BIM) to manage its design data more effectively for these large scale test facilities of SMART-ITL and ATLAS, and this BIM technology has been applied to SMART-ITL at the first. This study proposed a method of effective management and maintenance of design data applied to the SMART-ITL. That is, a FMS was developed based on the BIM technology for SMART-ITL. Figure 2 shows an overview of FMS development process based on BIM technology. SMART-ITL FMS facilitates its management and maintenance more effectively and accurately by 3- dimensional visualization. It enables the shape information of large scale test facilities to be visualized intuitively in a virtual space, and the efficient maintenance of data and instruments is possible by linking 3D shape information.

  18. Waste Acceptance Decisions and Uncertainty Analysis at the Oak Ridge Environmental Management Waste Management Facility

    International Nuclear Information System (INIS)

    Redus, K. S.; Patterson, J. E.; Hampshire, G. L.; Perkins, A. B.

    2003-01-01

    The Waste Acceptance Criteria (WAC) Attainment Team (AT) routinely provides the U.S. Department of Energy (DOE) Oak Ridge Operations with Go/No-Go decisions associated with the disposition of over 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous waste. This supply of waste comes from 60+ environmental restoration projects over the next 15 years planned to be dispositioned at the Oak Ridge Environmental Management Waste Management Facility (EMWMF). The EMWMF WAC AT decision making process is accomplished in four ways: (1) ensure a clearly defined mission and timeframe for accomplishment is established, (2) provide an effective organization structure with trained personnel, (3) have in place a set of waste acceptance decisions and Data Quality Objectives (DQO) for which quantitative measures are required, and (4) use validated risk-based forecasting, decision support, and modeling/simulation tools. We provide a summary of WAC AT structure and performance. We offer suggestions based on lessons learned for effective transfer to other DOE

  19. Waste Acceptance Decisions and Uncertainty Analysis at the Oak Ridge Environmental Management Waste Management Facility

    Energy Technology Data Exchange (ETDEWEB)

    Redus, K. S.; Patterson, J. E.; Hampshire, G. L.; Perkins, A. B.

    2003-02-25

    The Waste Acceptance Criteria (WAC) Attainment Team (AT) routinely provides the U.S. Department of Energy (DOE) Oak Ridge Operations with Go/No-Go decisions associated with the disposition of over 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous waste. This supply of waste comes from 60+ environmental restoration projects over the next 15 years planned to be dispositioned at the Oak Ridge Environmental Management Waste Management Facility (EMWMF). The EMWMF WAC AT decision making process is accomplished in four ways: (1) ensure a clearly defined mission and timeframe for accomplishment is established, (2) provide an effective organization structure with trained personnel, (3) have in place a set of waste acceptance decisions and Data Quality Objectives (DQO) for which quantitative measures are required, and (4) use validated risk-based forecasting, decision support, and modeling/simulation tools. We provide a summary of WAC AT structure and performance. We offer suggestions based on lessons learned for effective transfer to other DOE.

  20. Bureau of Indian Affairs Schools: New Facilities Management Information System Promising, but Improved Data Accuracy Needed.

    Science.gov (United States)

    General Accounting Office, Washington, DC.

    A General Accounting Office (GAO) study evaluated the Bureau of Indian Affairs' (BIA) new facilities management information system (FMIS). Specifically, the study examined whether the new FMIS addresses the old system's weaknesses and meets BIA's management needs, whether BIA has finished validating the accuracy of data transferred from the old…

  1. Value Adding Management of buildings and facility services in four steps

    DEFF Research Database (Denmark)

    van der Voordt, Theo; Jensen, Per Anker; Hoendervanger, Jan Gerard

    2016-01-01

    This paper presents a new Value Adding Management (VAM) model that aims to support decision makers in identifying appropriate interventions in buildings, other facilities and services that add value to the organisation, to manage its implementation, and to measure the output and outcomes. The pap...

  2. Value Adding Management (VAM) of buildings and facility services in four steps

    NARCIS (Netherlands)

    van der Voordt, Theo; Hoendervanger, Jan Gerard; Jensen, Per Anker; Bergsma, Feike

    2016-01-01

    This paper presents a new Value Adding Management (VAM) model that aims to support decision makers in identifying appropriate interventions in buildings, other facilities and services that add value to the organisation, to manage its implementation, and to measure the output and outcomes. The paper

  3. A user's guide to the MultiMet Sensor Management and Calibration Facility

    OpenAIRE

    Pascal, R.W.; Williams, A.; Ahmed, R.

    1991-01-01

    The report describes the operating instructions and procedures for the MultiMet Sensor Management and Calibration Facility. This includes a description of the Meteological database ME'IDB, and the Sensor Management database which organises the large number of sensors required by the Multimet System. Calibration procedures and policies are also described for the various types of sensors used.

  4. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  5. Steps for safety. Radioactive waste management facilities and Y2K

    International Nuclear Information System (INIS)

    Warnecke, E.

    1999-01-01

    As part of the IAEA activities concerned with Year 2000 (Y2K) problem special attention is paid to operation of radioactive waste management facilities although, fortunately, in the management of radioactive materials the response of a process or activity to a failure would be slow in many instance, providing more time to resolve the issue before any radiological consequences occur. To facilitate greater cooperation, the IAEA organized an international workshop on the exchange of information concerning safety measure to address the Y2K issues on radioactive waste management and nuclear fuel cycle facilities

  6. Facilities management innovation in public-private collaborations: Danish ESCO projects

    DEFF Research Database (Denmark)

    Nardelli, Giulia; Jensen, Jesper Ole; Nielsen, Susanne Balslev

    2015-01-01

    The purpose of the article is to investigate how Facilities Management (FM) units navigate Energy Service Company (ESCO) collaborations, here defined as examples of public collaborative innovation within the context of FM. The driving motivation is to inform and inspire internal FM units of local...... institutions on how to navigate and manage collaboration of different, intra- and inter-organisational actors throughout ESCO projects.......The purpose of the article is to investigate how Facilities Management (FM) units navigate Energy Service Company (ESCO) collaborations, here defined as examples of public collaborative innovation within the context of FM. The driving motivation is to inform and inspire internal FM units of local...

  7. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    Energy Technology Data Exchange (ETDEWEB)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  8. Implementation of a quality management system at the PHOENIX facility (CryoMaK)

    International Nuclear Information System (INIS)

    Urbach, Elisabeth; Bagrets, Nadezda; Weiss, Klaus-Peter

    2013-01-01

    Within a variety of mechanical tests in the Cryogenic Material Test Facility Karlsruhe (CryoMaK) at Karlsruhe Institute of Technology (KIT) the PHOENIX facility was prepared for multiple standard tensile tests in liquid helium, liquid nitrogen and at room temperature. With the multiple specimens holder 10 specimens can be tested within one cool down one after another. A quality management system is needed for ensuring reproducible preconditions. For the guarantee of the competence of the laboratory and the measurement equipment, a quality management system was implemented and prepared for accreditation according to DIN EN ISO/IEC 17025 (ISO 17025). The implementation of a quality management system allows high precision test results included the estimation of measurement uncertainty. This paper gives an overview of the management and technical requirements for the accreditation of the PHOENIX testing facility

  9. Implementation of a quality management system at the PHOENIX facility (CryoMaK)

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, Elisabeth, E-mail: elisabeth.urbach@kit.edu; Bagrets, Nadezda; Weiss, Klaus-Peter

    2013-10-15

    Within a variety of mechanical tests in the Cryogenic Material Test Facility Karlsruhe (CryoMaK) at Karlsruhe Institute of Technology (KIT) the PHOENIX facility was prepared for multiple standard tensile tests in liquid helium, liquid nitrogen and at room temperature. With the multiple specimens holder 10 specimens can be tested within one cool down one after another. A quality management system is needed for ensuring reproducible preconditions. For the guarantee of the competence of the laboratory and the measurement equipment, a quality management system was implemented and prepared for accreditation according to DIN EN ISO/IEC 17025 (ISO 17025). The implementation of a quality management system allows high precision test results included the estimation of measurement uncertainty. This paper gives an overview of the management and technical requirements for the accreditation of the PHOENIX testing facility.

  10. [Implementation of quality management in medical rehabilitation--current challenges for rehabilitation facilities].

    Science.gov (United States)

    Enge, M; Koch, A; Müller, T; Vorländer, T

    2010-12-01

    The legal responsibilities imposed upon rehabilitation facilities under section 20 (2a) SGB IX, necessitate fundamental decisions to be taken regarding the development of quality management systems over and above the existing framework. This article is intended to provide ideas and suggestions to assist rehabilitation facilities in implementing a quality management system, which is required in addition to participation in the quality assurance programmes stipulated by the rehabilitation carriers. In this context, the additional internal benefit a functioning quality management system can provide for ensuring a high level of quality and for maintaining the competitiveness of the rehabilitation facility should be taken into account. The core element of these observations, hence, is a list of requirements which enables assessment of the quality of consultants' performance in setting up a quality management system. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Challenges Associated With Managing Suicide Risk in Long-Term Care Facilities.

    Science.gov (United States)

    O'Riley, Alisa; Nadorff, Michael R; Conwell, Yeates; Edelstein, Barry

    2013-06-01

    Little information about suicidal ideation and behavior in long-term care (LTC) facilities is available. Nonetheless, the implementation of the Minimum Data Set 3.0 requires that LTC facilities screen their residents for suicide risk and have protocols in place to effectively manage residents' responses. In this article, the authors briefly discuss the risk factors of suicide in the elderly and the problems that suicidal ideation and behavior pose in the LTC environment. The authors explain issues that arise when trying to manage suicide risk in the elderly LTC population with general, traditional approaches. These inherent issues make it difficult to develop an effective protocol for managing suicide risk in LTC facilities, leading the authors to propose their own framework for assessing and managing suicide risk in the LTC setting.

  12. Improving heart failure disease management in skilled nursing facilities: lessons learned.

    Science.gov (United States)

    Dolansky, Mary A; Hitch, Jeanne A; Piña, Ileana L; Boxer, Rebecca S

    2013-11-01

    The purpose of the study was to design and evaluate an improvement project that implemented HF management in four skilled nursing facilities (SNFs). Kotter's Change Management principles were used to guide the implementation. In addition, half of the facilities had an implementation coach who met with facility staff weekly for 4 months and monthly for 5 months. Weekly and monthly audits were performed that documented compliance with eight key aspects of the protocol. Contextual factors were captured using field notes. Adherence to the HF management protocols was variable ranging from 17% to 82%. Facilitators of implementation included staff who championed the project, an implementation coach, and physician involvement. Barriers were high staff turnover and a hierarchal culture. Opportunities exist to integrate HF management protocols to improve SNF care.

  13. Facility accident considerations in the US Department of Energy Waste Management Program

    International Nuclear Information System (INIS)

    Mueller, C.

    1994-01-01

    A principal consideration in developing waste management strategies is the relative importance of Potential radiological and hazardous releases to the environment during postulated facility accidents with respect to protection of human health and the environment. The Office of Environmental Management (EM) within the US Department of Energy (DOE) is currently formulating an integrated national program to manage the treatment, storage, and disposal of existing and future wastes at DOE sites. As part of this process, a Programmatic Environmental impact Statement (PEIS) is being prepared to evaluate different waste management alternatives. This paper reviews analyses that have been Performed to characterize, screen, and develop source terms for accidents that may occur in facilities used to store and treat the waste streams considered in these alternatives. Preliminary results of these analyses are discussed with respect to the comparative potential for significant releases due to accidents affecting various treatment processes and facility configurations. Key assumptions and sensitivities are described

  14. Integrated Toolkit for accelerator operation management of KOMAC facility

    International Nuclear Information System (INIS)

    Kim, Jae-Ha; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2017-01-01

    The control system is comprised of three systems, linac control, timing sequence and data management system. Through a control system, a data management system is a system for analyzing and archiving data observed such as beam service time, RF operating time. Results are shown in client-friendly format. High level applications have been developed to analyze a linac, and an operational management system at KOMAC was implemented in java web framework. The operation management system archives operation time, beam service time and break time of devices in the linac. The data shown in application is compared with calculated data to confirm the accuracy and stability. The operation records management system shows the operation status of linac and utilized to plan the linac operation and maintain linac. The operation system will be utilized the Machine Protection System to calculate break time and information automatically. High-Level Applications developed at KOMAC will be assembled to provide various functions n one application. And KOMAC also has been developing web-based application which operators and users can access from any where.

  15. Screensaver: an open source lab information management system (LIMS for high throughput screening facilities

    Directory of Open Access Journals (Sweden)

    Nale Jennifer

    2010-05-01

    Full Text Available Abstract Background Shared-usage high throughput screening (HTS facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. Results We have developed Screensaver, a free, open source, web-based lab information management system (LIMS, to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. Conclusions The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.

  16. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities.

