WorldWideScience

Sample records for facility infrastructure tier-3

  1. Analysis Facility infrastructure (TIER3) for ATLAS High Energy physics experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez de la Hoz, S.; March, L.; Ros, E.; Sanchez, J.; Amoros, G.; Fassi, F.; Fernandez, A.; Kaci, M.; Lamas, A.; Salt, J.

    2007-07-01

    ATLAS project has been asked to define the scope and role of Tier-3 resources (facilities or centres) within the existing ATLAS computing model, activities and facilities. This document attempts to address these questions by describing Tier-3 resources generally, and their relationship to the ATLAS Software and Computing Project. Originally the tiered computing model came out of MONARC (see http://monarc.web.cern.ch/MONARC/) work and was predicated upon the network being a scarce resource. In this model the tiered hierarchy ranged from the Tier-0 (CERN) down to the desktop or workstation (Tier 3). The focus on defining the roles of each tiered component has evolved with the initial emphasis on the Tier-0 (CERN) and Tier-1 (National centres) definition and roles. The various LHC projects, including ATLAS, then evolved the tiered hierarchy to include Tier-2s (Regional centers) as part of their projects. Tier-3s, on the other hand, have (implicitly and sometime explicitly) been defined as whatever an institution could construct to support their Physics goals using institutional and otherwise leveraged resources and therefore have not been considered to be part of the official ATLAS Research Program computing resources nor under their control, meaning there is no formal MOU process to designate sites as Tier-3s and no formal control of the program over the Tier-3 resources. Tier-3s are the responsibility of individual institutions to define, fund, deploy and support. However, having noted this, we must also recognize that Tier-3s must exist and will have implications for how our computing model should support ATLAS physicists. Tier-3 users will want to access data and simulations and will want to enable their Tier-3 resources to support their analysis and simulation work. Tiers 3s are an important resource for physicists to analyze LHC (Large Hadron Collider) data. This document will define how Tier-3s should best interact with the ATLAS computing model, detail the

  2. Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud

    Science.gov (United States)

    Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde

    2014-06-01

    The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.

  3. The ATLAS Tier-3 in Geneva and the Trigger Development Facility

    CERN Document Server

    Gadomski, S; The ATLAS collaboration; Pasche, P; Baud, J-P

    2010-01-01

    The ATLAS Tier-3 farm at the University of Geneva provides storage and processing power for analysis of ATLAS data. In addition the facility is used for development, validation and commissioning of the High Level Trigger of ATLAS. The latter purpose leads to additional requirements on the availability of latest software and data, which will be presented. The farm is also a part of the WLCG, and is available to all members of the ATLAS Virtual Organization. The farm currently provides 268 CPU cores and 177 TB of storage space. A grid Storage Element, implemented with the Disk Pool Manager software, is available and integrated with the ATLAS Distributed Data Management system. The batch system can be used directly by local users, or with a grid interface provided by NorduGrid ARC middleware. In this article we will present the use cases that we support, as well as the experience with the software and the hardware we are using. Results of I/O benchmarking tests, which were done for our DPM Storage Element and fo...

  4. The ATLAS Tier-3 in Geneva and the Trigger Development Facility

    CERN Document Server

    Gadomski, S; The ATLAS collaboration; Meunier, Y; Pasche, P

    2011-01-01

    The ATLAS Tier-3 farm at the University of Geneva provides storage and processing power for analysis of ATLAS data. In addition the facility is used for development, validation and commissioning of the High Level Trigger of ATLAS. The latter purpose leads to additional requirements on the availability of latest software and data, which will be presented. The farm is also a part of the WLCG, and is available to all members of the ATLAS Virtual Organization. The farm currently provides 268 CPU cores and 177 TB of storage space. A grid Storage Element, implemented with the Disk Pool Manager software, is available and integrated with the ATLAS Distributed Data Management system. The batch system can be used directly by local users, or with a grid interface provided by NorduGrid ARC middleware. In this article we will present the use cases that we support, as well as the experience with the software and the hardware we are using. Results of I/O benchmarking tests, which were done for our DPM Storage Element and fo...

  5. Integrated Facilities and Infrastructure Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Reisz Westlund, Jennifer Jill

    2017-03-01

    Our facilities and infrastructure are a key element of our capability-based science and engineering foundation. The focus of the Integrated Facilities and Infrastructure Plan is the development and implementation of a comprehensive plan to sustain the capabilities necessary to meet national research, design, and fabrication needs for Sandia National Laboratories’ (Sandia’s) comprehensive national security missions both now and into the future. A number of Sandia’s facilities have reached the end of their useful lives and many others are not suitable for today’s mission needs. Due to the continued aging and surge in utilization of Sandia’s facilities, deferred maintenance has continued to increase. As part of our planning focus, Sandia is committed to halting the growth of deferred maintenance across its sites through demolition, replacement, and dedicated funding to reduce the backlog of maintenance needs. Sandia will become more agile in adapting existing space and changing how space is utilized in response to the changing requirements. This Integrated Facilities & Infrastructure (F&I) Plan supports the Sandia Strategic Plan’s strategic objectives, specifically Strategic Objective 2: Strengthen our Laboratories’ foundation to maximize mission impact, and Strategic Objective 3: Advance an exceptional work environment that enables and inspires our people in service to our nation. The Integrated F&I Plan is developed through a planning process model to understand the F&I needs, analyze solution options, plan the actions and funding, and then execute projects.

  6. Tier-3 Monitoring Software Suite (T3MON) proposal

    CERN Document Server

    Andreeva, J; The ATLAS collaboration; Klimentov, A; Korenkov, V; Oleynik, D; Panitkin, S; Petrosyan, A

    2011-01-01

    The ATLAS Distributed Computing activities concentrated so far in the “central” part of the computing system of the experiment, namely the first 3 tiers (CERN Tier0, the 10 Tier1s centres and the 60+ Tier2s). This is a coherent system to perform data processing and management on a global scale and host (re)processing, simulation activities down to group and user analysis. Many ATLAS Institutes and National Communities built (or have plans to build) Tier-3 facilities. The definition of Tier-3 concept has been outlined (REFERENCE). Tier-3 centres consist of non-pledged resources mostly dedicated for the data analysis by the geographically close or local scientific groups. Tier-3 sites comprise a range of architectures and many do not possess Grid middleware, which would render application of Tier-2 monitoring systems useless. This document describes a strategy to develop a software suite for monitoring of the Tier3 sites. This software suite will enable local monitoring of the Tier3 sites and the global vie...

  7. Searches for beyond the Standard Model physics with boosted topologies in the ATLAS experiment using the Grid-based Tier-3 facility at IFIC-Valencia

    CERN Document Server

    Villaplana Pérez, Miguel; Vos, Marcel

    Both the LHC and ATLAS have been performing well beyond expectation since the start of the data taking by the end of 2009. Since then, several thousands of millions of collision events have been recorded by the ATLAS experiment. With a data taking efficiency higher than 95% and more than 99% of its channels working, ATLAS supplies data with an unmatched quality. In order to analyse the data, the ATLAS Collaboration has designed a distributed computing model based on GRID technologies. The ATLAS computing model and its evolution since the start of the LHC is discussed in section 3.1. The ATLAS computing model groups the different types of computing centers of the ATLAS Collaboration in a tiered hierarchy that ranges from Tier-0 at CERN, down to the 11 Tier-1 centers and the nearly 80 Tier-2 centres distributed world wide. The Spanish Tier-2 activities during the first years of data taking are described in section 3.2. Tier-3 are institution-level non-ATLAS funded or controlled centres that participate presuma...

  8. Tier 3 Toxicity Value White Paper

    Science.gov (United States)

    The purpose of this white paper is to articulate the issues pertaining to Tier 3 toxicity values and provide recommendations on processes that will improve the transparency and consistency of identifying, evaluating, selecting, and documenting Tier 3 toxicity values for use in the Superfund and Resource Conservation and Recovery Act (RCRA) programs. This white paper will be used to assist regional risk assessors in selecting Tier 3 toxicity values as well as provide the foundation for future regional and national efforts to improve guidance and policy on Tier 3 toxicity values.

  9. Europlanet Research Infrastructure: Planetary Sample Analysis Facilities

    Science.gov (United States)

    Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the third TNA: Planetary Sample Analysis Facilities. The modular infrastructure represents a major commitment of analytical instrumentation by three institutes and together forms a state-of-the-art analytical facility of unprecedented breadth. These centres perform research in the fields of geochemistry and cosmochemistry, studying fluids and rocks in order to better understand the keys cof the universe. Europlanet Research Infrastructure Facilities: Ion Probe facilities at CRPG and OU The Cameca 1270 Ion microprobe is a CNRS-INSU national facility. About a third of the useful analytical time of the ion probe (about 3 months each year) is allocated to the national community. French scientists have to submit their projects to a national committee for selection. The selected projects are allocated time in the following 6 months twice a year. About 15 to 20 projects are run each year. There are only two such instruments in Europe, with cosmochemistry only performed at CRPG. Different analyses can be performed on a routine basis, such as U-Pb dating on Zircon, Monazite or Pechblende, Li, B, C, O, Si isotopic ratios determination on different matrix, 26Al, 60Fe extinct radioactivity ages, light and trace elements contents . The NanoSIMS 50L - producing element or isotope maps with a spatial resolution down to ≈50nm. This is one of the cornerstone facilities of UKCAN, with 75% of available instrument time funded and

  10. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  11. 40 CFR 79.54 - Tier 3.

    Science.gov (United States)

    2010-07-01

    ... group basis, EPA may require either the same representative to be used in Tier 3 testing as was used in... group) shall be deemed to have consented to the adoption by EPA of the proposed Tier 3 requirements. (2... sex, or to the fetus as opposed to the pregnant adult. (2) The testing for reproductive...

  12. Considerations on Optimal Financial Invest ment into Infrastructural Facilities

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The enlargement of government's investment into infrastructural construction is both a help medicine curing economic contraction and an effective measure to accumulate long-term economic growth.. However, the investment by finance into infrastructure also has a problem of optimization and reasonable selection. In view of market economic requirements, the policy direction of financial investment into infrastructural industries must be doing something at the expense of some other things. In the process of the adjustment and optimization of economic structure, state financial investment into infrastructural facilities has to first of all solve the problem of delimitating the best fields and selecting trades. As to the infrastructure facilities producing and selling pure public products, the development must be made by financial investment;As to the production fields of subpublic products, finance should ensure reasonable investment; As to the infrastructural facilities of pure privite production, finance should completely, in principle, pull out and let market supply. On this basis, selections should be made on best capital soureces and investment ways. The capital sources should be mainly from tax and regulational income and direct investment may be made. As to the production fields of most subpublic production, the best capital sources are national debt income and indirect investment may be made. In addition, the optimization of financial investment into infrastructural facilities must reform the managerial system of infrastructural facilities and raise investment efficiency. Only by scientifically selecting and arranging the financing ways and managerial system in investment fields,can the maximum economic efficiency and social welfare results be realized in carrying out financial investment into infrastructural facilities.

  13. Facilities and Infrastructure FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Facilities and Infrastructure Program includes EERE’s capital investments, operations and maintenance, and site-wide support of the National Renewable Energy Laboratory (NREL). It is the nation’s only national laboratory with a primary mission dedicated to the research, development and demonstration (RD&D) of energy efficiency, renewable energy and related technologies. EERE is NREL’s steward, primary client and sponsor of NREL’s designation as a Federally Funded Research and Development Center. The Facilities and Infrastructure (F&I) budget maintains NREL’s research and support infrastructure, ensures availability for EERE’s use, and provides a safe and secure workplace for employees.

  14. Concession as a Tool of Infrastructure Facilities Modernization

    Directory of Open Access Journals (Sweden)

    Vitaliy Vladimirovich Peshkov

    2016-12-01

    Full Text Available The development of engineering infrastructure demands carrying out modernization of infrastructure facilities in which the mechanism of public-private partnership plays more and more important role. The need of comprehensive regulation of subjects’ activity in the public-private partnership (PPP field causes Russian legislation development in this sphere. Within promptly enhanced legislation in the field of PPP, development of this direction is promoted by approach, taking into account parties’ economic interests in case of concluding agreements on PPP. We developed algorithm of determining the price of concession agreement of infrastructure facilities on the basis of the principle of the best use of a concession object. This algorithm allows estimating the greatest possible size of a rent from this concession object. Besides, this algorithm allows approaching determination of concession agreement price taking into account the comprehensive expenses accounting by host and allows creating individual terms of agreement irrespective of concession subject type. The developed algorithm finds practical reflection in the practice of concession agreements conclusion between public authorities of the Irkutsk region and business. We have revealed positive dynamics of results of concession agreements application as a tool of modernization of infrastructure facilities, by carrying out analysis of results of municipal property management in heat supply sphere on example of Irkutsk city. We established direct influence of the economic interests synchronization pledged in algorithm of concession agreement price determination, on implementation of investing program actions within the concession agreement.

  15. Contested environmental policy infrastructure: socio-political acceptance of renewable energy, water, and waste facilities

    NARCIS (Netherlands)

    Wolsink, M.

    2010-01-01

    The construction of new infrastructure is hotly contested. This paper presents a comparative study on three environmental policy domains in the Netherlands that all deal with legitimising building and locating infrastructure facilities. Such infrastructure is usually declared essential to environmen

  16. Contested environmental policy infrastructure: socio-political acceptance of renewable energy, water, and waste facilities

    NARCIS (Netherlands)

    Wolsink, M.

    2010-01-01

    The construction of new infrastructure is hotly contested. This paper presents a comparative study on three environmental policy domains in the Netherlands that all deal with legitimising building and locating infrastructure facilities. Such infrastructure is usually declared essential to

  17. MODEL OF FEES CALCULATION FOR ACCESS TO TRACK INFRASTRUCTURE FACILITIES

    Directory of Open Access Journals (Sweden)

    M. I. Mishchenko

    2014-12-01

    Full Text Available Purpose. The purpose of the article is to develop a one- and two-element model of the fees calculation for the use of track infrastructure of Ukrainian railway transport. Methodology. On the basis of this one can consider that when planning the planned preventive track repair works and the amount of depreciation charges the guiding criterion is not the amount of progress it is the operating life of the track infrastructure facilities. The cost of PPTRW is determined on the basis of the following: the classification track repairs; typical technological processes for track repairs; technology based time standards for PPTRW; costs for the work of people, performing the PPTRW, their hourly wage rates according to the Order 98-Ts; the operating cost of machinery; regulated list; norms of expenditures and costs of materials and products (they have the largest share of the costs for repairs; railway rates; average distances for transportation of materials used during repair; standards of general production expenses and the administrative costs. Findings. The models offered in article allow executing the objective account of expenses in travelling facilities for the purpose of calculation of the proved size of indemnification and necessary size of profit, the sufficient enterprises for effective activity of a travelling infrastructure. Originality. The methodological bases of determination the fees (payments for the use of track infrastructure on one- and two-element base taking into account the experience of railways in the EC countries and the current transport legislation were grounded. Practical value. The article proposes the one- and two-element models of calculating the fees (payments for the TIF use, accounting the applicable requirements of European transport legislation, which provides the expense compensation and income formation, sufficient for economic incentives of the efficient operation of the TIE of Ukrainian railway transport.

  18. ATLAS off-Grid sites (Tier 3) monitoring. From local fabric monitoring to global overview of the VO computing activities

    CERN Document Server

    PETROSYAN, A; The ATLAS collaboration; BELOV, S; ANDREEVA, J; KADOCHNIKOV, I

    2012-01-01

    The ATLAS Distributed Computing activities have so far concentrated in the "central" part of the experiment computing system, namely the first 3 tiers (the CERN Tier0, 10 Tier1 centers and over 60 Tier2 sites). Many ATLAS Institutes and National Communities have deployed (or intend to) deploy Tier-3 facilities. Tier-3 centers consist of non-pledged resources, which are usually dedicated to data analysis tasks by the geographically close or local scientific groups, and which usually comprise a range of architectures without Grid middleware. Therefore a substantial part of the ATLAS monitoring tools which make use of Grid middleware, cannot be used for a large fraction of Tier3 sites. The presentation will describe the T3mon project, which aims to develop a software suite for monitoring the Tier3 sites, both from the perspective of the local site administrator and that of the ATLAS VO, thereby enabling the global view of the contribution from Tier3 sites to the ATLAS computing activities. Special attention in p...

  19. Onsite and Electric Backup Capabilities at Critical Infrastructure Facilities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Julia A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wallace, Kelly E. [Argonne National Lab. (ANL), Argonne, IL (United States); Kudo, Terence Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Eto, Joseph H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-01

    The following analysis, conducted by Argonne National Laboratory’s (Argonne’s) Risk and Infrastructure Science Center (RISC), details an analysis of electric power backup of national critical infrastructure as captured through the Department of Homeland Security’s (DHS’s) Enhanced Critical Infrastructure Program (ECIP) Initiative. Between January 1, 2011, and September 2014, 3,174 ECIP facility surveys have been conducted. This study focused first on backup capabilities by infrastructure type and then expanded to infrastructure type by census region.

  20. Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition

    Energy Technology Data Exchange (ETDEWEB)

    Leach, C.E.; Galbraith, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Grant, P.R.; Francuz, D.J.; Schroeder, P.J. [Fluor Daniel, Inc., Richland, WA (United States)

    1995-11-01

    This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs.

  1. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    2011-01-01

    During the last winter technical stop, a number of corrective maintenance activities and infrastructure consolidation work-packages were completed. On the surface, the site cooling facility has passed the annual maintenance process that includes the cleaning of the two evaporative cooling towers, the maintenance of the chiller units and the safety checks on the software controls. In parallel, CMS teams, reinforced by PH-DT group personnel, have worked to shield the cooling gauges for TOTEM and CASTOR against the magnetic stray field in the CMS Forward region, to add labels to almost all the valves underground and to clean all the filters in UXC55, USC55 and SCX5. Following the insertion of TOTEM T1 detector, the cooling circuit has been branched off and commissioned. The demineraliser cartridges have been replaced as well, as they were shown to be almost saturated. New instrumentation has been installed in the SCX5 PC farm cooling and ventilation network, in order to monitor the performance of the HVAC system...

  2. URBANIZATION, HOUSING AND INFRASTRUCTURAL FACILITIES IN LAGOS, NIGERIA

    Directory of Open Access Journals (Sweden)

    FADAIRO Gabriel

    2009-07-01

    Full Text Available There is a wide range of demand on Lagos as an urban centre and pragmatic approaches to complement the urbanization process and its attendant problems need urgent attention. The dynamism of Lagos as an urban centre cannot be stopped, but precautionary measures can be taken to nip the bud in the anticipated fallouts of this trend. The paper examines the urbanization, housing and the dearth of infrastructure in Lagos. Although the city of Lagos has over the years sprawled and has become a mega city, with the symptoms of urbanization being inadequately supplied. The paper further examines the provision of infrastructure in Lagos in the last decade. The government had commenced a total rebirth of the entire gamut of decay and social disintegration through the provisions of basic infrastructure. Projects executed by the state government with respect to urbanization, housing and infrastructure were examined. And recommendations on how to further meet future challenges in Lagos with regard to urbanization were proffered

  3. Rapid assessment of infrastructure of primary health care facilities – a relevant instrument for health care systems management

    OpenAIRE

    2015-01-01

    Background Health care infrastructure constitutes a major component of the structural quality of a health system. Infrastructural deficiencies of health services are reported in literature and research. A number of instruments exist for the assessment of infrastructure. However, no easy-to-use instruments to assess health facility infrastructure in developing countries are available. Present tools are not applicable for a rapid assessment by health facility staff. Therefore, health informatio...

  4. INFRASTRUCTURE FACILITIES FOR MONITORING AND INTELLECTUAL ROAD TRAFFIC MANAGEMENT

    Directory of Open Access Journals (Sweden)

    G. Belov

    2014-10-01

    Full Text Available Review of automatic management of road traffic technologies in major cities of Ukraine is carried out in the given article. Priority directions of studies are determined for producing modern and perspective technologies in the given area. The facilities for monitoring and intelligence management of the road traffic on the basis of the programmed logical controller, using the device of fuzzy logic are considered.

  5. Rapid assessment of infrastructure of primary health care facilities - a relevant instrument for health care systems management.

    Science.gov (United States)

    Scholz, Stefan; Ngoli, Baltazar; Flessa, Steffen

    2015-05-01

    Health care infrastructure constitutes a major component of the structural quality of a health system. Infrastructural deficiencies of health services are reported in literature and research. A number of instruments exist for the assessment of infrastructure. However, no easy-to-use instruments to assess health facility infrastructure in developing countries are available. Present tools are not applicable for a rapid assessment by health facility staff. Therefore, health information systems lack data on facility infrastructure. A rapid assessment tool for the infrastructure of primary health care facilities was developed by the authors and pilot-tested in Tanzania. The tool measures the quality of all infrastructural components comprehensively and with high standardization. Ratings use a 2-1-0 scheme which is frequently used in Tanzanian health care services. Infrastructural indicators and indices are obtained from the assessment and serve for reporting and tracing of interventions. The tool was pilot-tested in Tanga Region (Tanzania). The pilot test covered seven primary care facilities in the range between dispensary and district hospital. The assessment encompassed the facilities as entities as well as 42 facility buildings and 80 pieces of technical medical equipment. A full assessment of facility infrastructure was undertaken by health care professionals while the rapid assessment was performed by facility staff. Serious infrastructural deficiencies were revealed. The rapid assessment tool proved a reliable instrument of routine data collection by health facility staff. The authors recommend integrating the rapid assessment tool in the health information systems of developing countries. Health authorities in a decentralized health system are thus enabled to detect infrastructural deficiencies and trace the effects of interventions. The tool can lay the data foundation for district facility infrastructure management.

  6. Development of Infrastructure Facilities for Superconducting RF Cavity Fabrication, Processing and 2 K Characterization at RRCAT

    Science.gov (United States)

    Joshi, S. C.; Raghavendra, S.; Jain, V. K.; Puntambekar, A.; Khare, P.; Dwivedi, J.; Mundra, G.; Kush, P. K.; Shrivastava, P.; Lad, M.; Gupta, P. D.

    2017-02-01

    An extensive infrastructure facility is being established at Raja Ramanna Centre for Advanced Technology (RRCAT) for a proposed 1 GeV, high intensity superconducting proton linac for Indian Spallation Neutron Source. The proton linac will comprise of a large number of superconducting Radio Frequency (SCRF) cavities ranging from low beta spoke resonators to medium and high beta multi-cell elliptical cavities at different RF frequencies. Infrastructure facilities for SCRF cavity fabrication, processing and performance characterization at 2 K are setup to take-up manufacturing of large number of cavities required for future projects of Department of Atomic Energy (DAE). RRCAT is also participating in a DAE’s approved mega project on “Physics and Advanced technology for High intensity Proton Accelerators” under Indian Institutions-Fermilab Collaboration (IIFC). In the R&D phase of IIFC program, a number of high beta, fully dressed multi-cell elliptical SCRF cavities will be developed in collaboration with Fermilab. A dedicated facility for SCRF cavity fabrication, tuning and processing is set up. SCRF cavities developed will be characterized at 2K using a vertical test stand facility, which is already commissioned. A Horizontal Test Stand facility has also been designed and under development for testing a dressed multi-cell SCRF cavity at 2K. The paper presents the infrastructure facilities setup at RRCAT for SCRF cavity fabrication, processing and testing at 2K.

  7. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2012-01-01

    The CMS Infrastructures teams are preparing for the LS1 activities. A long list of maintenance, consolidation and upgrade projects for CMS Infrastructures is on the table and is being discussed among Technical Coordination and sub-detector representatives. Apart from the activities concerning the cooling infrastructures (see below), two main projects have started: the refurbishment of the SX5 building, from storage area to RP storage and Muon stations laboratory; and the procurement of a new dry-gas (nitrogen and dry air) plant for inner detector flushing. We briefly present here the work done on the first item, leaving the second one for the next CMS Bulletin issue. The SX5 building is entering its third era, from main assembly building for CMS from 2000 to 2007, to storage building from 2008 to 2012, to RP storage and Muon laboratory during LS1 and beyond. A wall of concrete blocks has been erected to limit the RP zone, while the rest of the surface has been split between the ME1/1 and the CSC/DT laborat...

  8. INFRASTRUCTURE

    CERN Multimedia

    A.Gaddi

    2011-01-01

    Between the end of March to June 2011, there has been no detector downtime during proton fills due to CMS Infrastructures failures. This exceptional performance is a clear sign of the high quality work done by the CMS Infrastructures unit and its supporting teams. Powering infrastructure At the end of March, the EN/EL group observed a problem with the CMS 48 V system. The problem was a lack of isolation between the negative (return) terminal and earth. Although at that moment we were not seeing any loss of functionality, in the long term it would have led to severe disruption to the CMS power system. The 48 V system is critical to the operation of CMS: in addition to feeding the anti-panic lights, essential for the safety of the underground areas, it powers all the PLCs (Twidos) that control AC power to the racks and front-end electronics of CMS. A failure of the 48 V system would bring down the whole detector and lead to evacuation of the cavern. EN/EL technicians have made an accurate search of the fault, ...

  9. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2011-01-01

    Most of the work relating to Infrastructure has been concentrated in the new CSC and RPC manufactory at building 904, on the Prevessin site. Brand new gas distribution, powering and HVAC infrastructures are being deployed and the production of the first CSC chambers has started. Other activities at the CMS site concern the installation of a new small crane bridge in the Cooling technical room in USC55, in order to facilitate the intervention of the maintenance team in case of major failures of the chilled water pumping units. The laser barrack in USC55 has been also the object of a study, requested by the ECAL community, for the new laser system that shall be delivered in few months. In addition, ordinary maintenance works have been performed during the short machine stops on all the main infrastructures at Point 5 and in preparation to the Year-End Technical Stop (YETS), when most of the systems will be carefully inspected in order to ensure a smooth running through the crucial year 2012. After the incide...

  10. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    2012-01-01

    The CMS Infrastructures teams are constantly ensuring the smooth operation of the different services during this critical period when the detector is taking data at full speed. A single failure would spoil hours of high luminosity beam and everything is put in place to avoid such an eventuality. In the meantime however, the fast approaching LS1 requires that we take a look at the various activities to take place from the end of the year onwards. The list of infrastructures consolidation and upgrade tasks is already long and will touch all the services (cooling, gas, inertion, powering, etc.). The definitive list will be available just before the LS1 start. One activity performed by the CMS cooling team that is worth mentioning is the maintenance of the cooling circuits at the CMS Electronics Integration Centre (EIC) at building 904. The old chiller has been replaced by a three-units cooling plant that also serves the HVAC system for the new CSC and RPC factories. The commissioning of this new plant has tak...

  11. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    2010-01-01

    In addition to the intense campaign of replacement of the leaky bushing on the Endcap circuits, other important activities have also been completed, with the aim of enhancing the overall reliability of the cooling infrastructures at CMS. Remaining with the Endcap circuit, the regulating valve that supplies cold water to the primary side of the circuit heat-exchanger, is not well adapted in flow capability and a new part has been ordered, to be installed during a stop of LHC. The instrumentation monitoring of the refilling rate of the circuits has been enhanced and we can now detect leaks as small as 0.5 cc/sec, on circuits that have nominal flow rates of some 20 litres/sec. Another activity starting now that the technical stop is over is the collection of spare parts that are difficult to find on the market. These will be stored at P5 with the aim of reducing down-time in case of component failure. Concerning the ventilation infrastructures, it has been noticed that in winter time the relative humidity leve...

  12. Effects of Infrastructural Facilities on the Rental Values of Residential Property

    Directory of Open Access Journals (Sweden)

    Julius A.B.  Olujimi

    2009-01-01

    Full Text Available Problem statement: Real estate developers were consistently faced with the issue of making decisions on the types of property to invest their hard earned income or highly competitive secured mortgage funds, which were attached with high lending rates. One of the different sectors that are begging for such investment is residential property development. Approach: This study evaluated the effects of available infrastructure in residential property on its rental values in Akure, Ondo state, Nigeria. Two different sets of questionnaires were designed and administered for the collection of primary data used in the study. The first set of questionnaires was for the tenants of residential property while the second set of questionnaires was administered on the practicing estate surveyors based in Akure. The questions in the questionnaires amongst others probed into the types of available infrastructure in the rented apartment, rent paid, income of household-heads and family size. Primary data collected were subjected to multiple regression analysis and the determination of the effects of each of the available infrastructure (water, electricity, access road, kitchen, toilet, refuse disposal facility, wall fence, installed burglary proof, drainage channel, daywatch-security and nightwatch-security services on the rental value was achieved. Results: The study revealed that infrastructural facilities contributed 30.50% in the determination of rental values of residential buildings in Akure; of which the provision of wall-fence round the building and the installation of burglary proof in all the windows played the most important infrastructure. Conclusion: Property developers that want to invest in residential buildings development should endeavour to provide these two infrastructure amongst others with a view to earn attractive rental values on their residential property in Akure in particular and towns and cities in developing countries.

  13. The establishment of web gis-portal for public infrastructure facilities in the municipality of Radovljica

    OpenAIRE

    Pokeršnik, Blaž

    2010-01-01

    The graduation thesis includes the procedure of the database or cadastre of infrastructure facilities establishment, its distribution and several web application spatial analyses. As the subject of this study, the cadastre of sewerage network Radovljica was chosen. The focus of the research has been on establishment preparation, data distribution and database analyses together with the cadastre of sewerage network solutions. In case of Radovljica municipality, a detailed introduction of the G...

  14. Perspectives for photonuclear research at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility

    Energy Technology Data Exchange (ETDEWEB)

    Filipescu, D.; Balabanski, D.L.; Constantin, P.; Gales, S.; Tesileanu, O.; Ur, C.A.; Ursu, I.; Zamfir, N.V. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); Anzalone, A.; La Cognata, M.; Spitaleri, C. [INFN-LNS, Catania (Italy); Belyshev, S.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Camera, F. [Departement of Physics, University of Milano, Milano (Italy); INFN section of Milano, Milano (Italy); Csige, L.; Krasznahorkay, A. [Hungarian Academy of Sciences (MTA Atomki), Institute of Nuclear Research, Post Office Box 51, Debrecen (Hungary); Cuong, P.V. [Vietnam Academy of Science and Technology, Centre of Nuclear Physics, Institute of Physics, Hanoi (Viet Nam); Cwiok, M.; Dominik, W.; Mazzocchi, C. [University of Warsaw, Warszawa (Poland); Derya, V.; Zilges, A. [University of Cologne, Institute for Nuclear Physics, Cologne (Germany); Gai, M. [University of Connecticut, LNS at Avery Point, Connecticut, Groton (United States); Gheorghe, I. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Ishkhanov, B.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Kuznetsov, A.A.; Orlin, V.N.; Stopani, K.A.; Varlamov, V.V. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Pietralla, N. [Technische Universitat Darmstadt, Institut fur Kernphysik, Darmstadt (Germany); Sin, M. [University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Utsunomiya, H. [Konan University, Department of Physics, Kobe (Japan); University of Tokyo, Center for Nuclear Study, Saitama (Japan); Weller, H.R. [Triangle Universities Nuclear Laboratory, North Carolina, Durham (United States); Duke University, Department of Physics, North Carolina, Durham (United States)

    2015-12-15

    The perspectives for photonuclear experiments at the new Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility are discussed in view of the need to accumulate novel and more precise nuclear data. The parameters of the ELI-NP gamma beam system are presented. The emerging experimental program, which will be realized at ELI-NP, is presented. Examples of day-one experiments with the nuclear resonance fluorescence technique, photonuclear reaction measurements, photofission experiments and studies of nuclear collective excitation modes and competition between various decay channels are discussed. The advantages which ELI-NP provides for all these experiments compared to the existing facilities are discussed. (orig.)

