WorldWideScience

Sample records for facility lithium system

  1. Experimental lithium system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m/sup 3/ lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion.

  2. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  3. A lithium deposition system for tokamak devices*

    Science.gov (United States)

    Graziul, Christopher; Majeski, Richard; Kaita, Robert; Hoffman, Daniel; Timberlake, John; Card, David

    2002-11-01

    The production of a lithium deposition system using commercially available components is discussed. This system is intended to provide a fresh lithium wall coating between discharges in a tokamak. For this purpose, a film 100-200 Å thick is sufficient to ensure that the plasma interacts solely with the lithium. A test system consisting of a lithium evaporator and a deposition monitor has been designed and constructed to investigate deposition rates and coverage. A Thermionics 3kW e-gun is used to rapidly evaporate small amounts of solid lithium. An Inficon XTM/2 quartz deposition monitor then measures deposition rate at varying distances, positions and angles relative to the e-gun crucible. Initial results from the test system will be presented. *Supported by US DOE contract #DE-AC02-76CH-03073

  4. Deuteron beam interaction with lithium jet in a neutron source test facility

    Science.gov (United States)

    Hassanein, A.

    1996-10-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium—lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥ 14 MeV) neutrons required to simulate a fusion environment via the Li (d, n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities.

  5. Engineering validation for lithium target facility of the IFMIF under IFMIF/EVEDA project

    Directory of Open Access Journals (Sweden)

    E. Wakai

    2016-12-01

    Full Text Available The International Fusion Materials Irradiation Facility (IFMIF, presently in the Engineering Validation and Engineering Design Activities (EVEDA phase was started from 2007 under the frame of the Broader Approach (BA agreement. In the activities, a prototype Li loop with the world's highest flow rate of 3000L/min was constructed in 2010, and it succeeded in generating a 100mm wide and 25mm thick with a free-surface lithium flow along a concave back plate steadily at a high-speed of 15m/s at 250°C for 1300h. In the demonstration operation it was needed to develop the Li flowing measurement system with precious resolution less than 0.1mm, and a new wave height measuring method which is laser-probe method was developed for measurements of the 3D geometry of the liquid Li target surface. Using the device, the stability of the variation in the Li flowing thickness which is required in the IFMIF specification was ±1mm or less as the liquid Li target, and the result was satisfied with it and the feasibility of the long-term stable liquid Li flow was also verified. The results of the other engineering validation tests such as lithium purification tests of lithium target facility have also been evaluated and summarized.

  6. Lithium-system corrosion/erosion studies for the FMIT project

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G D [comp.

    1983-04-01

    The corrosion behavior of selected materials in a liquid lithium environment has been studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. The liquid lithium test resources and the capabilities of several laboratories were used to study specific concerns associated with the overall objective. Testing conditions ranged from approx. 3700 hours to approx. 6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/C to 270/sup 0/C and static lithium at temperatures from 200/sup 0/C to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects of FMIT lithium system materials (largely Type 304 and Type 304L austenitic stainless steels) and candidate materials for major system components.

  7. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  8. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi [Department of Fussion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Yutani, Toshiaki [Toshiba Corp., Tokyo (Japan)

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m{sup 2}) up to 200 dpa and a sufficient irradiation volume (500 cm{sup 3}) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  9. 21 CFR 862.3560 - Lithium test system.

    Science.gov (United States)

    2010-04-01

    ... as manic-depressive illness (bipolar disorder). (b) Classification. Class II. ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure...

  10. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    Energy Technology Data Exchange (ETDEWEB)

    Nitti, F.S., E-mail: francesco.nitti@enea.it [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Ida, M. [IHI Corporation, Tokyo (Japan); Favuzza, P. [ENEA Research Center Firenze (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Karlsruhe (Germany); Heidinger, R. [F4E Research Center, Garching (Germany); Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Micchiche, G. [ENEA Research Center, Brasimone (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho Japan (Japan); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2015-11-15

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  11. Facile synthesis of graphene oxide-modified lithium hydroxide for low-temperature chemical heat storage

    Science.gov (United States)

    Yang, Xixian; Huang, Hongyu; Wang, Zhihui; Kubota, Mitsuhiro; He, Zhaohong; Kobayashi, Noriyuki

    2016-01-01

    LiOH·H2O nanoparticles supported on graphene oxide (GO) were facilely synthesized by a hydrothermal process. The mean diameter of nanoparticles on the integrated graphene sheet was about 5-10 nm showed by SEM and TEM results. XRD results suggested that the nanoparticles are in good agreement with the data of LiOH·H2O. The as-prepared sample showed a greatly enhanced thermal energy storage density and exhibit higher rate of heat release than pure lithium hydroxide, and thermal conductivity of composites increased due to the introduction of nano carbon. LiOH·H2O/GO nanocomposites are novel chemical heat storage materials for potential highly efficient energy system.

  12. Lithium

    Science.gov (United States)

    Jaskula, B.W.

    2012-01-01

    In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.

  13. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  14. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  15. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  16. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  17. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2004-04-30

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  18. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  19. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Feng, Jinkui, E-mail: jinkui@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Ci, Lijie [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Xiong, Shenglin [School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.

  20. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-01

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam

  1. Lithium

    Science.gov (United States)

    Lithium is used to treat and prevent episodes of mania (frenzied, abnormally excited mood) in people with bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal ...

  2. Subsurface Facility System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-31

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation.

  3. Experimental evaluation of the potential for thermal striping in the FMIT lithium system

    Energy Technology Data Exchange (ETDEWEB)

    Ingham, J.G.; Dickinson, D.R.; Adkins, H.E.

    1983-01-01

    Tests were conducted to evaluate the potential for thermal striping in the liquid lithium system of the proposed Fusion Materials Irradiation Test (FMIT) Facility. In FMIT, a high speed liquid lithium jet will be nonuniformly heated as it is continuously bombarded by a high energy deuteron beam. The lithium near the center of the 1.9 cm thick jet will be heated to a temperature about 540 C hotter than that at the edges. The rectangular jet will discharge downwards into a 0.76 m diameter quench tank containing a pool of lithium. A full-scale water model of the jet and quench tank was constructed in which 82 C hot water was injected into the center of a 38 C main flow of water to model approximately the nonuniform temperature distribution produced in the FMIT lithium. The local fluctuating temperatures in the tank were measured by assemblies of movable fast-response thermocouples and read out through a computer which calculated fluctuation amplitudes. The thermal striping amplitudes on the quench tank surfaces were found to be acceptably small under both Froude and Reynolds number modeling. Testing is continuing to more thoroughly evaluate the potential for thermal striping on the drain which transfers the heated jet to the liquid pool in the quench tank. Conservative results from preliminary testing indicate levels of thermal striping which are higher than desirable on this drain.

  4. DKIST facility management system integration

    Science.gov (United States)

    White, Charles R.; Phelps, LeEllen

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.

  5. Facile synthesis of free-standing silicon membranes with three-dimensional nanoarchitecture for anodes of lithium ion batteries.

    Science.gov (United States)

    Xia, Fan; Kim, Seong Been; Cheng, Huanyu; Lee, Jung Min; Song, Taeseup; Huang, Yonggang; Rogers, John A; Paik, Ungyu; Park, Won Il

    2013-07-10

    We propose a facile method for synthesizing a novel Si membrane structure with good mechanical strength and three-dimensional (3D) configuration that is capable of accommodating the large volume changes associated with lithiation in lithium ion battery applications. The membrane electrodes demonstrated a reversible charge capacity as high as 2414 mAh/g after 100 cycles at current density of 0.1 C, maintaining 82.3% of the initial charge capacity. Moreover, the membrane electrodes showed superiority in function at high current density, indicating a charge capacity >1220 mAh/g even at 8 C. The high performance of the Si membrane anode is assigned to their characteristic 3D features, which is further supported by mechanical simulation that revealed the evolution of strain distribution in the membrane during lithiation reaction. This study could provide a model system for rational and precise design of the structure and dimensions of Si membrane structures for use in high-performance lithium ion batteries.

  6. The liquid lithium limiter control system on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A. [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)], E-mail: bertocchi@frascati.enea.it; Di Donna, M. [Department of Informatics, Systems and Productions, University of Rome Tor Vergata, Rome (Italy); Panella, M.; Vitale, V. [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)

    2007-10-15

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system (CPS) configuration was installed to test on Tokamak FTU. The liquid lithium flows through capillaries from a reservoir to the side faced to the plasma to form a thin lithium film as wall coating. The system includes three stainless steel cases, which contain two thermocouples each one. A heating system brings the Li temperature about 200 deg. C to allow the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22{sup TM} modules and a CORBA/PHP/MySQL software architecture. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLAB{sup TM} and Java environments, respectively, to monitor the lithium temperature coming from thermocouples - have been also implemented. The LLL control system allows to regulate the heater temperature in each unit to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During the plasma shot the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink{sup TM} tool - has been realized.

  7. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Science.gov (United States)

    2010-01-01

    ..., Plants and Equipment Under NRC's Export Licensing Authority N Appendix N to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. N Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment...

  8. EPA Facility Registry System (FRS): NEPT

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  9. EPA Facility Registry System (FRS): NCES

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  10. 78 FR 38093 - Thirteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-06-25

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  11. Investigation of parameters of interaction of hydrogen isotopes with liquid lithium and lithium capillary-porous system under reactor irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, I. L., E-mail: tazhibayeva@ntsc.kz; Kulsartov, T. V.; Gordienko, Yu. N.; Zaurbekova, Zh. A.; Ponkratov, Yu. V.; Barsukov, N. I.; Tulubayev, Ye. Yu.; Baklanov, V. V.; Gnyrya, V. S. [Institute of Atomic Energy NNC RK (Kazakhstan); Kenzhin, Ye. A. [Institute of Nuclear Physics (Kazakhstan)

    2015-12-15

    In this study, the effect of reactor irradiation on the processes of interaction of hydrogen with liquid lithium and a lithium capillary-porous system (CPS) is considered. The experiments are carried out by the gas-absorption method with use of a specially designed ampoule device. The results of investigation of the interaction of hydrogen with liquid lithium and a lithium CPS under conditions of reactor irradiation are described; namely, these are the temperature dependences of the rate constant for the interaction of hydrogen with liquid lithium at different reactor powers, the activation energies of the processes, and the pre-exponential factor in the Arrhenius dependence. The effect of increasing absorption of hydrogen by the samples under investigation as a result of the reactor irradiation is fixed. The effect can be explained by increasing mobility of hydrogen in liquid lithium due to hot spots in lithium bulk and the interaction of helium and tritium ions (formed as a result of the nuclear reaction of {sup 6}Li with neutron) with a surface hydride film.

  12. Control System for the NSTX Lithium Pellet Injector

    Energy Technology Data Exchange (ETDEWEB)

    P. Sichta; J. Dong; R. Gernhardt; G. Gettelfinger; H. Kugel

    2003-10-27

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI.

  13. Stores, Weight and Inertial System Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides stores weight, center of gravity, and inertia measurements in support of weapon/aircraft compatibility testing. System provides store weight...

  14. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.

    Science.gov (United States)

    Yang, Yue; Xu, Shengming; He, Yinghe

    2017-06-01

    A novel process for extracting transition metals, recovering lithium and regenerating cathode materials based on facile co-extraction and co-precipitation processes has been developed. 100% manganese, 99% cobalt and 85% nickel are co-extracted and separated from lithium by D2EHPA in kerosene. Then, Li is recovered from the raffinate as Li2CO3 with the purity of 99.2% by precipitation method. Finally, organic load phase is stripped with 0.5M H2SO4, and the cathode material LiNi1/3Co1/3Mn1/3O2 is directly regenerated from stripping liquor without separating metal individually by co-precipitation method. The regenerative cathode material LiNi1/3Co1/3Mn1/3O2 is miro spherical morphology without any impurities, which can meet with LiNi1/3Co1/3Mn1/3O2 production standard of China and exhibits good electrochemical performance. Moreover, a waste battery management model is introduced to guarantee the material supply for spent battery recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A facile surface chemistry route to a stabilized lithium metal anode

    Science.gov (United States)

    Liang, Xiao; Pang, Quan; Kochetkov, Ivan R.; Sempere, Marina Safont; Huang, He; Sun, Xiaoqi; Nazar, Linda F.

    2017-09-01

    Lithium metal is a highly desirable anode for lithium rechargeable batteries, having the highest theoretical specific capacity and lowest electrochemical potential of all material candidates. Its most notable problem is dendritic growth upon Li plating, which is a major safety concern and exacerbates reactivity with the electrolyte. Here we report that Li-rich composite alloy films synthesized in situ on lithium by a simple and low-cost methodology effectively prevent dendrite growth. This is attributed to the synergy of fast lithium ion migration through Li-rich ion conductive alloys coupled with an electronically insulating surface component. The protected lithium is stabilized to sustain electrodeposition over 700 cycles (1,400 h) of repeated plating/stripping at a practical current density of 2 mA cm‑2 and a 1,500 cycle-life is realized for a cell paired with a Li4Ti5O12 positive electrode. These findings open up a promising avenue to stabilize lithium metal with surface layers having targeted properties.

  16. Brayton Isotope Power System (BIPS) facility specification

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-31

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included.

  17. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Federal Aviation Administration Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to...

  18. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Federal Aviation Administration Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to...

  19. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Federal Aviation Administration Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to...

  20. Prediction study on the degeneration of lithium-ion battery based on fuzzy inference system

    Science.gov (United States)

    Shi, Jian Ping

    2017-07-01

    The degradation degree prediction of lithium-ion battery has been studied through experimental data. Characterization parameters on the degradation degree of lithium-ion battery were deduced under consideration of the internal and external factors. The analysis of discrete degree was proposed to depict the degradation degree for lithium-ion battery. Furthermore, based on fuzzy inference system (FIS), the predicted model of the degradation degree for lithium-ion battery was built and its output was defined as the degenerate coefficient β, β ∈ [0, 1]. Finally, by learning, training and simulating, the FIS model has been validated to be reliable and applicable in prediction on the degradation degree of lithium-ion battery. The simulation results show that the degradation degree of lithium-ion battery is more serious when β is closer to 1, and the degradation degree is lighter when β is closer to 0.

  1. Influence of lithium coating on the optics of Doppler backscatter system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. H.; Liu, A. D., E-mail: lad@ustc.edu.cn; Zhou, C.; Hu, J. Q.; Wang, M. Y.; Yu, C. X.; Liu, W. D.; Li, H.; Lan, T.; Xie, J. L. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-10-15

    This paper presents the first investigation of the effect of lithium coating on the optics of Doppler backscattering. A liquid lithium limiter has been applied in the Experimental Advanced Superconducting Tokamak (EAST), and a Doppler backscattering has been installed in the EAST. A parabolic mirror and a flat mirror located in the vacuum vessel are polluted by lithium. An identical optical system of the Doppler backscattering is set up in laboratory. The power distributions of the emission beam after the two mirrors with and without lithium coating (cleaned before and after), are measured at three different distances under four incident frequencies. The results demonstrate that the influence of the lithium coating on the power distributions are very slight, and the Doppler backscattering can work normally under the dosage of lithium during the 2014 EAST campaign.

  2. Integral lightning protection system in petroleum facilities

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Horacio; Gallego, Luis; Montana, Johny; Younes, Camilo; Rondon, Daniel; Gonzalez, Diego; Herrera, Javier; Perez, Ernesto; Vargas, Mauricio; Quintana, Carlos; Salgado, Milton [Universidad Nacional de Colombia, Bogota (Colombia)]. E-mail: paas@paas.unal.edu.co

    2001-07-01

    This paper presents an Integral Lightning Protection System, focused mainly in petroleum facilities and applied to a real case in Colombia, South America. As introduction it is presented a summary of the incidents happened in last years, a diagnosis and the proposal of solution. Finally, as part of the analysis, a lightning risk assessment for the Central Process Facility is showed. (author)

  3. Photovoltaic Systems Test Facilities: Existing capabilities compilation

    Science.gov (United States)

    Volkmer, K.

    1982-01-01

    A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.

  4. Vapour pressures, densities, and viscosities of the (water + lithium bromide + potassium acetate) system and (water + lithium bromide + sodium lactate) system

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Antonio de [Department of Chemical Engineering, University of Castilla - La Mancha, Avda. de Camilo Jose Cela s/n, 13004 Ciudad Real (Spain); Donate, Marina [Department of Chemical Engineering, University of Castilla - La Mancha, Avda. de Camilo Jose Cela s/n, 13004 Ciudad Real (Spain); Rodriguez, Juan F. [Department of Chemical Engineering, University of Castilla - La Mancha, Avda. de Camilo Jose Cela s/n, 13004 Ciudad Real (Spain)]. E-mail: juan.rromero@uclm.es

    2006-02-15

    Measurements of thermophysical properties (vapour pressure, density, and viscosity) of the (water + lithium bromide + potassium acetate) system LiBr:CH{sub 3}COOK = 2:1 by mass ratio and the (water + lithium bromide + sodium lactate) system LiBr:CH{sub 3}CH(OH)COONa = 2:1 by mass ratio were measured. The system, a possible new working fluid for absorption heat pump, consists of absorbent (LiBr + CH{sub 3}COOK) or (LiBr + CH{sub 3}CH(OH)COONa) and refrigerant H{sub 2}O. The vapour pressures were measured in the ranges of temperature and absorbent concentration from T = (293.15 to 333.15) K and from mass fraction 0.20 to 0.50, densities and viscosities were measured from T = (293.15 to 323.15) K and from mass fraction 0.20 to 0.40. The experimental data were correlated with an Antoine-type equation. Densities and viscosities were measured in the same range of temperature and absorbent concentration as that of the vapour pressure. Regression equations for densities and viscosities were obtained with a minimum mean square error criterion.

  5. Communication Facilities for Distributed Systems

    Directory of Open Access Journals (Sweden)

    V. Barladeanu

    1997-01-01

    Full Text Available The design of physical networks and communication protocols in Distributed Systems can have a direct impact on system efficiency and reliability. This paper tries to identify efficient mechanisms and paradigms for communication in distributed systems.

  6. Fixed-Node Diffusion Monte Carlo of Lithium Systems

    CERN Document Server

    Rasch, Kevin

    2015-01-01

    We study lithium systems over a range of number of atoms, e.g., atomic anion, dimer, metallic cluster, and body-centered cubic crystal by the diffusion Monte Carlo method. The calculations include both core and valence electrons in order to avoid any possible impact by pseudo potentials. The focus of the study is the fixed-node errors, and for that purpose we test several orbital sets in order to provide the most accurate nodal hyper surfaces. We compare our results to other high accuracy calculations wherever available and to experimental results so as to quantify the the fixed-node errors. The results for these Li systems show that fixed-node quantum Monte Carlo achieves remarkably high accuracy total energies and recovers 97-99 % of the correlation energy.

  7. Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries.

    Science.gov (United States)

    Wang, Zhong-li; Xu, Dan; Huang, Yun; Wu, Zhong; Wang, Li-min; Zhang, Xin-bo

    2012-01-25

    We firstly propose a facile, mild and effective thermal-decomposition strategy to prepare high-quality graphene at a low temperature of 300 °C in only 5 min under an ambient atmosphere. Applying the advantage of this strategy that provides an oxidizing atmosphere, pure V(2)O(5)/graphene composite is successfully synthesized and exerts excellent lithium storage properties.

  8. Facile solid-state synthesis of Ni@C nanosheet-assembled hierarchical network for high-performance lithium storage

    Science.gov (United States)

    Gu, Jinghe; Li, Qiyun; Zeng, Pan; Meng, Yulin; Zhang, Xiukui; Wu, Ping; Zhou, Yiming

    2017-08-01

    Micro/nano-architectured transition-metal@C hybrids possess unique structural and compositional features toward lithium storage, and are thus expected to manifest ideal anodic performances in advanced lithium-ion batteries (LIBs). Herein, we propose a facile and scalable solid-state coordination and subsequent pyrolysis route for the formation of a novel type of micro/nano-architectured transition-metal@C hybrid (i.e., Ni@C nanosheet-assembled hierarchical network, Ni@C network). Moreover, this coordination-pyrolysis route has also been applied for the construction of bare carbon network using zinc salts instead of nickel salts as precursors. When applied as potential anodic materials in LIBs, the Ni@C network exhibits Ni-content-dependent electrochemical performances, and the partially-etched Ni@C network manifests markedly enhanced Li-storage performances in terms of specific capacities, cycle life, and rate capability than the pristine Ni@C network and carbon network. The proposed solid-state coordination and pyrolysis strategy would open up new opportunities for constructing micro/nano-architectured transition-metal@C hybrids as advanced anode materials for LIBs.

  9. Positron-Lithium Atom and Electron-Lithium Atom Scattering Systems at Intermediate and High Energies

    Institute of Scientific and Technical Information of China (English)

    K. Ratnavelu; S. Y. Ng

    2006-01-01

    @@ The coupled-channel optical method is used to study positron scattering by atomic lithium at energies ranging from the ionization threshold to 60 eV. The present method simultaneously treats the target channels and the positronium (Ps) channels in the coupled-channel method together with the continuum effects via an ab-initio optical potential. Ionization, elastic and inelastic cross sections in target channels, and the total cross section are also reported and compared with other theoretical and experimental data. A comparative study with the corresponding electron-lithium data is also reported.

  10. Lithium-thionyl chloride cell system safety hazard analysis

    Science.gov (United States)

    Dampier, F. W.

    1985-03-01

    This system safety analysis for the lithium thionyl chloride cell is a critical review of the technical literature pertaining to cell safety and draws conclusions and makes recommendations based on this data. The thermodynamics and kinetics of the electrochemical reactions occurring during discharge are discussed with particular attention given to unstable SOCl2 reduction intermediates. Potentially hazardous reactions between the various cell components and discharge products or impurities that could occur during electrical or thermal abuse are described and the most hazardous conditions and reactions identified. Design factors influencing the safety of Li/SOCl2 cells, shipping and disposal methods and the toxicity of Li/SOCl2 battery components are additional safety issues that are also addressed.

  11. Studies of ionic liquids in lithium-ion battery test systems

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  12. Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system.

    Science.gov (United States)

    Kim, Seoni; Lee, Jaehan; Kang, Jin Soo; Jo, Kyusik; Kim, Seonghwan; Sung, Yung-Eun; Yoon, Jeyong

    2015-04-01

    Lithium is one of the most important elements in various fields including energy storage, medicine manufacturing and the glass industry, and demands for lithium are constantly increasing these days. The lime soda evaporation process using brine lake water is the major extraction method for lithium, but this process is not only inefficient and time-consuming but also causes a few environmental problems. Electrochemical recovery processes of lithium ions have been proposed recently, but the better idea for the silver negative electrodes used in these systems is required to reduce its cost or increase long term stability. Here, we report an electrochemical lithium recovery method based on a λ-MnO2/activated carbon hybrid supercapacitor system. In this system, lithium ions and counter anions are effectively captured at each electrode with low energy consumption in a salt solution containing various cationic species or simulated Salar de Atacama brine lake water in Chile. Furthermore, we designed this system as a flow process for practical applications. By experimental analyses, we confirmed that this system has high selectivity and long-term stability, with its performance being retained even after repetitive captures and releases of lithium ions.

  13. Facile mass production of nanoporous SnO2 nanosheets as anode materials for high performance lithium-ion batteries.

    Science.gov (United States)

    Wei, Wenli; Du, Pengcheng; Liu, Dong; Wang, Hongxing; Liu, Peng

    2017-10-01

    Facile one-step ultrasonic-assisted chemical precipitation strategy has been developed for the mass production of SnO2 nanomaterials with different morphologies. As anode material for lithium-ion batteries, the nanoporous SnO2 nanosheets exhibited an extremely high initial specific capacity of 2231mAh/g in comparison with 1242mAh/g of the SnO2 microcrystals and 1244mAh/g of the nanoporous SnO2 nanoflowers. Meanwhile the nanoporous SnO2 nanosheet electrode displayed a specific capacity of 688mAh/g after 60 cycles at 0.2 A/g current density and an extraordinary capacity retention of 224mAh/g at a current density of 8A/g (approximately 10 C) owing to a huge increase of Li(+) diffusion coefficient. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Radiation Safety Systems for Accelerator Facilities

    Energy Technology Data Exchange (ETDEWEB)

    James C. Liu; Jeffrey S. Bull; John Drozdoff; Robert May; Vaclav Vylet

    2001-10-01

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  15. Radiation Safety Systems for Accelerator Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C

    2001-10-17

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  16. Lithium Poisoning

    DEFF Research Database (Denmark)

    Baird-Gunning, Jonathan; Lea-Henry, Tom; Hoegberg, Lotte C G

    2017-01-01

    is required. The cause of lithium poisoning influences treatment and 3 patterns are described: acute, acute-on-chronic, and chronic. Chronic poisoning is the most common etiology, is usually unintentional, and results from lithium intake exceeding elimination. This is most commonly due to impaired kidney...... function caused by volume depletion from lithium-induced nephrogenic diabetes insipidus or intercurrent illnesses and is also drug-induced. Lithium poisoning can affect multiple organs; however, the primary site of toxicity is the central nervous system and clinical manifestations vary from asymptomatic...... supratherapeutic drug concentrations to clinical toxicity such as confusion, ataxia, or seizures. Lithium poisoning has a low mortality rate; however, chronic lithium poisoning can require a prolonged hospital length of stay from impaired mobility and cognition and associated nosocomial complications. Persistent...

  17. Lithium beam diagnostic system on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Anda, G.; Bencze, A. [Wigner – RCP, HAS, Budapest (Hungary); Berta, M., E-mail: bertam@sze.hu [Institute of Plasma Physics AS CR, Prague (Czech Republic); Széchenyi István University, Győr (Hungary); Dunai, D. [Wigner – RCP, HAS, Budapest (Hungary); Hacek, P. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Krbec, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Réfy, D.; Krizsanóczi, T.; Bató, S.; Ilkei, T.; Kiss, I.G.; Veres, G.; Zoletnik, S. [Wigner – RCP, HAS, Budapest (Hungary)

    2016-10-15

    Highlights: • Li-beam diagnostic system on the COMPASS tokamak is an improved and compact system to allow testing of Atomic Beam Probe. • The possibility to measure background corrected density profiles on the few microseconds time scale. • First Li-beam diagnostic system with recirculating neutralizer. • The system includes the redesigned ion source with longer lifetime. - Abstract: An improved lithium beam based beam emission spectroscopy system – installed on COMPASS tokamak – is described. The beam energy enhanced up to 120 keV for Atomic Beam Probe measurement. The size of the ion source is doubled, using a newly developed thermionic heater instead of the conventionally used heating (tungsten or molybdenum) filament. The neutralizer is also improved. It produces the same sodium vapor in a cell but minimize the loss condensing the vapor on a cold surface which is led back (in fluid state) into the sodium oven. This way we call it recirculating neutralizer. The observation system consists of a CCD camera and an avalanche photodiode array.

  18. Lithium ion energy storage systems for hybrid drives by MAGNA STEYR; Energiespeichersysteme in Lithium-Ionen Technologie fuer Hybridantriebe von MAGNA STEYR

    Energy Technology Data Exchange (ETDEWEB)

    Heidenbauer, O.; Homann, J.; Lind, R.; Maier, G.; Pichler, P.; Sentobe, F.; Steinwender, J.; Thaler, A. [MAGNA STEYR, Graz (Austria)

    2006-07-01

    Lithium ion battery systems will dominate the hybrid vehicles market in the near future. The main challenges are industrial-scale production, cost reduction, safety, and integration in the vehicle. The contribution discusses the development and integration of a MAGNA STEYR lithium ion battery system. Magna Steyr developed the components as well as the overall system. Integration aspects like geometric packaging, software development, thermal management and safety were considered. The system was validated in the MAGNA STEYR Full Hybrid demonstration car. (orig.)

  19. Lithium Propellant Purification and Filtration System For LFA and MPD Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium has been proposed as an attractive metal propellant for advanced nuclear-electric propulsion missions in the outer solar system. While it is low molecular...

  20. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  1. Suggested Operation Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef;

    2015-01-01

    there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re......Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...

  2. Power Systems Development Facility. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell.

  3. Production Facility System Reliability Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Crystal Buchanan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    This document describes the reliability, maintainability, and availability (RMA) modeling of the Los Alamos National Laboratory (LANL) design for the Closed Loop Helium Cooling System (CLHCS) planned for the NorthStar accelerator-based 99Mo production facility. The current analysis incorporates a conceptual helium recovery system, beam diagnostics, and prototype control system into the reliability analysis. The results from the 1000 hr blower test are addressed.

  4. Rendezvous Facilities in a Distributed Computer System

    Institute of Scientific and Technical Information of China (English)

    廖先Zhi; 金兰

    1995-01-01

    The distributed computer system described in this paper is a set of computer nodes interconnected in an interconnection network via packet-switching interfaces.The nodes communicate with each other by means of message-passing protocols.This paper presents the implementation of rendezvous facilities as high-level primitives provided by a parallel programming language to support interprocess communication and synchronization.

  5. A compact self-flowing lithium system for use in an industrial neutron source

    Science.gov (United States)

    Kalathiparambil, Kishor Kumar; Szott, Matthew; Jurczyk, Brian; Ahn, Chisung; Ruzic, David

    2016-10-01

    A compact trench module to flow liquid lithium in closed loops for handling high heat and particle flux have been fabricated and tested at UIUC. The module was designed to demonstrate the proof of concept in utilizing liquid metals for two principal objectives: i) as self-healing low Z plasma facing components, which is expected to solve the issues facing the current high Z components and ii) using flowing lithium as an MeV-level neutron source. A continuously flowing lithium loop ensures a fresh lithium interface and also accommodate a higher concentration of D, enabling advanced D-Li reactions without using any radioactive tritium. Such a system is expected to have a base yield of 10e7 n/s. For both the applications, the key success factor of the module is attaining the necessary high flow velocity of the lithium especially over the impact area, which will be the disruptive plasma events in fusion reactors and the incident ion beam for the neutron beam source. This was achieved by the efficient shaping of the trenches to exploit the nozzle effect in liquid flow. The compactness of the module, which can also be scaled as desired, was fulfilled by the use of high Tc permanent magnets and air cooled channels attained the necessary temperature gradient for driving the lithium. The design considerations and parameters, experimental arrangements involving lithium filling and attaining flow, data and results obtained will be elaborated. DOE SBIR project DE-SC0013861.

  6. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.

  7. Facile synthesis of Co{sub 3}O{sub 4} hierarchical microspheres with improved lithium storage performances

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xiaojuan, E-mail: houxiaojuan@nuc.edu.cn; He, Jian; An, Kun; Mu, Jiliang; Chou, Xiujian; Xue, Chenyang

    2016-10-15

    Highlights: • The Co{sub 3}O{sub 4} microspheres were first fabricated without any surfactant. • The Co{sub 3}O{sub 4} microspheres present excellent electrochemical performances. • The excellent performances result from porous nanosheets assembled architectures. • The microspheres exhibit a high specific capacity of 1000 mA h g at 100 mA g. - Abstract: Porous nanosheets-assembled Co{sub 3}O{sub 4} microspheres have been first successfully fabricated by a facile solvothermal method without any surfactant followed by a relatively low annealing temperature (400 °C) with a higher specific surface area compared to the annealing temperature of 600 °C. The nanosheets-assembled microspheres exhibit a high discharge capacity of 1000 mA h g{sup −1} at a current density of 100 mA g{sup −1} after 50 cycles and 850 mA h g{sup −1} at a current density of 500 mA g{sup −1} after 80 cycles, even at a high current density of 1.6 A g{sup −1} the cycling reversible capacity can still keep 750 mA h g{sup −1}, the representative capacities are relatively higher than most of reports about pure Co{sub 3}O{sub 4}. We attribute the excellent electrochemical performances to the porous nanosheets structure and architectures, which can provide more effective electrode/electrolyte contact area and direct ion transmission path, then lead to faster lithium-ion diffusion, confirmed by EIS measurements. The high specific capacity, excellent cycling and rate performances demonstrate that the porous nanosheets assembled microspheres present promising application in lithium storage.

  8. Facile synthesis of silicon films by photosintering as anode materials for lithium-ion batteries

    Science.gov (United States)

    Chen, Wei; Jiang, Nan; Fan, Zhongli; Dhanabalan, Abirami; Chen, Chunhui; Li, Yunjun; Yang, Mohshi; Wang, Chunlei

    2012-09-01

    The silicon films as anode materials for lithium-ion batteries were fabricated by the cost-effective, high-throughput photosintering process. The thinner Si film (1.3 μm) exhibited larger storage capacity and better cyclability compared to the thicker one (4.2 μm) due to the close contact of the fused silicon nanoparticles with the substrate. Moreover, the addition of silver nanoparticles improved the conductivity of silicon film and facilitated the amorphous phase formation, resulting in enhanced capacity and cyclability. The photosintering approach highlights the advantage in the flexible and practicable manufacture and shows the promising prospects for developing high-performance Si-based anode materials.

  9. Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage

    Science.gov (United States)

    Chen, Jizhang; Yang, Li; Rousidan, Saibihai; Fang, Shaohua; Zhang, Zhengxi; Hirano, Shin-Ichi

    2013-10-01

    Si has the second highest theoretical capacity among all the known anode materials for lithium ion batteries, whereas it is vulnerable to pulverization and crumbling upon lithiation/delithiation. Herein, Si mesoporous nanowires prepared by a scalable and cost-effective procedure are reported for the first time. Such nanowire morphology and mesoporous structure can effectively buffer the huge lithiation-induced volume expansion of Si, therefore contributing to excellent cycling stability and high-rate capability. Reversible capacities of 1826.8 and 737.4 mA h g-1 can be obtained at 500 mA g-1 and a very high current density of 10 A g-1, respectively. After 1000 cycles at 2500 mA g-1, this product still maintains a high capacity of 643.5 mA h g-1.Si has the second highest theoretical capacity among all the known anode materials for lithium ion batteries, whereas it is vulnerable to pulverization and crumbling upon lithiation/delithiation. Herein, Si mesoporous nanowires prepared by a scalable and cost-effective procedure are reported for the first time. Such nanowire morphology and mesoporous structure can effectively buffer the huge lithiation-induced volume expansion of Si, therefore contributing to excellent cycling stability and high-rate capability. Reversible capacities of 1826.8 and 737.4 mA h g-1 can be obtained at 500 mA g-1 and a very high current density of 10 A g-1, respectively. After 1000 cycles at 2500 mA g-1, this product still maintains a high capacity of 643.5 mA h g-1. Electronic supplementary information (ESI) available: SEM images; N2 adsorption/desorption isotherm; long-term cycling performance at 500 mA g-1 comparison with other literature. See DOI: 10.1039/c3nr03955b

  10. Biotechnology System Facility: Risk Mitigation on Mir

    Science.gov (United States)

    Gonda, Steve R., III; Galloway, Steve R.

    2003-01-01

    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  11. FRS (Facility Registration System) Sites, Geographic NAD83, EPA (2007) [facility_registration_system_sites_LA_EPA_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — This dataset contains locations of Facility Registry System (FRS) sites which were pulled from a centrally managed database that identifies facilities, sites or...

  12. Lithium literature review: lithium's properties and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jeppson, D.W.; Ballif, J.L.; Yuan, W.W.; Chou, B.E.

    1978-04-01

    The lithium literature has been reviewed to provide a better understanding of the effects of lithium spills that might occur in magnetic fusion energy (MFE) facilities. Lithium may be used as a breeding blanket and reactor coolant in these facilities. Physical and chemical properties of lithium as well as the chemical interactions of lithium with various gases, metals and non-metals have been identified. A preliminary assessment of lithium-concrete reactions has been completed using differential thermal analysis. Suggestions are given for future studies in areas where literature is lacking or limited.

  13. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Science.gov (United States)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  14. Nike Facility Diagnostics and Data Acquisition System

    Science.gov (United States)

    Chan, Yung; Aglitskiy, Yefim; Karasik, Max; Kehne, David; Obenschain, Steve; Oh, Jaechul; Serlin, Victor; Weaver, Jim

    2013-10-01

    The Nike laser-target facility is a 56-beam krypton fluoride system that can deliver 2 to 3 kJ of laser energy at 248 nm onto targets inside a two meter diameter vacuum chamber. Nike is used to study physics and technology issues related to laser direct-drive ICF fusion, including hydrodynamic and laser-plasma instabilities, material behavior at extreme pressures, and optical and x-ray diagnostics for laser-heated targets. A suite of laser and target diagnostics are fielded on the Nike facility, including high-speed, high-resolution x-ray and visible imaging cameras, spectrometers and photo-detectors. A centrally-controlled, distributed computerized data acquisition system provides robust data management and near real-time analysis feedback capability during target shots. Work supported by DOE/NNSA.

  15. Saturn facility oil transfer automation system

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Nathan R.; Thomas, Rayburn Dean; Lewis, Barbara Ann; Malagon, Hector Ricardo.

    2014-02-01

    The Saturn accelerator, owned by Sandia National Laboratories, has been in operation since the early 1980s and still has many of the original systems. A critical legacy system is the oil transfer system which transfers 250,000 gallons of transformer oil from outside storage tanks to the Saturn facility. The oil transfer system was iden- ti ed for upgrade to current technology standards. Using the existing valves, pumps, and relay controls, the system was automated using the National Instruments cRIO FGPA platform. Engineered safety practices, including a failure mode e ects analysis, were used to develop error handling requirements. The uniqueness of the Saturn Oil Automated Transfer System (SOATS) is in the graphical user interface. The SOATS uses an HTML interface to communicate to the cRIO, creating a platform independent control system. The SOATS was commissioned in April 2013.

  16. Apogee system using the lithium and water reaction

    Energy Technology Data Exchange (ETDEWEB)

    Duchemin, O.; Poinsot, C. [Ecole Nationale Superieure des Ingenieurs des Etudes et Techniques d`Armement, 29 - Brest (France)

    1996-12-31

    We investigate the feasibility of an apogee engine using Lithium and water as a bi-liquid propellant for a 2-ton class geostationary satellite. The Lithium and water reaction is briefly described, and after a discussion on how the high mass fraction of condensed products yielded by the reaction is handled by the NASA-Lewis code, the specific impulse is computed. A water to Lithium ratio of 2.4 at a chamber pressure of 5 bar and at a temperature of 1800 K is proposed as a baseline, for vacuum specific impulse of 286 s with a nozzle area ratio of 300. The most relevant issues of engineering design are eventually addressed. (authors) 4 refs.

  17. Monitoring System with Two Central Facilities Protocol

    Directory of Open Access Journals (Sweden)

    Caesar Firdaus

    2017-03-01

    Full Text Available The security of data and information on government’s information system required proper way of defending against threat. Security aspect can be achieved by using cryptography algorithm, applying information hiding concept, and implementing security protocol. In this research, two central facilities protocol was implemented on Research and Development Center of Mineral and Coal Technology’s Cooperation Contract Monitoring System by utilizing AES and whitespace manipulation algorithm. Adjustment on the protocol by creating several rule of validation ID’s generation and checking processes could fulfill two of four cryptography objectives, consist of authentication and non-repudiation. The solid collaboration between central legitimization agency (CLA, central tabulating facility (CTF, and client is the main idea in two central facilities protocol. The utilization of AES algorithm could defend the data on transmission from man in the middle attack scenario. On the other hand, whitespace manipulation algorithm provided data integrity aspect of the document that is uploaded to the system itself. Both of the algorithm fulfill confidentiality, data integrity, and authentication.

  18. Facile synthesis of hydroxy-modified MOF-5 for improving the adsorption capacity of hydrogen by lithium doping.

    Science.gov (United States)

    Kubo, Masaru; Hagi, Hayato; Shimojima, Atsushi; Okubo, Tatsuya

    2013-11-01

    A facile synthesis of partially hydroxy-modified MOF-5 and its improved H2-adsorption capacity by lithium doping are reported. The reaction of Zn(NO3)2·6H2O with a mixture of terephthalic acid (H2BDC) and 2-hydroxyterephthalic acid (H2BDC-OH) in DMF gave hydroxy-modified MOF-5 (MOF-5-OH-x), in which the molar fraction (x) of BDC-OH(2-) was up to 0.54 of the whole ligand. The MOF-5-OH-x frameworks had high BET surface areas (about 3300 m(2) g(-1)), which were comparable to that of MOF-5. We suggest that the MOF-5-OH-x frameworks are formed by the secondary growth of BDC(2-)-rich MOF-5 seed crystals, which are nucleated during the early stage of the reaction. Subsequent Li doping into MOF-5-OH-x results in increased H2 uptake at 77 K and 0.1 MPa from 1.23 to 1.39 wt.% and an increased isosteric heat of H2 adsorption from 5.1-4.2 kJ mol(-1) to 5.5-4.4 kJ mol(-1).

  19. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes.

    Science.gov (United States)

    Fang, Wenying; Zhao, Hongbin; Xie, Yanping; Fang, Jianhui; Xu, Jiaqiang; Chen, Zhongwei

    2015-06-17

    In this study, a facile one-pot process for the synthesis of hierarchical VS2/graphene nanosheets (VS2/GNS) composites based on the coincident interaction of VS2 and reduced graphene oxide (rGO) sheets in the presence of cetyltrimethylammonium bromide is developed for the first time. The nanocomposites possess a hierarchical structure of 50 nm VS2 sheets in thickness homogeneously anchored on graphene. The VS2/GNS nanocomposites exhibit an impressive high-rate capability and good cyclic stability as a cathode material for Li-ion batteries, which retain 89.3% of the initial capacity 180.1 mAh g(-1) after 200 cycles at 0.2 C. Even at 20 C, the composites still deliver a high capacity of 114.2 mAh g(-1) corresponding to 62% of the low-rate capacity. Expanded studies show that VS2/GNS, as an anode material, also has a good reversible performance with 528 mAh g(-1) capacity after 100 cycles at 200 mA g(-1). The excellent electrochemical performance of the composites for reversible Li+ storage should be attributed to the exceptional interaction between VS2 and GNS that enabled fast electron transport between graphene and VS2, facile Li-ion diffusion within the electrode. Moreover, GNS provides a topological and structural template for the nucleation and growth of two-dimensional VS2 nanosheets and acted as buffer matrix to relieve the volume expansion/contraction of VS2 during the electrochemical charge/discharge, facilitating improved cycling stability. The VS2/GNS composites may be promising electrode materials for the next generation of rechargeable lithium ion batteries.

  20. Facile synthesis of one-dimensional zinc vanadate nanofibers for high lithium storage anode material

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lei [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); International Joint Research Laboratory for Advanced Functional Textile Materials, Jiangnan University, Wuxi 214122 (China); Fei, Yaqian; Chen, Ke; Li, Dawei; Wang, Xin [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Wang, Qingqing [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); International Joint Research Laboratory for Advanced Functional Textile Materials, Jiangnan University, Wuxi 214122 (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); International Joint Research Laboratory for Advanced Functional Textile Materials, Jiangnan University, Wuxi 214122 (China); Qiao, Hui [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)

    2015-11-15

    One-dimensional (1D) zinc vanadate (α-Zn{sub 2}V{sub 2}O{sub 7}) nanofibers have been synthesized through electrospinning combined with an annealing process. When used as anode material for lithium-ion batteries (LIBs), electrospun 1D α-Zn{sub 2}V{sub 2}O{sub 7} nanofibers exhibit a reversible capacity of ∼708 mAh g{sup −1} after 100 cycles at a current density of 50 mA g{sup −1}. A good rate capability is also achieved even at higher current densities. When cycled at a current density of 2000 mA g{sup −1}, the electrode can still show a reversible capacity of ∼311 mAh g{sup −1}. The excellent cycle performance and rate capability may be due to the 1D nanofiber architectures, mesoporous structures, and relatively large specific surface area, which can provide a short ion diffusion path and continuous electron transportation. Therefore, this work presents a simple and efficient approach for fabrication of 1D α-Zn{sub 2}V{sub 2}O{sub 7} nanofibers, which are promising high-performance anode materials for LIBs. - Highlights: • Electrospun 1D α-Zn{sub 2}V{sub 2}O{sub 7} nanofibers are first synthesized for anode material. • The electrochemical reaction mechanism of this material is discussed. • A reversible capacity of ∼708 mAh g{sup −1} is obtained after 100 cycles at 50 mA g{sup −1}. • 1D α-Zn{sub 2}V{sub 2}O{sub 7} nanofiber anodes show excellent rate capability for LIBs.