    Science.gov (United States)

    Tolopko, Andrew N; Sullivan, John P; Erickson, Sean D; Wrobel, David; Chiang, Su L; Rudnicki, Katrina; Rudnicki, Stewart; Nale, Jennifer; Selfors, Laura M; Greenhouse, Dara; Muhlich, Jeremy L; Shamu, Caroline E

    2010-05-18

    Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.

  17. Challenges in the management of decommission waste of nuclear facilities in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.

    2002-01-01

    It is inevitable that every nuclear facility must one day be safely decommissioned. When considering decommissioning, large amounts of radioactive and non-radioactive waste have to be taken into account. Disposal of such materials can have large economic impact on the overall decommissioning cost. In developing countries like Ghana, the perception of environmental protection through waste management, is often not very high as compared to many other pressing needs. Therefore limited resources are allocated for environmental problems. Ghana operates a tank-in- pool type research reactor, 30kW output for research in neutron activation analysis, radioisotope preparation, education and training, a radiotherapy unit that utilizes a 185TBq Co-60 radioactive sources for the treatment of cancer and a gamma irradiation facility which utilizes 1.85PBq Co-60 radioactive source for the irradiation of various materials. All these facilities are operating without designed decommissioning in mind, an inadequate waste management infrastructure as well as a lack of a repository to handling the resulting waste. It is today's beneficials of the nuclear facility that has to deal with the legacies of the future decommissioning activities. The paper outlines some of the challenges and issues to be expected in the management of waste from future decommissioning of nuclear facilities in Ghana with the absence of a waste management infrastructure and inadequate financial resources. The paper puts forth a concept to perform meaningful and significant plans whilst the facilities are still operating. (author)

  18. Practical methods for exposure control/management at nuclear facilities

    International Nuclear Information System (INIS)

    Twiggs, J.A.

    1991-01-01

    Exposure management/reduction is very important to Duke Power Company. Practical exposure control/reduction techniques applied to their reactor vessel head disassembly outage activity have consistently reduced personnel exposure for this task. The following exposure control methods have worked for use and will be the industry's direction for the 1990's. A summary of these methods includes: (a) move the responsibility of exposure management from the Radiation Protection group to the Maintenance group; (b) reduce area source term by removal of source; (c) improve working environments in radiation areas by minimizing protective clothing usage; and (d) maximize the use of electronic instruments to allow remote monitoring

  19. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable

  20. Laser programs facility management plan for environment, safety, and health

    International Nuclear Information System (INIS)

    Cruz, G.E.

    1996-01-01

    The Lawrence Livermore National Laboratory's (LLNL) Laser Programs ES ampersand H policy is established by the Associate Director for Laser Programs. This FMP is one component of that policy. Laser Programs personnel design, construct and operate research and development equipment located in various Livermore and Site 300 buildings. The Programs include a variety of activities, primarily laser research and development, inertial confinement fusion, isotope separation, and an increasing emphasis on materials processing, imaging systems, and signal analysis. This FMP is a formal statement of responsibilities and controls to assure operational activities are conducted without harm to employees, the general public, or the environment. This plan identifies the hazards associated with operating a large research and development facility and is a vehicle to control and mitigate those hazards. Hazards include, but are not limited to: laser beams, hazardous and radioactive materials, criticality, ionizing radiation or x rays, high-voltage electrical equipment, chemicals, and powered machinery

  1. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    International Nuclear Information System (INIS)

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB 2 (Water Table) and Aquifer Zone IIB 1 , (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters

  2. Simulation Modeling of a Facility Layout in Operations Management Classes

    Science.gov (United States)

    Yazici, Hulya Julie

    2006-01-01

    Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…

  3. Fast Flux Test Facility performance monitoring management information: [Final report

    International Nuclear Information System (INIS)

    Newland, D.J.

    1987-09-01

    The purpose of this report is to provide management with performance data on key performance indicators for the month of July, 1987. This report contains the results for key performance indicators divided into two categories of ''overall'' and ''other''. The ''overall'' performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance

  4. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  5. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    Science.gov (United States)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  6. Use of the project management methodology to establish physical protection system at nuclear facility

    International Nuclear Information System (INIS)

    Gramotkin, F.; Kuzmyak, I.; Kravtsov, V.

    2015-01-01

    The paper considers the possibility of using the project management methodology developed by the Project Management Institute (USA) in nuclear security in terms of modernization or development of physical protection system at nuclear facility. It was demonstrated that this methodology allows competent and flexible management of the projects on physical protection, ensuring effective control of their timely implementation in compliance with the planned budget and quality

  7. Development of an Integrated Leachate Treatment Solution for the Port Granby Waste Management Facility - 12429

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Kevin W. [Golder Associates Inc., Lakewood, Colorado (United States); Vandergaast, Gerald [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada)

    2012-07-01

    The Port Granby Project (the Project) is located near the north shore of Lake Ontario in the Municipality of Clarington, Ontario, Canada. The Project consists of relocating approximately 450,000 m{sup 3} of historic Low-Level Radioactive Waste (LLRW) and contaminated soil from the existing Port Granby Waste Management Facility (WMF) to a proposed Long-Term Waste Management Facility (LTWMF) located adjacent to the WMF. The LTWMF will include an engineered waste containment facility, a Wastewater Treatment Plant (WTP), and other ancillary facilities. A series of bench- and pilot-scale test programs have been conducted to identify preferred treatment processes to be incorporated into the WTP to treat wastewater generated during the construction, closure and post-closure periods at the WMF/LTWMF. (authors)

  8. Reducing the potential for conflict between proponents and the public regarding the risks entailed by radioactive waste management facilities

    International Nuclear Information System (INIS)

    Rogers, B.G.

    1984-01-01

    Sources of potential conflict between proponents and the public regarding the risks entailed by radioactive waste management facilities are identified and analyzed. Programs and policies are suggested that could reduce conflict over the siting and operation of such facilities

  9. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    Directory of Open Access Journals (Sweden)

    Baldwin Stephen A

    2011-03-01

    Full Text Available Abstract Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  10. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities.

    Science.gov (United States)

    Troshin, Peter V; Postis, Vincent Lg; Ashworth, Denise; Baldwin, Stephen A; McPherson, Michael J; Barton, Geoffrey J

    2011-03-07

    Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  11. Risk Management Technique for design and operation of facilities and equipment

    Science.gov (United States)

    Fedor, O. H.; Parsons, W. N.; Coutinho, J. De S.

    1975-01-01

    The Risk Management System collects information from engineering, operating, and management personnel to identify potentially hazardous conditions. This information is used in risk analysis, problem resolution, and contingency planning. The resulting hazard accountability system enables management to monitor all identified hazards. Data from this system are examined in project reviews so that management can decide to eliminate or accept these risks. This technique is particularly effective in improving the management of risks in large, complex, high-energy facilities. These improvements are needed for increased cooperation among industry, regulatory agencies, and the public.

  12. Conceptual design report for the spent fuel management technology research and test (SMATER) facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, S W; Ro, S G; Lee, J S; Min, D K; Shin, Y J [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    This study was intended to develop concept for a pilot-scale remote operation facility for longer term management of spent fuel and therefrom to provide technical requirement for later basic design of the facility. Main scope of work for the study was to revise the past (1990) conceptual design in functions, scale, hot cell layout etc. based on user requirements. Technical reference was made to the PKA facility in Germany, through collaboration with appropriate partner, to elaborate the design and requirements. The study was focused on establishing design criteria and conceptual design of the SMATER facility. The results of this study should be an essential and useful basis upon optimization for further work to basic design of the facility. (author). 17 figs., 12 tabs.

  13. Application of the Management System for Facilities and Activities. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This publication provides guidance for following the requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States to establish and implement effective management systems that coherently integrate all aspects of managing nuclear facilities and activities. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement; Appendix I: Transition to an integrated management system; Appendix II: Activities in the document control process; Appendix III: Activities in the procurement process; Appendix IV: Performance of independent assessments; Annex I: Electronic document management system; Annex II: Media for record storage; Annex III: Record retention and storage; Glossary.

  14. A local area network and information management system for a submarine overhaul facility

    OpenAIRE

    Bushmire, Jeffrey D

    1990-01-01

    A preliminary design of a local area network for a submarine overhaul facility is developed using System Engineering concepts. SOFLAN, the Submarine Overhaul Facility Local Area Network, is necessary to provide more timely and accurate information to submarine overhaul managers in order to decrease the overhaul time period and become more competitive. The network is a microcomputer based system following the Ethernet and IEEE 802.3 standards with a server .. client architecture. SOFLAN serves...

  15. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Graf, F.A. Jr.

    1995-02-27

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System`s pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System.

  16. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    International Nuclear Information System (INIS)

    Graf, F.A. Jr.

    1995-01-01

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System's pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System

  17. Development of a spent fuel management technology research and test facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, S W; Noh, S K; Lee, J S. and others

    1997-12-01

    This study was intended to develop concept for a pilot-scale remote operation facility for longer term management of spent fuel and therefrom to provide technical requirement for later basic design of the facility. Main scope of work for the study was to revise the past (1990) conceptual design in functions, scale, hot cell layout, etc. based on user requirements. Technical reference was made to the PKA facility in Germany, through collaboration with appropriate partner, to elaborate the design and requirements. A simulator of the conceptual design was also developed by use of virtual reality technique by 3-D computer graphics for equipment and building. (author). 18 tabs., 39 figs

  18. Health physics and quality control management of a cyclotron-based PET facility

    International Nuclear Information System (INIS)

    Jerabek, P.A.

    1995-01-01

    This paper provides an overview of the operation and management of a Positron Emission Tomography (PET) facility at the University of Texas. The facility components are discussed from an operations perspective with an emphasis on devices, and on practices and procedures which are implemented to ensure that personnel exposures are as low as reasonably achievable. The cyclotron-based PET facility uses in-house production of PET radioisotopes for preparation of radiopharmaceuticals. A combination of specially designed cyclotron equipped devices, radiopharmaceutical preparation devices, and shielded devices along with health physics practices have helped to make PET operations become routine

  19. CSNI Technical Opinion Papers No. 15 - Ageing management of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Nocture, Pierre; Daubard, Jean-Paul; Lhomme, Veronique; Martineau, Dominique; Blundell, Neil; Conte, Dorothee; Dobson, Martin; Gmal, Bernhard; Hiltz, Thomas; Ueda, Yoshinori

    2012-01-01

    Managing the ageing of fuel cycle facilities (FCFs) means, as for other nuclear installations, ensuring the availability of required safety functions throughout their service life while taking into account the changes that occur with time and use. This technical opinion paper identifies a set of good practices by benchmarking strategies and good practices on coping with physical ageing and obsolescence from the facility design stage until decommissioning. It should be of particular interest to nuclear safety regulators, fuel cycle facilities operators and fuel cycle researchers [fr

  20. Quality of malaria case management in Malawi: results from a nationally representative health facility survey.

    Science.gov (United States)

    Steinhardt, Laura C; Chinkhumba, Jobiba; Wolkon, Adam; Luka, Madalitso; Luhanga, Misheck; Sande, John; Oyugi, Jessica; Ali, Doreen; Mathanga, Don; Skarbinski, Jacek

    2014-01-01

    Malaria is endemic throughout Malawi, but little is known about quality of malaria case management at publicly-funded health facilities, which are the major source of care for febrile patients. In April-May 2011, we conducted a nationwide, geographically-stratified health facility survey to assess the quality of outpatient malaria diagnosis and treatment. We enrolled patients presenting for care and conducted exit interviews and re-examinations, including reference blood smears. Moreover, we assessed health worker readiness (e.g., training, supervision) and health facility capacity (e.g. availability of diagnostics and antimalarials) to provide malaria case management. All analyses accounted for clustering and unequal selection probabilities. We also used survey weights to produce estimates of national caseloads. At the 107 facilities surveyed, most of the 136 health workers interviewed (83%) had received training on malaria case management. However, only 24% of facilities had functional microscopy, 15% lacked a thermometer, and 19% did not have the first-line artemisinin-based combination therapy (ACT), artemether-lumefantrine, in stock. Of 2,019 participating patients, 34% had clinical malaria (measured fever or self-reported history of fever plus a positive reference blood smear). Only 67% (95% confidence interval (CI): 59%, 76%) of patients with malaria were correctly prescribed an ACT, primarily due to missed malaria diagnosis. Among patients without clinical malaria, 31% (95% CI: 24%, 39%) were prescribed an ACT. By our estimates, 1.5 million of the 4.4 million malaria patients seen in public facilities annually did not receive correct treatment, and 2.7 million patients without clinical malaria were inappropriately given an ACT. Malawi has a high burden of uncomplicated malaria but nearly one-third of all patients receive incorrect malaria treatment, including under- and over-treatment. To improve malaria case management, facilities must at minimum have

  1. [Autonomy for financial management in public and private healthcare facilities in Brazil].