  15. The ITER neutral beam test facility: Designs of the general infrastructure, cryosystem and cooling plant

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, J.J. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France)]. E-mail: jean-jacques.cordier@cea.fr; Hemsworth, R. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Chantant, M. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Gravil, B. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Henry, D. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Sabathier, F. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Doceul, L. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Thomas, E. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Houtte, D. van [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Zaccaria, P. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy); Antoni, V. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy); Bello, S. Dal; Marcuzzi, D. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy); Antipenkov, A.; Day, C.; Dremel, M. [FZK, Institut fuer Technische Physik, Karlsruhe 76021 (Germany); Mondino, P.L. [EFDA CSU, Max-Planck-Institut fuer Plasma Physik Boltzmannstr. 2, D-85748 Garching (Germany)

    2005-11-15

    The CEA Association is involved, in close collaboration with ENEA, FZK, IPP and UKAEA European Associations, in the first ITER neutral beam (NB) injector and the ITER neutral beam test facility design (EFDA task ref. TW3-THHN-IITF1). A total power of about 50 MW will have to be removed in steady state on the neutral beam test facility (NBTF). The main purpose of this task is to make progress with the detailed design of the first ITER NB injector and to start the conceptual design of the ITER NBTF. The general infrastructure layout of a generic site for the NBTF includes the test facility itself equipped with a dedicated beamline vessel [P.L. Zaccaria, et al., Maintenance schemes for the ITER neutral beam test facility, this conference] and integration studies of associated auxiliaries such as cooling plant, cryoplant and forepumping system.

  16. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    2010-01-01

    During the last six months, the main activity on the cooling circuit has essentially been preventive maintenance. At each short machine technical stop, a water sample is extracted out of every cooling circuit to measure the induced radioactivity. Soon after, a visual check of the whole detector cooling network is done, looking for water leaks in sensitive locations. Depending on sub-system availability, the main water filters are replaced; the old ones are inspected and sent to the CERN metallurgical lab in case of suspicious sediments. For the coming winter technical stop, a number of corrective maintenance activities and infrastructure consolidation work-packages are foreseen. A few faulty valves, found on the muon system cooling circuit, will be replaced; the cooling gauges for TOTEM and CASTOR, in the CMS Forward region, will be either changed or shielded against the magnetic stray field. The demineralizer cartridges will be replaced as well. New instrumentation will also be installed in the SCX5 PC farm ...

  17. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi.

    The various water-cooling circuits ran smoothly over the summer. The overall performance of the cooling system is satisfactory, even if some improvements are possible, concerning the endcap water-cooling and the C6F14 circuits. In particular for the endcap cooling circuit, we aim to lower the water temperature, to provide more margin for RPC detectors. An expert-on-call piquet has been established during the summer global run, assuring the continuous supervision of the installations. An effort has been made to collect and harmonize the existing documentation on the cooling infrastructures at P5. The last six months have seen minor modifications to the electrical power network at P5. Among these, the racks in USC55 for the Tracker and Sniffer systems, which are backed up by the diesel generator in case of power outage, have been equipped with new control boxes to allow a remote restart. Other interventions have concerned the supply of assured power to those installations that are essential for CMS to run eff...

  18. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2013-01-01

      Most of the CMS infrastructures at P5 will go through a heavy consolidation-work period during LS1. All systems, from the cryogenic plant of the superconducting magnet to the rack powering in the USC55 counting rooms, from the cooling circuits to the gas distribution, will undergo consolidation work. As announced in the last issue of the CMS Bulletin, we present here one of the consolidation projects of LS1: the installation of a new dry-gas plant for inner detectors inertion. So far the oxygen and humidity suppression inside the CMS Tracker and Pixel volumes were assured by flushing dry nitrogen gas evaporated from a large liquid nitrogen tank. For technical reasons, the maximum flow is limited to less than 100 m3/h and the cost of refilling the tank every two weeks with liquid nitrogen is quite substantial. The new dry-gas plant will supply up to 400 m3/h of dry nitrogen (or the same flow of dry air, during shut-downs) with a comparatively minimal operation cost. It has been evaluated that the...

  19. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    With all the technical services running, the attention has moved toward the next shutdown that will be spent to perform those modifications needed to enhance the reliability of CMS Infrastructures. Just to give an example for the cooling circuit, a set of re-circulating bypasses will be installed into the TS/CV area to limit the pressure surge when a circuit is partially shut-off. This problem has affected especially the Endcap Muon cooling circuit in the past. Also the ventilation of the UXC55 has to be revisited, allowing the automatic switching to full extraction in case of magnet quench. (Normally 90% of the cavern air is re-circulated by the ventilation system.) Minor modifications will concern the gas distribution, while the DSS action-matrix has to be refined according to the experience gained with operating the detector for a while. On the powering side, some LV power lines have been doubled and the final schematics of the UPS coverage for the counting rooms have been released. The most relevant inte...

  20. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    The long winter shut-down allows for modifications that will improve the reliability of the detector infrastructures at P5. The annual maintenance of detector services is taking place as well. This means a full stop of water-cooling circuits from November 24th with a gradual restart from mid January 09. The annual maintenance service includes the cleaning of the two SF5 cooling towers, service of the chiller plants on the surface, and the cryogenic plant serving the CMS Magnet. In addition, the overall site power is reduced from 8MW to 2MW, compatible with the switchover to the Swiss power network in winter. Full power will be available again from end of January. Among the modification works planned, the Low Voltage cabinets are being refurbished; doubling the cable sections and replacing the 40A circuit breakers with 60A types. This will reduce the overheating that has been experienced. Moreover, two new LV transformers will be bought and pre-cabled in order to assure a quick swap in case of failure of any...

  1. Effects of a Tier 3 Phonological Awareness Intervention on Preschoolers' Emergent Literacy

    Science.gov (United States)

    Noe, Sean; Spencer, Trina D.; Kruse, Lydia; Goldstein, Howard

    2014-01-01

    This multiple baseline design study examined the effects of a Tier 3 early literacy intervention on low-income preschool children's phonological awareness (PA). Seven preschool children who did not make progress on identifying first sounds in words during a previous Tier 2 intervention participated in a more intensive Tier 3 intervention. Children…

  2. Effects of a Tier 3 Self-Management Intervention Implemented with and without Treatment Integrity

    Science.gov (United States)

    Lower, Ashley; Young, K. Richard; Christensen, Lynnette; Caldarella, Paul; Williams, Leslie; Wills, Howard

    2016-01-01

    This study investigated the effects of a Tier 3 peer-matching self-management intervention on two elementary school students who had previously been less responsive to Tier 1 and Tier 2 interventions. The Tier 3 self-management intervention, which was implemented in the general education classrooms, included daily electronic communication between…

  3. Customer Satisfaction versus Infrastructural Facilities in the Realm of Higher Education--A Case Study of Sri Venkateswara University Tirupati

    Science.gov (United States)

    Janardhana, G.; Rajasekhar, Mamilla

    2012-01-01

    This article analyses the levels of students' satisfaction and how institution provides infrastructure facilities in the field of higher education. Infrastructure is the fastest growing segment of the higher education scenario. Universities play a very vital role in a country in terms of their potential. It contributes to employment and growth.…

  4. SNL Five-Year Facilities & Infrastructure Plan FY2015-2019

    Energy Technology Data Exchange (ETDEWEB)

    Cipriani, Ralph J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    Sandia’s development vision is to provide an agile, flexible, safer, more secure, and efficient enterprise that leverages the scientific and technical capabilities of the workforce and supports national security requirements in multiple areas. Sandia’s Five-Year Facilities & Infrastructure Planning program represents a tool to budget and prioritize immediate and short-term actions from indirect funding sources in light of the bigger picture of proposed investments from direct-funded, Work for Others and other funding sources. As a complementary F&I investment program, Sandia’s indirect investment program supports incremental achievement of the development vision within a constrained resource environment.

  5. Enhanced Computational Infrastructure for Data Analysis at the DIII-D National Fusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, D.P.; Peng, Q.; Schachter, J.; Terpstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; Meyer, W.H.; Parker, C.T.

    1999-08-01

    Recently a number of enhancements to the computer hardware infrastructure have been implemented at the DIII-D National Fusion Facility. Utilizing these improvements to the hardware infrastructure, software enhancements are focusing on streamlined analysis, automation, and graphical user interface (GUI) systems to enlarge the user base. The adoption of the load balancing software package LSF Suite by Platform Computing has dramatically increased the availability of CPU cycles and the efficiency of their use. Streamlined analysis has been aided by the adoption of the MDSplus system to provide a unified interface to analyzed DIII-D data. The majority of MDSplus data is made available in between pulses giving the researcher critical information before setting up the next pulse. Work on data viewing and analysis tools focuses on efficient GUI design with object-oriented programming (OOP) for maximum code flexibility. Work to enhance the computational infrastructure at DIII-D has included a significant effort to aid the remote collaborator since the DIII-D National Team consists of scientists from 9 national laboratories, 19 foreign laboratories, 16 universities, and 5 industrial partnerships. As a result of this work, DIII-D data is available on a 24 x 7 basis from a set of viewing and analysis tools that can be run either on the collaborators' or DIII-Ds computer systems. Additionally, a Web based data and code documentation system has been created to aid the novice and expert user alike.

  6. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Science.gov (United States)

    2013-05-29

    ... Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards AGENCY: Environmental Protection Agency... Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule...

  7. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Science.gov (United States)

    2010-10-01

    ... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included in an eligible rural water supply project? A rural water supply project may include, but is...

  8. Water, sanitation and hygiene infrastructure and quality in rural healthcare facilities in Rwanda.

    Science.gov (United States)

    Huttinger, Alexandra; Dreibelbis, Robert; Kayigamba, Felix; Ngabo, Fidel; Mfura, Leodomir; Merryweather, Brittney; Cardon, Amelie; Moe, Christine

    2017-08-03

    WHO and UNICEF have proposed an action plan to achieve universal water, sanitation and hygiene (WASH) coverage in healthcare facilities (HCFs) by 2030. The WASH targets and indicators for HCFs include: an improved water source on the premises accessible to all users, basic sanitation facilities, a hand washing facility with soap and water at all sanitation facilities and patient care areas. To establish viable targets for WASH in HCFs, investigation beyond 'access' is needed to address the state of WASH infrastructure and service provision. Patient and caregiver use of WASH services is largely unaddressed in previous studies despite being critical for infection control. The state of WASH services used by staff, patients and caregivers was assessed in 17 rural HCFs in Rwanda. Site selection was non-random and predicated upon piped water and power supply. Direct observation and semi-structured interviews assessed drinking water treatment, presence and condition of sanitation facilities, provision of soap and water, and WASH-related maintenance and record keeping. Samples were collected from water sources and treated drinking water containers and analyzed for total coliforms, E. coli, and chlorine residual. Drinking water treatment was reported at 15 of 17 sites. Three of 18 drinking water samples collected met the WHO guideline for free chlorine residual of >0.2 mg/l, 6 of 16 drinking water samples analyzed for total coliforms met the WHO guideline of drinking water samples analyzed for E. coli met the WHO guideline of drinking water per day. At all sites, 60% of water access points (160 of 267) were observed to be functional, 32% of hand washing locations (46 of 142) had water and soap and 44% of sanitary facilities (48 of 109) were in hygienic condition and accessible to patients. Regular maintenance of WASH infrastructure consisted of cleaning; no HCF had on-site capacity for performing repairs. Quarterly evaluations of HCFs for Rwanda's Performance Based

  9. Tier 3 multidisciplinary medical weight management improves outcome of Roux-en-Y gastric bypass surgery.

    Science.gov (United States)

    Patel, P; Hartland, A; Hollis, A; Ali, R; Elshaw, A; Jain, S; Khan, A; Mirza, S

    2015-04-01

    In 2013 the Department of Health specified eligibility for bariatric surgery funded by the National Health Service. This included a mandatory specification that patients first complete a Tier 3 medical weight management programme. The clinical effectiveness of this recommendation has not been evaluated previously. Our bariatric centre has provided a Tier 3 programme six months prior to bariatric surgery since 2009. The aim of our retrospective study was to compare weight loss in two cohorts: Roux-en-Y gastric bypass only (RYGB only cohort) versus Tier 3 weight management followed by RYGB (Tier 3 cohort). A total of 110 patients were selected for the study: 66 in the RYGB only cohort and 44 in the Tier 3 cohort. Patients in both cohorts were matched for age, sex, preoperative body mass index and pre-existing co-morbidities. The principal variable was therefore whether they undertook the weight management programme prior to RYGB. Patients from both cohorts were followed up at 6 and 12 months to assess weight loss. The mean weight loss at 6 months for the Tier 3 cohort was 31% (range: 18-69%, standard deviation [SD]: 0.10 percentage points) compared with 23% (range: 4-93%, SD: 0.12 percentage points) for the RYGB only cohort (p=0.0002). The mean weight loss at 12 months for the Tier 3 cohort was 34% (range: 17-51%, SD: 0.09 percentage points) compared with 27% (range: 14-48%, SD: 0.87 percentage points) in the RYGB only cohort (p=0.0037). Our study revealed that in our matched cohorts, patients receiving Tier 3 specialist medical weight management input prior to RYGB lost significantly more weight at 6 and 12 months than RYGB only patients. This confirms the clinical efficacy of such a weight management programme prior to gastric bypass surgery and supports its inclusion in eligibility criteria for bariatric surgery.

  10. The ITER neutral beam test facility: designs of the general infrastructure, cryo-system and cooling plant

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, J.J.; Hemsworth, R.; Chantant, M.; Gravil, B.; Henry, D.; Sabathier, F.; Doceul, L.; Thomas, E.; Van Houtte, D. [Association Euratom-CEA Cadarache (DSM/DRFC), 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Zaccaria, P.; Antoni, V.; Dal Bello, S.; Masiello, A.; Marcuzzi, D. [Consorzio RFX Association Euratom-ENEA, Padova (Italy); Antipenkov, A.; Dremel, M.; Day, C. [Institut fur Technische Physik, FZK, Karlsruhe (Germany); Mondino, P.L. [Max-Planck-Institut fuer Plasmaphysik, EFDA CSU, Garching (Germany)

    2004-07-01

    The CEA Association is involved, in close collaboration with ENEA, FZK, IPP and UKEA European Associations, in the first ITER neutral beam injector and the ITER neutral beam test facility design (NBTF). A total power of about 50 MW will have to be removed in steady state on the neutral beam test facility (NBTF). The main purpose of this task is to make progress with the detailed design of the first ITER NB injector and to start the conceptual design of the ITER NBTF. The general infrastructure layout of a generic site for the NBTF, includes the test facility itself equipped of a dedicated beamline vessel and integration studies of associated auxiliaries as cooling plant, cryo-plant and fore-pumping system. The general infrastructure and auxiliaries layout of the NBTF are described. (authors)

  11. Exploring the Relationship between Cognitive Characteristics and Responsiveness to a Tier 3 Reading Fluency Intervention

    Science.gov (United States)

    Field, Stacey Allyson

    2015-01-01

    Current research suggests that certain cognitive functions predict the likelihood of intervention response for students who receive Tier 2 instruction through an RTI-framework. However, less is known about cognitive predictors of responder status at a theoretically more critical point of divergence within the RTI model: Tier 3. Moreover, no…

  12. Exploring the Relationship between Cognitive Characteristics and Responsiveness to a Tier 3 Reading Fluency Intervention

    Science.gov (United States)

    Field, Stacey Allyson

    2015-01-01

    Current research suggests that certain cognitive functions predict the likelihood of intervention response for students who receive Tier 2 instruction through an RTI-framework. However, less is known about cognitive predictors of responder status at a theoretically more critical point of divergence within the RTI model: Tier 3. Moreover, no…

  13. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Science.gov (United States)

    2013-04-08

    ... AGENCY 40 CFR Part 80 RIN 2060-AQ86 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle... hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor... 2017, as part of a systems approach to addressing the impacts of motor vehicles and fuels on air...

  14. The motives for accepting or rejecting waste infrastructure facilities: shifting the focus from the planners’ perspective to fairness and community commitment.

    NARCIS (Netherlands)

    Wolsink, M.; Devilee, J.

    2009-01-01

    In environmental planning, decision making on land use for infrastructure increasingly causes conflicts, particularly with regard to contested waste facilities. Risk management and perceptions have become crucial. Empirical investigations of these conflicts brought clear advancement in the fields of

  15. The motives for accepting or rejecting waste infrastructure facilities: shifting the focus from the planners’ perspective to fairness and community commitment.

    NARCIS (Netherlands)

    Wolsink, M.; Devilee, J.

    2009-01-01

    In environmental planning, decision making on land use for infrastructure increasingly causes conflicts, particularly with regard to contested waste facilities. Risk management and perceptions have become crucial. Empirical investigations of these conflicts brought clear advancement in the fields of

  16. VM-based infrastructure for simulating different cluster and storage solutions in ATLAS

    CERN Document Server

    KUTOUSKI, M; The ATLAS collaboration; PETROSYAN, A; KADOCHNIKOV, I; BELOV, S; KORENKOV, V

    2012-01-01

    The current ATLAS Tier3 infrastructure consists of a variety of sites of different sizes and with a mix of local resource management systems (LRMS) and mass storage system (MSS) implementations. The Tier3 monitoring suite, having been developed in order to satisfy the needs of Tier3 site administrators and to aggregate Tier3 monitoring information on the global VO level, needs to be validated for various combinations of LRMS and MSS solutions along with the corresponding Ganglia and/or Nagios plugins. For this purpose the Testbed infrastructure, which allows simulation of various computational cluster and storage solutions, had been set up at JINR (Dubna). This infrastructure provides the ability to run testbeds with various LRMS and MSS implementations, and with the capability to quickly redeploy particular testbeds or their components. Performance of specific components is not a critical issue for development and validation, whereas easy management and deployment are crucial. Therefore virtual machines were...

  17. Infrastructure Development of Single Cell Testing Capability at A0 Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, Nandhini; Padilla, R.; Reid, J.; Khabiboulline, T.; Ge, M.; Mukherjee, A.; Rakhnov, I.; Ginsburg, C.; Wu, G.; Harms, E.; Carter, H.; /Fermilab

    2009-09-01

    The objective of this technical note is to document the details of the infrastructure development process that was realized at the A0 photo injector facility to establish RF cold testing capability for 1.3 GHz superconducting niobium single cell cavities. The activity began the last quarter of CY 2006 and ended the first quarter of CY 2009. The whole process involved addressing various aspects such as design of vertical insert and lifting fixture, modification of existing RF test station and design of new couplers, development of a Temperature Mapping (T-Map) system, radiation considerations for the test location (north cave), update of existing High Pressure Rinse (HPR) system, preparation of necessary safety documents and eventually obtaining an Operational Readiness Clearance (ORC). Figure 1 illustrates the various components of the development process. In the past, the north cave test station at A0 has supported the cold testing 3.9 GHz nine cell and single cell cavities, thus some of the components were available for use and some needed modification. The test dewar had the capacity to accommodate 1.3 GHz single cells although a new vertical insert that could handle both cavity types (1.3 and 3.9 GHz) had to be designed. The existing cryogenic system with an average capacity of {approx} 0.5 g/sec was deemed sufficient. The RF system was updated with broadband components and an additional amplifier with higher power capacity to handle higher gradients usually achieved in 1.3 GHz cavities. The initial testing phase was arbitrated to proceed with fixed power coupling. A new temperature mapping system was developed to provide the diagnostic tool for hot spot studies, quench characterization and field emission studies. The defining feature of this system was the use of diode sensors instead of the traditional carbon resistors as sensing elements. The unidirectional current carrying capacity (forward bias) of the diodes provided for the ease of multiplexing of the

  18. Strengthening Critical Infrastructure: Combined Heat and Power at Wastewater Treatment Facilities (Webinar) – November 15, 2011

    Science.gov (United States)

    This webinar provides information about CHP at wastewater treatment facilities (WWTFs), including advantages and challenges, financial incentives and funding programs, and technical and economic potential.

  19. Theoretically-Driven Infrastructure for Supporting Healthcare Teams Training at a Military Treatment Facility

    Science.gov (United States)

    Turner, Robert T.; Parodi, Andrea V.

    2011-01-01

    The Team Resource Center (TRC) at Naval Medical Center Portsmouth (NMCP) currently hosts a tri-service healthcare teams training course three times annually . The course consists of didactic learning coupled with simulation exercises to provide an interactive educational experience for healthcare professionals. The course is also the foundation of a research program designed to explore the use of simulation technologies for enhancing team training and evaluation. The TRC has adopted theoretical frameworks for evaluating training readiness and efficacy, and is using these frameworks to guide a systematic reconfiguration of the infrastructure supporting healthcare teams training and research initiatives at NMCP.

  20. Detection and Identification of People at a Critical Infrastructure Facilities of Trafic Buildings

    Directory of Open Access Journals (Sweden)

    Rastislav PIRNÍK

    2014-12-01

    Full Text Available This paper focuses on identification of persons entering objects of crucial infrastructure and subsequent detection of movement in parts of objects. It explains some of the technologies and approaches to processing specific image information within existing building apparatus. The article describes the proposed algorithm for detection of persons. It brings a fresh approach to detection of moving objects (groups of persons involved in enclosed areas focusing on securing freely accessible places in buildings. Based on the designed algorithm of identification with presupposed utilisation of 3D application, motion trajectory of persons in delimited space can be automatically identified. The application was created in opensource software tool using the OpenCV library.

  1. Development and utilization of USGS ShakeCast for rapid post-earthquake assessment of critical facilities and infrastructure

    Science.gov (United States)

    Wald, David J.; Lin, Kuo-wan; Kircher, C.A.; Jaiswal, Kishor; Luco, Nicolas; Turner, L.; Slosky, Daniel

    2017-01-01

    The ShakeCast system is an openly available, near real-time post-earthquake information management system. ShakeCast is widely used by public and private emergency planners and responders, lifeline utility operators and transportation engineers to automatically receive and process ShakeMap products for situational awareness, inspection priority, or damage assessment of their own infrastructure or building portfolios. The success of ShakeCast to date and its broad, critical-user base mandates improved software usability and functionality, including improved engineering-based damage and loss functions. In order to make the software more accessible to novice users—while still utilizing advanced users’ technical and engineering background—we have developed a “ShakeCast Workbook”, a well documented, Excel spreadsheet-based user interface that allows users to input notification and inventory data and export XML files requisite for operating the ShakeCast system. Users will be able to select structure based on a minimum set of user-specified facility (building location, size, height, use, construction age, etc.). “Expert” users will be able to import user-modified structural response properties into facility inventory associated with the HAZUS Advanced Engineering Building Modules (AEBM). The goal of the ShakeCast system is to provide simplified real-time potential impact and inspection metrics (i.e., green, yellow, orange and red priority ratings) to allow users to institute customized earthquake response protocols. Previously, fragilities were approximated using individual ShakeMap intensity measures (IMs, specifically PGA and 0.3 and 1s spectral accelerations) for each facility but we are now performing capacity-spectrum damage state calculations using a more robust characterization of spectral deamnd.We are also developing methods for the direct import of ShakeMap’s multi-period spectra in lieu of the assumed three-domain design spectrum (at 0.3s for

  2. Scientific Infrastructure To Support Manned And Unmanned Aircraft, Tethered Balloons, And Related Aerial Activities At Doe Arm Facilities On The North Slope Of Alaska

    Science.gov (United States)

    Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Helsel, F.

    2015-12-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) facilities, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. DOE has recently invested in improvements to facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska. A new ground facility, the Third ARM Mobile Facility, was installed at Oliktok Point Alaska in 2013. Tethered instrumented balloons were used to make measurements of clouds in the boundary layer including mixed-phase clouds. A new Special Use Airspace was granted to DOE in 2015 to support science missions in international airspace in the Arctic. Warning Area W-220 is managed by Sandia National Laboratories for DOE Office of Science/BER. W-220 was successfully used for the first time in July 2015 in conjunction with Restricted Area R-2204 and a connecting Altitude Reservation Corridor (ALTRV) to permit unmanned aircraft to operate north of Oliktok Point. Small unmanned aircraft (DataHawks) and tethered balloons were flown at Oliktok during the summer and fall of 2015. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska. The printed poster will include the standard DOE funding statement.

  3. Do knowledge infrastructure facilities support Evidence-Based Practice in occupational health? An exploratory study across countries among occupational physicians enrolled on Evidence-Based Medicine courses

    Directory of Open Access Journals (Sweden)

    van Dijk Frank JH

    2009-01-01

    Full Text Available Abstract Background Evidence-Based Medicine (EBM is an important method used by occupational physicians (OPs to deliver high quality health care. The presence and quality of a knowledge infrastructure is thought to influence the practice of EBM in occupational health care. This study explores the facilities in the knowledge infrastructure being used by OPs in different countries, and their perceived importance for EBM practice. Methods Thirty-six OPs from ten countries, planning to attend an EBM course and to a large extent recruited via the European Association of Schools of Occupational Medicine (EASOM, participated in a cross-sectional study. Results Research and development institutes, and knowledge products and tools are used by respectively more than 72% and more than 80% of the OPs and they are rated as being important for EBM practice (more than 65 points (range 0–100. Conventional knowledge access facilities, like traditional libraries, are used often (69% but are rated as less important (46.8 points (range 0–100 compared to the use of more novel facilities, like question-and-answer facilities (25% that are rated as more important (48.9 points (range 0–100. To solve cases, OPs mostly use non evidence-based sources. However, they regard the evidence-based sources that are not often used, e.g. the Cochrane library, as important enablers for practising EBM. The main barriers are lack of time, payment for full-text articles, language barrier (most texts are in English, and lack of skills and support. Conclusion This first exploratory study shows that OPs use many knowledge infrastructure facilities and rate them as being important for their EBM practice. However, they are not used to use evidence-based sources in their practice and face many barriers that are comparable to the barriers physicians face in primary health care.

  4. "Measuring Operational Effectiveness of Information Technology Infrastructure Library (IIL) and the Impact of Critical Facilities Inclusion in the Process."

    Science.gov (United States)

    Woodell, Eric A.

    2013-01-01

    Information Technology (IT) professionals use the Information Technology Infrastructure Library (ITIL) process to better manage their business operations, measure performance, improve reliability and lower costs. This study examined the operational results of those data centers using ITIL against those that do not, and whether the results change…

  5. "Measuring Operational Effectiveness of Information Technology Infrastructure Library (IIL) and the Impact of Critical Facilities Inclusion in the Process."

    Science.gov (United States)

    Woodell, Eric A.

    2013-01-01

    Information Technology (IT) professionals use the Information Technology Infrastructure Library (ITIL) process to better manage their business operations, measure performance, improve reliability and lower costs. This study examined the operational results of those data centers using ITIL against those that do not, and whether the results change…

  6. Do Physical Proximity and Availability of Adequate Infrastructure at Public Health Facility Increase Institutional Delivery? A Three Level Hierarchical Model Approach.

    Science.gov (United States)

    Patel, Rachana; Ladusingh, Laishram

    2015-01-01

    This study aims to examine the inter-district and inter-village variation of utilization of health services for institutional births in EAG states in presence of rural health program and availability of infrastructures. District Level Household Survey-III (2007-08) data on delivery care and facility information was used for the purpose. Bivariate results examined the utilization pattern by states in presence of correlates of women related while a three-level hierarchical multilevel model illustrates the effect of accessibility, availability of health facility and community health program variables on the utilization of health services for institutional births. The study found a satisfactory improvement in state Rajasthan, Madhya Pradesh and Orissa, importantly, in Bihar and Uttaranchal. The study showed that increasing distance from health facility discouraged institutional births and there was a rapid decline of more than 50% for institutional delivery as the distance to public health facility exceeded 10 km. Additionally, skilled female health worker (ANM) and observed improved public health facility led to significantly increase the probability of utilization as compared to non-skilled ANM and not-improved health centers. Adequacy of essential equipment/laboratory services required for maternal care significantly encouraged deliveries at public health facility. District/village variables neighborhood poverty was negatively related to institutional delivery while higher education levels in the village and women's residing in more urbanized districts increased the utilization. "Inter-district" variation was 14 percent whereas "between-villages" variation for the utilization was 11 percent variation once controlled for all the three-level variables in the model. This study suggests that the mere availability of health facilities is necessary but not sufficient condition to promote utilization until the quality of service is inadequate and inaccessible considering

  7. Energy infrastructure of the United States and projected siting needs: Scoping ideas, identifying issues and options. Draft report of the Department of Energy Working Group on Energy Facility Siting to the Secretary

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    A Department of Energy (DOE) Working Group on Energy Facility Siting, chaired by the Policy Office with membership from the major program and staff offices of the Department, reviewed data regarding energy service needs, infrastructure requirements, and constraints to siting. The Working Group found that the expeditious siting of energy facilities has important economic, energy, and environmental implications for key Administration priorities.

  8. The Effects of a Tier 3 Intervention on the Mathematics Performance of Second Grade Students With Severe Mathematics Difficulties.

    Science.gov (United States)

    Bryant, Brian R; Bryant, Diane Pedrotty; Porterfield, Jennifer; Dennis, Minyi Shih; Falcomata, Terry; Valentine, Courtney; Brewer, Chelsea; Bell, Kathy

    2016-01-01

    The purpose of this study was to determine the effectiveness of a systematic, explicit, intensive Tier 3 (tertiary) intervention on the mathematics performance of students in second grade with severe mathematics difficulties. A multiple-baseline design across groups of participants showed improved mathematics performance on number and operations concepts and procedures, which are the foundation for later mathematics success. In the previous year, 12 participants had experienced two doses (first and second semesters) of a Tier 2 intervention. In second grade, the participants continued to demonstrate low performance, falling below the 10th percentile on a researcher-designed universal screener and below the 16th percentile on a distal measure, thus qualifying for the intensive intervention. A project interventionist, who met with the students 5 days a week for 10 weeks (9 weeks for one group), conducted the intensive intervention. The intervention employed more intensive instructional design features than the previous Tier 2 secondary instruction, and also included weekly games to reinforce concepts and skills from the lessons. Spring results showed significantly improved mathematics performance (scoring at or above the 25th percentile) for most of the students, thus making them eligible to exit the Tier 3 intervention.

  9. Assisted Living Facilities, cruical infrastructures, Published in 2007, 1:100000 (1in=8333ft) scale, Marion County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Assisted Living Facilities dataset, published at 1:100000 (1in=8333ft) scale, was produced all or in part from Field Survey/GPS information as of 2007. It is...

  10. Ambulatory Surgical Facilities, cruical infrastructures, Published in 2007, 1:100000 (1in=8333ft) scale, Marion County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Ambulatory Surgical Facilities dataset, published at 1:100000 (1in=8333ft) scale, was produced all or in part from Field Survey/GPS information as of 2007. It...

  11. Villes et infrastructures de transport du Rhin supérieur : des grands équipements structurants ? Cities and transport infrastructures in the Upper Rhine area: major structuring facilities?

    Directory of Open Access Journals (Sweden)

    Joël Forthoffer

    2012-12-01

    Full Text Available L’espace franco-germano-suisse du Rhin supérieur dispose d’un maillage de villes performantes : métropole de Mannheim, Eurodistrict de Strasbourg, agglomération trinationale de Bâle... De par sa situation géographique, le sillon rhénan est aussi un couloir de transit d’importance européenne. Une coopération fonctionnelle dans différents domaines du transport comme les aéroports, les gares ou les ports, peut hisser cette région au plan européen et mondial.Cette étude analyse les interactions entre les projets d’équipements transport et les villes et s’articule autour des points suivants : les métropoles en tant que plates-formes intermodales, les corridors : réalités, projets, enjeux ; les agglomérations et les jeux transfrontaliers. Elle s’efforce de présenter les évolutions d’infrastructures des différents modes de transport en corrélation avec les projets de villes.The French-German-Swiss area of the upper Rhine offers a meshing of successful cities: metropolis of Mannheim, Eurodistrict of Strasbourg, Basel trinational agglomeration... Because of its geographical situation, the Rhine valley is also a transit corridor of European importance. A functional cooperation in various transport fields such as airports, railway stations or ports, may advance this area to European and worldwide level.This study analyzes the interactions between cities and transport facilities projects. It is based on the following points: metropolises as intermodal platforms; corridors: realities, projects, stakes; towns and cross-border games, and it tries to present the infrastructure developments of various modes in conjunction with the towns’ projects.

  12. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, P.D.

    2000-03-19

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusion reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.

  13. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, P.D.

    2000-04-25

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusion reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.

  14. Regulation of gas infrastructure expansion

    NARCIS (Netherlands)

    De Joode, J.