  1. Support systems of the orbiting quarantine facility

    Science.gov (United States)

    The physical support systems, the personnel management structure, and the contingency systems necessary to permit the Orbiting Quarantine Facility (OQF) to function as an integrated system are described. The interactions between the subsystems within the preassembled modules are illustrated. The Power Module generates and distributes electrical power throughout each of the four modules, stabilizes the OQF's attitude, and dissipates heat generated throughout the system. The Habitation Module is a multifunctional structure designed to monitor and control all aspects of the system's activities. The Logistics Module stores the supplies needed for 30 days of operation and provides storage for waste materials generated during the mission. The Laboratory Module contains the equipment necessary for executing the protocol, as well as an independent life support system.

  2. Test Facility For Thermal Imaging Systems

    Science.gov (United States)

    Fontanella, Jean-Claude

    1981-10-01

    The test facility is designed to measure the main performances of thermal imaging systems : optical transfer function, minimum resolvable thermal difference, noise equivalent temperature difference and spectral response. The infrared sources are slits, MRTD four bar patterns or the output slit of a monochromator which are placed in the focal plane of two collimators. The response of the system can be measured either on the display using a photometer or in the video signal using a transient recorder. Most of the measurements are controlled by a minicomputer. Typical results are presented.

  3. Dissolution behavior of lithium compounds in ethanol

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-12-01

    Full Text Available In order to exchange the components which received irradiation damage during the operation at the International Fusion Materials Irradiation Facility, the adhered lithium, which is partially converted to lithium compounds such as lithium oxide and lithium hydroxide, should be removed from the components. In this study, the dissolution experiments of lithium compounds (lithium nitride, lithium hydroxide, and lithium oxide were performed in a candidate solvent, allowing the clarification of time and temperature dependence. Based on the results, a cleaning procedure for adhered lithium on the inner surface of the components was proposed.

  4. Preliminary Evaluations of Polymer-based Lithium Battery Electrolytes Under Development for the Polymer Electrolyte Rechargeable Systems Program

    Science.gov (United States)

    Manzo, Michelle A.; Bennett, William R.

    2003-01-01

    A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.

  5. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to... Battery and Battery Systems--Small and Medium Size DATES: The meeting will be held October 1-3, 2013, from...

  6. Optimal Sizing of a Lithium Battery Energy Storage System for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Dulout, Jeremy; Anvari-Moghaddam, Amjad; Hernández, Adriana Carolina Luna

    2017-01-01

    This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC...... microgrid. Thus, both daily photovoltaic (PV) and load profiles together with battery lifetime and performance models are considered in this study. A probabilistic analysis has been performed on some years of real data from the ADREAM experimental PV building of the LAAS-CNRS in Toulouse, FRANCE....

  7. INDICTORS OF RESTORATION OF PROGRAM FACILITY OF MECHATRONICS SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Frolov

    2009-01-01

    Full Text Available The determination of reliability indictors of program facilities of mechatronic systems are offered. The defaillance modes of program facilities are represent. A short review of model reliability of program facility is presented. The indictors of restoration, their mathematical determinations and application for the characteristics of program facility restoration are offered.

  8. INDICTORS OF RESTORATION OF PROGRAM FACILITY OF MECHATRONICS SYSTEM

    OpenAIRE

    Frolov, V.

    2009-01-01

    The determination of reliability indictors of program facilities of mechatronic systems are offered. The defaillance modes of program facilities are represent. A short review of model reliability of program facility is presented. The indictors of restoration, their mathematical determinations and application for the characteristics of program facility restoration are offered.

  9. Identification and treatment of lithium as the primary toxicant in a groundwater treatment facility effluent

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [Oak Ridge National Lab., TN (United States); Crow, K.R. [Oak Ridge Y-12 Plant, TN (United States)

    1996-10-01

    {sup 6}Li is used in manufacturing nuclear weapons, shielding, and reactor control rods. Li compounds have been used at DOE facilities and Li-contaminated waste has historically been land disposed. Seep water from burial grounds near Y-12 contain small amounts of chlorinated hydrocarbons, traces of PCBs, and 10-19 mg/L Li. Seep treatment consists of oil-water separation, filtration, air stripping, and carbon adsorption. Routine biomonitoring tests using fathead minnows and {ital Ceriodaphnia}{ital dubia} are conducted. Evaluation of suspected contaminants revealed that toxicity was most likely due to Li. Laboratory tests showed that 1 mg Li/L reduced the survival of both species; 0.5 mg Li/L reduced {ital Ceriodaphnia} reproduction and minnow growth. However, the toxicity was greatly reduced in presence of sodium (up to 4 mg Li/L, Na can fully negate the toxic effect of Li). Because of the low Na level discharged from the treatment facility, Li removal from the ground water was desired. SuperLig{reg_sign} columns were used (Li-selective organic macrocycle bonded to silica gel). Bench-scale tests showed that the material was very effective for removing Li from the effluent, reducing the toxicity.

  10. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  11. 7Be(n,α and 7Be(n,p cross-section measurement for the cosmological lithium problem at the n_TOF facility at CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2017-01-01

    Full Text Available The Cosmological Lithium Problem refers to the large discrepancy between the abundance of primordial 7Li predicted by the standard theory of Big Bang Nucleosynthesis and the value inferred from the so-called “Spite plateau” in halo stars. A possible explanation for this longstanding puzzle in Nuclear Astrophysics is related to the incorrect estimation of the destruction rate of 7Be, which is responsible for the production of 95% of primordial Lithium. While charged-particle induced reactions have mostly been ruled out, data on the 7Be(n,α and 7Be(n,p reactions are scarce or completely missing, so that a large uncertainty still affects the abundance of 7Li predicted by the standard theory of Big Bang Nucleosynthesis. Both reactions have been measured at the n_TOF facility at CERN, providing for the first time data in a wide neutron energy range.

  12. The Thomson Scattering System on the Lithium Tokamak eXperiment (LTX)

    Energy Technology Data Exchange (ETDEWEB)

    T. Strickler, R. Majeski, R. Kaita, B. LeBlanc

    2008-07-31

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with R0 = 0.4m, a = 0.26m, BTF ~ 3.4kG, IP ~ 400kA, and pulse length ~ 0.25s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface. Based on previous experimental results and simulation, it is expected that the low-recycling liquid lithium surfaces will result in higher temperatures at the plasma edge, flatter overall temperature profiles, centrally-peaked density profiles, and an increased confinement time. To test these predictions, the electron temperature and density profiles in LTX will be measured by a multi-point Thomson scattering system (TVTS). Initially, TS measurements will be made at up to 12 simultaneous points between the plasma center and plasma edge. Later, high resolution edge measurements will be deployed to study the lithium edge physics in greater detail. Technical challenges to implementing the TS system included limited "line of sight" access to the plasma due to the plasma-facing shell and problems associated with the presence of liquid lithium.

  13. Grid Inertial Response with Lithium-ion Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Knap, Vaclav; Sinha, Rakesh; Swierczynski, Maciej Jozef

    2014-01-01

    of this paper is to evaluate the technical viability of utilizing energy storage systems based on Lithium-ion batteries for providing inertial response in grids with high penetration levels of wind power. In order to perform this evaluation, the 12-bus system grid model was used; the inertia of the grid...... was varied by decreasing the number of conventional power plants in the studied grid model while in the same time increasing the load and the wind power penetration levels. Moreover, in order to perform a realistic investigation, a dynamic model of the Lithium-ion battery was considered and parameterized...

  14. Nuclear analysis of the IFMIF European lithium target assembly system

    Energy Technology Data Exchange (ETDEWEB)

    Frisoni, M., E-mail: manuela.frisoni@enea.it [ENEA Bologna, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Bernardi, D.; Miccichè, G.; Serra, M. [ENEA CR Brasimone, Bacino del Brasimone 40032, Camugnano (Italy)

    2014-10-15

    Highlights: •Coupled n–γ transport calculations performed for the ENEA target assembly system. •The MCNP5 1.6 Monte Carlo code was used integrated with the McDeLicious-11 code. •A complete mapping of nuclear responses provided for the thermomechanical analysis. •Neutron activation calculations were performed for backplate, frame, nozzle and target chamber. •Results confirm that the design of the system needs remote handling tools. -- Abstract: In the framework of the Engineering Validation and Engineering Design Activities (EVEDA) phase of the International Fusion Materials Irradiation Facility (IFMIF) project, ENEA was in charge of the design of the European version of the target assembly (TA) system which employs a removable bayonet backplate (BP) concept. With the aim of assessing the nuclear behaviour of the system and supplying the necessary input data to the thermomechanical analysis, coupled neutron-gamma transport calculations have been carried out for the whole TA + BP system, using the MCNP5 1.6 Monte Carlo transport code integrated with the McDeLicious-11 neutron source code provided by KIT. Neutron activation calculations have been performed by means of the EASY-2010 activation system in order to provide radioactive inventories useful for thermomechanical analysis and safety purposes. This paper summarizes the results obtained by the neutronic and activation calculations for the most irradiated components of the TA, such as backplate, frame, nozzle and target chamber.

  15. Engineering Challenges for Closed Ecological System facilities

    Science.gov (United States)

    Dempster, William; Nelson, Mark; Allen, John P.

    2012-07-01

    Engineering challenges for closed ecological systems include methods of achieving closure for structures of different materials, and developing methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is developing means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differentials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.

  16. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-04-05

    ... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the seventh meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery...

  17. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the sixth meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery...

  18. A Pulsed Power System Design Using Lithium-ion Batteries and One Charger per Battery

    Science.gov (United States)

    2009-12-01

    SYSTEM DESIGN USING LITHIUM-ION BATTERIES AND ONE CHARGER PER BATTERY by Frank E. Filler December 2009 Thesis Advisor: Alexander L. Julian...Author: Frank E. Filler Approved by: Alexander L. Julian Thesis Advisor Roberto Crisiti Second Reader Jeffrey B. Knorr Chairman...Battery Management System BNC Bayonet Neill -Concelman CC Constant Current CCCV Constant Current Constant Voltage CV Constant Voltage D

  19. Wnt and lithium: a common destiny in the therapy of nervous system pathologies?

    Science.gov (United States)

    Meffre, Delphine; Grenier, Julien; Bernard, Sophie; Courtin, Françoise; Dudev, Todor; Shackleford, Ghjuvan'Ghjacumu; Jafarian-Tehrani, Mehrnaz; Massaad, Charbel

    2014-04-01

    Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.

  20. Influence of Adhesive System on Performance of SiO/C Lithium-ion Battery

    Directory of Open Access Journals (Sweden)

    Teng Xin

    2015-01-01

    Full Text Available Silicon based anode material is turning into the research hot point of lithium-ion battery material field due to Si inside supporting higher capacity. Furthermore binder applied as major accessory material of anode system could bring anode material & current collector together, thus the influence given by binder system to battery performance becomes the key point. The paper describes the procedure of adopting commercial LiCoO2 SiO/C as composite material & electrolyte, with using styrene butadiene rubber and acrylic acid copolymer as binder to figure out lithium-ion battery with 2.5Ah, which is testified to present better performance on cold temperature & cycle life plus having a little bit swelling compared with the lithium-ion battery using only styrene butadiene rubber as binder.

  1. Lithium Circuit Test Section Design and Fabrication

    Science.gov (United States)

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  2. An Advanced Battery Management System for Lithium Ion Batteries

    Science.gov (United States)

    2011-08-01

    preliminary cycle life data of the 18650 1100 mAh, and 26650 2200 mAh Lithium Iron Phosphate (LiFePO4) cells from Tenergy Battery Corp. (Manufacturer...10 shows how the data might be used to estimate SOL of a 18650 cell. The plot shows the analytical life cycle curve (blue) superimposed on actual...of equation 3 result with real 18650 Tenergy cell cycle life data. REFERENCES [1] Z. Filipi, L. Louca, A. Stefanopoulou, J. Pukrushpan, B

  3. Controls system developments for the ERL facility

    Energy Technology Data Exchange (ETDEWEB)

    Jamilkowski, J.; Altinbas, Z.; Gassner, D.; Hoff, L.; Kankiya, P.; Kayran, D.; Miller, T.; Olsen, R.; Sheehy, B.; Xu, W.

    2011-10-07

    The BNL Energy Recovery LINAC (ERL) is a high beam current, superconducting RF electron accelerator that is being commissioned to serve as a research and development prototype for a RHIC facility upgrade for electron-ion collision (eRHIC). Key components of the machine include a laser, photocathode, and 5-cell superconducting RF cavity operating at a frequency of 703 MHz. Starting with a foundation based on existing ADO software running on Linux servers and on the VME/VxWorks platforms developed for RHIC, we are developing a controls system that incorporates a wide range of hardware I/O interfaces that are needed for machine R&D. Details of the system layout, specifications, and user interfaces are provided.

  4. National transonic facility Mach number system

    Science.gov (United States)

    Kern, F. A.; Knight, C. W.; Zasimowich, R. F.

    1985-01-01

    The Mach number system for the Langley Research Center's National Transonic Facility was designed to measure pressures to determine Mach number to within + or - 0.002. Nine calibration laboratory type fused quartz gages, four different range gages for the total pressure measurement, and five different range gages for the static pressure measurement were used to satisfy the accuracy requirement over the 103,000-890,000 Pa total pressure range of the tunnel. The system which has been in operation for over 1 year is controlled by a programmable data process controller to select, through the operation of solenoid valves, the proper range fused quartz gage to maximize the measurement accuracy. The pressure gage's analog outputs are digitized by the process controller and transmitted to the main computer for Mach number computation. An automatic two-point on-line calibration of the nine quartz gages is provided using a high accuracy mercury manometer.

  5. Key ecological challenges for closed systems facilities

    Science.gov (United States)

    Nelson, Mark; Dempster, William F.; Allen, John P.

    2013-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems.

  6. Underpinning energetics of lithium bonding and stability in the Li-Pt-Sn system

    Science.gov (United States)

    Matar, Samir F.; Pöttgen, Rainer

    2012-10-01

    Within the Li-Pt-Sn system, we examine the electronic structures and Li-binding of LiPtSn2, Li2PtSn and Li3Pt2Sn3 with fluorite-related crystal structures. The structures with totally de-intercalated lithium keep the characteristics of the pristine ternary compound with a reduction of the volume. In Li3Pt2Sn3 the binding energies of lithium belonging to three crystallographically inequivalent Wyckoff sites are different and point to distinct activities of de-intercalation concomitant with site-selective bonding magnitudes. The derived potentials are within the range of non-oxide binary and ternary lithium based compounds and indicate the possibility of at least partial delithiation.

  7. Facility information management system; Shisetsu joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-10

    A facility management system (FMS) was developed as a tool for efficiently operating and managing building facilities and related equipment. The maintenance management data is designed to be collected through automatic formation of data base by using a work flow function and releasing the daily business from paper work. The data base thus formed can be retrieved and displayed by utilizing a network system. The plan view for construction facilities is made a minute plan comparable to the ground plan by taking in DXF type drawing data such as a completion drawing, making it a colored display for example to create an intuitive expression understandable at first sight. The plan is controlled by the level including equipment classification and is capable of superimposed display. Detailed management data is displayed by mouse clicking of registered icons, allowing required information to be readily taken out. (translated by NEDO)

  8. Ventilation system design for educational facilities

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F.; Abo Elazm, M.M. [Arab Academy for Science, Alexandria (Egypt). Technology and Maritime Transport; Safwan, M. [Arab Academy for Science, Cairo (Egypt). Technology and Maritime Transport

    2010-07-01

    In order to maintain acceptable indoor air quality levels in classrooms, high ventilation rates are needed to dilute the concentration of indoor contaminants, resulting in higher energy consumption for the operation of mechanical ventilation systems. Three factors are usually considered when determining the adequate ventilation rate for classrooms in educational facilities. These include the maximum population served in the classroom; carbon dioxide (CO{sub 2}) production rate by occupants; and outdoor air conditions. CO{sub 2} concentrations usually indicate the rate of ventilation required. This paper presented a newly developed computer software program for determining the ventilation rates needed to enhance indoor air quality and to maintain CO{sub 2} concentration within the recommended levels by ANSI/ASHRAE standards for best student performance. This paper also presented design curves for determining the ventilation rates and air changes per hour required for the ventilated educational zone. 15 refs., 2 tabs., 5 figs.

  9. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  10. Telerobotics and Systems Engineering for Scientific Facilities Editorial

    Directory of Open Access Journals (Sweden)

    Manuel Ferre

    2014-11-01

    Full Text Available This special issue is focused on promoting telerobotic remote handling technologies integrated with system engineering. Integration matters are particularly relevant in scientific facilities such as CERN (European Organization for Nuclear Research, GSI-FAIR (Facility for Antiproton and Ion Research, JET (Joint European Torus and ITER (International Thermonuclear Experimental Reactor, where the complexity of these facilities require top-down analysis.

  11. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Bingbin; Wang, Shanyu; Evans IV, Willie J.; Deng, Daniel Z.; Yang, Jihui; Xiao, Jie

    2016-01-01

    In recent years room temperature Li+ ion conductors have been intensively revisited in order to develop safe lithium ion (Li-ion) batteries and beyond that can be deployed in the electrical vehicles. Through careful modification on materials synthesis, promising solid Li+ conductors with high ionic conductivity, competitve with liquid electrolytes, have been demonstrated. However, the integration of those highly conductive solid electrolytes into the whole system is still very challenging mainly due to the high impedance existing in the different interfaces throughout the entire battery structure. Herein , this review paper focuses on the overview of the interfacial behaviors between Li+ conductors and cathode/anode materials. The origin, evolution and potential solutions to reuce these interfacial impedances are reviewed for various battery systems spanning from Li-ion, lithium sulfur (Li-S), lithium oxygen (Li-O2) batteries to lithium metal protection. The predicted gravimetric and volumetric energy densities at different scenarios are also discussed along with the prospectives for further development of solid state batteries.

  12. Probing lithium germanide phase evolution and structural change in a germanium-in-carbon nanotube energy storage system.

    Science.gov (United States)

    Tang, Wei; Liu, Yanpeng; Peng, Chengxin; Hu, Mary Y; Deng, Xuchu; Lin, Ming; Hu, Jian Zhi; Loh, Kian Ping

    2015-02-25

    Lithium alloys of group IV elements such as silicon and germanium are attractive candidates for use as anodes in high-energy-density lithium-ion batteries. However, the poor capacity retention arising from volume swing during lithium cycling restricts their widespread application. Herein, we report high reversible capacity and superior rate capability from core-shell structure consisting of germanium nanorods embedded in multiwall carbon nanotubes. To understand how the core-shell structure helps to mitigate volume swings and buffer against mechanical instability, transmission electron microscopy, X-ray diffraction, and in situ (7)Li nuclear magnetic resonance were used to probe the structural rearrangements and phase evolution of various Li-Ge alloy phases during (de)alloying reactions with lithium. The results provide insights into amorphous-to-crystalline transition and lithium germanide alloy phase transformation, which are important reactions controlling performance in this system.

  13. Region 9 National Pollution Discharge Elimination System (NPDES) Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...

  14. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation: A Battery Lifetime Perspective

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef;

    2016-01-01

    there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re......Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...

  15. Thermal analysis of lithium cooled natural circulation loop module for fuel rod testing in the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Kim, D.; Stover, R.L.; Beaver, T.R.

    1987-01-01

    Maximum heat removal capability of a lithium cooled natural circulation fuel rod test module design is determined. Loop geometry is optimized within limitations of design specifications for nominal operation temperatures, materials, and test module environment. Results provide test module operation limits and range of potential uncertainties. 3 refs., 12 figs.

  16. Energy Systems Integration Facility (ESIF): Facility Stewardship Plan, Revision 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Art [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hannegan, Bryan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-sq. ft. research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan serves to provide DOE and other decision makers with information on the existing and expected capabilities of ESIF, and the expected performance metrics to be applied to ESIF operations. This Plan is a living document that will be updated and refined throughout the lifetime of the facility.

  17. Lithium Battery Power Delivers Electric Vehicles to Market

    Science.gov (United States)

    2008-01-01

    Hybrid Technologies Inc., a manufacturer and marketer of lithium-ion battery electric vehicles, based in Las Vegas, Nevada, and with research and manufacturing facilities in Mooresville, North Carolina, entered into a Space Act Agreement with Kennedy Space Center to determine the utility of lithium-powered fleet vehicles. NASA contributed engineering expertise for the car's advanced battery management system and tested a fleet of zero-emission vehicles on the Kennedy campus. Hybrid Technologies now offers a series of purpose-built lithium electric vehicles dubbed the LiV series, aimed at the urban and commuter environments.

  18. Main Directions and Recent Test Modeling Results of Lithium Capillary-Pore Systems as Plasma Facing Components

    Institute of Scientific and Technical Information of China (English)

    V.A. Evtikhin; V. M. Korzhavin; I.E. Lyublinski; A.V. Vertkov; E.A. Azizov; S.V. Mirnov; V. B. Lazarev; S. M. Sotnikov; V. M. Safronov; A. S. Prokhorov

    2004-01-01

    At present the most promising principal solution of the divertor problem appears to be the use of liquid metals and primarily of lithium Capillary-Pore Systems (CPS) as of plasma facing materials. A solid CPS filled with liquid lithium will have a high resistance to surface and volume damage because of neutron radiation effects, melting, splashing and thermal stressinduced cracking in steady state and during plasma transitions to provide the normal operation of divertor target plates and first-wall protecting elements. These materials will not be the sources of impurities inducing an increase of Zeff and they will not be collected as dust in the divertor area and in ducts.Experiments with lithium CPS under simulating conditions of plasma disruption on a hydrogenplasma accelerator MK-200 [~ (10 - 15) MJ/m2, ~ 50 μs] have been performed. The formation of a shielding layer of lithium plasma and the high stability of these systems have been shown.The new lithium limiter tests on an up-graded T-11M tokamak (plasma current up to 100 kA,pulse length ~0.3 s) have been performed. Sorption and desorption of plasma-forming gas, lithium emission into discharge, lithium erosion, deposited power of the limiter are investigated in these experiments. The first results of experiments are presented.

  19. Information security management system planning for CBRN facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lenaeu, Joseph D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Neil, Lori Ross [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leitch, Rosalyn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glantz, Clifford S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Landine, Guy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryant, Janet L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, John [National Nuclear Lab., Workington (United Kingdom); Mathers, Gemma [National Nuclear Lab., Workington (United Kingdom); Rodger, Robert [National Nuclear Lab., Workington (United Kingdom); Johnson, Christopher [National Nuclear Lab., Workington (United Kingdom)

    2015-12-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  20. Developments of Electrolyte Systems for Lithium-Sulfur Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Zhan eLin

    2015-02-01

    Full Text Available With a theoretical specific energy 5 times higher than that of lithium-ion (Li-ion batteries (2,600 vs. ~500 Wh kg-1, lithium-sulfur (Li-S batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li-S batteries. In this review, we focus on the recent developments in electrolyte systems. First we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li-S batteries are presented.

  1. Hydrogen release properties of lithium alanate for application to fuel cell propulsion systems

    Science.gov (United States)

    Corbo, P.; Migliardini, F.; Veneri, O.

    In this paper the results of an experimental study on LiAlH 4 (lithium alanate) as hydrogen source for fuel cell propulsion systems are reported. The compound examined in this work was selected as reference material for light metal hydrides, because of its high hydrogen content (10.5 wt.%) and interesting desorption kinetic properties at moderate temperatures. Thermal dynamic and kinetic of hydrogen release from this hydride were investigated using a fixed bed reactor to evaluate the effect of heating procedure, carrier gas flow rate and sample form. The aim of this study was to characterize the lithium alanate decomposition through the reaction steps leading to the formation of Li 3AlH 6 and LiH. A hydrogen tank was designed and realized to contain pellets of lithium alanate as feeding for a fuel cell propulsion system based on a 2-kW Polymeric Electrolyte Fuel Cell (PEFC) stack. The fuel cell system was integrated into the power train comprising DC-DC converter, energy storage systems and electric drive for moped applications (3 kW). The experiments on the power train were conducted on a test bench able to simulate the vehicle behaviour and road characteristics on specific driving cycles. In particular the efficiencies of individual components and overall power train were analyzed evidencing the energy requirements of the hydrogen storage material.

  2. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  3. Temperature dependence of the rate constant of hydrogen isotope interactions with a lithium capillary-porous system under reactor irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Kulsartov, Timur; Gordienko, Yuri [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Mukanova, Aliya [Al’ Farabi Kazakh National University, Almaty (Kazakhstan); Ponkratov, Yuri; Barsukov, Nikolay; Tulubaev, Evgeniy [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Platacis, Erik [University of Latvia (IPUL), Riga (Latvia); Kenzhin, Ergazy [Shakarim Semey State University, Semey (Kazakhstan)

    2013-10-15

    Highlights: • The experiments with Li CPS sample were carried out at reactor IVG-1.M. • The gas absorption technique was used to study hydrogen isotope interaction with lithium CPS. • The temperature dependence of constants of interaction rate was obtained for various power rates of the reactor. • Determination of the activation energies, and pre-exponents of Arrhenius dependence. • The effect of increase of the rate constant under reaction irradiation. -- Abstract: Experiments with a sample of a lithium capillary-porous system (CPS) were performed at the reactor IVG-1.M of the Institute of Atomic Energy NNC RK to study the effects of neutron irradiation on the parameters of hydrogen isotope interactions with a lithium CPS. The absorption technique was used during the experiments, and this technique allowed the temperature dependences of the hydrogen isotope interaction rate constants with the lithium CPS to be obtained under various reactor powers. The obtained dependencies were used to determine the main interaction parameters: the activation energies and the pre-exponents of the Arrhenius dependence of the hydrogen interaction rate constants with lithium and the lithium CPS. An increase of the hydrogen isotope interaction rate with the lithium CPS was observed under reactor irradiation.

  4. Management Information Control Systems for Educational Facility Construction Programs.

    Science.gov (United States)

    Halverson, Walter S.

    1989-01-01

    Describes a computerized management information control system for an educational facility construction program that allows access to more than 50 major system applications, using over 5,000 programs. (MLF)

  5. Facile synthesis of Fe-incorporated CuO nanoarrays with enhanced electrochemical performance for lithium ion full batteries

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Bojun [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China); Department of Applied Physics, Wuhan University of Science and Technology, Wuhan, 430065 (China); Qing, Chen; Wang, Hai; Sun, Daming; Wang, Bixiao [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China); Tang, Yiwen, E-mail: ywtang@phy.ccnu.edu.cn [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China)

    2015-11-15

    CuO nanoarrays (CNAs) and Fe-incorporated CuO nanoarrays (FCNAs) were fabricated by hydrothermal method. Addition of Fe salt to the reaction mixture allowed the introduction of iron oxide onto the CNAs surface, which was characterized by XPS and HRTEM. Introducing Fe ion into reaction precursor significantly affected not only the morphologies of as-prepared products but also their electrochemical performance as anode for lithium ion full battery. The FCNAs electrodes showed higher specific capacity and better capacity retention at different current densities than that of CNAs. - Highlights: • Fe-incorporated CuO nanoarrays were fabricated by hydrothermal method. • Fe salt in reaction mixture leads to iron oxides forming on the surface of CuO. • Fe-incorporating improves the lithium ion battery performance of CuO anodes.

  6. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xingyuan Zhang

    2017-01-01

    Full Text Available Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode for lithium-ion batteries.

  7. Facile Synthesis of V₂O₅ Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Xingyuan; Wang, Jian-Gan; Liu, Huanyan; Liu, Hongzhen; Wei, Bingqing

    2017-01-18

    Three-dimensional V₂O₅ hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V₂O₅ materials are composed of microspheres 2-3 μm in diameter and with a distinct hollow interior. The as-synthesized V₂O₅ hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g(-1) at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V₂O₅ cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V₂O₅ hollow material as a high-performance cathode for lithium-ion batteries.

  8. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ghosh, Arnab; Manjunatha, Revanasiddappa; Kumar, Rajat; Mitra, Sagar

    2016-12-14

    Lithium-sulfur batteries mostly suffer from the low utilization of sulfur, poor cycle life, and low rate performances. The prime factors that affect the performance are enormous volume change of the electrode, soluble intermediate product formation, poor electronic and ionic conductivity of S, and end discharge products (i.e., Li2S2 and Li2S). The attractive way to mitigate these challenges underlying in the fabrication of a sulfur nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic as well as electronic conductivity leading to a mechanically robust and mixed conductive (ionic and electronic conductive) sulfur electrode. Herein, we report a novel bottom-up approach to synthesize a unique freestanding, flexible cathode scaffold made of porous reduced graphene oxide, nanosized sulfur, and Mn3O4 nanoparticles, and all are three-dimensionally interconnected to each other by hybrid polyaniline/sodium alginate (PANI-SA) matrix to serve individual purposes. A capacity of 1098 mAh g(-1) is achieved against lithium after 200 cycles at a current rate of 2 A g(-1) with 97.6% of initial capacity at a same current rate, suggesting the extreme stability and cycling performance of such electrode. Interestingly, with the higher current density of 5 A g(-1), the composite electrode exhibited an initial capacity of 1015 mA h g(-1) and retained 71% of the original capacity after 500 cycles. The in situ Raman study confirms the polysulfide absorption capability of Mn3O4. This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance lithium-sulfur batteries and a strategy that can be used to develop flexible large power storage devices.

  9. Intelligent nuclear material surveillance system for DUPIC facility

    Energy Technology Data Exchange (ETDEWEB)

    Song, D. Y.; Lee, S. Y.; Ha, J. H.; Go, W. I.; Kim, H. D. [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    DUPIC Fuel Development Facility (DFDF) is the facility to fabricate CANDU-type fuel from spent PWR fuel material without any separation of fissile elements and fission products. Unattended continuous surveillance systems for safeguards of nuclear facility result in large amounts of image and radiation data, which require much time and effort to inspect. Therefore, it is necessary to develop system that automatically pinpoints and diagnoses the anomalies from data. In this regards, this paper presents a novel concept of the continuous surveillance system that integrates visual image and radiation data by the use of neural networks. This surveillance system is operating for safeguards of the DFDF in KAERI.

  10. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    Science.gov (United States)

    Lee, Hae Ri; Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won; Lee, Kwan-Young; Oh, Si Hyoung

    2017-01-01

    Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO4 and LiMg0.5Mn1.5O4 layers on the surface of LiAl0.1Mn1.9O4. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  11. Facile Synthesis of Layer Structured GeP3/C with Stable Chemical Bonding for Enhanced Lithium-Ion Storage

    Science.gov (United States)

    Qi, Wen; Zhao, Haihua; Wu, Ying; Zeng, Hong; Tao, Tao; Chen, Chao; Kuang, Chunjiang; Zhou, Shaoxiong; Huang, Yunhui

    2017-01-01

    Recently, metal phosphides have been investigated as potential anode materials because of higher specific capacity compared with those of carbonaceous materials. However, the rapid capacity fade upon cycling leads to poor durability and short cycle life, which cannot meet the need of lithium-ion batteries with high energy density. Herein, we report a layer-structured GeP3/C nanocomposite anode material with high performance prepared by a facial and large-scale ball milling method via in-situ mechanical reaction. The P-O-C bonds are formed in the composite, leading to close contact between GeP3 and carbon. As a result, the GeP3/C anode displays excellent lithium storage performance with a high reversible capacity up to 1109 mA h g−1 after 130 cycles at a current density of 0.1 A g−1. Even at high current densities of 2 and 5 A g−1, the reversible capacities are still as high as 590 and 425 mA h g−1, respectively. This suggests that the GeP3/C composite is promising to achieve high-energy lithium-ion batteries and the mechanical milling is an efficient method to fabricate such composite electrode materials especially for large-scale application. PMID:28240247

  12. Facile Synthesis of Layer Structured GeP3/C with Stable Chemical Bonding for Enhanced Lithium-Ion Storage

    Science.gov (United States)

    Qi, Wen; Zhao, Haihua; Wu, Ying; Zeng, Hong; Tao, Tao; Chen, Chao; Kuang, Chunjiang; Zhou, Shaoxiong; Huang, Yunhui

    2017-02-01

    Recently, metal phosphides have been investigated as potential anode materials because of higher specific capacity compared with those of carbonaceous materials. However, the rapid capacity fade upon cycling leads to poor durability and short cycle life, which cannot meet the need of lithium-ion batteries with high energy density. Herein, we report a layer-structured GeP3/C nanocomposite anode material with high performance prepared by a facial and large-scale ball milling method via in-situ mechanical reaction. The P-O-C bonds are formed in the composite, leading to close contact between GeP3 and carbon. As a result, the GeP3/C anode displays excellent lithium storage performance with a high reversible capacity up to 1109 mA h g-1 after 130 cycles at a current density of 0.1 A g-1. Even at high current densities of 2 and 5 A g-1, the reversible capacities are still as high as 590 and 425 mA h g-1, respectively. This suggests that the GeP3/C composite is promising to achieve high-energy lithium-ion batteries and the mechanical milling is an efficient method to fabricate such composite electrode materials especially for large-scale application.

  13. Facile synthesis of ultrafine SnO2 nanoparticles on graphene nanosheets via thermal decomposition of tin-octoate as anode for lithium ion batteries

    Science.gov (United States)

    Wang, Jinkai; Xie, Sanmu; Cao, Daxian; Lu, Xuan; Meng, Lingjie; Yang, Guidong; Wang, Hongkang

    2016-09-01

    We demonstrate a facile synthesis of ultrafine SnO2 nanoparticles within graphene nanosheets (GNSs) via thermal decomposition of tin-octoate, in which tin-octoate is firstly blended with GNSs followed by annealing in air at a low temperature (350 °C) and a short time (1 h). As anode for lithium ion batteries, the SnO2/GNSs displays superior cycle and rate performance, delivering reversible capacities of 803 and 682 mA h/g at current densities of 200 and 500 mA/g after 120 cycles, respectively, much higher than that of pure SnO2 and GNSs counterparts (143 and 310 mA h/g at 500 mA/g after 120 cycles, respectively). The enhanced electrochemical performance is attributed to the ultrafine SnO2 nanoparticle size and introduction of GNSs. GNSs prevent the aggregation of the ultrafine SnO2 nanoparticles, which alleviate the stress and also provide more electrochemically active sites for lithium insertion and extraction. Moreover, GNSs with large specific surface area ( 363 m2/g) act as a good electrical conductor which greatly improves the electrode conductivity and also an excellent buffer matrix to tolerate the severe volume changes originated from the Li-Sn alloying-dealloying. This work provides a straight-forward synthetic approach for the design of novel composite anode materials with superior electrochemical performance.

  14. The Research on Programmable Control System of Lithium-Bromide Absorption Refrigerating Air Conditioner Based on the Network

    Directory of Open Access Journals (Sweden)

    Sun Lunan

    2016-01-01

    Full Text Available This article regard the solar lithium-bromide absorption refrigerating air conditioning system as the research object, and it was conducting adequate research of the working principle of lithium bromide absorption refrigerating machine, also it was analyzing the requirements of control system about solar energy air conditioning. Then the solar energy air conditioning control system was designed based on PLC, this system was given priority to field bus control system, and the remote monitoring is complementary, which was combining the network remote monitoring technology. So that it realized the automatic control and intelligent control of new lithium bromide absorption refrigerating air conditioning system with solar energy, also, it ensured the control system can automatically detect and adjust when the external conditions was random changing, to make air conditioning work effectively and steadily, ultimately ,it has great research significance to research the air conditioning control system with solar energy.

  15. Facile design and synthesis of Li-rich nanoplates cathodes with habit-tuned crystal for lithium ion batteries

    Science.gov (United States)

    Li, Jili; Jia, Tiekun; Liu, Kai; Zhao, Junwei; Chen, Jian; Cao, Chuanbao

    2016-11-01

    Li-ion batteries with high-energy and high-power density are pursued to apply in the electronic vehicles and renewable energy storage systems. In this work, layered Li-rich transition-metal oxide cathode Li1.2Ni0.2Mn0.6O2 nanoplates with enhanced growth of {010} planes (LNMO-NP) is successfully synthesized through a facile and versatile strategy. Ethylene glycol plays an important role in the formation of LNMO-NP nanoplates with {010} electrochemically active surface planes exposure. As cathode for Li-ion batteries, LNMO-NP demonstrates a high specific discharge capacity of 270.2 mAh g-1 at 0.1 C (1 C = 300 mA g-1) and an excellent rate capability. The good electrochemical performance can be attributed to the nanoplates with the growth of {010} electrochemically active planes which is in favor of Li+ intercalation/deintercalation.

  16. Graphene oxide assisted facile hydrothermal synthesis of LiMn0.6Fe0.4PO4 nanoparticles as cathode material for lithium ion battery

    Institute of Scientific and Technical Information of China (English)

    Changchang Xu; Li Li; Fangyuan Qiu; Cuihua An; Yanan Xu; Ying Wang; Yijing Wang; Lifang Jiao; Huatang Yuan

    2014-01-01

    Assisted by graphene oxide (GO), nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hy-drothermal method as cathode material for lithium ion battery. SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4 (S2) was about 80 nm in diameter. The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh·g-1 in the first cycle. It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.

  17. Facile and rapid synthesis of RGO-In2S3 composites with enhanced cyclability and high capacity for lithium storage.

    Science.gov (United States)

    Ye, Fangmin; Du, Gaohui; Jiang, Zhoufeng; Zhong, Yijun; Wang, Xiaodong; Cao, Qingping; Jiang, J Z

    2012-12-07

    A sheet-on-sheet reduced graphene oxide-β-In(2)S(3) (RGO-In(2)S(3)) composite, was successfully synthesized via a one-step mild method. This fresh composite used as an anode material exhibits enhanced cyclability and specific capacity for lithium storage. These results are linked with the intrinsic layered structure of β-In(2)S(3) sheets and the effective combination of β-In(2)S(3) and RGO sheets. This results in a high specific surface area and good conductivity of RGO-In(2)S(3) composites, with higher transport rates of electrolyte ions and electrons, and a more effective electrochemical reaction of the active material. This facile and rapid synthesis method is a promising route for a large-scale production of graphene-based metal sulfides, which could be used as electrode materials for Li-ion batteries.

  18. History Data Facility in the SLC control system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.G.; White, G.R.

    1991-10-01

    Two major enhancements to the SLC History Data Facility are described separately. First the internal design and procedures used for saving and using long term history data. Second the user interface, facilities and application of the History Data Comparisons sub-system, which is used for analyzing and correlating two or more accelerator device histories.

  19. Systems analysis of a potential space manufacturing facility

    Science.gov (United States)

    Driggers, G. W.

    1977-01-01

    Results of a preliminary design study of the system elements comprising a manufacturing facility in earth orbit are presented. The elements discussed include cis-Lunar transportation, Lunar base, materials transport, factory, living facilities, construction support and energy supply. An evolutionary path of development, production and deployment is presented and step-wise interrelationships discussed.

  20. Total system hazards analysis for the western area demilitarization facility

    Science.gov (United States)

    Pape, R.; Mniszewski, K.; Swider, E.

    1984-08-01

    The results of a hazards analysis of the Western Area Demilitarization facility (WADF) at Hawthorne, Nevada are summarized. An overview of the WADF systems, the hazards analysis methodology that was applied, a general discussion of the fault tree analysis results, and a compilation of the conclusions and recommendations for each area of the facility are given.

  1. History Data Facility in the SLC control system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.G.; White, G.R.

    1991-10-01

    Two major enhancements to the SLC History Data Facility are described separately. First the internal design and procedures used for saving and using long term history data. Second the user interface, facilities and application of the History Data Comparisons sub-system, which is used for analyzing and correlating two or more accelerator device histories.

  2. Facile scalable synthesis of Co{sub 3}O{sub 4}/carbon nanotube hybrids as superior anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhiguo; Xu, Weiwei [Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Huang, Tao [Department of Chemistry, Fudan University, Shanghai 210024 (China); Li, Maolin; Wang, Wanren; Liu, Yanping; Mao, Chaochao; Meng, Fanli; Wang, Mengjiao [Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Cheng, Minghai [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China); Yu, Aishui [Department of Chemistry, Fudan University, Shanghai 210024 (China); Guo, Xiaohui, E-mail: guoxh2009@nwu.edu.cn [Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China)

    2013-10-15

    Graphical abstract: Co{sub 3}O{sub 4}/MWCNT hybrids were synthesized via strong ultra-sonication assisted shaking processes. The resultant samples as anode electrode display enhanced cycling performance and rate capability compared with pure Co{sub 3}O{sub 4} particle. - Highlights: • Co{sub 3}O{sub 4}/MWCNT hybrids were synthesized via ultra-sonication assisted shaking process. • The resulting Co{sub 3}O{sub 4} nanoparticles are highly dispersed onto MWCNT network backbone. • Co{sub 3}O{sub 4}/MWCNT hybrid displays highly enhanced lithium storage properties. • The present synthetic approach is facile, controllable, and scalable. - Abstract: In this report, Co{sub 3}O{sub 4}/multiple-wall carbon nanotube (MWCNT) hybrid materials were synthesized via strong ultrasonication-assisted shaking and magnetic stirring processes. The prepared samples were well characterized by utilizing powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy techniques. Results indicated that the resulting Co{sub 3}O{sub 4} nanoparticles were highly dispersed in the MWCNT network backbone and further form Co{sub 3}O{sub 4}/MWCNT hybrid materials. The obtained Co{sub 3}O{sub 4}/MWCNT hybrids can be employed as anode electrode in Lithium-ion batteries and deliver as high as discharge capacity of 1250 mA h g{sup −1} at a current density of 0.2 C, additionally, 81% of the discharge capacity for sample 2 with 20 wt.% MWCNT loading could be retained after 70 cycles, which could be associated with the specific hybrid structure of the electrode as well as the addition of MWCNT. Most importantly, the present synthetic approach is facile, controllable, and scalable, which allowing it more easily adapted to prepare other hybrid materials with specific architectures.

  3. Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, M.M.; de Kock, A.; Rossouw, M.H.; Liles, D. (Div. of Materials Science and Technology, CSIR, Pretoria 0001 (ZA)); Bittihn, R.; Hoge, D. (VARTA Batterie AG Research Center, D-6233 Kelkheim (DE))

    1992-02-01

    The electrochemical and structural properties of spinel phases in the Li-Mn-O system are discussed as insertion electrodes for rechargeable lithium batteries. In this paper the performance of button-type cells containing electrodes from the Li{sub 2}O yMnO{sub 2} system, e.g., the stoichiometric spinel Li{sub 4}Mn{sup 5}O{sub 12}(y = 2.5) and the defect spinel Li{sub 2}Mn{sub 4}O{sub 9}(y = 4.0), is highlighted and compared with a cell containing a standard LiMn{sub 2}O{sub 4} spinel electrode.

  4. Phase Equilibria and Ionic Solvation in the Lithium Tetrafluoroborate-Dimethylsulfoxide System

    Science.gov (United States)

    Gafurov, M. M.; Kirillov, S. A.; Gorobets, M. I.; Rabadanov, K. Sh.; Ataev, M. B.; Tretyakov, D. O.; Aydemirov, K. M.