    Science.gov (United States)

    Santos, Maria Angelica Borges dos; Madeira, Fátima Carvalho; Passos, Sonia Regina Lambert; Bakr, Felipe; Oliveira, Klivia Brayner de; Andreazzi, Marco Antonio Ratzsch de

    2014-01-01

    Autonomy in financial management is an advantage in public administration. A 2009 National Healthcare Facility Survey showed that 3.9% of Brazil's 52,055 public healthcare facilities had some degree of financial autonomy. Such autonomy was more common in inpatient facilities (17.8%), those managed by State governments (26.3%), and in Southern Brazil (6.6%). Autonomy was mainly partial (for resources in specific areas, relating to small outlays, consumables and capital goods, and outsourced services or personnel). 74.3% of 2,264 public facilities with any financial autonomy were under direct government administration. Financial autonomy in public healthcare facilities appears to be linked to local political decisions and not necessarily to the facility's specific legal and administrative status. However, legal status displays distinct scopes of autonomy - those under direct government administration tend to be less autonomous, and those under private businesses more autonomous; 85.8% of the 45,394 private healthcare facilities reported that they were financially autonomous.

  2. The Practice of Sustainable Facilities Management: Design Sentiments and the Knowledge Chasm

    Directory of Open Access Journals (Sweden)

    Abbas Elmualim

    2009-12-01

    Full Text Available The construction industry with its nature of project delivery is very fragmented in terms of the various processes that encompass design, construction, facilities and assets management. Facilities managers are in the forefront of delivering sustainable assets management and hence further the venture for mitigation and adaptation to climate change. A questionnaire survey was conducted to establish perceptions, level of commitment and knowledge chasm in practising sustainable facilities management (FM. This has significant implications for sustainable design management, especially in a fragmented industry. The majority of questionnaire respondents indicated the importance of sustainability for their organization. Many of them stated that they reported on sustainability as part of their organization annual reporting with energy efficiency, recycling and waste reduction as the main concern for them. The overwhelming barrier for implementing sound, sustainable FM is the lack of consensual understanding and focus of individuals and organizations about sustainability. There is a knowledge chasm regarding practical information on delivering sustainable FM. Sustainability information asymmetry in design, construction and FM processes render any sustainable design as a sentiment and mere design aspiration. Skills and training provision, traditionally offered separately to designers and facilities managers, needs to be re-evaluated. Sustainability education and training should be developed to provide effective structures and processes to apply sustainability throughout the construction and FM industries coherently and as common practice. Published in the Journal AEDM - Volume 5, Numbers 1-2, 2009 , pp. 91-102(12

  3. Application of the management system for facilities and activities. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide supports the Safety Requirements publication on The Management System for Facilities and Activities. It provides generic guidance to aid in establishing, implementing, assessing and continually improving a management system that complies with the requirements established. In addition to this Safety Guide, there are a number of Safety Guides for specific technical areas. Together these provide all the guidance necessary for implementing these requirements. This publication supersedes Safety Series No. 50-SG-Q1-Q7 (1996). The guidance provided here may be used by organizations in the following ways: - To assist in the development of the management systems of organizations directly responsible for operating facilities and activities and providing services for: Nuclear facilities; Activities using sources of ionizing radiation; Radioactive waste management; The transport of radioactive material; Radiation protection activities; Any other practices or circumstances in which people may be exposed to radiation from naturally occurring or artificial sources; The regulation of such facilities and activities; - To assist in the development of the management systems of the relevant regulatory bodies; - By the operator, to specify to a supplier, via contractual documentation, any guidance of this Safety Guide that should be included in the supplier's management system for the supply and delivery of products

  4. Barriers and commitment of facilities management profession to the sustainability agenda

    Energy Technology Data Exchange (ETDEWEB)

    Elmualim, Abbas; Shockley, Daniel [ICRC, The School of Construction Management and Engineering University of Reading, Whiteknights, PO BOX 219 (United Kingdom); Valle, Roberto [ICRC, The School of Construction Management and Engineering University of Reading, Whiteknights, PO BOX 219 (United Kingdom); British Institute of Facilities Management (BIFM) (United Kingdom); Ludlow, Gordon [British Institute of Facilities Management (BIFM) (United Kingdom); Shah, Sunil [Jacobs, Reading (United Kingdom)

    2010-01-15

    The practice of sustainable facilities management (FM) is rapidly evolving with the increasing interest in the discourse of sustainable development. This paper examines a recent survey of the experiences of facilities managers in the rapidly growing and evolving industry in regard to the barriers and their commitment to the sustainability agenda. The survey results show that time constraints, lack of knowledge and lack of senior management commitment are the main barriers for the implementation of consistent and comprehensive sustainable FM policy and practice. The paper concludes that the diversity of the FM role and the traditional undervaluation of the contribution it makes to the success of organisations are partially responsible for lack of success in achieving sustainable facilities. The overwhelming barrier for sustainable FM practice is the lack of understanding, focus and commitment of senior executives in appreciating the opportunities, threats and need for strategic leadership and direction in driving essential change, and hence further the sustainability agenda. (author)

  5. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    Energy Technology Data Exchange (ETDEWEB)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the

  6. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    International Nuclear Information System (INIS)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-01-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning

  7. Life cycle cost estimation and systems analysis of Waste Management Facilities

    International Nuclear Information System (INIS)

    Shropshire, D.; Feizollahi, F.

    1995-01-01

    This paper presents general conclusions from application of a system cost analysis method developed by the United States Department of Energy (DOE), Waste Management Division (WM), Waste Management Facilities Costs Information (WMFCI) program. The WMFCI method has been used to assess the DOE complex-wide management of radioactive, hazardous, and mixed wastes. The Idaho Engineering Laboratory, along with its subcontractor Morrison Knudsen Corporation, has been responsible for developing and applying the WMFCI cost analysis method. The cost analyses are based on system planning level life-cycle costs. The costs for life-cycle waste management activities estimated by WMFCI range from bench-scale testing and developmental work needed to design and construct a facility, facility permitting and startup, operation and maintenance, to the final decontamination, decommissioning, and closure of the facility. For DOE complex-wide assessments, cost estimates have been developed at the treatment, storage, and disposal module level and rolled up for each DOE installation. Discussions include conclusions reached by studies covering complex-wide consolidation of treatment, storage, and disposal facilities, system cost modeling, system costs sensitivity, system cost optimization, and the integration of WM waste with the environmental restoration and decontamination and decommissioning secondary wastes

  8. 41 CFR 102-72.45 - What are the different types of delegations related to facility management?

    Science.gov (United States)

    2010-07-01

    ... different types of delegations related to facility management? The principal types of delegations involved... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are the different types of delegations related to facility management? 102-72.45 Section 102-72.45 Public Contracts and...

  9. Kasseler symposium on energy-related system engineering: renewable energy sources and rational energy use. Proceedings '98; Kasseler Symposium Energie-Systemtechnik: Erneuerbare Energien und Rationelle Energieverwendung. Tagungsband '98

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R. [comp.

    1999-07-01

    The ISET ended the 10th anniversary year since its foundation in 1998 with already the third Kassel symposium on energy-related system engineering: renewable energy sources and rational energy use. Covering several special subjects talks were given about the topics modelling and simulation in the fields of wind energy, photovoltaic systems, hybrid systems or sewage water treatment. The keen interest of the participants shows the importance that modelling of conditions or processes has gained in the meantime in the field of system engineering of renewable energy sources. The core of each simulation is the integration of differential equations, which describe the system. Properties of the system can be easily varied and affects on the overall system can be easily investigated. Critical conditions can be discovered and be taken into consideration at the hardware engineering. Mistakes in terms of component design can be avoided and engineering cost can be reduced considerably. The present conference book gives an ideal overview of the topics discussed during the symposium. (orig.) [German] Sein Jubilaeumsjahr zum zehnjaehrigen Bestehen beschloss das ISET 1998 mit dem nun bereits 3. Kasseler Symposium Energie-Systemtechnik - Erneuerbare Energien und Rationelle Energieverwendung. Fachgebietsuebergreifend wurde zu den Themen Modellbildung und Simulation in Bereichen wie Windenergie, Photovoltaik, Hybridsysteme oder Abwasserbehandlung referiert. Das rege Interesse der Teilnehmer unterstreicht die Bedeutung, die die Modellierung von Zustaenden oder Prozessen in der Systementwicklung bei den erneuerbaren Energien inzwischen gewonnen hat. Der Kern einer jeden Simulation ist die Integration der systembeschreibenden Differentialgleichungen. Eigenschaften des Systems koennen in einfacher Weise variiert und die Auswirkungen auf das Gesamtsystem untersucht werden. Kritische Zustaende koennen entdeckt und in der Entwicklung der Hardware entsprechend beruecksichtigt werden. Fehler

  10. Urinary tract infections in extended care facilities: preventive management strategies.

    Science.gov (United States)

    Regal, Randolph E; Pham, Co Q D; Bostwick, Thomas R

    2006-05-01

    To provide health care professionals with an overview of interventions that may be done to reduce the incidence of urinary tract infections (UTIs) in elderly patients, especially those residing in extended care facilities. A Medline search of the English literature was performed from 1980 to January 2006 to find literature relevant to urinary tract prophylaxis. Further references were hand-searched from relevant sources. When assessing the effectiveness of various clinical interventions for reducing the incidence of UTIs in the elderly, preference was given to more recent, double-blind, placebo-controlled randomized studies, but studies of less robust design also were included in the discussions when the former were lacking. Where possible, recent publications were favored over older studies. References were all reviewed by the authors and chosen to present key citations. Data selection was prioritized to address specific subtopics. Though still frequent in occurrence and quite costly in terms of morbidity, mortality, and cost to the health care system, numerous measures may be taken to ameliorate the incidence of UTIs in elderly, institutionalized residents. First and foremost, establishing and adhering to good infection-control practices by health care givers and minimizing the use of indwelling catheters are essential. Adequate staffing and training are germane to this effort. Reasonably well-designed clinical studies also give credence to the use of topical estrogens and lactobacillus "probiotics" for female subgroups and cranberry juice for a wider array of patients. Vitamin C is of no proven benefit. With regard to antibiotics, with the relative paucity of data available for this patient population, concerns for resistance proliferation must be balanced against perceived gains in UTI reduction.

  11. Design Knowledge Management across Nuclear Facility Life-cycle

    International Nuclear Information System (INIS)

    Kolomiiets, V.

    2016-01-01

    Full text: Design knowledge (DK) of any nuclear technology system starts to develop as soon as a design organization and/or research organizations begin the conceptual design of a new plant, and continues throughout the design process. From the very beginning of the project life cycle, it is essential to highlight the importance of various stakeholder organizations (probably these need to be listed) and their different perspectives, needs and involvement in managing design knowledge. It is also important to recognize their respective roles and responsibilities in the various and necessary processes of design knowledge generation, capture, transfer, retention, and utilization. During the phases of design, licensing, manufacturing, construction, commissioning and throughout operations, refurbishment and decommissioning, design knowledge must be maintained and managed such that it is accessible and available and can be utilized to support organizational needs as and when required.. Design knowledge encompasses a wide scope and a tremendous amount of detail. It is multi-disciplinary, complex, and highly inter-dependent. It includes knowledge of the original design assumptions, constraints, rationale, and requirements. (author

  12. Practical considerations for disaster preparedness and continuity management in research facilities.

    Science.gov (United States)

    Mortell, Norman; Nicholls, Sam

    2013-10-01

    Many research facility managers, veterinarians and directors are familiar with the principles of Good Laboratory Practice, requirements of the Association for Assessment and Accreditation of Laboratory Animal Care International, tenets of biosecurity and standards of animal welfare and housing but may be less familiar with the ideas of business continuity. But business continuity considerations are as applicable to research facilities as they are to other institutions. The authors discuss how business continuity principles can be applied in the research context and propose that such application, or 'research continuity management,' enables a focused but wide-reaching approach to disaster preparedness.

  13. The European HST Science Data Archive. [and Data Management Facility (DMF)

    Science.gov (United States)

    Pasian, F.; Pirenne, B.; Albrecht, R.; Russo, G.

    1993-01-01

    The paper describes the European HST Science Data Archive. Particular attention is given to the flow from the HST spacecraft to the Science Data Archive at the Space Telescope European Coordinating Facility (ST-ECF); the archiving system at the ST-ECF, including the hardware and software system structure; the operations at the ST-ECF and differences with the Data Management Facility; and the current developments. A diagram of the logical structure and data flow of the system managing the European HST Science Data Archive is included.

  14. Systems engineering applied to integrated safety management for high consequence facilities

    International Nuclear Information System (INIS)

    Barter, R; Morais, B.

    1998-01-01

    Integrated Safety Management is a concept that is being actively promoted by the U.S. Department of Energy as a means of assuring safe operation of its facilities. The concept involves the integration of safety precepts into work planning rather than adjusting for safe operations after defining the work activity. The system engineering techniques used to design an integrated safety management system for a high consequence research facility are described. An example is given to show how the concepts evolved with the system design

  15. Risk management for existing energy facilities. A global approach to numerical safety goals

    International Nuclear Information System (INIS)

    Pate-Cornell, M.E.