    2012-01-01

    The topic of this dissertation is the regulation of gas infrastructure expansion in the European Union (EU). While the gas market has been liberalised, the gas infrastructure has largely remained in the regulated domain. However, not necessarily all gas infrastructure facilities – such as gas storag

  15. A model of enteric fermentation in dairy cows to estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 approach

    NARCIS (Netherlands)

    Bannink, A.; Schijndel, van M.W.; Dijkstra, J.

    2011-01-01

    The protocol for the National Inventory of agricultural greenhouse gas emissions in The Netherlands includes a dynamic and mechanistic model of animal digestion and fermentation as an Intergovernmental Panel on Climate Change (IPCC) Tier 3 approach to estimate enteric CH4 emission by dairy cows. The

  16. Identifying Students for Secondary and Tertiary Prevention Efforts: How Do We Determine Which Students Have Tier 2 and Tier 3 Needs?

    Science.gov (United States)

    Lane, Kathleen Lynne; Oakes, Wendy Peia; Ennis, Robin Parks; Hirsch, Shanna Eisner

    2014-01-01

    In comprehensive, integrated, three-tiered models, it is essential to have a systematic method for identifying students who need supports at Tier 2 or Tier 3. This article provides explicit information on how to use multiple sources of data to determine which students might benefit from these supports. First, the authors provide an overview of how…

  17. Bike Infrastructures

    DEFF Research Database (Denmark)

    Silva, Victor; Harder, Henrik; Jensen, Ole B.;

    Bike Infrastructures aims to identify bicycle infrastructure typologies and design elements that can help promote cycling significantly. It is structured as a case study based research where three cycling infrastructures with distinct typologies were analyzed and compared. The three cases are Ves......, the findings of this research project can also support bike friendly design and planning, and cyclist advocacy....

  18. Infrastructure sensing.

    Science.gov (United States)

    Soga, Kenichi; Schooling, Jennifer

    2016-08-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

  19. Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

    2014-02-21

    Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

  20. Integration of XRootD into the cloud infrastructure for ALICE data analysis

    Science.gov (United States)

    Kompaniets, Mikhail; Shadura, Oksana; Svirin, Pavlo; Yurchenko, Volodymyr; Zarochentsev, Andrey

    2015-12-01

    Cloud technologies allow easy load balancing between different tasks and projects. From the viewpoint of the data analysis in the ALICE experiment, cloud allows to deploy software using Cern Virtual Machine (CernVM) and CernVM File System (CVMFS), to run different (including outdated) versions of software for long term data preservation and to dynamically allocate resources for different computing activities, e.g. grid site, ALICE Analysis Facility (AAF) and possible usage for local projects or other LHC experiments. We present a cloud solution for Tier-3 sites based on OpenStack and Ceph distributed storage with an integrated XRootD based storage element (SE). One of the key features of the solution is based on idea that Ceph has been used as a backend for Cinder Block Storage service for OpenStack, and in the same time as a storage backend for XRootD, with redundancy and availability of data preserved by Ceph settings. For faster and easier OpenStack deployment was applied the Packstack solution, which is based on the Puppet configuration management system. Ceph installation and configuration operations are structured and converted to Puppet manifests describing node configurations and integrated into Packstack. This solution can be easily deployed, maintained and used even in small groups with limited computing resources and small organizations, which usually have lack of IT support. The proposed infrastructure has been tested on two different clouds (SPbSU & BITP) and integrates successfully with the ALICE data analysis model.

  1. Evaluative Infrastructures

    DEFF Research Database (Denmark)

    Kornberger, Martin; Pflueger, Dane; Mouritsen, Jan

    BnB or Uber, this paper develops the concept of evaluative infrastructures for a heterarchical modus of accounting. Evaluative infrastructures are decentralized accounting practices that underpin distributed production processes. They are evaluative because they deploy a plethora of interacting devices...

  2. MFC Communications Infrastructure Study

    Energy Technology Data Exchange (ETDEWEB)

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

  3. Greening infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-10-01

    Full Text Available ), transport (typically roads, rail and airports), and telecommunications. The focus of this chapter will be on greening bulk services and roads. Despite the importance of infrastructure to economic growth and social wellbeing, many countries struggle to meet...

  4. Bike Infrastructures

    OpenAIRE

    2010-01-01

    Bike Infrastructures aims to identify bicycle infrastructuretypologies and design elements that can help promotecycling significantly. It is structured as a case study basedresearch where three cycling infrastructures with distincttypologies were analyzed and compared. The three casesare Vestergade Vest and Mageløs in Odense (sharedusespace in the core of the city); Hans Broges Gade inAarhus (an extension of a bicycle route linking the suburbto Aarhus Central station) and Bryggebro in Copenha...

  5. Infrastructural Fractals

    DEFF Research Database (Denmark)

    Bruun Jensen, Casper

    2007-01-01

    . Instead, I outline a fractal approach to the study of space, society, and infrastructure. A fractal orientation requires a number of related conceptual reorientations. It has implications for thinking about scale and perspective, and (sociotechnical) relations, and for considering the role of the social...... and a fractal social theory....

  6. Do knowledge infrastructure facilities support Evidence-Based Practice in occupational health? An exploratory study across countries among occupational physicians enrolled on EBM courses

    NARCIS (Netherlands)

    Hugenholtz, N.I.R.; Nieuwenhuijsen, K.; Sluiter, J.K.; van Dijk, F.J.H.

    2009-01-01

    ABSTRACT: BACKGROUND: Evidence-Based Medicine (EBM) is an important method used by occupational physicians (OPs) to deliver high quality health care. The presence and quality of a knowledge infrastructure is thought to influence the practice of EBM in occupational health care. This study explores

  7. Do knowledge infrastructure facilities support Evidence-Based Practice in occupational health? An exploratory study across countries among occupational physicians enrolled on EBM courses

    NARCIS (Netherlands)

    Hugenholtz, N.I.R.; Nieuwenhuijsen, K.; Sluiter, J.K.; van Dijk, F.J.H.

    2009-01-01

    ABSTRACT: BACKGROUND: Evidence-Based Medicine (EBM) is an important method used by occupational physicians (OPs) to deliver high quality health care. The presence and quality of a knowledge infrastructure is thought to influence the practice of EBM in occupational health care. This study explores th

  8. Do knowledge infrastructure facilities support Evidence-Based Practice in occupational health? An exploratory study across countries among occupational physicians enrolled on EBM courses

    NARCIS (Netherlands)

    N.I.R. Hugenholtz; K. Nieuwenhuijsen; J.K. Sluiter; F.J.H. van Dijk

    2009-01-01

    ABSTRACT: BACKGROUND: Evidence-Based Medicine (EBM) is an important method used by occupational physicians (OPs) to deliver high quality health care. The presence and quality of a knowledge infrastructure is thought to influence the practice of EBM in occupational health care. This study explores th

  9. INFRASTRUCTURING DESIGN

    DEFF Research Database (Denmark)

    Ertner, Sara Marie

    one such project, Project Lev Vel, a public-private and user driven innovation project. The central questions posed by the dissertation are: What is welfare technology? How is it imagined, designed, and developed, and by whom? Who are driving the design processes and how? Who are the elderly users...... sites and infrastructures for project communication plays a central role for design and, ultimately, for what welfare technology comes to be. The chapters explore different processes of what I call infrastructuring design; the ongoing crafting of social, material, and technical arrangements......The fact that the average citizen in Western societies is aging has significant implications for national welfare models. What some call ’the grey tsunami’ has resulted in suggestions for, and experiments in, re-designing healthcare systems and elderly care. In Denmark, one attempted solution...

  10. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  11. Assisted Living Facilities, Homeland Security Infrastructure Program- nursing homes, Published in 2010, 1:24000 (1in=2000ft) scale, Georgia Department of Community Affairs.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Assisted Living Facilities dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2010. It is described as...

  12. UMRR Topobathy Data (Tier 3) of Mississippi Pools 25, Open River North, Open River South and Illinois River Starved Rock Reach

    Science.gov (United States)

    Stone, Jayme; Rogala, James T.; Sattler, Stephanie; Hanson, Jenny L.

    2016-01-01

    These data are associated with the U.S. Army Corps of Engineers’ Upper Mississippi River Restoration (UMRR) Program project to generate high resolution elevation datasets for the Upper Mississippi River floodplain, between Minneapolis, MN, and Cairo, IL and the Illinois River. The Tier 1 data sets were designed to make the lidar data publicly available as soon as possible. The Tier 2 data have undergone quality assurance testing, water-masking, contour-smoothing, and point-reclassification where necessary, and have been approved for release by the USGS. The Tier 3 data are products of bathymetry merged with terrestrial lidar. UMESC is the lead office for the final processing of these data, which includes additional quality control and serving the data on the UMRR Long Term Resource Monitoring (LTRM) element’s website.

  13. Infrastructure Development

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2012-01-01

    It is the quest of every government to achieve universal Access and service of telecommunication services and ICTs. Unfortunately due to the high cost of deploying infrastructure in rural areas of developing countries due to non-significant or no economic activity, this dream of achieving Universal...... access and service of telecommunications/ICTs have been stalled. This paper throws light on a possible Public Private Partnership framework as a development path that will enable affordable network technologies to be deployed in rural areas at a cost that will translate to what the rural dweller...

  14. Infrastructure Development

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2012-01-01

    It is the quest of every government to achieve universal Access and service of telecommunication services and ICTs. Unfortunately due to the high cost of deploying infrastructure in rural areas of developing countries due to non-significant or no economic activity, this dream of achieving Universal...... access and service of telecommunications/ICTs have been stalled. This paper throws light on a possible Public Private Partnership framework as a development path that will enable affordable network technologies to be deployed in rural areas at a cost that will translate to what the rural dweller...

  15. CERN Infrastructure Evolution

    CERN Document Server

    Bell, Tim

    2012-01-01

    The CERN Computer Centre is reviewing strategies for optimizing the use of the existing infrastructure in the future, and in the likely scenario that any extension will be remote from CERN, and in the light of the way other large facilities are today being operated. Over the past six months, CERN has been investigating modern and widely-used tools and procedures used for virtualisation, clouds and fabric management in order to reduce operational effort, increase agility and support unattended remote computer centres. This presentation will give the details on the project’s motivations, current status and areas for future investigation.

  16. Making green infrastructure healthier infrastructure

    Directory of Open Access Journals (Sweden)

    Mare Lõhmus

    2015-11-01

    Full Text Available Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens’ quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  17. Final Assessment: U.S. Virgin Islands Industrial Development Park and Adjacent Facilities Energy-Efficiency and Micro-Grid Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Boyd, Paul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dahowski, Robert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Graham B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-31

    The purpose of this assessment was to undertake an assessment and analysis of cost-effective options for energy-efficiency improvements and the deployment of a micro-grid to increase the energy resilience at the U.S. Virgin Islands Industrial Development Park (IDP) and adjacent facilities in St. Croix, Virgin Islands. The Economic Development Authority sought assistance from the U.S. Department of Energy to undertake this assessment undertaken by Pacific Northwest National Laboratory. The assessment included 18 buildings plus the perimeter security lighting at the Virgin Islands Bureau of Correctional Facility, four buildings plus exterior lighting at the IDP, and five buildings (one of which is to be constructed) at the Virgin Islands Police Department for a total of 27 buildings with a total of nearly 323,000 square feet.

  18. Investments for urban infrastructure in boomtowns

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, R.G.; Mehr, A.F.

    1977-04-01

    Planning for coordinated investments in community infrastructures can avoid economic and social disruptions when sudden changes lead to inadequate facilities. Analysis of a community's infrastructure can be complicated by difficulties in projecting population shifts, acquiring investment capital, and defining the optimum level for satisfying demands. A flow diagram illustrates an investment scheme based on setting community goals and criteria on the assumption that trade-offs exist. Although further research is needed before the costs and benefits of urban infrastructure can be detailed, an indirect approach is proposed for modeling a composite community with a large construction project. Results indicate that urban infrastructure can affect wage differentials, which are related to educational facilities in boom towns. Suggestions for further study on private capital expenditures, the influence of expectations on wage differentials, cost benefits for the total population, and the community's mechanism for decision making are proposed for a better understanding of urban infrastructure. (DCK)

  19. Green(ing) infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-03-01

    Full Text Available Green infrastructure can be defined as the design and development of infrastructure that works with natural systems in the performance of its functions. Green infrastructure recognises the importance of the natural environment in land use planning...

  20. USGS Interactive Map of the Colorado Front Range Infrastructure Resources

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Infrastructure, such as roads, airports, water and energy transmission and distribution facilities, sewage treatment plants, and many other facilities, is vital to...

  1. Armenia - Irrigation Infrastructure

    Data.gov (United States)

    Millennium Challenge Corporation — This study evaluates irrigation infrastructure rehabilitation in Armenia. The study separately examines the impacts of tertiary canals and other large infrastructure...

  2. Central Region Green Infrastructure

    Data.gov (United States)

    Minnesota Department of Natural Resources — This Green Infrastructure data is comprised of 3 similar ecological corridor data layers ? Metro Conservation Corridors, green infrastructure analysis in counties...

  3. Understanding the infrastructure of European Research Infrastructures

    DEFF Research Database (Denmark)

    Lindstrøm, Maria Duclos; Kropp, Kristoffer

    2017-01-01

    European Research Infrastructure Consortia (ERICs) are a new form of legal and financial framework for the establishment and operation of research infrastructures in Europe. Despite their scope, ambition and novelty, the topic has received limited scholarly attention. This paper analyses one ERIC...... the ESS became an ERIC using the Bowker and Star’s sociology of infrastructures. We conclude that focusing on ERICs as a European standard for organising and funding research collaboration gives new insights into the problems of membership, durability and standardisation faced by research infrastructures....... It is also a promising theoretical framework for addressing the relationship between the ERIC-construct and the large diversity of European Research Infrastructures....

  4. Infrastructure for microsystem production

    Science.gov (United States)

    van Heeren, Henne; Sanchez, Stefan; Elders, Job; Heideman, Rene G.

    1999-03-01

    Manufacturing of micro-systems differs from IC manufacturing because the market requires a diversity of products and lower volumes per product. In addition, a diversity of micro-technologies has been developed, including non-IC compatible processes and potentially IC compatible processes. An infrastructure for the production of micro- system devices is lacking. On one side the technology for MST is available at the universities and small university related companies. On the other side there are several small and medium enterprises and bigger companies wanting to implement MST devices in their products, but unwilling to be dependent on universities. Philips Electronics in the Netherlands and Twente MicroProducts realized this problem and have started a project to fill this gap. At this moment the basic of the infrastructure is available: OnStream BV, Eindhoven, The Netherlands, opened its waferfab and assembly facilities for the production of MST devices. Twente MicroProducts will take care of the design of the products and of the small-scale production. Integration of quality systems for maintenance, yield, statistical process control and production in a Manufacturing Execution System offers direct access for all people involved to all the relevant information. It also ensures quality of the products made. The available capabilities of the infrastructure in the current status are compared to the market needs. In this article, a description of a seamless Micro-System Engineering Foundry is given. A seamless organization is capable of helping the customer from design to production. Several examples are given.

  5. Energy Transmission and Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers

  6. Geographic Hotspots of Critical National Infrastructure.

    Science.gov (United States)

    Thacker, Scott; Barr, Stuart; Pant, Raghav; Hall, Jim W; Alderson, David

    2017-06-12

    Failure of critical national infrastructures can result in major disruptions to society and the economy. Understanding the criticality of individual assets and the geographic areas in which they are located is essential for targeting investments to reduce risks and enhance system resilience. Within this study we provide new insights into the criticality of real-life critical infrastructure networks by integrating high-resolution data on infrastructure location, connectivity, interdependence, and usage. We propose a metric of infrastructure criticality in terms of the number of users who may be directly or indirectly disrupted by the failure of physically interdependent infrastructures. Kernel density estimation is used to integrate spatially discrete criticality values associated with individual infrastructure assets, producing a continuous surface from which statistically significant infrastructure criticality hotspots are identified. We develop a comprehensive and unique national-scale demonstration for England and Wales that utilizes previously unavailable data from the energy, transport, water, waste, and digital communications sectors. The testing of 200,000 failure scenarios identifies that hotspots are typically located around the periphery of urban areas where there are large facilities upon which many users depend or where several critical infrastructures are concentrated in one location. © 2017 Society for Risk Analysis.

  7. Parallel digital forensics infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Liebrock, Lorie M. (New Mexico Tech, Socorro, NM); Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  8. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  9. MOEMS industrial infrastructure

    Science.gov (United States)

    van Heeren, Henne; Paschalidou, Lia

    2004-08-01

    Forecasters and analysts predict the market size for microsystems and microtechnologies to be in the order of 68 billion by the year 2005 (NEXUS Market Study 2002). In essence, the market potential is likely to double in size from its 38 billion status in 2002. According to InStat/MDR the market for MOEMS (Micro Optical Electro Mechanical Systems) in optical communication will be over $1.8 billion in 2006 and WTC states that the market for non telecom MOEMS will be even larger. Underpinning this staggering growth will be an infrastructure of design houses, foundries, package/assembly providers and equipment suppliers to cater for the demand in design, prototyping, and (mass-) production. This infrastructure is needed to provide an efficient route to commercialisation. Foundries, which provide the infrastructure to prototype, fabricate and mass-produce the designs emanating from the design houses and other companies. The reason for the customers to rely on foundries can be diverse: ranging from pure economical reasons (investments, cost-price) to technical (availability of required technology). The desire to have a second source of supply can also be a reason for outsourcing. Foundries aim to achieve economies of scale by combining several customer orders into volume production. Volumes are necessary, not only to achieve the required competitive cost prices, but also to attain the necessary technical competence level. Some products that serve very large markets can reach such high production volumes that they are able to sustain dedicated factories. In such cases, captive supply is possible, although outsourcing is still an option, as can be seen in the magnetic head markets, where captive and non-captive suppliers operate alongside each other. The most striking examples are: inkjet heads (>435 million heads per year) and magnetic heads (>1.5 billion heads per year). Also pressure sensor and accelerometer producers can afford their own facilities to produce the

  10. NEW ATTRACTION MECHANISM OF INVESTMENT RESOURCES FOR FINANCING INFRASTRUCTURE PROJECTS

    Directory of Open Access Journals (Sweden)

    A. Popkova

    2013-01-01

    Full Text Available The paper analyzes revenue-yielding bonds as an efficient tool of governmental and municipal management. Conditions required for issue of  security papers have considered in the paper. The paper describes main  stages of the infrastructure bonded loan implementation. The global experience in financing construction and upgrading of infrastructure facilities through the bond issue has been investigated in the paper. The contains an analysis of risks while executing infrastructure projects and proposes methods for their minimization.

  11. PUBLIC-PRIVATE PARTNERSHIP AS EFFECTIVE MECHANISM OF SPORTS INFRASTRUCTURE

    Directory of Open Access Journals (Sweden)

    D. P. Moskvin

    2012-01-01

    Full Text Available The article discusses the current state of sports infrastructure in Russia and also explores the experience of using public-private partnership at Olympic facilities construction in Sochi.

  12. Cyber Threats to Nuclear Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson; Paul Moskowitz; Mark Schanfein; Trond Bjornard; Curtis St. Michel

    2010-07-01

    Nuclear facility personnel expend considerable efforts to ensure that their facilities can maintain continuity of operations against both natural and man-made threats. Historically, most attention has been placed on physical security. Recently however, the threat of cyber-related attacks has become a recognized and growing world-wide concern. Much attention has focused on the vulnerability of the electric grid and chemical industries to cyber attacks, in part, because of their use of Supervisory Control and Data Acquisition (SCADA) systems. Lessons learned from work in these sectors indicate that the cyber threat may extend to other critical infrastructures including sites where nuclear and radiological materials are now stored. In this context, this white paper presents a hypothetical scenario by which a determined adversary launches a cyber attack that compromises the physical protection system and results in a reduced security posture at such a site. The compromised security posture might then be malevolently exploited in a variety of ways. The authors conclude that the cyber threat should be carefully considered for all nuclear infrastructures.

  13. Clustering of Infrastructure

    NARCIS (Netherlands)

    Willems, J.K.C.A.S.

    2001-01-01

    Bundling or converging infrastructure has been the leading principle for locating infrastructure since the mid seventies. It is assumed to offer certain advantages, such as a restriction of severance, consumption of free space and environmental hindrance. However, the concept of converging

  14. Building an evaluation infrastructure

    DEFF Research Database (Denmark)

    Brandrup, Morten; Østergaard, Kija Lin

    Infrastructuring does not happen by itself; it must be supported. In this paper, we present a feedback mechanism implemented as a smartphone-based application, inspired by the concept of infrastructure probes, which supports the in situ elicitation of feedback. This is incorporated within an eval...

  15. Infrastructure Survey 2011

    Science.gov (United States)

    Group of Eight (NJ1), 2012

    2012-01-01

    In 2011, the Group of Eight (Go8) conducted a survey on the state of its buildings and infrastructure. The survey is the third Go8 Infrastructure survey, with previous surveys being conducted in 2007 and 2009. The current survey updated some of the information collected in the previous surveys. It also collated data related to aspects of the…

  16. Nuclear Energy Infrastructure Database Description and User’s Manual

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Brenden [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE’s infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from a variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.

  17. International experience with urban infrastructure development financing

    Directory of Open Access Journals (Sweden)

    Andrii Buriachenko

    2014-02-01

    Full Text Available The paper substantiates the need for scientific studying the state of local infrastructure financing as well as efficient management of the existing infrastructure facilities. It is noted that under the influence of such factors as globalization, urbanization and information revolution the value of the city and role thereof in society are increasing. Based on analysis of the budget and demographic indices it has been proven that Kyiv, as the capital, occupies a unique place in the economic life of Ukraine, while being the country's financial and investment centre. It has been asserted that the critical level of the city's key infrastructure deterioration indicates lack of adequate municipal management in this field. The paper also asserts a high level of monopolization regarding housing and communal services, whereas also provides substantiation of the need for developing new competitive financing mechanisms to be applied. Existence of significant disparities between development of the city and construction of the essential transport infrastructure has been demonstrated with the said fact being due to incompliance of the borrowed finances with real investment needs. Given the international experience, the methods of upgrading the existing city infrastructure as well as sources of financial support for the new infrastructure projects have been suggested

  18. Managing infrastructure and underpinning the planned environment

    CSIR Research Space (South Africa)

    Wall, K

    2008-04-01

    Full Text Available involved in much of this work. State of the built environment The most comprehensive review to date of the state of the built environment in South Africa has been that released by the South African Institution of Civil Engineering (SAICE). At the end... infrastructure is maintained in good working order. As noted, reviews have been undertaken of the state of infrastructure and facilities, the state of their management and current initiatives to enhance maintenance (Public Works, 2006; SAICE, 2006; CIDB et...

  19. Information infrastructure(s) boundaries, ecologies, multiplicity

    CERN Document Server

    Mongili, Alessandro

    2014-01-01

    This book marks an important contribution to the fascinating debate on the role that information infrastructures and boundary objects play in contemporary life, bringing to the fore the concern of how cooperation across different groups is enabled, but also constrained, by the material and immaterial objects connecting them. As such, the book itself is situated at the crossroads of various paths and genealogies, all focusing on the problem of the intersection between different levels of scale...

  20. Chef infrastructure automation cookbook

    CERN Document Server

    Marschall, Matthias

    2013-01-01

    Chef Infrastructure Automation Cookbook contains practical recipes on everything you will need to automate your infrastructure using Chef. The book is packed with illustrated code examples to automate your server and cloud infrastructure.The book first shows you the simplest way to achieve a certain task. Then it explains every step in detail, so that you can build your knowledge about how things work. Eventually, the book shows you additional things to consider for each approach. That way, you can learn step-by-step and build profound knowledge on how to go about your configuration management

  1. Green Infrastructure Modeling Toolkit

    Science.gov (United States)

    Green infrastructure, such as rain gardens, green roofs, porous pavement, cisterns, and constructed wetlands, is becoming an increasingly attractive way to recharge aquifers and reduce the amount of stormwater runoff that flows into wastewater treatment plants or into waterbodies...

  2. Infrastructure Area Simplification Plan

    CERN Document Server

    Field, L.

    2011-01-01

    The infrastructure area simplification plan was presented at the 3rd EMI All Hands Meeting in Padova. This plan only affects the information and accounting systems as the other areas are new in EMI and hence do not require simplification.

  3. EV Charging Infrastructure Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Karner, Donald [Electric Transportation Inc., Rogers, AR (United States); Garetson, Thomas [Electric Transportation Inc., Rogers, AR (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    As highlighted in the U.S. Department of Energy’s EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to “… produce plug-in electric vehicles that are as affordable and convenient for the average American family as today’s gasoline-powered vehicles …” [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumes that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge

  4. IPHE Infrastructure Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  5. Infrastructure Engineering and Deployment Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Infrastructure Engineering and Deployment Division advances transportation innovation by being leaders in infrastructure technology, including vehicles and...

  6. Managing green infrastructures

    OpenAIRE

    Manton, Michael

    2014-01-01

    The term green infrastructure addresses the spatial structure of anthropogenic, semi-natural and natural areas, as well as other environmental features which enable society to benefit from ecosystems’ multiple services. Focusing on two green infrastructures, anthropogenic wet meadows and natural forest successions, this thesis applies a macro-ecological approach based on comparisons of multiple landscapes as complex social-ecological systems. Firstly, the trophic interactions of avian predati...

  7. Rural Infrastructure Construction in New Socialist Countryside Construction

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In the background of new socialist countryside construction,rural infrastructure construction is favorable to consolidating fundamental position of agriculture,expanding rural job opportunities,increasing farmers’ income,and favorable to development of rural economy and the national economy. Rural infrastructure construction mainly includes construction of agricultural basic production conditions,construction of rural ecological environment,construction of agricultural service system,and construction of rural living facilities. Finally,we put forward approaches and methods for strengthening rural infrastructure construction: firstly,increase fund input to provide financial support for rural infrastructure construction; second ly,make scientific village planning to ensure sustainability of rural infrastructure construction; thirdly,arouse farmers’ enthusiasm and initiative to promote stable development of rural infrastructure construction.

  8. The EPOS e-Infrastructure

    Science.gov (United States)

    Jeffery, Keith; Bailo, Daniele

    2014-05-01

    The European Plate Observing System (EPOS) is integrating geoscientific information concerning earth movements in Europe. We are approaching the end of the PP (Preparatory Project) phase and in October 2014 expect to continue with the full project within ESFRI (European Strategic Framework for Research Infrastructures). The key aspects of EPOS concern providing services to allow homogeneous access by end-users over heterogeneous data, software, facilities, equipment and services. The e-infrastructure of EPOS is the heart of the project since it integrates the work on organisational, legal, economic and scientific aspects. Following the creation of an inventory of relevant organisations, persons, facilities, equipment, services, datasets and software (RIDE) the scale of integration required became apparent. The EPOS e-infrastructure architecture has been developed systematically based on recorded primary (user) requirements and secondary (interoperation with other systems) requirements through Strawman, Woodman and Ironman phases with the specification - and developed confirmatory prototypes - becoming more precise and progressively moving from paper to implemented system. The EPOS architecture is based on global core services (Integrated Core Services - ICS) which access thematic nodes (domain-specific European-wide collections, called thematic Core Services - TCS), national nodes and specific institutional nodes. The key aspect is the metadata catalog. In one dimension this is described in 3 levels: (1) discovery metadata using well-known and commonly used standards such as DC (Dublin Core) to enable users (via an intelligent user interface) to search for objects within the EPOS environment relevant to their needs; (2) contextual metadata providing the context of the object described in the catalog to enable a user or the system to determine the relevance of the discovered object(s) to their requirement - the context includes projects, funding, organisations

  9. New infrastructures, new landscapes

    Directory of Open Access Journals (Sweden)

    Chiara Nifosì

    2014-06-01

    Full Text Available New infrastructures, new landscapes AbstractThe paper will discuss one recent Italian project that share a common background: the relevance of the existing maritime landscape as a non negotiable value. The studies will be discussed in details a feasibility study for the new port in Monfalcone. National infrastructural policies emphasize competitiveness and connection as a central issue incultural, economic and political development of communities . Based on networks and system development along passageways that make up the European infrastructural armor; the two are considered at the meantime as cause and effect of "territorialisation”. These two views are obviously mutually dependent. It's hard to think about a strong attractiveness out of the network, and to be part of the latter encourages competitiveness. Nonetheless this has proved to be conflictual when landscape values and the related attractiveness are considered.The presented case study project, is pursuing the ambition to promote a new approach in realizing large infrastructures; its double role is to improve connectivity and to generate lasting and positive impact on the local regions. It deal with issues of inter-modality and the construction of nodes and lines which connects Europe, and its markets.Reverting the usual approach which consider landscape project as as a way to mitigate or to compensate for the infrastructure, the goal is to succeed in realizing large infrastructural works by conceiving them as an occasion to reinterpret a region or, as extraordinary opportunities, to build new landscapes.The strategy proposed consists in achieving structural images based on the reinforcement of the environmental and historical-landscape systems. Starting from the reinterpretation of local maritime context and resources it is possible not just to preserve the attractiveness of a specific landscape but also to conceive infrastructure in a more efficient way. 

  10. Assessing Terrorist Motivations for Attacking Critical Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, G; Abhayaratne, P; Bale, J; Bhattacharjee, A; Blair, C; Hansell, L; Jayne, A; Kosal, M; Lucas, S; Moran, K; Seroki, L; Vadlamudi, S

    2006-12-04

    Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security and way of life. These complex and often interconnected systems have become so ubiquitous and essential to day-to-day life that they are easily taken for granted. Often it is only when the important services provided by such infrastructure are interrupted--when we lose easy access to electricity, health care, telecommunications, transportation or water, for example--that we are conscious of our great dependence on these networks and of the vulnerabilities that stem from such dependence. Unfortunately, it must be assumed that many terrorists are all too aware that CI facilities pose high-value targets that, if successfully attacked, have the potential to dramatically disrupt the normal rhythm of society, cause public fear and intimidation, and generate significant publicity. Indeed, revelations emerging at the time of this writing about Al Qaida's efforts to prepare for possible attacks on major financial facilities in New York, New Jersey, and the District of Columbia remind us just how real and immediate such threats to CI may be. Simply being aware that our nation's critical infrastructure presents terrorists with a plethora of targets, however, does little to mitigate the dangers of CI attacks. In order to prevent and preempt such terrorist acts, better understanding of the threats and vulnerabilities relating to critical infrastructure is required. The Center for Nonproliferation Studies (CNS) presents this document as both a contribution to the understanding of such threats and an initial effort at ''operationalizing'' its findings for use by analysts who work on issues of critical infrastructure protection. Specifically, this study focuses on a subsidiary aspect of CI threat assessment that has thus far remained largely unaddressed by contemporary terrorism research: the motivations and related factors that

  11. 75 FR 8997 - National Environmental Policy Act; Wallops Flight Facility Shoreline Restoration and...

    Science.gov (United States)

    2010-02-26

    ... SPACE ADMINISTRATION National Environmental Policy Act; Wallops Flight Facility Shoreline Restoration... Wallops Flight Facility (WFF) Shoreline Restoration and Infrastructure Protection Program (SRIPP). SUMMARY... from the Wallops Island shoreline and the infrastructure behind it. Alternative One, NASA's...