    2015-01-01

    The phase diagram and electrical conductivity isotherms for the lithium tetrafluoroborate (LiBF4)-dimethylsulfoxide (DMSO) system and Raman spectra of DMSO and the LiBF4-DMSO solution were studied. Spectroscopic signatures of a H-bond between DMSO and BF4 - ions were found. The bonds of Li+ ions to the solvent were stronger than the bonds in DMSO dimers because formation of the solvate destroyed dimeric DMSO molecules. The τω values for DMSO molecules in the Li+-ion solvate shell of the LiBF4-DMSO system were similar to those for associated solvent molecules.

  5. The role of plasma volume, plasma renin and the sympathetic nervous system in the posture-induced decline in renal lithium clearance in man.

    Science.gov (United States)

    Smith, D F; Shimizu, M

    1978-01-01

    Excretion of lithium in urine was studied in 2 healthy males while recumbent and while upright, either walking or standing quietly. An oral dose of 24.3 mmol of Lit was taken as three lithium carbonate tablets 13 h before clearance tests. Renal lithium clearance decreased and lithium fractional reabsorption increased while upright. Standing immersed to the neck in water, which prevents the fall in plasma volume upon changing posture from recumbent to upright, prevented the fall in renal lithium clearance as well as the rise in lithium fractional reabsorption while upright. Oral doses of guanethidine (total dose of 200 mg) or oxprenolol (total dose of 140 mg) taken to prevent high levels of sympathetic nervous system activity and plasma renin, respectively, failed to prevent the fall in renal lithium clearance or the rise in lithium fractional reabsorption upon changing posture from recumbent to upright. The findings indicate that the fall in renal lithium clearance and the rise in lithium fractional reabsorption upon changing posture from recumbent to upright is related to the fall in plasma volume but not to high levels of sympathetic nervous system activity or plasma renin activity.

  6. Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yifan; Du, Ning, E-mail: dna1122@zju.edu.cn; Zhang, Hui; Yang, Deren

    2015-02-15

    Highlights: • A uniform SiO{sub 2} layer was deposited on multi-walled carbon nanotube. • Synthesis of uniform (MWCNT)@Si nanocomposites via the magnesiothermic reduction. • The MWCNT@Si nanocomposites show high reversible capacity and good cyclability. • Enhanced performance is attributed to porous nanostructure, introduction of MWCNTs. - Abstract: We demonstrate the synthesis of uniform multi-walled carbon nanotube (MWCNT)@Si nanocomposites via the magnesiothermic reduction of pre-synthesized MWCNT@SiO{sub 2} nanocables. At first, the acid vapor steaming is used to treat the surface, which can facilitate the uniform deposition of SiO{sub 2} layer via the TEOS hydrolysis. Then, the uniform MWCNT@Si nanocomposites are obtained on the basis of MWCNT@SiO{sub 2} nanocables via a simple magnesiothermic reduction. When used as an anode material for lithium-ion batteries, the as-synthesized MWCNT@Si nanocomposites show high reversible capacity and good cycling performance, which is better than bulk Si and bare MWCNTs. It is believed that the good electrochemical performance can be attributed to the novel porous nanostructure and the introduction of MWCNTs that can buffer the volume change, maintain the electrical conductive network, and enhance the electronic conductivity and lithium-ion transport.

  7. Regulation study for the facility control system design at the Facility Operations Center at TA55

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-16

    NMT-8 is proposing to upgrade the existing Facility Control System (FCS) located within the Facility Operations Center (FOC) at the TA-55 Plutonium Processing and Handling Facility (PPHF). The FCS modifications will upgrade the existing electronics to provide better reliability of system functions. Changes include replacement of the FCS computers and field multiplex units which are used for transmitting systems data. Data collected at the FCS include temperature, pressure, contact closures, etc., and are used for monitoring and/or control of key systems at TA-55. Monitoring is provided for the electrical power system status, PF-4 HVAC air balance status (Static Differential pressure), HVAC fan system status, site chill water return temperature, fire system information, and radioactive constant air monitors alarm information, site compressed air pressure and other key systems used at TA-55. Control output signals are provided for PF-4 HVAC systems, and selected alarms for criticality, fire, loss of pressure in confinement systems. A detailed description of the FCS modifications is provided in Section 2.

  8. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.

    Science.gov (United States)

    Jia, Haiping; Stock, Christoph; Kloepsch, Richard; He, Xin; Badillo, Juan Pablo; Fromm, Olga; Vortmann, Britta; Winter, Martin; Placke, Tobias

    2015-01-28

    In this work, a novel, porous structured NiSi2/Si composite material with a core-shell morphology was successfully prepared using a facile ball-milling method. Furthermore, the chemical vapor deposition (CVD) method is deployed to coat the NiSi2/Si phase with a thin carbon layer to further enhance the surface electronic conductivity and to mechanically stabilize the whole composite structure. The morphology and porosity of the composite material was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption measurements (BJH analysis). The as-prepared composite material consists of NiSi2, silicon, and carbon phases, in which the NiSi2 phase is embedded in a silicon matrix having homogeneously distributed pores, while the surface of this composite is coated with a carbon layer. The electrochemical characterization shows that the porous and core-shell structure of the composite anode material can effectively absorb and buffer the immense volume changes of silicon during the lithiation/delithiation process. The obtained NiSi2/Si/carbon composite anode material displays an outstanding electrochemical performance, which gives a stable capacity of 1272 mAh g(-1) for 200 cycles at a charge/discharge rate of 1C and a good rate capability with a reversible capacity of 740 mAh g(-1) at a rate of 5C.

  9. Safety systems and access control in the National Ignition Facility.

    Science.gov (United States)

    Reed, Robert K; Bell, Jayce C

    2013-06-01

    The National Ignition Facility (NIF) is the world's largest and most energetic laser system. The facility has the potential to generate ionizing radiation due to the interaction between the laser beams and target material, with neutrons and gamma rays being produced during deuterium-tritium fusion reactions. To perform these experiments, several types of hazards must be mitigated and controlled to ensure personnel safety. NIF uses a real-time safety system to monitor and mitigate the hazards presented by the facility. The NIF facility Safety Interlock System (SIS) monitors for oxygen deficiency and controls access to the facility preventing exposure to laser light and radiation from the Radiation Generating Devices. It also interfaces to radiation monitoring and other radiological monitoring and alarm systems. The SIS controls permissives to the hazard-generating equipment and annunciates hazard levels in the facility. To do this reliably and safely, the SIS has been designed as a fail-safe system with a proven performance record now spanning over 10 y. This paper discusses the SIS, its design, implementation, operator interfaces, validation/verification, and the hazard mitigation approaches employed in the NIF. A brief discussion of the Failure Modes and Effect Analysis supporting the SIS will also be presented. The paper ends with a general discussion of SIS do's and don'ts and common design flaws that should be avoided in SIS design.

  10. Materials in the Li-Mo-O ternary system of interest for use in rechargeable lithium batteries

    Science.gov (United States)

    Huang, Chen-Kuo

    The thermodynamic and kinetic properties of lithium molybdenum oxide bronzes, which are of interest as possible positive electrode materials for use in rechargeable lithium batteries were characterized in this study. Within the Li-Mo-O ternary system, the phases Li4Mo5O12, Li2MoO3, and Li6Mo2O7 were investigated. Based upon theoretical considerations related to electrode potentials, capacities, and weight, lithium cells using these bronze materials as positive electrode reactants, should have a relatively high specific energy. Electrochemical techniques were used in order to determine the potentials and capacities of Li4Mo5O12, Li2MoO3, and Li6Mo2O7 in lithium-based cells. Equilibrium open-circuit voltages were recorded at selected compositions. An alternative method, voltage-relazation, was used in both the Li-Mo-O and the Li-Pb systems. The chemical diffusion coefficients of lithium in selected phases were measured using the Galvanostatic Intermittent Titration Technique (GITT). Powder X-ray diffraction patterns of the products formed during discharge were recorded and compared to those of the parent materials. Room temperature electrochemical experiments were conducted using cells of the following type: Li / 1M LiAsF6 in PC / LixMoOy. Powder X-ray diffraction results for the various phases formed during reaction with lithium showed that the parent framework remains largely unchanged during lithium insertion. The principles underlying the difference between the dynamic and equilibrium behavior of Li-Mo-O and related systems that can undergo both insertion and reconstitution reactions were investigated. As a result, the room temperature metastable ternary phase diagram was constructed and compared to the high temperature equilibrium ternary phase diagram.

  11. Facilities and the Air Force Systems Acquisition Process.

    Science.gov (United States)

    1985-05-01

    to provide es- senti-l fLcilitio-s by, system Initial Cperatlcnal Capability (’-0C) . And secondly, vince the systems ;acjui. tior proceso is event...funds exclusively for systems acquisition. This change will remove the current military construction calendar constraint and allow facilities to be

  12. The Orbital Maneuvering Vehicle Training Facility visual system concept

    Science.gov (United States)

    Williams, Keith

    1989-01-01

    The purpose of the Orbital Maneuvering Vehicle (OMV) Training Facility (OTF) is to provide effective training for OMV pilots. A critical part of the training environment is the Visual System, which will simulate the video scenes produced by the OMV Closed-Circuit Television (CCTV) system. The simulation will include camera models, dynamic target models, moving appendages, and scene degradation due to the compression/decompression of video signal. Video system malfunctions will also be provided to ensure that the pilot is ready to meet all challenges the real-world might provide. One possible visual system configuration for the training facility that will meet existing requirements is described.

  13. A facile approach to make high performance nano-fiber reinforced composite separator for lithium ion batteries

    Science.gov (United States)

    Huang, Xiaosong

    2016-08-01

    The separator is a porous membrane located between the negative and the positive electrodes. In this work, a nano-fiber reinforced composite separator was developed. Compared with the commercial polyolefin separator, the composite separator showed superior (a) dimensional stability at elevated temperatures relative to conventional separators and (b) wettability by the liquid electrolyte. After being saturated with a commercial LiPF6-ethylene carbonate-dimethyl carbonate electrolyte, the composite separator enabled a high effective ionic conductivity (σeff) of 1.25 mS/cm. A stable cycle performance and an improved rate capability have been observed in the coin cells with the composite separator. This initial study shows that this type of composite membranes can be a promising alternative separator for lithium ion batteries.

  14. A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method

    Science.gov (United States)

    Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem

    2015-11-01

    Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.

  15. One-pot facile synthesis of CuS/graphene composite as anode materials for lithium ion batteries

    Science.gov (United States)

    Tao, Hua-Chao; Yang, Xue-Lin; Zhang, Lu-Lu; Ni, Shi-Bing

    2014-11-01

    CuS/graphene composite has been synthesized by the one-pot hydrothermal method using thiourea as the sulfur source and reducing agent. The formation of CuS nanoparticles and the reduction of graphene oxide occur simultaneously during the hydrothermal process, which enables a uniform dispersion of CuS nanoparticles on the graphene nanosheets. The electrochemical performance of CuS/graphene composite was studied as anode materials for lithium ion batteries. The obtained CuS/graphene composite exhibits a relative high reversible capacity and good cycling stability. The good electrochemical performance of CuS/graphene composite can be attributed to graphene, which improves the electronic conductivity of composite and enhances the interfacial stability of electrode and electrolyte.

  16. Facile synthesis of reduced graphene oxide-porous silicon composite as superior anode material for lithium-ion battery anodes

    Science.gov (United States)

    Jiao, Lian-Sheng; Liu, Jin-Yu; Li, Hong-Yan; Wu, Tong-Shun; Li, Fenghua; Wang, Hao-Yu; Niu, Li

    2016-05-01

    We report a new method for synthesizing reduced graphene oxide (rGO)-porous silicon composite for lithium-ion battery anodes. Rice husks were used as a as a raw material source for the synthesis of porous Si through magnesiothermic reduction process. The as-obtained composite exhibits good rate and cycling performance taking advantage of the porous structure of silicon inheriting from rice husks and the outstanding characteristic of graphene. A considerably high delithiation capacity of 907 mA h g-1 can be retained even at a rate of 16 A g-1. A discharge capacity of 830 mA h g-1 at a current density of 1 A g-1 was delivered after 200 cycles. This may contribute to the further advancement of Si-based composite anode design.

  17. Facile Synthesis of Graphene/ZnO Composite as an Anode with Enhanced Performance for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yanhong Zhao

    2014-01-01

    Full Text Available Graphene/ZnO composites with different contents of ZnO have been successfully synthesized via a liquid phase route. The structure, morphology, and electrochemical performances of the composites are investigated by XRD, Raman, SEM, TEM, AFM, and electrochemical measurement. The results reveal that ZnO nanoparticles wedged on the surface of the graphene nanosheets. The initial capacity of graphene/ZnO (1 : 1 reached 1155.27 mAh g−1, which increased 162.87 mAh g−1 compared with the initial capacity of graphene. This could be attributed to the unique structure of the prepared composite and synergies of graphene and ZnO in the lithium ion storage.

  18. Kinetic Modification on Hydrogen Desorption of Lithium Hydride and Magnesium Amide System

    OpenAIRE

    Hiroki Miyaoka; Yongming Wang,; Satoshi Hino; Shigehito Isobe; Kazuhiko Tokoyoda; Takayuki Ichikawa; Yoshitsugu Kojima

    2015-01-01

    Various synthesis and rehydrogenation processes of lithium hydride (LiH) and magnesium amide (Mg(NH2)2) system with 8:3 molar ratio are investigated to understand the kinetic factors and effectively utilize the essential hydrogen desorption properties. For the hydrogen desorption with a solid-solid reaction, it is expected that the kinetic properties become worse by the sintering and phase separation. In fact, it is experimentally found that the low crystalline size and the close contact of L...

  19. Man-Vehicle Systems Research Facility - Design and operating characteristics

    Science.gov (United States)

    Shiner, Robert J.; Sullivan, Barry T.

    1992-01-01

    This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.

  20. Guidelines for Management Information Systems in Canadian Health Care Facilities

    OpenAIRE

    Thompson, Larry E.

    1987-01-01

    The MIS Guidelines are a comprehensive set of standards for health care facilities for the recording of staffing, financial, workload, patient care and other management information. The Guidelines enable health care facilities to develop management information systems which identify resources, costs and products to more effectively forecast and control costs and utilize resources to their maximum potential as well as provide improved comparability of operations.

  1. Analysis of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Doo; Song, Dae Yong; Kwack, Eun Ho

    2000-12-01

    Safeguards Information Treatment System(SITS) at the facility level is required to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, the analysis of information, which the SITS treats, and operation environment of SITS including the review of the relationship between safeguards information are described. SITS will be developed to cover the different accounting procedures and methods applied at the various facilities under IAEA safeguards.

  2. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile.

    Science.gov (United States)

    Shibata, Y; Manabe, T; Kajita, S; Ohno, N; Takagi, M; Tsuchiya, H; Morisaki, T

    2014-09-01

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ~4 × 10(19) m(-2) s(-1) when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  3. 77 FR 2437 - Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane; Rechargeable Lithium...

    Science.gov (United States)

    2012-01-18

    ...; Rechargeable Lithium Batteries and Rechargeable Lithium- Battery Systems AGENCY: Federal Aviation... have a novel or unusual design feature associated with the installation of rechargeable lithium batteries and rechargeable lithium-battery systems. The applicable airworthiness regulations do not...

  4. Fermilab accelerator control system: Analog monitoring facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system.

  5. WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Mcintosh, J.

    2012-01-03

    The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

  6. Research of Road Traffic Facilities System Based on GIS

    Directory of Open Access Journals (Sweden)

    Liu-Jian

    2013-06-01

    Full Text Available In order to improve the labor efficiency and economic benefit of road traffic facilities system and reduce resource waste, a scheme of road traffic facilities system based on GIS is provided in this paper. In the new scheme, firstly, we proposed Visual C++ embedding MapX component to program for the visualization of data and function analysis of space, and constructed core table in database and established property database and space database to improve efficiency; then we put forward the system function of traditional traffic facilities such as data collection, construction and management of engineering and so on. The results show that the system can ensure the safety and smooth of traffic than ever.

  7. Power Systems Development Facility. First quarterly report, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The objective of this project, herein referred to as the Power Systems Development Facility (PSDF), is to evaluate hot gas particle control technologies using coal derived gas streams. This project entails the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device (PCD) issues to be addressed include the integration of the PCDs into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  8. Design of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dae Yong; Lee, Byung Doo; Kwack, Eun Ho; Choi, Young Myong

    2001-05-01

    We are developing Safeguards Information Treatment System at the facility level(SITS) to manage synthetically safeguards information and to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, we described the contents of the detailed design of SITS such as database, I/O layout and program. In the present, we are implementing the SITS based on the contents of the design of SITS, and then we plan to provide the system for the facilities after we finish implementing and testing the system.

  9. Power System Electronics Accommodation for a Lithium Ion Battery on the Space Technology 5 (ST5) Mission

    Science.gov (United States)

    Castell, Karen; Day, John H. (Technical Monitor)

    2001-01-01

    ST5 mission requirements include validation of Lithium-ion battery in orbit. Accommodation in the power system for Li-ion battery can be reduced with smaller amp-hour size, highly matched cells when compared to the larger amp-hour size approach. Result can be lower system mass and increased reliability.

  10. Porous cathode design and optimization of lithium systems

    Science.gov (United States)

    Chen, Yen-Hung

    Narrowing the gap between theoretical and actual capacity in key Li-based battery systems can be achieved through improvements in both electronic and ionic conductivities of materials, via addition of conductive species. Additives do, however, penalize both volumetric and gravimetric properties, and also limit liquid transport and high rate performance. In this work, we developed techniques to design and optimize cathode system based directly on the relationships among ionic and electronic conductivities, and specific energy. We also investigated formation mechanisms, and resulting geometric characteristics in nanoparticle agglomerates, to systematically study percolation and conductivity in self-assembled structures. In our study of selection of conductive additives, architectures of model composite cathodes, comprised of active material, graphite, carbon black, and PVDF, were generated using our prior approach in simulating polydisperse arrangements. A key finding of this portion of the work, was that the conductive coatings strongly influence conductivity, via reduction of contact resistance. Thus, we conclude that neither surface nor bulk modifications of active material particles conductivities seem to be desirable targets for improvement of laminate conductivity, for the ranges of materials studied. In the cathode optimization study, our results quantified trade-offs among ionic and electronic conductivity, and conductivity and specific energy. We also provided quantitative relationships for improved utilization and specific power, with higher specific energy. Finally, we provided quantitative guidance for design of high energy density Li(Ni1/3Co1/3Mn1/3)O2 cells using conductive additives, and also provided guidelines for design of cathode systems, based directly on solid and liquid phase transport limitations. In the agglomeration and aggregation study, 3D, branch-like nanoparticle agglomerates were systematically studied via use of new algorithms in

  11. Facile and rapid synthesis of RGO-In2S3 composites with enhanced cyclability and high capacity for lithium storage

    Science.gov (United States)

    Ye, Fangmin; Du, Gaohui; Jiang, Zhoufeng; Zhong, Yijun; Wang, Xiaodong; Cao, Qingping; Jiang, J. Z.

    2012-11-01

    A sheet-on-sheet reduced graphene oxide-β-In2S3 (RGO-In2S3) composite, was successfully synthesized via a one-step mild method. This fresh composite used as an anode material exhibits enhanced cyclability and specific capacity for lithium storage. These results are linked with the intrinsic layered structure of β-In2S3 sheets and the effective combination of β-In2S3 and RGO sheets. This results in a high specific surface area and good conductivity of RGO-In2S3 composites, with higher transport rates of electrolyte ions and electrons, and a more effective electrochemical reaction of the active material. This facile and rapid synthesis method is a promising route for a large-scale production of graphene-based metal sulfides, which could be used as electrode materials for Li-ion batteries.A sheet-on-sheet reduced graphene oxide-β-In2S3 (RGO-In2S3) composite, was successfully synthesized via a one-step mild method. This fresh composite used as an anode material exhibits enhanced cyclability and specific capacity for lithium storage. These results are linked with the intrinsic layered structure of β-In2S3 sheets and the effective combination of β-In2S3 and RGO sheets. This results in a high specific surface area and good conductivity of RGO-In2S3 composites, with higher transport rates of electrolyte ions and electrons, and a more effective electrochemical reaction of the active material. This facile and rapid synthesis method is a promising route for a large-scale production of graphene-based metal sulfides, which could be used as electrode materials for Li-ion batteries. Electronic supplementary information (ESI) available: Synthesis, characterization and electrochemical measurements of RGO-In2S3 composites and pure β-In2S3 electrode materials, SEM image, XRD pattern, EDX data, TGA results, BET data, cyclic voltammogram, Coulombic efficiency and analysis of AC impedence spectra data. See DOI: 10.1039/c2nr32174b

  12. Neutron imaging systems utilizing lithium-containing semiconductor crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley C.; Burger, Arnold

    2017-04-25

    A neutron imaging system, including: a plurality of Li-III-VI.sub.2 semiconductor crystals arranged in an array, wherein III represents a Group III element and VI represents a Group VI element; and electronics operable for detecting and a charge in each of the plurality of crystals in the presence of neutrons and for imaging the neutrons. Each of the crystals is formed by: melting the Group III element; adding the Li to the melted Group III element at a rate that allows the Li and Group III element to react, thereby providing a single phase Li-III compound; and adding the Group VI element to the single phase Li-III compound and heating. Optionally, each of the crystals is also formed by doping with a Group IV element activator.

  13. A Dynamical Simulation Facility for Hybrid Systems

    CERN Document Server

    Back, A; Myers, M; Back, Allen; Guckenheimer, John; Myers, Mark

    1993-01-01

    Abstract: This paper establishes a general framework for describing hybrid dynamical systems which is particularly suitable for numerical simulation. In this context, the data structures used to describe the sets and functions which comprise the dynamical system are crucial since they provide the link between a natural mathematical formulation of a problem and the correct application of standard numerical algorithms. We describe a partial implementation of the design methodology and use this simulation tool for a specific control problem in robotics as an illustration of the utility of the approach for practical applications.

  14. Smart Parking System with Image Processing Facility

    Directory of Open Access Journals (Sweden)

    M.O. Reza

    2012-04-01

    Full Text Available Smart Parking Systems obtain information about available parking spaces, process it and then place the car at a certain position. A prototype of the parking assistance system based on the proposed architecture was constructed here. The adopted hardware, software, and implementation solutions in this prototype construction are described in this paper. The effective circular design is introduced here having rack-pinion special mechanism which is used to lift and place the car in the certain position. The design of rack pinion mechanism is also simulated using AUTODESK INVENTOR and COMSOL software.

  15. Facility Requirements for Integrated Learning Systems.

    Science.gov (United States)

    Knirk, Frederick G.

    1992-01-01

    Discusses features in the physical environment that need to be considered for integrated learning systems (ILSs). Highlights include ergonomics; lighting, including contrast and colors; space, furniture, and equipment, including keyboard, monitor, software, and printer; ambient noise and acoustics; temperature, humidity, and air quality control;…

  16. Potential of Computerized Maintenance Management System in Facilities Management

    Directory of Open Access Journals (Sweden)

    Noor Farisya Azahar

    2014-07-01

    Full Text Available For some time it has been clear that managing buildings or estates has been carried out in the context of what has become known as facilities management. British Institute of Facilities Management defined facilities management is the integration of multi-disciplinary activities within the built environment and the management of their impact upon people and the workplace. Effective facilities management is vital to the success of an organisation by contributing to the delivery of its strategic and operational objectives. Maintenance of buildings should be given serious attention before (stage design, during and after a building is completed. But total involvement in building maintenance is after the building is completed and during its operations. Residents of and property owners require their building to look attractive, durable and have a peaceful indoor environment and efficient. The objective of the maintenance management system is to stream line the vast maintenance information system to improve the productivity of an industrial plant. a good maintenance management system makes equipment and facilities available. This paper will discuss the fundamental steps of maintenance management program and Computerized Maintenance Management System (CMMS

  17. Lithium control on experimental serpentinization processes: implications for natural systems

    Science.gov (United States)

    Lafay, Romain; Janots, Emilie; Montes-Hernandez, German

    2014-05-01

    Fluid mobile elements such as As, B, Li or Sb are of prime importance to trace fluid-rock interactions in the oceanic lithosphere from its hydrothermal alteration at the ocean ridge up to its dehydration in deep subduction. Although the cycle of fluid mobile elements is increasingly studied, their partitioning between fluid and mineral are still poorly know and their role on mechanism and kinetic of serpentinization reaction have been neglected. In the present experimental study supported by two kinds of experiments, we focussed on Li study and highlighted that this element play a substantial role on serpentinization reaction kinetic/mechanism and on serpentine textural properties. Indeed, in presence of 200 µg g-1 of dissolved Li alteration rate is 2-4 time faster with respect to olivine alteration reactions in undoped system (1) at same experimental conditions (alkaline solution, T = 200°C, Psat ~16 bar, olivine grains Chemistry - A European Journal 19, 5417-5424. (3) Lafay et al. (2014) Microporous et Mesoporous Materials 183; 81-90.

  18. Effect of acute lithium administration on penile erection: involvement of nitric oxide system

    Directory of Open Access Journals (Sweden)

    Saleh Sandoughdaran

    2016-02-01

    Full Text Available Background: Lithium has been the treatment of choice for bipolar disorder (BD for many years. Although erectile dysfunction is a known adverse effect of this drug, the mechanism of action by which lithium affects erectile function is still unknown. Objective: The aim was to investigate the possible involvement of nitric oxide (NO in modulatory effect of lithium on penile erection (PE. We further evaluated the possible role of Sildenafil in treatment of lithium-induced erectile dysfunction. Materials and Methods: Erectile function was determined using rat model of apomorphine-induced erections. For evaluating the effect of lithium on penile erection, rats received intraperitoneal injection of graded doses of lithium chloride 30 mins before subcutaneous injection of apomorphine. To determine the possible role of NO pathway, sub-effective dose of N (G-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase (NOS inhibitor, was administered 15 min before administration of sub-effective dose of lithium chloride. In other separate experimental groups, sub- effective dose of the nitric oxide precursor, L-arginine, or Sildenafil was injected into the animals 15 min before administration of a potent dose of lithium. 30 min after administration of lithium chloride, animals were assessed in apomorphine test. Serum lithium levels were measured 30 min after administration of effective dose of lithium. Results: Lithium at 50 and 100 mg/kg significantly decreased number of PE (p<0.001, whereas at lower doses (5, 10 and 30 mg/kg had no effect on apomorphine induced PE. The serum Li+ level of rats receiving 50 mg/kg lithium was 1±0.15 mmol/L which is in therapeutic range of lithium. The inhibitory effect of Lithium was blocked by administration of sub-effective dose of nitric oxide precursor L-arginine (100 mg/kg (p<0.001 and sildenafil (3.5 mg/kg (p<0.001 whereas pretreatment with a low and sub-effective dose of L-NAME (10mg/kg potentiated sub

  19. Control and Data Acquisition System of the ATLAS Facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki-Yong; Kwon, Tae-Soon; Cho, Seok; Park, Hyun-Sik; Baek, Won-Pil; Kim, Jung-Taek

    2007-02-15

    This report describes the control and data acquisition system of an integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) facility, which recently has been constructed at KAERI (Korea Atomic Energy Research Institute). The control and data acquisition system of the ATLAS is established with the hybrid distributed control system (DCS) by RTP corp. The ARIDES system on a LINUX platform which is provided by BNF Technology Inc. is used for a control software. The IO signals consists of 1995 channels and they are processed at 10Hz. The Human-Machine-Interface (HMI) consists of 43 processing windows and they are classified according to fluid system. All control devices can be controlled by manual, auto, sequence, group, and table control methods. The monitoring system can display the real time trend or historical data of the selected IO signals on LCD monitors in a graphical form. The data logging system can be started or stopped by operator and the logging frequency can be selected among 0.5, 1, 2, 10Hz. The fluid system of the ATLAS facility consists of several systems including a primary system to auxiliary system. Each fluid system has a control similarity to the prototype plant, APR1400/OPR1000.

  20. A lithium superionic conductor.

    Science.gov (United States)

    Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio

    2011-07-31

    Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).

  1. Synthesis of Mesoporous ZnO Nanosheets via Facile Solvothermal Method as the Anode Materials for Lithium-ion Batteries.

    Science.gov (United States)

    Wang, Xin; Huang, Lanyan; Zhao, Yan; Zhang, Yongguang; Zhou, Guofu

    2016-12-01

    Mesoporous ZnO nanosheets are synthesized through a room temperature solvothermal method. Transmission and scanning electronic microscopy observations indicate that as-prepared ZnO hierarchical aggregates are composed and assembled by nanosheets with a length of 1-2 μm and a thickness of 10-20 nm, and interlaced ZnO nanosheets irregularly stack together, forming a three-dimensional network. Furthermore, large mesopores are embedded in the walls of ZnO nanosheets, confirmed by Brunauer-Emmett-Teller (BET) measurement. Accordingly, the resulting ZnO anode exhibits a high and stable specific discharge capacity of 421 mAh g(-1) after 100 cycles at 200 mA g(-1) and a good rate capability. Such electrochemical performance could be attributed to the multiple synergistic effects of its mesoporous nanosheet structure, which can not only provide a large specific surface area for lithium storage, but also favor the ion transport and electrolyte diffusion.

  2. Facile preparation of porous Co3O4 nanosheets for high-performance lithium ion batteries and oxygen evolution reaction

    Science.gov (United States)

    Li, Zhangpeng; Yu, Xin-Yao; Paik, Ungyu

    2016-04-01

    Two dimensional (2D) porous nanostructures are of great interest due to their high surface area and rich edge sites, which are favorable for a wide variety of applications. In this communication, well-defined porous Co3O4 nanosheets (PCNSs) are successfully fabricated using graphene oxide as sacrificial template. The 2D structure and porous nature effectively provide more exposed active sites for electrochemical reaction and facilitate easier ion transportation across the sheets. As a result, the as-prepared PCNSs exhibit remarkable lithium storage performance, showing high reversible capacity of 1380 mAh g-1 even after 240 discharge/charge cycles at a current density of 500 mA g-1 and good rate capability (606 mAh g-1 at 10 A g-1). Moreover, it also shows a good electrocatalytic activity for the electrochemical oxygen evolution reaction with an overpotential of 368 mV for driving the current density of 10 mA cm-2 in 1 M KOH and a small Tafel slope of 59 mV dec-1.

  3. Facile Synthesis of Carbon-Coated Silicon/Graphite Spherical Composites for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Kim, So Yeun; Lee, Jaewoo; Kim, Bo-Hye; Kim, Young-Jun; Yang, Kap Seung; Park, Min-Sik

    2016-05-18

    A high-performance Si/carbon/graphite composite in which Si nanoparticles are attached onto the surface of natural graphite by carbonization of coal-tar pitch is proposed for use in lithium-ion batteries. This multicomponent structure is favorable for improving Li(+) storage capability because the amorphous carbon layer encapsulating Si nanoparticles offers sufficient electric conductivity and strong elasticity to facilitate relaxation of strain caused by electrochemical reaction of Si during cycles. The Si/carbon/graphite composite exhibits a specific capacity of 712 mAh g(-1) at a constant current density of 130 mA g(-1), and maintains more than 80% of its initial capacity after 100 cycles. Moreover, it shows a high capacity retention of approximately 88% even at a high current density of 5 C (3250 mA g(-1)). On the basis of electrochemical and structural analyses, we suggest that a rational design of the Si/carbon/graphite composite is mainly responsible for delivering a high reversible capacity and stable cycle performance. Furthermore, the proposed synthetic route for the Si/carbon/graphite composite is simple and cost-effective for mass production.

  4. Facile preparation of carbon wrapped copper telluride nanowires as high performance anodes for sodium and lithium ion batteries

    Science.gov (United States)

    Yu, Hong; Yang, Jun; Geng, Hongbo; Chao Li, Cheng

    2017-04-01

    Uniform carbon wrapped copper telluride nanowires were successfully prepared by using an in situ conversion reaction. The length of these nanowires is up to several micrometers and the width is around 30–40 nm. The unique one dimensional structure and the presence of conformal carbon coating of copper telluride greatly accommodate the large volumetric changes during cycling, significantly increase the electrical conductivity and reduce charge transfer resistance. The copper telluride nanowires show promising performance in a lithium ion battery with a discharge capacity of 130.2 mA h g‑1 at a high current density of 6.0 A g‑1 (26.74 C) and a stable cycling performance of 673.3 mA h g‑1 during the 60th cycle at 100 mA g‑1. When evaluated as anode material for a sodium ion battery, the copper telluride nanowires deliver a reversible capacity of 68.1 mA h g‑1 at 1.0 A g‑1 (∼4.46 C) and have a high capacity retention of 177.5 mA h g‑1 during the 500th cycle at 100 mA g‑1.

  5. Operation technology of air treatment system in nuclear facilities

    CERN Document Server

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  6. Facilities and regionalization--emergency medical services systems.

    Science.gov (United States)

    Stewart, R D

    1990-02-01

    Advanced life support and the modern EMS system were born out of the hope that by extending hospital emergency facilities outside the bounds of the hospital, earlier and more intensive care could be provided to those patients requiring it. EMS systems have since left the nest and only recently, following a turbulent adolescence, is prehospital care returning as a partner with the medical facilities and physicians that presided over their modern origins. The next decade will see the continuing trend toward hospitals and practitioners regaining some influence in the design and direction of prehospital care.

  7. Physics Detector Simulation Facility Phase II system software description

    Energy Technology Data Exchange (ETDEWEB)

    Scipioni, B.; Allen, J.; Chang, C.; Huang, J.; Liu, J.; Mestad, S.; Pan, J.; Marquez, M.; Estep, P.

    1993-05-01

    This paper presents the Physics Detector Simulation Facility (PDSF) Phase II system software. A key element in the design of a distributed computing environment for the PDSF has been the separation and distribution of the major functions. The facility has been designed to support batch and interactive processing, and to incorporate the file and tape storage systems. By distributing these functions, it is often possible to provide higher throughput and resource availability. Similarly, the design is intended to exploit event-level parallelism in an open distributed environment.

  8. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  9. Evaluation of a solar intermittent refrigeration system for ice production operating with ammonia/lithium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, W.; Moreno-Quintanar, G.; Best, R. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, A.P. 34, 62580 Temixco, Mor. (Mexico); Rivera, C.O.; Martinez, F. [Facultad de Ingenieria Campus Coatzacoalcos, Universidad Veracruzana, Av. Universidad Km 7.5, 96530 Coatzacoalcos, Ver. (Mexico)

    2011-01-15

    A novel solar intermittent refrigeration system for ice production developed in the Centro de Investigacion en Energia of the Universidad Nacional Autonoma de Mexico is presented. The system operates with the ammonia/lithium nitrate mixture. The system developed has a nominal capacity of 8 kg of ice/day. It consists of a cylindrical parabolic collector acting as generator-absorber. Evaporator temperatures as low as -11 C were obtained for several hours with solar coefficients of performance up to 0.08. It was found that the coefficient of performance increases with the increment of solar radiation and the solution concentration. A dependency of the coefficient of performance was not founded against the cooling water temperature. Also it was found that the maximum operating pressure increases meanwhile the generation temperature decreases with an increase of the solution concentration. (author)

  10. The preliminary design of bearings for the control system of a high-temperature lithium-cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Waldron, W. D.; Walowit, J. A.

    1973-01-01

    The design of bearings for the control system of a fast reactor concept is presented. The bearings are required to operate at temperatures up to 2200 F in one of two fluids, lithium or argon. Basic bearing types are the same regardless of the fluid. Crowned cylindrical journals were selected for radially loaded bearings and modified spherical bearings were selected for bearings under combined thrust and radial loads. Graphite and aluminum oxide are the materials selected for the argon atmosphere bearings while cermet compositions (carbides or nitrides bonded with refractory metals) were selected for the lithium lubricated bearings. Mounting of components is by shrink fit or by axial clamping utilizing differential thermal expansion.

  11. Thermal Vacuum Control Systems Options for Test Facilities

    Science.gov (United States)

    Marchetti, John

    2008-01-01

    This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.

  12. Facility level thermal systems for the Advanced Technology Solar Telescope

    Science.gov (United States)

    Phelps, LeEllen; Murga, Gaizka; Fraser, Mark; Climent, Tània

    2012-09-01

    The management and control of the local aero-thermal environment is critical for success of the Advanced Technology Solar Telescope (ATST). In addition to minimizing disturbances to local seeing, the facility thermal systems must meet stringent energy efficiency requirements to minimize impact on the surrounding environment and meet federal requirements along with operational budgetary constraints. This paper describes the major facility thermal equipment and systems to be implemented along with associated energy management features. The systems presented include the central plant, the climate control systems for the computer room and coudé laboratory, the carousel cooling system which actively controls the surface temperature of the rotating telescope enclosure, and the systems used for active and passive ventilation of the telescope chamber.

  13. An Electronic Pressure Profile Display system for aeronautic test facilities

    Science.gov (United States)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  14. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  15. Facile fabrication of hierarchical ZnCo2O4/NiO core/shell nanowire arrays with improved lithium-ion battery performance.

    Science.gov (United States)

    Sun, Zhipeng; Ai, Wei; Liu, Jilei; Qi, Xiaoying; Wang, Yanlong; Zhu, Jianhui; Zhang, Hua; Yu, Ting

    2014-06-21

    We report a facile and controllable strategy for the fabrication of three-dimensional (3D) ZnCo2O4/NiO core/shell nanowire arrays (ZCO/NiO NWs) on nickel (Ni) foam substrates by a simple, cost-effective, two-step, solution-based method. Ultra-thin NiO nanosheets are revealed to grow uniformly on the porous ZnCo2O4 nanowires with many interparticle mesopores, resulting in the formation of 3D core/shell nanowire arrays with hierarchical architecture. In comparison with the pristine ZnCo2O4 nanowire arrays (ZCO NWs), the ZCO/NiO NWs exhibit significantly improved Li storage properties, in terms of higher capacity, enhanced rate capability and improved cycling stability when applied as binders and additive-free anode materials for lithium-ion batteries. The superior Li storage performance of the ZCO/NiO NWs could be attributed to the synergetic effect between the ZnCo2O4 core and the NiO shell, as well as its unique hierarchical architecture, which ensures a large specific surface area and good conductivity. Our results may offer very useful guidelines in scrupulously designing 3D core/shell nanowire-array electrodes using cheap, earth-abundant materials in energy storage applications.

  16. Facile synthesis of a MoO2-Mo2C-C composite and its application as favorable anode material for lithium-ion batteries

    Science.gov (United States)

    Zhu, Yanping; Wang, Shaofeng; Zhong, Yijun; Cai, Rui; Li, Li; Shao, Zongping

    2016-03-01

    A composite of MoO2-Mo2C-C is fabricated through a facile ion-exchange route for the first time as an alternative anode material for lithium-ion batteries (LIBs). A macroporous cinnamic anion-exchange resin interacts with ammonium molybdate tetrahydrate in aqueous solution, and the product is then calcined under an inert gas atmosphere. The interaction between the resin and ammonium molybdate tetrahydrate results in an atomic level dispersion of the molybdenum over the organic carbon precursor (resin), while the calcination process allows the formation of MoO2 and Mo2C as well as the pyrolysis of resin to solid carbon. According to field-emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements, ultrafine MoO2 and Mo2C nanoparticles are uniformly dispersed but firmly attached within an amorphous carbon framework. When evaluated as an anode material, the as-synthesized sample exhibits superior electrochemical performance. The specific discharge capacity is as high as 1491 mA h g-1 in the first cycle and 724 mA h g-1 over 50 cycles at a current density of 0.2 A g-1. This simple, environmentally friendly, low-cost and easily scaled up method, has significant potential for mass industrial production of MoO2-based material as next-generation anode material of LIBs with wide application capability.

  17. A Facile Synthesis of ZnCo2O4 Nanocluster Particles and the Performance as Anode Materials for Lithium Ion Batteries

    Science.gov (United States)

    Pan, Yue; Zeng, Weijia; Li, Lin; Zhang, Yuzi; Dong, Yingnan; Cao, Dianxue; Wang, Guiling; Lucht, Brett L.; Ye, Ke; Cheng, Kui

    2017-04-01

    ZnCo2O4 nanocluster particles (NCPs) were prepared through a designed hydrothermal method, with the assistance of a surfactant, sodium dodecyl benzene sulfonate. The crystalline structure and surface morphology of ZnCo2O4 were investigated by XRD, XPS, SEM, TEM, and BET analyses. The results of SEM and TEM suggest a clear nanocluster particle structure of cubic ZnCo2O4 ( 100 nm in diameter), which consists of aggregated primary nanoparticles ( 10 nm in diameter), is achieved. The electrochemical behavior of synthesized ZnCo2O4 NCPs was investigated by galvanostatic discharge/charge measurements and cyclic voltammetry. The ZnCo2O4 NCPs exhibit a high reversible capacity of 700 mAh g-1 over 100 cycles under a current density of 100 mA g-1 with an excellent coulombic efficiency of 98.9% and a considerable cycling stability. This work demonstrates a facile technique designed to synthesize ZnCo2O4 NCPs which show great potential as anode materials for lithium ion batteries.

  18. Surveillance system for DUPIC fuel development facility (I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. Y.; Kim, H. D.; Park, C. S.; Cha, H. R.; Hong, J. S.; Yang, M. S. [KAERI, Taejon (Korea, Republic of)

    2000-05-01

    DUPIC Surveillance System is developed to process image data and radiation data together to diagnose intelligently the transportation status of the nuclear material, which makes it possible that usual DUPIC process be carried out without interruption under the surveillance. We developed the neutron monitor for surveillance and the system which takes and processes radiation data and image data, where the system is under the test operation after installed at DFDF (Dupic Fuel Development Facility)

  19. 76 FR 70531 - Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2011-11-14

    ... Federal Aviation Administration Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S.... Working Group Meeting--Review draft document. Working Group report, review progress and actions....

  20. 77 FR 56253 - Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-09-12

    ... Federal Aviation Administration Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S.... Working Group Meeting--Review draft document. Working Group report, review progress and actions....

  1. Control of a lithium-ion battery storage system for microgrid applications

    Science.gov (United States)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  2. Cold Vacuum Drying Facility Stack Air Sampling System Qualification Tests

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.

    2001-01-24

    This report documents tests that were conducted to verify that the air monitoring system for the Cold Vacuum Drying Facility ventilation exhaust stack meets the applicable regulatory criteria regarding the placement of the air sampling probe, sample transport, and stack flow measurement accuracy.

  3. Superconducting magnet system for an experimental disk MHD facility

    NARCIS (Netherlands)

    Knoopers, H.G.; Kate, ten H.H.J.; Klundert, van de L.J.M.

    1991-01-01

    A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel.

  4. Data Acquisition System of FlashADC on GTAF Facility

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Qi-wei; HE; Guo-zhu; HUANG; Xing; RUAN; Xi-chao; ZHOU; Zu-ying; ZHU; Xing-hua

    2013-01-01

    The data acquisition system of GTAF facility bases on the digitizer of FlashADC(DC271A,made by Acqiris Technologies Inc.),which can achieve the acquisition of experimental data and real-time monitoring of on-line measure by the capture of digital full pulse waveform from 40 BaF2 detectors.Fig.1

  5. Mirror Fusion Test Facility: Superconducting magnet system cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    At the request of Victor Karpenko, Project manager for LLL`s Mirror Fusion Test Facility, EG&G has prepared this independent cost analysis for the proposed MFTF Superconducting Magnet System. The analysis has attempted to show sufficient detail to provide adequate definition for a basis of estimating costs.