    1993-01-01

    This paper presents a structured set of numerical safety goals for risk management of existing energy facilities. The rationale behind these safety goals is based on principles of equity and economic efficiency. Some of the issues involved when using probabilistic risk analyses results for safety decisions are discussed. A brief review of existing safety targets and open-quotes floating numbersclose quotes is presented, and a set of safety goals for industrial risk management is proposed. Relaxation of these standards for existing facilities, the relevance of the lifetime of the plant, the treatment of uncertainties, and problems of failure dependencies are discussed briefly. 17 refs., 1 fig

  16. Tailings management best practice: a case study of the McClean Lake JEB Tailings Management Facility

    International Nuclear Information System (INIS)

    Tremblay, M.A.J.; Rowson, J.

    2005-01-01

    COGEMA Resources Inc. (which is part of the Areva Group) is a Canadian company with its head office in Saskatoon, Saskatchewan. It owns and operates mining and milling facilities in Northern Saskatchewan, which produce uranium concentrate. McClean Lake Operation commenced production in 1999 and its tailings management facility represents the state of the art for tailings management in the uranium industry in Canada. Tailings disposal has the potential to cause effects in the surrounding receiving environment primarily through migration of soluble constituents from the facility to surface water receptors. In-pit disposal or mill tailings has become the standard in the uranium mining industry in Northern Saskatchewan. This method or tailings management demonstrates advances in terms of worker radiation protection and containment of soluble constituents both during operations and into the long term. Sub-aqueous deposition of tailings protects personnel from exposure to radiation and airborne emissions and prevents freezing of tailings, which can hinder consolidation. The continuous inflow of groundwater to the facility is achieved during operations, through control of water levels within the facility. This ensures hydrodynamic containment, which prevents migration of soluble radionuclides and heavy metals into the surrounding aquifer during operations. The environmental performance of the decommissioned facility depends upon the rate of release of contaminants to the receiving environment. The rate of constituent loading to the receiving environment will ultimately be governed by the concentrations of soluble constituents within the tailings mass, the mechanisms for release from the tailings to the surrounding groundwater system, and transport of constituents within the groundwater pathway to the receiving environment. The tailings preparation process was designed to convert arsenic into a stable form to reduce soluble concentrations within the tailings mass. The

  17. Low and intermediate radioactive waste management at OPG's western waste management facility

    International Nuclear Information System (INIS)

    Ellsworth, M.

    2006-01-01

    'Full text:' This paper will discuss low and intermediate level radioactive waste operations at Ontario Power Generation's Western Waste Management Facility. The facility has been in operation since 1974 and receives about 5000 - 7000 m 3 of low and intermediate level radioactive waste per year from Ontario's nuclear power plants. Low-level radioactive waste is received at the Waste Volume Reduction Building for possible volume reduction before it is placed into storage. Waste may be volume reduced by one of two methods at the WWMF, through either compaction or incineration. The Compactor is capable of reducing the volume of waste by a factor up to 5:1 for most waste. The Radioactive Incinerator is capable of volume reducing incinerable material by a factor up to 70:1. After processing, low-level waste is stored in above ground concrete warehouse-like structures called Low Level Storage Buildings. Low-level waste that cannot be volume reduced is placed into steel containers and stored in the Low Level Storage Buildings. Intermediate level waste is stored mainly in steel lined concrete storage structures. WWMF has both above ground and in-ground storage structures for intermediate level waste. Intermediate level waste consists primarily of resin and filters used to keep reactor water systems clean, and some used reactor core components. All low and intermediate level waste storage at the WWMF is considered interim storage and the material can be retrieved for future disposal or permanent storage. Current improvement initiatives include the installation of a new radioactive incinerator and a shredder/bagger. The new incinerator is a continuous feed system that is expected to achieve volume reduction rates up to 70:1, while incinerating higher volumes of waste than its predecessor. The shredder will break down large/bulky items into a form, which can be processed for further volume reduction. A Refurbishment Waste Storage Project is underway in anticipation of the

  18. Assessing potential health hazards from radiation generated at the tailings management facilities of the Prydniprovsky chemical plant

    International Nuclear Information System (INIS)

    Kovalenko, G.; Durasova, N.

    2015-01-01

    The study has involved the assessment of the tailings management facilities operated at the Prydniprovsky Chemical Plant. The authors have estimated individual and collective exposure doses that may be caused by the emissions of radon, radon decay products and radioactive dust, for each human settlement located within the area of impact of the tailings management facilities. These tailings management facilities have been ranked to describe their relative hazard based on their estimated contribution to the collective exposure dose levels and associated risks

  19. Innovation Insights in the Danish Facility Management Sector

    DEFF Research Database (Denmark)

    Scupola, Ada

    Management (FM) has established itself as a key service sector, with a diverse and highly competitive market of FM contractors, in-house FM teams, FM suppliers, FM consultants, and professional FM institutions. Traditionally, innovation processes in service firms have often been characterised as being....... Results: The results show that for big service providers, innovation is a strategic activity and is conducted as a planned and systematic process. For FM service customer with their own FM department, the results are mixed: some of the FM departments have innovation as a strategic priority and clear...... innovation strategies while other FM departments do innovate without being aware that innovation is taking place. The “ICT Supplier/Consultants” are found to be innovative and their innovations are both driven by the user needs and by the desire to improve their competitiveness. Practical Implications...

  20. Capability challenges of facility management (FM) personnel toward sustainability agenda

    Science.gov (United States)

    Halim, Ahmad Ilyas Ahmad; Sarpin, Norliana; Kasim, Narimah Binti; Zainal, Rozlin Binti

    2017-10-01

    The industries business play a significant role to contribute toward economic growth in develop and developing country. However, they always face serious problems such as time overrun, waste generation, and cost overrun during their operation and maintenance. Traditional practice is found unable to control that situation. These challenges accent the need for practitioners to rethink and improve their process management. This show that industries business has major potential when applying sustainable development by focusing on three pillars (economic, environment, and social). By adopting sustainability, it can reduce energy consumption and waste, while increasing productivity, financial return and corporate standing in community. FM personnel are most suitable position to lead organizations toward sustainability implementation. However, lack of skill and capability among FM personnel to achieve sustainable goal had become barrier that need to overcome. This paper focus to identify capability challenges of FM personnel toward sustainability. A multiple researches were conducted and data were gathered through literature review from previous studies.

  1. Innovation in Services and Stakeholder Interactions: Cases from Facilities Management

    DEFF Research Database (Denmark)

    Nardelli, Giulia

    Services are increasingly becoming a crucial driver of the economies of developed countries. At the same time, innovation is not only recommended, but also required, to ensure survival and growth of organisations, within the manufacturing as well as the service sectors. Given globalisation...... and the development of information and communication technologies, more and more heterogeneous parties are and might be involved in innovation processes; meaning that both manufacturers and service providers shall take into consideration a more diverse set of needs and expectations when developing new offerings....... Within the service context, specifically, empirical evidence and existing research suggest that interactions between stakeholders are an important element of innovation processes. Therefore, when managing and studying innovation in the service context, interactions between stakeholders should be taken...

  2. CPP-603 Underwater Fuel Storage Facility Site Integrated Stabilization Management Plan (SISMP), Volume I

    International Nuclear Information System (INIS)

    Denney, R.D.

    1995-10-01

    The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been constructed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 to the Secretary of Energy regarding an improved schedule for remediation in the Defense Nuclear Facilities Complex. As described in the DNFSB Recommendation 94-1 Implementation Plan, issued February 28, 1995, an INEL Spent Nuclear Fuel Management Plan is currently under development to direct the placement of SNF currently in existing INEL facilities into interim storage, and to address the coordination of intrasite SNF movements with new receipts and intersite transfers that were identified in the DOE SNF Programmatic and INEL Environmental Restoration and Waste Management Environmental Impact Statement Record, of Decision. This SISMP will be a subset of the INEL Spent Nuclear Fuel Management Plan and the activities described are being coordinated with other INEL SNF management activities. The CPP-603 relocation activities have been assigned a high priority so that established milestones will be meet, but there will be some cases where other activities will take precedence in utilization of available resources. The Draft INEL Site Integrated Stabilization Management Plan (SISMP), INEL-94/0279, Draft Rev. 2, dated March 10, 1995, is being superseded by the INEL Spent Nuclear Fuel Management Plan and this CPP-603 specific SISMP

  3. Waste management facilities cost information: System cost model product description. Revision 2

    International Nuclear Information System (INIS)

    Lundeen, A.S.; Hsu, K.M.; Shropshire, D.E.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities

  4. Conjunctive operation of river facilities for integrated water resources management in Korea

    Directory of Open Access Journals (Sweden)

    H. Kim

    2016-10-01

    Full Text Available With the increasing trend of water-related disasters such as floods and droughts resulting from climate change, the integrated management of water resources is gaining importance recently. Korea has worked towards preventing disasters caused by floods and droughts, managing water resources efficiently through the coordinated operation of river facilities such as dams, weirs, and agricultural reservoirs. This has been pursued to enable everyone to enjoy the benefits inherent to the utilization of water resources, by preserving functional rivers, improving their utility and reducing the degradation of water quality caused by floods and droughts. At the same time, coordinated activities are being conducted in multi-purpose dams, hydro-power dams, weirs, agricultural reservoirs and water use facilities (featuring a daily water intake of over 100 000 m3 day−1 with the purpose of monitoring the management of such facilities. This is being done to ensure the protection of public interest without acting as an obstacle to sound water management practices. During Flood Season, each facilities contain flood control capacity by limited operating level which determined by the Regulation Council in advance. Dam flood discharge decisions are approved through the flood forecasting and management of Flood Control Office due to minimize flood damage for both upstream and downstream. The operational plan is implemented through the council's predetermination while dry season for adequate quantity and distribution of water.

  5. Development of a standardized transfusion ratio as a metric for evaluating dialysis facility anemia management practices.

    Science.gov (United States)

    Liu, Jiannong; Li, Suying; Gilbertson, David T; Monda, Keri L; Bradbury, Brian D; Collins, Allan J

    2014-10-01

    Because transfusion avoidance has been the cornerstone of anemia treatment for patients with kidney disease, direct measurement of red blood cell transfusion use to assess dialysis facility anemia management performance is reasonable. We aimed to explore methods for estimating facility-level standardized transfusion ratios (STfRs) to assess provider anemia treatment practices. Retrospective cohort study. Point prevalent US hemodialysis patients on January 1, 2009, with Medicare as primary payer and dialysis duration of 90 days or longer were included (n = 223,901). All dialysis facilities with eligible patients were included (n = 5,345). Dialysis facility assignment. Receiving a red blood cell transfusion in the inpatient or outpatient setting. We evaluated 3 approaches for estimating STfR: ratio of observed to expected numbers of transfusions (STfR(obs)), a Bayesian approach (STfR(Bayes)), and a modified version of the Bayesian approach (STfR(modBayes)). The overall national transfusion rate in 2009 was 23.2 per 100 patient-years. Our model for predicting the expected number of transfusions performed well. For large facilities, all 3 STfRs worked well. However, for small facilities, while the STfR(modBayes) worked well, STfR(obs) values demonstrated instability and the STfR(Bayes) may produce more bias. Administration of transfusions to dialysis patients reflects medical practice both within and outside the dialysis unit. Some transfusions may be deemed unavoidable and transfusion practices are subject to considerable regional variation. Development of an STfR metric is feasible and reasonable for assessing anemia treatment at dialysis facilities. The STfR(obs) is simple to calculate and works well for larger dialysis facilities. The STfR(modBayes) is more analytically complex, but facilitates comparisons across all dialysis facilities, including small facilities. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  6. Using Tools of Strategic Management in Medical Facilities of Lublin Region

    Directory of Open Access Journals (Sweden)

    Jaworzynska Magdalena

    2017-06-01

    Full Text Available The purpose of this article is to evaluate the use of tools of strategic management in hospitals in Lublin region. The study was conducted among 14 medical entities from the area of Lublin Voivodeship. The survey was addressed to economic directors or chief accountants of health care facilities and sent by post. The questionnaire was also helpful in conducting an in-depth interview as it provided a required structure. As part of the interviews with managers of health care facilities, information beyond the questionnaire was acquired, e.g. about the mission. According to studies, most health care facilities develop strategic plans (71.4%. For 21.4% of the studied facilities, the strategic plan is known mainly to management. In contrast, 28.6% of entities do not have a strategic plan. The presented results of the research can increase the effectiveness of activities in each area of the health care facility, continuous process improvement and rapid response to changes in the environment.

  7. Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-04-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  8. Profile of medical waste management in two healthcare facilities in Lagos, Nigeria: a case study.