  12. German contributions to the CMS computing infrastructure

    Science.gov (United States)

    Scheurer, A.; German CMS Community

    2010-04-01

    The CMS computing model anticipates various hierarchically linked tier centres to counter the challenges provided by the enormous amounts of data which will be collected by the CMS detector at the Large Hadron Collider, LHC, at CERN. During the past years, various computing exercises were performed to test the readiness of the computing infrastructure, the Grid middleware and the experiment's software for the startup of the LHC which took place in September 2008. In Germany, several tier sites are set up to allow for an efficient and reliable way to simulate possible physics processes as well as to reprocess, analyse and interpret the numerous stored collision events of the experiment. It will be shown that the German computing sites played an important role during the experiment's preparation phase and during data-taking of CMS and, therefore, scientific groups in Germany will be ready to compete for discoveries in this new era of particle physics. This presentation focuses on the German Tier-1 centre GridKa, located at Forschungszentrum Karlsruhe, the German CMS Tier-2 federation DESY/RWTH with installations at the University of Aachen and the research centre DESY. In addition, various local computing resources in Aachen, Hamburg and Karlsruhe are briefly introduced as well. It will be shown that an excellent cooperation between the different German institutions and physicists led to well established computing sites which cover all parts of the CMS computing model. Therefore, the following topics are discussed and the achieved goals and the gained knowledge are depicted: data management and distribution among the different tier sites, Grid-based Monte Carlo production at the Tier-2 as well as Grid-based and locally submitted inhomogeneous user analyses at the Tier-3s. Another important task is to ensure a proper and reliable operation 24 hours a day, especially during the time of data-taking. For this purpose, the meta-monitoring tool "HappyFace", which was

  13. Cloud computing can simplify HIT infrastructure management.

    Science.gov (United States)

    Glaser, John

    2011-08-01

    Software as a Service (SaaS), built on cloud computing technology, is emerging as the forerunner in IT infrastructure because it helps healthcare providers reduce capital investments. Cloud computing leads to predictable, monthly, fixed operating expenses for hospital IT staff. Outsourced cloud computing facilities are state-of-the-art data centers boasting some of the most sophisticated networking equipment on the market. The SaaS model helps hospitals safeguard against technology obsolescence, minimizes maintenance requirements, and simplifies management.

  14. A Development Strategy for Marine Leisure Infrastructure

    OpenAIRE

    Institute, Marine

    2001-01-01

    In July 1999 the Marine Institute published an Investment Strategy for the Water-based Tourism and Leisure Sector in Ireland 2000-2006. The strategy recommended a programme of investment aimed at; (1) the provision of new infrastructure and facilities strategically positioned around the coastline (2) the development of high quality integrated clusters of water-based tourism and leisure activities which would attract overseas and local visitors. These recommendations were incorporated into the...

  15. Sustainability of Urban Infrastructures

    Directory of Open Access Journals (Sweden)

    Mine Tanac Zeren

    2010-09-01

    Full Text Available The scope of the paper is to overview the different approaches for evaluation of urban infrastructure sustainability. In this context, urban infrastructure covers transportation, energy, water, sewage and information networks as well as waste management and blue-green infrastructure, in terms of both the supply and demand side. A common effort of partners in the European project “C8—Best Practice in Sustainable Urban Infrastructure”, developed under the Cooperation in Science and Technology program (COST, in brief COST C8, was focused on defining the methods, indicators and criteria for evaluation of sustainability, and resulted in a guidebook for decision-makers in local authorities. Here, the COST C8 matrix for simple sustainability assessment of urban infrastructure is applied to The Path (POT case—a circular memorial and recreational park around the city of Ljubljana, Slovenia. The applicability and acceptance of the matrix in 43 other cases of sustainable urban infrastructure, collected in the COST C8 project, is presented and discussed.

  16. Railway infrastructure security

    CERN Document Server

    Sforza, Antonio; Vittorini, Valeria; Pragliola, Concetta

    2015-01-01

    This comprehensive monograph addresses crucial issues in the protection of railway systems, with the objective of enhancing the understanding of railway infrastructure security. Based on analyses by academics, technology providers, and railway operators, it explains how to assess terrorist and criminal threats, design countermeasures, and implement effective security strategies. In so doing, it draws upon a range of experiences from different countries in Europe and beyond. The book is the first to be devoted entirely to this subject. It will serve as a timely reminder of the attractiveness of the railway infrastructure system as a target for criminals and terrorists and, more importantly, as a valuable resource for stakeholders and professionals in the railway security field aiming to develop effective security based on a mix of methodological, technological, and organizational tools. Besides researchers and decision makers in the field, the book will appeal to students interested in critical infrastructur...

  17. Infrastructures for healthcare

    DEFF Research Database (Denmark)

    Langhoff, Tue Odd; Amstrup, Mikkel Hvid; Mørck, Peter

    2017-01-01

    of classifications, on the entire Danish population. However, in the Autumn of 2014, the system was temporarily shut down due to a lawsuit filed by two general practitioners. In this article, we ask why and identify a political struggle concerning authority, control, and autonomy related to a transformation...... adding new actors or purposes to a system without due consideration to the nature of the infrastructure. We argue that while long-term information infrastructures are dynamic by nature and constantly impacted by actors joining or leaving the project, each activity of adding new actors must take reverse...... synergy into account, if not to risk breaking down the fragile nature of otherwise successful information infrastructures supporting research on healthcare....

  18. The ATLAS Simulation Infrastructure

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Adorisio, Cristina; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahmed, Hossain; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov , Andrei; Aktas, Adil; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Antunovic, Bijana; Anulli, Fabio; Aoun, Sahar; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Theodoros; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Arutinov, David; Asai, Makoto; Asai, Shoji; Silva, José; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asner, David; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Badescu, Elisabeta; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Mark; Baker, Oliver Keith; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Baranov, Sergey; Baranov, Sergei; Barashkou, Andrei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Bazalova, Magdalena; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Becerici, Neslihan; Bechtle, Philip; Beck, Graham; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Ayda; Beddall, Andrew; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benincasa, Gianpaolo; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bocci, Andrea; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodet, Eyal; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, Françcois; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Byatt, Tom; Caballero, Jose; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Camarri, Paolo; Cameron, David; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D.; Carron Montero, Sebastian; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Tcherniatine, Valeri; Chesneanu, Daniela; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chevallier, Florent; Chiarella, Vitaliano; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Clark, Allan G.; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H.; Coggeshall, James; Cogneras, Eric; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Cranshaw, Jack; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Daly, Colin; Dam, Mogens; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawson, Ian; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De Mora, Lee; De Oliveira Branco, Miguel; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Deng, Wensheng; Denisov, Sergey; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Doglioni, Caterina; Doherty, Tom; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Dris, Manolis; Dubbert, Jörg; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen , Michael; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Dushkin, Andrei; Duxfield, Robert; Dwuznik, Michal; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Egorov, Kirill; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ermoline, Iouri; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Fayard, Louis; Fayette, Florent; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Feligioni, Lorenzo; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; Freestone, Julian; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, K K; Gao, Yongsheng; Gaponenko, Andrei; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gautard, Valerie; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; Georgatos, Fotios; George, Simon; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Girtler, Peter; Giugni, Danilo; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goggi, Virginio; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçcalo, Ricardo; Gonella, Laura; Gong, Chenwei; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Green, Barry; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Grishkevich, Yaroslav; Groh, Manfred; Groll, Marius; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Gupta, Ambreesh; Gusakov, Yury; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Härtel, Roland; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, John Renner; Hansen, Peter Henrik; Hansl-Kozanecka, Traudl; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hashemi, Kevan; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Takashi; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Hemperek, Tomasz; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernández Jiménez, Yesenia; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Horazdovsky, Tomas; Hori, Takuya; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howe, Travis; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Hughes, Emlyn; Hughes, Gareth; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Irles Quiles, Adrian; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Isobe, Tadaaki; Issakov, Vladimir; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jenni, Peter; Jež, Pavel; Jézéquel, Stéphane; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jorge, Pedro; Joseph, John; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kalinowski, Artur; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kastoryano, Michael; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kayumov, Fred; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kind, Oliver; Kind, Peter; King, Barry; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiyamura, Hironori; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Klute, Markus; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kolos, Serguei; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Konoplich, Rostislav; Konovalov, Serguei; Konstantinidis, Nikolaos; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostka, Peter; Kostyukhin, Vadim; Kotov, Serguei; Kotov, Vladislav; Kotov, Konstantin; Kourkoumelis, Christine; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Henri; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumshteyn, Zinovii; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurchaninov, Leonid; Kurochkin, Yurii; Kus, Vlastimil; Kwee, Regina; La Rotonda, Laura; Labbe, Julien; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; Le Vine, Micheal; Lebedev, Alexander; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lefebvre, Michel; Legendre, Marie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Leyton, Michael; Li, Haifeng; Li, Shumin; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lilley, Joseph; Lim, Heuijin; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Tiankuan; Liu, Yanwen; Livan, Michele; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Lovas, Lubomir; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Luehring, Frederick; Luisa, Luca; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahmood, A.; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makouski, Mikhail; Makovec, Nikola; Malecki, Piotr; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mambelli, Marco; Mameghani, Raphael; Mamuzic, Judita; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March , Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Marti-Garcia, Salvador; Martin, Alex; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Tim; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martini, Agnese; Martyniuk, Alex; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCubbin, Norman; McFarlane, Kenneth; McGlone, Helen; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Menke, Sven; Meoni, Evelin; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W. Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Mills, Bill; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Misawa, Shigeki; Miscetti, Stefano; Misiejuk, Andrzej; Mitrevski, Jovan; Mitsou, Vasiliki A.; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Mladenov, Dimitar; Moa, Torbjoern; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murillo Garcia, Raul; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakamura, Koji; Nakano, Itsuo; Nakatsuka, Hiroki; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nderitu, Simon Kirichu; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicoletti, Giovanni; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforov, Andriy; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Notz, Dieter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver, John; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Ottersbach, John; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Oyarzun, Alejandro; Ozcan, Veysi Erkcan; Ozone, Kenji; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadopoulou, Theodora; Park, Su-Jung; Park, Woochun; Parker, Andy; Parker, Sherwood; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor , Gabriella; Pataraia, Sophio; Pater, Joleen; Patricelli, Sergio; Patwa, Abid; Pauly, Thilo; Peak, Lawrence; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Piacquadio, Giacinto; Piccinini, Maurizio; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poffenberger, Paul; Poggioli, Luc; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Ponsot, Patrick; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Popule, Jiri; Portell Bueso, Xavier; Porter, Robert; Pospelov, Guennady; Pospisil, Stanislav; Potekhin, Maxim; Potrap, Igor; Potter, Christina; Potter, Christopher; Potter, Keith; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Pribyl, Lukas; Price, Darren; Price, Lawrence; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Puigdengoles, Carles; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qi, Ming; Qian, Jianming; Qian, Weiming; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renkel, Peter; Rescia, Sergio; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richards, Ronald; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Roa Romero, Diego Alejandro; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosenbaum, Gabriel; Rosselet, Laurent; Rossetti, Valerio; Rossi, Leonardo Paolo; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryan, Patrick; Rybkin, Grigori; Rzaeva, Sevda; Saavedra, Aldo; Sadrozinski, Hartmut; Sadykov, Renat; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sanny, Bernd; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Savard, Pierre; Savine, Alexandre; Savinov, Vladimir; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R.~Dean; Schamov, Andrey; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schreiner, Alexander; Schroeder, Christian; Schroer, Nicolai; Schroers, Marcel; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Sluka, Tomas; Smakhtin, Vladimir; Smirnov, Sergei; Smirnov, Yuri; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soluk, Richard; Sondericker, John; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spencer, Edwin; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St. Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stancu, Stefan Nicolae; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stastny, Jan; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Su, Dong; Soh, Dart-yin; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Takuya; Suzuki, Yu; Sykora, Ivan; Sykora, Tomas; Szymocha, Tadeusz; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Ryan P.; Taylor, Wendy; Teixeira-Dias, Pedro; Ten Kate, Herman; Teng, Ping-Kun; Tennenbaum-Katan, Yaniv-David; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Stan; Thompson, Emily; Thompson, Peter; Thompson, Paul; Thompson, Ray; Thomson, Evelyn; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomasek, Lukas; Tomasek, Michal; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tuggle, Joseph; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Tuts, Michael; Twomey, Matthew Shaun; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; van der Graaf, Harry; van der Kraaij, Erik; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasilyeva, Lidia; Vassilakopoulos, Vassilios; Vazeille, Francois; Vellidis, Constantine; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Villa, Mauro; Villani, Giulio; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Viret, Sébastien; Virzi, Joseph; Vitale , Antonio; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Matteo; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vudragovic, Dusan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Walbersloh, Jorg; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Wang, Chiho; Wang, Haichen; Wang, Jin; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Wastie, Roy; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Manuel; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Werthenbach, Ulrich; Wessels, Martin; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Williams, Eric; Williams, Hugh; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wright, Dennis; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wulf, Evan; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xu, Da; Xu, Neng; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Zhaoyu; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yuan, Li; Yurkewicz, Adam; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zambrano, Valentina; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Qizhi; Zhang, Xueyao; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu

    2010-01-01

    The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.

  19. Transformation of technical infrastructure

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev

    The scope of the project is to investigate the possibillities of - and the barriers for a transformation of technical infrastructure conserning energy, water and waste. It focus on urban ecology as a transformation strategy. The theoretical background of the project is theories about infrastructure......, the evolution of large technological systems and theories about organisational and technological transformationprocesses. The empirical work consist of three analysis at three different levels: socio-technical descriptions of each sector, an envestigation of one municipality and envestigations of one workshop...

  20. Collaborative financial infrastructure protection

    CERN Document Server

    Baldoni, Roberto

    2012-01-01

    The Critical Infrastructure Protection Survey recently released by Symantec found that 53% of interviewed IT security experts from international companies experienced at least ten cyber attacks in the last five years, and financial institutions were often subject to some of the most sophisticated and large-scale cyber attacks and frauds. The book by Baldoni and Chockler analyzes the structure of software infrastructures found in the financial domain, their vulnerabilities to cyber attacks and the existing protection mechanisms. It then shows the advantages of sharing information among financia

  1. The ATLAS Simulation Infrastructure

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kwee, R.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Leyton, M.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A. C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; McDonald, J.; McKee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliveira Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J. P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M. S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strube, J.; Stugu, B.; Soh, D. A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X. H.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tuggle, J. M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.

  2. Development Model for Research Infrastructures

    Science.gov (United States)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    Research infrastructures (RIs) are platforms integrating facilities, resources and services used by the research communities to conduct research and foster innovation. RIs include scientific equipment, e.g., sensor platforms, satellites or other instruments, but also scientific data, sample repositories or archives. E-infrastructures on the other hand provide the technological substratum and middleware to interlink distributed RI components with computing systems and communication networks. The resulting platforms provide the foundation for the design and implementation of RIs and play an increasing role in the advancement and exploitation of knowledge and technology. RIs are regarded as essential to achieve and maintain excellence in research and innovation crucial for the European Research Area (ERA). The implementation of RIs has to be considered as a long-term, complex development process often over a period of 10 or more years. The ongoing construction of Spatial Data Infrastructures (SDIs) provides a good example for the general complexity of infrastructure development processes especially in system-of-systems environments. A set of directives issued by the European Commission provided a framework of guidelines for the implementation processes addressing the relevant content and the encoding of data as well as the standards for service interfaces and the integration of these services into networks. Additionally, a time schedule for the overall construction process has been specified. As a result this process advances with a strong participation of member states and responsible organisations. Today, SDIs provide the operational basis for new digital business processes in both national and local authorities. Currently, the development of integrated RIs in Earth and Environmental Sciences is characterised by the following properties: • A high number of parallel activities on European and national levels with numerous institutes and organisations participating

  3. Sustainable Bridge Infrastructure Procurement

    DEFF Research Database (Denmark)

    Safi, Mohammed; Du, Guangli; Simonsson, Peter

    2016-01-01

    The lack of a flexible but systematic approach for integrating lifecycle aspects into bridge investment decisions is a major obstacle hindering the procurement of sustainable bridge infrastructures. This paper addresses this obstacle by introducing a holistic approach that agencies could use...

  4. Social experience infrastructure

    DEFF Research Database (Denmark)

    Kvistgaard, Peter

    2006-01-01

    Using the case of Kühlungsborn in Mecklenburg-Vorpommern as an example of a resort in which social experience infrastructure plays a pivotal role in the ongoing success of attracting German tourists from especially Berlin, Hamburg and Hanover it is the aim of this article in a descriptive...

  5. Building National Healthcare Infrastructure

    DEFF Research Database (Denmark)

    Jensen, Tina Blegind; Thorseng, Anne

    2017-01-01

    This case chapter is about the evolution of the Danish national e-health portal, sundhed.dk, which provides patient-oriented digital services. We present how the organization behind sundhed.dk succeeded in establishing a national healthcare infrastructure by (1) collating and assembling existing ...

  6. Building National Healthcare Infrastructure

    DEFF Research Database (Denmark)

    Jensen, Tina Blegind; Thorseng, Anne

    2017-01-01

    This case chapter is about the evolution of the Danish national e-health portal, sundhed.dk, which provides patient-oriented digital services. We present how the organization behind sundhed.dk succeeded in establishing a national healthcare infrastructure by (1) collating and assembling existing...

  7. Network Infrastructure Security

    CERN Document Server

    Wong, Angus

    2009-01-01

    Attacks to network infrastructure affect large portions of the Internet at a time and create large amounts of service disruption, due to breaches such as IP spoofing, routing table poisoning and routing loops. This book includes conceptual examples that show how network attacks can be run, along with appropriate countermeasures and solutions

  8. Assessing spatial data infrastructures

    NARCIS (Netherlands)

    Grus, L.

    2010-01-01

    Over the last two decades many countries and regions throughout the world have taken steps to establish Spatial Data Infrastructures (SDIs). Developing SDIs requires a considerable amount of time, energy and financial resources. Therefore it is increasingly important to assess SDI outcomes in order

  9. Language Convergence Infrastructure

    NARCIS (Netherlands)

    V. Zaytsev (Vadim); J.M. Fernandes; R. Lämmel (Ralf); J.M.W. Visser (Joost); J. Saraiva

    2011-01-01

    htmlabstractThe process of grammar convergence involves grammar extraction and transformation for structural equivalence and contains a range of technical challenges. These need to be addressed in order for the method to deliver useful results. The paper describes a DSL and the infrastructure behind

  10. Science and Technology Facilities

    Science.gov (United States)

    Moonen, Jean-Marie; Buono, Nicolas; Handfield, Suzanne

    2004-01-01

    These four articles relate to science and technology infrastructure for secondary and tertiary institutions. The first article presents a view on approaches to teaching science in school and illustrates ideal science facilities for secondary education. The second piece reports on work underway to improve the Science Complex at the "Universite…

  11. Risk Assessment Methodology for Protecting Our Critical Physical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    BIRINGER,BETTY E.; DANNEELS,JEFFREY J.

    2000-12-13

    Critical infrastructures are central to our national defense and our economic well-being, but many are taken for granted. Presidential Decision Directive (PDD) 63 highlights the importance of eight of our critical infrastructures and outlines a plan for action. Greatly enhanced physical security systems will be required to protect these national assets from new and emerging threats. Sandia National Laboratories has been the lead laboratory for the Department of Energy (DOE) in developing and deploying physical security systems for the past twenty-five years. Many of the tools, processes, and systems employed in the protection of high consequence facilities can be adapted to the civilian infrastructure.

  12. Security infrastructure for on-demand provisioned Cloud infrastructure services

    NARCIS (Netherlands)

    Demchenko, Y.; Ngo, B.; de Laat, C.T.A.M.; Wlodarczyk, T.; Rong, C.; Ziegler, W.

    2011-01-01

    Providing consistent security services in on-demand provisioned Cloud infrastructure services is of primary importance due to multi-tenant and potentially multi-provider nature of Clouds Infrastructure as a Service (IaaS) environment. Cloud security infrastructure should address two aspects of the I

  13. Modeling Dependencies in Critical Infrastructures

    NARCIS (Netherlands)

    Nieuwenhuijs, A.H.; Luiijf, H.A.M.; Klaver, M.H.A.

    2009-01-01

    This paper describes a model for expressing critical infrastructure dependencies. The model addresses the limitations of existing approaches with respect to clarity of definition, support for quality and the influence of operating states of critical infrastructures and environmental factors.

  14. Flowscapes: Designing infrastructure as landscape

    NARCIS (Netherlands)

    Nijhuis, S.; Jauslin, D.T.; Van der Hoeven, F.D.

    2015-01-01

    Social, cultural and technological developments of our society are demanding a fundamental review of the planning and design of its landscapes and infrastructures, in particular in relation to environmental issues and sustainability. Transportation, green and water infrastructures are important agen

  15. Flowscapes: Designing infrastructure as landscape

    NARCIS (Netherlands)

    Nijhuis, S.; Jauslin, D.T.; Van der Hoeven, F.D.

    2015-01-01

    Social, cultural and technological developments of our society are demanding a fundamental review of the planning and design of its landscapes and infrastructures, in particular in relation to environmental issues and sustainability. Transportation, green and water infrastructures are important

  16. RFID as an infrastructure

    CERN Document Server

    Qiao, Yan; Li, Tao

    2014-01-01

    RFID (radio frequency identification) tags are becoming ubiquitously available in object tracking, access control, and toll payment. The current application model treats tags simply as ID carriers and deals with each tag individually for the purpose of identifying the object that the tag is attached to. The uniqueness of RFID as an Infrastructure is to change the traditional individual view to a collective view that treats universally-deployed tags as a new infrastructure, a new wireless platform on which novel applications can be developed. The book begins with an introduction to the problems of tag estimation and information collection from RFID systems, and explains the challenges. It discusses how to efficiently estimate the number of tags in a large RFID system, considering both energy cost and execution time. It then gives a detailed account on how to collect information from a sensor-augmented RFID network with new designs that significantly reduce execution time.

  17. Infrastructures as Ontological Experiments

    Directory of Open Access Journals (Sweden)

    Casper Bruun Jensen

    2015-11-01

    Full Text Available Ontology has recently gained renewed attention in science and technology studies and anthropology (e.g. Gad, Jensen and Winthereik 2015; Holbraad, Pedersen and Viveiros de Castro 2014; Woolgar and Lezaun 2013. Yet, it has a considerably longer pedigree than these recent debates might lead one to think. Experiments, of course, have long held the attention of sociologists, historians, and philosophers of science (Collins 1985; Gooding 1990; Shapin and Schaffer 1985. And infrastructures have been the focus of sustained inquiry in the sociology and history of technology (Bowker 1994; Hughes 1983. Once these terms are put into conjunction, however, each gets a somewhat different inflection. The following note briefly explores the conceptual purchase of considering infrastructures as ontological experiments.

  18. Social experience infrastructure

    DEFF Research Database (Denmark)

    Kvistgaard, Peter

    2006-01-01

    Using the case of Kühlungsborn in Mecklenburg-Vorpommern as an example of a resort in which social experience infrastructure plays a pivotal role in the ongoing success of attracting German tourists from especially Berlin, Hamburg and Hanover it is the aim of this article in a descriptive...... and explorative fashion to share with others thoughts and ideas concerning the development of new ways to construct/reconstruct recreational spaces with a better coherence with regard to designing experiences. This article claims that it is possible to design recreational spaces with good social experience...... infrastructure in order to create experience spaces for personal experiences (in line with Schultze’s social constructivist view of experiences) without completely adhering to the economic rationalist thoughts and guidelines of Pine & Gilmore that claim that experiences can be designed and controlled...

  19. Chef infrastructure automation cookbook

    CERN Document Server

    Marschall, Matthias

    2015-01-01

    This book is for system engineers and administrators who have a fundamental understanding of information management systems and infrastructure. It helps if you've already played around with Chef; however, this book covers all the important topics you will need to know. If you don't want to dig through a whole book before you can get started, this book is for you, as it features a set of independent recipes you can try out immediately.

  20. Documentation of Infrastructure

    DEFF Research Database (Denmark)

    Workspace

    2003-01-01

    This report describes the software infrastructure developed within the WorkSPACE  project, both from a software architectural point of view and from a user point of  view. We first give an overview of the system architecture, then go on to present the  more prominent features of the 3D graphical...... user interface (GUI), and finally detail  the software modules involved at a programmer's level. ...

  1. IP Infrastructure Geolocation

    Science.gov (United States)

    2015-03-01

    SPONSORING / MONITORING AGENCY REPORT NUMBER Department of Homeland Security 245 Murray Lane SW, Washington, DC 20528 11. SUPPLEMENTARY NOTES The...the-art network infrastructure geolocation relies on Domain Name System ( DNS ) inferences. However, not only is using the DNS relatively inaccurate for...infras- tructure geolocation, many router interfaces lack DNS name entries. We adapt the technique of Wang et al. to send trace route probes from

  2. Building Infrastructure to Accomodate Growth

    OpenAIRE

    Leon Taylor

    1991-01-01

    Do jurisdictions spend too little on infrastructure? To answer the question, one must separate infrastructure built to accommodate growth from infrastructure built to compete for growth. Underspending is most likely for accommodative infrastructure. This paper finds that the accommodative spending path that maximizes utility is also the path leading to an equilibrium. Empirical data that suggest an equilibrium would cast doubt upon the underspending hypothesis. The paper also compares accommo...

  3. Durability of critical infrastructures

    Directory of Open Access Journals (Sweden)

    Raluca Pascu

    2011-08-01

    Full Text Available The paper deals with those infrastructures by which world society, under the pressure ofdemographic explosion, self-survives. The main threatening comes not from terrorist attacks, but fromthe great natural catastrophes and global climate change. It’s not for the first time in history when suchmeasures of self-protection are built up. First objective of this paper is to present the background fordurability analysis. Then, with the aid of these mathematical tools the absolute durability of three linearmodels, typical for critical infrastructures, are successively calculated. In order to enhance the durabilityof critical infrastructures the solution based on redundancies is chosen. Five types of connection theredundancies for each of the three models are considered. Three topological schemes for connecting theredundancies are adopted: locally, by twining and globally. Absolute values of durability in all fifteenmodels with redundancies are further calculated. Then, the relative performances of enhanced durabilityin the same fifteen models, compared with the three original models, considered as references, areanalysed. The relative costs of the same fifteen models and in similar topologic conditions are furtheranalysed. By dividing the performance with cost the relative profitableness of each model is obtained.Finally, the three initial models, each reshaped with redundancies in three selective modes, arecompared from the perspective of their relative profitableness. The outcomes of this paper are original.They are of practical interests in planning the maintenance programs and checking the plausibility ofproposed interventions according to the clause 7.4 of ISO 13822:2001

  4. Malawi's infrastructure: a continental perspective

    OpenAIRE

    Foster, Vivien; Shkaratan, Maria

    2011-01-01

    Infrastructure contributed 1.2 percentage points to Malawi's annual per capital GDP growth over the past decade. Raising the country's infrastructure endowment to that of the region s middle-income countries could increase that contribution by 3.5 percentage points. Malawi's successes in infrastructure development include reaching the Millennium Development Goals for water and making GSM t...

  5. California Hydrogen Infrastructure Project

    Energy Technology Data Exchange (ETDEWEB)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  6. Assessing Terrorist Motivations for Attacking Critical "Chemical" Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, G; Bale, J; Moran, K

    2004-12-14

    Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security, and way of life. One particular type of CI--that relating to chemicals--constitutes both an important element of our nation's infrastructure and a particularly attractive set of potential targets. This is primarily because of the large quantities of toxic industrial chemicals (TICs) it employs in various operations and because of the essential economic functions it serves. This study attempts to minimize some of the ambiguities that presently impede chemical infrastructure threat assessments by providing new insight into the key motivational factors that affect terrorist organizations propensity to attack chemical facilities. Prepared as a companion piece to the Center for Nonproliferation Studies August 2004 study--''Assessing Terrorist Motivations for Attacking Critical Infrastructure''--it investigates three overarching research questions: (1) why do terrorists choose to attack chemical-related infrastructure over other targets; (2) what specific factors influence their target selection decisions concerning chemical facilities; and (3) which, if any, types of groups are most inclined to attack chemical infrastructure targets? The study involved a multi-pronged research design, which made use of four discrete investigative techniques to answer the above questions as comprehensively as possible. These include: (1) a review of terrorism and threat assessment literature to glean expert consensus regarding terrorist interest in targeting chemical facilities; (2) the preparation of case studies to help identify internal group factors and contextual influences that have played a significant role in leading some terrorist groups to attack chemical facilities; (3) an examination of data from the Critical Infrastructure Terrorist Incident Catalog (CrITIC) to further illuminate the nature of terrorist attacks against chemical

  7. 75 FR 80799 - Preparation of the PEIS for Modernization of Training Infrastructure at Pōhakuloa Training Area, HI

    Science.gov (United States)

    2010-12-23

    ... infrastructure (roads and utilities), and training support facilities in the cantonment area at P hakuloa... PTA's long-term vision for modernizing training ranges, training support infrastructure, and the... consider modernizing the training ranges, training support infrastructure, and the cantonment area at...

  8. Infrastructure: concept, types and value

    Directory of Open Access Journals (Sweden)

    Alexander E. Lantsov

    2013-01-01

    Full Text Available Researches of influence of infrastructure on the economic growth and development of the countries gained currency. However the majority of authors drop the problem of definition of accurate concept of studied object and its criteria out. In the given article various approaches in the definition of «infrastructure» concept, criterion and the characteristics of infrastructure distinguishing it from other capital assets are presented. Such types of infrastructure, as personal, institutional, material, production, social, etc. are considered. Author’s definition of infrastructure is given.

  9. Growing the Blockchain information infrastructure

    DEFF Research Database (Denmark)

    Jabbar, Karim; Bjørn, Pernille

    2017-01-01

    In this paper, we present ethnographic data that unpacks the everyday work of some of the many infrastructuring agents who contribute to creating, sustaining and growing the Blockchain information infrastructure. We argue that this infrastructuring work takes the form of entrepreneurial actions......, which are self-initiated and primarily directed at sustaining or increasing the initiator’s stake in the emerging information infrastructure. These entrepreneurial actions wrestle against the affordances of the installed base of the Blockchain infrastructure, and take the shape of engaging...... or circumventing activities. These activities purposefully aim at either influencing or working around the enablers and constraints afforded by the Blockchain information infrastructure, as its installed base is gaining inertia. This study contributes to our understanding of the purpose of infrastructuring, seen...

  10. Evolution of the Atlas data and computing model for a Tier-2 in the EGI infrastructure

    CERN Document Server

    Fernandez, A; The ATLAS collaboration; AMOROS, G; VILLAPLANA, M; FASSI, F; KACI, M; LAMAS, A; OLIVER, E; SALT, J; SANCHEZ, J; SANCHEZ, V

    2012-01-01

    ABSTRAC ISCG 2012 Evolution of the Atlas data and computing model for a Tier2 in the EGI infrastructure During last years the Atlas computing model has moved from a more strict design, where every Tier2 had a liaison and a network dependence from a Tier1, to a more meshed approach where every cloud could be connected. Evolution of ATLAS data models requires changes in ATLAS Tier2s policy for the data replication, dynamic data caching and remote data access. It also requires rethinking the network infrastructure to enable any Tier2 and associated Tier3 to easily connect to any Tier1 or Tier2. Tier2s are becoming more and more important in the ATLAS computing model as it allows more data to be readily accessible for analysis jobs to all users, independently of their geographical location. The Tier2s disk space has been reserved for real, simulated, calibration and alignment, group, and user data. A buffer disk space is needed for input and output data for simulations jobs. Tier2s are going to be used more effic...

  11. Making Energy Infrastructure

    DEFF Research Database (Denmark)

    Schick, Lea; Winthereik, Brit Ross

    2016-01-01

    study here, a Copenhagen art and energy competition invited artists and designers from around the world to submit ideas for large-scale public artworks that can generate utility-scale renewable energy. The competition process had a smooth and consensus-seeking political strategy, manifested in a set......Integrating renewable energy sources into the power grid and ensuring public interest in energy is a key concern in many countries. What role may art play, and what political strategies do artists employ, in order to intervene in the infrastructuring of energy and public environments? As the case...

  12. Fractal actors and infrastructures

    DEFF Research Database (Denmark)

    Bøge, Ask Risom

    2011-01-01

    -network-theory (ANT) into surveillance studies (Ball 2002, Adey 2004, Gad & Lauritsen 2009). In this paper, I further explore the potential of this connection by experimenting with Marilyn Strathern’s concept of the fractal (1991), which has been discussed in newer ANT literature (Law 2002; Law 2004; Jensen 2007). I...... under surveillance. Based on fieldwork conducted in 2008 and 2011 in relation to my Master’s thesis and PhD respectively, I illustrate fractal concepts by describing the acts, actors and infrastructure that make up the ‘DNA surveillance’ conducted by the Danish police....