  6. Carbon catalysis of reactions in the lithium SOCl2 and SO2 systems

    Science.gov (United States)

    Kilroy, W. P.

    1981-01-01

    Certain hazards associated with lithium batteries have delayed widespread acceptance of these power sources. The reactivity of ground lithium carbon mixtures was examined. The effect of carbon types on this reactivity was determined. The basic reaction involved mixtures of lithium and carbon with battery electrolyte. The various parameters that influenced this reactivity included: the nature and freshness of the carbon; the freshness, the purity, and the conductive salt of the electrolyte; and the effect of Teflon or moisture.

  7. Challenges Considering the Degradation of Cell Components in Commercial Lithium-Ion Cells: A Review and Evaluation of Present Systems.

    Science.gov (United States)

    Kleiner, Karin; Ehrenberg, Helmut

    2017-06-01

    Owing to the high energy and power density of lithium-ion cells (1200 Wh kg(-1) and 200 Wh kg(-1)) and due to their compact design, they are used as energy storage devices in many contemporary mobile applications such as telecommunication systems, notebooks and domestic appliances. Meanwhile their application is not limited only to consumer electronics, they are also standard in hybrid electric (HEVs) and electric vehicles (EVs). However, the profitable application of lithium-ion cells in the automobile industry requires lower costs, lower safety risks, a higher specific energy density and a longer lifetime under everyday conditions. All these aspects are directly or indirectly related to the degradation of the materials in a lithium-ion cell. One possibility for reducing the costs is a second life application of the cells after their usage in (H)EVs. In order to enable this, the safety risks at the end of life of a cell operated in a vehicle have to be reliably predicted. This requires a fundamental knowledge about underlying material degradations during operation. The safety risk of a lithium-ion cell increases during operation because the voltage windows in which the electrodes are cycled shift, resulting in a higher possibility that at least one electrode is operated in a meta- or unstable state. Furthermore, higher impedances due to material degradations lead to increasing heat generation and therefore to an increase in the risk of failure. Higher energy densities can be achieved by raising the end of charge voltage of a cell, causing additional safety risks because many cathode materials tend to decompose at high voltages. Another possibility for achieving higher energy densities is to use nickel-rich or lithium-excess cathode materials, since cathodes are currently limiting the capacity of lithium-ion cells. But these systems show a poor cycling stability (a higher degradation rate). The lifetime of a lithium-ion cell is limited by the degradation of the

  8. Robust, High Capacity, High Power Lithium Ion Batteries for Space Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium ion battery technology provides the highest energy density of all rechargeable battery technologies available today. However, the majority of the research...

  9. Sectoral innovation system foresight in practice: Nordic facilities management foresight

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Dahl Andersen, Allan; Jensen, Per Anker

    2014-01-01

    A number of studies have explored the interconnection between the foresight literature and the innovation system literature. This paper adds to these studies by investigating how theoretical elements of the innovation system approach can contribute to the design and practice of foresight processes...... a proposal for a common Nordic facilities management research agenda. The paper finds that three elements of the innovation system literature are of particular interest for the practice of foresight: innovation systems and context dependency, learning and user-producer interactions, and the role of knowledge...... and knowledge production. These elements are embedded into a simple sectoral innovation system model (including actors, knowledge flows, and the strategic environment)....

  10. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  11. Personnel Access Control System Evaluation for National Ignition Facility Operations

    Energy Technology Data Exchange (ETDEWEB)

    Altenbach, T; Brereton, S.; Hermes, G.; Singh, M.

    2001-06-01

    The purpose of this document is to analyze the baseline Access Control System for the National Ignition Facility (NIF), and to assess its effectiveness at controlling access to hazardous locations during full NIF operations. It reviews the various hazards present during a NIF shot sequence, and evaluates the effectiveness of the applicable set of controls at preventing access while the hazards are present. It considers only those hazards that could potentially be lethal. In addition, various types of technologies that might be applicable at NIF are reviewed, as are systems currently in use at other facilities requiring access control for safety reasons. Recommendations on how this system might be modified to reduce risk are made.

  12. Feasibility study for a transportation operations system cask maintenance facility

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  13. System specification for Fort Hood Solar Cogeneration Facility

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The characteristics and design and environmental requirements are specified for a solar cogeneration facility at the Fort Hood Army Base in Killeen, Texas. Characteristics of the system and major elements are described, and applicable standards, codes, laws and regulations are listed. Performance requirements for the total system and for each individual subsystem are presented. Survival requirements are given for various environmental extremes, with consideration given to lightning protection and effects of direct or adjacent lightning strikes. Air quality control standards are briefly mentioned. The facility operates in two principal modes: energy collection and energy utilization. The plant is capable of operating in either mode independently or in both modes simultaneously. The system is also operational in transitional and standby/inactive modes. (LEW)

  14. Nuclear material surveillance system for DUPIC fuel development facility

    Energy Technology Data Exchange (ETDEWEB)

    Song, D. Y.; Lee, S. Y.; Ha, J. H.; Go, W. I.; Kim, H. D. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Unattended continuous surveillance systems for safeguards of nuclear facility result in large amounts of image and radiation data, which require much time and effort to inspect. Therefore, it is necessary to develop system that automatically pinpoints and diagnoses the anomalies from data. In this regards, this paper presents a novel concept of the continuous surveillance system that integrates visual image and radiation data by the use of neural networks based on self-organized feature mapping. This surveillance system is stably operating for safeguards of the DUPIC (DFDF) in KAERI.

  15. Facile synthesis of binder-free reduced graphene oxide/silicon anode for high-performance lithium ion batteries

    Science.gov (United States)

    Zhang, Wei; Zuo, Pengjian; Chen, Cheng; Ma, Yulin; Cheng, Xinqun; Du, Chunyu; Gao, Yunzhi; Yin, Geping

    2016-04-01

    A novel binder-free reduced graphene oxide/silicon (RGO/Si) composite anode has been fabricated by a facile doctor-blade coating method. The relatively low C/O ratio plays an important role for the fabrication of the bind-free multilayered RGO/Si electrode with silicon nanoparticles encapsulating among the RGO sheet layers. The RGO provides the electron transport pathway and prevents the electrode fracture caused by the volume changes of active silicon particles during cycling. The RGO/Si composite anode with a silicon content of 66.7% delivers a reversible capacity of 1931 mAh g-1 at 0.2 A g-1 and still remains 92% of the initial capacity after 50 cycles.

  16. Facile synthesis of Co3O4 spheres and their unexpected high specific discharge capacity for Lithium-ion batteries

    Science.gov (United States)

    Wang, Zhengdong; Qu, Shaohua; Cheng, Yonghong; Zheng, Chenghui; Chen, Siyu; Wu, Hongjing

    2017-09-01

    We report a facile, one-pot hydrothermal synthesis of Co3O4 solid spheres and multi-shelled Co3O4 hollow spheres with a controlled number of movable internal Co3O4 shells. Moreover, the magnetic properties of the multi-shelled Co3O4 hollow spheres were first investigated by the SQUID magnetometer. Interestingly, the Co3O4 solid spheres calcined at 430 °C deliver an unexpected high specific discharge capacity of 1976 and 1129 mAh g-1 for the 17th and 100th cycle at 100 mA g-1, respectively. In addition, the Co3O4 solid spheres calcined at 430 °C also show good capacity retention (i.e., 1129 mAh g-1 after 100 cycles). The significant performance improvement offers the potential to open up an avenue for next-generation LIBs.

  17. A Facile Method for Low-Temperature Synthesis of NaV₃O₈ as Cathode Materials for Lithium Secondary Batteries

    Directory of Open Access Journals (Sweden)

    Chao YUAN

    2011-03-01

    Full Text Available A facile method has been used to synthesize NaV3O8 powders with oxalic acid as the complexing agent. This soft-synthesis technique can effectively reduce the calcination temperature for synthesizing NaV3O8 powders to 300 °C, which is much lower than that in the solid-state synthesis. The thus-synthesized NaV3O8 powders are characterized by XRD, SEM and galvanostatic charge-discharge test. Among the as-prepared powders, the NaV3O8 powder obtained at 350 °C exhibits morphology of porous particles. The electrochemical analysis reveals that this powder demonstrates high discharge capacity and good cycleability.http://dx.doi.org/10.5755/j01.ms.17.1.252

  18. Synthesis and structural characterization of defect spinels in the Lithium-Manganese-Oxide system

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-10-01

    Full Text Available Lithium-manganese-oxides prepared at moderate temperatures are under investigation as insertion electrodes for rechargeable lithium batteries. The structures of two defect-spinel compounds synthesised by the reaction of MnCO3 and Li2CO3 at 400...

  19. Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-10-01

    Full Text Available Lithium-manganese-oxides prepared at moderate temperatures are under investigation as insertion electrodes for rechargeable lithium batteries. The structures of two defect-spinel compounds synthesized by the reaction of MnCO3 and Li2CO3 at 400°C...

  20. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  1. Facile synthesis of low-dimensional SnO2 nanostructures: An investigation of their performance and mechanism of action as anode materials for lithium-ion batteries

    Science.gov (United States)

    Usman Hameed, Muhammad; Ullah Dar, Sami; Ali, Shafqat; Liu, Sitong; Akram, Raheel; Wu, Zhanpeng; Butler, Ian S.

    2017-07-01

    Owing to high-energy density of rechargeable lithium-ion batteries (LIBs), they have been investigated as an efficient electrochemical power sources for various energy applications. High theoretical capacities of tin oxide (SnO2) anodes have led us a path to meet the ever-growing demands in the development of high-performance electrode materials for LIBs. In this paper, a facile approach is described for the synthesis of porous low-dimensional nanoparticles and nanorods of SnO2 for application in LIBs with the help of Tween-80 as a surfactant. The SnO2 samples synthesized at different reaction temperatures produced porous nanoparticles and nanorods with average diameters of 7-10 nm and 70-110 nm, respectively. The SnO2 nanoparticle electrodes exhibit a high reversible charge capacity of 641.1 mAh/g at 200 mA/g after 50 cycles, and a capacity of 340 mAh/g even at a high current density of 1000 mA/g during the rate tests, whereas the porous nanorod electrodes delivers only 526.3 mAh/g at 200 mA/g after 50 cycles and 309.4 mAh/g at 1000 mA/g. It is believed that finer sized SnO2 nanoparticles are much more favorable to trap more Li+ ion during electrochemical cycling, resulting in a large irreversible capacity. In contrast, rapid capacity fading was observed for the porous nanorods, which is the result of their pulverization resulting from repeated cycling.

  2. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.

    Science.gov (United States)

    Wang, Linlin; Gong, Huaxu; Wang, Caihua; Wang, Dake; Tang, Kaibin; Qian, Yitai

    2012-11-07

    Various CuO nanostructures have been well studied as anode materials for lithium ion batteries (LIBs); however, there are few reports on the synthesis of porous CuO nanostructures used for anode materials, especially one-dimensional (1D) porous CuO. In this work, novel 1D highly porous CuO nanorods with tunable porous size were synthesized in large-quantities by a new, friendly, but very simple approach. We found that the pore size could be controlled by adjusting the sintering temperature in the calcination process. With the rising of calcination temperature, the pore size of CuO has been tuned in the range of ∼0.4 nm to 22 nm. The porous CuO materials have been applied as anode materials in LIBs and the effects of porous size on the electrochemical properties were observed. The highly porous CuO nanorods with porous size in the range of ∼6 nm to 22 nm yielded excellent high specific capacity, good cycling stability, and high rate performance, superior to that of most reported CuO nanocomposites. The CuO material delivers a high reversible capacity of 654 mA h g(-1) and 93% capacity retention over 200 cycles at a rate of 0.5 C. It also exhibits excellent high rate capacity of 410 mA h g(-1) even at 6 C. These results suggest that the facile synthetic method of producing a tunable highly porous CuO nanostructure can realize a long cycle life with high reversible capacity, which is suitable for next-generation high-performance LIBs.

  3. Use of video systems in securing nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Zakharko, Eleonora; Weizel, Udo [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Rduch, Alexander

    2010-07-01

    Current paper considers application of video systems, so called Closed-Circuit Television (CCTV), in physical protection of nuclear facilities. CCTV is being used for general surveillance tasks, for alarm assessment, for detection purposes and is crucial for the efficient operation of physical protection system in whole. The main parts of general design layout are being analyzed: i.e. image obtaining, signal transmission, signal processing and signal visualization is being provided. It is underlined, that the general trend of high tech solutions in the field of physical protection is in particular based on innovations in the applications with video systems (orig.)

  4. Optical pulse generation system for the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Penko, F; Braucht,; Browning, D; Crane, J K; Dane, B; Deadrick, F; Dreifuerst, G; Henesian, M; Jones, B A; Kot, L; Laumann, C; Martinez, M; Moran, B; Rothenberg, J E; Skulina, K; Wilcox, R B

    1998-06-18

    We describe the Optical Pulse Generation (OPG) system for the National Ignition Facility ( NIF ). The OPG system begins with the Master Oscillator Room ( MOR ) where the initial, seed pulse for the entire laser system is produced and properly formatted to enhance ignition in the target. The formatting consists of temporally shaping the pulse and adding additional bandwidth to increase the coupling of the laser generated x-rays to the high density target plasma. The pulse produced in the MOR fans out to 48 identical preamplifier modules where it is amplified by a factor of ten billion and spatially shaped for injection into the 192 main amplifier chai

  5. NASA Glenn Propulsion Systems Lab (PSL) Icing Facility Update

    Science.gov (United States)

    Thomas, Queito P.

    2015-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, PSL is capable of simulation of in-flight icing events in a ground test facility. The system was designed to operate at altitudes from 4,000 ft. to 40,000 ft. at Mach numbers up to 0.8M and inlet total temperatures from -60F to +15F.

  6. The VLT Adaptive Optics Facility Project: Telescope Systems

    Science.gov (United States)

    Arsenault, Robin; Hubin, Norbert; Stroebele, Stefan; Fedrigo, Enrico; Oberti, Sylvain; Kissler-Patig, Markus; Bacon, Roland; McDermid, Richard; Bonaccini-Calia, Domenico; Biasi, Roberto; Gallieni, Daniele; Riccardi, Armando; Donaldson, Rob; Lelouarn, Miska; Hackenberg, Wolfgang; Conzelman, Ralf; Delabre, Bernard; Stuik, Remko; Paufique, Jerome; Kasper, Markus; Vernet, Elise; Downing, Mark; Esposito, Simone; Duchateau, Michel; Franx, Marijn; Myers, Richard; Goodsell, Steven

    2006-03-01

    The Adaptive Optics Facility is a project to convert UT4 into a specialised Adaptive Telescope. The present secondary mirror (M2) will be replaced by a new M2-Unit hosting a 1170-actuator deformable mirror. The three focal stations will be equipped with instruments adapted to the new capability of this UT. Two instruments have been identified for the two Nasmyth foci: Hawk-I with its AO module GRAAL allowing a Ground Layer Adaptive Optics correction and MUSE with GALACSI for GLAO correction and Laser Tomography Adaptive Optics correction. A future instrument still needs to be defined for the Cassegrain focus. Several guide stars are required for the type of adaptive corrections needed and a Four Laser Guide Star Facility (4LGSF) is being developed in the scope of the AO Facility. Convex mirrors like the VLT M2 represent a major challenge for testing and a substantial effort is dedicated to this. ASSIST, is a test bench that will allow testing of the Deformable Secondary Mirror and both instruments with simulated turbulence. This article focusses on the telescope systems (Adaptive Secondary, Four Laser Guide Star Facility, RTC platform and ASSIST Test Bench). The following article describes the AO Modules GALACSI and GRAAL.

  7. Mathematical Model of a Lithium-Bromide/Water Absorption Refrigeration System Equipped with an Adiabatic Absorber

    Directory of Open Access Journals (Sweden)

    Salem M. Osta-Omar

    2016-11-01

    Full Text Available The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems.

  8. Lithium Intoxication

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2011-09-01

    Full Text Available Lithium has been commonly used for the treatment of several mood disorders particularly bipolar disorder in the last 60 years. Increased intake and decreased excretion of lithium are the main causes for the development of lithium intoxication. The influence of lithium intoxication on body is evaluated as two different groups; reversible or irreversible. Irreversible damage is usually related with the length of time passed as intoxicated. Acute lithium intoxication could occur when an overdose of lithium is received mistakenly or for the purpose of suicide. Patients may sometimes take an overdose of lithium for self-medication resulting in acute intoxication during chronic, while others could develop chronic lithium intoxication during a steady dose treatment due to a problem in excretion of drug. In such situations, it is crucial to be aware of risk factors, to recognize early clinical symptoms and to conduct a proper medical monitoring. In order to justify or exclude the diagnosis, quantitative evaluation of lithium in blood and toxicologic screening is necessary. Following the monitoring schedules strictly and urgent intervention in case of intoxication would definitely reduce mortality and sequela related with lithium intoxication. In this article, the etiology, frequency, definition, clinical features and treatment approaches to the lithium intoxication have been briefly reviewed.

  9. Sealed Primary Lithium-Inorganic Electrolyte Cell

    Science.gov (United States)

    1977-02-01

    Battery , Thionyl Chloride , Lithium , Lithium Aluminum Chloride , Hermetic Lithium Battery , D Cell, Voltage-Delay, Shelf Life, High Energy Density Battery ... lithium - thionyl chloride , inorganic electrclyte system is one of the highest energy density systems known to date (1-4). The cells contain an Li anoae, a...However, this is not tne case with te thionyl chloride system. A completely discharged battery , while sitting on

  10. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Ramadesigan, V.; Northrop, P. W. C.; De, S.; Santhanagopalan, S.; Braatz, R. D.; Subramanian, Venkat R.

    2012-01-01

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined.

  11. Thermal Vacuum Facility for Testing Thermal Protection Systems

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.

    2002-01-01

    A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.

  12. Development and implementation of flowing liquid lithium limiter control system for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, XiaoLin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230031 (China); Chen, Yue [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, JianSheng, E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, JianGang; Zuo, GuiZhong; Ren, Jun; Zhou, Yue; Li, ChangZheng; Sun, Zheng; Xu, Wei; Meng, XianCai; Huang, Ming; Zheng, XingWei; Yao, Xingjia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Development of a FLiLi remote control system for EAST. • Intelligent instruments are used to realize FLiLi remote control. • Good operating results of the control system were obtained in the EAST campaign. - Abstract: A control system of a flowing liquid lithium (FLiLi) limiter for the Experimental Advanced Superconducting Tokamak (EAST) was developed and implemented. The control system is not only able to control the direct current (DC) electromagnetic pump and heating power but can also set scanning parameters, receive the shot number, acquire the temperature, etc. The system consists of multifunctional LAN eXtensions for Instrumentation (LXI) instrument, temperature-acquisition module, programmable DC power supply, and programmable logic controller (PLC). The multi-range DC power supply is programmed to meet the operational requirements of the DC electromagnetic pump. The LXI instrument and temperature-acquisition module are used to obtain temperature data. The PLC is adopted to control the temperature of the FLiLi limiter. A safety interlock and protection function was developed for the FLiLi limiter control system. The software was designed by using LabVIEW to achieve data interaction between multiple protocols. The FLiLi limiter control system can acquire experimental data at a speed of 100 S/s and store it for later analysis. The control system was successfully applied to a FLiLi limiter to study the interaction between plasma and a fixed wall in the EAST campaign. This paper presents the framework, the implementation details, and results of the control system.

  13. The National Ignition Facility front-end laser system

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, S.C.; Beach, R.J.; Crane, J.H.; Davin, J.M.; Perry, M.D.; Wilcox, R.B.

    1995-07-07

    The proposed National Ignition Facility is a 192 beam Nd:glass laser system capable of driving targets to fusion ignition by the year 2005. A key factor in the flexibility and performance of the laser is a front-end system which provides a precisely formatted beam to each beamline. Each of the injected beams has individually controlled energy, temporal pulseshape, and spatial shape to accommodate beamline-to-beamline variations in gain and saturation. This flexibility also gives target designers the options for precisely controlling the drive to different areas of the target. The design of the Front-End laser is described, and initial results are discussed.

  14. Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems.

    Science.gov (United States)

    Sánchez-Carrera, Roel S; Kozinsky, Boris

    2014-11-28

    A common approach to understanding surface reaction mechanisms in rechargeable lithium-based battery systems involves spectroscopic characterization of the product mixtures and matching of spectroscopic features to spectra of pure candidate reference compounds. This strategy, however, requires separate chemical synthesis and accurate characterization of potential reference compounds. It also assumes that atomic structures are the same in the actual product mixture as in the reference samples. We propose an alternative approach that uses first-principles computations of spectra of the possible reaction products and by-products present in advanced battery systems. We construct a library of computed Raman spectra for possible products, achieving excellent agreement with reference experimental data, targeting solid-electrolyte interphase in Li-ion cells and discharge products of Li-air cells. However, the solid-state crystalline structure of Li(Na) metal-organic compounds is often not known, making the spectra computations difficult. We develop and apply a novel technique of simplifying spectra calculations by using dimer-like representations of the solid state structures. On the basis of a systematic investigation, we demonstrate that molecular dimers of Li(Na)-based organometallic material provide relevant information about the vibrational properties of many possible solid reaction products. Such an approach should serve as a basis to extend existing spectral libraries of molecular structures relevant for understanding the link between atomic structures and measured spectroscopic data of materials in novel battery systems.

  15. Sliding Mode Thermal Control System for Space Station Furnace Facility

    Science.gov (United States)

    Jackson Mark E.; Shtessel, Yuri B.

    1998-01-01

    The decoupled control of the nonlinear, multiinput-multioutput, and highly coupled space station furnace facility (SSFF) thermal control system is addressed. Sliding mode control theory, a subset of variable-structure control theory, is employed to increase the performance, robustness, and reliability of the SSFF's currently designed control system. This paper presents the nonlinear thermal control system description and develops the sliding mode controllers that cause the interconnected subsystems to operate in their local sliding modes, resulting in control system invariance to plant uncertainties and external and interaction disturbances. The desired decoupled flow-rate tracking is achieved by optimization of the local linear sliding mode equations. The controllers are implemented digitally and extensive simulation results are presented to show the flow-rate tracking robustness and invariance to plant uncertainties, nonlinearities, external disturbances, and variations of the system pressure supplied to the controlled subsystems.

  16. Hydrogen, lithium, and lithium hydride production

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.

    2017-06-20

    A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.

  17. Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ferdowsi

    2013-10-01

    Full Text Available Advanced electrochemical batteries are becoming an integral part of a wide range of applications from household and commercial to smart grid, transportation, and aerospace applications. Among different battery technologies, lithium-ion (Li-ion batteries are growing more and more popular due to their high energy density, high galvanic potential, low self-discharge, low weight, and the fact that they have almost no memory effect. However, one of the main obstacles facing the widespread commercialization of Li-ion batteries is the design of reliable battery management systems (BMSs. An efficient BMS ensures electrical safety during operation, while increasing battery lifetime, capacity and thermal stability. Despite the need for extensive research in this field, the majority of research conducted on Li-ion battery packs and BMS are proprietary works conducted by manufacturers. The available literature, however, provides either general descriptions or detailed analysis of individual components of the battery system, and ignores addressing details of the overall system development. This paper addresses the development of an experimental research testbed for studying Li-ion batteries and their BMS design. The testbed can be configured in a variety of cell and pack architectures, allowing for a wide range of BMS monitoring, diagnostics, and control technologies to be tested and analyzed. General considerations that should be taken into account while designing Li-ion battery systems are reviewed and different technologies and challenges commonly encountered in Li-ion battery systems are investigated. This testbed facilitates future development of more practical and improved BMS technologies with the aim of increasing the safety, reliability, and efficiency of existing Li-ion battery systems. Experimental results of initial tests performed on the system are used to demonstrate some of the capabilities of the developed research testbed. To the authors

  18. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    Energy Technology Data Exchange (ETDEWEB)

    Mun, S.Y.; Lee, H.

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  19. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium wallsa)

    Science.gov (United States)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.; Widmann, K.; Tritz, K.

    2015-05-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  20. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries.

    Science.gov (United States)

    Tang, Cheng; Zhang, Qiang; Zhao, Meng-Qiang; Huang, Jia-Qi; Cheng, Xin-Bing; Tian, Gui-Li; Peng, Hong-Jie; Wei, Fei

    2014-09-17

    Nitrogen-doped aligned CNT/graphene sandwiches are rationally designed and in-situ fabricated by a facile catalytic growth on bifunctional natural catalysts that exhibit high-rate performances as scaffolds for lithium-sulfur batteries, with a high initial capacity of 1152 mA h g(-1) at 1.0 C. A remarkable capacity of 770 mA h g(-1) can be achieved at 5.0 C. Such a design strategy for materials opens up new perspectives to novel advanced functional composites, especially interface-modified hierarchical nanocarbons for broad applications.

  1. 75 FR 70013 - Medicare Program; Inpatient Rehabilitation Facility Prospective Payment System for Federal Fiscal...

    Science.gov (United States)

    2010-11-16

    ... HUMAN SERVICES Centers for Medicare & Medicaid Services RIN 0938-AP89 Medicare Program; Inpatient Rehabilitation Facility Prospective Payment System for Federal Fiscal Year 2011; Correction AGENCY: Centers for..., ``Inpatient Rehabilitation Facility Prospective Payment System for Federal Fiscal Year 2011.''...

  2. A model Based Desing of a Thermal Management System for a High Power Lithium-Ion Battery Pack.

    OpenAIRE

    Nieto Aguirrezabala, N. (Nerea); Blanco Barro, F.J. (Francisco Javier); Ramos, J.C. (Juan Carlos)

    2014-01-01

    In the present thesis an improved design methodology is proposed for TMSs (Thermal Management Systems) for high power lithium-ion battery packs used in traction applications. The methodology involves the development of different mathematical models for heat generation, transmission, and dissipation and their coupling and integration in the battery pack design methodology in order to improve overall safety and performance. The sequence of steps to be followed according to the...

  3. Hydrogen, lithium, and lithium hydride production

    Science.gov (United States)

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  4. Lithium compensation for full cell operation

    Science.gov (United States)

    Xiao, Jie; Zheng, Jianming; Chen, Xilin; Lu, Dongping; Liu, Jun; Jiguang, Jiguang

    2016-05-17

    Disclosed herein are embodiments of a lithium-ion battery system comprising an anode, an anode current collector, and a layer of lithium metal in contact with the current collector, but not in contact with the anode. The lithium compensation layer dissolves into the electrolyte to compensate for the loss of lithium ions during usage of the full cell. The specific placement of the lithium compensation layer, such that there is no direct physical contact between the lithium compensation layer and the anode, provides certain advantages.

  5. National Ignition Facility Project Completion and Control System Status

    Energy Technology Data Exchange (ETDEWEB)

    Van Arsdall, P J; Azevedo, S G; Beeler, R G; Bryant, R M; Carey, R W; Demaret, R D; Fisher, J M; Frazier, T M; Lagin, L J; Ludwigsen, A P; Marshall, C D; Mathisen, D G; Reed, R K

    2009-10-02

    The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental system providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. Completed in 2009, NIF is a stadium-sized facility containing a 1.8-MJ, 500-TW 192-beam ultraviolet laser and target chamber. A cryogenic tritium target system and suite of optical, X-ray and nuclear diagnostics will support experiments in a strategy to achieve fusion ignition starting in 2010. Automatic control of NIF is performed by the large-scale Integrated Computer Control System (ICCS), which is implemented by 2 MSLOC of Java and Ada running on 1300 front-end processors and servers. The ICCS framework uses CORBA distribution for interoperation between heterogeneous languages and computers. Laser setup is guided by a physics model and shots are coordinated by data-driven distributed workflow engines. The NIF information system includes operational tools and a peta-scale repository for provisioning experimental results. This paper discusses results achieved and the effort now underway to conduct full-scale operations and prepare for ignition.

  6. Data System Upgrades within the National Deep Submergence Facility

    Science.gov (United States)

    McCue, S. J.

    2010-12-01

    The National Deep Submergence Facility (NDSF) is funded by the National Science Foundation to provide operational support for deep submergence research. Recent modifications to status of the facility's vehicles and to some subsystems of each of the vehicles have improved the data offerings from the facility. Sentry has replaced ABE as the operational NDSF autonomous underwater vehicle (AUV) and joins Human Occupied Vehicle (HOV) Alvin and Remotely Operated Vehicle (ROV) Jason. Sentry offers a more robust sensor and processing suite than did ABE. Each of the three vehicles now carry a well known 512 beam bathymetric sonar, which improves sampling resolution and post-processing flexibility. Each of the three vehicles have added a state-of-the-art ultra short baseline navigation system that offers performance similar to long baseline navigation, with simpler post-processing. HOV Alvin and ROV Jason are in the process of incorporating a high definition video pipeline, which offers improvement in both video and still image capture. We detail these changes and offer example results.

  7. Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Haipeng; Liu, Zhengjun; Yang, Shuang; Zhao, Yan; Feng, Yuting; Bakenov, Zhumabay; Zhang, Chengwei; Yin, Fuxing

    2017-09-21

    ZnO/nitrogen-doped carbon nanotube (ZnO/NCNT) composite, prepared though a simple one-step sol-gel synthetic technique, has been explored for the first time as an anode material. The as-prepared ZnO/NCNT nanocomposite preserves a good dispersity and homogeneity of the ZnO nanoparticles (~6 nm) which deposited on the surface of NCNT. Transmission electron microscopy (TEM) reveals the formation of ZnO nanoparticles with an average size of 6 nm homogeneously deposited on the surface of NCNT. ZnO/NCNT composite, when evaluated as an anode for lithium-ion batteries (LIBs), exhibits remarkably enhanced cycling ability and rate capability compared with the ZnO/CNT counterpart. A relatively large reversible capacity of 1013 mAh·g(-1) is manifested at the second cycle and a capacity of 664 mAh·g(-1) is retained after 100 cycles. Furthermore, the ZnO/NCNT system displays a reversible capacity of 308 mAh·g(-1) even at a high current density of 1600 mA·g(-1). These electrochemical performance enhancements are ascribed to the reinforced accumulative effects of the well-dispersed ZnO nanoparticles and doping nitrogen atoms, which can not only suppress the volumetric expansion of ZnO nanoparticles during the cycling performance but also provide a highly conductive NCNT network for ZnO anode.

  8. Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Haipeng Li

    2017-09-01

    Full Text Available ZnO/nitrogen-doped carbon nanotube (ZnO/NCNT composite, prepared though a simple one-step sol-gel synthetic technique, has been explored for the first time as an anode material. The as-prepared ZnO/NCNT nanocomposite preserves a good dispersity and homogeneity of the ZnO nanoparticles (~6 nm which deposited on the surface of NCNT. Transmission electron microscopy (TEM reveals the formation of ZnO nanoparticles with an average size of 6 nm homogeneously deposited on the surface of NCNT. ZnO/NCNT composite, when evaluated as an anode for lithium-ion batteries (LIBs, exhibits remarkably enhanced cycling ability and rate capability compared with the ZnO/CNT counterpart. A relatively large reversible capacity of 1013 mAh·g−1 is manifested at the second cycle and a capacity of 664 mAh·g−1 is retained after 100 cycles. Furthermore, the ZnO/NCNT system displays a reversible capacity of 308 mAh·g−1 even at a high current density of 1600 mA·g−1. These electrochemical performance enhancements are ascribed to the reinforced accumulative effects of the well-dispersed ZnO nanoparticles and doping nitrogen atoms, which can not only suppress the volumetric expansion of ZnO nanoparticles during the cycling performance but also provide a highly conductive NCNT network for ZnO anode.

  9. Kinetic Modification on Hydrogen Desorption of Lithium Hydride and Magnesium Amide System

    Directory of Open Access Journals (Sweden)

    Hiroki Miyaoka

    2015-06-01

    Full Text Available Various synthesis and rehydrogenation processes of lithium hydride (LiH and magnesium amide (Mg(NH22 system with 8:3 molar ratio are investigated to understand the kinetic factors and effectively utilize the essential hydrogen desorption properties. For the hydrogen desorption with a solid-solid reaction, it is expected that the kinetic properties become worse by the sintering and phase separation. In fact, it is experimentally found that the low crystalline size and the close contact of LiH and Mg(NH22 lead to the fast hydrogen desorption. To preserve the potential hydrogen desorption properties, thermochemical and mechanochemical rehydrogenation processes are investigated. Although the only thermochemical process results in slowing the reaction rate due to the crystallization, the ball-milling can recover the original hydrogen desorption properties. Furthermore, the mechanochemical process at 150 °C is useful as the rehydrogenation technique to preserve the suitable crystalline size and mixing state of the reactants. As a result, it is demonstrated that the 8LiH and 3Mg(NH22 system is recognized as the potential hydrogen storage material to desorb more than 5.5 mass% of H2 at 150 °C.

  10. Kinetic Modification on Hydrogen Desorption of Lithium Hydride and Magnesium Amide System.

    Science.gov (United States)

    Miyaoka, Hiroki; Wang, Yongming; Hino, Satoshi; Isobe, Shigehito; Tokoyoda, Kazuhiko; Ichikawa, Takayuki; Kojima, Yoshitsugu

    2015-06-29

    Various synthesis and rehydrogenation processes of lithium hydride (LiH) and magnesium amide (Mg(NH₂)₂) system with 8:3 molar ratio are investigated to understand the kinetic factors and effectively utilize the essential hydrogen desorption properties. For the hydrogen desorption with a solid-solid reaction, it is expected that the kinetic properties become worse by the sintering and phase separation. In fact, it is experimentally found that the low crystalline size and the close contact of LiH and Mg(NH₂)₂ lead to the fast hydrogen desorption. To preserve the potential hydrogen desorption properties, thermochemical and mechanochemical rehydrogenation processes are investigated. Although the only thermochemical process results in slowing the reaction rate due to the crystallization, the ball-milling can recover the original hydrogen desorption properties. Furthermore, the mechanochemical process at 150 °C is useful as the rehydrogenation technique to preserve the suitable crystalline size and mixing state of the reactants. As a result, it is demonstrated that the 8LiH and 3Mg(NH₂)₂ system is recognized as the potential hydrogen storage material to desorb more than 5.5 mass% of H₂ at 150 °C.

  11. Skeletal effects of central nervous system active drugs: anxiolytics, sedatives, antidepressants, lithium and neuroleptics.

    Science.gov (United States)

    Vestergaard, Peter

    2008-09-01

    Many central nervous system active drugs can alter postural balance, increasing the risk of fractures. Anxiolytics and sedatives include the benzodiazepines, and these have been associated with a limited increase in the risk of fractures, even at low doses, probably from an increased risk of falls. No systematic differences have been shown between benzodiazepines with long and short half-lives. Although the increase in risk of fractures was limited, care must still be taken when prescribing for older fall-prone subjects at risk of osteoporosis. Neuroleptics may be associated with a decrease in bone mineral density and a very limited increase in fracture risk. Antidepressants are associated with a dose-dependent increase in the risk of fractures. The increase in relative risk of fractures seems to be larger with selective serotonin reuptake inhibitors (SSRIs) than with tricyclic antidepressants. The reason for this is not known but may be linked to serotonin effects on bone cells and the risk of falls. With the wide use of SSRIs, more research is needed. Lithium is associated with a decrease in the risk of fractures. This may be linked to its effects on the Wnt glycoprotein family, which is a specialised signalling system for certain cell types.

  12. Accretion of planetary matter and the lithium problem in the 16 Cygni stellar system

    CERN Document Server

    Deal, Morgan; Vauclair, Sylvie

    2015-01-01

    The 16 Cyg system is composed of two solar analogs with similar masses and ages. A red dwarf is in orbit around 16 Cyg A whereas 16 Cyg B hosts a giant planet. The abundances of heavy elements are similar in the two stars but lithium is much more depleted in 16 Cyg B that in 16 Cyg A, by a factor of at least 4.7. The interest of studying the 16 Cyg system is that the two star have the same age and the same initial composition. The presently observed differences must be due to their different evolution, related to the fact that one of them hosts a planet contrary to the other one. We computed models of the two stars which precisely fit the observed seismic frequencies. We used the Toulouse Geneva Evolution Code (TGEC) that includes complete atomic diffusion (including radiative accelerations). We compared the predicted surface abundances with the spectroscopic observations and confirmed that another mixing process is needed. We then included the effect of accretion-induced fingering convection. The accretion o...

  13. Neuroprotective action of lithium in disorders of the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Chi-Tso CHIU; De-Maw CHUANG

    2011-01-01

    Substantial in vitro and in vivo evidence of neurotrophic and neuroprotective effects of lithium suggests that it may also have considerable potential for the treatment of neurodegenerative conditions. Lithium's main mechanisms of action appear to stem from its ability to inhibit glycogen synthase kinase-3 activity and also to induce signaling mediated by brain-derived neurotrophic factor. This in turn alters a wide variety of downstream effectors, with the ultimate effect of enhancing pathways to cell survival. In addition, lithium contributes to calcium homeostasis. By inhibiting Nmethyl-D-aspartate receptor-mediated calcium influx, for instance, it suppresses the calcium-dependent activation of pro-apoptotic signaling pathways. By inhibiting the activity of phosphoinositol phosphatases, it decreases levels of inositol 1,4,5-trisphosphate,. a process recently identified as a novel mechanism for inducing autophagy. These mechanisms allow therapeutic doses of lithium to protect neuronal cells from diverse insults that would otherwise lead to massive cell death. Lithium, moreover, has been shown to improve behavioral and cognitive deficits in animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, and Huntington's, Alzheimer's, and Parkinson's diseases. Since lithium is already FDA-approved for the treatment of bipolar disorder, our conclusions support the notion that its clinical relevance can be expanded to include the treatment of several neurological and neurodegenerative-related diseases.

  14. Integration of Lithium-Ion Battery Storage Systems in Hydroelectric Plants for Supplying Primary Control Reserve

    Directory of Open Access Journals (Sweden)

    Fabio Bignucolo

    2017-01-01

    Full Text Available The ever-growing diffusion of renewables as electrical generation sources is forcing the electrical power system to face new and challenging regulation problems to preserve grid stability. Among these, the primary control reserve is reckoned to be one of the most important issues, since the introduction of generators based on renewable energies and interconnected through static converters, if relieved from the primary reserve contribution, reduces both the system inertia and the available power reserve in case of network events involving frequency perturbations. In this scenario, renewable plants such as hydroelectric run-of-river generators could be required to provide the primary control reserve ancillary service. In this paper, the integration between a multi-unit run-of-river power plant and a lithium-ion based battery storage system is investigated, suitably accounting for the ancillary service characteristics as required by present grid codes. The storage system is studied in terms of maximum economic profitability, taking into account its operating constraints. Dynamic simulations are carried out within the DIgSILENT PowerFactory 2016 software environment in order to analyse the plant response in case of network frequency contingencies, comparing the pure hydroelectric plant with the hybrid one, in which the primary reserve is partially or completely supplied by the storage system. Results confirm that the battery storage system response to frequency perturbations is clearly faster and more accurate during the transient phase compared to a traditional plant, since time delays due to hydraulic and mechanical regulations are overpassed. A case study, based on data from an existing hydropower plant and referring to the Italian context in terms of operational constraints and ancillary service remuneration, is presented.

  15. Integration of criticality alarm system at a fuel manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Longinov, M.; Pant, A. [Zircatec Precision Industries, Port Hope, Ontario (Canada)

    2005-07-01

    In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element CANFLEX bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37 element fuel over 20 years ago. As the primary fuel supplier to the reactor site that has chosen to utilize this new fuel design, Zircatec has agreed to manufacture and supply this new fuel at their facility in Port Hope, Ontario. Under this agreement, Zircatec is challenged with converting a fuel manufacturing facility to include the processing of enriched uranium. The challenge is to introduce the new concept of criticality control to a facility that traditionally does not have to deal with such a concept. One of the elements of the implementation is the criticality detection and alarm system - CIDAS. Since a criticality could go undetected by human senses, one of the methods of ensuring safety from radiation exposure in the event of a criticality is the installation of a criticality incident detection and alarm system. This early warning device could be the difference between low dose exposure and lethal exposure. This paper describes the challenges that Zircatec has faced with the installation of a criticality incident detection and alarm system. These challenges include determining the needs and requirements, determining appropriate specifications, selecting the right equipment, installing the equipment and training personnel in the operation of the new equipment. (author)

  16. Superconducting magnet system for an experimental disk MHD facility

    OpenAIRE

    Knoopers, H.G.; Kate, ten, H.H.J.; Klundert, van de, L.J.M.

    1991-01-01

    A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel. The optimization process, which is based on minimum conductor costs is discussed, and the proposed conductor design is described. Basic solutions for the construction of the magnet, the cryostat an...

  17. Control and Information Systems for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; Demaret, Robert; Fedorov, Mike; Flegel, Michael; Folta, Peg; Fraizer, Timothy; Hutton, Matthew; Kegelmeyer, Laura; Lagin, Lawrence; Ludwigsen, Pete; Reed, Robert; Speck, Douglas; Wilhelmsen, Karl

    2015-11-03

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second. NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. This paper is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.

  18. Lithium metal protection enabled by in-situ olefin polymerization for high-performance secondary lithium sulfur batteries

    Science.gov (United States)

    An, Yongling; Zhang, Zhen; Fei, Huifang; Xu, Xiaoyan; Xiong, Shenglin; Feng, Jinkui; Ci, Lijie

    2017-09-01

    Lithium metal is considered to be the optimal choice of next-generation anode materials due to its ultrahigh theoretical capacity and the lowest redox potential. However, the growth of dendritic and mossy lithium for rechargeable Li metal batteries lead to the possible short circuiting and subsequently serious safety issues during charge/discharge cycles. For the further practical applications of Li anode, here we report a facile method for fabricating robust interfacial layer via in-situ olefin polymerization. The resulting polymer layer effectively suppresses the formation of Li dendrites and enables the long-term operation of Li metal batteries. Using Li-S cells as a test system, we also demonstrate an improved capacity retention with the protection of tetramethylethylene-polymer. Our results indicate that this method could be a promising strategy to tackle the intrinsic problems of lithium metal anodes and promote the development of Li metal batteries.

  19. Thermal Protection System Aerothermal Screening Tests in HYMETS Facility

    Science.gov (United States)

    Szalai, Christine E.; Beck, Robin A. S.; Gasch, Matthew J.; Alumni, Antonella I.; Chavez-Garcia, Jose F.; Splinter, Scott C.; Gragg, Jeffrey G.; Brewer, Amy

    2011-01-01

    The Entry, Descent, and Landing (EDL) Technology Development Project has been tasked to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. A screening arc jet test of seven rigid ablative TPS material candidates was performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at NASA Langley Research Center, in both an air and carbon dioxide test environment. Recession, mass loss, surface temperature, and backface thermal response were measured for each test specimen. All material candidates survived the Mars aerocapture relevant heating condition, and some materials showed a clear increase in recession rate in the carbon dioxide test environment. These test results supported subsequent down-selection of the most promising material candidates for further development.

  20. Shielding Design and Radiation Shielding Evaluation for LSDS System Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younggook; Kim, Jeongdong; Lee, Yongdeok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    As the system characteristics, the target in the spectrometer emits approximately 1012 neutrons/s. To efficiently shield the neutron, the shielding door designs are proposed for the LSDS system through a comparison of the direct shield and maze designs. Hence, to guarantee the radiation safety for the facility, the door design is a compulsory course of the development of the LSDS system. To improve the shielding rates, 250x250 covering structure was added as a subsidiary around the spectrometer. In this study, the evaluations of the suggested shielding designs were conducted using MCNP code. The suggested door design and covering structures can shield the neutron efficiently, thus all evaluations of all conditions are satisfied within the public dose limits. From the Monte Carlo code simulation, Resin(Indoor type) and Tungsten(Outdoor type) were selected as the shielding door materials. From a comparative evaluation of the door thickness, In and Out door thickness was selected 50 cm.