    Science.gov (United States)

    Idowu, Ibijoke; Alo, Babajide; Atherton, William; Al Khaddar, Rafid

    2013-05-01

    Proper management and safe disposal of medical waste (MW) is vital in the reduction of infection or illness through contact with discarded material and in the prevention of environmental contamination in hospital facilities. The management practices for MW in selected healthcare facilities in Lagos, Nigeria were assessed. The cross-sectional study involved the use of questionnaires, in-depth interviews, focused group discussions and participant observation strategies. It also involved the collection, segregation, identification and weighing of waste types from wards and units in the representative facilities in Lagos, Nigeria, for qualitative and quantitative analysis of the MW streams. The findings indicated that the selected Nigerian healthcare facilities were lacking in the adoption of sound MW management (MWM) practices. The average MW ranged from 0.01 kg/bed/day to 3.98 kg/bed/day. Moreover, about 30% of the domestic waste from the healthcare facilities consisted of MW due to inappropriate co-disposal practices. Multiple linear regression was applied to predict the volume of waste generated giving a correlation coefficient (R(2)) value of 0.99 confirming a good fit of the data. This study revealed that the current MWM practices and strategies in Lagos are weak, and suggests an urgent need for review to achieve vital reversals in the current trends.

  9. International conference on knowledge management in nuclear facilities. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    In recent years new issues have emerged in Member States, including ageing facilities and personnel, nuclear phase-out policies, the expectation of nuclear growth in some regions and the objective to further improve the economic competitiveness of nuclear energy while maintaining a high level of safety. Awareness of the importance of nuclear knowledge management in addressing the challenges the industry is facing has grown significantly, both in the industry and in regulatory authorities, and a large number of projects are under way. Knowledge management is becoming an important element of the organizational behaviour of the nuclear industry. In 2002, the IAEA General Conference adopted a new resolution on Nuclear Knowledge, emphasizing the importance of nuclear knowledge management. The resolution was reiterated in subsequent years. This conference is organized in response to those resolutions, also following the first conference on Nuclear Knowledge Management - Strategies, Information Management and Human Resource Development, organized by the IAEA in 2004 in France. The objectives of the conference are to: - Take stock of the recent developments in nuclear knowledge management; - Demonstrate and discuss the benefits of nuclear knowledge management in promoting excellence in operation and safety of nuclear facilities; - Promote the use of nuclear knowledge management in the nuclear industry; - Provide insights and recommendations to the nuclear community. The conference will address decision makers and professionals in the nuclear industry, including in particular all nuclear facilities in all phases of their life cycle, and from regulatory organizations, governments, academia, vendors and other bodies concerned with the topic. The conference will start with a policy forum: Policy Forum: Status, Strategic Perspectives and Key Issues Leaders from nuclear industry, governmental organizations, regulators, research institutes and international organizations will

  10. Supporting Facility Management Processes through End-Users’ Integration and Coordinated BIM-GIS Technologies

    Directory of Open Access Journals (Sweden)

    Claudio Mirarchi

    2018-05-01

    Full Text Available The integration of facility management and building information modelling (BIM is an innovative and critical undertaking process to support facility maintenance and management. Even though recent research has proposed various methods and performed an increasing number of case studies, there are still issues of communication processes to be addressed. This paper presents a theoretical framework for digital systems integration of virtual models and smart technologies. Based on the comprehensive analysis of existing technologies for indoor localization, a new workflow is defined and designed, and it is utilized in a practical case study to test the model performance. In the new workflow, a facility management supporting platform is proposed and characterized, featuring indoor positioning systems to allow end users to send geo-referenced reports to central virtual models. In addition, system requirements, information technology (IT architecture and application procedures are presented. Results show that the integration of end users in the maintenance processes through smart and easy tools can overcome the existing limits of barcode systems and building management systems for failure localization. The proposed framework offers several advantages. First, it allows the identification of every element of an asset including wide physical building elements (walls, floors, etc. without requiring a prior mapping. Second, the entire cycle of maintenance activities is managed through a unique integrated system including the territorial dimension. Third, data are collected in a standard structure for future uses. Furthermore, the integration of the process in a centralized BIM-GIS (geographical information system information management system admit a scalable representation of the information supporting facility management processes in terms of assets and supply chain management and monitoring from a spatial perspective.

  11. M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1

    International Nuclear Information System (INIS)

    Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

    1994-05-01

    This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters

  12. Emergency Preparedness Hazards Assessment for solid waste management facilities in E-area not previously evaluated

    International Nuclear Information System (INIS)

    Hadlock, D.J.

    1999-01-01

    This report documents the facility Emergency Preparedness Hazards Assessment (EPHA) for the Solid Waste Management Department (SWMD) activities located on the Department of Energy (DOE) Savannah River Site (SRS) within E Area that are not described in the EPHAs for Mixed Hazardous Waste storage, the TRU Waste Storage Pads or the E-Area Vaults. The hazards assessment is intended to identify and analyze those hazards that are significant enough to warrant consideration in the SWMD operational emergency management program

  13. ORNL Surplus Facilities Management Program maintenance and surveillance plan for fiscal year 1984

    International Nuclear Information System (INIS)

    Coobs, J.H.; Myrick, T.E.

    1986-10-01

    The Surplus Facilities Management Program (SFMP) at Oak Ridge National Laboratory (ORNL) is part of the Department of Energy's (DOE) National SFMP, administered by the Richland Operations Office. The purpose and objectives of the national program are set forth in the current SFMP Program Plan and include (1) the maintenance and surveillance of facilities awaiting decommissioning, (2) planning for the orderly decommissioning of these facilities, and (3) implementation of a program to accomplish the facility disposition in a safe, cost-effective, and timely manner. As outlined in the national program plan, participating SFMP contractors are required to prepare a formal plan that documents the maintenance and surveillance (M and S) programs established for each site. This report has been prepared to provide this documentation for those facilties included in the ORNL SFMP

  14. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  15. Economic analysis of including an MRS facility in the waste management system

    International Nuclear Information System (INIS)

    Williams, J.W.; Conner, C.; Leiter, A.J.; Ching, E.

    1992-01-01

    The MRS System Study Summary Report (System Study) in June 1989 concluded that an MRS facility would provide early spent fuel acceptance as well as flexibility for the waste management system. However, these advantages would be offset by an increase in the total system cost (i.e., total cost to the ratepayer) ranging from $1.3 billion to about $2.8 billion depending on the configuration of the waste management system. This paper discusses this new investigation which will show that, in addition to the advantages of an MRS facility described above, a basic (i.e., store-only) MRS facility may result in a cost savings to the total system, primarily due to the inclusion in the analysis of additional at-reactor operating costs for maintaining shutdown reactor sites

  16. The Origin and Constitution of Facilities Management as an integrated corporate fuction

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2008-01-01

    Purpose – To understand how facilities management (FM) has evolved over time in a complex public corporation from internal functions of building operation and building client and the related service functions to become an integrated corporate function. Design/methodology/approach – The paper...... is based on results from a research project on space strategies and building values, which included a major longitudinal case study of the development of facilities for the Danish Broadcasting Corporation (DR) over time. The research presented here included literature studies, archive studies...... and a fully integrated corporate Facilities Management function are established. Research limitations/implications – The paper presents empirical evidence of the historical development ofFMfrom one case and provides a deeper understanding of the integration processes that are crucial to FM and which can...

  17. Progress and problems in the Formerly Utilized Sites Remedial Action Program and Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Fiore, J.J.; Turi, G.P.

    1988-01-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to identify, evaluate, and as appropriate, conduct remedial actions at sites used in the early years of nuclear energy development by the Manhattan Engineer District and the Atomic Energy Commission (AEC). This program currently has 29 sites and is evaluating 350 other sites for possible inclusion in the program. Another remedial action program in the Department of Energy's (DOE) Division of Facility and Site Decommissioning Projects is the Surplus Facilities Management Program (SFMP). The SFMP involves the safe management, decontamination and disposal of surplus DOE contaminated facilities which were not related to defense activities. There are currently 33 projects at 15 different sites in the program. These two programs have made steady progress over the last 10 or so years in cleaning up sites so that they can be reused or released for unrestricted use. Work has been completed at 8 of the FUSRAP sites and three of the SFMP sites

  18. System Configuration Management Implementation Procedure for the Cold Vacuum Drying Facility Monitoring and Control System

    International Nuclear Information System (INIS)

    ANGLESEY, M.O.

    2000-01-01

    The purpose of this document is to establish the System Configuration Management Implementation Procedure (SCMIP) for the Cold Vacuum Drying Facility (CVDF) Monitoring and Control System (MCS). This procedure provides configuration management for the process control system. The process control system consists of equipment hardware and software that controls and monitors the instrumentation and equipment associated with the CVDF processes. Refer to SNF-3090, Cold Vacuum Drying Facility Monitoring and Control System Design Description, HNF-3553, Annex B, Safety Analysis Report for the Cold Vacuum Drying Facility, and AP-CM-6-037-00, SNF Project Process Automation Software and Equipment Configuration. This SCMIP identifies and defines the system configuration items in the control system, provides configuration control throughout the system life cycle, provides configuration status accounting, physical protection and control, and verifies the completeness and correctness of these items

  19. Evaluating malaria case management at public health facilities in two provinces in Angola.

    Science.gov (United States)

    Plucinski, Mateusz M; Ferreira, Manzambi; Ferreira, Carolina Miguel; Burns, Jordan; Gaparayi, Patrick; João, Lubaki; da Costa, Olinda; Gill, Parambir; Samutondo, Claudete; Quivinja, Joltim; Mbounga, Eliane; de León, Gabriel Ponce; Halsey, Eric S; Dimbu, Pedro Rafael; Fortes, Filomeno

    2017-05-03

    Malaria accounts for the largest portion of healthcare demand in Angola. A pillar of malaria control in Angola is the appropriate management of malaria illness, including testing of suspect cases with rapid diagnostic tests (RDTs) and treatment of confirmed cases with artemisinin-based combination therapy (ACT). Periodic systematic evaluations of malaria case management are recommended to measure health facility readiness and adherence to national case management guidelines. Cross-sectional health facility surveys were performed in low-transmission Huambo and high-transmission Uíge Provinces in early 2016. In each province, 45 health facilities were randomly selected from among all public health facilities stratified by level of care. Survey teams performed inventories of malaria commodities and conducted exit interviews and re-examinations, including RDT testing, of a random selection of all patients completing outpatient consultations. Key health facility readiness and case management indicators were calculated adjusting for the cluster sampling design and utilization. Availability of RDTs or microscopy on the day of the survey was 71% (54-83) in Huambo and 85% (67-94) in Uíge. At least one unit dose pack of one formulation of an ACT (usually artemether-lumefantrine) was available in 83% (66-92) of health facilities in Huambo and 79% (61-90) of health facilities in Uíge. Testing rates of suspect malaria cases in Huambo were 30% (23-38) versus 69% (53-81) in Uíge. Overall, 28% (13-49) of patients with uncomplicated malaria, as determined during the re-examination, were appropriately treated with an ACT with the correct dose in Huambo, compared to 60% (42-75) in Uíge. Incorrect case management of suspect malaria cases was associated with lack of healthcare worker training in Huambo and ACT stock-outs in Uíge. The results reveal important differences between provinces. Despite similar availability of testing and ACT, testing and treatment rates were lower in

  20. Spare parts management for nuclear power generation facilities

    Science.gov (United States)

    Scala, Natalie Michele

    With deregulation, utilities in the power sector face a much more urgent imperative to emphasize cost efficiencies as compared to the days of regulation. One major opportunity for cost savings is through reductions in spare parts inventories. Most utilities are accustomed to carrying large volumes of expensive, relatively slow-moving parts because of a high degree of risk-averseness. This attitude towards risk is rooted in the days of regulation. Under regulation, companies recovered capital inventory costs by incorporating them into the base rate charged to their customers. In a deregulated environment, cost recovery is no longer guaranteed. Companies must therefore reexamine their risk profile and develop policies for spare parts inventory that are appropriate for a competitive business environment. This research studies the spare parts inventory management problem in the context of electric utilities, with a focus on nuclear power. It addresses three issues related to this problem: criticality, risk, and policy. With respect to criticality and risk, a methodology is presented that incorporates the use of influence diagrams and the Analytic Hierarchy Process (AHP). A new method is developed for group aggregation in the AHP when Saaty and Vargas' (2007) dispersion test fails and decision makers are unwilling or unable to revise their judgments. With respect to policy, a quantitative model that ranks the importance of keeping a part in inventory and recommends a corresponding stocking policy through the use of numerical simulation is developed. This methodology and its corresponding models will enable utilities that have transitioned from a regulated to a deregulated environment become more competitive in their operations while maintaining safety and reliability standards. Furthermore, the methodology developed is general enough so that other utility plants, especially those in the nuclear sector, will be able to use this approach. In addition to regulated

  1. Analyzing the impact of intermodal facilities to the design and management of biofuels supply chain.

    Science.gov (United States)

    2010-01-01

    This paper analyzes the impact that an intermodal facility has on location and transportation : decisions for biofuel production plants. Location decisions impact the management of the in-bound and out-bound logistics of a plant. We model this supply...