  13. The home hemodialysis hub: physical infrastructure and integrated governance structure.

    Science.gov (United States)

    Marshall, Mark R; Young, Bessie A; Fox, Sally J; Cleland, Calli J; Walker, Robert J; Masakane, Ikuto; Herold, Aaron M

    2015-04-01

    An effective home hemodialysis program critically depends on adequate hub facilities and support functions and on transparent and accountable organizational processes. The likelihood of optimal service delivery and patient care will be enhanced by fit-for-purpose facilities and implementation of a well-considered governance structure. In this article, we describe the required accommodation and infrastructure for a home hemodialysis program and a generic organizational structure that will support both patient-facing clinical activities and business processes.

  14. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  15. Facility Environmental Vulnerability Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and

  16. STRATEGIC MANAGEMENT OF ENERGY INFRASTRUCTURE DEVELOPMENT IN ALBANIA

    Directory of Open Access Journals (Sweden)

    Fioralba Vela

    2012-12-01

    Full Text Available In this paper the focus will be on the Albanian government efforts on developing energy infrastructure, focused on electricity . One of the primary factors that need to be considered in strategic management related to energy infrastructure is the policy. In reality, the government has to consider many factors when making policy decisions, especially those related to public infrastructure investment, such as: the establishment of a modern, efficient electricity sector that operates according to sound economic, commercial, and market principles, creating conditions that will attract private investment to fund necessary rehabilitation, expansion, and improvements to electricity facilities and the participation of strategic investors in the operation of the energy sector, and the development of the Albanian electricity market in a manner that is consistent with the European Union’s requirements for liberalizing the electricity sector (Directive 96/92/EC and Albania’s commitments under the Thessaloniki Agreement12 regarding the development of a regional electricity market. A strong need to build energy infrastructure can put pressure on policymakers to invest in infrastructure; hence to determine the need for new infrastructure or its rehabilitation, it is important to examine the condition of existing energy infrastructure, part of which is the electricity sector.

  17. The future of infrastructure security :

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Pablo; Turnley, Jessica Glicken; Parrott, Lori K.

    2013-05-01

    Sandia National Laboratories hosted a workshop on the future of infrastructure security on February 27-28, 2013, in Albuquerque, NM. The 17 participants came from backgrounds as diverse as federal policy, the insurance industry, infrastructure management, and technology development. The purpose of the workshop was to surface key issues, identify directions forward, and lay groundwork for cross-sectoral and cross-disciplinary collaborations. The workshop addressed issues such as the problem space (what is included in infrastructure problems?), the general types of threats to infrastructure (such as acute or chronic, system-inherent or exogenously imposed) and definitions of secure and resilient infrastructures. The workshop concluded with a consideration of stakeholders and players in the infrastructure world, and identification of specific activities that could be undertaken by the Department of Homeland Security (DHS) and other players.

  18. When Money Matters: School Infrastructure Funding and Student Achievement

    Science.gov (United States)

    Crampton, Faith E.; Thompson, David C.

    2011-01-01

    Today's school business officials are more aware than ever of the importance of making every dollar count. As they scour their budgets for possible savings, they may be tempted to reduce investment in school infrastructure, perhaps by deferring maintenance, renovations, and replacement of outdated facilities. However, school business officials…

  19. The Long Shadow of Port Infrastructure in Germany

    DEFF Research Database (Denmark)

    Mitze, Timo Friedel; Breidenbach, Philipp

    2016-01-01

    . Since it is very likely that results from least square estimations suffer from endogeneity problems, we base the identification on exogenous long-run instruments. In particular, port facilities built before the industrial revolution provide an adequate instrument for current port infrastructure since...

  20. 3D Spatial Information Infrastructure for the Port of Rotterdam

    NARCIS (Netherlands)

    Zlatanova, S.; Beetz, J.; Boersma, A.J.; Mulder, A.; Goos, J.

    2013-01-01

    The maintenance of the complex infrastructure and facilities of Port of Rotterdam is based on large amounts of heterogeneous information. Almost all activities of the Port require spatial information about features above- and under- ground. Current information systems are department and data oriente

  1. 3D spatial information infrastructure: The case of Port Rotterdam

    NARCIS (Netherlands)

    Zlatanova, S.; Beetz, J.

    2012-01-01

    The development and maintenance of the infrastructure, facilities, logistics and other assets of the Port of Rotterdam requires a broad spectrum of heterogeneous information. This information concerns features, which are spatially distributed above ground, underground, in the air and in the water. T

  2. Michigan E85 Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced

  3. Nuclear Energy Infrastructure Database Fitness and Suitability Review

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Brenden [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation (NE-4) initiated the Nuclear Energy-Infrastructure Management Project by tasking the Nuclear Science User Facilities (NSUF) to create a searchable and interactive database of all pertinent NE supported or related infrastructure. This database will be used for analyses to establish needs, redundancies, efficiencies, distributions, etc. in order to best understand the utility of NE’s infrastructure and inform the content of the infrastructure calls. The NSUF developed the database by utilizing data and policy direction from a wide variety of reports from the Department of Energy, the National Research Council, the International Atomic Energy Agency and various other federal and civilian resources. The NEID contains data on 802 R&D instruments housed in 377 facilities at 84 institutions in the US and abroad. A Database Review Panel (DRP) was formed to review and provide advice on the development, implementation and utilization of the NEID. The panel is comprised of five members with expertise in nuclear energy-associated research. It was intended that they represent the major constituencies associated with nuclear energy research: academia, industry, research reactor, national laboratory, and Department of Energy program management. The Nuclear Energy Infrastructure Database Review Panel concludes that the NSUF has succeeded in creating a capability and infrastructure database that identifies and documents the major nuclear energy research and development capabilities across the DOE complex. The effort to maintain and expand the database will be ongoing. Detailed information on many facilities must be gathered from associated institutions added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements.

  4. Infrastructural politics on Facebook

    DEFF Research Database (Denmark)

    Birkbak, Andreas

    broadening of the avenues of possible inquiry could be timely in relation to Facebook. What can we learn from Facebook as a venue for organizing in emergencies or around public issues? In order start answering this question I examine a recent controversy over plans to build a new road-pricing infrastructure...... to curb congestion in Copenhagen. The so-called payment ring project has now been officially dropped, but only after becoming one of the most heated topics in Danish politics in recent years. Thousands of people mobilized on Facebook pages for and against the actualization of the payment ring. I suggest...... that such issue-oriented pages represent an interesting reappropriation of the Facebook platform, whose ’pages’ feature is mainly targeted at commercial brands and other institutions. The majority of the pages founded in reaction to the payment ring were marked by sharp protests, something that generates...

  5. Infrastructural politics on Facebook

    DEFF Research Database (Denmark)

    Birkbak, Andreas

    broadening of the avenues of possible inquiry could be timely in relation to Facebook. What can we learn from Facebook as a venue for organizing in emergencies or around public issues? In order start answering this question I examine a recent controversy over plans to build a new road-pricing infrastructure...... to curb congestion in Copenhagen. The so-called payment ring project has now been officially dropped, but only after becoming one of the most heated topics in Danish politics in recent years. Thousands of people mobilized on Facebook pages for and against the actualization of the payment ring. I suggest...... that such issue-oriented pages represent an interesting reappropriation of the Facebook platform, whose ’pages’ feature is mainly targeted at commercial brands and other institutions. The majority of the pages founded in reaction to the payment ring were marked by sharp protests, something that generates...

  6. INSTITUTIONAL INFRASTRUCTURE: ESSENCE AND CONTENT

    Directory of Open Access Journals (Sweden)

    Ponomarev A. A.

    2015-03-01

    Full Text Available The article discusses the concept of "institutional infrastructure" and clarifies its essential content in relation to market cars. In terms of the industry market the main purpose of the institutional infrastructure is achieving the maximum economic benefit within limited resources. The main tasks that need to be solved in order to achieve this goal were formulated. We have developed and proved structurally-logical chart of the elements of the institutional infrastructure. The content of the institutional infrastructure of the car are presented and justified. The analysis condition of the car market’s institutional infrastructure showed the problems associated with the state of institutions which have an impact on the functioning of the car market. Measures to stimulate the car market does not cover entire sector as a whole, and imported institutions do not give the expected effect because of inconsistency formal and informal elements of the institutional infrastructure. Presented assessment of the institutional infrastructure of the car market confirms the dependence of the state of the industry market cars from institutional infrastructure. Only reforming the institutions at all levels of the industry, from production to car sales can have a positive effect on the industry. Changes in the institutional infrastructure should be focused on improving the competitiveness, stability and independence from external factors

  7. Integrated design as an opportunity to develop green infrastructures within complex spatial questions

    NARCIS (Netherlands)

    Bartelse, G.; Kost, S.

    2012-01-01

    Landscape is a complex system of competitive spatial functions. This competition is especially readable in high dense urban areas between housing, industry, leisure facilities, transport and infrastructure, energy supply, flood protection, natural resources. Nevertheless, those conflicts are seldom

  8. Telephone Switching Facilities, TelephoneInfrastructure-This dataset represents the major telephone trunk line and switching facilities. These data were digitized as part of State of Utah Comprehensive Emergency Management Earthquake Preparedness Program, 1986-1989., Published in 1990, 1:24000 (1in=2000ft) scale, State of Utah Automated Geographic Reference Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Telephone Switching Facilities dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 1990. It is...

  9. Assessing Terrorist Motivations for Attacking Critical Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, G; Abhayaratne, P; Bale, J; Bhattacharjee, A; Blair, C; Hansell, L; Jayne, A; Kosal, M; Lucas, S; Moran, K; Seroki, L; Vadlamudi, S

    2006-12-04

    Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security and way of life. These complex and often interconnected systems have become so ubiquitous and essential to day-to-day life that they are easily taken for granted. Often it is only when the important services provided by such infrastructure are interrupted--when we lose easy access to electricity, health care, telecommunications, transportation or water, for example--that we are conscious of our great dependence on these networks and of the vulnerabilities that stem from such dependence. Unfortunately, it must be assumed that many terrorists are all too aware that CI facilities pose high-value targets that, if successfully attacked, have the potential to dramatically disrupt the normal rhythm of society, cause public fear and intimidation, and generate significant publicity. Indeed, revelations emerging at the time of this writing about Al Qaida's efforts to prepare for possible attacks on major financial facilities in New York, New Jersey, and the District of Columbia remind us just how real and immediate such threats to CI may be. Simply being aware that our nation's critical infrastructure presents terrorists with a plethora of targets, however, does little to mitigate the dangers of CI attacks. In order to prevent and preempt such terrorist acts, better understanding of the threats and vulnerabilities relating to critical infrastructure is required. The Center for Nonproliferation Studies (CNS) presents this document as both a contribution to the understanding of such threats and an initial effort at ''operationalizing'' its findings for use by analysts who work on issues of critical infrastructure protection. Specifically, this study focuses on a subsidiary aspect of CI threat assessment that has thus far remained largely unaddressed by contemporary terrorism research: the motivations and related factors that

  10. The 1990 direct support infrastructure

    Science.gov (United States)

    1978-01-01

    The airport and cargo terminal were individually analyzed in depth as the principal direct infrastructure components having cross impacts with aircraft carrying cargo. Containerization was also addressed in depth as an infrastructure component since it categorically is linked with and cross impacted by the aircraft, the cargo terminal, the surface transport system, the shipper and consignee, and the actual cargo being moved.

  11. Cyber and physical infrastructure interdependencies.

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  12. Cyberwarfare on the Electricity Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Murarka, N.; Ramesh, V.C.

    2000-03-20

    The report analyzes the possibility of cyberwarfare on the electricity infrastructure. The ongoing deregulation of the electricity industry makes the power grid all the more vulnerable to cyber attacks. The report models the power system information system components, models potential threats and protective measures. It therefore offers a framework for infrastructure protection.

  13. JINR cloud infrastructure evolution

    Science.gov (United States)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  14. MAGNET/INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    Most of the infrastructure at Pt5 has been completed and is now passing their commissioning phase. The power distribution is almost completed. During autumn the powering of UXC55 racks from USC55 cabinets has been achieved. The full control/safety chain has been tested by injecting smoke into the sensitive rack volume in YE+ racks and is being extended to all the other racks as soon as cabling is done. The USC55 cooling station has all the water circuits commissioned and running. The annual maintenance of the surface cooling towers has been done during weeks 45 and 46 and a special plan has been set up, in close coordination with the CERN technical department. All the USC55 racks have passed a campaign of cleaning of the water filters and quality checks. A new partition of the USC55 area, for the function of the AUG (General Emergency Stop) buttons, is being done. This has an impact on the design of the underground UPS (Uninterruptible Power System) that secure the Magnet system and the electronics racks ...

  15. Performance characteristics of Jefferson Lab's new SRF infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Charles E. [JLAB; Denny, Philip [JLAB; Reilly, Anthony [JLAB

    2013-09-01

    In the past two years, Jefferson Lab has reconfigured and renovated its SRF support infrastructure as part of the Technology and Engineering Development Facility project, TEDF. The most significant changes are in the cleanroom and chemistry facilities. We report the initial characterization data on the new ultra-pure water systems, cleanroom facilities, describe the reconfiguration of existing facilities and also opportunities for flexible growth presented by the new arrangement.

  16. Research Note on the Energy Infrastructure Attack Database (EIAD

    Directory of Open Access Journals (Sweden)

    Jennifer Giroux

    2013-12-01

    Full Text Available The January 2013 attack on the In Amenas natural gas facility drew international attention. However this attack is part of a portrait of energy infrastructure targeting by non-state actors that spans the globe. Data drawn from the Energy Infrastructure Attack Database (EIAD shows that in the last decade there were, on average, nearly 400 annual attacks carried out by armed non-state actors on energy infrastructure worldwide, a figure that was well under 200 prior to 1999. This data reveals a global picture whereby violent non-state actors target energy infrastructures to air grievances, communicate to governments, impact state economic interests, or capture revenue in the form of hijacking, kidnapping ransoms, theft. And, for politically motivated groups, such as those engaged in insurgencies, attacking industry assets garners media coverage serving as a facilitator for international attention. This research note will introduce EIAD and position its utility within various research areas where the targeting of energy infrastructure, or more broadly energy infrastructure vulnerability, has been addressed, either directly or indirectly. We also provide a snapshot of the initial analysis of the data between 1980-2011, noting specific temporal and spatial trends, and then conclude with a brief discussion on the contribution of EIAD, highlighting future research trajectories. 

  17. CERIF-CRIS for the European e-Infrastructure

    Directory of Open Access Journals (Sweden)

    K Jeffery

    2010-04-01

    Full Text Available The European e-infrastructure is the ICT support for research although the infrastructure will be extended for commercial/business use. It supports the research process across funding agencies to research institutions to innovation. It supports experimental facilities, modelling and simulation, communication between researchers, and workflow of research processes and research management. We propose the core should be CERIF: an EU recommendation to member states for exchanging research information and for homogeneous access to heterogeneous information. CERIF can also integrate associated systems (such as finance, human resource, project management, and library services and provides interoperation among research institutions, research funders, and innovators.

  18. SOCIAL INFRASTRUCTURE MODERNIZATION AS A PRIORITY REGARDING RURAL LIFE STANDARD IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    L. A. Tretyakova

    2010-06-01

    Full Text Available At the present stage of socio-economic changes rural area economic activity conditions have changed in Russia, which has significantly worsened social facilities and engineering infrastructure effective functioning problem. The rural social infrastructure status has been recently deteriorating due to the lack of effective State support instruments and investments. In this paper, Russian rural social sphere development trends are considered, guidelines referred to the government control of rural area social sphere development are analyzed, methodology related to social facilities and engineering infrastructure efficient functioning is suggested as a determining factor for the agriculture labor market efficient development. A conceptual model of rural area social infrastructure strategic development and a mechanism of management control organization and rural area social infrastructure development based on a comprehensive analysis are suggested.

  19. Data discovery and data processing for environmental research infrastructures

    Science.gov (United States)

    Los, Wouter; Beranzoli, Laura; Corriero, Giuseppe; Cossu, Roberto; Fiore, Nicola; Hardisty, Alex; Legré, Yannick; Pagano, Pasquale; Puglisi, Giuseppe; Sorvari, Sanna; Turunen, Esa

    2013-04-01

    The European ENVRI project (Common operations of Environmental Research Infrastructures) is addressing common ICT solutions for the research infrastructures as selected in the ESFRI Roadmap. More specifically, the project is looking for solutions that will assist interdisciplinary users who want to benefit from the data and other services of more than a single research infrastructure. However, the infrastructure architectures, the data, data formats, scales and granularity are very different. Indeed, they deal with diverse scientific disciplines, from plate tectonics, the deep sea, sea and land surface up to atmosphere and troposphere, from the dead to the living environment, and with a variety of instruments producing increasingly larger amounts of data. One of the approaches in the ENVRI project is to design a common Reference Model that will serve to promote infrastructure interoperability at the data, technical and service levels. The analysis of the characteristics of the environmental research infrastructures assisted in developing the Reference Model, and which is also an example for comparable infrastructures worldwide. Still, it is for users already now important to have the facilities available for multi-disciplinary data discovery and data processing. The rise of systems research, addressing Earth as a single complex and coupled system is requiring such capabilities. So, another approach in the project is to adapt existing ICT solutions to short term applications. This is being tested for a few study cases. One of these is looking for possible coupled processes following a volcano eruption in the vertical column from deep sea to troposphere. Another one deals with volcano either human impacts on atmospheric and sea CO2 pressure and the implications for sea acidification and marine biodiversity and their ecosystems. And a third one deals with the variety of sensor and satellites data sensing the area around a volcano cone. Preliminary results on these

  20. 76 FR 20995 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Science.gov (United States)

    2011-04-14

    ... infrastructure protection security measures, incident response, recovery, infrastructure resilience... sharing threat, vulnerability, risk mitigation, and infrastructure continuity information. Organizational...

  1. Embedded Processor Oriented Compiler Infrastructure

    Directory of Open Access Journals (Sweden)

    DJUKIC, M.

    2014-08-01

    Full Text Available In the recent years, research of special compiler techniques and algorithms for embedded processors broaden the knowledge of how to achieve better compiler performance in irregular processor architectures. However, industrial strength compilers, besides ability to generate efficient code, must also be robust, understandable, maintainable, and extensible. This raises the need for compiler infrastructure that provides means for convenient implementation of embedded processor oriented compiler techniques. Cirrus Logic Coyote 32 DSP is an example that shows how traditional compiler infrastructure is not able to cope with the problem. That is why the new compiler infrastructure was developed for this processor, based on research. in the field of embedded system software tools and experience in development of industrial strength compilers. The new infrastructure is described in this paper. Compiler generated code quality is compared with code generated by the previous compiler for the same processor architecture.

  2. Information Dynamics and Agent Infrastructure

    Science.gov (United States)

    2003-06-01

    Acquisition, organization, management, retrieval, and distribution of information are fundamental purposes of digital libraries and their supporting...infrastructures. Interoperable digital libraries pose particularly difficult system design issues. Interoperability research has focused largely on

  3. Electricity Infrastructure Operations Center (EIOC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electricity Infrastructure Operations Center (EIOC) at PNNL brings together industry-leading software, real-time grid data, and advanced computation into a fully...

  4. Office of Aviation Safety Infrastructure -

    Data.gov (United States)

    Department of Transportation — The Office of Aviation Safety Infrastructure (AVS INF) provides authentication and access control to AVS network resources for users. This is done via a distributed...

  5. Forests and Forest Cover - Green Infrastructure Gaps

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — These data provide restoration value rankings and ecological attributes associated with green infrastructure gaps. The Green Infrastructure Assessment was developed...

  6. Transport infrastructure development in China

    Directory of Open Access Journals (Sweden)

    Bouraima Mouhamed Bayane

    2017-05-01

    Full Text Available This paper reviews the historical configuration process of transportation systems in China and examines the relationship between economic development and transport system at three different levels. The current status of transport infrastructure system development in China is summarized at national and regional level. The investment trends for transport infrastructure in China are also depicted. The keys issues relating to government initiatives are presented.

  7. Water Supply Infrastructure System Surety

    Energy Technology Data Exchange (ETDEWEB)

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  8. Australian Infrastructure Financial Management Guidelines

    Directory of Open Access Journals (Sweden)

    Chris Champion

    2009-11-01

    Full Text Available The Institute of Public Works Engineering Australia (IPWEA has recently published the Australian Infrastructure Financial Management Guidelines. The Guidelines provide new assistance to link the technical (engineering and financial aspects of managing infrastructure and services, and to assist infrastructure owners such as local government to develop sustainable long-term asset and financial management plans. Financial management for long-life infrastructure assets (such as roads, water, sewerage, and stormwater networks, and community buildings is about ensuring sustainability in the provision of services required by the community. These new Guidelines offer advice for every organisation and individual with responsibility for the management of infrastructure assets. They assist in defining best practice approaches for: • Accounting for infrastructure • Depreciation, valuation, useful life, fair value • Managing financial sustainability • Integrating asset management planning and long term financial planning • Meeting requirements for financial reporting The project was a joint initiative of IPWEA and the National Local Government Financial Management Forum. A steering committee representing national and state governments, technical and financial professionals, local government associations and auditors oversaw it.

  9. The European Research Infrastructure for Heritage Science (erihs)

    Science.gov (United States)

    Striova, J.; Pezzati, L.

    2017-08-01

    The European Research Infrastructure for Heritage Science (E-RIHS) entered the European strategic roadmap for research infrastructures (ESFRI Roadmap [1]) in 2016, as one of its six new projects. E-RIHS supports research on heritage interpretation, preservation, documentation and management. Both cultural and natural heritage are addressed: collections, artworks, buildings, monuments and archaeological sites. E-RIHS aims to become a distributed research infrastructure with a multi-level star-structure: facilities from single Countries will be organized in national nodes, coordinated by National Hubs. The E-RIHS Central Hub will provide the unique access point to all E-RIHS services through coordination of National Hubs. E-RIHS activities already started in some of its national nodes. In Italy the access to some E-RIHS services started in 2015. A case study concerning the diagnostic of a hypogea cave is presented.

  10. Evolution of the ATLAS data and computing model for a Tier2 in the EGI infrastructure

    CERN Document Server

    Fernández Casaní, A; The ATLAS collaboration; González de la Hoz, S; Salt Cairols, J; Fassi, F; Kaci, M; Lamas, A; Oliver, E; Sánchez, J; Sánchez, V

    2012-01-01

    Since the start of the LHC pp collisions in 2010, the ATLAS computing model has moved from a more strict design, where every Tier2 had a liaison and a network dependence from a Tier1, to a more meshed approach where every cloud could be connected. Evolution of ATLAS data models requires changes in ATLAS Tier2s policy for the data replication, dynamic data caching and remote data access. It also requires rethinking the network infrastructure to enable any Tier2 and associated Tier3 to easily connect to any Tier1 or Tier2. Tier2s are becoming more and more important in the ATLAS computing model as it allows more data to be readily accessible for analysis jobs to all users, independently of their geographical location. The Tier2s disk space has been reserved for real, simulated, calibration and alignment, group, and user data. A buffer disk space is needed for input and output data for simulations jobs. Tier2s are going to be used more efficiently. In this way Tier1s and Tier2s are becoming more equivalent for t...

  11. MAGNET/INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    Many activities are going-on in both caverns at P5 as well as on the surface, where the site facilities (parking places, storage areas, access gates to shafts, etc…) have been revamped. The power distribution is near to completion. Over the summer the powering of YE racks from USC55 cabinets has been achieved. The full control/safety chain has been successfully tested, by injecting smoke sources into the sensitive rack volume. Racks on balcony (near side) will be powered as well as soon as the safety checks are done. The USC55 cooling station has three water circuits commissioned and running (racks, ECAL and muon DT). All the other circuits will come online, assuring adequate cooling of detector front-end electronics, as soon as the low-voltage power is made available. The Magnet system, following the move to its reserved area in USC55, has passed the first preliminary tests. The cold-box has passed several tests and it is ready to deliver liquid helium to the coil. A pressure test at 20 bars...

  12. Intelligent systems technology infrastructure for integrated systems

    Science.gov (United States)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  13. Primary health care facility infrastructure and services and the ...

    African Journals Online (AJOL)

    a Nutritional Intervention Research Unit, Medical Research Council ab Currently from Center of Excellence in Nutrition, North West ... Inadequate health services and an unhealthy environment are ..... Lack/shortage of diagnostic equipment.

  14. The Role of Uncertainty in the Management of Infrastructure Facilities

    Science.gov (United States)

    1988-01-06

    heavy loads for mobilization . In other disciplines such as manufacturing and the electronic and aerospace industies, well-developed theories of...Inspection, Random Sample - 10 cracks observed for each section 1 2 3 4 5 25 f - Resolution 0.001 in 60 ft 3. TECHNOLGY 3 High Resolution Camera 24

  15. 2009 VHA Facility Quality and Safety Report - Infrastructure

    Data.gov (United States)

    Department of Veterans Affairs — The 2008 Hospital Report Card was mandated by the FY08 Appropriations Act, and focused on Congressionally-mandated metrics applicable to general patient populations....

  16. Adaptive SOA Infrastructure Based on Variability Management

    OpenAIRE

    Graubmann, Peter; Roshchin, Mikhail

    2008-01-01

    In order to exploit the adaptability of a SOA infrastructure, it becomes necessary to provide platform mechanisms that support a mapping of the variability in the applications to the variability provided by the infrastructure. The approach focuses on the configuration of the needed infrastructure mechanisms including support for the derivation of the infrastructure variability model.

  17. INFORMATION INFRASTRUCTURE OF THE EDUCATIONAL ENVIRONMENT WITH VIRTUAL MACHINE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Artem D. Beresnev

    2014-09-01

    Full Text Available Subject of research. Information infrastructure for the training environment with application of technology of virtual computers for small pedagogical systems (separate classes, author's courses is created and investigated. Research technique. The life cycle model of information infrastructure for small pedagogical systems with usage of virtual computers in ARIS methodology is constructed. The technique of information infrastructure formation with virtual computers on the basis of process approach is offered. The model of an event chain in combination with the environment chart is used as the basic model. For each function of the event chain the necessary set of means of information and program support is defined. Technique application is illustrated on the example of information infrastructure design for the educational environment taking into account specific character of small pedagogical systems. Advantages of the designed information infrastructure are: the maximum usage of open or free components; the usage of standard protocols (mainly, HTTP and HTTPS; the maximum portability (application servers can be started up on any of widespread operating systems; uniform interface to management of various virtualization platforms, possibility of inventory of contents of the virtual computer without its start, flexible inventory management of the virtual computer by means of adjusted chains of rules. Approbation. Approbation of obtained results was carried out on the basis of training center "Institute of Informatics and Computer Facilities" (Tallinn, Estonia. Technique application within the course "Computer and Software Usage" gave the possibility to get half as much the number of refusals for components of the information infrastructure demanding intervention of the technical specialist, and also the time for elimination of such malfunctions. Besides, the pupils who have got broader experience with computer and software, showed better results

  18. A Strategic Assessment of Infrastructure Asset-Management Modeling

    Science.gov (United States)

    2013-12-01

    facilities and infrastructure assets, ranging from dormitories to aircraft hangars to warehouses.27 This infra- structure, which supports a myriad of...College and University Business Officers, Managing the Facili- ties Portfolio (Washington, DC: National Academy Press, 1995), 12–16. 49. Maunsell Project...Force, 2011), 2. Lt Col William E. Sitzabee, PhD, PE, USAF Lieutenant Colonel Sitzabee (BSCE, Norwich University ; MS, Air Force Institute of

  19. Approach to Achieve High Availability in Critical Infrastructure

    Science.gov (United States)

    2015-09-01

    Regardless, current technology includes RFID tags for systems, and tablets can be implemented to assist in real-time updates. Current Wi-Fi technology can...APPROACH TO ACHIEVE HIGH AVAILABILITY IN CRITICAL INFRASTRUCTURE Yew Kee Hoo Senior Engineer, Defence Science and Technology Agency, Singapore B.E...Between Failure MTTF Mean Time to Repair NAVFAC Naval Facilities Engineering Command xvi O&M Operations and Maintenance RFID Radio Frequency

  20. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    OpenAIRE

    Sathaye, Jayant

    2011-01-01

    ABSTRACT This report outlines the results of a study of the impact of climate change on the energy infrastructure of California and the San Francisco Bay region, including impacts on power plant generation; transmission line and substation capacity during heat spells; wildfires near transmission lines; sea level encroachment upon power plants, substations, and natural gas facilities; and peak electrical demand. Some end-of-century impacts were projected: Expected warming will decrease gas-fir...

  1. Infrastructure Commons in Economic Perspective

    Science.gov (United States)

    Frischmann, Brett M.

    This chapter briefly summarizes a theory (developed in substantial detail elsewhere)1 that explains why there are strong economic arguments for managing and sustaining infrastructure resources in an openly accessible manner. This theory facilitates a better understanding of two related issues: how society benefits from infrastructure resources and how decisions about how to manage or govern infrastructure resources affect a wide variety of public and private interests. The key insights from this analysis are that infrastructure resources generate value as inputs into a wide range of productive processes and that the outputs from these processes are often public goods and nonmarket goods that generate positive externalities that benefit society as a whole. Managing such resources in an openly accessible manner may be socially desirable from an economic perspective because doing so facilitates these downstream productive activities. For example, managing the Internet infrastructure in an openly accessible manner facilitates active citizen involvement in the production and sharing of many different public and nonmarket goods. Over the last decade, this has led to increased opportunities for a wide range of citizens to engage in entrepreneurship, political discourse, social network formation, and community building, among many other activities. The chapter applies these insights to the network neutrality debate and suggests how the debate might be reframed to better account for the wide range of private and public interests at stake.

  2. E-Infrastructure Concertation Meeting

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    The 8th e-Infrastructure Concertation Meeting was held in the Globe from 4 to 5 November to discuss the development of Europe’s distributed computing and storage resources.   Project leaders attend the E-Concertation Meeting at the Globe on 5 November 2010. © Corentin Chevalier E-Infrastructures have become an indispensable tool for scientific research, linking researchers to virtually unlimited e-resources like the grid. The recent e-Infrastructure Concertation Meeting brought together e-Science project leaders to discuss the development of this tool in the European context. The meeting was part of an ongoing initiative to develop a world-class e-infrastructure resource that would establish European leadership in e-Science. The e-Infrastructure Concertation Meeting was organised by the Commission Services (EC) with the support of e-ScienceTalk. “The Concertation meeting at CERN has been a great opportunity for e-ScienceTalk to meet many of the 38 new proje...

  3. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  4. Modeling Infrastructure Vulnerabilities and Adaptation to Climate Change in Urban Systems: Methodology and Application to Metropolitan Boston

    OpenAIRE

    Ruth, Matthias

    2003-01-01

    Much of the infrastructure in use today was designed and constructed decades if not centuries ago. Many of these infrastructure systems are vulnerable to a variety of anthropogenic or natural disruptions even though their functioning is vital to the creation and maintenance of quality of life in a region. Moreover, concepts and designs have persisted even as technologies have changed. Yet the demands and technologies of the future may require infrastructures - both material facilities and hum...

  5. LCG/AA build infrastructure

    CERN Document Server

    Hodgkins, Alex Liam; Hegner, Benedikt

    2012-01-01

    The Software Process & Infrastructure (SPI) project provides a build infrastructure for regular integration testing and release of the LCG Applications Area software stack. In the past, regular builds have been provided using a system which has been constantly growing to include more features like server-client communication, long-term build history and a summary web interface using present-day web technologies. However, the ad-hoc style of software development resulted in a setup that is hard to monitor, inflexible and difficult to expand. The new version of the infrastructure is based on the Django Python framework, which allows for a structured and modular design, facilitating later additions. Transparency in the workflows and ease of monitoring has been one of the priorities in the design. Formerly missing functionality like on-demand builds or release triggering will support the transition to a more agile development process.

  6. Centralized versus Decentralized Infrastructure Networks

    CERN Document Server

    Hines, Paul D H; Schläpfer, Markus

    2015-01-01

    While many large infrastructure networks, such as power, water, and natural gas systems, have similar physical properties governing flows, these systems tend to have distinctly different sizes and topological structures. This paper seeks to understand how these different size-scales and topological features can emerge from relatively simple design principles. Specifically, we seek to describe the conditions under which it is optimal to build decentralized network infrastructures, such as a microgrid, rather than centralized ones, such as a large high-voltage power system. While our method is simple it is useful in explaining why sometimes, but not always, it is economical to build large, interconnected networks and in other cases it is preferable to use smaller, distributed systems. The results indicate that there is not a single set of infrastructure cost conditions under which optimally-designed networks will have highly centralized architectures. Instead, as costs increase we find that average network size...