  1. The Influence of Base Concentration on the Surface Particle of Lithium Aluminosilicate System

    Science.gov (United States)

    Nazri, I. M.; Asliza, M. A. Sri; Othman, R.

    2008-03-01

    The study of base concentration effect toward surface particles of lithium aluminosilicate glass ceramic system has been done by using NaOH solution. The parent glass with composition of 60% SiO2, 31% Li2O, 6% Al2O3 and 3% TiO2 in wt% was prepared by melting process at 1250 °C prior to quenching rapidly to room temperature. Sintering and crystallization process on this parent glass were carefully examined by Differential thermal analysis (DTA) and X-Ray Diffraction (XRD). Based on these analyses, the selected crystal has been chosen as a precursor material. There are two controlling parameter involved in this study i.e. NaOH concentration and leaching period. The morphology of the glass ceramic particle was observed by Field Emission Scanning Electron Microscope (FESEM). The result shows that by increasing the basic concentration as well as increasing the soaking leaching period, the tendency of glass ceramic particle to leach out is relatively highs.

  2. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.

    Science.gov (United States)

    Okamoto, Eiji; Nakamura, Masatoshi; Akasaka, Yuhta; Inoue, Yusuke; Abe, Yusuke; Chinzei, Tsuneo; Saito, Itsuro; Isoyama, Takashi; Mochizuki, Shuichi; Imachi, Kou; Mitamura, Yoshinori

    2007-07-01

    We have developed internal battery systems for driving an undulation pump ventricular assist device using two kinds of lithium ion rechargeable batteries. The lithium ion rechargeable batteries have high energy density, long life, and no memory effect; however, rise in temperature of the lithium ion rechargeable battery is a critical issue. Evaluation of temperature rise by means of numerical estimation is required to develop an internal battery system. Temperature of the lithium ion rechargeable batteries is determined by ohmic loss due to internal resistance, chemical loss due to chemical reaction, and heat release. Measurement results of internal resistance (R(cell)) at an ambient temperature of 37 degrees C were 0.1 Omega in the lithium ion (Li-ion) battery and 0.03 Omega in the lithium polymer (Li-po) battery. Entropy change (DeltaS) of each battery, which leads to chemical loss, was -1.6 to -61.1 J/(mol.K) in the Li-ion battery and -9.6 to -67.5 J/(mol.K) in the Li-po battery depending on state of charge (SOC). Temperature of each lithium ion rechargeable battery under a discharge current of 1 A was estimated by finite element method heat transfer analysis at an ambient temperature of 37 degrees C configuring with measured R(cell) and measured DeltaS in each SOC. Results of estimation of time-course change in the surface temperature of each battery coincided with results of measurement results, and the success of the estimation will greatly contribute to the development of an internal battery system using lithium ion rechargeable batteries.

  3. Cold Vacuum Drying facility civil structural system design description (SYS 06)

    Energy Technology Data Exchange (ETDEWEB)

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying (CVD) Facility civil - structural system. This system consists of the facility structure, including the administrative and process areas. The system's primary purpose is to provide for a facility to house the CVD process and personnel and to provide a tertiary level of containment. The document provides a description of the facility and demonstrates how the design meets the various requirements imposed by the safety analysis report and the design requirements document.

  4. Power consumption benchmark for a semiconductor cleanroom facility system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shih-Cheng; Wu, Jen-Syua [Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, 1 Sec. 3, Chung-Hsiao E. Rd. Taipei 106 (China); Chan, David Yih-Liang; Hsu, Rich Tsung-Chi; Lee, Jane Car-Cheng [Energy and Environment Research Labs, Industrial Technology Research Institute, Bldg 51, 195 Sec. 4, Chung Hsing Rd, Chutung, Hinchu 106 (China)

    2008-07-01

    Benchmarking is an important step in implementing energy conservation in a semiconductor fabrication plant (hereafter referred to as ''fab''). A semiconductor cleanroom facility system is complicated, usually comprised of several sub-systems, such as a chilled water system, a make-up system, an exhaust air system, a compressed air system, a process cooling water (PCW) system, a nitrogen system, a vacuum system, and an ultra-pure water (UPW) system. It is a daunting task to allocate energy consumption and determine an optimum benchmark. This study aims to establish the energy benchmark of a typical 8-in. DRAM semiconductor fab through field measurement data. Results of the measured energy consumption index were: chilled water system (including chiller, chilled water pump and cooling tower): 0.257 kW/kW (=0.9 kW/RT) in summer and 0.245 kW/kW (=0.86 kW/RT) in winter air recirculation air system: 0.00018 kWh/m{sup 3} make-up air system: 0.0042 kWh/m{sup 3} general exhaust air system: 0.0007 kWh/m{sup 3} solvent exhaust air system: 0.0021 kWh/m{sup 3} acid exhaust air system: 0.0009 kWh/m{sup 3} alkaline exhaust air system: 0.0025 kWh/m{sup 3} nitrogen system: 0.2209 kWh/m{sup 3} compressed dry air system: 0.2250 kWh/m{sup 3} process cooling water system: 1.3535 kWh/m{sup 3} and ultra-pure water system: 9.5502 kWh/m{sup 3}. These data can be used to assess the efficiency of different energy-saving schemes and as a good reference for factory authorities. The PCW system's status before and after implementing energy conservation is discussed. (author)

  5. Improvements in detection system for pulse radiolysis facility

    CERN Document Server

    Rao, V N; Manimaran, P; Mishra, R K; Mohan, H; Mukherjee, T; Nadkarni, S A; Sapre, A V; Shinde, S J; Toley, M

    2002-01-01

    This report describes the improvements made in the detection system of the pulse radiolysis facility based on a 7 MeV Linear Electron Accelerator (LINAC) located in the Radiation Chemistry and Chemical Dynamics Division of Bhabha Atomic Research Centre. The facility was created in 1986 for kinetic studies of transient species whose absorption lies between 200 and 700 nm. The newly developed detection circuits consist of a silicon (Si) photodiode (PD) detector for the wavelength range 450-1100 nm and a germanium (Ge) photodiode detector for the wavelength range 900-1600 nm. With these photodiode-based detection set-up, kinetic experiments are now routinely carried out in the wavelength range 450-1600 nm. The performance of these circuits has been tested using standard chemical systems. The rise time has been found to be 150 ns. The photo-multiplier tube (PMT) bleeder circuit has been modified. A new DC back-off circuit has been built and installed in order to avoid droop at longer time scales. A steady baselin...

  6. Retrievable surface storage facility conceptual system design description

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts.

  7. Beam Diagnostics Systems For The National Ignition Facility

    CERN Document Server

    Demaret, R D; Bliss, E S; Gates, A J; Severyn, J R

    2001-01-01

    The National Ignition Facility laser focuses 1.8 Mega-joules of ultraviolet light (wavelength 351 nano-meters) from 192 beams into a 600-micro-meter-diameter volume. Effective use of this output in target experiments requires that the power output from all the beams match within 8% over their entire 20-nanosecond waveform. The scope of NIF beam diagnostics systems necessary to accomplish this task is unprecedented for laser facilities. Each beam line contains 110 major optical components distributed over a 510 meter path, and diagnostic tolerances for beam measurement are demanding. Total laser pulse energy is measured with 2.8% precision, and the inter-beam temporal variation of pulse power is measured with 4% precision. These measurement goals are achieved through use of approximately 160 sensor packages that measure the energy at five locations and power at 3 locations along each beamline using 335 photodiodes, 215 calorimeters and 36 digitizers. Successful operation of such a system requires a high level ...

  8. Status of the National Ignition Facility Integrated Computer Control System

    Energy Technology Data Exchange (ETDEWEB)

    Lagin, L; Bryant, R; Carey, R; Casavant, D; Edwards, O; Ferguson, W; Krammen, J; Larson, D; Lee, A; Ludwigsen, P; Miller, M; Moses, E; Nyholm, R; Reed, R; Shelton, R; Van Arsdall, P J; Wuest, C

    2003-10-13

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Laser hardware is modularized into line replaceable units such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by the Integrated Computer Control System (ICCS). ICCS is a layered architecture of 300 front-end processors attached to nearly 60,000 control points and coordinated by supervisor subsystems in the main control room. The functional subsystems--beam control including automatic beam alignment and wavefront correction, laser pulse generation and pre-amplification, diagnostics, pulse power, and timing--implement automated shot control, archive data, and support the actions of fourteen operators at graphic consoles. Object-oriented software development uses a mixed language environment of Ada (for functional controls) and Java (for user interface and database backend). The ICCS distributed software framework uses CORBA to communicate between languages and processors. ICCS software is approximately 3/4 complete with over 750 thousand source lines of code having undergone off-line verification tests and deployed to the facility. NIF has entered the first phases of its laser commissioning program. NIF has now demonstrated the highest energy 1{omega}, 2{omega}, and 3{omega} beamlines in the world

  9. The LOBI Integral System Test Facility Experimental Programme

    Directory of Open Access Journals (Sweden)

    Carmelo Addabbo

    2012-01-01

    Full Text Available The LOBI project has been carried out in the framework of the European Commission Reactor Safety Research Programme in close collaboration with institutional and/or industrial research organizations of EC member countries. The primary objective of the research programme was the generation of an experimental data base for the assessment of the predictive capabilities of thermal-hydraulic system codes used in pressurised water reactor safety analysis. Within this context, experiments have been conducted in the LOBI integral system test facility designed, constructed, and operated (1979–1991 at the Ispra Site of the Joint Research Centre. This paper provides a historical perspective and summarizes major achievements of the research programme which has represented an effective approach to international collaboration in the field of reactor safety research and development. Emphasis is also placed on knowledge management aspects of the acquired experimental data base and on related online open access/retrieval user functionalities.

  10. 75 FR 18255 - Passenger Facility Charge Database System for Air Carrier Reporting

    Science.gov (United States)

    2010-04-09

    ... Federal Aviation Administration Passenger Facility Charge Database System for Air Carrier Reporting AGENCY... interested parties of the availability of the Passenger Facility Charge (PFC) database system to report PFC..., 2010. FOR FURTHER INFORMATION CONTACT: Jane Johnson, Financial Analysis and Passenger Facility Charge...

  11. Automatic Alignment System for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wilhlelmsen, K C; Awwal, A S; Ferguson, S W; Horowitz, B; Miller Kamm, V J; Reynolds, C A

    2007-10-04

    The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 30 minutes. The system commands 9,000 stepping motors to adjust mirrors and other optics. Twenty-two control loops per beamline request image processing services running on a LINUX cluster to analyze high-resolution images of the beam and references. Process-leveling assures the computational load is evenly spread on the cluster. Algorithms also estimate measurement accuracy and reject off-normal images. One challenge to achieving rapid alignment of beams in parallel is the efficient coordination of shared laser devices, such as sensors that are configurable to monitor multiple beams. Contention for shared resources is managed by the Component Mediation System, which precludes deadlocks and optimizes device motions using a hierarchical component structure. A reservation service provided by the software framework prevents interference from competing instances of automated controls or from the actions of system operators. The design, architecture and performance of the system will be discussed.

  12. Power Systems Development Facility Gasification Test Campaign TC17

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2004-11-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

  13. Lithium nephrotoxicity.

    Science.gov (United States)

    Oliveira, Jobson Lopes de; Silva Júnior, Geraldo Bezerra da; Abreu, Krasnalhia Lívia Soares de; Rocha, Natália de Albuquerque; Franco, Luiz Fernando Leonavicius G; Araújo, Sônia Maria Holanda Almeida; Daher, Elizabeth de Francesco

    2010-01-01

    Lithium has been widely used in the treatment of bipolar disorder. Its renal toxicity includes impaired urinary concentrating ability and natriuresis, renal tubular acidosis, tubulointerstitial nephritis progressing to chronic kidney disease and hypercalcemia. The most common adverse effect is nephrogenic diabetes insipidus, which affects 20-40% of patients within weeks of lithium initiation. Chronic nephropathy correlates with duration of lithium therapy. Early detection of renal dysfunction should be achieved by rigorous monitoring of patients and close collaboration between psychiatrists and nephrologists. Recent experimental and clinical studies begin to clarify the mechanisms by which lithium induces changes in renal function. The aim of this study was to review the pathogenesis, clinical presentation, histopathological aspects and treatment of lithium-induced nephrotoxicity.

  14. Potential of Computerized Maintenance Management System in Facilities Management

    OpenAIRE

    Noor Farisya Azahar; Md Azree Othuman Mydin

    2014-01-01

    For some time it has been clear that managing buildings or estates has been carried out in the context of what has become known as facilities management. British Institute of Facilities Management defined facilities management is the integration of multi-disciplinary activities within the built environment and the management of their impact upon people and the workplace. Effective facilities management is vital to the success of an organisation by contributing to the deliver...

  15. Study of an aqueous lithium chloride desiccant system Part I: Air dehumidification

    Energy Technology Data Exchange (ETDEWEB)

    Fumo, Nelson [Universidad Nacional Experimental del Tachira, San Cristobal (Venezuela); Goswami, Yogi [University of Florida, Gainesville (United States)

    2000-07-01

    Desiccant systems have been proposed as energy saving alternative to vapor compression air conditioning for handling the latent load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. For liquid-gas contact, packed towers with low pressure drop have offered good heat and mass transfer characteristics for compact designs. This paper presents the results from a study of the performance of a packed tower absorber for an aqueous lithium chloride desiccant dehumidification system. The rate of dehumidification, as well as the effectiveness of the dehumidification process were assessed under the effects of variables such as air and desiccant flow rates, air temperature and humidity, and desiccant temperature and concentration. A variation of the oeberg and Goswami mathematical model was used to predict the experimental findings given satisfactory results. [Spanish] Se han propuesto sistemas de desecacion como una alternativa de ahorro de energia para el acondicionamiento de aire mediante la compresion de vapor para manejar la carga latente. El uso de desecantes liquidos ofrece varias ventajas de diseno y de rendimiento sobre los desecantes solidos, especialmente cuando la energia solar se usa para la regeneracion. Para el contacto liquido-gas han dado buenas caracteristicas de transferencia de masa para disenos compactos las torres empacadas con baja caida de presion. Este documento presenta los resultados de un estudio del comportamiento de un absorbedor de torre empacada para una solucion acuosa de desecante de cloruro de litio como sistema de deshumidificacion. El regimen de deshumidificacion asi como tambien la eficiencia del proceso de deshumidificacion se evaluo bajo los efectos de variables tales como regimenes de flujo de aire y de desecante, temperatura del aire y humedad, y concentracion y temperatura del desecante. Se uso una variante de modelo matematico de

  16. Study of an aqueous lithium chloride desiccant system Part II: Desiccant regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Fumo, Nelson [Universidad Nacional Experimental del Tachira, San Cristobal (Venezuela); Goswami, Yogi [University of Florida, Gainesville (United States)

    2000-07-01

    Desiccant systems have been proposed as alternative to handle the latent load in vapor compression air conditioning for energy saving. The air dehumidification occurs because of the difference in vapor pressure which let the moisture diffuse from the air to the liquid desiccant. The diffused moisture cause a dilution of the desiccant which must be regenerated to return it to the original conditions. This paper presents the results from a study of the performance of a packed tower regenerator for an aqueous lithium chloride desiccant dehumidification system. The rate of water evaporation, as well as the effectiveness of the regeneration process were assessed under the effects of variables such as air and desiccant flow rates, air temperature and humidity, and desiccant temperature and concentration. A variation of the oeberg and Goswami mathematical model was used to predict the experimental findings given satisfactory results. [Spanish] Se han propuesto sistemas desecantes para hacerse cargo de la carga latente en acondicionamiento de aire por compresion de vapor para el ahorro de energia. La deshumidificacion del aire ocurre en razon de la diferencia de presion de vapor que deja la humedad difusa del aire en el desecante liquido. La humedad difusa del aire origina una dilucion del desecante el cual debe de ser regenerado para regresarlo a sus condiciones originales. Este documento presenta los resultados de un estudio sobre el comportamiento de un regenerador de torre empacada para un sistema de deshumidificacion de solucion desecante de cloruro de litio. El regimen de evaporacion de agua, asi como tambien la efectividad del proceso de regeneracion que se evaluo bajo los efectos de variables tales como los regimenes de flujo de aire y de desecante, temperatura del aire y humedad, y temperatura y concentracion del desecante. Una variacion del modelo matematico de Oberg y Goswami se uso para predecir los resultados experimentales que dieron resultados satisfactorios.

  17. Design concept of radiation control system for the high intensity proton accelerator facility

    CERN Document Server

    Miyamoto, Y; Harada, Y; Ikeno, K

    2002-01-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics.

  18. Power Systems Development Facility Gasification Test Campaign TC22

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-11-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

  19. Programmable Beam Spatial Shaping System for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Heebner, J; Borden, M; Miller, P; Hunter, S; Christensen, K; Scanlan, M; Haynam, C; Wegner, P; Hermann, M; Brunton, G; Tse, E; Awwal, A; Wong, N; Seppala, L; Franks, M; Marley, E; Wong, N; Seppala, L; Franks, M; Marley, E; Williams, K; Budge, T; Henesian, M; Stolz, C; Suratwala, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J M

    2011-01-21

    A system of customized spatial light modulators has been installed onto the front end of the laser system at the National Ignition Facility (NIF). The devices are capable of shaping the beam profile at a low-fluence relay plane upstream of the amplifier chain. Their primary function is to introduce 'blocker' obscurations at programmed locations within the beam profile. These obscurations are positioned to shadow small, isolated flaws on downstream optical components that might otherwise limit the system operating energy. The modulators were designed to enable a drop-in retrofit of each of the 48 existing Pre Amplifier Modules (PAMs) without compromising their original performance specifications. This was accomplished by use of transmissive Optically Addressable Light Valves (OALV) based on a Bismuth Silicon Oxide photoconductive layer in series with a twisted nematic liquid crystal (LC) layer. These Programmable Spatial Shaper packages in combination with a flaw inspection system and optic registration strategy have provided a robust approach for extending the operational lifetime of high fluence laser optics on NIF.

  20. Power Systems Development Facility Gasification Test Campaing TC18

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

  1. Power Systems Development Facility Gasification Test Run TC09

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-09-30

    This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

  2. Shuttle infrared telescope facility pointing and control system

    Science.gov (United States)

    Lorell, K. R.; Barrows, W. F.; Matsumoto, Y. T.

    1981-01-01

    The Shuttle Infrared Telescope Facility (SIRTF) is being designed as a 0.85 m cryogenically cooled telescope capable of a three order of magnitude improvement over currently available infrared instruments. The SIRTF requires that the image at the focal plane be stabilized to better than 0.25 arcsec with an absolute accuracy of 1.0 arcsec. Current pointing-mount performance simulations indicate that neither of these requirements can be met without additional stabilization. The SIRTF pointing and control system will utilize gyro outputs, star field position measurements from a focal plane fine guidance sensor, and a steerable secondary mirror to provide the necessary stabilization and pointing control. The charge coupled device fine guidance sensor tracks multiple stars simultaneously and, through the use of multistar processing algorithms in a high performance microcomputer, generates three-axis attitude errors and gyro-drift estimates to correct the pointing-mount gyros. A high-bandwidth feedforward loop, driven directly from the pointing-mount gyro package, controls the steering mirror in order to correct disturbances not compensated for by the pointing-mount control system. A prototype design for the SIRTF pointing and control system is described in detail. Performance analyses made using a digital simulation of the pointing and control system as well as experimental data obtained in laboratory and field test measurements are presented.

  3. Database design for Physical Access Control System for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, T., E-mail: satishkumart@igcar.gov.in; Rao, G. Prabhakara, E-mail: prg@igcar.gov.in; Arumugam, P., E-mail: aarmu@igcar.gov.in

    2016-08-15

    Highlights: • Database design needs to be optimized and highly efficient for real time operation. • It requires a many-to-many mapping between Employee table and Doors table. • This mapping typically contain thousands of records and redundant data. • Proposed novel database design reduces the redundancy and provides abstraction. • This design is incorporated with the access control system developed in-house. - Abstract: A (Radio Frequency IDentification) RFID cum Biometric based two level Access Control System (ACS) was designed and developed for providing access to vital areas of nuclear facilities. The system has got both hardware [Access controller] and software components [server application, the database and the web client software]. The database design proposed, enables grouping of the employees based on the hierarchy of the organization and the grouping of the doors based on Access Zones (AZ). This design also illustrates the mapping between the Employee Groups (EG) and AZ. By following this approach in database design, a higher level view can be presented to the system administrator abstracting the inner details of the individual entities and doors. This paper describes the novel approach carried out in designing the database of the ACS.

  4. High Energy Density Lithium Battery System with an Integrated Low Cost Heater Sub-System for Missions on Titan. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project seeks to develop a 500 Wh/kg Lithium primary battery for intended application as the primary power source on landers and probes for future...

  5. Elementary Analysis on the Technological Features of an Engineering Equipment Facile Diagnosis System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    From the point of systemic engineering, the general properties of an engineering equipment fault diagnosis system and the studying object of diagnosis engineering were discussed. With the developing course of fault diagnosis technology, the relationship be-tween facile diagnosis system and diagnosis engineering were also discussed. The basic structure and feature of a facile diagnosis system were discussed, and the isomorphic of a facile diagnosis system and precise diagnosis system was presented. The facile diagnosis requires the perfection of method, pertinence and apriority of knowledge , adaptability of the object being diagnosed and the approach to the aim of the diagnosis result, as well as the outstanding of main functions.

  6. Multiwavelength interferometry system for the Orion laser facility.

    Science.gov (United States)

    Patankar, S; Gumbrell, E T; Robinson, T S; Lowe, H F; Giltrap, S; Price, C J; Stuart, N H; Kemshall, P; Fyrth, J; Luis, J; Skidmore, J W; Smith, R A

    2015-12-20

    We report on the design and testing of a multiwavelength interferometry system for the Orion laser facility based upon the use of self-path matching Wollaston prisms. The use of UV corrected achromatic optics allows for both easy alignment with an eye-safe light source and small (∼ millimeter) offsets to the focal lengths between different operational wavelengths. Interferograms are demonstrated at wavelengths corresponding to first, second, and fourth harmonics of a 1054 nm Nd:glass probe beam. Example data confirms the broadband achromatic capability of the imaging system with operation from the UV (263 nm) to visible (527 nm) and demonstrates that features as small as 5 μm can be resolved for object sizes of 15 by 10 mm. Results are also shown for an off-harmonic wavelength that will underpin a future capability. The primary optics package is accommodated inside the footprint of a ten-inch manipulator to allow the system to be deployed from a multitude of viewing angles inside the 4 m diameter Orion target chamber.

  7. The Wavefront Control System for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Van Atta, L; Perez, M; Zacharias, R; Rivera, W

    2001-10-15

    The National Ignition Facility (NIF) requires that pulses from each of the 192 laser beams be positioned on target with an accuracy of 50 {micro}m rms. Beam quality must be sufficient to focus a total of 1.8 MJ of 0.351-{micro}m light into a 600-{micro}m-diameter volume. An optimally flat beam wavefront can achieve this pointing and focusing accuracy. The control system corrects wavefront aberrations by performing closed-loop compensation during laser alignment to correct for gas density variations. Static compensation of flashlamp-induced thermal distortion is established just prior to the laser shot. The control system compensates each laser beam at 10 Hz by measuring the wavefront with a 77-lenslet Hartmann sensor and applying corrections with a 39-actuator deformable mirror. The distributed architecture utilizes SPARC AXi computers running Solaris to perform real-time image processing of sensor data and PowerPC-based computers running VxWorks to compute mirror commands. A single pair of SPARC and PowerPC processors accomplishes wavefront control for a group of eight beams. The software design uses proven adaptive optic control algorithms that are implemented in a multi-tasking environment to economically control the beam wavefronts in parallel. Prototype tests have achieved a closed-loop residual error of 0.03 waves rms. aberrations, the spot size requirement and goal could not be met without a wavefront control system.

  8. The Injection Laser System on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, M; Burkhart, S; Cohen, S; Erbert, G; Heebner, J; Hermann, M; Jedlovec, D

    2006-12-13

    The National Ignition Facility (NIF) is currently the largest and most energetic laser system in the world. The main amplifiers are driven by the Injection Laser System comprised of the master oscillators, optical preamplifiers, temporal pulse shaping and spatial beam formatting elements and injection diagnostics. Starting with two fiber oscillators separated by up to a few angstroms, the pulse is phase modulated to suppress SBS and enhance spatial smoothing, amplified, split into 48 individual fibers, and then temporally shaped by an arbitrary waveform generator. Residual amplitude modulation induced in the preamplifiers from the phase modulation is also precompensated in the fiber portion of the system before it is injected into the 48 pre-amplifier modules (PAMs). Each of the PAMs amplifies the light from the 1 nJ fiber injection up to the multi-joule level in two stages. Between the two stages the pre-pulse is suppressed by 60 dB and the beam is spatially formatted to a square aperture with precompensation for the nonuniform gain profile of the main laser. The input sensor package is used to align the output of each PAM to the main laser and acquire energy, power, and spatial profiles for all shots. The beam transport sections split the beam from each PAM into four main laser beams (with optical isolation) forming the 192 beams of the NIF. Optical, electrical, and mechanical design considerations for long term reliability and availability will be discussed.

  9. Lightning Protection System for HE Facilities at LLNL - Certification Template

    Energy Technology Data Exchange (ETDEWEB)

    Clancy, T J; Ong, M M; Brown, C G

    2005-12-08

    This document is meant as a template to assist in the development of your own lighting certification process. Aside from this introduction and the mock representative name of the building (Building A), this document is nearly identical to a lightning certification report issued by the Engineering Directorate at Lawrence Livermore National Laboratory. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facilities. In Chapters 1 and 2 respectively, we address the need and methods of lightning certification for HE processing and storage facilities at LLNL. We present the preferred method of lightning protection in Chapter 3, as well as the likely building modifications that are needed to comply with this method. In Chapter 4, we present the threat assessment and resulting safe work areas within a cell. After certification, there may be changes to operations during a lightning alert, and this is discussed in Chapter 5. Chapter 6 lists the maintenance requirements for the continuation of lighting certification status. Appendices of this document are meant as an aid in developing your own certification process, and they include a bonding list, an inventory of measurement equipment, surge suppressors in use at LLNL, an Integrated Work and Safety form (IWS), and a template certification sign-off sheet. The lightning certification process involves more that what is spelled out in this document. The first steps involve considerable planning, the securing of funds, and management and explosives safety buy-in. Permits must be obtained, measurement equipment must be assembled and tested, and engineers and technicians must be trained in their use. Cursory building inspections are also recommended, and surge suppression for power systems must be addressed. Upon completion of a certification report and its sign-off by management, additional work is required. Training will be needed in order to educate workers and facility managers

  10. 25 CFR 170.806 - What is an IRR Transportation Facilities Maintenance Management System?

    Science.gov (United States)

    2010-04-01

    ... AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.806 What is an IRR Transportation Facilities Maintenance Management System? An IRR Transportation Facilities Maintenance Management... 25 Indians 1 2010-04-01 2010-04-01 false What is an IRR Transportation Facilities...

  11. Evaluation of enthalpy change due to hydrogen desorption for lithium amide/imide system by differential scanning calorimetry

    OpenAIRE

    2008-01-01

    Enthalpy change (ΔH) due to hydrogen desorption (H-desorption) for the lithium amide/imide system was evaluated by differential scanning calorimetry (DSC) measurement. In order to obtain the accurate and precise value of ΔH, we have paid special attention to following two points for correcting raw experimental data. One is to determine a cell constant of DSC equipment, which was evaluated by using the TiO2-doped MgH2 compound as a reference because of its quite similar hydrogen desorption pro...

  12. Power Systems Development Facility Gasification Test Campaign TC25

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  13. Power Systems Development Facility Gasification Test Campaign TC25

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  14. [Lithium nephropathy].

    Science.gov (United States)

    Kaczmarczyk, Ireneusz; Sułowicz, Władysław

    2013-01-01

    Lithium salts are the first-line drug therapy in the treatment of uni- and bipolar disorder since the sixties of the twentieth century. In the mid-70s, the first information about their nephrotoxicity appeared. Lithium salts have a narrow therapeutic index. Side effects during treatment are polyuria, polydipsia and nephrogenic diabetes insipidus. Accidental intoxication can cause acute renal failure requiring renal replacement therapy while receiving long-term lithium salt can lead to the development of chronic kidney disease. The renal biopsy changes revealed a type of chronic tubulointerstitial nephropathy. The imaging studies revealed the presence of numerous symmetric microcysts. Care of the patient receiving lithium should include regular determination of serum creatinine, creatinine clearance and monitoring of urine volume. In case of deterioration of renal function reducing the dose should be considered.

  15. Research and development of lithium batteries in China

    Science.gov (United States)

    Bi, Dao-zhi

    Basic research work on lithium cells in China was initiated in 1965, and a variety of primary cells has been developed and introduced to the market. Lithium-iodine (1978), lithium-thionyl chloride (1977), lithium-sulfur dioxide (1979) and lithium-manganese dioxide (1980) cells, and lithium thermal batteries (1982) have been successfully manufactured and have found wide application. In this paper, the development and the state-of-the-art of various lithium battery systems in China are presented and the present applications and future markets are discussed.

  16. Repression of a lithium pump as a consequence of lithium ingestion by manic-depressive subjects.

    Science.gov (United States)

    Meltzer, H L; Kassir, S; Dunner, D L; Fieve, R R

    1977-10-20

    The lithium pump in human erythrocyte membranes, which is responsible for extrusion of lithium against a concentration gradient, has been found to be reversibly repressed during periods of lithium carbonate administration. The pump activity of patients prior to lithium therapy is not different from controls. The onset of repression may require several days to several weeks and occurs at specific individual threshold levels of lithium carbonate dosage. Reactivation of the lithium pump occurs sometime after the dosage is discontinued. We postulate that repression of the lithium pump results from systemically available factors which alter membrane structure, and suggest that is such changes also occur in the central nervous system, they may provide insight into one means by which lithium produces its psychotropic affects.

  17. Facile and Scalable Synthesis of Zn3V2O7(OH)2·2H2O Microflowers as a High-Performance Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Yan, Haowu; Luo, Yanzhu; Xu, Xu; He, Liang; Tan, Jian; Li, Zhaohuai; Hong, Xufeng; He, Pan; Mai, Liqiang

    2017-08-23

    The employment of nanomaterials and nanotechnologies has been widely acknowledged as an effective strategy to enhance the electrochemical performance of lithium-ion batteries (LIBs). However, how to produce nanomaterials effectively on a large scale remains a challenge. Here, the highly crystallized Zn3V2O7(OH)2·2H2O is synthesized through a simple liquid phase method at room temperature in a large scale, which is easily realized in industry. Through suppressing the reaction dynamics with ethylene glycol, a uniform morphology of microflowers is obtained. Owing to the multiple reaction mechanisms (insertion, conversion, and alloying) during Li insertion/extraction, the prepared electrode delivers a remarkable specific capacity of 1287 mA h g(-1) at 0.2 A g(-1) after 120 cycles. In addition, a high capacity of 298 mA h g(-1) can be obtained at 5 A g(-1) after 1400 cycles. The excellent electrochemical performance can be attributed to the high crystallinity and large specific surface area of active materials. The smaller particles after cycling could facilitate the lithium-ion transport and provide more reaction sites. The facile and scalable synthesis process and excellent electrochemical performance make this material a highly promising anode for the commercial LIBs.

  18. A UAV system for inspection of industrial facilities

    Science.gov (United States)

    Nikolic, J.; Burri, M.; Rehder, J.; Leutenegger, S.; Huerzeler, C.; Siegwart, R.

    This work presents a small-scale Unmanned Aerial System (UAS) capable of performing inspection tasks in enclosed industrial environments. Vehicles with such capabilities have the potential to reduce human involvement in hazardous tasks and can minimize facility outage periods. The results presented generalize to UAS exploration tasks in almost any GPS-denied indoor environment. The contribution of this work is twofold. First, results from autonomous flights inside an industrial boiler of a power plant are presented. A lightweight, vision-aided inertial navigation system provides reliable state estimates under difficult environmental conditions typical for such sites. It relies solely on measurements from an on-board MEMS inertial measurement unit and a pair of cameras arranged in a classical stereo configuration. A model-predictive controller allows for efficient trajectory following and enables flight in close proximity to the boiler surface. As a second contribution, we highlight ongoing developments by displaying state estimation and structure recovery results acquired with an integrated visual/inertial sensor that will be employed on future aerial service robotic platforms. A tight integration in hardware facilitates spatial and temporal calibration of the different sensors and thus enables more accurate and robust ego-motion estimates. Comparison with ground truth obtained from a laser tracker shows that such a sensor can provide motion estimates with drift rates of only few centimeters over the period of a typical flight.

  19. Power Systems Development Facility Gasification Test Run TC11

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2003-04-30

    This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

  20. Optimized MBR for greywater reuse systems in hotel facilities.

    Science.gov (United States)

    Atanasova, Natasa; Dalmau, Montserrat; Comas, Joaquim; Poch, Manel; Rodriguez-Roda, Ignasi; Buttiglieri, Gianluigi

    2017-05-15

    Greywater is an important alternative water source, particularly in semi-arid, touristic areas, where the biggest water demand is usually in the dry period. By using this source wisely, tourist facilities can substantially reduce the pressure to scarce water resources. In densely urbanized touristic areas, where space has high value, compact solutions such as MBR based greywater reuse systems appear very appropriate. This research focuses on technical and economical evaluation of such solution by implementing a pilot MBR to a hotel with separated grey water. The pilot was operated for 6 months, with thorough characterisation of the GW performed, its operation was monitored and its energy consumption was optimized by applying a control system for the air scour. Based on the pilot operation a design and economic model was set to estimate the feasibility (CAPEX, OPEX, payback period of investment) of appropriate scales of MBR based GW systems, including separation of GW, MBR technology, clean water storage and disinfection. The model takes into account water and energy prices in Spain and a planning period of 20 years. The results demonstrated an excellent performance in terms of effluent quality, while the energy demand for air-scour was reduced by up to 35.2%, compared to the manufacturer recommendations. Economical evaluation of the entire MBR based GW reuse system shows its feasibility for sizes already at 5 m(3)/day (60 PE). The payback period of the investment for hotels like the demonstration hotel, treating 30 m(3)/day is 3 years.

  1. Power Systems Development Facility Gasification Test Run TC08

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-06-30

    This report discusses Test Campaign TC08 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier in air- and oxygen-blown modes during TC08. Test Run TC08 was started on June 9, 2002 and completed on June 29. Both gasifier and PCD operations were stable during the test run with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen blown was smooth. The gasifier temperature was varied between 1,710 and 1,770 F at pressures from 125 to 240 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC08, 476 hours of solid circulation and 364 hours of coal feed were attained with 153 hours of pure oxygen feed. The gasifier and PCD operations were stable in both enriched air and 100 percent oxygen blown modes. The oxygen concentration was slowly increased during the first transition to full oxygen-blown operations. Subsequent transitions from air to oxygen blown could be completed in less than 15 minutes. Oxygen-blown operations produced the highest synthesis gas heating value to date, with a projected synthesis gas heating value averaging 175 Btu/scf. Carbon conversions averaged 93 percent, slightly lower than carbon conversions achieved during air-blown gasification.

  2. Power Systems Development Facility Gasification Test Campaign TC24

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-03-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

  3. National Pollution Discharge Elimination System (NPDES) Facility Points, Region 9, 2007, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...

  4. Simulation of mass storage systems operating in a large data processing facility

    Science.gov (United States)

    Holmes, R.

    1972-01-01

    A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.

  5. Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems

    OpenAIRE

    Mehdi Ferdowsi; Landers, Robert G.; Samuel Novosad; Jack Savage; Poria Fajri; Nima Lotfi

    2013-01-01

    Advanced electrochemical batteries are becoming an integral part of a wide range of applications from household and commercial to smart grid, transportation, and aerospace applications. Among different battery technologies, lithium-ion (Li-ion) batteries are growing more and more popular due to their high energy density, high galvanic potential, low self-discharge, low weight, and the fact that they have almost no memory effect. However, one of the main obstacles facing the widespread commerc...

  6. Mode-locking optimization with a real-time feedback system in a Nd:yttrium lithium fluoride laser cavity

    Science.gov (United States)

    Marengoni, C.; Canova, F.; Batani, D.; Benocci, R.; Librizzi, M.; Narayanan, V.; Gomareschi, M.; Lucchini, G.; Kilpio, A.; Shashkov, E.; Stuchebrukhov, I.; Vovchenko, V.; Chernomyrdin, V.; Krasuyk, I.; Hall, T.; Bittanti, S.

    2007-01-01

    We present a control system, which allows an automatic optimization of the pulse train stability in a mode-locked laser cavity. In order to obtain real-time corrections, we chose a closed loop approach. The control variable is the cavity length, mechanically adjusted by gear system acting on the rear cavity mirror, and the controlled variable is the envelope modulation of the mode-locked pulse train. Such automatic control system maintains the amplitude of the mode-locking pulse train stable within a few percent rms during the working time of the laser. Full implementation of the system on an Nd:yttrium lithium fluoride actively mode-locked laser is presented.

  7. Evaluation of marginal fit of 2 CAD-CAM anatomic contour zirconia crown systems and lithium disilicate glass-ceramic crown.

    Science.gov (United States)

    Ji, Min-Kyung; Park, Ji-Hee; Park, Sang-Won; Yun, Kwi-Dug; Oh, Gye-Jeong; Lim, Hyun-Pil

    2015-08-01

    This study was to evaluate the marginal fit of two CAD-CAM anatomic contour zirconia crown systems compared to lithium disilicate glass-ceramic crowns. Shoulder and deep chamfer margin were formed on each acrylic resin tooth model of a maxillary first premolar. Two CAD-CAM systems (Prettau®Zirconia and ZENOSTAR®ZR translucent) and lithium disilicate glass ceramic (IPS e.max®press) crowns were made (n=16). Each crown was bonded to stone dies with resin cement (Rely X Unicem). Marginal gap and absolute marginal discrepancy of crowns were measured using a light microscope equipped with a digital camera (Leica DFC295) magnified by a factor of 100. Two-way analysis of variance (ANOVA) and post-hoc Tukey's HSD test were conducted to analyze the significance of crown marginal fit regarding the finish line configuration and the fabrication system. The mean marginal gap of lithium disilicate glass ceramic crowns (IPS e.max®press) was significantly lower than that of the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) (PCAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia). In terms of absolute marginal discrepancy, the CAD-CAM anatomic contour zirconia crown system (ZENOSTAR®ZR translucent) had under-extended margin, whereas the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) and lithium disilicate glass ceramic crowns (IPS e.max®press) had overextended margins.

  8. 78 FR 18353 - Guidance for Industry: Blood Establishment Computer System Validation in the User's Facility...

    Science.gov (United States)

    2013-03-26

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry: Blood Establishment Computer System... ``Guidance for Industry: Blood Establishment Computer System Validation in the User's Facility'' dated April... establishment computer system validation program, consistent with recognized principles of software...

  9. Phase selection during the crystallization of metal-organic frameworks; thermodynamic and kinetic factors in the lithium tartrate system.

    Science.gov (United States)

    Yeung, Hamish Hei-Man; Cheetham, Anthony Kevin

    2014-01-01

    We report the phase behaviour of chiral, racemic and meso-lithium tartrate frameworks, which was examined as a function of solvent system, temperature and ligand isomer. Through our comprehensive investigation of this system of 14 diverse phases, we have gained detailed insight into the effect of synthesis conditions on product structure, and elucidated the thermodynamic and kinetic factors involved in phase selection. Reactions in ethanol between lithium acetate and chiral, racemic and meso-tartaric acids give rise to anhydrous kinetic products; polymorphs with higher entropy tend to appear at high temperatures. Reactions at room temperature in water-ethanol mixtures give rise to hydrated kinetic products, including two new crystal structures, [Li2(D,L-tartrate)(H2O)2]n in P1 and [Li2(meso-tartrate)(H2O)(0.5)]n in C222(1), whose structures are contrasted with known anhydrous products. Reactions at elevated temperatures in water-ethanol mixtures result in the formation of low enthalpy, anhydrous products and, furthermore, the global minimum energy structure appears at high temperatures in all cases owing to in situ ligand isomerization.

  10. Metabolic Side Effects of Lithium

    Directory of Open Access Journals (Sweden)

    M. Cagdas Eker

    2010-04-01

    Full Text Available Lithium is an alkaline ion being used since 19th century. After its widespread use in psychiatric disorders, observed side effects caused skepticism about its therapeutic efficacy. Despite several disadvantages, lithium is one of the indispensible drugs used in affective disorders, especially in bipolar disorder. It became a necessity for physicians to recognize its side effects since lithium is still accepted as a gold standard in the treatment of bipolar disorder. Adverse effects of chronic administration of lithium on several organ systems are widely known. In this article metabolic effects of lithium on thyroid and parathyroid glands, body mass index and kidneys will be discussed along with their mechanisms, clinical findings, possible risk factors and treatment. One of the most common side effect of lithium is hypothyroidism. It has the same clinical and biochemical properties as primary hypothyroidism and observed as subclinical hypothyroidism in the first place. Hypothyroidism, even its subclinical form, may be associated with non-response or inadequate response and is indicated as a risk factor for development of rapid cycling bipolar disorder. Therefore, hypothyroidism should be screened no matter how severe it is and should be treated with thyroid hormone in the presence of clinical hypothyroidism. Weight gain due to lithium administration disturbs the compliance to treatment and negatively affects the course of the illness. Increased risk for diabetes, hypertension, ischemic heart disease and stroke because of weight gain constitute other centers of problem. Indeed, it is of importance to determine the risk factors before treatment, to follow up the weight, to re-organize nutritional habits and to schedule exercises. Another frequent problematic side effect of lithium treatment is renal dysfunction which clinically present as nephrogenic diabetes insipidus with the common symptoms of polyuria and polydipsia. Nephrogenic diabetes

  11. Power Systems Development Facility Gasification Test Run TC07

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-04-05

    This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

  12. Development techniques of computerized maintenance management system for nuclear fuel cycle examination facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yon Woo; Kim, S. D.; Soong, W. S.; Kim, G. H.; Oh, W. H.; Kim, Y. G

    2000-12-01

    Normal operation of the facility is one of the key factors in the accomplishments of research goals. As confirmed by a case study of the influence of the facility operation condition on the research results, emphasis should be put on the facility preserve management. Facilities should be maintained in solid operational condition and their malfunctions should be repaired as soon as possible. The purpose of this project is to make propositions on the development of the facility Preserve management system which is to maximize the efficiency of the budget execution, manpower organization and maintenance planning, and is to minimize the duration of the operational pause due to malfunctions with the least disbursement.

  13. Ventilation system of actinides handling facility in Oarai-branch of Tohoku University

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshimitsu; Watanabe, Makoto; Hara, Mituo; Shikama, Tatsuo; Kayano, Hideo; Mitsugashira, Toshiaki [Oarai Branch, Institute for Materials Research, Tohoku Univ., Oarai, Ibaraki (Japan)

    1999-09-01

    We have reported the development of the facility for handling actinides in Tohoku University at the second KAERI-JAERI joint seminar on PIE technology. Actinide isotopes have most hazurdous {alpha}-radioactivity. Therefore, a specially designed facility is necessary to carry out experimental study for actinide physics and chemistry. In this paper, we will describe the ventilation system and monitoring system for actinide handling facility. (author)

  14. Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/LiNi0.5Mn1.5O(4-δ) lithium ion battery.