  2. Cost Implications of an Interim Storage Facility in the Waste Management System

    Energy Technology Data Exchange (ETDEWEB)

    Jarrell, Joshua J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joseph, III, Robert Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petersen, Gordon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nutt, Mark [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, Joe [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cotton, Thomas [Complex Systems Group, Bozeman, MT (United States)

    2016-09-01

    This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.

  3. How Can Facilities Management Add Value To Organisations As Well As To Society?

    NARCIS (Netherlands)

    Jensen, P.A.; Sarasoja, A.L.; van der Voordt, D.J.M.; Coenen, C.

    2013-01-01

    The purpose of this paper is to present lessons learnt from a 3 year collaborative research project on the added value of Facilities Management (FM) involving institutions in five European countries. The starting point was the so-called FM Value Map developed earlier by the leader of the research

  4. Added value of facility management in institutes for intellectually disabled residents (with a severe behavioural disorder)

    NARCIS (Netherlands)

    Daatselaar, Rineke; Schaap, Mark; Mobach, Mark P.; Alexander, K.

    2013-01-01

    Within Facility Management (FM) the connection between organisation and space is a well-established topic. This study was made in the context of discovery and explored to what extent changes in organisation and space can contribute to the quality of life of intellectually disabled residents with a

  5. Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-15

    This guide provides federal facility managers with an overview of the energy savings potential of wireless lighting occupancy sensors for various room types, cost considerations, key steps to successful installation of wireless sensors, pros and cons of various technology options, light source considerations, and codes and standards.

  6. Assessment of Behavior Management and Behavioral Interventions in State Child Welfare Facilities

    Science.gov (United States)

    Wong, Stephen E.

    2006-01-01

    Official state program reviews of 204 substitute care facilities were assessed for the types of behavior management and behavioral interventions used and the extent to which agency practices were consistent with learning theory principles. Data were also collected on the type and number of professional staff available to implement and oversee…

  7. BIM Guidelines Inform Facilities Management Databases: A Case Study over Time

    Directory of Open Access Journals (Sweden)

    Karen Kensek

    2015-08-01

    Full Text Available A building information model (BIM contains data that can be accessed and exported for other uses during the lifetime of the building especially for facilities management (FM and operations. Working under the guidance of well-designed BIM guidelines to insure completeness and compatibility with FM software, architects and contractors can deliver an information rich data model that is valuable to the client. Large owners such as universities often provide these detailed guidelines and deliverable requirements to their building teams. Investigation of the University of Southern California (USC Facilities Management Service’s (FMS website showed a detailed plan including standards, file names, parameter lists, and other requirements of BIM data, which were specifically designated for facilities management use, as deliverables on new construction projects. Three critical details were also unearthed in the reading of these documents: Revit was the default BIM software; COBie was adapted to help meet facilities management goals; and EcoDomus provided a display of the collected data viewed through Navisworks. Published accounts about the Cinema Arts Complex developed with and under these guidelines reported positive results. Further examination with new projects underway reveal the rapidly changing relational database landscape evident in the new USC “Project Record Revit Requirement Execution Plan (PRxP”.

  8. Innovation-system foresight in practice: A Nordic facilities management foresight

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Andersen, Allan Dahl; Jensen, Per Anker

    2012-01-01

    foresight processes. The paper originates in a practical foresight project in the Nordic fa-cilities management (FM) industry. The goal of the foresight project was to identify possible futures of the FM sector in the Nordic countries (Denmark, Finland, Norway, and Sweden) and, based on the findings...

  9. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-26

    This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

  10. 77 FR 31017 - Office of Facilities Management and Program Services; Information Collection; Background...

    Science.gov (United States)

    2012-05-24

    ... 3090-0287, Background Investigations for Child Care Workers. Instructions: Please submit comments only... request for review and approval for background check investigations of child care workers, form GSA 176C... Child Care Workers AGENCY: Office of Facilities Management and Program Services, Public Building Service...

  11. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    Science.gov (United States)

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  12. Barriers to Optimal Pain Management in Aged Care Facilities: An Australian Qualitative Study.

    Science.gov (United States)

    Veal, Felicity; Williams, Mackenzie; Bereznicki, Luke; Cummings, Elizabeth; Thompson, Angus; Peterson, Gregory; Winzenberg, Tania

    2018-04-01

    Up to 80% of residents in aged care facilities (ACFs) experience pain, which is often suboptimally managed. The purpose of this study was to characterize pain management in ACFs and identify the barriers to optimal pain management. This exploratory descriptive qualitative study used semistructured interviews in five Southern Tasmania, Australian ACFs. Interviewees included 23 staff members (18 nurses and 5 facility managers) and were conducted from September to November 2015. Interviews included questions about how pain was measured or assessed, what happened if pain was identified, barriers to pain management, and potential ways to overcome these barriers. Interviewees noted that there were no formal requirements regarding pain assessment at the ACFs reviewed; however, pain was often informally assessed. Staff noted the importance of adequate pain management for the residents' quality of life and employed both nonpharmacologic and pharmacologic techniques to reduce pain when identified. The barriers to optimal pain management included difficulty identifying and assessing pain, residents' resistance to reporting pain and/or taking medications, and communication barriers between the nursing staff and GPs. Staff interviewed were dedicated to managing residents' pain effectively; however, actions in a number of areas could improve resident outcomes. These include a more consistent approach to documenting pain in residents' progress notes and improving nurse-GP communications to ensure that new or escalating pain is identified and expedient changes can be made to the resident's management. Additionally, resident, family, nurse, and carer education, conducted within the facilities on a regular basis, could help improve the pain management of residents. Copyright © 2017. Published by Elsevier Inc.

  13. Forum Guide to Facilities Information Management: A Resource for State and Local Education Agencies. NFES 2012-808

    Science.gov (United States)

    National Forum on Education Statistics, 2012

    2012-01-01

    Safe and secure facilities that foster learning are crucial to providing quality education services, and developing and maintaining these facilities requires considerable resources and organization. Facility information systems allow education organizations to collect and manage data that can be used to inform and guide decisionmaking about the…

  14. Facilities management: Structuring a body of knowledge for continuing and tertiary education in South Africa

    Directory of Open Access Journals (Sweden)

    A. C. Hauptfleisch

    2010-01-01

    Full Text Available Globally the development of property and infrastructure, being part of the creation of  fixed investment and wealth, is taking place unabated. In support of this process is a multitude of highly skilled built environment professionals such as engineers, architects, quantity surveyors, construction managers, town and regional planners, land surveyors, etc. The absence of a universally acknowledged profession of the same standing, designated to manage and optimise the utilisation of the ever-compounding  fixed investments in the products of the collective built environment (buildings, engineering structures and infrastructure, is observed. In practice it manifests itself in the attempts, by the previously mentioned professionals and others, to cast themselves into the role of facilities managers. Of concern is the resultant diverse group of “facilities management” practitioners, sometimes without basic built environment education, often lacking any noteworthy specialised education or experience. For obvious reasons, the more developed a country, the more evident it becomes that a specific facilities management profession is taking root and is practised at various managerial levels. The term “facilities management” reportedly came into use in the United States of America during the 1970’s when a Facility Management Institute was founded in the USA and the first known formal symposium was held in Washington DC in 1989. Although perhaps lacking some of the prestige associated with other professions, there are reasons to believe that facilities management is in the process of becoming a driving force, not only in the scientific management and optimisation of fixed assets, but as a knowledge-based initiator of development in the built environment. The lack of a highly developed facilities management profession manifests itself in the alarming rate at which infrastructure and buildings are deteriorating in South Africa. This situation

  15. Ethical challenges within Veterans Administration healthcare facilities: perspectives of managers, clinicians, patients, and ethics committee chairpersons.

    Science.gov (United States)

    Foglia, Mary Beth; Pearlman, Robert A; Bottrell, Melissa; Altemose, Jane K; Fox, Ellen

    2009-04-01

    To promote ethical practices, healthcare managers must understand the ethical challenges encountered by key stakeholders. To characterize ethical challenges in Veterans Administration (VA) facilities from the perspectives of managers, clinicians, patients, and ethics consultants. We conducted focus groups with patients (n = 32) and managers (n = 38); semi-structured interviews with managers (n = 31), clinicians (n = 55), and ethics committee chairpersons (n = 21). Data were analyzed using content analysis. Managers reported that the greatest ethical challenge was fairly distributing resources across programs and services, whereas clinicians identified the effect of resource constraints on patient care. Ethics committee chairpersons identified end-of-life care as the greatest ethical challenge, whereas patients identified obtaining fair, respectful, and caring treatment. Perspectives on ethical challenges varied depending on the respondent's role. Understanding these differences can help managers take practical steps to address these challenges. Further, ethics committees seemingly, are not addressing the range of ethical challenges within their institutions.

  16. An evaluation related to the effect of strategic facility management on choice of medical tourism destination

    Directory of Open Access Journals (Sweden)

    Tarcan Ertugrul

    2015-01-01

    Full Text Available This study based on literature review aims to evaluate and emphasize the affect of the strategic facility management (SFM on choice of medical tourism destination. Medical Tourism, which ranges from the health care services involving a cure to the wellness services involving no specific health trouble to pleasure and amusement services, is one of the most growing sectors in the world. Cost and quality of medical services are among the main reasons for the choice of destination. Strategic facility management has a positive correlation on the levels of quality, cost and customer satisfaction. Thus medical tourism and destination managers should take into account of the potential advantages of value creation offered through SFM in order to be chosen by customers (stakeholders.

  17. Environmental justice: Implications for siting of Federal Radioactive Waste Management Facilities

    International Nuclear Information System (INIS)

    Easterling, J.B.; Poles, J.S.

    1994-01-01

    Environmental justice is a term that has developed as a result of our need to address whether some of the environmental decisions we have made -- and others we will make -- are fair. The idea of environmental justice has been actively pursued by the Clinton Administration, and this consideration has resulted in Executive Order 12898, which was signed by President Clinton on February 11, 1994. The Executive Order calls for adverse impacts of Federal actions on minority or low-income populations to be identified before decisions implementing those actions are made. Numerous studies show that noxious facilities, such as incinerators and landfills, have been constructed in minority or low-income communities. And since the Department has not yet decided on sites for high-level waste storage or disposal facilities, it will have to take the new Executive Order into consideration as another piece in the complicated quilt of requirements that cover facility siting. An interesting twist to this is the fact that twenty Native American Indian Tribes expressed interest in voluntarily hosting a high-level radioactive waste management facility for temporary storage. They made these expressions on their own initiative, and several Tribes continue to pursue the idea of negotiations with either the Federal Government or private entities to locate a temporary storage site on Tribal land. The Executive Order goes beyond simply studying the effect of siting a facility and addresses in spirit a criticism that the Federal Government has been guilty of open-quotes environmental racismclose quotes in its siting policies -- that it has intentionally picked minority or low-income communities for waste management facilities. What Department of Energy staff and others may have considered foregone conclusions in terms of interim storage facility siting and transportation options will have to be reevaluated for compatibility with provisions of the new Executive Order

  18. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    International Nuclear Information System (INIS)

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO's quality standards during the software maintenance phase. 8 refs., 1 tab

  19. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO`s quality standards during the software maintenance phase. 8 refs., 1 tab.

  20. [Security Management in Clinical Laboratory Departments and Facilities: Current Status and Issues].

    Science.gov (United States)

    Ishida, Haku; Nakamura, Junji; Yoshida, Hiroshi; Koike, Masaru; Inoue, Yuji

    2014-11-01

    We conducted a questionnaire survey regarding the current activities for protecting patients' privacy and the security of information systems (IS) related to the clinical laboratory departments of university hospitals, certified training facilities for clinical laboratories, and general hospitals in Yamaguchi Prefecture. The response rate was 47% from 215 medical institutions, including three commercial clinical laboratory centers. The results showed that there were some differences in management activities among facilities with respect to continuing education, the documentation or regulation of operational management for paper records, electronic information, remaining samples, genetic testing, and laboratory information for secondary use. They were suggested to be caused by differences in functions between university and general hospitals, differences in the scale of hospitals, or whether or not hospitals have received accreditation or ISO 15189. Regarding the IS, although the majority of facilities had sufficiently employed the access control to IS, there was some room for improvement in the management of special cases such as VIPs and patients with HIV infection. Furthermore, there were issues regarding the login method for computers shared by multiple staff, the showing of the names of personnel in charge of reports, and the risks associated with direct connections to systems and the Internet and the use of portable media such as USB memory sticks. These results indicated that further efforts are necessary for each facility to continue self-assessment and make improvements.