  7. The UK National Infrastructure Plan 2010

    OpenAIRE

    Stewart, James

    2010-01-01

    The challenges of infrastructure finance need to be considered in the context of long-term infrastructure planning. This article outlines the UK's new integrated approach to infrastructure planning to meet large investment needs against the backdrop of fiscal consolidation. The UK National Infrastructure Plan for the first time sets our a broad, integrated, corss-sectoral vision and plan for the substantial infrastructure investment required to underpin the UK's economic growth. This plan wil...

  8. Financing Infrastructure: A Spectrum of Country Approaches

    OpenAIRE

    Sophia Chong; Emily Poole

    2013-01-01

    Over recent decades, there has been a shift away from public infrastructure financing towards private infrastructure financing, particularly in advanced economies. In this article, infrastructure financing in four countries – China, India, Australia and the United Kingdom – is examined to illustrate the different approaches taken by governments to finance infrastructure and encourage private financing. In all four countries, public financing of infrastructure remains significant, ranging from...

  9. Permafrost Hazards and Linear Infrastructure

    Science.gov (United States)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the

  10. Urban Green Infrastructure: German Experience

    Directory of Open Access Journals (Sweden)

    Diana Olegovna Dushkova

    2016-06-01

    Full Text Available The paper presents a concept of urban green infrastructure and analyzes the features of its implementation in the urban development programmes of German cities. We analyzed the most shared articles devoted to the urban green infrastructure to see different approaches to definition of this term. It is based on materials of field research in the cities of Berlin and Leipzig in 2014-2015, international and national scientific publications. During the process of preparing the paper, consultations have been held with experts from scientific institutions and Administrations of Berlin and Leipzig as well as local experts from environmental organizations of both cities. Using the German cities of Berlin and Leipzig as examples, this paper identifies how the concept can be implemented in the program of urban development. It presents the main elements of green city model, which include mitigation of negative anthropogenic impact on the environment under the framework of urban sustainable development. Essential part of it is a complex ecological policy as a major necessary tool for the implementation of the green urban infrastructure concept. This ecological policy should embody not only some ecological measurements, but also a greening of all urban infrastructure elements as well as implementation of sustainable living with a greater awareness of the resources, which are used in everyday life, and development of environmental thinking among urban citizens. Urban green infrastructure is a unity of four main components: green building, green transportation, eco-friendly waste management, green transport routes and ecological corridors. Experience in the development of urban green infrastructure in Germany can be useful to improve the environmental situation in Russian cities.

  11. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  12. Designing infrastructures for creative engagement

    DEFF Research Database (Denmark)

    Dindler, Christian

    2014-01-01

    As museums extend their scope beyond the traditional exhibition space and into everyday practices and institutions it is necessary to develop suitable conceptualisations of how technology can be understood and designed. To this end, we propose that the concept of socio-technical infrastructures...... relationships to institutions and organizations within local communities. We argue that this is as much an object of design as technical systems and discuss the relational work needed to engage in this activity. We illustrate the ideas of infrastructure and relational work through a case study of the design...

  13. Impact evaluation of infrastructure interventions

    DEFF Research Database (Denmark)

    Hansen, Henrik; Andersen, Ole Winckler; White, Howard

    2011-01-01

    The focus on results in development agencies has led to increased focus on impact evaluation to demonstrate the effectiveness of development programmes. A range of methods are available for counterfactual analysis of infrastructure interventions, as illustrated by the variety of papers in this vo......The focus on results in development agencies has led to increased focus on impact evaluation to demonstrate the effectiveness of development programmes. A range of methods are available for counterfactual analysis of infrastructure interventions, as illustrated by the variety of papers...

  14. Mastering Microsoft Azure infrastructure services

    CERN Document Server

    Savill, John

    2015-01-01

    Understand, create, deploy, and maintain a public cloud using Microsoft Azure Mastering Microsoft Azure Infrastructure Services guides you through the process of creating and managing a public cloud and virtual network using Microsoft Azure. With step-by-step instruction and clear explanation, this book equips you with the skills required to provide services both on-premises and off-premises through full virtualization, providing a deeper understanding of Azure's capabilities as an infrastructure service. Each chapter includes online videos that visualize and enhance the concepts presented i

  15. RIDE: the Research Infrastructure Database for EPOS

    Science.gov (United States)

    Bailo, Daniele; Bartoloni, Alessandro; Jeffery, Keith G.; Clemenceau, Alice; Hoffmann, Thomas L.

    2013-04-01

    The European Plate Observing System (EPOS) is a European initiative which aims to promote and make possible innovative approaches for a better understanding of the physical processes laying behind natural events and geo-science phenomena (earthquakes, volcanic eruptions, unrest episodes and tsunamis etc.) by integrating existing national and trans-national Research Infrastructures (RIs). Such integration will increase access and use of the multidisciplinary data recorded by solid Earth monitoring networks, acquired in laboratory experiments and/or produced by computational simulations. Here we present the Research Infrastructures Database for EPOS (RIDE), a database containing technical information about the different RIs declared by EPOS partners and EPOS associate partners, which will eventually compose the EPOS distributed Research Infrastructure. The main goals of RIDE are (i) to allow the EPOS RI to be organized, with interactive access and information mining available to a broad community of users and stakeholders, (ii) to have a first set of information to be stored in the EPOS catalogue, which will be used as a basis for the development of EPOS Core Services, (iii) to enable EPOS partners to revise and update the current RI information, (iv) to show the contents of the EPOS integration plan to all stakeholders, (v) to facilitate the dissemination of existing data infrastructures to different communities and to promote a discussion within the community to implement the present data infrastructures. RIDE - whose driving technology is Apache CouchDB - contains at the current status detailed information on more than 200 Research Infrastructures. It enables any user to visualize RIs and sensors on a map, to carry out statistics on the stored data and to browse through the details of any RI. Based on the content of RIDE it is now possible to estimate the potential size of the new EPOS distributed RI: EPOS is going to integrate more than 7000 sensors (seismic

  16. Sustainable infrastructure system modeling under uncertainties and dynamics

    Science.gov (United States)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the

  17. Federated data storage and management infrastructure

    Science.gov (United States)

    Zarochentsev, A.; Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Hristov, P.

    2016-10-01

    The Large Hadron Collider (LHC)’ operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. Computing models for the High Luminosity LHC era anticipate a growth of storage needs of at least orders of magnitude; it will require new approaches in data storage organization and data handling. In our project we address the fundamental problem of designing of architecture to integrate a distributed heterogeneous disk resources for LHC experiments and other data- intensive science applications and to provide access to data from heterogeneous computing facilities. We have prototyped a federated storage for Russian T1 and T2 centers located in Moscow, St.-Petersburg and Gatchina, as well as Russian / CERN federation. We have conducted extensive tests of underlying network infrastructure and storage endpoints with synthetic performance measurement tools as well as with HENP-specific workloads, including the ones running on supercomputing platform, cloud computing and Grid for ALICE and ATLAS experiments. We will present our current accomplishments with running LHC data analysis remotely and locally to demonstrate our ability to efficiently use federated data storage experiment wide within National Academic facilities for High Energy and Nuclear Physics as well as for other data-intensive science applications, such as bio-informatics.

  18. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A; Nguyen, F

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  19. The Zwicky Transient Facility

    CERN Document Server

    Bellm, Eric C

    2014-01-01

    The Zwicky Transient Facility (ZTF) is a next-generation optical synoptic survey that builds on the experience and infrastructure of the Palomar Transient Factory (PTF). Using a new 47 deg$^2$ survey camera, ZTF will survey more than an order of magnitude faster than PTF to discover rare transients and variables. I describe the survey and the camera design. Searches for young supernovae, fast transients, counterparts to gravitational-wave detections, and rare variables will benefit from ZTF's high cadence, wide area survey.

  20. Scenario Based Network Infrastructure Planning

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip; Pedersen, Jens Myrup; Madsen, Ole Brun

    2005-01-01

    The paper presents a method for IT infrastructure planning that take into account very long term developments in usages. The method creates a scenario for a final, time independent stage in the planning process. The method abstracts relevant modelling factors from available information...

  1. 2009 Infrastructure Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass program‘s Infrastructure platform review meeting, held on February 19, 2009, at the Marriott Residence Inn, National Harbor, Maryland.

  2. Global Land Transport Infrastructure Requirements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Over the next four decades, global passenger and freight travel is expected to double over 2010 levels. In order to accommodate this growth, it is expected that the world will need to add nearly 25 million paved road lane-kilometres and 335 000 rail track kilometres. In addition, it is expected that between 45 000 square kilometres and 77 000 square kilometres of new parking spaces will be added to accommodate vehicle stock growth. These land transport infrastructure additions, when combined with operations, maintenance and repairs, are expected to cost as much as USD 45 trillion by 2050. This publication reports on the International Energy Agency’s (IEA) analysis of infrastructure requirements to support projected road and rail travel through 2050, using the IEA Mobility Model. It considers land transport infrastructure additions to support travel growth to 2050. It also considers potential savings if countries pursue “avoid and shift” policies: in this scenario, cumulative global land transport infrastructure spending could decrease as much as USD 20 trillion by 2050 over baseline projections.

  3. Graduates' Perceptions towards UKM's Infrastructure

    Science.gov (United States)

    Omar, Ramli; Khoon, Koh Aik; Hamzah, Mohd Fauzi; Ahmadan, Siti Rohayu

    2009-01-01

    This paper reports on the surveys which were conducted between 2006 and 2008 on graduates' perceptions towards the infrastructure at Universiti Kebangsaan Malaysia (UKM). It covered three major aspects pertaining to learning, living and leisure on campus. Eight out of 14 components received overwhelming approval from our graduates. (Contains 1…

  4. Scenario Based Network Infrastructure Planning

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip; Pedersen, Jens Myrup; Madsen, Ole Brun

    2005-01-01

    The paper presents a method for IT infrastructure planning that take into account very long term developments in usages. The method creates a scenario for a final, time independent stage in the planning process. The method abstracts relevant modelling factors from available information...

  5. Fostering Climate Resilient Electricity Infrastructures

    NARCIS (Netherlands)

    Bollinger, L.A.

    2015-01-01

    Heat waves, hurricanes, floods and windstorms - recent years have seen dramatic failures in electricity infrastructures sparked by short-term departures of environmental conditions from their norms. Driven by a changing climate, such deviations are anticipated to increase in severity and/or

  6. Automated Verification of Virtualized Infrastructures

    DEFF Research Database (Denmark)

    Bleikertz, Sören; Gross, Thomas; Mödersheim, Sebastian Alexander

    2011-01-01

    Virtualized infrastructures and clouds present new challenges for security analysis and formal verification: they are complex environments that continuously change their shape, and that give rise to non-trivial security goals such as isolation and failure resilience requirements. We present a pla...

  7. Communications and information infrastructure security

    CERN Document Server

    Voeller, John G

    2014-01-01

    Communication and Information Systems Security features articles from the Wiley Handbook of Science and Technology for Homeland Security covering strategies for protecting the telecommunications sector, wireless security, advanced web based technology for emergency situations. Science and technology for critical infrastructure consequence mitigation are also discussed.

  8. EPA's Ongoing Green Infrastructure Research

    Science.gov (United States)

    Green Infrastructure is a concept originating in the United States in the mid-1990's that highlights the importance of the natural environment in decisions about land use planning. In particular there is an emphasis on the “life support” functions provided by the natural environm...

  9. Age of alternative energies: speeding up the consolidation of the energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Miki, S.

    1986-01-01

    The author discusses the necessity of consolidating the energy infrastructure (i.e., the basic facilities) required for the main energy sources such as petroleum, LNG and electricity. He also explains that, in the case of the new energy sources currently being developed (e.g. coal gasification and liquefaction, coal cartridge systems, solar energy and biomass), much research still has to be carried out before this consolidation of the infrastructure will be possible.

  10. Network science, nonlinear science and infrastructure systems

    CERN Document Server

    2007-01-01

    Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems. .

  11. ABOUT GENERAL INFRASTRUCTURE AND ACCOMMODATION SYSTEM IN ROMANIAN BALNEOLOGY

    Directory of Open Access Journals (Sweden)

    ILIE ROTARIU

    2013-12-01

    Full Text Available A strong infrastructure is a precondition for the development of balneology. On this base new tourism might build the modern services that supply the experiences. The key factor is the labor force: an EU project about labor force in Romania and Bulgaria in balneology allow us to present the preliminary findings focusing on general infrastructure and accommodation which allow the development of the balneology as well as the additional conditions as the existence of a social pact, easy access facilities etc. Our paper gives more details about the accommodation facilities in Romania insisting about the results of the transition and privatization of the former socialist facilities and the transformation of the property into private ones and the consequences of this. It also present the capability of new developed accommodation units built after 1990 and how they might compete in an international competition. The findings force us to conclude that the actual facilities do not allow the balneology resorts to compete in the international competition and might fill only a poor and low demanding tourists

  12. CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community.

    Science.gov (United States)

    Connor, Thomas R; Loman, Nicholas J; Thompson, Simon; Smith, Andy; Southgate, Joel; Poplawski, Radoslaw; Bull, Matthew J; Richardson, Emily; Ismail, Matthew; Thompson, Simon Elwood-; Kitchen, Christine; Guest, Martyn; Bakke, Marius; Sheppard, Samuel K; Pallen, Mark J

    2016-09-01

    The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data.

  13. Critical infrastructure: impacts of natural hazards and consequences

    Science.gov (United States)

    Petrova, Elena

    2014-05-01

    Critical infrastructure such as oil and gas pipelines, transmission facilities, heat-, and water supply, lines of communications, roads, railways as well as air and water transport play the key role in social and economic development of every country. Therefore, accidents causing failures and breakdowns of critical infrastructure facilities have the most drastic consequences for the society, economy, and environment. For example, road accidents cause the highest number of fatalities and injuries all over the world, especially in the middle-income countries. The so-called "blackouts" or accidental losses of electric power and power outages entail serious social troubles and heavy economic losses. The pipeline ruptures and oil-tanker crashes accompanied by oil releases cause the most severe environmental and large material damages. Critical infrastructure facilities are most vulnerable to the impacts of natural hazards that trigger many accidents in them especially in the regions most at natural risk. The Russian Federation has more than 2.6 million km of transmission facilities, 940,000 km of roads, 102,000 km of inland waterways, 86,000 km of railways, and more than 70,000 km of trunk pipelines. Many facilities are beyond of their service life and need reconstruction. A very high level of deterioration and "human factor" are the main cause of accidents, ruptures, and crashes. However, natural hazards and disasters also play an essential (sometimes a leading) role in triggering or magnifying accidents in these objects. Thus, natural factors cause more than 70 percent of all "blackouts", about 20 percent of accidents at heat- and water supply systems and water accidents, five percent of pipeline ruptures, and about two to three percent of air crashes, road, and railway accidents. The influence of natural factors is stronger in the North-Western and Central parts of the European Russia, in Krasnodarsky Territory (South of Russia) and in Far East that are more exposed

  14. 76 FR 17934 - Infrastructure Protection Data Call

    Science.gov (United States)

    2011-03-31

    ... SECURITY Infrastructure Protection Data Call AGENCY: National Protection and Programs Directorate, DHS...: Infrastructure Protection Data Call. OMB Number: 1670-NEW. Frequency: On occasion. Affected Public: Federal...: The Department of Homeland Security (DHS), National Protection and Programs Directorate (NPPD),...

  15. The computing and data infrastructure to interconnect EEE stations

    Energy Technology Data Exchange (ETDEWEB)

    Noferini, F., E-mail: noferini@bo.infn.it [Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome (Italy); INFN CNAF, Bologna (Italy)

    2016-07-11

    The Extreme Energy Event (EEE) experiment is devoted to the search of high energy cosmic rays through a network of telescopes installed in about 50 high schools distributed throughout the Italian territory. This project requires a peculiar data management infrastructure to collect data registered in stations very far from each other and to allow a coordinated analysis. Such an infrastructure is realized at INFN-CNAF, which operates a Cloud facility based on the OpenStack opensource Cloud framework and provides Infrastructure as a Service (IaaS) for its users. In 2014 EEE started to use it for collecting, monitoring and reconstructing the data acquired in all the EEE stations. For the synchronization between the stations and the INFN-CNAF infrastructure we used BitTorrent Sync, a free peer-to-peer software designed to optimize data syncronization between distributed nodes. All data folders are syncronized with the central repository in real time to allow an immediate reconstruction of the data and their publication in a monitoring webpage. We present the architecture and the functionalities of this data management system that provides a flexible environment for the specific needs of the EEE project.

  16. The computing and data infrastructure to interconnect EEE stations

    Science.gov (United States)

    Noferini, F.; EEE Collaboration

    2016-07-01

    The Extreme Energy Event (EEE) experiment is devoted to the search of high energy cosmic rays through a network of telescopes installed in about 50 high schools distributed throughout the Italian territory. This project requires a peculiar data management infrastructure to collect data registered in stations very far from each other and to allow a coordinated analysis. Such an infrastructure is realized at INFN-CNAF, which operates a Cloud facility based on the OpenStack opensource Cloud framework and provides Infrastructure as a Service (IaaS) for its users. In 2014 EEE started to use it for collecting, monitoring and reconstructing the data acquired in all the EEE stations. For the synchronization between the stations and the INFN-CNAF infrastructure we used BitTorrent Sync, a free peer-to-peer software designed to optimize data syncronization between distributed nodes. All data folders are syncronized with the central repository in real time to allow an immediate reconstruction of the data and their publication in a monitoring webpage. We present the architecture and the functionalities of this data management system that provides a flexible environment for the specific needs of the EEE project.

  17. Modernizing the ATLAS Simulation Infrastructure

    CERN Document Server

    Di Simone, Andrea; The ATLAS collaboration

    2016-01-01

    The ATLAS Simulation infrastructure has been used to produce upwards of 50 billion proton-proton collision events for analyses ranging from detailed Standard Model measurements to searches for exotic new phenomena. In the last several years, the infrastructure has been heavily revised to allow intuitive multithreading and significantly improved maintainability. Such a massive update of a legacy code base requires careful choices about what pieces of code to completely rewrite and what to wrap or revise. The initialization of the complex geometry was generalized to allow new tools and geometry description languages, popular in some detector groups. The addition of multithreading requires Geant4 MT and GaudiHive, two frameworks with fundamentally different approaches to multithreading, to work together. It also required enforcing thread safety throughout a large code base, which required the redesign of several aspects of the simulation, including “truth,” the record of particle interactions with the detect...

  18. Cyberspace and Critical Information Infrastructures

    Directory of Open Access Journals (Sweden)

    Dan COLESNIUC

    2013-01-01

    Full Text Available Every economy of an advanced nation relies on information systems and interconnected networks, thus in order to ensure the prosperity of a nation, making cyberspace a secure place becomes as crucial as securing society. Cyber security means ensuring the safety of this cyberspace from threats which can take different forms, such as stealing secret information from national companies and government institutions, attacking infrastructure vital for the functioning of the nation or attacking the privacy of the single citizen. The critical information infrastructure (CII represents the indispensable "nervous system", that allow modern societies to work and live. Besides, without it, there would be no distribution of energy, no services like banking or finance, no air traffic control and so on. But at the same time, in the development process of CII, security was never considered a top priority and for this reason they are subject to a high risk in relation to the organized crime.

  19. Technical infrastructure monitoring at CERN

    CERN Document Server

    Stowisek, Jan; Suwalska, Anna

    2006-01-01

    The Technical Infrastructure Monitoring system (TIM) is used to monitor and control CERN's technical services from the CERN Control Centre (CCC). The system's primary function is to provide CCC operators with reliable real-time information about the state of the laboratory's extensive and widely distributed technical infrastructure. TIM is also used to monitor all general services required for the operation of CERN's accelerator complex and the experiments. A flexible data acquisition mechanism allows TIM to interface with a wide range of technically diverse installations, using industry standard protocols wherever possible and custom designed solutions where needed. The complexity of the data processing logic, including persistence, logging, alarm handling, command execution and the evaluation of datadriven business rules is encapsulated in the system's business layer. Users benefit from a suite of advanced graphical applications adapted to operations (synoptic views, alarm consoles, data analysis tools etc....

  20. Modernizing the ATLAS Simulation Infrastructure

    CERN Document Server

    Di Simone, Andrea; The ATLAS collaboration

    2017-01-01

    The ATLAS Simulation infrastructure has been used to produce upwards of 50 billion proton-proton collision events for analyses ranging from detailed Standard Model measurements to searches for exotic new phenomena. In the last several years, the infrastructure has been heavily revised to allow intuitive multithreading and significantly improved maintainability. Such a massive update of a legacy code base requires careful choices about what pieces of code to completely rewrite and what to wrap or revise. The initialization of the complex geometry was generalized to allow new tools and geometry description languages, popular in some detector groups. The addition of multithreading requires Geant4-MT and GaudiHive, two frameworks with fundamentally different approaches to multithreading, to work together. It also required enforcing thread safety throughout a large code base, which required the redesign of several aspects of the simulation, including “truth,” the record of particle interactions with the detect...

  1. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2012-01-01

      During the Year-End Technical Stop all the systems have been carefully inspected in order to assure a smooth running through the crucial year 2012. Regarding the electrical distribution, the annual General Emergency Stop test (AUG, in CERN language) has shown a discrepancy in the action matrix, as some racks were not cut off by the AUG action as they should have been. The subsequent investigation quickly indicated that a missing connection at the main UPS switchboard was the source of the problem. The problem has been addressed to the EN/EL group responsible for the equipment and a new test is planned in the beginning of March. Some consolidation work has been carried out as well, namely the doubling of the line powering the rack that houses the DCS servers in USC55. During the last months of the technical stop, the cooling systems of CMS have undergone the usual preventive maintenance, a few corrective interventions and a huge programme of performance tests. The preventive maintenance programm...

  2. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    The annual maintenance of detector services took place from mid November to mid January as planned. This involved a full stoppage of water-cooling circuits on November 24th with a gradual restarting from mid-January 09. The annual maintenance service included the cleaning of the two SF5 cooling towers and the service of the chiller plants on surface. The cryogenic plant serving the CMS Magnet was shut-down as well to perform the annual maintenance. In addition to that, the overall site power has been reduced from 8 to 2 MW, in order to cope with the switching to the Swiss power network in winter. Full power was reinstated at the end of January. The cooling network has seen the installation of a bypass for the endcap circuit, in order to limit pressure surges when one endcap is shut-off. In addition, filters have been added on most of the cooling loops in UXC55 to better protect the muon chambers. At the same time a global cleaning campaign of all the filters (more than 500 pieces) has been completed. As expe...

  3. INFRASTRUCTURES

    CERN Multimedia

    Andrea Gaddi

    2013-01-01

    One of the most important tasks for LS1 was achieved this autumn when all the electronics racks in the USC55 counting rooms were switched from the standard powering network to the CMS low-voltage UPS. This long-sought move will prevent fastidious power cuts of the CMS electronics in case of short power glitches on the main powering network, as already assured to the detector front-end electronics in UXC55. In the same time, a study to update the dedicated UPS units for some crucial detector sub-systems, as the Magnet Control System (MCS), the Detector Safety System (DSS) and the IT Network Star-points, has been lunched. A new architecture, with fully redundant UPS units, able to assure power supply in case of long network outage (up to a maximum of five hours, in the case of the Magnet) has been recently presented by the EN-EL group and is currently under evaluation. The dry-gas plant recently commissioned in SH5 has passed a first test in order to understand the time needed to switch from dry-air to dry-n...

  4. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    2010-01-01

    During the May 31st to June 2nd LHC Technical Stop, a major step was made towards upgrading the endcap cooling circuit. The chilled-water regulation valve on the primary side of the heat-exchanger was changed. This now allows reduction of the set-value of the water temperature cooling the RPCs and CSCs of the CMS endcaps. At the same time, the bypass re-circulating valve on the secondary circuit of the heat-exchanger was also changed to allow better regulation of this set-value. A project has been launched with the objective of improving the distribution of the chilled water to the different users. This was triggered by evidence that the Tracker compressors in USC55 receive insufficient flow. The chilled water is shared with the HVAC system and experts are now looking at how to better balance the flow between these two main users. The cooling loop filters located in UXC55 have been inspected and cleaned. Samples were sent to CERN Radioprotection Service to check for activation and to the Material Analysis...

  5. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    The various water-cooling circuits have been running smoothly since the last maintenance stop. The temperature set-points are being tuned to the actual requests from sub-detectors. As the RPC chambers seem to be rather sensitive to temperature fluctuations, the set-point on the Barrel and Endcap Muon circuits has been lowered by one degree Celsius, reaching the minimum temperature possible with the current hardware. A further decrease in temperature will only be possible with a substantial modification of the heat exchanger and related control valve on the primary circuit. A study has been launched to investigate possible solutions and related costs. The two cooling skids for Totem and Castor have been installed on top of the HF platform. They will supply demineralized water to the two forward sub-detectors, transferring the heat to the main rack circuit via an on-board heat exchanger. A preliminary analysis of the cooling requirements of the SCX5 computer farm has been done. As a first result, two precision...

  6. INFRASTRUCTURE

    CERN Multimedia

    P. Tropea and A. Gaddi

    2013-01-01

    One of the first activities of LS1 has been the refurbishment of the rack ventilation units in the USC55 counting rooms. These rack-mounted turbines have been in service since 2007 and they have largely passed the expected lifetime. Some 450 motor-fans units have been procured in Germany, via the CERN store, and shipped to CMS where a team of technicians has dismounted the old turbines, keeping only the bare chassis, and inserted the new fans. A metallic mesh has also been added to better protect personnel from possible injuries by spinning blades. A full test of several hours has validated the new units, prior to their installation inside the racks. The work, started soon after the beginning of LS1, has been successfully concluded last week. Figure 1: Drawing of the fan units recently refurbished in the USC55 counting room racks Image 1: New filter on the main rack water-cooling distribution line The cooling systems of CMS are gently coming out of their maintenance programme. All water circuits have...

  7. The infrastructure of psychological proximity

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian Mossfeldt

    ). The experience of psychological proximity between patient and nurse is provided through confidence, continuity and the practical set-up. This constitutes an important enactment of skillfulness, which may render telemedicine a convincing health service in the future. Methodology: The study draws on a pilot...... (Langstrup & Winthereik 2008). This study contributes by showing the infrastructure of psychological proximity, which is provided by way of device, confidence, continuity and accountability....

  8. TCIA Secure Cyber Critical Infrastructure Modernization.

    Energy Technology Data Exchange (ETDEWEB)

    Keliiaa, Curtis M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The Sandia National Laboratories (Sandia Labs) tribal cyber infrastructure assurance initiative was developed in response to growing national cybersecurity concerns in the the sixteen Department of Homeland Security (DHS) defined critical infrastructure sectors1. Technical assistance is provided for the secure modernization of critical infrastructure and key resources from a cyber-ecosystem perspective with an emphasis on enhanced security, resilience, and protection. Our purpose is to address national critical infrastructure challenges as a shared responsibility.

  9. Contextual-Analysis for Infrastructure Awareness Systems

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurelien; Alt, Florian

    Infrastructures are persistent socio-technical systems used to deliver different kinds of services. Researchers have looked into how awareness of infrastructures in the areas of sustainability [6, 10] and software appropriation [11] can be provided. However, designing infrastructure-aware systems...... has specific requirements, which are often ignored. In this paper we explore the challenges when developing infrastructure awareness systems based on contextual analysis, and propose guidelines for enhancing the design process....

  10. National Infrastructure Simulation and Analysis Center Overview

    Energy Technology Data Exchange (ETDEWEB)

    Berscheid, Alan P. [Los Alamos National Laboratory

    2012-07-30

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  11. Stacked spaces: Mapping digital infrastructures

    Directory of Open Access Journals (Sweden)

    Till Straube

    2016-09-01

    Full Text Available This article turns towards the spatial life of ‘digital infrastructures’, i.e. code, protocols, standards, and data formats that are hidden from view in everyday applications of computational technologies. It does so by drawing on the version control system Git as a case study, and telling the story of its initial development in order to reconstruct the circumstances and technical considerations surrounding its conception. This account engages with computational infrastructures on their own terms by adopting the figure of the ‘stack’ to frame a technically informed analysis, and exploring its implications for a different kind of geographic inquiry. Drawing on topology as employed by Law and Mol, attention is given to the multiplicity of spatialities and temporalities enrolled in digital infrastructures in general, and Git specifically. Along the lines of the case study and by reading it against other literatures, this notion of topology is expanded to include the material performation of fundamentally arbitrary, more-than-human topologies, as well as their nested articulation, translation and negotiation within digital infrastructures.

  12. Decontamination of Drinking Water Infrastructure ...

    Science.gov (United States)

    Technical Brief This study examines the effectiveness of decontaminating corroded iron and cement-mortar coupons that have been contaminated with spores of Bacillus atrophaeus subsp. globigii (B. globigii), which is often used as a surrogate for pathogenic B. anthracis (anthrax) in disinfection studies. Bacillus spores are persistent on common drinking water material surfaces like corroded iron, requiring physical or chemical methods to decontaminate the infrastructure. In the United States, free chlorine and monochloramine are the primary chemical disinfectants used by the drinking water industry to inactivate microorganisms. Flushing is also a common, easily implemented practice in drinking water distribution systems, although large volumes of contaminated water needing treatment could be generated. Identifying readily available alternative disinfectant formulations for infrastructure decontamination could give water utilities options for responding to specific types of contamination events. In addition to presenting data on flushing alone, which demonstrated the persistence of spores on water infrastructure in the absence of high levels of disinfectants, data on acidified nitrite, chlorine dioxide, free chlorine, monochloramine, ozone, peracetic acid, and followed by flushing are provided.

  13. Infrastructure of electronic information management

    Science.gov (United States)

    Twitchell, G.D.

    2004-01-01

    The information technology infrastructure of an organization, whether it is a private, non-profit, federal, or academic institution, is key to delivering timely and high-quality products and services to its customers and stakeholders. With the evolution of the Internet and the World Wide Web, resources that were once "centralized" in nature are now distributed across the organization in various locations and often remote regions of the country. This presents tremendous challenges to the information technology managers, users, and CEOs of large world-wide corporations who wish to exchange information or get access to resources in today's global marketplace. Several tools and technologies have been developed over recent years that play critical roles in ensuring that the proper information infrastructure exists within the organization to facilitate this global information marketplace Such tools and technologies as JAVA, Proxy Servers, Virtual Private Networks (VPN), multi-platform database management solutions, high-speed telecommunication technologies (ATM, ISDN, etc.), mass storage devices, and firewall technologies most often determine the organization's success through effective and efficient information infrastructure practices. This session will address several of these technologies and provide options related to those that may exist and can be readily applied within Eastern Europe. ?? 2004 - IOS Press and the authors. All rights reserved.

  14. TESLA Test Facility. Status

    Energy Technology Data Exchange (ETDEWEB)

    Aune, B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 {mu}s). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.). 19 refs.

  15. DASISH Reference Model for SSH Data Infrastructures

    NARCIS (Netherlands)

    Fihn, Johan; Gnadt, Timo; Hoogerwerf, M.L.; Jerlehag, Birger; Lenkiewicz, Przemek; Priddy, M.; Shepherdson, John

    2016-01-01

    The current ”rising tide of scientific data” accelerates the need for e-infrastructures to support the lifecycle of data in research, from creation to reuse [RTW]. Different types of e-infrastructures address this need. Consortia like GÉANT and EGI build technical infrastructures for networking and

  16. Book Review: Infrastructure for Asian Connectivity

    OpenAIRE

    Sandee, Henry

    2013-01-01

    This article reviews the book Infrastructure for Asian Connectivity edited by Bhattacharyay, Kawai and Nag (2012). This book is the second publication coordinated by the ADB and the ADB Institute focusing on infrastructure and connectivity in Asian countries. This book looks at regional (across border) infrastructure that is needed to facilitate growth and development through better connectivity and integration among countries.