    Science.gov (United States)

    Xu, Gui-Liang; Xu, Yue-Feng; Fang, Jun-Chuan; Fu, Fang; Sun, Hui; Huang, Ling; Yang, Shihe; Sun, Shi-Gang

    2013-07-10

    Hierarchical micro/nanostructured MnO material is synthesized from a precursor of MnCO3 with olive shape that is obtained through a facile one-pot hydrothermal procedure. The hierarchical micro/nanostructured MnO is served as anode of lithium ion battery together with a cathode of spinel LiNi0.5Mn1.5O(4-δ) material, which is synthesized also from the precursor of MnCO3 with olive shape through a different calcination process. The structures and compositions of the as-prepared materials are characterized by TGA, XRD, BET, SEM, and TEM. Electrochemical tests of the MnO materials demonstrate that it exhibit excellent lithium storage property. The MnO material in a MnO/Li half cell can deliver a reversible capacity of 782.8 mAh g(-1) after 200 cycles at a rate of 0.13 C, and a stable discharge capacity of 350 mAh g(-1) at a high rate of 2.08 C. Based on the outstanding electrochemical property of the MnO material and the LiNi0.5Mn1.5O(4-δ) as well, the MnO/LiNi0.5Mn1.5O(4-δ) full cell has demonstrated a high discharge specific energy ca. 350 Wh kg(-1) after 30 cycles at 0.1 C with an average high working voltage at 3.5 V and a long cycle stability. It can release a discharge specific energy of 227 Wh kg(-1) after 300 cycles at a higher rate of 0.5 C. Even at a much higher rate of 20 C, the MnO/LiNi0.5Mn1.5O(4-δ) full cell can still deliver a discharge specific energy of 145.5 Wh kg(-1). The excellent lithium storage property of the MnO material and its high performance as anode in the MnO/LiNi0.5Mn1.5O(4-δ) lithium ion battery is mainly attributed to its hierarchical micro/nanostructure, which could buffer the volume change and shorten the diffusion length of Li(+) during the charge/discharge processes.

  15. Navy Lithium Battery Safety

    Science.gov (United States)

    2010-07-14

    lithium -sulfur dioxide (Li-SO2), lithium - thionyl chloride (Li- SOCL2), and lithium -sulfuryl chloride (Li-S02CL2...and 1980’s with active primary cells: Lithium -sulfur dioxide (Li-SO2) Lithium - thionyl chloride (Li-SOCL2) Lithium -sulfuryl chloride (Li-S0 CL ) 2 2...DISTRIBUTION A. Approved for public release; distribution unlimited. NAVY LITHIUM BATTERY SAFETY John Dow1 and Chris Batchelor2 Naval

  16. Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design.

  17. Lithium Toxicity in the Setting of Nonsteroidal Anti-Inflammatory Medications

    Directory of Open Access Journals (Sweden)

    Syed Hassan

    2013-01-01

    Full Text Available Lithium toxicity is known to affect multiple organ systems, including the central nervous system. Lithium levels have been used in the diagnosis of toxicity and in assessing response to management. There is evidence that nonsteroidal anti-inflammatory medications (NSAIDs can increase lithium levels and decrease renal lithium clearance. We present a case of lithium toxicity, which demonstrates this effect and also highlights the fact that lithium levels do not correlate with clinical improvement, especially the neurological deficit.

  18. System model of a natural circulation integral test facility

    Science.gov (United States)

    Galvin, Mark R.

    The Department of Nuclear Engineering and Radiation Health Physics (NE/RHP) at Oregon State University (OSU) has been developing an innovative modular reactor plant concept since being initiated with a Department of Energy (DoE) grant in 1999. This concept, the Multi-Application Small Light Water Reactor (MASLWR), is an integral pressurized water reactor (PWR) plant that utilizes natural circulation flow in the primary and employs advanced passive safety features. The OSU MASLWR test facility is an electrically heated integral effects facility, scaled from the MASLWR concept design, that has been previously used to assess the feasibility of the concept design safety approach. To assist in evaluating operational scenarios, a simulation tool that models the test facility and is based on both test facility experimental data and analytical methods has been developed. The tool models both the test facility electric core and a simulated nuclear core, allowing evaluation of a broad spectrum of operational scenarios to identify those scenarios that should be explored experimentally using the test facility or design-quality multi-physics tools. Using the simulation tool, the total cost of experimentation and analysis can be reduced by directing time and resources towards the operational scenarios of interest.

  19. 47 CFR 74.795 - Digital low power TV and TV translator transmission system facilities.

    Science.gov (United States)

    2010-10-01

    ... translator transmission system facilities. (a) A digital low power TV or TV translator station shall operate... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator transmission system facilities. 74.795 Section 74.795 Telecommunication FEDERAL COMMUNICATIONS...

  20. Facile fabrication of various zinc-nickel citrate microspheres and their transformation to ZnO-NiO hybrid microspheres with excellent lithium storage properties.

    Science.gov (United States)

    Xie, Qingshui; Ma, Yating; Zeng, Deqian; Wang, Laisen; Yue, Guanghui; Peng, Dong-Liang

    2015-02-16

    Zinc-nickel citrate microspheres are prepared by a simple aging process of zinc citrate solid microspheres in nickel nitrate solution. As the concentration of nickel nitrate solution increases, the morphology of the produced zinc-nickel citrate evolves from solid, yolk-shell to hollow microspheres. The formation mechanism of different zinc-nickel citrate microspheres is discussed. After annealing treatment of the corresponding zinc-nickel citrate microspheres in air, three different ZnO-NiO hybrid architectures including solid, yolk-shell and hollow microspheres can be successfully fabricated. When applied as the anode materials for lithium ion batteries, ZnO-NiO hybrid yolk-shell microspheres demonstrate the best electrochemical properties than solid and hollow counterparts. After 200th cycles, ZnO-NiO hybrid yolk-shell microspheres deliver a high reversible capacity of 1176 mA h g(-1). The unique yolk-shell configuration, the synergetic effect between ZnO and NiO and the catalytic effect of metal Ni generated by the reduction of NiO during discharging process are responsible for the excellent lithium storage properties of ZnO-NiO hybrid yolk-shell microspheres.

  1. Facile preparation of hexagonal WO3·0.33H2O/C nanostructures and its electrochemical properties for lithium-ion batteries

    Science.gov (United States)

    Liu, Zhiwei; Li, Ping; Dong, Yuan; Wan, Qi; Zhai, Fuqiang; Volinsky, Alex A.; Qu, Xuanhui

    2017-02-01

    Nano-sized hexagonal WO3·0.33H2O/C is prepared by the solution combustion synthesis & hydrothermal method. This material has been used as the anode for high performance lithium-ion batteries for the first time. Carbon layer is uniformly coated on hexagonal WO3·0.33H2O nanoparticles. The samples are characterized by X-ray diffraction (XRD), thermal analysis (TG-DSC), Raman spectra, scanning and transmission electron microscopy (FESEM and TEM). Electrochemical properties are studied by cyclic voltammetry and galvanostatic charge/discharge cycling. Prepared WO3·0.33H2O/C electrode shows high and reversible capacity of 768 mAh g-1 after 200 cycles at 100 mA g-1, which is higher than the reported orthorhombic WO3·0.33H2O. The specific structure can provide efficient channels for transporting Li+ swiftly. Therefore, hexagonal WO3·0.33H2O/C shows a great potential as the anode material for lithium-ion batteries.

  2. Facile fabrication of various zinc-nickel citrate microspheres and their transformation to ZnO-NiO hybrid microspheres with excellent lithium storage properties

    Science.gov (United States)

    Xie, Qingshui; Ma, Yating; Zeng, Deqian; Wang, Laisen; Yue, Guanghui; Peng, Dong-Liang

    2015-02-01

    Zinc-nickel citrate microspheres are prepared by a simple aging process of zinc citrate solid microspheres in nickel nitrate solution. As the concentration of nickel nitrate solution increases, the morphology of the produced zinc-nickel citrate evolves from solid, yolk-shell to hollow microspheres. The formation mechanism of different zinc-nickel citrate microspheres is discussed. After annealing treatment of the corresponding zinc-nickel citrate microspheres in air, three different ZnO-NiO hybrid architectures including solid, yolk-shell and hollow microspheres can be successfully fabricated. When applied as the anode materials for lithium ion batteries, ZnO-NiO hybrid yolk-shell microspheres demonstrate the best electrochemical properties than solid and hollow counterparts. After 200th cycles, ZnO-NiO hybrid yolk-shell microspheres deliver a high reversible capacity of 1176 mA h g-1. The unique yolk-shell configuration, the synergetic effect between ZnO and NiO and the catalytic effect of metal Ni generated by the reduction of NiO during discharging process are responsible for the excellent lithium storage properties of ZnO-NiO hybrid yolk-shell microspheres.

  3. Effect of Two Polishing Systems on Surface Roughness, Topography, and Flexural Strength of a Monolithic Lithium Disilicate Ceramic.

    Science.gov (United States)

    Mohammadibassir, Mahshid; Rezvani, Mohammad Bagher; Golzari, Hossein; Moravej Salehi, Elham; Fahimi, Mohammad Amin; Kharazi Fard, Mohammad Javad

    2017-03-08

    To evaluate the effect of overglazing and two polishing procedures on flexural strength and quality and quantity of surface roughness of a monolithic lithium disilicate ceramic computer-aided design (CAD) after grinding. This in vitro study was conducted on 52 partially crystalized bar-shaped specimens (16 × 4 × 1.6 mm) of monolithic lithium disilicate ceramic. The specimens were wet polished with 600-, 800-, and 1200-grit silicon carbide papers for 15 seconds using a grinding/polishing machine at a speed of 300 rpm. Then, the specimens were crystalized and glaze-fired in one step simultaneously and randomly divided into four groups of 13: (I) Glazing group (control); (II) Grinding-glazing group, subjected to grinding with red band finishing diamond bur (46 μm) followed by glazing; (III) Grinding-D+Z group, subjected to grinding and then polishing by coarse, medium, and fine diamond rubber points (D+Z); and (IV) Grinding-OptraFine group, subjected to grinding and then polishing with a two-step diamond rubber polishing system followed by a final polishing step with an OptraFine HP brush and diamond polishing paste. The surface roughness (Ra and Rz) values (μm) were measured by a profilometer, and the mean values were compared using one-way ANOVA and Tamhane's test (post hoc comparison). One specimen of each group was evaluated under a scanning electron microscope (SEM) for surface topography. The three-point flexural strength values of the bars were measured using a universal testing machine at a 0.5 mm/min crosshead speed and recorded. The data were analyzed using one-way ANOVA and Tamhane's test (α = 0.05). Statistically significant differences were noted among the experimental groups for Ra, Rz (p quality of roughness compared to glazing. The flexural strength of lithium disilicate ceramic after polishing with the OptraFine system was similar to that after glazing (p = 0.86). Despite similar surface roughness after polishing with the two systems, the D

  4. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  5. Power Systems Development Facility Gasification Test Run TC10

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-12-30

    This report discusses Test Campaign TC10 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC10 in air- (mainly for transitions and problematic operations) and oxygen-blown mode. Test Run TC10 was started on November 16, 2002, and completed on December 18, 2002. During oxygen-blown operations, gasifier temperatures varied between 1,675 and 1,825 F at pressures from 150 to 180 psig. After initial adjustments were made to reduce the feed rate, operations with the new fluidized coal feeder were stable with about half of the total coalfeed rate through the new feeder. However, the new fluidized-bed coal feeder proved to be difficult to control at low feed rates. Later the coal mills and original coal feeder experienced difficulties due to a high moisture content in the coal from heavy rains. Additional operational difficulties were experienced when several of the pressure sensing taps in the gasifier plugged. As the run progressed, modifications to the mills (to address processing the wet coal) resulted in a much larger feed size. This eventually resulted in the accumulation of large particles in the circulating solids causing operational instabilities in the standpipe and loop seal. Despite problems with the coal mills, coal feeder, pressure tap nozzles and the standpipe, the gasifier did experience short periods of stability during oxygenblown operations. During these periods, the syngas quality was high. During TC10, the gasifier gasified over 609 tons of Powder River Basin subbituminous coal and

  6. Implementation Plans for a Systems Microbiology and Extremophile Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. S.

    2009-04-20

    solve DOE problems. Recent advances in whole-genome sequencing for a variety of organisms and improvements in high-throughput instrumentation have contributed to a rapid transition of the biological research paradigm towards understanding biology at a systems level. As a result, biology is evolving from a descriptive to a quantitative, ultimately predictive science where the ability to collect and productively use large amounts of biological data is crucial. Understanding how the ensemble of proteins in cells gives rise to biological outcomes is fundamental to systems biology. These advances will require new technologies and approaches to measure and track the temporal and spatial disposition of proteins in cells and how networks of proteins and other regulatory molecules give rise to specific activities. The DOE has a strong interest in promoting the application of systems biology to understanding microbial function and this comprises a major focus of its Genomics:GTL program. A major problem in pursuing what has been termed “systems microbiology” is the lack of the facilities and infrastructure for conducting this new style of research. To solve this problem, the Genomics:GTL program has funded a number of large-scale research centers focused on either mission-oriented outcomes, such as bioenergy, or basic technologies, such as gene sequencing, high-throughput proteomics or the identification of protein complexes. Although these centers generate data that will be useful to the research community, their scientific goals are relatively narrow and are not designed to accommodate the general community need for advanced capabilities for systems microbiology research.

  7. Supernova survey system in Beijing Astronomical Observatory (Ⅰ)——Facilities of survey

    Institute of Scientific and Technical Information of China (English)

    裘予雷; 李卫东; 赵昭旺; 乔琪源; 饶勇; 胡景耀; 李启斌

    1999-01-01

    The robotic supernova survey system of Beijing Astronomical Observatory (BAO) is based on the 60-cm telescope of BAO, which includes a CCD camera attached to the prime focus and a software system for facility control and image reduction.

  8. Test facilities for evaluating nuclear thermal propulsion systems

    Science.gov (United States)

    Beck, David F.; Allen, George C.; Shipers, Larry R.; Dobranich, Dean; Ottinger, Cathy A.; Harmon, Charles D.; Fan, Wesley C.; Todosow, Michael

    1993-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  9. A radiant heating test facility for space shuttle orbiter thermal protection system certification

    Science.gov (United States)

    Sherborne, W. D.; Milhoan, J. D.

    1980-01-01

    A large scale radiant heating test facility was constructed so that thermal certification tests can be performed on the new generation of thermal protection systems developed for the space shuttle orbiter. This facility simulates surface thermal gradients, onorbit cold-soak temperatures down to 200 K, entry heating temperatures to 1710 K in an oxidizing environment, and the dynamic entry pressure environment. The capabilities of the facility and the development of new test equipment are presented.

  10. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    Science.gov (United States)

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  11. Data Acquisition System Architecture and Capabilities at NASA GRC Plum Brook Station's Space Environment Test Facilities

    Science.gov (United States)

    Evans, Richard K.; Hill, Gerald M.

    2014-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  12. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  13. Assessment of radiological protection systems among diagnostic radiology facilities in North East India.

    Science.gov (United States)

    Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B

    2017-03-01

    This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the

  14. Lithium-Ion Battery Cell-Balancing Algorithm for Battery Management System Based on Real-Time Outlier Detection

    Directory of Open Access Journals (Sweden)

    Changhao Piao

    2015-01-01

    Full Text Available A novel cell-balancing algorithm which was used for cell balancing of battery management system (BMS was proposed in this paper. Cell balancing algorithm is a key technology for lithium-ion battery pack in the electric vehicle field. The distance-based outlier detection algorithm adopted two characteristic parameters (voltage and state of charge to calculate each cell’s abnormal value and then identified the unbalanced cells. The abnormal and normal type of battery cells were acquired by online clustering strategy and bleeding circuits (R = 33 ohm were used to balance the abnormal cells. The simulation results showed that with the proposed balancing algorithm, the usable capacity of the battery pack increased by 0.614 Ah (9.5% compared to that without balancing.

  15. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  16. Hanazonobashi facilities control system. Centralized SCADA for metropolitan express-way; Shutokosokudoro koden Kanagawa kanribudono osame. Hanazonokyo shisetsu kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Higashino, K.; Imai, K.; Kitaura, M.; Kayama, C.; Tsujita, H. [Nisshin Electric Co. Ltd., Kyoto (Japan)

    1996-03-29

    This paper introduces the centralized SCADA system in the express-way line of whole Kanagawa region, which can control various facilities, such as power receiving, distribution and switch facilities, pump houses, transformer towers, and lighting facilities for bridges. The system was designed so as to monitor the whole of the Wangan line to be extended in the future. It consists of a central facility control station (CS) and local control stations (LS). The CS can control the whole facilities and the LS have control functions of start/stop for individual facilities at the maintenance and inspection of the CS. The SCADA system is surpassing in the operability of a huge amount of information, information exchange with other control systems and disaster preventing systems, and the extendability and maintainability. It is a distributed computer control system and also a multi-window type highly functional man-machine system. Multiple projection type large displays were employed to use information in common among operators. To support the facility maintenance works effectively, a data base has been made for collective control of information including drawings, facilities registers, and manual books. 9 figs., 1 tab.

  17. Criticality safety evaluation report for the Cold Vacuum Drying Facility`s process water handling system

    Energy Technology Data Exchange (ETDEWEB)

    Roblyer, S.D.

    1998-02-12

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility (CVDF). The controls and limitations on equipment design and operations to control potential criticality occurrences are identified. The effectiveness of equipment design and operation controls in preventing criticality occurrences during normal and abnormal conditions is evaluated and documented in this report. Spent nuclear fuel (SNF) is removed from existing canisters in both the K East and K West Basins and loaded into a multicanister overpack (MCO) in the K Basin pool. The MCO is housed in a shipping cask surrounded by clean water in the annulus between the exterior of the MCO and the interior of the shipping cask. The fuel consists of spent N Reactor and some single pass reactor fuel. The MCO is transported to the CVDF near the K Basins to remove process water from the MCO interior and from the shipping cask annulus. After the bulk water is removed from the MCO, any remaining free liquid is removed by drawing a vacuum on the MCO`s interior. After cold vacuum drying is completed, the MCO is filled with an inert cover gas, the lid is replaced on the shipping cask, and the MCO is transported to the Canister Storage Building. The process water removed from the MCO contains fissionable materials from metallic uranium corrosion. The process water from the MCO is first collected in a geometrically safe process water conditioning receiver tank. The process water in the process water conditioning receiver tank is tested, then filtered, demineralized, and collected in the storage tank. The process water is finally removed from the storage tank and transported from the CVDF by truck.

  18. NSTX: Facility/Research Highlights and Near Term Facility Plans

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono

    2008-11-19

    The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

  19. Cold Vacuum Drying facility deionized water system design description (SYS 25)

    Energy Technology Data Exchange (ETDEWEB)

    PITKOFF, C.C.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit.

  20. Control System and Operation of the Cryogenic Test Facilities for LHC Series Superconducting Magnets

    CERN Document Server

    Axensalva, J; Lamboy, J P; Tovar-Gonzalez, A; Vullierme, B

    2005-01-01

    Prior to their final preparation before installation in the tunnel, the ~1800 series superconducting magnets of the LHC machine will be entirely tested at reception on modular test facilities using dedicated control systems. The test facilities are operated by teams of high-skilled and trained operators. This paper describes the architecture of the control & supervision system of the cryogenic test facilities as well as the tools and management systems developed to help in real time all involved operation teams in order to reach the required industrial production level.

  1. Lithium in 2012

    Science.gov (United States)

    Jaskula, B.W.

    2013-01-01

    In 2012, estimated world lithium consumption was about 28 kt (31,000 st) of lithium contained in minerals and compounds, an 8 percent increase from that of 2011. Estimated U.S. consumption was about 2 kt (2,200 st) of contained lithium, the same as that of 2011. The United States was thought to rank fourth in consumption of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Rockwood Lithium Inc., produced lithium compounds from domestic brine resources near Silver Peak, NV.

  2. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  3. Development and analysis of a lithium carbon monofluoride battery-lithium ion capacitor hybrid system for high pulse-power applications

    Science.gov (United States)

    Smith, Patricia H.; Sepe, Raymond B.; Waterman, Kyle G.; Myron, L. Jeff

    2016-09-01

    Although Li/CFx and Li/CFxMnO2 have two of the highest energy densities of all commercial lithium primary batteries known to date, they are typically current-limited and therefore are not used in high-power applications. In this work, a Li/CFxMnO2 battery (BA-5790) was hybridized with a 1000 F lithium ion capacitor to allow its use for portable electronic devices requiring 100 W 1-min pulses. An intelligent, power-management board was developed for managing the energy flow between the components. The hybrid architecture was shown to maintain the battery current to a level that minimized energy loss and thermal stress. The performance of the Li/CFxMnO2 hybrid was compared to the standard Li/SO2 battery (BA-5590). The hybrid was shown to deliver the same number of 100 W pulse cycles as two BA-5590 batteries, resulting in a weight savings of 30% and a volumetric reduction of 20%. For devices requiring 8 h of operational time or less, a 5-cell Li/CFxMnO2 hybrid was found to be a lighter (55%) and smaller (45%) power source than the existing two BA-5590 battery option, and a lighter (42%) and smaller (27%) option than 1½ BA-5790 batteries alone. At higher power requirements (>100 W), further weight and size improvements can be expected.

  4. Summary report for ITER task - T68: MHD facility preparation for Li/V blanket option

    Energy Technology Data Exchange (ETDEWEB)

    Reed, C.B.; Haglund, R.C.; Miller, M.E. [and others

    1995-08-01

    A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To enable experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, the room-temperature ALEX (Argonne`s Liquid Metal EXperiment) NaK facility was upgraded to a 300{degrees}C lithium system. The objective of this upgrade was to modify the existing facility to the minimum extent necessary, consistent with providing a safe, flexible, and easy to operate MHD test facility which uses lithium at ITER-relevant temperatures, Hartmann numbers, and interaction parameters. The facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups. The system design description for this lithium upgrade of the ALEX facility is given in this document.

  5. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Jessica D.

    2013-05-29

    On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently

  6. Preliminary control system design and analysis for the Space Station Furnace Facility thermal control system

    Science.gov (United States)

    Jackson, M. E.

    1995-01-01

    This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

  7. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries.

    Science.gov (United States)

    Huang, Jia-Qi; Zhuang, Ting-Zhou; Zhang, Qiang; Peng, Hong-Jie; Chen, Cheng-Meng; Wei, Fei

    2015-03-24

    Lithium-sulfur batteries hold great promise for serving as next generation high energy density batteries. However, the shuttle of polysulfide induces rapid capacity degradation and poor cycling stability of lithium-sulfur cells. Herein, we proposed a unique lithium-sulfur battery configuration with an ultrathin graphene oxide (GO) membrane for high stability. The oxygen electronegative atoms modified GO into a polar plane, and the carboxyl groups acted as ion-hopping sites of positively charged species (Li(+)) and rejected the transportation of negatively charged species (Sn(2-)) due to the electrostatic interactions. Such electrostatic repulsion and physical inhibition largely decreased the transference of polysulfides across the GO membrane in the lithium-sulfur system. Consequently, the GO membrane with highly tunable functionalization properties, high mechanical strength, low electric conductivity, and facile fabrication procedure is an effective permselective separator system in lithium-sulfur batteries. By the incorporation of a permselective GO membrane, the cyclic capacity decay rate is also reduced from 0.49 to 0.23%/cycle. As the GO membrane blocks the diffusion of polysulfides through the membrane, it is also with advantages of anti-self-discharge properties.

  8. Aerometric Information Retrieval System/AIRS Facility Subsystem (AIRS/AFS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aerometric Information Retrieval System/AIRS Facility Subsystem (AIRS/AFS) is a database that provides information on air releases from various stationary...

  9. 76 FR 32085 - Medicare Program; Inpatient Psychiatric Facilities Prospective Payment System-Update for Rate...

    Science.gov (United States)

    2011-06-03

    ...This document corrects two technical errors that appeared in the final rule published in the Federal Register on May 6, 2011 entitled, ``Inpatient Psychiatric Facilities Prospective Payment System--Update for Rate Year Beginning July 1, 2011 (RY...

  10. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries.

    Science.gov (United States)

    Zou, Feng; Hu, Xianluo; Qie, Long; Jiang, Yan; Xiong, Xiaoqin; Qiao, Yun; Huang, Yunhui

    2014-01-21

    Traditional metal anode materials in lithium-ion batteries are plagued by instability upon discharge-charge cycling. We report that a unique sandwiched Zn2GeO4-graphene oxide nanocomposite has been synthesized on a large scale through a simple ion-exchange reaction, whereby Zn2GeO4 nanorods with lengths of 600 nm and widths of 40 nm are homogeneously sandwiched into the graphene oxide matrix. Compared with bare Zn2GeO4 nanorods, a dramatic improvement in the electrochemical performance of the resulting nanocomposite has been achieved. In the voltage window of 0.001-3 V, the electrode of the Zn2GeO4-graphene oxide nanocomposite delivers a specific capacity as high as 1150 mA h g(-1) at 200 mA g(-1) after 100 discharge-charge cycles. Even at a high current density of 3.2 A g(-1), a capacity of 522 mA h g(-1) can be retained. The unusual electrochemical performance including highly reversible capacity and excellent rate capability arise from synergetic chemical coupling effects between Zn2GeO4 and graphene oxide.

  11. Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries

    Science.gov (United States)

    Yue, Xinyang; Sun, Wang; Zhang, Jing; Wang, Fang; Sun, Kening

    2016-10-01

    Carbon nanotubes have attracted widespread attention as ideal materials for Lithium-ion batteries (LIBs) due to their excellent conductivity, mechanical flexibility, chemical stability and extremely large surface area. Here, three-dimensional (3D) silicon/carbon nanotube capsule composites (Si/CNCs) are firstly prepared via water-in-oil (W/O) emulsion technique with more than 75 wt% loading amount of silicon. CNCs with unique hollow sphere structure act as a 3D interconnected conductive network skeleton, and the cross-linked carbon nanotubes (CNTs) of CNCs can effectively enhance the strength, flexibility and conductivity of the electrode. This Si/CNCs can not only alleviate the volume expansion, but also effectively improve the electrochemical performance of the LIBs. Such Si/CNCs electrode with the unique structure achieves a high initial discharge specific capacity of 2950 mAh g-1 and retains 1226 mAh g-1 after 100 cycles at 0.5 A g-1, as well as outstanding rate performance of 547 mAh g-1 at 10 A g-1.

  12. Facile synthesis of the N-doped graphene/nickel oxide with enhanced electrochemical performance for rechargeable lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chuanning, E-mail: yangcn1988@outlook.com [Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Northeastern University, Shenyang, Liaoning 110819 (China); Qing, Yongquan; An, Kai [Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Northeastern University, Shenyang, Liaoning 110819 (China); Zhang, Zefei; Wang, Linshan [College of Science, Northeastern University, Shenyang, Liaoning 110819 (China); Liu, Changsheng, E-mail: csliu@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Northeastern University, Shenyang, Liaoning 110819 (China)

    2017-07-01

    The nitrogen-doped graphene/NiO nanohybrids with a hierarchical structure have been successfully synthesized by a one-step hydrothermal route assisted by microwave treatment. The as-obtained products were characterized by scanning electron microscopy, high-resolution transmission microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The nitrogen-doped graphene/NiO electrodes exhibit an enhanced electrochemical performance. The initial discharge capacity can reach 1737 mAh g{sup -1} at the current density of 0.1 A g{sup -1}. Significantly, the nanocomposites anodes also display a relatively high reversible capacity of 1095 mAh g{sup -1} at the current density of 0.3 A g{sup -1} after 100 cycles. Herein, the nitrogen-doped graphene/NiO possesses electrodes enormous potential as the anode materials for lithium ion batteries. - Highlights: • The nitrogen-doped graphene/NiO nanohybrids have been successfully synthesized. • Microwave treatment may enhance conductivity and capacity of electrodes. • The hierarchical structure will help to improve the stability of the electrodes. • The reversible capacity of electrodes can reach 1095 mAh g{sup -1} over 100 cycles.

  13. Facile hybridization of Ni@Fe2O3 superparticles with functionalized reduced graphene oxide and its application as anode material in lithium-ion batteries.

    Science.gov (United States)

    Backert, Gregor; Oschmann, Bernd; Tahir, Muhammad Nawaz; Mueller, Franziska; Lieberwirth, Ingo; Balke, Benjamin; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2016-09-15

    In our present work we developed a novel graphene wrapping approach of Ni@Fe2O3 superparticles, which can be extended as a concept approach for other nanomaterials as well. It uses sulfonated reduced graphene oxide, but avoids thermal treatments and use of toxic agents like hydrazine for its reduction. The modification of graphene oxide is achieved by the introduction of sulfate groups accompanied with reduction and elimination reactions, due to the treatment with oleum. The successful wrapping of nanoparticles is proven by energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy and Raman spectroscopy. The developed composite material shows strongly improved performance as anode material in lithium-ion batteries (compared to unwrapped Ni@Fe2O3) as it offers a reversible capacity of 1051mAhg(-1) after 40 cycles at C/20, compared with 460mAhg(-1) for unwrapped Ni@Fe2O3. The C rate capability is also improved by the wrapping approach, as specific capacities for wrapped particles are about twice of those offered by unwrapped particles. Additionally, the benefit for the use of the advanced superparticle morphology is demonstrated by comparing wrapped Ni@Fe2O3 particles with wrapped Fe2O3 nanorice.

  14. Providing security for automated process control systems at hydropower engineering facilities

    Science.gov (United States)

    Vasiliev, Y. S.; Zegzhda, P. D.; Zegzhda, D. P.

    2016-12-01

    This article suggests the concept of a cyberphysical system to manage computer security of automated process control systems at hydropower engineering facilities. According to the authors, this system consists of a set of information processing tools and computer-controlled physical devices. Examples of cyber attacks on power engineering facilities are provided, and a strategy of improving cybersecurity of hydropower engineering systems is suggested. The architecture of the multilevel protection of the automated process control system (APCS) of power engineering facilities is given, including security systems, control systems, access control, encryption, secure virtual private network of subsystems for monitoring and analysis of security events. The distinctive aspect of the approach is consideration of interrelations and cyber threats, arising when SCADA is integrated with the unified enterprise information system.

  15. Implementation of remove monitoring in facilities under safeguards with unattended systems

    Energy Technology Data Exchange (ETDEWEB)

    Beddingfield, David H [Los Alamos National Laboratory; Nordquist, Heather A [Los Alamos National Laboratory; Umebayaashi, Eiji [JAEA

    2009-01-01

    Remote monitoring is being applied by the International Atomic Energy Agency (IAEA) at nuclear facilities around the world. At the Monju Reactor in Japan we have designed, developed and implemented a remote monitoring approach that can serve as a model for applying remote monitoring to facilities that are already under full-scope safeguards using unattended instrumentation. Remote monitoring implementations have historically relied upon the use of specialized data collection hardware and system design features that integrate remote monitoring into the safeguards data collection system. The integration of remote monitoring and unattended data collection increases the complexity of safeguards data collection systems. This increase in complexity necessarily produces a corresponding reduction of system reliability compared to less-complex unattended monitoring systems. At the Monju facility we have implemented a remote monitoring system that is decoupled from the activity of safeguards data collection. In the completed system the function of remote data transfer is separated from the function of safeguards data collection. As such, a failure of the remote monitoring function cannot produce an associated loss of safeguards data, as is possible with integrated remote-monitoring implementations. Currently, all safeguards data from this facility is available to the IAEA on a 24/7 basis. This facility employs five radiation-based unattended systems, video surveillance and numerous optical seal systems. The implementation of remote monitoring at this facility, while increasing the complexity of the safeguards system, is designed to avoid any corresponding reduction in reliability of the safeguards data collection systems by having decoupled these functions. This design and implementation can serve as a model for implementation of remote monitoring at nuclear facilities that currently employ unattended safeguards systems.

  16. Facility layout planning for educational systems: An application of fuzzy GIS and AHP

    Directory of Open Access Journals (Sweden)

    Hossein Ebrhaimzadeh Asmin

    2014-06-01

    Full Text Available One of the most important issues in urban planning programs is to allocate necessary spaces for educational applications. Selecting appropriate locations for training centers increases students' mental capabilities. Suitable location for the establishment of educational facilities is the first fundamental step for development of educational systems. The selection of optimal sites for educational facilities involves numerous parameters and it is essential to use multiple criteria decision making approaches to make wise decisions. This paper presents an empirical investigation on facility layout planning for educational systems in city of Birjand, Iran. Using fuzzy GIS as well as analytical hierarchy process (AHP, the study determines the most appropriate candidates for training centers.

  17. Performance Characterization of the Production Facility Prototype Helium Flow System

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.

  18. Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition

    Energy Technology Data Exchange (ETDEWEB)

    Leach, C.E.; Galbraith, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Grant, P.R.; Francuz, D.J.; Schroeder, P.J. [Fluor Daniel, Inc., Richland, WA (United States)

    1995-11-01

    This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs.

  19. Development of a mobile, stand-alone test facility for solar thermal collectors and systems

    Energy Technology Data Exchange (ETDEWEB)

    Bestenlehner, Dominik; Drueck, Harald; Fischer, Stephan; Mueller-Steinhagen, Hans [Solar- und Waermetechnik Stuttgart (SWT), Stuttgart (Germany)

    2008-07-01

    Testing of solar thermal systems and components requires different standards and thus different test facilities. Usually each facility is individually designed and constructed for tests according to a specific test method. For performing tests of solar thermal systems and collectors according to the most popular standards, test laboratories or manufacturers have to invest a huge amount of staff time, resources and capital to set up the required test facilities. A way to overcome this problem is the mobile, stand-alone solar thermal collector and system test facility developed by SWT-Technologie from Stuttgart, Germany, in cooperation with the Institute of Thermodynamics and Thermal Engineering of the University of Stuttgart. The complete test facility is installed inside a conventional 12 foot office container. This mobile container based test facility is delivered to the site of the customer as a turn-key product that can be put into operation within one single day. Even more, the mobile container based test facility is a three-in-one test facility, since it is possible to perform tests according to three different standards and test methods. The performance of solar collectors can be tested according to the European standard EN 12975 or the international standard ISO 9806, respectively. The performance of solar thermal systems can be determined according to the international standards ISO 9459-2 (CSTG-method) and ISO 9495-5 (DST-method). This paper describes the mobile, container based solar collector and system test facility in detail and reports the experience gained so far. (orig.)

  20. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  1. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries

    Science.gov (United States)

    Giuliano, Michael R.; Prasad, Ajay K.; Advani, Suresh G.

    2012-10-01

    Lithium-titanate batteries have become an attractive option for battery electric vehicles and hybrid electric vehicles. In order to maintain safe operating temperatures, these batteries must be actively cooled during operation. Liquid-cooled systems typically employed for this purpose are inefficient due to the parasitic power consumed by the on-board chiller unit and the coolant pump. A more efficient option would be to circulate ambient air through the battery bank and directly reject the heat to the ambient. We designed and fabricated such an air-cooled thermal management system employing metal-foam based heat exchanger plates for sufficient heat removal capacity. Experiments were conducted with Altairnano's 50 Ah cells over a range of charge-discharge cycle currents at two air flow rates. It was found that an airflow of 1100 mls-1 per cell restricts the temperature rise of the coolant air to less than 10 °C over ambient even for 200 A charge-discharge cycles. Furthermore, it was shown that the power required to drive the air through the heat exchanger was less than a conventional liquid-cooled thermal management system. The results indicate that air-cooled systems can be an effective and efficient method for the thermal management of automotive battery packs.

  2. Facile Synthesis of Platelike Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 with Exposed {010} Planes for High-Rate and Long Cycling-Stable Lithium Ion Batteries.

    Science.gov (United States)

    Zeng, Jiong; Cui, Yanhui; Qu, Deyang; Zhang, Qian; Wu, Junwei; Zhu, Xiaomeng; Li, Zuohua; Zhang, Xinhe

    2016-10-05

    Lithium-rich layered oxides are promising cathode candidates for the production of high-energy and high-power electronic devices with high specific capacity and high discharge voltage. However, unstable cycling performance, especially at high charge-recharge rate, is the most challenge issue which needs to be solved to foster the diffusion of these materials. In this paper, hierarchical platelike Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials were synthesized by a facile solvothermal method followed by calcination. Calcination time was found to be a key parameter to obtain pure layered oxide phase and tailor its hierarchical morphology. The Li-rich material consists of primary nanoparticles with exposed {010} planes assembled to form platelike layers which exhibit low resistance to Li(+) diffusion. In detail, the product by calcination at 900 °C for 12 h exhibits specific capacity of 228, 218, and 204 mA h g(-1) at 200, 400, and 1000 mA g(-1), respectively, whereas after 100 cycles at 1000 mA g(-1) rate of charge and recharge the specific capacity was retained by about 91%.

  3. Cold Vacuum Drying Facility Crane and Hoist System Design Description (SYS 14)

    Energy Technology Data Exchange (ETDEWEB)

    TRAN, Y.S.

    2000-06-07

    This system design description (SDD) is for the Cold Vacuum Drying (CVD) Facility overhead crane and hoist system. The overhead crane and hoist system is a general service system. It is located in the process bays of the CVD Facility, supports the processes required to drain the water and dry the spent nuclear fuel (SNF) contained in the multi-canister overpacks (MCOs) after they have been removed from the K-Basins. The location of the system in the process bay is shown.

  4. Facile assembly and electrochemical properties of α-Fe{sub 2}O{sub 3}@graphene aerogel composites as electrode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jing-Ke; Zhao, Qing-Qing [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Ye, Wen-Hao [Do-Fluoride Chemicals Co., Ltd, Jiaozuo 454000 (China); Zheng, Guang-Ping [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Zheng, Xiu-Cheng, E-mail: zhxch@zzu.edu.cn [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071 (China); Guan, Xin-Xin [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Liu, Yu-Shan, E-mail: liuyushan@zzu.edu.cn [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhang, Jian-Min [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2016-10-01

    Three-dimensional (3D) α-Fe{sub 2}O{sub 3} nanoparticle anchored graphene aerogel (Fe{sub 2}O{sub 3}@GA) composites were assembled by a hydrothermal method using Fe(OH){sub 3} colloids and graphene oxides as starting materials. It was found that the Fe{sub 2}O{sub 3} nanoparticles were uniformly embedded into the 3D networks of graphene aerogels and the resulting composites contained meso- and macro-scale pores. Remarkably, the composites possessed much higher surface area (S{sub BET} = 212.5 m{sup 2} g{sup −1}) and larger pore volume (V{sub p} = 0.2073 cm{sup 3} g{sup −1}) than those of pure Fe{sub 2}O{sub 3} (S{sub BET} = 19.8 m{sup 2} g{sup −1}, V{sub p} = 0.1770 cm{sup 3} g{sup −1}). The Fe{sub 2}O{sub 3}@GA composites used as electrode materials for lithium ion batteries were demonstrated to exhibit high reversible capacity at large current densities and excellent cycling stabilities. - Highlights: • 3D α-Fe{sub 2}O{sub 3}@GA composites were prepared from Fe(OH){sub 3} colloids and GO via a hydrothermal process. • The composites exhibited high surface area, abundant meso- and macro-scale pores. • The electrode for LIBs exhibited excellent electrochemical properties.

  5. Power systems development facility. Quarterly technical progress report, July 1, 1994--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. (2) Hot Gas Cleanup Units to mate to all gas streams. (3) Combustion Gas Turbine. (4) Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  6. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    Science.gov (United States)

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters.

  7. Lithium-associated hyperthyroidism.

    Science.gov (United States)

    Siyam, Fadi F; Deshmukh, Sanaa; Garcia-Touza, Mariana

    2013-08-01

    Goiters and hypothyroidism are well-known patient complications of the use of lithium for treatment of bipolar disease. However, the occurrence of lithium-induced hyperthyroidism is a more rare event. Many times, the condition can be confused with a flare of mania. Monitoring through serial biochemical measurement of thyroid function is critical in patients taking lithium. Hyperthyroidism induced by lithium is a condition that generally can be controlled medically without the patient having to discontinue lithium therapy, although in some circumstances, discontinuation of lithium therapy may be indicated. We report on a patient case of lithium-associated hyperthyroidism that resolved after discontinuation of the medication.

  8. Lithium Metal Anodes for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Jiulin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shanghai Jiao Tong Univ. (China); Ding, Fei [Tianjin Inst. of Power Sources (China); Chen, Xilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nasybulin, Eduard N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Yaohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harbin Inst. of Technology (China); Zhang, Jiguang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-10-29

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  9. Naval Facility Energy Conversion Plants as Resource Recovery System Components.

    Science.gov (United States)

    1980-01-01

    were performed on SRI’s CDC 6400 computer. The software packages used were (1) The KRONOS operating system designed for the SRI CDC 6400 and its...computational sequence, indicates the software used at each step. KRONOS Operating System The KRONOS Time-Sharing System was developed by Control Data...Corporation (CDC) to provide remote interactive job processing for various computers, including the CDC 6400. The KRONOS system was used in this

  10. The installation and performance test of the surveillance system for DUPIC facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Young; Kim, Ho Dong; Cha, Hong Ryul

    2000-07-01

    We have developed the real time surveillance system, named by DSSS, for DUPIC test facility. The system acquires data from He-3 neutron monitors(DSNM) and CCD cameras to automatically diagnose the transportation status of nuclear material. This technical report shortly illustrates important features of hardware and software of the system.

  11. Analysis of a battery management system (BMS) control strategy for vibration aged nickel manganese cobalt oxide (NMC) Lithium-Ion 18650 battery cells

    OpenAIRE

    2016-01-01

    Electric vehicle (EV) manufacturers are using cylindrical format cells as part of the vehicle’s rechargeable energy storage system (RESS). In a recent study focused at determining the ageing behavior of 2.2 Ah Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18650 battery cells, significant increases in the ohmic resistance (RO) were observed post vibration testing. Typically a reduction in capacity was also noted. The vibration was representative of an automotive service life of 100,000 miles...

  12. Analysis of a Battery Management System (BMS) Control Strategy for Vibration Aged Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18650 Battery Cells

    OpenAIRE

    2016-01-01

    Electric vehicle (EV) manufacturers are using cylindrical format cells as part of the vehicle’s rechargeable energy storage system (RESS). In a recent study focused at determining the ageing behavior of 2.2 Ah Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18650 battery cells, significant increases in the ohmic resistance (RO) were observed post vibration testing. Typically a reduction in capacity was also noted. The vibration was representative of an automotive service life of 100,000 miles...

  13. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  14. [Marketing in the system of military-medical facilities].

    Science.gov (United States)

    Kostiuchenko, O M; Sviridova, T B

    2014-02-01

    Military medical facilities of the Ministry of Defence of the Russian, have received the right to provide additional services and have been involved in the sphere of market relations. The strong influence of market relations - an objective reality that must be used for the development of military medical institutions and improving quality of care.Effective commercial activity can improve capabilities of the military medical institutions. This requires constant study of market mechanisms to implement and develop their competitive advantage. The paper substantiates the need for the participation of military medical institutions in the provision of health services to the public on the terms of compensation incurred by financial institutions costs (paid medical services, medical assistance program of compulsory and voluntary health insurance). Taking into account the specifics of military medical institutions set out basic principles and recommendations have been implementing marketing approach in their management, the practical application of which will not only increase efficiency, but also create conditions to improve the financial and economic indicators. This knowledge will help the mechanism of functioning health care market and the rules of interaction of market counterparties.