  1. Safe operation of existing radioactive waste management facilities at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pham Van Lam; Ong Van Ngoc; Nguyen Thi Nang

    2000-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the former TRIGA MARK-II in 1982 and put into operation in March 1984. The combined technology for radioactive waste management was newly designed and put into operation in 1984. The system for radioactive waste management at the Dalat Nuclear Research Institute (DNRI) consists of radioactive liquid waste treatment station and disposal facilities. The treatment methods used for radioactive liquid waste are coagulation and precipitation, mechanical filtering and ion- exchange. Near-surface disposal of radioactive wastes is practiced at DNRI In the disposal facilities eight concrete pits are constructed for solidification and disposal of low level radioactive waste. Many types of waste generated in DNRI and in some Nuclear Medicine Departments in the South of Vietnam are stored in the disposal facilities. The solidification of sludge has been done by cementation. Hydraulic compactor has done volume reduction of compatible waste. This paper presents fifteen-years of safe operation of radioactive waste management facilities at DNRI. (author)

  2. 25 CFR 170.807 - What must BIA include when it develops an IRR Transportation Facilities Maintenance Management...

    Science.gov (United States)

    2010-04-01

    ... Transportation Facilities Maintenance Management System? 170.807 Section 170.807 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.807 What must BIA include when it develops an IRR Transportation Facilities Maintenance Management System...

  3. 40 CFR Table 1 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Dispensing Facilities With Monthly...

    Science.gov (United States)

    2010-07-01

    ... Criteria and Management Practices for Gasoline Dispensing Facilities With Monthly Throughput of 100,000... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Applicability Criteria and Management Practices for Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More...

  4. Fast Flux Test Facility fuel and test management: The first 10 years

    International Nuclear Information System (INIS)

    Bennett, R.A.; Bennett, C.L.; Campbell, L.R.; Dobbin, K.D.; Tang, E.L.

    1991-07-01

    Core design and fuel and test management have been performed efficiently at the Fast Flux Test Facility. No outages have been extended to adjust core loadings. Development of mixed oxide fuels for advanced liquid metal breeder reactors has been carried out successfully. In fact, the fuel performance is extraordinary. Failures have been so infrequent that further development and refinement of fuel requirements seem appropriate and could lead to a significant reduction in projected electrical busbar costs. The Fast Flux Test Facility is also involved in early metal fuel development tests and appears to be an ideal test bed for any further fuel development or refinement testing. 3 refs., 4 figs., 2 tabs

  5. The partnership approach to siting and developing radioactive waste management facilities

    International Nuclear Information System (INIS)

    2010-03-01

    History shows that the search for sites for radioactive waste management facilities has been marred by conflicts and delays. Affected communities have often objected that their concerns and interests were not addressed. In response, institutions have progressively turned away from the traditional 'decide, announce and defend' model, and are learning to 'engage, interact and co-operate'. This shift has fostered the emergence of partnerships between the proponent of the facility and the potential host community. Working in partnership with potential host communities enables pertinent issues and concerns to be raised and addressed, and creates an opportunity for developing a relationship of mutual understanding and mutual learning, as well as for developing solutions that will add value to the host community and region. Key elements of the partnership approach are being incorporated into waste management strategies, leading increasingly to positive outcomes. National radioactive waste management programmes are in various phases of siting facilities and rely on different technical approaches for the various categories of waste. In all cases, it is necessary for institutional actors and the potential or actual host community to build a meaningful, workable relationship. Partnership approaches are effective in achieving a desirable combination of licensable site and management concept while meeting the sometimes competing requirements of fair representation and competent participation. Partnership arrangements facilitate reaching agreement on measures for local control, financial support and future development

  6. Land Management Agencies. Ongoing Initiative to Share Activities and Facilities Needs Management Attention

    National Research Council Canada - National Science Library

    Hill, Barry

    2000-01-01

    .... The similarities include the agencies' missions and goals, the amount of land managed, the purposes for which the land is managed, the types of employees hired, and the location and types of offices maintained...

  7. Public sector effects and social impact assessment of nuclear generating facilities: Information for community mitigation management

    International Nuclear Information System (INIS)

    Pijawka, K.D.

    1984-01-01

    One of the major issues in community impact management is the gap between revenues generated by energy projects and expenditures for public facilities and services because of project-induced growth. Of issue is the experience of communities experiencing rapid growth where project revenues are not generated until operations commence and yet, considerable investments are needed to accommodate growth during the construction phase. Such revenue imbalances have resulted in communities demanding ''up-front'' capital investments or revenue prior to and during construction. However, with the construction and operation of nuclear facilities, the few available studies have found substantial revenue gains allocated to local jurisdiction and little adverse expenditure effects. The analyses of twelve nuclear stations found that the demand for new and expanded public facilities and the social services attributable to the plants were generally small, that adverse impacts were controllable and mitigatable, and that utility revenue payments varied substantially amount the host areas

  8. Trends in decision making for the siting of waste management facilities

    International Nuclear Information System (INIS)

    Vari, A.

    2000-01-01

    Over the last two decades a number of research studies on waste management facility siting have been produced. A Facility Siting Credo exists (Kunreuther et al., 1993). It identifies a comprehensive set of criteria for successful siting, but relationships between them (complementary, conflicting) have not been investigated. An attempt has been made to identify a conceptual framework which helps to structure siting criteria based on Competing Values Approach (CVA) to organisational analysis (Quinn and Rohrbaugh, 1983). Competing values include goal-centred, data-based, participatory, and adaptable processes, as well as efficient, accountable, supportable, and legitimate decisions. Case studies: Analysing LLRW disposal facility siting processes in the US (California, Illinois, Nebraska, New York, and Texas), Canada, France, the Netherlands, Sweden, and Switzerland (1980-1993) by using the CVA framework (Vari et al., 1994). Analysis of LALW siting processes in Hungary (1985-99) (Juhasz et al., 1993; Ormai et al., 1998; Ormai, 1999). (author)

  9. Field and laboratory test methods for geomembranes during waste management facility construction

    International Nuclear Information System (INIS)

    Allen, S.R.; McCutchan, J.B.

    1991-01-01

    Hazardous waste management facilities are required to use approved lining and leak detection systems to prevent the migration of waste into the environment. Synthetic flexible membrane liners (FMLs) have effectively served as the critical barrier for waste containment and fluid migration. The U.S. EPA has established minimum technology requirements for the construction of lined facilities that include detailed and documented Construction Quality Assurance (CQA) plans. The U.S. EPA (EPA) recognizes that CQA during field construction is imperative for successful completion of project work and long-term facility operation. This paper discusses the importance of CQA during FML installation and the practical aspects of implementing a successful CQA program. Standard methods used for FML evaluation, in both the field and laboratory, are discussed and specific aspects of seam testing and data evaluation are addressed. The general importance of comprehensive definition of geomembrane seam field failures is strongly emphasized so that an appropriate response to test failures can be recommended

  10. An environmental testing facility for Space Station Freedom power management and distribution hardware

    Science.gov (United States)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  11. The Mixed Waste Management Facility closure and expansion at the Savannah River Site

    International Nuclear Information System (INIS)

    Bittner, M.F.; Frye-O'Bryant, R.C.

    1992-01-01

    Process wastes containing radioactive and hazardous constituents have been generated throughout the operational history of the Savannah River Site. Solid wastes containing low level radionuclides were buried in Low Level Radioactive Disposal Facility (LLRWDF). Until 1986, waste containing lead and cadmium was disposed of in the Mixed Waste Management Facility (MWMF) portion of LLRWDF. Between 1986 and 1990, waste containing F-listed hazardous rags were buried. Current Resource Conservation and Recovery Act (RCRA) regulations prohibit the disposal of these hazardous wastes at nonpermitted facilities. This paper describes the closure activities for the MWMF, completed in 1990 and plans proposed for the expansion of this closure to include the LLRWDF suspect solvent rag trenches

  12. Managing nuclear projects: a design agency experience in the design-build of waste management facilities in Canada

    International Nuclear Information System (INIS)

    Brewer, R.; Calzolari, L.

    2006-01-01

    Quality Assurance guarantees the quality of a product; it does not guarantee that it is a quality product. As procedures develop to satisfy QA programs and regulatory needs it is necessary to find ways to ensure that procedural management reinforces project management and does not detract from it. CANATOM NPM's experience in bidding for and executing the design or design and construction of nuclear waste management facilities demonstrates how design excellence and innovation can still be achieved while successfully managing the challenge of technical administration. The sourcing of expertise, the intricacies of design definition and the coordinating efforts required in the execution of the projects (one fully completed, the other into its engineering phase) will provide a valuable insight into the role and activities of an engineering company engaged in a 'Design Agency' (DA) role. (author)

  13. Caught in the middle: The role of the Facilities Manager in organisational energy use

    International Nuclear Information System (INIS)

    Goulden, Murray; Spence, Alexa

    2015-01-01

    This study analyses the role of the Facilities Manager [FM] as a key actor in organisational energy management. This builds on the idea that ‘middle’ agents in networks can be an important lever for socio-technical change. The study demonstrates the considerable impact the FM can have on workplace energy consumption, whilst identifying a number of factors that constrain their agency and capacity to act. These include demands to meet workforce expectations of comfort; a lack of support from senior management; and a shortage of resources. Underlying these challenges, the study identifies three different energy rationales – that is to say conceptual frameworks – which are deployed by different groups of organisational actors. The challenges of reconciling these at-times-contradictory rationales results in a picture of energy management which to the outsider can appear highly irrational. The paper concludes with a consideration of how policy makers can apply these insights to support energy reduction in workplaces. -- Highlights: •Facilities Managers are increasingly critical node in organisational use of energy. •Potential for FMs to make significant reductions to organisational energy use. •Their ability to do so is constrained by the organisational environment. •Three ‘energy rationales’ which the shape organisational context are identified. •Opportunities exist for policy makers to improve organisational energy management

  14. Knowledge management awareness in a research and development facility: Investigating employee perceptions

    Directory of Open Access Journals (Sweden)

    Andrea Potgieter

    2013-12-01

    Objectives: This study aimed to understand Sasol R&D employees’ perceptions of knowledge management (KM. The study also assessed the attitude of Sasol R&D management towards KM. Method: The target population for this research included different levels of seniority and education in Sasol R&D. A questionnaire was distributed to a sample of 150 employees in R&D and 50 more who work closely with R&D in support functions. Results: It was found that the importance of KM is understood by Sasol R&D employees and management. It was established that Sasol R&D management regard KM as important, but that their commitment to KM initiatives is not necessarily evident for employees. A concern highlighted by the study was that employees were not aware of the duties of the identified KM champions within their facility. Conclusion: It was suggested that Sasol R&D employees should be made aware of the duties of KM champions. It was also established that Sasol R&D management needs to be more visible in their support of KM initiatives. Recommendations based on the findings of the study can assist Sasol R&D, and other facilities attempting to implement a KM strategy, to gain insight into the perceptions of employees and the role management needs to play in the facilitation of this process.

  15. Situation of the radioactive waste management and the employee radiation exposure in commercial power generation reactor facilities in fiscal 1980

    International Nuclear Information System (INIS)

    1981-01-01

    (1) Situation of the radioactive waste management in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the target dose around the sites by law in the radioactive waste management. The release of radioactive gaseous and liquid wastes and the storage of radioactive solid wastes in respective reactor facilities in fiscal 1980 are presented in tables (for the former, the data since 1971 are also given). The release control values were satisfied in all the facilities. (2) Situation of employe radiation exposure in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the permissible exposure doses by law. The Employe exposure doses in respective reactor facilities in fiscal 1980 are given in tables. All exposure doses were below the permissible levels. (J.P.N.)

  16. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD. INTEGRATED DISPOSAL FACILITY (IDF)

    International Nuclear Information System (INIS)

    MCLELLAN, G.W.

    2007-01-01

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with

  17. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

    Energy Technology Data Exchange (ETDEWEB)

    MCLELLAN, G.W.

    2007-02-07

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal

  18. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    International Nuclear Information System (INIS)

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA reg-sign canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA reg-sign, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities

  19. Facility management - efektivní správa stavebních objektů

    OpenAIRE

    Helekalová, Denisa

    2013-01-01

    Diplomová práce „ Facility management – efektivní správa stavebních objektů“ je zaměřena na stavební objekty a přínos pro ně při využívání služeb facility managementu. Práce se snaží přiblížit, co je facility management kdo ho poskytuje v České republice a jak přispívá k úsporám. Zmíněny jsou také informační technologie využívané ve facility managementu, protože bez těch se v dnešní době téměř žádný obor neobejde. První část je též zaměřena na stavbu, její životní cyklus a náklady s ním spoje...

  20. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  1. Application of probabilistic methods to accident analysis at waste management facilities

    International Nuclear Information System (INIS)

    Banz, I.

    1986-01-01

    Probabilistic risk assessment is a technique used to systematically analyze complex technical systems, such as nuclear waste management facilities, in order to identify and measure their public health, environmental, and economic risks. Probabilistic techniques have been utilized at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, to evaluate the probability of a catastrophic waste hoist accident. A probability model was developed to represent the hoisting system, and fault trees were constructed to identify potential sequences of events that could result in a hoist accident. Quantification of the fault trees using statistics compiled by the Mine Safety and Health Administration (MSHA) indicated that the annual probability of a catastrophic hoist accident at WIPP is less than one in 60 million. This result allowed classification of a catastrophic hoist accident as ''not credible'' at WIPP per DOE definition. Potential uses of probabilistic techniques at other waste management facilities are discussed

  2. Closure of hazardous and mixed radioactive waste management units at DOE facilities

    International Nuclear Information System (INIS)

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA

  3. Development of a mixed waste management facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dodge, R.L.; Brich, R.F.