  17. Infrastructure and Trade: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Guney Celbis

    2015-01-01

    Full Text Available Low levels of infrastructure quality and quantity can create trade impediments through increased transport costs. Since the late 1990s an increasing number of trade studies have taken infrastructure into account. The purpose of the present paper is to quantify the importance of infrastructure for trade by means of meta-analysis and meta-regression techniques that synthesize various studies. The type of infrastructure that we focus on is mainly public infrastructure in transportation and communication. We examine the impact of infrastructure on trade by means of estimates obtained from 36 primary studies that yielded 542 infrastructure elasticities of trade. We explicitly take into account that infrastructure can be measured in various ways and that its impact depends on the location of the infrastructure. We estimate several meta-regression models that control for observed heterogeneity in terms of variation across different methodologies, infrastructure types, geographical areas and their economic features, model specifications, and publication characteristics. Additionally, random effects account for between-study unspecified heterogeneity, while publication bias is explicitly addressed by means of the Hedges model.  After controlling for all these issues we find that a 1 percent increase in own infrastructure increases exports by about 0.6 percent and imports by about 0.3 percent. Such elasticities are generally larger for developing countries, land infrastructure, IV or panel data estimation, and macro-level analyses. They also depend on the inclusion or exclusion of various common covariates in trade regressions.

  18. Increasing Agricultural Productivity Through Rural Infrastructure ...

    African Journals Online (AJOL)

    SH

    The study examined access to infrastructure and its effects on agricultural productivity in Surulere and Ife East ... infrastructural elements, improvement in soil practices and extension visits had positive significant effects on ... Key words: Agricultural productivity, Rural infrastructure, Rural farmers .... R6 = Distance to Markets.

  19. Momentum in Transformation of Technical Infrastructure

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten

    1999-01-01

    Current infrastructure holds a considerable momentum and this momentum is a barrier of transformation towards more sustainable technologies and more sustainable styles of network management. Using the sewage sector in Denmark as an example of a technical infrastructure system this paper argues...... that there are technical, economical and social aspects of the current infrastructures momentum....

  20. Integration of XRootD into the cloud infrastructure for ALICE data analysis

    CERN Document Server

    Kompaniets, Mikhail; Svirin, Pavlo; Yurchenko, Volodymyr; Zarochentsev, Andrey

    2015-01-01

    Cloud technologies allow easy load balancing between different tasks and projects. From the viewpoint of the data analysis in the ALICE experiment, cloud allows to deploy software using Cern Virtual Machine (CernVM) and CernVM File System (CVMFS), to run different (including outdated) versions of software for long term data preservation and to dynamically allocate resources for different computing activities, e.g. grid site, ALICE Analysis Facility (AAF) and possible usage for local projects or other LHC experiments.We present a cloud solution for Tier-3 sites based on OpenStack and Ceph distributed storage with an integrated XRootD based storage element (SE). One of the key features of the solution is based on idea that Ceph has been used as a backend for Cinder Block Storage service for OpenStack, and in the same time as a storage backend for XRootD, with redundancy and availability of data preserved by Ceph settings. For faster and easier OpenStack deployment was applied the Packstack solution, which is ba...

  1. 77 FR 64818 - The Critical Infrastructure Partnership Advisory Council

    Science.gov (United States)

    2012-10-23

    ..., incident response, recovery, and infrastructure resilience; reconstituting critical infrastructure assets..., risk mitigation, and infrastructure continuity information. Organizational Structure: CIPAC members are...

  2. 77 FR 32656 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Science.gov (United States)

    2012-06-01

    ..., incident response, recovery, infrastructure resilience, reconstituting critical infrastructure assets and... mitigation, and infrastructure continuity information. Organizational Structure: CIPAC members are organized...

  3. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  4. Facility Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  5. Flowscapes: Infrastructure as landscape, landscape as infrastructure. Graduation Lab Landscape Architecture 2012/2013

    NARCIS (Netherlands)

    Nijhuis, S.; Jauslin, D.; De Vries, C.

    2012-01-01

    Flowscapes explores infrastructure as a type of landscape and landscape as a type of infrastructure, and is focused on landscape architectonic design of transportation-, green- and water infrastructures. These landscape infrastructures are considered armatures for urban and rural development. With m

  6. Facility Modernization Report

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  7. Copyright and personal use of CERN’s computing infrastructure

    CERN Multimedia

    IT Department

    2009-01-01

    (La version française sera en ligne prochainement)The rules covering the personal use of CERN’s computing infrastructure are defined in Operational Circular No. 5 and its Subsidiary Rules (see http://cern.ch/ComputingRules). All users of CERN’s computing infrastructure must comply with these rules, whether they access CERN’s computing facilities from within the Organization’s site or at another location. In particular, OC5 clause 17 requires that proprietary rights (the rights in software, music, video, etc.) must be respected. The user is liable for damages resulting from non-compliance. Recently, there have been several violations of OC5, where copyright material was discovered on public world-readable disk space. Please ensure that all material under your responsibility (in particular in files owned by your account) respects proprietary rights, including with respect to the restriction of access by third parties. CERN Security Team

  8. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    Energy Technology Data Exchange (ETDEWEB)

    National Research Council

    2011-04-22

    . Consequently, a coordinated national plan for making future strategic investments becomes an imperative to address societal needs. Such a plan should be based upon known priorities and should be reviewed every 5-10 years to optimize the federal investment. The committee examined the past 20 years of technological advances and ocean infrastructure investments (such as the rise in use of self-propelled, uncrewed, underwater autonomous vehicles), assessed infrastructure that would be required to address future ocean research questions, and characterized ocean infrastructure trends for 2030. One conclusion was that ships will continue to be essential, especially because they provide a platform for enabling other infrastructure autonomous and remotely operated vehicles; samplers and sensors; moorings and cabled systems; and perhaps most importantly, the human assets of scientists, technical staff, and students. A comprehensive, long-term research fleet plan should be implemented in order to retain access to the sea. The current report also calls for continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. The committee also provided a framework for prioritizing future investment in ocean infrastructure. They recommend that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit, with particular consideration given to usefulness for addressing important science questions; affordability, efficiency, and longevity; and ability to contribute to other missions or applications. These criteria are the foundation for prioritizing ocean research infrastructure investments by estimating the economic costs and benefits

  9. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    Science.gov (United States)

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  10. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    Science.gov (United States)

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  11. Virtualizing observation computing infrastructure at Subaru Telescope

    Science.gov (United States)

    Jeschke, Eric; Inagaki, Takeshi; Kackley, Russell; Schubert, Kiaina; Tait, Philip

    2016-08-01

    Subaru Telescope, an 8-meter class optical telescope located in Hawaii, has been using a high-availability commodity cluster as a platform for our Observation Control System (OCS). Until recently, we have followed a tried-and-tested practice of running the system under a native (Linux) OS installation with dedicated attached RAID systems and following a strict cluster deployment model to facilitate failover handling of hardware problems,1.2 Following the apparent benefits of virtualizing (i.e. running in Virtual Machines (VMs)) many of the non- observation critical systems at the base facility, we recently began to explore the idea of migrating other parts of the observatory's computing infrastructure to virtualized systems, including the summit OCS, data analysis systems and even the front ends of various Instrument Control Systems. In this paper we describe our experience with the initial migration of the Observation Control System to virtual machines running on the cluster and using a new generation tool - ansible - to automate installation and deployment. This change has significant impacts for ease of cluster maintenance, upgrades, snapshots/backups, risk-management, availability, performance, cost-savings and energy use. In this paper we discuss some of the trade-offs involved in this virtualization and some of the impacts for the above-mentioned areas, as well as the specific techniques we are using to accomplish the changeover, simplify installation and reduce management complexity.

  12. Critical infrastructure systems of systems assessment methodology.

    Energy Technology Data Exchange (ETDEWEB)

    Sholander, Peter E.; Darby, John L.; Phelan, James M.; Smith, Bryan; Wyss, Gregory Dane; Walter, Andrew; Varnado, G. Bruce; Depoy, Jennifer Mae

    2006-10-01

    Assessing the risk of malevolent attacks against large-scale critical infrastructures requires modifications to existing methodologies that separately consider physical security and cyber security. This research has developed a risk assessment methodology that explicitly accounts for both physical and cyber security, while preserving the traditional security paradigm of detect, delay, and respond. This methodology also accounts for the condition that a facility may be able to recover from or mitigate the impact of a successful attack before serious consequences occur. The methodology uses evidence-based techniques (which are a generalization of probability theory) to evaluate the security posture of the cyber protection systems. Cyber threats are compared against cyber security posture using a category-based approach nested within a path-based analysis to determine the most vulnerable cyber attack path. The methodology summarizes the impact of a blended cyber/physical adversary attack in a conditional risk estimate where the consequence term is scaled by a ''willingness to pay'' avoidance approach.

  13. STILTS -- Starlink Tables Infrastructure Library Tool Set

    Science.gov (United States)

    Taylor, Mark

    STILTS is a set of command-line tools for processing tabular data. It has been designed for, but is not restricted to, use on astronomical data such as source catalogues. It contains both generic (format-independent) table processing tools and tools for processing VOTable documents. Facilities offered include crossmatching, format conversion, format validation, column calculation and rearrangement, row selection, sorting, plotting, statistical calculations and metadata display. Calculations on cell data can be performed using a powerful and extensible expression language. The package is written in pure Java and based on STIL, the Starlink Tables Infrastructure Library. This gives it high portability, support for many data formats (including FITS, VOTable, text-based formats and SQL databases), extensibility and scalability. Where possible the tools are written to accept streamed data so the size of tables which can be processed is not limited by available memory. As well as the tutorial and reference information in this document, detailed on-line help is available from the tools themselves. STILTS is available under the GNU General Public Licence.

  14. A SECURITY FRAMEWORK IN CLOUD COMPUTING INFRASTRUCTURE

    Directory of Open Access Journals (Sweden)

    Arijit Ukil

    2013-09-01

    Full Text Available In a typical cloud computing diverse facilitating components like hardware, software, firmware,networking, and services integrate to offer different computational facilities, while Internet or a privatenetwork (or VPN provides the required backbone to deliver the services. The security risks to the cloud system delimit the benefits of cloud computing like “on-demand, customized resource availability and performance management”. It is understood that current IT and enterprise security solutions are not adequate to address the cloud security issues. This paper explores the challenges and issues of security concerns of cloud computing through different standard and novel solutions. We propose analysis and architecture for incorporating different security schemes, techniques and protocols for cloud computing,particularly in Infrastructure-as-a-Service (IaaS and Platform-as-a-Service (PaaS systems. The proposedarchitecture is generic in nature, not dependent on the type of cloud deployment, application agnostic and is not coupled with the underlying backbone. This would facilitate to manage the cloud system more effectively and provide the administrator to include the specific solution to counter the threat. We have also shown using experimental data how a cloud service provider can estimate the charging based on the security service it provides and security-related cost-benefit analysis can be estimated.

  15. Infrastructure for regional development in deep water

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P.W. [Univ. of Newcastle upon Tyne (United Kingdom)

    1995-12-31

    Exploration in deep water has revealed a number of finds in the 0.5--1.0 billion barrel range, plus more in the 100--500 million barrel range. Surprisingly few of the latter will be viable as stand-alone developments. Comparative economic feasibility studies will be described, seeking to quantify the benefits of providing infrastructure for coordinated regional of these significant resources, rather than stand-alone development on a field-by-field basis. Realistic generic examples will be presented, rather than announcement of actual development plans. The studies cover west of Shetlands, drawing on concepts developed for turbidite trend in deep water Gulf of Mexico. The approach could also be applicable to other deep-water areas, e.g. West Africa. Central platform water depths are 400--900 m, with satellite fields in much deeper water being within reach using current technology. Design requirements include heavy payloads (40,000 tons), long life (80 years), and large numbers of preferably hardpipe risers (up to 100, both wells and pipelines). Adaptability to unpredicted and changing operational requirements is featured. This work presents an alternative to the Deepstar approach, in that it covers sites beyond the reach of shallow-water facilities, and does not presume that ``gunky crude`` problems on the petroleum engineering side, which have been intractable for 100 years, will suddenly by solved. 11 refs., 5 figs., 14 tabs.

  16. Security Economics and Critical National Infrastructure

    Science.gov (United States)

    Anderson, Ross; Fuloria, Shailendra

    There has been considerable effort and expenditure since 9/11 on the protection of ‘Critical National Infrastructure' against online attack. This is commonly interpreted to mean preventing online sabotage against utilities such as electricity,oil and gas, water, and sewage - including pipelines, refineries, generators, storage depots and transport facilities such as tankers and terminals. A consensus is emerging that the protection of such assets is more a matter of business models and regulation - in short, of security economics - than of technology. We describe the problems, and the state of play, in this paper. Industrial control systems operate in a different world from systems previously studied by security economists; we find the same issues (lock-in, externalities, asymmetric information and so on) but in different forms. Lock-in is physical, rather than based on network effects, while the most serious externalities result from correlated failure, whether from cascade failures, common-mode failures or simultaneous attacks. There is also an interesting natural experiment happening, in that the USA is regulating cyber security in the electric power industry, but not in oil and gas, while the UK is not regulating at all but rather encouraging industry's own efforts. Some European governments are intervening, while others are leaving cybersecurity entirely to plant owners to worry about. We already note some perverse effects of the U.S. regulation regime as companies game the system, to the detriment of overall dependability.

  17. Medical device integration using mobile telecommunications infrastructure.

    Science.gov (United States)

    Moorman, Bridget A; Cockle, Richard A

    2013-01-01

    Financial pressures, an aging population, and a rising number of patients with chronic diseases, have encouraged the use of remote monitoring technologies. This usually entails at least one physiological parameter measurement for a clinician. Mobile telecommunication technologies lend themselves to this functionality, and in some cases, avoid some of the issues encountered with device integration. Moreover, the inherent characteristics of the mobile telecommunications infrastructure allow a coupling of business and clinical functions that were not possible before. Table I compares and contrasts some key aspect of device integration in and out of a healthcare facility. An HTM professional may be part of the team that acquires and/or manages a system using a mobile telecommunications technology. It is important for HTM professionals to ensure the data is in a standard format so that the interfaces across this system don't become brittle and break easily if one part changes. Moreover, the security and safety considerations of the system and the data should be a primary consideration in and y purchase, with attention given to the proper environmental and encryption mechanisms. Clinical engineers and other HTM professionals are unique in that they understand the patient/clinician/device interface and the need to ensure its safety and effectiveness regardless of geographical environment.

  18. PRACE - The European HPC Infrastructure

    Science.gov (United States)

    Stadelmeyer, Peter

    2014-05-01

    The mission of PRACE (Partnership for Advanced Computing in Europe) is to enable high impact scientific discovery and engineering research and development across all disciplines to enhance European competitiveness for the benefit of society. PRACE seeks to realize this mission by offering world class computing and data management resources and services through a peer review process. This talk gives a general overview about PRACE and the PRACE research infrastructure (RI). PRACE is established as an international not-for-profit association and the PRACE RI is a pan-European supercomputing infrastructure which offers access to computing and data management resources at partner sites distributed throughout Europe. Besides a short summary about the organization, history, and activities of PRACE, it is explained how scientists and researchers from academia and industry from around the world can access PRACE systems and which education and training activities are offered by PRACE. The overview also contains a selection of PRACE contributions to societal challenges and ongoing activities. Examples of the latter are beside others petascaling, application benchmark suite, best practice guides for efficient use of key architectures, application enabling / scaling, new programming models, and industrial applications. The Partnership for Advanced Computing in Europe (PRACE) is an international non-profit association with its seat in Brussels. The PRACE Research Infrastructure provides a persistent world-class high performance computing service for scientists and researchers from academia and industry in Europe. The computer systems and their operations accessible through PRACE are provided by 4 PRACE members (BSC representing Spain, CINECA representing Italy, GCS representing Germany and GENCI representing France). The Implementation Phase of PRACE receives funding from the EU's Seventh Framework Programme (FP7/2007-2013) under grant agreements RI-261557, RI-283493 and RI

  19. The Information Infrastructures Design Space

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Rapti, Charikleia; Jensen, Thomas Emil

    2017-01-01

    This paper develops a framework for characterising the design space of Information Infrastructures (IIs). Existing research has generally sought to unravel the convergent characteristics and mechanisms uniting IIs across a wide range of manifestations. In this research, we explore this divergence...... within the II design space. We do so by reviewing the II literature, focusing on the two domains of design situation and design resolution. Design situation refers to the relevant dimensions of the context in which an II is employed. Design resolution covers the dimensions along which the socio...

  20. Data Infrastructures for Asset Management Viewed as Complex Adaptive Systems

    NARCIS (Netherlands)

    Brous, P.A.; Overtoom, I.; Herder, P.M.; Versluis, A.; Janssen, M.F.W.H.A

    2014-01-01

    Data infrastructures represent information about physical reality. As reality changes, data infrastructures might also be subject to change. Researchers have increasingly approached physical infrastructures as being complex adaptive systems (CAS). Although physical infrastructures are often approach

  1. EFAB Report: Green Infrastructure Operations and Maintenance Finance

    Science.gov (United States)

    In this report, EFAB defines green infrastructure, outlines the benefits of green infrastructure, introduces green infrastructure operations and maintenance costs, and identifies and evaluates diverse ways to fund/finance green infrastructure O&M costs.

  2. 77 FR 32655 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Science.gov (United States)

    2012-06-01

    ... protection security measures, incident response, recovery, infrastructure resilience; reconstituting critical..., vulnerability, risk mitigation, and infrastructure continuity information. Organizational Structure: CIPAC...

  3. 75 FR 48983 - The Critical Infrastructure Partnership Advisory Council (CIPAC)

    Science.gov (United States)

    2010-08-12

    ... protection security measures, incident response, recovery, infrastructure resilience, reconstituting CIKR..., vulnerability, risk mitigation, and infrastructure continuity information. Organizational Structure: CIPAC...

  4. Network of Research Infrastructures for European Seismology (NERIES)

    Science.gov (United States)

    van Eck, T.; Giardini, D.; Bossu, R.; Wiemer, S.

    2008-12-01

    NERIES (Network of Research Infrastructures for European Seismology) is an Integrated Infrastructure Initiative (I3) project within the Sixth Framework Programme of the European Commission (EC). The project consortium consists of 25 participants from 13 different European countries. It is currently the largest earth science project ever funded by the EC. The goal of NERIES is to integrate European seismological observatories and research institutes into one integrated cyber-infrastructure for seismological data serving the research community, civil protection authorities and the general public. The EC provides funds for the networking and research. The participants provide the necessary hardware investments, mostly through national resources. NERIES consists of 13 subprojects (networking and research activities) and 5 facilities providing access through grants (Transnational Access). The project is coordinated by ORFEUS in close cooperation with the EMSC. The individual subprojects address different issues such as: extension of the Virtual European Broadband Seismic Network (VEBSN) from 140 to about 500 stations, implementing the core European Integrated Waveform Data Archive (EIDA) consisting of ODC-KNMI, GFZ, INGV and IPGP and a distributed archive of historical Data. Providing access to data gathered by acceleration networks within Europe and its surroundings and deploys Ocean Bottom Seismometers in coordination with relevant Ocean bottom projects like ESONET. Tot facilitate access to this diverse and distributed data NERIES invests a significant portion of its resources to implementing a portal for which a beta release is planned to be release in the autumn of 2008. The research project main goal is to produce products and tools facilitating data interpretation and analysis. These tools include a European reference (velocity) model, real-time hazard tools, shakemaps and lossmaps, site response determination software and tools, and automatic tools to manage and

  5. Cryogenic Infrastructure for Testing of LHC Series Superconducting Magnets

    CERN Document Server

    Axensalva, J; Herblin, L; Lamboy, J P; Tovar-Gonzalez, A; Vuillerme, B

    2005-01-01

    The ~1800 superconducting magnets for the LHC machine shall be entirely tested at reception before their installation in the tunnel. For this purpose and in order to reach the reliability and efficiency at the nominal load required for an industrial operation for several years, we have gradually upgraded and retrofitted the cryogenic facilities installed in the early nineties for the testing at CERN of prototypes and preseries magnets. The final infrastructure of the test station, dedicated to check industrially the quality of the series magnets, is now nearly complete. We present the general layout and describe the overall performance of the system.

  6. CEMS: A New Infrastructure For EO And Climate Science

    Science.gov (United States)

    Bennett, Victoria L.; Kershaw, Philip; Busswell, Geoff; Hilton, Richard; O'Neill, Alan

    2013-12-01

    CEMS, the facility for Climate and Environmental Monitoring from Space, has been created as a collaboration between UK academic and industrial partners at Harwell, Oxfordshire, UK, offering Climate and Earth Observation (EO) data and services. Since going operational in September 2012, CEMS has been supporting a range of research and commercial users. Applications include production of climate-quality long- term global datasets, processing satellite observations, and development of novel algorithms and products combining EO with other environmental datasets. This paper briefly describes the CEMS infrastructure, present some example uses with initial indications of benefits of the CEMS environment, and outline plans for future evolution.

  7. Government Services Information Infrastructure Management

    Energy Technology Data Exchange (ETDEWEB)

    Cavallini, J.S.; Aiken, R.J.

    1995-04-01

    The Government Services Information Infrastructure (GSII) is that portion of the NII used to link Government and its services, enables virtual agency concepts, protects privacy, and supports emergency preparedness needs. The GSII is comprised of the supporting telecommunications technologies, network and information services infrastructure and the applications that use these. The GSII is an enlightened attempt by the Clinton/Gore Administration to form a virtual government crossing agency boundaries to interoperate more closely with industry and with the public to greatly improve the delivery of government services. The GSII and other private sector efforts, will have a significant impact on the design, development, and deployment of the NII, even if only through the procurement of such services. The Federal Government must adopt new mechanisms and new paradigms for the management of the GSII, including improved acquisition and operation of GSII components in order to maximize benefits. Government requirements and applications will continue to evolv. The requirements from government services and users of form affinity groups that more accurately and effectively define these common requirements, that drive the adoption and use of industry standards, and that provide a significant technology marketplace.

  8. Arctic Infrastructures: Tele Field Notes

    Directory of Open Access Journals (Sweden)

    Rafico Ruiz

    2014-09-01

    Full Text Available This article contextualizes the conditions of rural “connectivity” in the Canadian Arctic. It examines the emergence of satellites, fibre optic cables, and intranets as modes of social infrastructure at the outset of the twenty-first century. At present, Nunavut, the Northwest Territories, and the Yukon are all at a complicated confluence in that their current and inadequate telecommunications infrastructures are in the process of being renegotiated, re-designed, and re-allotted across civic, governmental, and corporate interests. The article shows how it is at sites of friction that the overlapping if fading legacies of systems-based thinking are emerging: satellites orbiting over fibre optic cable lines; corporate actors competing rather than coordinating with government agencies; and neoliberal rationales of mapping, division, and speed creating disjointed local markets. More broadly, these sites also demonstrate how indigenous forms of “connection” across the globe are increasingly experiencing telecommunications’ lags and temporal disjunctures that are having very material effects on their supposedly post-colonial lives.

  9. The EGEE user support infrastructure

    CERN Document Server

    Antoni, T; Mills, A

    2007-01-01

    User support in a grid environment is a challenging task due to the distributed nature of the grid. The variety of users and VOs adds further to the challenge. One can find support requests by grid beginners, users with specific applications, site administrators, or grid monitoring operators. With the GGUS infrastructure, EGEE provides a portal where users can find support in their daily use of the grid. The current use of the system has shown that the goal has been achieved with success. The grid user support model in EGEE can be captioned ‘regional support with central coordination’. Users can submit a support request to the central GGUS service, or to their Regional Operations' Centre (ROC) or to their Virtual Organisation helpdesks. Within GGUS there are appropriate support groups for all support requests. The ROCs and VOs and the other project wide groups such as middleware groups (JRA), network groups (NA), service groups (SA) and other grid infrastructures (OSG, NorduGrid, etc.) are connected via a...

  10. Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting.

    Science.gov (United States)

    Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B

    2014-01-01

    Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is "biodiversity offsetting" (wherein biodiversity impacted is "replaced" through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of "linear" infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with "hub" infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km(2) across the Ustyurt (total ∼ 100,000 km(2)), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study

  11. Infrastructure Franchising and Government Guarantees Infrastructure Franchising and Government Guarantees

    Directory of Open Access Journals (Sweden)

    Alexander Galetovic

    1998-03-01

    Full Text Available Government guarantees for private infrastructure projects reduce the incentives of firms to perform efficiently, weaken the incentives to screen projects for white elephants, and shift government obligations to future periods. Thus the use of guarantees needs to be limited, and they need to be carefully designed. Franchising schemes should in principle assign risks to the parties best able to manage and control them. The mechanisms by which contracts are awarded should be simple, so that possibilities for evaluator subjectivity are reduced, the award process remains as transparent as possible, and the likelihood of having to renegotiate is minimized. Infrastructure franchises have usually been awarded on a fixed-term basis. Such contracts expose franchise holders to considerable demand risk, which investors are often unwilling to assume without government guarantees. These contracts are also inflexible, since it is difficult to determine a fair level of compensation to the franchise holder if the contract is terminated early or modified. Under an alternative mechanism, the franchise is awarded to the firm that asks for the least present value of user fee revenue for a given tariff structure, and the franchise ends when the present value of user fee revenues is equal to the franchise holder's bid. Such contracts reduce the demand risk borne by the franchise holder (and the concomitant demand for government guarantees. They also make fair compensation of franchise holders in the event of early termination straightforward, since the level of fair compensation is equal to the revenue remaining to be collected. Government guarantees for private infrastructure projects reduce the incentives of firms to perform efficiently, weaken the incentives to screen projects for white elephants, and shift government obligations to future periods. Thus the use of guarantees needs to be limited, and they need to be carefully designed. Franchising schemes should in

  12. Modeling s-t Path Availability to Support Disaster Vulnerability Assessment of Network Infrastructure

    CERN Document Server

    Matisziw, Timothy C

    2010-01-01

    The maintenance of system flow is critical for effective network operation. Any type of disruption to network facilities (arcs/nodes) potentially risks loss of service, leaving users without access to important resources. It is therefore an important goal of planners to assess infrastructures for vulnerabilities, identifying those vital nodes/arcs whose debilitation would compromise the most source-sink (s-t) interaction or system flow. Due to the budgetary limitations of disaster management agencies, protection/fortification and planning for the recovery of these vital infrastructure facilities is a logical and efficient proactive approach to reducing worst-case risk of service disruption. Given damage to a network, evaluating the potential for flow between s-t pairs requires assessing the availability of an operational s-t path. Recent models proposed for identifying infrastructure vital to system flow have relied on enumeration of all s-t paths to support this task. This paper proposes an alternative model...

  13. Uncertainty in Predicted Neighborhood-Scale Green Stormwater Infrastructure Performance Informed by field monitoring of Hydrologic Abstractions

    Science.gov (United States)

    Smalls-Mantey, L.; Jeffers, S.; Montalto, F. A.

    2013-12-01

    Human alterations to the environment provide infrastructure for housing and transportation but have drastically changed local hydrology. Excess stormwater runoff from impervious surfaces generates erosion, overburdens sewer infrastructure, and can pollute receiving bodies. Increased attention to green stormwater management controls is based on the premise that some of these issues can be mitigated by capturing or slowing the flow of stormwater. However, our ability to predict actual green infrastructure facility performance using physical or statistical methods needs additional validation, and efforts to incorporate green infrastructure controls into hydrologic models are still in their infancy stages. We use more than three years of field monitoring data to derive facility specific probability density functions characterizing the hydrologic abstractions provided by a stormwater treatment wetland, streetside bioretention facility, and a green roof. The monitoring results are normalized by impervious area treated, and incorporated into a neighborhood-scale agent model allowing probabilistic comparisons of the stormwater capture outcomes associated with alternative urban greening scenarios. Specifically, we compare the uncertainty introduced into the model by facility performance (as represented by the variability in the abstraction), to that introduced by both precipitation variability, and spatial patterns of emergence of different types of green infrastructure. The modeling results are used to update a discussion about the potential effectiveness of urban green infrastructure implementation plans.

  14. Collaborative Engagement Approaches For Delivering Sustainable Infrastructure Projects In The AEC Sector

    Directory of Open Access Journals (Sweden)

    Adetola, Alaba

    2011-12-01

    Full Text Available The public sector has traditionally financed and operated infrastructure projects using resources from taxes and various levies (e.g. fuel taxes, road user charges. However, the rapid increase in human population growth coupled with extended globalisation complexities and associated social/political/economic challenges have placed new demands on the purveyors and operators of infrastructure projects. The importance of delivering quality infrastructure has been underlined by the United Nations declaration of the Millennium Development Goals; as has the provision of ‘adequate’ basic structures and facilities necessary for the well-being of urban populations in developing countries. Thus, in an effort to finance developing countries’ infrastructure needs, most countries have adopted some form of public-private collaboration strategy. This paper critically reviews these collaborative engagement approaches, identifies and highlights 10 critical themes that need to be appropriately captured and aligned to existing business models in order to successfully deliver sustainable infrastructure projects. Research findings show that infrastructure services can be delivered in many ways, and through various routes. For example, a purely public approach can cause problems such as slow and ineffective decision-making, inefficient organisational and institutional augmentation, and lack of competition and inefficiency (collectively known as government failure. On the other hand, adopting a purely private approach can cause problems such as inequalities in the distribution of infrastructure services (known as market failure. Thus, to overcome both government and market failures, a collaborative approach is advocated which incorporates the strengths of both of these polarised positions.

  15. Evaluation of Critical Infrastructure in the Event of Earthquake: A Case Study of Delhi

    Science.gov (United States)

    prasad, Suraj

    2016-04-01

    With changing paradigms of disaster preparedness, the safety and security of critical infrastructure in the event of a geo-hazard has become increasingly important. In a developing and densely populated country like India, which is vulnerable to many different geo-hazards, a lack of clear policy directive regarding safety of such infrastructure could be especially damaging both in terms of life and property. The problem is most acute in India's mega cities, where inefficient infrastructure means that facilities like transportation, communication, and electricity generation are obsolete and vulnerable to sudden disruptions. The present study takes the case of the National Capital Territory of Delhi and attempts to examine the critical infrastructures of the city in the event of an earthquake. Delhi lies in a very active seismic zone with various faults in and around the city. The Government of India has classified Delhi in Zone 4 (High Risk Zone) based on past and expected seismic activities in the Indo-Gangetic Plains. With a population of over 20 Million in the Urban Agglomeration of Delhi, any major earthquake in an already overstretched infrastructure could have a devastating impact. This study will test the critical infrastructures of the city in terms of their disaster preparedness and suggest ways and measures to increase the same. Keywords: Geo-hazards, Critical Infrastructure, vulnerable, Earthquakes, Delhi

  16. Post Construction Green Infrastructure Performance Monitoring Parameters and Their Functional Components

    Directory of Open Access Journals (Sweden)

    Thewodros K. Geberemariam

    2016-12-01

    Full Text Available Drainage system infrastructures in most urbanized cities have reached or exceeded their design life cycle and are characterized by running with inadequate capacity. These highly degraded infrastructures are already overwhelmed and continued to impose a significant challenge to the quality of water and ecological systems. With predicted urban growth and climate change the situation is only going to get worse. As a result, municipalities are increasingly considering the concept of retrofitting existing stormwater drainage systems with green infrastructure practices as the first and an important step to reduce stormwater runoff volume and pollutant load inputs into combined sewer systems (CSO and wastewater facilities. Green infrastructure practices include an open green space that can absorb stormwater runoff, ranging from small-scale naturally existing pocket of lands, right-of-way bioswales, and trees planted along the sidewalk as well as large-scale public parks. Despite the growing municipalities’ interest to retrofit existing stormwater drainage systems with green infrastructure, few studies and relevant information are available on their performance and cost-effectiveness. Therefore, this paper aims to help professionals learn about and become familiar with green infrastructure, decrease implementation barriers, and provide guidance for monitoring green infrastructure using the combination of survey questionnaires, meta-narrative and systematic literature review techniques.