  15. SIMULATION OF SOLAR LITHIUM BROMIDE–WATER ABSORPTION COOLING SYSTEM WITH DOUBLE GLAZED FLAT PLATE COLLECTOR FOR ADRAR

    Directory of Open Access Journals (Sweden)

    ML CHOUGUI

    2014-12-01

    Full Text Available Adrar is a city in the Sahara desert, in southern Algeria known for its hot and dry climate, where a huge amount of energy is used for air conditioning. The aim of this research is to simulate a single effect lithium bromide–water absorption chiller coupled to a double-glazed flat plate collector to supply the cooling loads for a house of 200m2 in Adrar. The thermal energy is stored in an insulated thermal storage tank. The system was designed to cover a cooling load of 10.39KW for design day of July. Thermodynamic model was established to simulate the absorption cycle. The results have shown that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 65.3 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy.

  16. Implementation of alarm system for vibration monitoring of KOMAC facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    For operating 100 MeV linac, Devices have to be operated in certain order. Thus malfunction of a device cause damage to linac and related devices. To protect linac, machine protect system (MPS) has been developed. The MPS protects the components by monitoring hardwired signals. When values of operating parameters go beyond or below limit, alarm will be generated and interlock system which stops related devices in certain sequence will run. Other factor, giving damage to linac is disaster. A strong vibration such as earthquake causes malfunction of devices and damage to linac. Against disaster, the monitoring system based on Experimental Physics and Industrial Control System (EPICS) was implemented. Configuration and Implementation of the monitoring system are presented and some preliminary results are reported. KOMAC implemented alarm system for a strong vibration and fire. Alarm is generated in unusual situation. Coping rapidly with situation, damages for Linac and related devices can be reduced.

  17. Facile and cost effective synthesis of mesoporous spinel NiCo2O4 as an anode for high lithium storage capacity

    Science.gov (United States)

    Jadhav, Harsharaj S.; Kalubarme, Ramchandra S.; Park, Choong-Nyeon; Kim, Jaekook; Park, Chan-Jin

    2014-08-01

    To fulfill the high power and high energy density demands for Li-ion batteries (LIBs) new anode materials need to be explored to replace conventional graphite. Herein, we report the urea assisted facile co-precipitation synthesis of spinel NiCo2O4 and its application as an anode material for LIBs. The synthesized NiCo2O4 exhibited an urchin-like microstructure and polycrystalline and mesoporous nature. In addition, the mesoporous NiCo2O4 electrode exhibited an initial discharge capacity of 1095 mA h g-1 and maintained a reversible capacity of 1000 mA h g-1 for 400 cycles at 0.5 C-rate. The reversible capacity of NiCo2O4 could still be maintained at 718 mA h g-1, even at 10 C. The mesoporous NiCo2O4 exhibits great potential as an anode material for LIBs with the advantages of unique performance and facile preparation.To fulfill the high power and high energy density demands for Li-ion batteries (LIBs) new anode materials need to be explored to replace conventional graphite. Herein, we report the urea assisted facile co-precipitation synthesis of spinel NiCo2O4 and its application as an anode material for LIBs. The synthesized NiCo2O4 exhibited an urchin-like microstructure and polycrystalline and mesoporous nature. In addition, the mesoporous NiCo2O4 electrode exhibited an initial discharge capacity of 1095 mA h g-1 and maintained a reversible capacity of 1000 mA h g-1 for 400 cycles at 0.5 C-rate. The reversible capacity of NiCo2O4 could still be maintained at 718 mA h g-1, even at 10 C. The mesoporous NiCo2O4 exhibits great potential as an anode material for LIBs with the advantages of unique performance and facile preparation. Electronic supplementary information (ESI) available: Experimental details and additional experimental results. See DOI: 10.1039/c4nr02183e

  18. Preliminary experimental study of liquid lithium water interaction

    Energy Technology Data Exchange (ETDEWEB)

    You, X.M.; Tong, L.L.; Cao, X.W., E-mail: caoxuewu@sjtu.edu.cn

    2015-10-15

    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  19. Earth Systems Questions in Experimental Climate Change Science: Pressing Questions and Necessary Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Osmond, B.

    2002-05-20

    Sixty-four scientists from universities, national laboratories, and other research institutions worldwide met to evaluate the feasibility and potential of the Biosphere2 Laboratory (B2L) as an inclusive multi-user scientific facility (i.e., a facility open to researchers from all institutions, according to agreed principles of access) for earth system studies and engineering research, education, and training relevant to the mission of the United States Department of Energy (DOE).

  20. SINGLE IONIC CONDUCTION OF POLYSILOXANE CONTAINING PROPYLENE CARBONATE GROUP AND LITHIUM POLYMERIC SALTS

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiwen; FANG Shibi; HAO Ning; JIANG Yingyan

    1996-01-01

    The polysiloxane containing propylene carbonate side group and several lithium polymeric salts were synthesized. The structure were confirmed by IR, NMR and XPS. The blending systems of polysiloxane containing propylene carbonate group with different lithium polymeric salts were studied by ion conductivity, XPS and DSC. Different lithium polymeric salts in the blending system lead to conductivity arranged in the following sequence:poly(lithium ethylenebenzene sulfonate methylsiloxane) > poly(lithium propionate methylsiloxane) > poly(lithium propylsulfonate methylsiloxane) > poly(lithium styrenesulfonate).In the blending system the best single ion conductivity was close to 10-5 Scm-1 at room temperature. XPS showed that at low lithium salt concentration the conductivity increased with the increasing content of lithium salt, in consequence of the increase of free ion and solvent separated ion pair. At high lithium salt concentration the free ion was absent and the solvent-separated ion pair functioned as carrier.

  1. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle June 2014.

  2. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  3. Mirror fusion test facility magnet system. Final design report

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-09-03

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy. (MOW)

  4. The National Ignition Facility (NIF) wavefront control system

    Energy Technology Data Exchange (ETDEWEB)

    Van Atta, L; Bliss, E; Bruns, D; Feldman, M; Grey, A; Henesian, M; J; Koch, J; LaFiandra, C; Lawson; Sacks, R; Salmon, T; Toeppen, J; Winters, S; Woods, B; Zacharias, R

    1998-08-17

    A wavefront control system will be employed on NIF to correct beam aberrations that otherwise would limit the minimum target focal spot size. For most applications, NIF requires a focal spot that is a few times the diffraction limit. Sources of aberrations that must be corrected include prompt pump-induced distortions in the laser slabs, thermal distortions in the laser slabs from previous shots, manufacturing figure errors in the optics, beam off-axis effects, gas density variations, and gravity, mounting, and coating- induced optic distortions. The NIF Wavefront Control System consists of five subsystems: 1) a deformable mirror, 2) a wavefront sensor, 3) a computer controller, 4) a wavefront reference system, and 5) a system of fast actuators to allow the wavefront control system to operate to within one second of the laser shot. The system includes the capability for in situ calibrations and operates in closed loop prior to the shot. Shot wavefront data is recorded. This paper describes the function, realization, and performance of each wavefront control subsystem. Subsystem performance will be characterized by computer models and by test results. The focal spot improvement in the NIF laser system effected by the wavefront control system will be characterized through computer models.

  5. DITCM roadside facilities for cooperative systems testing and evaluation

    NARCIS (Netherlands)

    Passchier, I.; Netten, B.D.; Wedemeijer, H.; Maas, S.M.P.; Leeuwen, C.J. van; Schackmann, P.P.M.

    2013-01-01

    Cooperative systems are being developed for large scale deployment in the near future. Validation of the performance of cooperative systems, and evaluation of the impact of cooperative applications is crucial before large scale deployment can proceed. The DITCM test site facilitates testing, evaluat

  6. Facile synthesis of cookies-shaped LiV{sub 3}O{sub 8} cathode materials with good cycling performance for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.; Wang, X.L., E-mail: wangxl@zju.edu.cn; Lu, Y.; Jian, X.M.; Zhao, X.Y.; Tang, H.; Cai, J.B.; Gu, C.D.; Tu, J.P., E-mail: tujp@zju.edu.cn

    2014-01-25

    Highlights: • Cookies-shaped LiV{sub 3}O{sub 8} material was synthesized by a facile sol–gel method. • The compound shows high capacity retentions at different current densities. • The good performance is due to high crystallinity and little dissolution of vanadium. -- Abstract: Cookies-shaped LiV{sub 3}O{sub 8} materials were successfully synthesized by a facile ethylene glycol-assisted sol–gel method. The LiV{sub 3}O{sub 8} compound fabricated at 550 °C delivers an initial specific discharge capacity of 255.2 mAh g{sup −1} between 2.0 and 4.0 V at a current density of 50 mA g{sup −1}, and possesses a capacity retention of 90.2% after 50 cycles and up to 85% at a current density of 120 mA g{sup −1} after 100 cycles. Furthermore, the compound with a proper particle size and high crystallinity also shows high electrochemical reversibility and structural stability, leading good rate capability. By analysis of inductively coupled plasma emission spectrometer (ICP), the cookies-like LiV{sub 3}O{sub 8} has very little dissolution of vanadium in the electrolyte after 100 cycles, indicating that the well-formed crystal can protect the structure damage to some degree during cycling.

  7. Facile synthesis of uniform MoO2/Mo2CTx heteromicrospheres as high-performance anode materials for lithium-ion batteries

    Science.gov (United States)

    Min, Jie; Wang, Kangyan; Liu, Jun; Yao, Yang; Wang, Wenjun; Yang, Linyu; Zhang, Ruizhi; Lei, Ming

    2017-09-01

    Uniform nano/micro-spherical MoO2/Mo2CTx (T = O) heterostructures have been synthesized through a heterocatalytic reaction with subsequent facile calcinations. Given the high activity of HxMoO3/C precursors, this strategy opens a low-temperature route to realize the fabrication of nanocrystalline MoO2/Mo2CTx heterostructures, leading to achieve rapidly activated conversion reaction and extrinsic pseudocapacitive behaviour. Rather than carbon, highly conductive Mo2CTx decreases the charge transfer resistance in MoO2 and maintains its structural stability upon lithiation/delithiation, ensuring the heterostructures with excellent cyclability (e.g., up to 833 mA h g‑1 at 100 mA g‑1 for 160 cycles with 95% capacity retention) and high rate capability (e.g., 665 mA h g‑1 at 1 A g‑1). Additionally, owing to the carbon-free characteristic, the secondary nano/microstructure feature and the suppressed surface oxidation trait, MoO2/Mo2CTx heterostructures, therefore, can deliver an improved initial Coulombic efficiency (e.g., up to 78% at 100 mA g‑1). The present oxycarbide transformation and hybridization strategies are facile but effective, and they are very promising to be applied to converting other oxides-carbon composites into oxides/carbides heterostructures towards achieving higher electrochemical performance.

  8. EADS-Astrium Lithium Technology Experiences

    Science.gov (United States)

    Mattesco, P.

    2008-09-01

    The Lithium-ion battery has been perceived ten years ago by EADS Astrium as a very promising technology in terms of technical, industrial and cost aspects for satellite platforms with respect to NiCd and NiH2 technologies. In 2008, lithium technology is the baseline for all new spacecrafts, whatever the missions.For telecommunication satellite, since 2003, more than 18 Lithium batteries for Eurostar E3000 platform have been fully tested and integrated (with SAFT VES140S Lithium cells) up to now. 6 E3000 satellites are in orbit equipped with Lithium batteries with more than 4 years in orbit for the first E3000 satellite equipped with Lithium-ion batteries. 7 others E3000 satellites with lithium batteries are currently at various stage of production.For LEO missions (THEOS, PLEIADES…), ABSL batteries with Sony 18650 HC lithium cells will replace, on the latest LEO platform the NiCd technology. The same technology change has been also successfully done previously for scientific missions: since June 2003 for Mars Express and November 2005 for Venus Express.Associated expected system improvements (weight reduction of the battery system, easiest on ground and launch pad management, highest available energy during launch, ….) driven by specific lithium-ion technology features are today demonstrated and in orbit behaviours are as expected [1], [13].The paper will give an overview of experience of EADS-Astrium on lithium battery technology with the description (design, management, architecture) of lithium batteries used on board LEO and GEO satellites. It will give also a picture of the effort done the last ten years to reach this level of experience (test characterisation, simulation…).

  9. Checkout and start-up of the integrated DWPF (Defense Waste Processing Facility) melter system

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E.; Hutson, N.D.; Miller, D.H.; Morrison, J.; Shah, H.; Shuford, J.A.; Glascock, J.; Wurzinger, F.H.; Zamecnik, J.R.

    1989-11-11

    The Integrated DWPF Melter System (IDMS) is a one-ninth-scale demonstration of the Defense Waste Processing Facility (DWPF) feed preparation, melter, and off-gas systems. The IDMS will be the first engineering-scale melter system at SRL to process mercury and flowsheet levels of halides and sulfates. This report includes a summary of the IDMS program objectives, system and equipment descriptions, and detailed discussions of the system checkout and start-up. 10 refs., 44 figs., 20 tabs.

  10. XPLanner: A knowledge-based decision support system for facility management and planning

    OpenAIRE

    S-Y Han; Kim, T. J.; I Adiguzel

    1991-01-01

    A case study is reported of the design, implementation, and evaluation of a knowledge-based decision support system, XPLanner. XPLanner integrates an expert system with optimization modeling technique, database management system, and interactive user interface to create a comprehensive decision aid for facility management and planning by the US Army. It is believed that integrating the expert system with the modeling and data management capabilities of decision support systems can create a co...

  11. Operating experience review - Ventilation systems at Department of Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Office of Special Projects (DP-35), formerly Office of Self-Assessment (DP-9), analyzed occurrences caused by problems with equipment and material and recommended the following systems for an in-depth study: (1) Selective Alpha Air Monitor (SAAM), (2) Emergency Diesel Generator, (3) Ventilation System, (4) Fire Alarm System. Further, DP-35 conducted an in-depth review of the problems associated with SAAM and with diesel generators, and made several recommendations. This study focusses on ventilation system. The intent was to determine the causes for the events related to these system that were reported in the Occurrence Reporting and Processing System (ORPS), to identify components that failed, and to provide technical information from the commercial and nuclear industries on the design, operation, maintenance, and surveillance related to the system and its components. From these data, sites can develop a comprehensive program of maintenance management, including surveillance, to avoid similar occurrences, and to be in compliance with the following DOE orders.

  12. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  13. Structural and optical characteristics of Eu3+ ions in sodium-lead-zinc-lithium-borate glass system

    Science.gov (United States)

    Rajagukguk, J.; Kaewkhao, J.; Djamal, M.; Hidayat, R.; Suprijadi; Ruangtaweep, Y.

    2016-10-01

    Structural and optical properties of Eu3+-doped sodium-lead-zinc-lithium-borate glasses (65-x)B2O3sbnd 15Na2Osbnd 10PbOsbnd 5ZnOsbnd 5Li2Osbnd xEu2O3 (where x = 0, 0.05, 0.1, 0.5, 1.0, 2.0 and 4.0) have been measured and analyzed by varying the Eu3+ ion concentrations. The physical parameters such as polaron radius, field strength and inter nuclear distance have been determined from measurements of densities and refractive indices. The structural properties of the prepared borate glasses were analyzed based on X-ray diffraction (XRD) and FTIR instruments. The diffraction spectra show no characteristic peaks in these glasses, which indicates the amorphous nature of the glasses. The infrared spectrum of the Eu3+-doped sodium-lead-zinc-lithium-borate glass systems show three disparate regions for active absorption band around 830-860 cm-1, 1020-1040 cm-1 and 1170-1180 cm-1. The electronic transitions in the UV-vis and NIR regions are assigned to the 7F0 → 5D4, 7F0 → 5G2, 7F0 → 5L6, 7F0 → 5D3, 7F0 → 5D2, 7F0 → 5D1, 7F0 → 5D07F1 → 5D07F0 → 7F6 and 7F1 → 7F6 levels centered at 362 nm, 380 nm, 395 nm, 414 nm, 465 nm, 533 nm, 583 nm, 590 nm 2092 nm and 2202 nm respectively. Five transition bands of luminescence spectra have been observed by using an excited wavelength of 395 nm. The luminescence intensity ratio (R) of 5D0 → 7F2 (electric dipole) transition to 5D0 → 7F1 (magnetic dipole) transition has been determined to obtain the strength of the covalent/ionic bond between the Eu3+ ions and the surrounding ligands. Radiative life time and emission color of the glasses were estimated and compared with other literature data by varying Eu3+ concentrations. The experimental lifetime of the 5D0 level was found to increase with increasing Eu3+ ion content, suggesting higher non-radiative energy transfer among Eu3+ ions in the glasses.

  14. Investigation of development and management of treatment planning systems for BNCT at foreign facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A new computational dosimetry system for BNCT: JCDS is developed by JAERI in order to carry out BNCT with epithermal neutron beam at present. The development and management situation of computational dosimetry system, which are developed and are used in BNCT facilities in foreign countries, were investigated in order to accurately grasp functions necessary for preparation of the treatment planning and its future subjects. In present state, 'SERA', which are developed by Idaho National Engineering and Environmental Laboratory (INEEL), is used in many BNCT facilities. Followings are necessary for development and management of the treatment planning system. (1) Reliability confirmation of system performance by verification as comparison examination of calculated value with actual experimental measured value. (2) Confirmation systems such as periodic maintenance for retention of the system quality. (3) The improvement system, which always considered relative merits and demerits with other computational dosimetry system. (4) The development of integrated system with patient setting. (author)

  15. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  16. Cold Vacuum Dryer (CVD) Facility Fire Protection System Design Description (SYS 24)

    Energy Technology Data Exchange (ETDEWEB)

    SINGH, G.

    2000-10-17

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility fire protection system (FPS). The primary features of the FPS for the CVD are a fire alarm and detection system, automatic sprinklers, and fire hydrants. The FPS also includes fire extinguishers located throughout the facility and fire hydrants to assist in manual firefighting efforts. In addition, a fire barrier separates the operations support (administrative) area from the process bays and process bay support areas. Administrative controls to limit combustible materials have been established and are a part of the overall fire protection program. The FPS is augmented by assistance from the Hanford Fire Department (HED) and by interface systems including service water, electrical power, drains, instrumentation and controls. This SDD, when used in conjunction with the other elements of the definitive design package, provides a complete picture of the FPS for the CVD Facility.

  17. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    Science.gov (United States)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative effluent containment system (ECS) that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal.

  18. Host-based data acquisition system to control pulsed facilities of the accelerator

    Science.gov (United States)

    Zamriy, V. N.

    2016-09-01

    The report discusses development of the host-based system to carry out timed measurements and data acquisition for the control of pulsed facilities of the accelerator. We consider modes of timing and allocation of operations of channels and the system node. The time of any working cycle of the pulsed facilities, rate of a data flow and an amount of serviced channels are coordinated with operation characteristics of the system node. Estimations of the readout rate of the data and the waiting time demonstrate the system efficiency. The technique has been developed to provide checking of groups of pulse parameters and control the facilities of the linear accelerator of electrons LUE-200 of the neutron source IREN.

  19. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  20. A real-time simulation facility for advanced digital guidance and control system research

    Science.gov (United States)

    Bryant, W. H.; Downing, D. R.; Ostroff, A. J.

    1979-01-01

    A real-time simulation facility built at NASA's Langley Research Center to support digital guidance and control research and development activities is examined. The unit has recently been used to develop autoland systems for VTOL. The paper describes the autoland experiment and the flight environment, the simulation facility hardware and software, and presents typical simulation data to illustrate the type of data analysis carried out during software development. Finally, flight data for a later version of the autoland system are presented to demonstrate the simulation's capability to predict overall system behavior.

  1. A study on environmental regulation and public inquiry system of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hun [Korea Association for Nuclear Technology, Taejon (Korea, Republic of); Kang, Chang Sun; Son, Ki Yon; Cho, Young Ho; Yang, Ji Won; Lee, Young Wook; Ko, Hyun Suk [Seoul National Univ., Seoul (Korea, Republic of)

    2000-03-15

    Public hearing system for domestic and foreign nuclear facilities are investigated and analyzed. As a result, Korean public hearing system are developed. Atomic Energy Act, Environmental Impact Assessment Act and Administrative Procedure Act of Korea are reviewed and appropriate acts, regulations, procedures and mandates of foreign countries including U.S.A are reviewed and analyzed. On the basis of these results the role of device to collect public opinion is identified for nuclear facility of Korea and the elementary principle of the system and recommendations are developed.

  2. Metallurgical analysis of lithium test assembly operated for 1200 h

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Tomohiro, E-mail: furukawa.tomohiro@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki 311-1393 (Japan); Kondo, Hiroo; Kanemura, Takuji; Hirakawa, Yasuhi [Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki 311-1393 (Japan); Yamaoka, Nobuo; Hoashi, Eiji; Suzuki-Yoshihashi, Sachiko; Horiike, Hiroshi [Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-10-15

    Highlights: • The assembly was used for the lithium free-surface flow experiments at 300 °C. • The integrity of steel was decreased due to carburizing from lithium. • It was proven that carbon control in lithium is important for corrosion protection. - Abstract: A lithium test assembly used for lithium-free surface flow experiments at 300 °C for 1200 h at Osaka University was analyzed metallographically to verify the design of the lithium target of the International Fusion Materials Irradiation Facility (IFMIF). Certain irregularities such as traces of high-speed lithium flow at a maximum velocity of 15 m/s were observed at the tip of the nozzle. Mottled unevenness with numerous microcracks a few microns deep was detected at the inlet of the nozzle, the velocity ratio of which was 0.1–0.4 as compared with the nozzle tip. A thin, altered layer developed on the surface of these regions because of carbide formation. It is believed that the microcracks were nucleated by thermal transients at the start or stop of operations of the lithium loop. These slight irregularities could be the result of exfoliation of the altered layer because of the high-speed lithium flow caused by the increased hardness of the altered layer as compared with that of the base metal. The metallurgical analysis proved for the first time that carbon control in lithium is also important for corrosion and erosion protection of the IFMIF components.

  3. Facile synthesis of hierarchical CoMn2O4 microspheres with porous and micro-/nanostructural morphology as anode electrodes for lithium-ion batteries

    Science.gov (United States)

    Li, Yana; Hou, Xianhua; Li, Yajie; Ru, Qiang; Wang, Shaofeng; Hu, Shejun; Lam, Kwok-ho

    2017-09-01

    Hierarchical CoMn2O4 microspheres assembled by nanoparticles have been successfully synthesized by a facile hydrothermal method and a subsequent annealing treatment. XRD detection indicate the crystal structure. SEM and TEM results reveal the 3-dimensional porous and micro-/nanostructural microsphere assembled by nanoparticles with a size of 20-100 nm. The CoMn2O4 electrode show initial specific discharge capacity of approximately 1546 mAh/g at the current rates 100 mA/g with a coulombic efficiency of 66.7% and remarkable specific capacities (1029-485 mAh/g) at various current rates (100-2800 mA/g). [Figure not available: see fulltext.

  4. Facile, low temperature synthesis of SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries

    Science.gov (United States)

    Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh; Chang, Chia-Chin; Huang, Jow-Lay

    2017-08-01

    We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO2-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO2 nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO2-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g-1 at 3200 mA g-1) and stable capacitance (522 mAh g-1 after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO2 nanoparticle aggregation and degrade the Li ion storage property.

  5. Facile Synthesis of Mn-Doped ZnO Porous Nanosheets as Anode Materials for Lithium Ion Batteries with a Better Cycle Durability.

    Science.gov (United States)

    Wang, Linlin; Tang, Kaibin; Zhang, Min; Xu, Jingli

    2015-12-01

    Porous Zn1 - x Mn x O (x = 0.1, 0.2, 0.44) nanosheets were prepared by a low-cost, large-scale production and simple approach, and the applications of these nanosheets as an anode material for Li-ion batteries (LIBs) were explored. Electrochemical measurements showed that the porous Zn0.8Mn0.2O nanosheets still delivered a stable reversible capacity of 210 mA h g(-1) at a current rate of 120 mA g(-1) up to 300 cycles. These results suggest that the facile synthetic method of producing porous Zn0.8Mn0.2O nanostructure can realize a better cycle durability with stable reversible capacity.

  6. Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems

    Science.gov (United States)

    Costa, C. M.; Gomez Ribelles, J. L.; Lanceros-Méndez, S.; Appetecchi, G. B.; Scrosati, B.

    2014-01-01

    In the present paper we report and discuss the physicochemical properties of novel electrolyte membranes, based on poly(vinylidenefluoride-co-trifluoroethylene), PVdF-TrFE, and poly(vinylidenefluoride-co-hexafluoropropylene), PVdF-HFP, co-polymer hosts and the PVdF-TrFE/poly(ethylene oxide (PEO) blend as separators for lithium battery systems. The results have shown that the examined separator membranes, particularly those based on the PVdF co-polymers, are able to uptake large liquid amounts leading to high ionic conductivity values. Tests performed on Li/LiFePO4 and Li/Sn-C cells have revealed very good cycling performance even at high current rates and 100% of DOD, approaching the results achieved in liquid electrolytes. A capacity fading lower than 0.002% per cycle was observed. Particularly, the Li/LiFePO4 cathode cells have exhibited excellent rate capability, being still able to deliver at 2C above 89% of the capacity discharged at 0.1C. These results, in conjunction with the about 100% coulombic efficiency, suggest very good electrolyte/electrode compatibility, which results from the high purity and stability of the electrolyte and electrode materials and the cell manufacturing.

  7. A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system

    Science.gov (United States)

    Zhao, Rui; Zhang, Sijie; Liu, Jie; Gu, Junjie

    2015-12-01

    Lithium ion (Li-ion) battery has emerged as an important power source for portable devices and electric vehicles due to its superiority over other energy storage technologies. A mild temperature variation as well as a proper operating temperature range are essential for a Li-ion battery to perform soundly and have a long service life. In this review paper, the heat generation and dissipation of Li-ion battery are firstly analyzed based on the energy conservation equations, followed by an examination of the hazardous effects of an above normal operating temperature. Then, advanced techniques in respect of electrode modification and systematic battery thermal management are inspected in detail as solutions in terms of reducing internal heat production and accelerating external heat dissipation, respectively. Specifically, variable parameters like electrode thickness and particle size of active material, along with optimization methods such as coating, doping, and adding conductive media are discussed in the electrode modification section, while the current development in air cooling, liquid cooling, heat pipe cooling, and phase change material cooling systems are reviewed in the thermal management part as different ways to improve the thermal performance of Li-ion batteries.

  8. Charge Equalization Controller Algorithm for Series-Connected Lithium-Ion Battery Storage Systems: Modeling and Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2017-09-01

    Full Text Available This study aims to develop an accurate model of a charge equalization controller (CEC that manages individual cell monitoring and equalizing by charging and discharging series-connected lithium-ion (Li-ion battery cells. In this concept, an intelligent control algorithm is developed to activate bidirectional cell switches and control direct current (DC–DC converter switches along with pulse width modulation (PWM generation. Individual models of an electric vehicle (EV-sustainable Li-ion battery, optimal power rating, a bidirectional flyback DC–DC converter, and charging and discharging controllers are integrated to develop a small-scale CEC model that can be implemented for 10 series-connected Li-ion battery cells. Results show that the charge equalization controller operates at 91% efficiency and performs well in equalizing both overdischarged and overcharged cells on time. Moreover, the outputs of the CEC model show that the desired balancing level occurs at 2% of state of charge difference and that all cells are operated within a normal range. The configuration, execution, control, power loss, cost, size, and efficiency of the developed CEC model are compared with those of existing controllers. The proposed model is proven suitable for high-tech storage systems toward the advancement of sustainable EV technologies and renewable source of applications.

  9. A facile method for in-situ synthesis of SnO{sub 2}/graphene as a high performance anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guiliang [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580 (China); Wu, Mingbo, E-mail: wumb@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580 (China); Wang, Ding [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Yin, Linghong; Ye, Jiashun; Deng, Shenzhen; Zhu, Zhiyuan; Ye, Wenjun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580 (China); Li, Zhongtao, E-mail: liztao@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580 (China)

    2014-10-01

    Highlights: • A facile, economic, and environment-friendly technique is proposed for in-situ synthesis of SnO{sub 2}/graphene nanocomposites. • The effects of Sn{sup 4+}/graphene oxide ratio on their structures as well as electrochemical behaviors are found playing important roles. • SnO{sub 2}/GN-50 with 50% SnO{sub 2} exhibits a stable capacity of 540 mAh g{sup −1} after 90 cycles at a current density of 100 mA g{sup −1}. • The excellent electrochemical performance of SnO{sub 2}/GN-50 is ascribed to the synergistic effect of a unique combination of SnO{sub 2} nanoparticles and graphene sheets. - Abstract: A facile, moderate, and environment-friendly method for in-situ preparation of SnO{sub 2}/graphene nanocomposites (SnO{sub 2}/GNs) was proposed. The structures and morphology as well as electrochemical behaviors of SnO{sub 2}/GNs with varied proportions of SnO{sub 2} and graphene were characterized by X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy and relevant electrochemical property tests. The results reveal that the ratios of SnO{sub 2} to graphene have a significant effect on the structures and properties of SnO{sub 2}/GNs. SnO{sub 2}/GN-50 containing 50% SnO{sub 2} delivers a high specific capacity of 540 mAh g{sup −1} even after 90 cycles at a current density of 100 mA g{sup −1}, which is attributed to the synergistic effect of a unique combination of SnO{sub 2} nanoparticles and graphene sheets, indicating that SnO{sub 2}/GNs might have a promising future as anode material in Li-ion batteries.

  10. A Study on an appropriate operating system of environmental basic facility service industry

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyun Joo [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    The environmental basic facility service industry is designed to have a structural reorganization of general operating system and the efficient and effective participation of private industry and regulation of industry in connection with the general system. 35 refs., 9 figs., 20 tabs.

  11. 76 FR 24213 - Medicare Program; Inpatient Rehabilitation Facility Prospective Payment System for Federal Fiscal...

    Science.gov (United States)

    2011-04-29

    ... of each FY the classification and weighting factors for the IRF prospective payment system (PPS) case... Inpatient Rehabilitation Facility Prospective Payment System (IRF PPS) B. Provisions of the Affordable Care Act Affecting the IRF PPS in FY 2012 and Beyond C. Operational Overview of the Current IRF PPS...

  12. Preliminary Design Report of Fluid System of PDRC Performance Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae-Ho; Eoh, Jae-Hyuk; Seong, Seung-Hwan; Han, Ji-Woong; Choi, Byoung-Hae; Kim, Seong-O

    2008-10-15

    PDRC (Passive Decay Heat Removal Circuit) is a safety grade passive residual heat removal system of KALIMER-600. In order to assess the long- and short-term cooling capabilities of PDRC and produce the experimental data for the verification of the performance and safety analysis codes, PDRC performance test was planned for. In this study, the overall design requirements and the preliminary design data for the fluid system of test facility are presented. The fluid system of the facility is composed of the primary heat transport system, the PDRC, the IHX air cooling system and the sodium supply/purification system. The preliminarily designed facility is scaled-down to 1/4 for length, 1/400 for volume from the primary heat transport system and the PDRC of KALIMER-600 based on a reliable scaling method. It can simulate the cooling of primary heat transport system for the full temperature condition in case of the reactor and pump trips. The produced preliminary design data will be used in the future as the basic information for a detailed design, an establishment of experimental requirement and an assessment of the appropriateness of facility design.

  13. Cost Implications of an Interim Storage Facility in the Waste Management System

    Energy Technology Data Exchange (ETDEWEB)

    Jarrell, Joshua J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joseph, III, Robert Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petersen, Gordon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nutt, Mark [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, Joe [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cotton, Thomas [Complex Systems Group, Bozeman, MT (United States)

    2016-09-01

    This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.

  14. 42 CFR 412.428 - Publication of Updates to the inpatient psychiatric facility prospective payment system.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Publication of Updates to the inpatient psychiatric facility prospective payment system. 412.428 Section 412.428 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE PAYMENT SYSTEMS FOR INPATIENT HOSPITAL SERVICES...

  15. Implementation of the DYMAC system at the new Los Alamos Plutonium Processing Facility. Phase II report

    Energy Technology Data Exchange (ETDEWEB)

    Malanify, J.J.; Amsden, D.C.

    1982-08-01

    The DYnamic Materials ACcountability System - called DYMAC - performs accountability functions at the new Los Alamos Plutonium Processing Facility where it began operation when the facility opened in January 1978. A demonstration program, DYMAC was designed to collect and assess inventory information for safeguards purposes. It accomplishes 75% of its design goals. DYMAC collects information about the physical inventory through deployment of nondestructive assay instrumentation and video terminals throughout the facility. The information resides in a minicomputer where it can be immediately sorted and displayed on the video terminals or produced in printed form. Although the capability now exists to assess the collected data, this portion of the program is not yet implemented. DYMAC in its present form is an excellent tool for process and quality control. The facility operator relies on it exclusively for keeping track of the inventory and for complying with accountability requirements of the US Department of Energy.

  16. Simulating Single-Effect Absorption Cooling Lithium Bromide A Solar System With Flat Plate Collector And Contribute To An Office Building

    OpenAIRE

    MIRI, Mohadaseh

    2015-01-01

    Use solar energy to provide hot water consumption, space heating and cooling in recent decades is considered. In this article a model varies with time, a solar adsorption cooling system consists of a single effect lithium bromide absorption system, a flat plate collector and a storage tank or linear or parabolic simulated separately. The system for cooling an office building for hours of operation from 7 am to 18 pm is considered.About 7 kW peak cooling load occurs in July. Results obtained s...

  17. Fuzzy-AHP-Based Comprehensive Evaluation on Facility Management System of High-Rise Office Buildings

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peihong; WANG Kan; WAN Huanhuan; MA Zhongjiao

    2011-01-01

    The present building facility management status in China resulted in many problems such as highenergy consumption, failure of automation control, services failure and poor indoor air quality. Based onquestionnaires and interviews to professional engineers and building users, a comprehensive evaluation index system was established on facility management of high-rise office buildings. A Fuzzy AHP based upon hierarchy criteria system was established. A Fuzzy AHP Evaluation Model on Facility Management System was set up ;α-cut analysis was introduced and incorporated with expert knowledge together, which made up the optimism index λ. The fuzzy optimum crisp weight of each criterion was resulted from data-mining. Case investigations were processed in high-rise office buildings in Shenyang. The results illustrated that indoor air quality, thermal comfort and life cycle cost were the most important indexes in the evaluation of Facility Management System of high rise office buildings. Residents in high-rise buildings in Shenyang pay less attention to maintenance management and environment protection. By comparison with the analysis result of Export Choice, Fuzzy AHP-based evaluation model could act as a scientific reference for the establishment of governmental standards in facility management area in building.

  18. Implementation of a quality management system at the PHOENIX facility (CryoMaK)

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, Elisabeth, E-mail: elisabeth.urbach@kit.edu; Bagrets, Nadezda; Weiss, Klaus-Peter

    2013-10-15

    Within a variety of mechanical tests in the Cryogenic Material Test Facility Karlsruhe (CryoMaK) at Karlsruhe Institute of Technology (KIT) the PHOENIX facility was prepared for multiple standard tensile tests in liquid helium, liquid nitrogen and at room temperature. With the multiple specimens holder 10 specimens can be tested within one cool down one after another. A quality management system is needed for ensuring reproducible preconditions. For the guarantee of the competence of the laboratory and the measurement equipment, a quality management system was implemented and prepared for accreditation according to DIN EN ISO/IEC 17025 (ISO 17025). The implementation of a quality management system allows high precision test results included the estimation of measurement uncertainty. This paper gives an overview of the management and technical requirements for the accreditation of the PHOENIX testing facility.

  19. Specific factors influencing information system/information and communication technology sourcing strategies in healthcare facilities.

    Science.gov (United States)

    Potančok, Martin; Voříšek, Jiří

    2016-09-01

    Healthcare facilities use a number of information system/information and communication technologies. Each healthcare facility faces a need to choose sourcing strategies most suitable to ensure provision of information system/information and communication technology services, processes and resources. Currently, it is possible to observe an expansion of sourcing possibilities in healthcare informatics, which creates new requirements for sourcing strategies. Thus, the aim of this article is to identify factors influencing information system/information and communication technology sourcing strategies in healthcare facilities. The identification was based on qualitative research, namely, a case study. This study provides a set of internal and external factors with their impact levels. The findings also show that not enough attention is paid to these factors during decision-making. © The Author(s) 2015.

  20. Transition of the BELLA PW laser system towards a collaborative research facility in laser plasma science

    Science.gov (United States)

    Toth, Csaba; Evans, Dave; Gonsalves, Anthony J.; Kirkpatrick, Mark; Magana, Art; Mannino, Greg; Mao, Hann-Shin; Nakamura, Kei; Riley, Joe R.; Steinke, Sven; Sipla, Tyler; Syversrud, Don; Ybarrolaza, Nathan; Leemans, Wim P.

    2017-03-01

    The advancement of Laser-Plasma Accelerators (LPA) requires systematic studies with ever increasing precision and reproducibility. A key component of such a research endeavor is a facility that provides reliable, well characterized laser sources, flexible target systems, and comprehensive diagnostics of the laser pulses, the interaction region, and the produced electron beams. The Berkeley Lab Laser Accelerator (BELLA), a PW laser facility, now routinely provides high quality focused laser pulses for high precision experiments. A description of the commissioning process, the layout of the laser systems, the major components of the laser and radiation protection systems, and a summary of early results are given. Further scientific plans and highlights of operational experience that serve as the basis for transition to a collaborative research facility in high-peak power laser-plasma interaction research are reviewed.

  1. NFIRAOS First Facility AO System for the Thirty Meter Telescope

    CERN Document Server

    Herriot, Glen; Atwood, Jenny; Boyer, Corinne; Byrnes, Peter; Caputa, Kris; Ellerbroek, Brent; Gilles, Luc; Hill, Alexis; Ljusic, Zoran; Pazder, John; Rosensteiner, Matthias; Smith, Malcolm; Spano, Paolo; Szeto, Kei; Véran, Jean-Pierre; Wevers, Ivan; Wang, Lianqi; Wooff, Robert

    2014-01-01

    NFIRAOS, the Thirty Meter Telescope's first adaptive optics system is an order 60x60 Multi-Conjugate AO system with two deformable mirrors. Although most observing will use 6 laser guide stars, it also has an NGS-only mode. Uniquely, NFIRAOS is cooled to -30 C to reduce thermal background. NFIRAOS delivers a 2-arcminute beam to three client instruments, and relies on up to three IR WFSs in each instrument. We present recent work including: robust automated acquisition on these IR WFSs; trade-off studies for a common-size of deformable mirror; real-time computing architectures; simplified designs for high-order NGS-mode wavefront sensing; modest upgrade concepts for high-contrast imaging.

  2. Lunar landing and launch facilities (Complex 39L): Guidance systems and propellant systems

    Science.gov (United States)

    1989-01-01

    After a general, overall definition of Complex 39L during the previous two years, the 1988-89 projects were chosen to focus on more specific aspects, specifically, guidance systems and propellant systems. Six teams or subtasks were formulated: cascade refrigeration for boil-off recovery of cryogenic storage vessels; lunar ground-based radar system to track space vehicles; microwave altimeter for spacecraft; development of a computational model for the determination of lunar surface and sub-surface temperatures; lunar cryogenic facility for the storage of fuels; and lunar lander fuel inventory tent for the storage of cryogenic vessels. At the present time, a cascade refrigeration system for a cryogenic boil-off recovery system has been designed. This is to serve as a baseline system. The ground-based tracking system uses existing technology to implement a reliable tracking radar for use on the lunar surface. A prototype has been constructed. The microwave altimeter is for use on lunar landers. It makes use of the Doppler effect to measure both altitude and the vertical velocity component of the spacecraft. A prototype has been constructed. A computational model that predicts the spatial and temporal temperature profiles of the lunar subsurface was formulated. Propellant storage vessels have been designed. A support for these vessels which minimizes heat leaks was also designed. Further work on the details of the Fuel Inventory Tent (FIT) was performed. While much design work on the overall Complex 39L remains to be done, significant new work has been performed in the subject areas.

  3. Indicators System Creation For The Energy Efficiency Benchmarking Of Municipal Power System Facilities

    Directory of Open Access Journals (Sweden)

    Davydenko L.V.

    2015-04-01

    Full Text Available The issues of the dataware of the comparative analysis procedure (benchmarking for municipal power system facilities energy efficiency level estimation with a view of the hierarchical structure of the heat supply system are considered. The aim of the paper is the system of indicators formation for characterizing the efficiency of energy usage as on objects on lowest so on highest levels of power systems, proceeding from features of their functioning. Benchmarking methodology allows carrying out the estimation of energy efficiency level on the base of a plurality of parameters without their generalization in one indicator, but requires ensuring their comparability. Using the methodology of available statistical information that did not require deep specification and additional inspection structuring objectives and tasks of energy efficiency estimation problem has been proposed for ensuring the opportunity of benchmarking procedure implementation. This makes it possible to form the subset of indicators that ensure enough specification of the object of study, taking into account the degree of abstraction for every hierarchical level or sub problem. For a comparative analysis of energy using efficiency in municipal power systems at the highest levels of the hierarchy a plurality of indicators of the energy efficiency has been formed. Indicators have been determined with consideration of the structural elements of heat supply systems, but allowing taking into account the efficiency of the initial state of the objects, their functioning, and the questions of energy resources accounting organization. Usage of the proposed indicators provides implementation of energy using efficiency monitoring in the municipal power system and allows getting complete overview of the problem.

  4. Integrated Component-based Data Acquisition Systems for Aerospace Test Facilities

    Science.gov (United States)

    Ross, Richard W.

    2001-01-01

    The Multi-Instrument Integrated Data Acquisition System (MIIDAS), developed by the NASA Langley Research Center, uses commercial off the shelf (COTS) products, integrated with custom software, to provide a broad range of capabilities at a low cost throughout the system s entire life cycle. MIIDAS combines data acquisition capabilities with online and post-test data reduction computations. COTS products lower purchase and maintenance costs by reducing the level of effort required to meet system requirements. Object-oriented methods are used to enhance modularity, encourage reusability, and to promote adaptability, reducing software development costs. Using only COTS products and custom software supported on multiple platforms reduces the cost of porting the system to other platforms. The post-test data reduction capabilities of MIIDAS have been installed at four aerospace testing facilities at NASA Langley Research Center. The systems installed at these facilities provide a common user interface, reducing the training time required for personnel that work across multiple facilities. The techniques employed by MIIDAS enable NASA to build a system with a lower initial purchase price and reduced sustaining maintenance costs. With MIIDAS, NASA has built a highly flexible next generation data acquisition and reduction system for aerospace test facilities that meets customer expectations.

  5. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    Science.gov (United States)

    Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  6. Intelligent monitoring system for new energy vehicle lithium ion battery%新能源汽车锂离子电池组智能监控系统

    Institute of Scientific and Technical Information of China (English)

    林可

    2016-01-01

    随着新能源汽车的兴起,锂离子电池作为一种新型的环保电池,被认为是其主要的动力源和储能载体,而电池自燃起火等事故的频发造成极大危害。本文基于锂离子电池的特性,试对新能源汽车中的锂离子电池组智能监控系统进行相关的研究和探索。%With thedevelopment of new energy vehicles, lithium ion battery as a new environmental protection battery,is considered to be the main source of power and energy storage carrier,and frequent accidents such as battery spontaneous combustion fire caused great harm.Try this article on the basis of the characteristics of lithium ion batteries,lithium ion battery of new energy vehicles intelligent monitoring system for the related research and exploration.

  7. Space-charge at the lithium-lithium chloride interface

    Science.gov (United States)

    Jamnik, J.; Gaberscek, M.; Meden, A.; Pejovnik, S.