    1988-01-01

    The U.S. Department of Energy (DOE) produces radioactive low-level wastes (LLW) which contain hazardous components as identified by 40 Code of Federal Regulations (CFR) 261. Management of those mixed wastes (MW) requires compliance with U.S.Environmental Protection Agency (EPA) regulations for hazardous wastes and DOE regulations for LLW. In 1988, DOE's Nevada Operations Office (NV) began disposing of MW at the Nevada Test Site (NTS) under interim status as authorized by the state of Nevada. MW disposal is limited to Pit 3 while operating under interim status. This paper discusses how preparations for operation of a separate mixed waste management facility (MWMF) are underway. Those preparations include revising the NTS Part B Permit application, developing a MW certification program, developing and operating a vadose zone monitoring system, preparing an Environmental Assessment (EA), developing protocols for analysis of MW, and facility design and construction

  4. The evolution of facility management business models in supplier–client relationships

    DEFF Research Database (Denmark)

    Nardelli, Giulia; Rajala, Risto

    2018-01-01

    Purpose – The study improves the current understanding of business model innovation by outlining how business models unfold over time within supplier–client relationships in facilities management (FM) services. Design/methodology/approach – This study of FM services in Denmark consists...... of an explorative case study and three case studies of facilities management clients. Both phases, related and overlapping, involved collection and analysis of in-depth, semi-structured interviews and archive data. Findings – Findings shows that business model innovation entails interorganisational collaboration...... consequences of changes in the ecosystem. Originality/value – This paper introduces new thinking on the subject of business model innovation to the context of FM. It presents the external orientation of FM business models as a way to combine planned and emergent business model innovation through...

  5. The new Facilities Management contract at CERN from 1st July 2002

    CERN Document Server

    Mauro Nonis

    2002-01-01

    Within the ST Division, all the Facilities Management activities have been under the ST/TFM group responsibility until the 30th June 2002, who has performed them using around 20 industrial support contracts. Starting from the 1st July 2002 a new unit, ST/FM, will take over these activities that will be unified into one single contract that has been adjudicated to the company Facilities Management Network SA. This contract will be in charge of the maintenance and minor works on tertiary installations (i.e. all structures and installations that have no direct relation to the running of the accelerators) for the following trades: - Technical: heating, ventilation, air conditioning, plumbing, electricity, civil engineering (painting, roofing, glazing, blinds, fencing, masonry etc.), passenger and goods lifts, automatic and powered doors, kitchen equipment, roads, signs, keys and locks, office furniture, - Services: waste collection, security, green areas, cleaning and sanitary supplies, disinfection, rodent cont...

  6. THE NEW FACILITIES MANAGEMENT CONTRACT AT CERN FROM 1st JULY 2002

    CERN Multimedia

    Mauro Nonis

    2002-01-01

    Within the ST Division, all the Facilities Management activities have been under the ST/TFM group responsibility until the 30th June 2002, who has performed them using around 20 industrial support contracts. Starting from the 1st July 2002 a new unit, ST/FM, will take over these activities that will be unified into one single contract that has been adjudicated to the company Facilities Management Network SA. This contract will be in charge of the maintenance and minor works on tertiary installations (i.e. all structures and installations that have no direct relation to the running of the accelerators) for the following trades: Technical: heating, ventilation, air conditioning, plumbing, electricity, civil engineering (painting, roofing, glazing, blinds, fencing, masonry etc.), passenger and goods lifts, automatic and powered doors, kitchen equipment, roads, signs, keys and locks, office furniture, Services: waste collection, security, green areas, cleaning and sanitary supplies, disinfection, rodent contro...

  7. Opting for cooperation: A case study in siting a low level radioactive waste management facility

    International Nuclear Information System (INIS)

    Armour, A.

    1991-01-01

    In 1976, the Canadian federal government called a halt to efforts by a crown corporation to site a low-level radioactive waste management facility when it became apparent that continuation of the siting process would likely result in significant social disruption and political conflict. It established an independent six-person Task Force to advise it on how to proceed. Twelve months later, the Task Force put forward a radically different siting process based on the voluntary participation of communities and collaborative, joint problem-solving and decision making. Cabinet endorsed the approach and in September 1988 authorized the Task Force to begin implementing the recommended process. The first three phases of the process have been implemented and so far it appears to be achieving its desired objective -- to encourage less confrontation and more cooperation in the siting of the low-level radioactive waste management facility

  8. Investigation of development and management of treatment planning systems for BNCT at foreign facilities

    International Nuclear Information System (INIS)

    2001-03-01

    A new computational dosimetry system for BNCT: JCDS is developed by JAERI in order to carry out BNCT with epithermal neutron beam at present. The development and management situation of computational dosimetry system, which are developed and are used in BNCT facilities in foreign countries, were investigated in order to accurately grasp functions necessary for preparation of the treatment planning and its future subjects. In present state, 'SERA', which are developed by Idaho National Engineering and Environmental Laboratory (INEEL), is used in many BNCT facilities. Followings are necessary for development and management of the treatment planning system. (1) Reliability confirmation of system performance by verification as comparison examination of calculated value with actual experimental measured value. (2) Confirmation systems such as periodic maintenance for retention of the system quality. (3) The improvement system, which always considered relative merits and demerits with other computational dosimetry system. (4) The development of integrated system with patient setting. (author)

  9. Realizing Sustainability in Facilities Management: a pilot study at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Møller, Jacob Steen; Jäschke, Stefan

    2012-01-01

    , qualitative research and the preliminary analysis of a single, pilot case study of The Technical University of Denmark. Progress with the other complementary cases will be included in the presentation. The cases should be supplemented by more research on sustainable facilities management. Originality......, stakeholder interviews, focus groups, usability evaluations and practice-research workshops. The Technical University of Denmark (DTU) is the pilot case of an international collaboration, and more studies are planned to follow. Findings: The paper presents a framework for qualitative research on Sustainable...... Facilities Management (SFM), which can guide future research on Sustainability in FM and increase comparability between case studies. The research identifies the challenges and opportunities for integrating ecological, social and economical sustainability in university FM. The paper presents the analysis...

  10. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    International Nuclear Information System (INIS)

    2001-01-01

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  11. 2005 dossier: clay. Tome: architecture and management of the geologic disposal facility

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the design of a geologic disposal facility for high-level and long-lived radioactive wastes in argilite formations. Content: 1 - approach of the study: goal, main steps of the design study, iterative approach, content; 2 - general description: high-level and long-lived radioactive wastes, purposes of a reversible disposal, geologic context of the Meuse/Haute-Marne site - the Callovo-Oxfordian formation, design principles of the disposal facility architecture, role of the different disposal components; 3 - high-level and long-lived wastes: production scenarios, description of primary containers, inventory model, hypotheses about receipt fluxes of primary containers; 4- disposal containers: B-type waste containers, C-type waste containers, spent fuel disposal containers; 5 - disposal modules: B-type waste disposal modules, C-type waste disposal modules, spent-fuel disposal modules; 6 - overall underground architecture: main safety questions, overall design, dimensioning factors, construction logic and overall exploitation of the facility, dimensioning of galleries, underground architecture adaptation to different scenarios; 7 - boreholes and galleries: general needs, design principles retained, boreholes description, galleries description, building up of boreholes and galleries, durability of facilities, backfilling and sealing up of boreholes and galleries; 8 - surface facilities: general organization, nuclear area, industrial and administrative area, tailings area; 9 - nuclear exploitation means of the facility: receipt of primary containers and preparation of disposal containers, transfer of disposal containers from the surface to the disposal alveoles, setting up of containers inside alveoles; 10 - reversible management of the disposal: step by step disposal process, mastery of disposal behaviour and action capacity, observation and

  12. Project management of the build of the shore test facility for the prototype of PWR II

    International Nuclear Information System (INIS)

    Clarkson, D.T.

    1987-01-01

    The PWR II is a new design of nuclear steam raising plant for the Royal Navy's submarines. It features improved engineering for safety, increased power, increased shock resistance, reduced noise transmission to sea and reduced manning requirement. It is to be tested in a new prototype testing facility, the Shore Test Facility, which is a section of submarine hull containing a prototype of the nuclear steam raising plant and its support system. It is installed at the Vulcan Naval Reactor Test establishment at Dounreay in Scotland. The function of the establishment is to test new designs of core and reactor plant, validate the mathematical models used in their design, develop improved methods of operation and maintenance of the plant and test new items of equipment. The Shore Test Facility was built in large sections at Barrow-in-Furness and transported to Scotland. The project management for the construction of the Shore Test Facility is explained. It involves personnel from the Royal Navy, and a large number of people working for the contractors involved in the buildings, transportation, operation and maintenance of the Facility. (U.K.)

  13. The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)

    International Nuclear Information System (INIS)

    1994-12-01

    The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration

  14. The Management System for the Development of Disposal Facilities for Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    Currently, many Member States are safely operating near surface disposal facilities and some are in the initial or advanced stages of planning geological repositories. As for other nuclear facilities and their operational phase, all activities associated with the disposal of radioactive waste need to be carefully planned and systematic actions undertaken in order to maintain adequate confidence that disposal systems will meet performance as well as prescribed safety requirements and objectives. The effective development and application of a management system (integrating requirements for safety, protection of health and the environment, security, quality and economics into one coherent system) which addresses every stage of repository development is essential. It provides assurance that the objectives for repository performance and safety, as well as environmental and quality criteria, will be met. For near surface repositories, a management system also provides the opportunity to re-evaluate existing disposal systems with respect to new safety, environmental or societal requirements which could arise during the operational period of a facility. The topic of waste management and disposal continues to generate public interest and scrutiny. Implementation of a formal management system provides documentation, transparency and accountability for the various activities and processes associated with radioactive waste disposal. This information can contribute to building public confidence and acceptance of disposal facilities. The objective of this report is to provide Member States with practical guidance and relevant information on management system principles and expectations for management systems that can serve as a basis for developing and implementing a management system for three important stages; the design, construction/upgrading and operation of disposal facilities. To facilitate the understanding of management system implementation at the different stages of a

  15. Progress on management business system of LLW generated from research and industrial nuclear facilities

    International Nuclear Information System (INIS)

    Izumida, Tatsuo

    2014-01-01

    RANDEC has been studying a management business system of LLW (Low Level Waste) generated from research and industrial facilities since 2008. To examine economical problems, the income and expenditure of LLW treatment business was simulated. As a result, raising method of the funds which is required in preparatory stage of LLW treatment business is an obvious issue to carry out as public utility works. (author)

  16. Fostering a durable relationship between a waste management facility and its host community

    International Nuclear Information System (INIS)

    2007-01-01

    Any long-term radioactive waste management project is likely to last decades to centuries. It requires a physical site and will impact in a variety of ways on the surrounding community over that whole period. The societal durability of an agreed solution is essential to success. This report identifies a number of design elements (including functional, cultural and physical features) that favour a durable relationship between the facility and its host community by improving prospects for quality of life across generations

  17. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    International Nuclear Information System (INIS)

    Rosnick, C.K.

    1996-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  18. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    International Nuclear Information System (INIS)

    Brann, E.C. II.

    1994-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  19. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  20. Management of ethical issues related to care of seriously ill dialysis patients in free-standing facilities.

    Science.gov (United States)

    Song, Mi-Kyung; Hanson, Laura C; Gilet, Constance A; Jo, Minjeong; Reed, Teresa J; Hladik, Gerald A

    2014-09-01

    There are few data on the frequency and current management of clinical ethical issues related to care of seriously ill dialysis patients in free-standing dialysis facilities. To examine the extent of clinical ethical challenges experienced by care providers in free-standing facilities and their perceptions about how those issues are managed. A total of 183 care providers recruited from 15 facilities in North Carolina completed a survey regarding the occurrence and management of ethical issues in the past year. Care plan meetings were observed at four of the facilities for three consecutive months. Also, current policies and procedures at each of the facilities were reviewed. The two most frequently experienced challenges involved dialyzing frail patients with multiple comorbidities and caring for disruptive/difficult patients. The most common ways of managing ethical issues were discussions in care plan meetings (n = 47) or discussions with the clinic manager (n = 47). Although policies were in place to guide management of some of the challenges, respondents were often not aware of those policies. Also, although participants reported that ethical issues related to dialyzing undocumented immigrants were fairly common, no facility had a policy for managing this challenge. Participants suggested that all staff obtain training in clinical ethics and communication skills, facilities develop ethics teams, and there be clear policies to guide management of ethical challenges. The scope of ethical challenges was extensive, how these challenges were managed varied widely, and there were limited resources for assistance. Multifaceted efforts, encompassing endeavors at the individual, facility, organization, and national levels, are needed to support staff in improving the management of ethical challenges in dialysis facilities. Copyright © 2014 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.