    1991-06-01

    The electrical properties of the passive layer formed on lithium as the product of the corrosion reaction in thionyl chloride are discussed. The passive layer is regarded as a thin layer of an ionic crystal placed between two party blocking electrodes (i.e., lithium and liquid electrolyte). After a short review of thermodynamic properties of the system, a model for description of the electric properties of the static space-charge regions is presented. On this basis, a comment on and partial reinterpretation of impedance measurements of the passive layer is given. The suggested approach leads to the conclusion that the quality of Li/SOCl2 batteries decisively depends on the properties of the lithium passive layer interface. Finally, experiments to confirm the model are suggested.

  8. A new access control system by fingerprint for radioisotope facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroko; Hirata, Yasuki [Kyushu Univ., Fukuoka (Japan). Radioisotope Center; Kondo, Takahiro; Takatsuki, Katsuhiro

    1998-04-01

    We applied a new fingerprint checker for complete access control to the radiation controlled area and to the radioisotope storage room, and prepared softwares for the best use of this checker. This system consists of a personal computer, access controllers, a fingerprint register, fingerprint checkers, a tenkey and mat sensors, permits ten thousand users to register their fingerprints and its hard disk to keep more than a million records of user`s access. Only 1% of users could not register their fingerprints worn-out, registered four numbers for a fingerprint. The softwares automatically provide varieties of reports, caused a large reduction in manual works. (author)

  9. Facile Synthesis of Carbon-Coated Zn2SnO4 Nanomaterials as Anode Materials for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xiaoxu Ji

    2014-01-01

    Full Text Available Carbon-coated Zn2SnO4 nanomaterials have been synthesized by a facile hydrothermal method in which as-prepared Zn2SnO4 was used as the precursor and glucose as the carbon source. The structural, morphological, and electrochemical properties were investigated by means of X-ray (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and electrochemical measurement. The first discharge/charge capacity of carbon-coated Zn2SnO4 was about 1248.8 mAh/g and 873.2 mAh/g at a current density of 200 mA/g in the voltage range of 0.05 V–3.0 V, respectively, corresponding to Coulombic efficiency of 69.92%. After 40 cycles, the capacity retained 400 mAh/g, which is much better than bare Zn2SnO4.

  10. Gemini Observatory base facility operations: systems engineering process and lessons learned

    Science.gov (United States)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  11. Creation and Application of Expert System Framework in Granting the Credit Facilities

    Directory of Open Access Journals (Sweden)

    Somaye Hoseini

    2013-09-01

    Full Text Available This study investigated the development of a knowledge base for expert system for credit risk assessment of bank’s legal customers. It analyzed the customers’ credit risk based on experts’ financial ratio analysis. Financial ratios were derived from financial statements of customers; however, the knowledge that helps banking experts to determine the relationship between customers’ credit risk and financial situation has been derived from these laws. In this study, expert system considered customer financial ratios as input and prediction of credit risk level as the output. This study was a descriptive-case study research. The population consisted of credit experts of Tejarat bank who were the member of bank’s credit Committee and had the right to vote for facilities approval and the individuals whose main task was providing reports for granting facilities and monitoring the use of facilities. After an initial interview and determining the evaluation criteria for facilities and determining the items for each of the criteria, a questionnaire was designed using Likert scale. Data normality test was conducted to ensure the accuracy of the collected data. T-test was performed to realize the selected criteria are important. Then, experts were asked to determine the minimum score for providing the facility to the applicant in each section of the questionnaire. The laws of expert system were provided based on determined minimum scores.

  12. Monitoring System for Storm Readiness and Recovery of Test Facilities: Integrated System Health Management (ISHM) Approach

    Science.gov (United States)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera; Schmalzel, John

    2010-01-01

    Severe weather events are likely occurrences on the Mississippi Gulf Coast. It is important to rapidly diagnose and mitigate the effects of storms on Stennis Space Center's rocket engine test complex to avoid delays to critical test article programs, reduce costs, and maintain safety. An Integrated Systems Health Management (ISHM) approach and technologies are employed to integrate environmental (weather) monitoring, structural modeling, and the suite of available facility instrumentation to provide information for readiness before storms, rapid initial damage assessment to guide mitigation planning, and then support on-going assurance as repairs are effected and finally support recertification. The system is denominated Katrina Storm Monitoring System (KStorMS). Integrated Systems Health Management (ISHM) describes a comprehensive set of capabilities that provide insight into the behavior the health of a system. Knowing the status of a system allows decision makers to effectively plan and execute their mission. For example, early insight into component degradation and impending failures provides more time to develop work around strategies and more effectively plan for maintenance. Failures of system elements generally occur over time. Information extracted from sensor data, combined with system-wide knowledge bases and methods for information extraction and fusion, inference, and decision making, can be used to detect incipient failures. If failures do occur, it is critical to detect and isolate them, and suggest an appropriate course of action. ISHM enables determining the condition (health) of every element in a complex system-of-systems or SoS (detect anomalies, diagnose causes, predict future anomalies), and provide data, information, and knowledge (DIaK) to control systems for safe and effective operation. ISHM capability is achieved by using a wide range of technologies that enable anomaly detection, diagnostics, prognostics, and advise for control: (1

  13. Screensaver: an open source lab information management system (LIMS for high throughput screening facilities

    Directory of Open Access Journals (Sweden)

    Nale Jennifer

    2010-05-01

    Full Text Available Abstract Background Shared-usage high throughput screening (HTS facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. Results We have developed Screensaver, a free, open source, web-based lab information management system (LIMS, to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. Conclusions The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.

  14. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities

    Science.gov (United States)

    2010-01-01

    Background Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. Results We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. Conclusions The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities. PMID:20482787

  15. Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Soli Khericha; Edwin Harvego; John Svoboda; Ryan Dalling

    2012-01-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstrate Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  16. Lead coolant test facility systems design, thermal hydraulic analysis and cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    Khericha, Soli, E-mail: slk2@inel.gov [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Harvego, Edwin; Svoboda, John; Evans, Robert [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Dalling, Ryan [ExxonMobil Gas and Power Marketing, Houston, TX 77069 (United States)

    2012-01-15

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed below: Bullet Develop and demonstrate feasibility of submerged heat exchanger. Bullet Develop and demonstrate open-lattice flow in electrically heated core. Bullet Develop and demonstrate chemistry control. Bullet Demonstrate safe operation. Bullet Provision for future testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimated. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 Degree-Sign C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  17. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    Science.gov (United States)

    2011-01-01

    Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/. PMID:21385349

  18. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    Directory of Open Access Journals (Sweden)

    Baldwin Stephen A

    2011-03-01

    Full Text Available Abstract Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  19. Module of lithium divertor for KTM tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I., E-mail: yublinski@yandex.ru [FSUE ' Red Star' , Moscow (Russian Federation); Vertkov, A.; Evtikhin, V.; Balakirev, V.; Ionov, D.; Zharkov, M. [FSUE ' Red Star' , Moscow (Russian Federation); Tazhibayeva, I. [IAE NNC RK, Kurchatov (Kazakhstan); Mirnov, S. [TRINITI, Troitsk, Moscow Region (Russian Federation); Khomiakov, S.; Mitin, D. [OJSC Dollezhal Institute, Moscow (Russian Federation); Mazzitelli, G. [ENEA RC Frascati (Italy); Agostini, P. [ENEA RC Brasimone (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Black-Right-Pointing-Pointer Capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. Black-Right-Pointing-Pointer Lithium divertor module for KTM tokamak is under development. Black-Right-Pointing-Pointer Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Black-Right-Pointing-Pointer Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation. - Abstract: Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Z{sub eff} of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of

  20. Overview of laser systems for the Orion facility at the AWE.

    Science.gov (United States)

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  1. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    Science.gov (United States)

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  2. Lithium and Pregnancy

    Science.gov (United States)

    ... best live chat Live Help Fact Sheets Share Lithium and Pregnancy Saturday, 20 September 2014 In every ... risk. This sheet talks about whether exposure to lithium may increase the risk for birth defects over ...

  3. Development of decommissioning management system for nuclear fuel cycle facilities (DECMAN)

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichirou; Ishijima, Noboru; Tanimoto, Ken-ichi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-04-01

    In making a plan of decommissioning of nuclear fuel facilities, it is important to optimize the plan on the standpoint of a few viewpoints, that is, the amount of working days, workers, radioactive waste, exposure dose of worker, and cost (they are called evaluation indexes). In the midst of decommissioning, the decommissioning plan would be modified suitably to optimize the evaluation indexes adjusting to progress of the decommissioning. The decommissioning management code (DECMAN), that is support system on computer, has been developed to assist the decommissioning planning. The system calculates the evaluation indexes quantitatively. The system consists of three fundamental codes, facility information database code, technical know-how database code and index evaluation code, they are composed using Oracle' database and 'G2' expert system. The functions of the system are as follows. (1) Facility information database code. Information of decommissioning facility and its rooms, machines and pipes in the code. (2) Technical know-how database code. Technical Information of tools to use in decommissioning work, cutting, dose measure, and decontamination are there. (3) Index evaluation code. User build decommissioning program using above two database codes. The code evaluates five indexes, the amount of working days, workers, radioactive waste, exposure dose of worker, and cost, on planning decommissioning program. Results of calculation are shown in table, chart, and etc. (author)

  4. A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bohang; Li, Wangda; Yan, Pengfei; Oh, Seung-Min; Wang, Chong-Min; Manthiram, Arumugam

    2016-09-01

    A facile synthesis method was developed to prepare xLi2MnO3·(1-x)LiNi0.7Co0.15Mn0.15O2 (x = 0, 0.03, 0.07, 0.10, 0.20, and 0.30 as molar ratio) cathode materials, combining the advantages of high specific capacity from Ni-rich layered phase and surface chemical stability from Li-rich layered phase. X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM) and electrochemical charge/discharge performance confirm the formation of a Li-rich layered phase with C2/m symmetry. Most importantly, high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) reveals a spatial relationship that Li-rich nano-domain islands are integrated into a conventional Ni-rich layered matrix (R$\\bar{3}$m). This is the first time that Li-rich phase has been directly observed inside a particle at the nano-scale, when the overall composition of layered compounds (Li1+δNixMnyM1-x-y-δO2, M refers to transition metal elements) is Ni-rich (x > 0.5) rather than Mn-rich (y > 0.5). Remarkably, xLi2MnO3·(1-x)LiNi0.7Co0.15Mn0.15O2 cathode with optimized x value shows superior electrochemical performance at C/3, i.e., 170 mA h g-1 with 90.3 % of capacity retention after 400 cycles at 25 °C and 164 mA h g-1 with 81.3 % capacity retention after 200 cycles at 55 °C.

  5. Reliability analysis for the facility data acquisition interface system upgrade at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Turner, W.J.; Pope, N.G.; Brown, R.E.

    1995-05-01

    Because replacement parts for the existing facility data acquisition interface system at TA-55 have become scarce and are no longer being manufactured, reliability studies were conducted to assess various possible replacement systems. A new control system, based on Allen-Bradley Programmable Logic Controllers (PLCs), was found to have a likely reliability 10 times that of the present system, if the existing Continuous Air Monitors (CAMS) were used. Replacement of the old CAMs with new CAMs will result in even greater reliability as these are gradually phased in. The new PLC-based system would provide for hot standby processors, redundant communications paths, and redundant power supplies, and would be expandable and easily maintained, as well as much more reliable. TA-55 is the Plutonium Processing Facility which processes and recovers Pu-239 from scrap materials.

  6. Assessment System for Junior High Schools in Taiwan to Select Environmental Education Facilities and Sites

    Science.gov (United States)

    Ho, Shyue-Yung; Chen, Wen-Te; Hsu, Wei-Ling

    2017-01-01

    Environmental education is essential for people to pursue sustainable development. In Taiwan, environmental education is taught to students until they graduate from junior high school. This study was conducted to establish an assessment system for junior high schools to select appropriate environmental education facilities and sites. A mix of…

  7. Renewable Energy Assessment of Bureau of Reclamation Land and Facilities Using Geographic Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heimiller, D.; Haase, S.; Melius, J.

    2013-05-01

    This report summarizes results of geographic information system screening for solar and wind potential at select Bureau of Reclamation lands in the western United States. The study included both utility-scale and facility-scale potential. This study supplements information in the report titled Renewable Energy Assessment for the Bureau of Reclamation: Final Report.

  8. Advanced Education Facilities for Power Electronics and Renewable Energy Systems at Aalborg University

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Lungeanu, Marian; Blaabjerg, Frede

    2005-01-01

    A new approach for the project- and problem-based learning method is achieved at Aalborg University. Two new laboratories called Flexible Drives System Laboratory (FDSL) and Green Power Laboratory (GPL) have been developed. A common feature is that these facilities are using entirely Simulink for...

  9. Assessment System for Junior High Schools in Taiwan to Select Environmental Education Facilities and Sites

    Science.gov (United States)

    Ho, Shyue-Yung; Chen, Wen-Te; Hsu, Wei-Ling

    2017-01-01

    Environmental education is essential for people to pursue sustainable development. In Taiwan, environmental education is taught to students until they graduate from junior high school. This study was conducted to establish an assessment system for junior high schools to select appropriate environmental education facilities and sites. A mix of…

  10. Developing mobile BIM/2D barcode-based automated facility management system.

    Science.gov (United States)

    Lin, Yu-Cheng; Su, Yu-Chih; Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment.

  11. Developing Mobile BIM/2D Barcode-Based Automated Facility Management System

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Lin

    2014-01-01

    Full Text Available Facility management (FM has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D graphics when depicting facilities. Building information modeling (BIM uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D object-oriented computer-aided design (CAD. This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment.

  12. Pre-peer review of Hungarian research and innovation system : Horizon 2020 policy support facility

    NARCIS (Netherlands)

    Ortega Argiles, Raquel; Ranga, Liana Marina; Anthony, Bartzokas

    2015-01-01

    This Report provides the outcome of the Pre-Peer Review of the Hungarian research and innovation system, carried out by a panel of experts under the Horizon 2020 Policy Support Facility. The expert panel arrived at a first assessment of strengths and weaknesses including key bottlenecks as well as a

  13. Designing solar lithium battery management system in wireless sensor nodes%WSN节点中能量管理方案设计

    Institute of Scientific and Technical Information of China (English)

    朱舟; 余绍俊; 于勃; 易卫东

    2015-01-01

    为了使无线传感器网络节点具有持续稳定的能量供给,设计实现了一种太阳能锂电池系统。系统利用改进的扰动观察法作为太阳能电池板最大功率追踪技术,追踪的效率能较稳定地维持在98%左右。系统利用MSP430输出的PWM波形控制由MOS管组成的3路开关,对系统的能量流动进行动态路径管理,采用动态路径管理技术使太阳能电池板实际输出功率的利用率提高了16%左右。系统利用电路测量的历史数据预测锂电池的状态,能有效防止锂电池过充过放。%In order to make the wireless sensor network node has steady energy supply, a solar lithium battery sys-tem is designed and implemented.The system uses an improved perturbation and observation method as the solar panel maximum power point tracking technology, the efficiency of the tracking is stable maintained at around 98%. The system uses the PWM produced by MSP430 to control the three-way switch which is composed by MOS tubes, which implement dynamic power path management, dynamic path management technology enables the utilization of actual power output of solar panels increased by about 16%.The system uses historical data generated by the meas-urement circuit to predict the state of lithium battery, which can effectively prevent overcharge and over discharge of the lithium.

  14. 78 FR 76772 - Special Conditions: Airbus Model A350-900 Airplanes; Permanently Installed Rechargeable Lithium...

    Science.gov (United States)

    2013-12-19

    ...; Permanently Installed Rechargeable Lithium-Ion Batteries and Battery Systems AGENCY: Federal Aviation... feature associated with permanently installed rechargeable lithium-ion batteries and battery systems... maximum diversion time. Existing airworthiness regulations did not anticipate the use of...

  15. The Beam Profile Monitoring System for the CERN IRRAD Proton Facility

    CERN Document Server

    Ravotti, F; Glaser, M; Matli, E; Pezzullo, G; Gan, K K; Kagan, H; Smith, S; Warner, J D

    2016-01-01

    To perform proton irradiation experiments, CERN built during LS1 a new irradiation facility in the East Area at the Proton Synchrotron accelerator. At this facility, named IR-RAD, a high-intensity 24 GeV/c proton beam is used. During beam steering and irradiation, the intensity and the transverse profile of the proton beam are monitored online with custom-made Beam Profile Monitor (BPM) devices. In this work, we present the design and the architecture of the IRRAD BPM system, some results on its performance with the proton beam, as well as its planned grades.

  16. Atmospheric science facility pallet-only mode space transportation system payload (feasibility study), Volume 1

    Science.gov (United States)

    1975-01-01

    The economic and technical feasibility is assessed of employing a pallet-only mode for conducting Atmospheric Magnetospheric Plasmas-in-Space experiments. A baseline design incorporating the experiment and instrument descriptions is developed. The prime instruments are packaged into four pallets in a physical and functional manner compatible with the Space Transportation System capabilities and/or constraints and an orbiter seven-day mission timeline. Operational compatibility is verified between the orbiter/payload and supporting facilities. The development status and the schedule requirements applicable to the Atmospheric Science Facility mission are identified. Conclusions and recommendations are presented and discussed.

  17. A control system of a mini survey facility for photometric monitoring

    Science.gov (United States)

    Tsutsui, Hironori; Yanagisawa, Kenshi; Izumiura, Hideyuki; Shimizu, Yasuhiro; Hanaue, Takumi; Ita, Yoshifusa; Ichikawa, Takashi; Komiyama, Takahiro

    2016-08-01

    We have built a control system for a mini survey facility dedicated to photometric monitoring of nearby bright (Kdome and a small (30-mm aperture) wide-field (5 × 5 sq. deg. field of view) infrared (1.0-2.5 microns) camera on an equatorial fork mount, as well as power sources and other associated equipment. All the components other than the camera are controlled by microcomputerbased I/O boards that were developed in-house and are in many of the open-use instruments in our observatory. We present the specifications and configuration of the facility hardware, as well as the structure of its control software.

  18. Tethered elevator and platforms as space station facilities: Systems studies and demonstrative experiments

    Science.gov (United States)

    1986-01-01

    Several key concepts of the science and applications tethered platforms were studied. Some conclusions reached are herein listed. Tether elevator and platform could improve the space station scientific and applicative capabilities. The space elevator presents unique characteristics as microgravity facility and as a tethered platform servicing vehicle. Pointing platforms could represent a new kind of observation facility for large class of payloads. The dynamical, control and technological complexity of these concepts advised demonstrative experiments. The on-going tethered satellite system offers the opportunity to perform such experiments. And feasibility studies are in progress.

  19. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  20. Lithium metal oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.xbatteries containing the electrodes.

  1. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    Science.gov (United States)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult

  2. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.

  3. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    Energy Technology Data Exchange (ETDEWEB)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  4. Mobile test fixture system for use in a thermal vacuum facility

    Science.gov (United States)

    Weber, Ronald C.; Stoyer, Robert E.; Carpenter, Warren A.

    1986-01-01

    A turnkey thermal vacuum facility is discussed. A system is described that integrates five major subsystems including the transporters, multiplexers, a thermal shrouded test fixture, a thermal isolation system and an internal utility distribution system into a mobile test fixture system. This concept allows the spacecraft to be mounted outside of the chamber. Instrumentation and checkout of the spacecraft and its instrumentation is accomplished at this station. The spacecraft, which is still mated to the test fixture, is then moved into the chamber using an air transporter system.

  5. Distributed computer control system in the Nova Laser Fusion Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The EE Technical Review has two purposes - to inform readers of various activities within the Electronics Engineering Department and to promote the exchange of ideas. The articles, by design, are brief summaries of EE work. The articles included in this report are as follows: Overview - Nova Control System; Centralized Computer-Based Controls for the Nova Laser Facility; Nova Pulse-Power Control System; Nova Laser Alignment Control System; Nova Beam Diagnostic System; Nova Target-Diagnostics Control System; and Nova Shot Scheduler. The 7 papers are individually abstracted.

  6. Protoflight photovoltaic power module system-level tests in the space power facility

    Science.gov (United States)

    Rivera, Juan C.; Kirch, Luke A.

    1989-01-01

    Work Package Four, which includes the NASA-Lewis and Rocketdyne, has selected an approach for the Space Station Freedom Photovoltaic (PV) Power Module flight certification that combines system level qualification and acceptance testing in the thermal vacuum environment: The protoflight vehicle approach. This approach maximizes ground test verification to assure system level performance and to minimize risk of on-orbit failures. The preliminary plans for system level thermal vacuum environmental testing of the protoflight PV Power Module in the NASA-Lewis Space Power Facility (SPF), are addressed. Details of the facility modifications to refurbish SPF, after 13 years of downtime, are briefly discussed. The results of an evaluation of the effectiveness of system level environmental testing in screening out incipient part and workmanship defects and unique failure modes are discussed. Preliminary test objectives, test hardware configurations, test support equipment, and operations are presented.

  7. Waste Receiving and Processing (WRAP) Facility Public Address System Review Findings

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHRYS, K.L.

    1999-11-03

    Public address system operation at the Waste Receiving and Processing (WRAP) facility was reviewed. The review was based on an Operational Readiness Review finding that public address performance was not adequate in parts of the WRAP facility. Several improvements were made to the WRAP Public Address (PA) system to correct the deficiencies noted. Speaker gain and position was optimized. A speech processor was installed to boost intelligibility in high noise areas. Additional speakers were added to improve coverage in the work areas. The results of this evaluation indicate that further PA system enhancements are not warranted. Additional speakers cannot compensate for the high background sound and high reverberation levels found in the work areas. Recommendations to improve PA system intelligibility include minor speaker adjustments, enhanced PA announcement techniques, and the use of sound reduction and abatement techniques where economically feasible.

  8. Tank waste remediation system FSAR hazard identification/facility configuration verification report

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, D.P., Westinghouse Hanford

    1996-05-01

    This document provides the results of the Tank Waste Remediation System Final Safety Analysis Report (TWRS FSAR) hazards identification/facility configuration activities undertaken from the period of March 7, 1996 to May 31, 1996. The purpose of this activity was to provide an independent overview of the TWRS facility specific hazards and configurations that were used in support of the TWRS FSAR hazards and accident analysis development. It was based on a review of existing published documentation and field inspections. The objective of the verification effort was to provide a `snap shot` in time of the existing TWRS facility hazards and configurations and will be used to support hazards and accident analysis activities.

  9. Coal gasification systems engineering and analysis. Appendix C: Alternate product facility designs

    Science.gov (United States)

    1980-01-01

    The study of the production of methane, methanol, gasoline, and hydrogen by an add-on facility to a Koppers-Totzek based MBG plant is presented. Applications to a Texaco facility are inferred by evaluation of delta effects from the K-T cases. The production of methane from an add-on facility to a Lurgi based MBG plant and the co-production of methane and methanol from a Lurgi based system is studied. Studies are included of the production of methane from up to 50 percent of the MBG produced in an integrated K-T based plant and the production of methane from up to 50 percent of the MBG produced from an integrated plant in which module 1 is based on K-T technology and modules 2, 3, and 4 are based on Texaco technology.

  10. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barfuss, Brad C.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2009-04-08

    Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  11. Neural Network Modeling of the Lithium/Thionyl Chloride Battery System

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Jungst, R.G.; O' Gorman, C.C.; Paez, T.L.

    1998-10-29

    Battery systems have traditionally relied on extensive build and test procedures for product realization. Analytical models have been developed to diminish this reliance, but have only been partially successful in consistently predicting the performance of battery systems. The complex set of interacting physical and chemical processes within battery systems has made the development of analytical models a significant challenge. Advanced simulation tools are needed to more accurately model battery systems which will reduce the time and cost required for product realization. Sandia has initiated an advanced model-based design strategy to battery systems, beginning with the performance of lithiumhhionyl chloride cells. As an alternative approach, we have begun development of cell performance modeling using non-phenomenological models for battery systems based on artificial neural networks (ANNs). ANNs are inductive models for simulating input/output mappings with certain advantages over phenomenological models, particularly for complex systems. Among these advantages is the ability to avoid making measurements of hard to determine physical parameters or having to understand cell processes sufficiently to write mathematical functions describing their behavior. For example, ANN models are also being studied for simulating complex physical processes within the Li/SOC12 cell, such as the time and temperature dependence of the anode interracial resistance. ANNs have been shown to provide a very robust and computationally efficient simulation tool for predicting voltage and capacity output for Li/SOC12 cells under a variety of operating conditions. The ANN modeling approach should be applicable to a wide variety of battery chemistries, including rechargeable systems.

  12. Construction of BIM-based SMART-ITL Facility Management System

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Woo-Jin; Yi, Sung-Jae; Park, Hyun-Sik; Ryu, Sung-Uk; Bae, Hwang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hwang, Sang-Chul; Min, Byung-Eui [DDRsoft Co., Daejeon (Korea, Republic of)

    2015-10-15

    The flow area and volume are scaled down to 1/49. The ratio of the hydraulic diameter is 1/7. Therefore, SMART-ITL is a large-scale thermalhydraulic test facility with about 45 m height, which is consisted of 10 m underground and 35 m from the ground level. Until now, the management of design data and maintenance of large scale test facilities have been managed based on hard-copy information. Recently, Thermal Hydraulics Safety Research Division (THSRD) at Korea Atomic Energy Research Institute (KAERI) has developed Facility Management System (FMS) based Building Information Modeling (BIM) to manage its design data more effectively for these large scale test facilities of SMART-ITL and ATLAS, and this BIM technology has been applied to SMART-ITL at the first. This study proposed a method of effective management and maintenance of design data applied to the SMART-ITL. That is, a FMS was developed based on the BIM technology for SMART-ITL. Figure 2 shows an overview of FMS development process based on BIM technology. SMART-ITL FMS facilitates its management and maintenance more effectively and accurately by 3- dimensional visualization. It enables the shape information of large scale test facilities to be visualized intuitively in a virtual space, and the efficient maintenance of data and instruments is possible by linking 3D shape information.

  13. "Doing" diversity. Holy Cross Health System facilities honor differences in different ways.

    Science.gov (United States)

    Burnside, G

    1994-12-01

    Holy Cross Health System (HCHS), a South Bend, IN-based organization that stretches from coast to coast, has instituted a diversity initiative to take advantage of demographic changes in its facilities' work forces and the communities they are serving. Launched by Holy Cross's corporate headquarters, the program is carried out by the member facilities, each of which had added its own ideas. HCHS's diversity program has three major components: Consciousness-raising among employees. Activities range from "transcultural rounds" for nursing students to fashion shows in which employees wear costumes from their places of national origin. Educating the larger community. HCHS facilities have been urged to increase awareness of diversity among physicians, patients, vendors, and local business and civic leaders. Strategic thinking. The leaders of HCHS facilities have been advised to integrate diversity into their strategic planning. Leaders are familiarizing themselves with the different cultural, ethnic, and religious groups in the community and preparing their facilities to take full advantage of those groups' contributions.

  14. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  15. Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility

    Science.gov (United States)

    Kamiyama, T.; Hara, K. Y.; Taira, H.; Sato, H.

    2016-11-01

    The convertible source system for the neutron and the X-ray imagings was installed in the 45MeV electron linear accelerator facility at Hokkaido University. The source system is very useful for a complementary imaging. The imaging measurements for a sample were performed with both beams by using a vacuum tube type image intensifier. The enhanced contrast was obtained from the dataset of the radiograms measured with the neutron and X-ray beams.

  16. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krstulovich, S.F.

    1986-11-12

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  17. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Rosnick, C.K.

    1996-04-19

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  18. Pitfalls and Security Measures for the Mobile EMR System in Medical Facilities

    OpenAIRE

    Yeo, Kiho; Lee, Keehyuck; Kim, Jong-Min; Kim, Tae-Hun; Choi, Yong-Hoon; Jeong, Woo-Jin; Hwang, Hee; Baek, Rong Min; Yoo, Sooyoung

    2012-01-01

    Objectives The goal of this paper is to examine the security measures that should be reviewed by medical facilities that are trying to implement mobile Electronic Medical Record (EMR) systems designed for hospitals. Methods The study of the security requirements for a mobile EMR system is divided into legal considerations and sectional security investigations. Legal considerations were examined with regard to remote medical services, patients' personal information and EMR, medical devices, th...

  19. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  20. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; /SLAC; Vylet, Vashek; /Duke U.; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a

  1. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    Energy Technology Data Exchange (ETDEWEB)

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd [MKS, Deutsches Elektronen Synchrotron DESY, 22607 Hamburg (Germany)

    2014-01-29

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  2. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    Science.gov (United States)

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-01

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  3. Lithium carbonate teratogenic effects in chick cardiomyocyte micromass system and mouse embryonic stem cell derived cardiomyocyte--possible protective role of myo-inositol.

    Science.gov (United States)

    Qureshi, W M Shaikh; Latif, M L; Parker, T L; Pratten, M K

    2014-07-01

    The drug lithium carbonate (Li2CO3) use during pregnancy increases the possibility of cardiovascular anomalies. The earlier studies confirm its phosphatidylinositol cycle (PI) inhibition and Wnt pathways mimicking properties, which might contribute to its teratogenic effects. In this study the toxic effects of Li2CO3 in chick embryonic cardiomyocyte micromass system (MM) and embryonic stem cell derived cardiomyocyte (ESDC) were evaluated, with possible protective role of myo-inositol. In MM system the Li2CO3 did not alter the toxicity estimation endpoints, whereas in ESDC system the cardiomyocytes contractile activity stopped at 1500 μM and above with significant increase in total cellular protein contents. In ESDC system when myo-inositol was added along with Li2CO3 to continue PI cycle, the contractile activity was recovered with decreased protein content. The lithium toxic effects depend on the role of PI cycle at particular stage of cardiogenesis, while relation between myo-inositol and reduced cellular protein contents remains unknown.

  4. Design and simulation of lithium rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, C.M.

    1995-08-01

    Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

  5. Lithium-ion batteries advances and applications

    CERN Document Server

    Pistoia, Gianfranco

    2014-01-01

    Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwi

  6. Plasma facilities measuring equipment and high-voltage systems for basic research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M.; Pawlowicz, W. [eds.] [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    The report presents short description and the main technical data of various devices and systems designed and constructed at the Thermonuclear Research Dept. of the Soltan Institute for Nuclear Studies (SINS) in Swierk n. Warsaw, Poland. Different Plasma-Focus (PF) facilities of energy ranging from several kJ to 360 kJ, as well as the Ion Implosion Facilities of energy equal to 400 kJ, are shortly described. We present different cameras and analyzers used for studies of ions and X-rays. We also describe e.g. IONOTRONs used for material engineering. High-Voltage Pulse Generators developed for the voltage range from 40 kV to 2.4 MV, various Data Acquisition Systems, and special Vacuum Stands. Some selected technical units used in high-voltage systems are also presented. (author). 32 figs.

  7. A decision support system for quantitative measurement of operational efficiency in a blood collection facility.

    Science.gov (United States)

    Kros, John F; Yim Pang, Robyn

    2004-04-01

    A decision support system (DSS) is presented that allows users to input, analyze, and output data derived from blood banking operations. The DSS developed is a hybrid system that is both data and model driven. The system provides information, models, and data manipulation tools to assist users in the quantitative measurement of the operational efficiency in a blood collection facility. A relational database was developed to address the four major variables, which impact the cost per unit of blood being collected. Using visual basic, a user interface and mathematical model were developed establishing the relationships to analyze cost per unit of collected blood. Using inputs from users and historical financial data, the DSS calculates the cost per unit as each of the major variables is altered. Real life situations by the mobile operations team at a blood collection facility were used to test the DSS.

  8. Royal Military College of Canada SLOWPOKE-2 facility. Integrated regulating and instrumentation system (SIRCIS) upgrade project

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, W.P.; Nielsen, K.S.; Kelly, D.G.; Weir, R.D. [Royal Military College of Canada (RMCC), Kingston, Ontario (Canada)

    2013-07-01

    The SLOWPOKE-2 Facility at the Royal Military College of Canada has operated the only digitally controlled SLOWPOKE reactor since 2001 (Version 1.0). The present work describes ongoing project development to provide a robust digital reactor control system that is consistent with Aging Management as summarized in the Facility's Life Cycle Management and Maintenance Plan. The project has transitioned from a post-graduate research activity to a comprehensively managed project supported by a team of RMCC professional and technical staff who have delivered an update of the V1.1 system software and hardware implementation that is consistent with best Canadian nuclear industry practice. The challenges associated with the implementation of Version 2.0 in February 2012, the lessons learned from this implementation, and the applications of these lessons to a redesign and rewrite of the RMCC SLOWPOKE-2 digital instrumentation and regulating system (Version 3) are discussed. (author)

  9. Evaluation of the Deployable Seismic Verification System at the Pinedale Seismic Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Carr, D.B.

    1993-08-01

    The intent of this report is to examine the performance of the Deployable Seismic Verification System (DSVS) developed by the Department of Energy (DOE) through its national laboratories to support monitoring of underground nuclear test treaties. A DSVS was installed at the Pinedale Seismic Research Facility (PSRF) near Boulder, Wyoming during 1991 and 1992. This includes a description of the system and the deployment site. System performance was studied by looking at four areas: system noise, seismic response, state of health (SOH) and operational capabilities.

  10. Personnel reliability impact on petrochemical facilities monitoring system's failure skipping probability

    Science.gov (United States)

    Kostyukov, V. N.; Naumenko, A. P.

    2017-08-01

    The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under

  11. SPES3 Facility RELAP5 Sensitivity Analyses on the Containment System for Design Review

    Directory of Open Access Journals (Sweden)

    Andrea Achilli

    2012-01-01

    Full Text Available An Italian MSE R&D programme on Nuclear Fission is funding, through ENEA, the design and testing of SPES3 facility at SIET, for IRIS reactor simulation. IRIS is a modular, medium size, advanced, integral PWR, developed by an international consortium of utilities, industries, research centres and universities. SPES3 simulates the primary, secondary and containment systems of IRIS, with 1:100 volume scale, full elevation and prototypical thermal-hydraulic conditions. The RELAP5 code was extensively used in support to the design of the facility to identify criticalities and weak points in the reactor simulation. FER, at Zagreb University, performed the IRIS reactor analyses with the RELAP5 and GOTHIC coupled codes. The comparison between IRIS and SPES3 simulation results led to a simulation-design feedback process with step-by-step modifications of the facility design, up to the final configuration. For this, a series of sensitivity cases was run to investigate specific aspects affecting the trend of the main parameters of the plant, as the containment pressure and EHRS removed power, to limit fuel clad temperature excursions during accidental transients. This paper summarizes the sensitivity analyses on the containment system that allowed to review the SPES3 facility design and confirm its capability to appropriately simulate the IRIS plant.

  12. SynapSense Wireless Environmental Monitoring System of the RHIC & ATLAS Computing Facility at BNL

    Science.gov (United States)

    Casella, K.; Garcia, E.; Hogue, R.; Hollowell, C.; Strecker-Kellogg, W.; Wong, A.; Zaytsev, A.

    2014-06-01

    RHIC & ATLAS Computing Facility (RACF) at BNL is a 15000 sq. ft. facility hosting the IT equipment of the BNL ATLAS WLCG Tier-1 site, offline farms for the STAR and PHENIX experiments operating at the Relativistic Heavy Ion Collider (RHIC), the BNL Cloud installation, various Open Science Grid (OSG) resources, and many other small physics research oriented IT installations. The facility originated in 1990 and grew steadily up to the present configuration with 4 physically isolated IT areas with the maximum rack capacity of about 1000 racks and the total peak power consumption of 1.5 MW. In June 2012 a project was initiated with the primary goal to replace several environmental monitoring systems deployed earlier within RACF with a single commercial hardware and software solution by SynapSense Corporation based on wireless sensor groups and proprietary SynapSense™ MapSense™ software that offers a unified solution for monitoring the temperature and humidity within the rack/CRAC units as well as pressure distribution underneath the raised floor across the entire facility. The deployment was completed successfully in 2013. The new system also supports a set of additional features such as capacity planning based on measurements of total heat load, power consumption monitoring and control, CRAC unit power consumption optimization based on feedback from the temperature measurements and overall power usage efficiency estimations that are not currently implemented within RACF but may be deployed in the future.

  13. Factors associated with lithium efficacy in bipolar disorder.

    Science.gov (United States)

    Rybakowski, Janusz K

    2014-01-01

    About one-third of lithium-treated, bipolar patients are excellent lithium responders; that is, lithium monotherapy totally prevents further episodes of bipolar disorder for ten years and more. These patients are clinically characterized by an episodic clinical course with complete remission, a bipolar family history, low psychiatric comorbidity, mania-depression episode sequences, a moderate number of episodes, and a low number of hospitalizations in the pre-lithium period. Recently, it has been found that temperamental features of hypomania (a hyperthymic temperament) and a lack of cognitive disorganization predict the best results of lithium prophylaxis. Lithium exerts a neuroprotective effect, in which increased expression of brain-derived neurotrophic factor (BDNF) and inhibition of the glycogen synthase kinase-3 (GSK-3) play an important role. The response to lithium has been connected with the genotype of the BDNF gene and serum BDNF levels. A better response to lithium is connected with the Met allele of the BDNF Val/Met polymorphism, as is a hyperthymic temperament. Excellent lithium responders have normal cognitive functions and serum BDNF levels, even after long-term duration of the illness. The preservation of cognitive functions in long-term lithium-treated patients may be connected with the stimulation of the BDNF system, with the resulting prevention of affective episodes exerting deleterious cognitive effects, and possibly also with lithium's antiviral effects. A number of candidate genes that are related to neurotransmitters, intracellular signaling, neuroprotection, circadian rhythms, and other pathogenic mechanisms of bipolar disorder were found to be associated with the lithium prophylactic response. The Consortium on Lithium Genetics (ConLiGen) has recently performed the first genome-wide association study on the lithium response in bipolar disorder.

  14. Developing Mobile- and BIM-Based Integrated Visual Facility Maintenance Management System

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Lin

    2013-01-01

    Full Text Available Facility maintenance management (FMM has become an important topic for research on the operation phase of the construction life cycle. Managing FMM effectively is extremely difficult owing to various factors and environments. One of the difficulties is the performance of 2D graphics when depicting maintenance service. Building information modeling (BIM uses precise geometry and relevant data to support the maintenance service of facilities depicted in 3D object-oriented CAD. This paper proposes a new and practical methodology with application to FMM using BIM technology. Using BIM technology, this study proposes a BIM-based facility maintenance management (BIMFMM system for maintenance staff in the operation and maintenance phase. The BIMFMM system is then applied in selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FMM practice. Using the BIMFMM system, maintenance staff can access and review 3D BIM models for updating related maintenance records in a digital format. Moreover, this study presents a generic system architecture and its implementation. The combined results demonstrate that a BIMFMM-like system can be an effective visual FMM tool.

  15. Developing mobile- and BIM-based integrated visual facility maintenance management system.

    Science.gov (United States)

    Lin, Yu-Cheng; Su, Yu-Chih

    2013-01-01

    Facility maintenance management (FMM) has become an important topic for research on the operation phase of the construction life cycle. Managing FMM effectively is extremely difficult owing to various factors and environments. One of the difficulties is the performance of 2D graphics when depicting maintenance service. Building information modeling (BIM) uses precise geometry and relevant data to support the maintenance service of facilities depicted in 3D object-oriented CAD. This paper proposes a new and practical methodology with application to FMM using BIM technology. Using BIM technology, this study proposes a BIM-based facility maintenance management (BIMFMM) system for maintenance staff in the operation and maintenance phase. The BIMFMM system is then applied in selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FMM practice. Using the BIMFMM system, maintenance staff can access and review 3D BIM models for updating related maintenance records in a digital format. Moreover, this study presents a generic system architecture and its implementation. The combined results demonstrate that a BIMFMM-like system can be an effective visual FMM tool.

  16. Fire suppression system of a small-scale LNG loading facility at PT Badak NGL

    Science.gov (United States)

    Yustiarza, Farhan Hilmyawan

    2017-03-01

    LNG progressively become favorable energy to replace oil-based fuel due to lower cost and more environment-friendly. In order to support an emerging LNG demands in Kalimantan, PT Badak NGL, one of the leading LNG Company in the world, develops the land-transported LNG loading facility. This facility performs loading the LNG into a small-scale tank (ISO Tank) with 20 m3 capacities. Safety reviews over this facility were conducted. Based on these reviews, the LNG filling station requires supplemental safeguards, such as LNG spill containment and firefighting foam system besides firewater system and dry chemical system. The spill containment provides holding LNG spill within the limits of plant property, while the high expansion foam system deals to minimize the vaporization rate to prevent a fire incident. This paper mainly discusses designing of such supplemental safeguards. The requirement of the spill containment is 20 m3 (6.3 × 3.3 × 2.0) m and the foam system should be capable generating foam at least 40 m3/min.

  17. Test of hybrid power system for electrical vehicles using a lithium-ion battery pack and a reformed methanol fuel cell range extender

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Sahlin, Simon Lennart

    2014-01-01

    monoxide, the HTPEM fuel cell system can efficiently use a liquid methanol/water mixture of 60%/40% by volume, as fuel instead of compressed hydrogen, enabling potentially a higher volumetric energy density. In order to test the performance of such a system, the experimental validation conducted uses......This work presents the proof-of-concept of an electric traction power system with a high temperature polymer electrolyte membrane fuel cell range extender, usable for automotive class electrical vehicles. The hybrid system concept examined, consists of a power system where the primary power...... is delivered by a lithium ion battery pack. In order to increase the run time of the application connected to this battery pack, a high temperature PEM (HTPEM) fuel cell stack acts as an on-board charger able to charge a vehicle during operation as a series hybrid. Because of the high tolerance to carbon...

  18. Enhanced representations of lithium-ion batteries in power systems models and their effect on the valuation of energy arbitrage applications

    Science.gov (United States)

    Sakti, Apurba; Gallagher, Kevin G.; Sepulveda, Nestor; Uckun, Canan; Vergara, Claudio; de Sisternes, Fernando J.; Dees, Dennis W.; Botterud, Audun

    2017-02-01

    We develop three novel enhanced mixed integer-linear representations of the power limit of the battery and its efficiency as a function of the charge and discharge power and the state of charge of the battery, which can be directly implemented in large-scale power systems models and solved with commercial optimization solvers. Using these battery representations, we conduct a techno-economic analysis of the performance of a 10 MWh lithium-ion battery system testing the effect of a 5-min vs. a 60-min price signal on profits using real time prices from a selected node in the MISO electricity market. Results show that models of lithium-ion batteries where the power limits and efficiency are held constant overestimate profits by 10% compared to those obtained from an enhanced representation that more closely matches the real behavior of the battery. When the battery system is exposed to a 5-min price signal, the energy arbitrage profitability improves by 60% compared to that from hourly price exposure. These results indicate that a more accurate representation of li-ion batteries as well as the market rules that govern the frequency of electricity prices can play a major role on the estimation of the value of battery technologies for power grid applications.

  19. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    Jia Luo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  20. Review of Reactivity Experiments for Lithium Ternary Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Bolind, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-28

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers high tritium breeding, excellent heat transfer and corrosion properties, and most importantly, it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium related hazards are of primary concern. Reducing chemical reactivity is the primary motivation for the development of new lithium alloys, and it is therefore important to come up with proper ways to conduct experiments that can physically study this phenomenon. This paper will start to explore this area by outlining relevant past experiments conducted with lithium/air reactions and lithium/water reactions. Looking at what was done in the past will then give us a general idea of how we can setup our own experiments to test a variety of lithium alloys.