  17. Computational Infrastructure for Geodynamics (CIG)

    Science.gov (United States)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to

  18. Putting the Critical Back in Critical Infrastructure

    Science.gov (United States)

    2015-12-01

    CRITICAL BACK IN CRITICAL INFRASTRUCTURE by Bradford C. Mason December 2015 Thesis Advisor: Rudolph P. Darken Second Reader: Thomas Mackin...COVERED Master’s thesis 4. TITLE AND SUBTITLE PUTTING THE CRITICAL BACK IN CRITICAL INFRASTRUCTURE 5. FUNDING NUMBERS 6. AUTHOR(S) Bradford C. Mason...12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) In the context of national critical infrastructure security and resilience doctrine

  19. Critical infrastructure system security and resiliency

    CERN Document Server

    Biringer, Betty; Warren, Drake

    2013-01-01

    Security protections for critical infrastructure nodes are intended to minimize the risks resulting from an initiating event, whether it is an intentional malevolent act or a natural hazard. With an emphasis on protecting an infrastructure's ability to perform its mission or function, Critical Infrastructure System Security and Resiliency presents a practical methodology for developing an effective protection system that can either prevent undesired events or mitigate the consequences of such events.Developed at Sandia National Labs, the authors' analytical approach and

  20. The Moral Dimensions of Infrastructure.

    Science.gov (United States)

    Epting, Shane

    2016-04-01

    Moral issues in urban planning involving technology, residents, marginalized groups, ecosystems, and future generations are complex cases, requiring solutions that go beyond the limits of contemporary moral theory. Aside from typical planning problems, there is incongruence between moral theory and some of the subjects that require moral assessment, such as urban infrastructure. Despite this incongruence, there is not a need to develop another moral theory. Instead, a supplemental measure that is compatible with existing moral positions will suffice. My primary goal in this paper is to explain the need for this supplemental measure, describe what one looks like, and show how it works with existing moral systems. The secondary goal is to show that creating a supplemental measure that provides congruency between moral systems that are designed to assess human action and non-human subjects advances the study of moral theory.

  1. Emergent Risks In Critical Infrastructures

    Science.gov (United States)

    Dynes, Scott

    Firms cannot function successfully without managing a host of internal and external organizational and process interdependencies. Part of this involves business continuity planning, which directly aects how resilient arm and its business sector are in the face of disruptions. This paper presents the results of eld studies related to information risk management practices in the health care and retail sectors. The studies explore information risk management coordinating signals within and across rms in these sectors as well as the potential eects of cyber disruptions on the rms as stand-alone entities and as part of a critical infrastructure. The health care case study investigates the impact of the Zotob worm on the ability to deliver medical care and treatment. The retail study examines the resilience of certain elements of the food supply chain to cyber disruptions.

  2. INNOVATIVE INFRASTRUCTURE OF ENTREPRENEURSHIP DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    O. Mykytyuk

    2014-06-01

    Full Text Available Practical realization of sustainable development general conception is passing to the organic production, that allows to satisfy society problems, not putting health and future generations' existence under a threat. At this entrepreneurs, which work in the consumer products' field, must displace accents from economic oriented to social oriented entrepreneurship. The article is dedicated to research negative and positive factors that influence on social oriented Ukrainian enterprises in the sphere of organic goods production. The special attention is attended to the analysis of foodstuffs producers' activity, the results of which have considerable direct influence on consumers' health. The value of informative influences on consumers and producers is analyzed. State support directions of organic goods production, creation of internal market ecologically safe products infrastructure are defined. Recommendations are given according to research results in relation to stimulation social responsibility of businessmen and model forming, which combines interests of consumers and producers, environmental preservation, population health refinement and ecological situation improvement.

  3. IT Infrastructure Construction: Based on Competitive Advantage

    Institute of Scientific and Technical Information of China (English)

    J(U) Qing-jiang

    2006-01-01

    Information technology (IT) infrastructure is the foundation of information sharing, storage, and processing upon which the entire business depends and it changes not only inner organizational structures but also outer competitive conditions. An IT infrastructure that possesses elements unique to a particular organization and difficult to duplicate can produce competitive advantage. To achieve this advantage, not only the inner integration of technology,personnel and business process in a firm is needed, but also a platform for electronic commerce is required. The purpose of this study is to establish the whole concept framework for IT infrastructure, based on competitive advantage, and to propose ideas about the construction of IT infrastructure system.

  4. RESEARCH OF PROVIDING INFRASTRUCTURE OF MINERAL FERTILIZERS TO AGRICULTURAL CONSUMERS

    Directory of Open Access Journals (Sweden)

    Philatov S. K.

    2015-04-01

    Full Text Available Currently, for producers of mineral fertilizers one of the main tasks is the process of creating a supply chain of mineral fertilizers delivery to agricultural consumers, running on a «Just-in-time» way. The effective operation of such a supply chain has to be influenced by many factors, including: the technology of agricultural production, seasonality of agricultural work, the structure of the distribution channel of mineral fertilizers, the geographical features of consumers, the availability of appropriate infrastructure, etc. Critical elements of the infrastructure are warehouses and equipment for storage of mineral fertilizers, as well as the road network. For example, farms in the Rostov region were analyzed for the infrastructure necessary for the successful supply of mineral fertilizer agricultural consumers. It was found that the capacity of warehouses and facilities for the storage of mineral fertilizers and distribution of cultivated areas between agricultural enterprises of different size are diametrically opposed. The process of delivery of mineral fertilizers need to be developed taking into account the shortage or complete lack of storage capacity for their storage, especially for small enterprises. The existing road network, with paved allows us to deliver of mineral fertilizers virtually all consumers by road transport. This dictates the feasibility of delivery of mineral fertilizers to consumers by road transport in soft containers (Big Bags, allowing the storage in the open air

  5. Climate Science's Globally Distributed Infrastructure

    Science.gov (United States)

    Williams, D. N.

    2016-12-01

    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  6. Impacts of climate change on infrastructure in permafrost regions

    Science.gov (United States)

    Beloloutskaia, M.; Anisimov, O.

    2003-04-01

    There is a growing evidence of enhanced warming over the permafrost regions, and significant impacts on natural and human systems are expected. Changes in the temperature, distribution, and depth of seasonal thawing of permafrost will have direct and immediate implications for the infrastructure built upon it. The mechanical strength of permafrost decreases with warming, resulting in damage to and possible failure of buildings, pipelines, and transportation facilities. Extensive infrastructure was developed in the Arctic largely in association with the extraction and transportation industries. Several large cities in Russia with few hundred thousand population are of particular concern since many buildings there have already been affected by the changes in permafrost properties. Detrimental changes in permafrost conditions are often not abrupt. Instead, they evolve gradually and can be predicted and monitored, allowing avoidance of catastrophic events and mitigation of negative consequences. Climate-induced threats to infrastructure in permafrost regions may be evaluated using a numerical "settlement" index, Iset, which allows to classify modern permafrost with respect to its potential for thermokarst development: Iset = dZ * W, where dZ is the relative change in the depth of seasonal thawing predicted by permafrost model for the conditions of the future climate and W is the volumetric proportion of near surface soil occupied by ground ice. Permafrost model of intermediate complexity (Koudriavtcev's model) was used with selected GCM-based scenarios of climate change to construct predictive maps of "settlement" index for the mid-21st century. Circumpolar permafrost area was partitioned into zones of high, moderate, and low hazard potential. Despite discrepancies in details, all scenarios yield a zone in the high-risk category distributed discontinuously around the margins of the Arctic Ocean, indicating high potential for coastal erosion. Several population centers

  7. TRI mu P - A radioactive isotope trapping facility at KVI

    NARCIS (Netherlands)

    Berg, GPA; Dendooven, P; Dermois, O; Harakeh, MN; Jungmann, K; Kopecky, S; Kravchuk, [No Value; Morgenstern, R; Rogachevskiy, A; Willmann, L; Wilschut, HW; Hoekstra, Ronnie; Hoekstra, Steven

    2003-01-01

    TRImuP, a new research facility to produce and trap rare and short-lived isotopes for high precision physics experiments is under design and construction at KVI. This facility makes use of the existing super-conducting cyclotron and the infrastructure of the laboratory. To be able to study a large v

  8. Facilities and methods for radioactive ion beam production

    CERN Document Server

    Blumenfeld, Y; Van Duppen, P

    2013-01-01

    Radioactive ion beam facilities are transforming nuclear science by making beams of exotic nuclei with various properties available for experiments. New infrastructures and development of existing installations enlarges the scientific scope continuously. An overview of the main production, separation and beam handling methods with focus on recent developments is done, as well as a survey of existing and forthcoming facilities world-wide.

  9. EUDAT: A New Cross-Disciplinary Data Infrastructure For Science

    Science.gov (United States)

    Lecarpentier, Damien; Michelini, Alberto; Wittenburg, Peter

    2013-04-01

    In recent years significant investments have been made by the European Commission and European member states to create a pan-European e-Infrastructure supporting multiple research communities. As a result, a European e-Infrastructure ecosystem is currently taking shape, with communication networks, distributed grids and HPC facilities providing European researchers from all fields with state-of-the-art instruments and services that support the deployment of new research facilities on a pan-European level. However, the accelerated proliferation of data - newly available from powerful new scientific instruments, simulations and the digitization of existing resources - has created a new impetus for increasing efforts and investments in order to tackle the specific challenges of data management, and to ensure a coherent approach to research data access and preservation. EUDAT is a pan-European initiative that started in October 2011 and which aims to help overcome these challenges by laying out the foundations of a Collaborative Data Infrastructure (CDI) in which centres offering community-specific support services to their users could rely on a set of common data services shared between different research communities. Although research communities from different disciplines have different ambitions and approaches - particularly with respect to data organization and content - they also share many basic service requirements. This commonality makes it possible for EUDAT to establish common data services, designed to support multiple research communities, as part of this CDI. During the first year, EUDAT has been reviewing the approaches and requirements of a first subset of communities from linguistics (CLARIN), solid earth sciences (EPOS), climate sciences (ENES), environmental sciences (LIFEWATCH), and biological and medical sciences (VPH), and shortlisted four generic services to be deployed as shared services on the EUDAT infrastructure. These services are data

  10. National Ignition Facility site requirements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Site Requirements (SR) provide bases for identification of candidate host sites for the National Ignition Facility (NIF) and for the generation of data regarding potential actual locations for the facilities. The SR supplements the NIF Functional Requirements (FR) with information needed for preparation of responses to queries for input to HQ DOE site evaluation. The queries are to include both documents and explicit requirements for the potential host site responses. The Sr includes information extracted from the NIF FR (for convenience), data based on design approaches, and needs for physical and organization infrastructure for a fully operational NIF. The FR and SR describe requirements that may require new construction or may be met by use or modification of existing facilities. The SR do not establish requirements for NIF design or construction project planning. The SR document does not constitute an element of the NIF technical baseline.

  11. A Survey of Methane Emissions from California's Natural Gas Infrastructure

    Science.gov (United States)

    Fischer, M. L.; Cui, X.; Jeong, S.; Conley, S. A.; Mehrotra, S.; Faloona, I. C.; Chen, T.; Blake, D. R.; Clements, C. B.; Lareau, N.; Lloyd, M.; Fairley, D.

    2015-12-01

    Methane emissions from natural gas infrastructure are estimated to contribute small but uncertain fractions of total natural gas consumed in California and of California's total GHG budget. Because natural gas (NG) methane is an energy resource, an economic commodity, a potential health hazard, and a potent greenhouse gas, it is important to identify and quantify and control both intentional venting, and un-intentional leakages. Here, we report results of an observational survey, measuring NG methane emissions across examples from subsectors of California's natural gas infrastructure, ranging from production and processing, to transmission and distribution, and notably including examples from the consumption subsector. At regional scales, a combination of tower and aircraft measurements are used to estimate emissions of NG methane for the San Francisco Bay Area. At facility scales, aircraft mass balance measurements are applied to estimate NG methane emissions from associated with individual petroleum production fields, NG storage facilities, and petroleum refineries. At local scales, ground-based roadway surveys are applied to place lower limits on NG emissions from aggregate leakage sources in selected urban and suburban areas, a sample of NG fueling stations, and a small number of capped gas wells. For a subset of the consumption subsector, mass balance and CH4:CO2 emission ratio measurements are used to estimate leakage from a sample of quiescent residential buildings and example operating gas appliances. In general, CH4 emissions are found to grow with the NG throughput in a given area or facility, though the observed ratio of leakage to throughput varies by more than an order of magnitude for some cases (e.g., urban areas), presumably in response to varied infrastructure type, vintage, and maintenance. Taken in sum, preliminary results of this initial survey are consistent with the commonly held assumption that total NG methane emissions from California NG

  12. Assessment of municipal infrastructure development and its critical influencing factors in urban China: A FA and STIRPAT approach.

    Science.gov (United States)

    Li, Yu; Zheng, Ji; Li, Fei; Jin, Xueting; Xu, Chen

    2017-01-01

    Municipal infrastructure is a fundamental facility for the normal operation and development of an urban city and is of significance for the stable progress of sustainable urbanization around the world, especially in developing countries. Based on the municipal infrastructure data of the prefecture-level cities in China, municipal infrastructure development is assessed comprehensively using a FA (factor analysis) model, and then the stochastic model STIRPAT (stochastic impacts by regression on population, affluence and technology) is examined to investigate key factors that influence municipal infrastructure of cities in various stages of urbanization and economy. This study indicates that the municipal infrastructure development in urban China demonstrates typical characteristics of regional differentiation, in line with the economic development pattern. Municipal infrastructure development in cities is primarily influenced by income, industrialization and investment. For China and similar developing countries under transformation, national public investment remains the primary driving force of economy as well as the key influencing factor of municipal infrastructure. Contribution from urbanization and the relative consumption level, and the tertiary industry is still scanty, which is a crux issue for many developing countries under transformation. With economic growth and the transformation requirements, the influence of the conventional factors such as public investment and industrialization on municipal infrastructure development would be expected to decline, meanwhile, other factors like the consumption and tertiary industry driven model and the innovation society can become key contributors to municipal infrastructure sustainability.

  13. Traffic Infrastructure in the Development of the Croatian Traffic System

    Directory of Open Access Journals (Sweden)

    Damir Šimulčik

    2012-10-01

    Full Text Available The absence of a long-term traffic policy and of the policyof financing the constntction and maintenance of traffic infrastructurefacilities, represents a synthesis of numerous unresolvedrelations whose negative effects are felt in the overalleconomic and traffic development and consequently theevaluation of national potentials in the field. Adverse aspectcaused by the lack of a clear and feasible policy of financing thetraffic infrastructure facilities, is also a result of not having definedan adequate traffic policy, programme and strategiccourses of development, nor financing models that would be inaccordance with the market and economy system.This indicates that it is necessary to determine a policy forfinancing the constntction and maintenance of traffic infrastntcture,which has to be based on scientific development,team work, availability of plans and programmes to scientistsand experts, determined methodology based on marketing andeconomic logic in defining the programme and strategic tasksand assignments so as to make them feasible.In the near future, intensive preparations for investments inthe overall traffic sysiem are necessary, especially regarding thetraffic infrastntcture facilities - the pivotal points in the processof evaluating the traffic in our national tenitory. Croatia needsto define clearly its strategy in constructing and maintaining thegeneral traffic infrastructure, appointing at the same time thosewho will carry out the given tasks.

  14. Extreme light infrastructure: laser architecture and major challenges

    Science.gov (United States)

    Chambaret, J.-P.; Chekhlov, O.; Cheriaux, G.; Collier, J.; Dabu, R.; Dombi, P.; Dunne, A. M.; Ertel, K.; Georges, P.; Hebling, J.; Hein, J.; Hernandez-Gomez, C.; Hooker, C.; Karsch, S.; Korn, G.; Krausz, F.; Le Blanc, C.; Major, Zs.; Mathieu, F.; Metzger, T.; Mourou, G.; Nickles, P.; Osvay, K.; Rus, B.; Sandner, W.; Szabó, G.; Ursescu, D.; Varjú, K.

    2010-05-01

    Extreme Light Infrastructure (ELI), the first research facility hosting an exawatt class laser will be built with a joint international effort and form an integrated infrastructure comprised at last three branches: Attosecond Science (in Szeged, Hungary) designed to make temporal investigation at the attosecond scale of electron dynamics in atoms, molecules, plasmas and solids. High Field Science will be mainly focused on producing ultra intense and ultra short sources of electons, protons and ions, coherent and high energetic X rays (in Prague, Czech Republic) as well as laserbased nuclear physics (in Magurele, Romania). The location of the fourth pillar devoted to Extreme Field Science, which will explore laser-matter interaction up to the non linear QED limit including the investigation of vacuum structure and pair creation, will be decided after 2012. The research activities will be based on an incremental development of the light sources starting from the current high intensity lasers (APOLLON, GEMINI, Vulcan and PFS) as prototypes to achieve unprecedented peak power performance, from tens of petawatt up to a fraction of exawatt (1018 W). This last step will depend on the laser technology development in the above three sites as well as in current high intensity laser facilities.

  15. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    Science.gov (United States)

    Glickson, D.; Barron, E. J.; Fine, R. A.; Bellingham, J. G.; Boss, E.; Boyle, E. A.; Edwards, M.; Johnson, K. S.; Kelley, D. S.; Kite-Powell, H.; Ramberg, S. E.; Rudnick, D. L.; Schofield, O.; Tamburri, M.; Wiebe, P. H.; Wright, D. J.; Committee on an Ocean Infrastructure StrategyU. S. Ocean Research in 2030

    2011-12-01

    At the request of the Subcommittee on Ocean Science and Technology, an expert committee was convened by the National Research Council to identify major research questions anticipated to be at the forefront of ocean science in 2030, define categories of infrastructure that should be included in planning, provide advice on criteria and processes that could be used to set priorities, and recommend ways to maximize the value of investments in ocean infrastructure. The committee identified 32 future ocean research questions in four themes: enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions reflect challenging, multidisciplinary science questions that are clearly relevant now and are likely to take decades to solve. U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations and autonomous monitoring at a broad range of spatial and temporal scales. A coordinated national plan for making future strategic investments will be needed and should be based upon known priorities and reviewed every 5-10 years. After assessing trends in ocean infrastructure and technology development, the committee recommended implementing a comprehensive, long-term research fleet plan in order to retain access to the sea; continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. They also recommended that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit. Particular consideration should be given to

  16. Resilient Infrastructure and Building Security

    DEFF Research Database (Denmark)

    Ingwar, Mads Ingerslew

    to authentication that combines traditional access control systems with the sensing technologies and tracking capabilities offered by smart environments. Our approach is called Persistent Authentication for Location-based Services. Persistent authentication enables the secure provision of location-based services...... through non-intrusive authentication of mobile users in a smart environment. The objective is to shift the current authentication paradigm from a single discrete event to a continuous session. This is accomplished by utilising the contextual awareness provided by the smart environment to track principals...... inference. Persistent authentication offers an effective integrated protection measure that is distributed directly in the facility and is non-intrusive to the public and affordable to the facility owners. Persistent authentication is suitable for security sensitive applications and can help protect...

  17. Future Naval Use of COTS Networking Infrastructure

    Science.gov (United States)

    2009-07-01

    continuous process improvement in support of NGEN and CANES under the Information Technology Infrastructure Library ( ITIL ) model. In addition, the Navy...Shipboard Network System IT Information Technology IT-21 Information Technology for the 21st Century ITIL Information Technology Infrastructure

  18. Rolling vibes : continuous transport infrastructure monitoring

    NARCIS (Netherlands)

    Seraj, Fatjon

    2017-01-01

    Transport infrastructure is a people to people technology, in the sense that is build by people to serve people, by facilitating transportation, connection and communication. People improved infrastructure by applying simple methods derived from their sensing and thinking. Since the early ages,

  19. Issues in infrastructure and environmental planning

    NARCIS (Netherlands)

    Linden, Gerardus; Ike, Paul; Voogd, Henk; Linden, Gerard; Voogd, Henk

    2004-01-01

    This chapter focuses on issues of Environmental and Infrastructure planning (EIP). The object of EIP is illustrated with the help of the three layers of the Environmental Layer Concept (ELC) – the Ground Layer, the Infrastructure Layer and the Occupancy Layer. The Ground Layer represents the natural

  20. Composite indicator for railway infrastructure management

    Institute of Scientific and Technical Information of China (English)

    Stephen M. Famurewa; Christer Stenstro¨ m; Matthias Asplund; Diego Galar; Uday Kumar

    2014-01-01

    The assessment and analysis of railway infra-structure capacity is an essential task in railway infra-structure management carried out to meet the required quality and capacity demand of railway transport. For sustainable and dependable infrastructure management, it is important to assess railway capacity limitation from the point of view of infrastructure performance. However, the existence of numerous performance indicators often leads to diffused information that is not in a format suitable to support decision making. In this paper, we demonstrated the use of fuzzy inference system for aggregating selected railway infrastructure performance indicators to relate maintenance function to capacity situation. The selected indicators consider the safety, comfort, punctuality and reliability aspects of railway infrastructure performance. The resulting composite indicator gives a reliable quanti-fication of the health condition or integrity of railway lines. A case study of the assessment of overall infrastructure performance which is an indication of capacity limitation is presented using indicator data between 2010 and 2012 for five lines on the network of Trafikverket (Swedish Trans-port Administration). The results are presented using cus-tomised performance dashboard for enhanced visualisation, quick understanding and relevant comparison of infra-structure conditions for strategic management. This gives additional information on capacity status and limitation from maintenance management perspective.

  1. Institutional Support Infrastructure for Online Classes.

    Science.gov (United States)

    Schroeder, Ray

    2001-01-01

    Asserting that providing infrastructure to support online classes is analogous to building a new physical campus adjacent to the pre-existing one, describes the support requirements of online faculty, information technology networks, students, and administrators. Says that if these infrastructure considerations are not addressed near the beginning…

  2. Critical Infrastructure Protection: Maintenance is National Security

    Directory of Open Access Journals (Sweden)

    Kris Hemme

    2015-10-01

    Full Text Available U.S. critical infrastructure protection (CIP necessitates both the provision of security from internal and external threats and the repair of physically damaged critical infrastructure which may disrupt services. For years, the U.S. infrastructure has been deteriorating, triggering enough damage and loss of life to give cause for major concern. CIP is typically only addressed after a major disaster or catastrophe due to the extreme scrutiny that follows these events. In fact, CIP has been addressed repeatedly since Presidential Decision Directive Sixty-Three (PDD Sixty-Three signed by President Bill Clinton on May Twenty-Second, 1998.[1] This directive highlighted critical infrastructure as “a growing potential vulnerability” and recognized that the United States has to view the U.S. national infrastructure from a security perspective due to its importance to national and economic security. CIP must be addressed in a preventive, rather than reactive, manner.[2] As such, there are sixteen critical infrastructure sectors, each with its own protection plan and unique natural and man-made threats, deteriorations, and risks. A disaster or attack on any one of these critical infrastructures could cause serious damage to national security and possibly lead to the collapse of the entire infrastructure. [1] The White House, Presidential Decision Directive/NSC–63 (Washington D.C.: The White House, May 22, 1998: 1–18, available at: http://www.epa.gov/watersecurity/tools/trainingcd/Guidance/pdd-63.pdf. [2] Ibid, 1.

  3. 77 FR 19300 - National Infrastructure Advisory Council

    Science.gov (United States)

    2012-03-30

    ... SECURITY National Infrastructure Advisory Council AGENCY: National Protection and Programs Directorate, DHS... Infrastructure Advisory Council (NIAC) will meet on Tuesday, April 17, 2012, 1310 N. Courthouse Road, Suite 300, Virginia Room, Arlington, VA 22201. The meeting will be open to the public. DATES: The NIAC will...

  4. 77 FR 39247 - National Infrastructure Advisory Council

    Science.gov (United States)

    2012-07-02

    ... SECURITY National Infrastructure Advisory Council AGENCY: National Protection and Programs Directorate, DHS... Infrastructure Advisory Council (NIAC) will meet on Tuesday, July 17, 2012, at the Department of Transportation's... meeting will be open to the public. DATES: The NIAC will meet Tuesday, July 17, 2012, from 1:30 p.m. to...

  5. 78 FR 65675 - National Infrastructure Advisory Council

    Science.gov (United States)

    2013-11-01

    ... SECURITY National Infrastructure Advisory Council AGENCY: National Protection and Programs Directorate, DHS... Infrastructure Advisory Council (NIAC) will meet Thursday, November 21, 2013, at the United States Patent and... the public. DATES: The NIAC will meet Thursday, November 21, 2013, from 1:30 p.m. to 4:30 p.m....

  6. 78 FR 40487 - National Infrastructure Advisory Council

    Science.gov (United States)

    2013-07-05

    ... SECURITY National Infrastructure Advisory Council AGENCY: National Protection and Programs Directorate, DHS... Infrastructure Advisory Council (NIAC) will meet Monday, July 29, 2013, at the United States Access Board, 1331 F Street NW., Suite 800, Washington, DC 20004. The meeting will be open to the public. DATES: The NIAC...

  7. Infrastructure Management: dynamic control of assets

    NARCIS (Netherlands)

    Verlaan, J.G.; Schoenmaker, R.

    2013-01-01

    The infrastructure in the Netherlands is crucial for economic development on a national scale. Dramatic increases of transport and mobility accelerate ageing of infrastructure. The GNP of the Netherlands is strongly related to transport and to the two main ports (Port of Rotterdam and Amsterdam Airp

  8. 77 FR 62521 - National Infrastructure Advisory Council

    Science.gov (United States)

    2012-10-15

    ... SECURITY National Infrastructure Advisory Council AGENCY: National Protection and Programs Directorate, DHS... Infrastructure Advisory Council (NIAC) will meet Tuesday, October 16, 2012, at the United States Access Board, 1331 F Street NW., Suite 800, Washington, DC 20004. The meeting will be open to the public. DATES:...

  9. Smart Cyber Infrastructure for Big Data processing

    NARCIS (Netherlands)

    Makkes, M.X.; Cushing, R.; Oprescu, A.M.; Koning, R.; Grosso, P.; Meijer, R.J.; Laat, C. de

    2014-01-01

    The landscape of research cyber infrastructure is rapidly changing. There is a move towards virtualized and programmable infrastructure. The cloud paradigm enables the use of computing resources in different places and allows for optimizing workflows in either bringing computing to the data or the o

  10. South Africa's School Infrastructure Performance Indicator System

    Science.gov (United States)

    Gibberd, Jeremy

    2007-01-01

    While some South African schools have excellent infrastructure, others lack basic services such as water and sanitation. This article describes the school infrastructure performance indicator system (SIPIS) in South Africa. The project offers an approach that can address both the urgent provision of basic services as well as support the…

  11. FP 7 SPIRIT project concerning infrastructure protection

    NARCIS (Netherlands)

    Doormaal, J.C.A.M.; Weerheijm, J.; Veld, B.F.P. van het; Boonacker, B.

    2012-01-01

    SPIRIT is an acronym for Safety and Protection of built Infrastructure to Resist Integral Threats. Within the 7th framework of the EU, the SPIRIT consortium was formed to bring the required expertise regarding protection of infrastructure against terrorist threats together, to make these commonly

  12. Development of a Water Infrastructure Knowledge Database

    Science.gov (United States)

    This paper presents a methodology for developing a national database, as applied to water infrastructure systems, which includes both drinking water and wastewater. The database is branded as "WATERiD" and can be accessed at www.waterid.org. Water infrastructure in the U.S. is ag...

  13. EEW Implementation into Critical Infrastructures

    Science.gov (United States)

    Zulfikar, Can; Pinar, Ali

    2016-04-01

    In FP7 MARsite project WP9, the integration algorithm of existing strong motion networks with the critical infrastructures strong motion networks have been studied. In Istanbul, the existing Istanbul Earthquake Early Warning (IEEW) strong motion network consists of 15 stations including 10 on land and 5 ocean bottom stations. The system provides continuous online data and earthquake early warning alert depending on the exceedance of the threshold levels in ground motion acceleration in certain number of station within the certain time interval. The data transmission is provided through the fiber optic cable and satellite line alternatively. The early warning alert is transmitted to the critical infrastructures of Istanbul Natural Gas distribution line and Marmaray Tube Tunnel line in order to activate the local strong motion networks for the automatic shut-off mechanism. Istanbul Natural Gas distribution line has 1.800km steel and 15.200km polyethylene in total 18.000km gas pipeline in Istanbul. There are in total 750 district regulators in the city where the gas pressure is reduced from 20bar to 4bar and from there the gas is transmitted with polyethylene lines to service boxes. Currently, Istanbul Natural Gas Distribution Company (IGDAS) has its own strong motion network with 110 strong motion stations installed at the 110 of 750 district regulators. Once the IGDAS strong motion network is activated by the IEEW network, depending on the exceedance of the ground motion parameters threshold levels the gas flow is stopped at the district regulators. Other than the Earthquake Early Warning operation in IGDAS strong motion network, having the calculated ground motion parameters in the network provides damage maps for the buildings and natural gas pipeline network. The Marmaray Tube Tunnel connects the Europe and Asian sides of Istanbul City by a rail line. The tunnel is 1.4km length and consists of 13segments. There is strong motion monitoring network in the tunnel

  14. XML Based Scientific Data Management Facility

    Science.gov (United States)

    Mehrotra, P.; Zubair, M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The World Wide Web consortium has developed an Extensible Markup Language (XML) to support the building of better information management infrastructures. The scientific computing community realizing the benefits of XML has designed markup languages for scientific data. In this paper, we propose a XML based scientific data management ,facility, XDMF. The project is motivated by the fact that even though a lot of scientific data is being generated, it is not being shared because of lack of standards and infrastructure support for discovering and transforming the data. The proposed data management facility can be used to discover the scientific data itself, the transformation functions, and also for applying the required transformations. We have built a prototype system of the proposed data management facility that can work on different platforms. We have implemented the system using Java, and Apache XSLT engine Xalan. To support remote data and transformation functions, we had to extend the XSLT specification and the Xalan package.

  15. INFLUENCE OF QUALITY INFRASTRUCTURE ON REGIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Slavisa Moljevic

    2016-06-01

    Full Text Available Quality infrastructure is developed on state level and covers standardization, accreditation, metrology and certification. It is a "hard" part of quality infrastructure. On the regional level there are "soft" factors such as quality level in organizations, education and training level, state support and so on. The key role of quality infrastructure is to be a basis for all quality improvement actions on lower i.e. organizational levels. It is also a basis for regional development. The influence of quality infrastructure on regional development has not been investigated enough, especially in transition states. That serves as motivation to the authors trying to define an integrative model of quality infrastructure and regional development. This model is partially verified in Bosnia and Hercegovina, being an example of transition economy. A part of the research has been presented in the paper.

  16. Site Support Program Plan Infrastructure Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-26

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site`s infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford`s infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition.

  17. Site Support Program Plan Infrastructure Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-26

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site`s infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford`s infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition.

  18. Prisons and Correctional Facilities, The featured data collection is the USGS-LAGIC Coastal Parishes Structures Project. This ongoing project was started in 2009 with the intent to map critical infrastructure in the Coastal Zone. The initial four parishes included Lafourche, Plaquemine, St. , Published in 2011, 1:24000 (1in=2000ft) scale, Louisiana Geographic Information Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Prisons and Correctional Facilities dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of 2011. It...

  19. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  20. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  1. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  2. Scaling Agile Infrastructure to People

    CERN Document Server

    Jones, B; Traylen, S; Arias, N Barrientos

    2015-01-01

    When CERN migrated its infrastructure away from homegrown fabric management tools to emerging industry-standard open-source solutions, the immediate technical challenges and motivation were clear. The move to a multi-site Cloud Computing model meant that the tool chains that were growing around this ecosystem would be a good choice, the challenge was to leverage them. The use of open-source tools brings challenges other than merely how to deploy them. Homegrown software, for all the deficiencies identified at the outset of the project, has the benefit of growing with the organization. This paper will examine what challenges there were in adapting open-source tools to the needs of the organization, particularly in the areas of multi-group development and security. Additionally, the increase in scale of the plant required changes to how Change Management was organized and managed. Continuous Integration techniques are used in order to manage the rate of change across multiple groups, and the tools and workflow ...

  3. Scaling Agile Infrastructure to People

    Science.gov (United States)

    Jones, B.; McCance, G.; Traylen, S.; Barrientos Arias, N.

    2015-12-01

    When CERN migrated its infrastructure away from homegrown fabric management tools to emerging industry-standard open-source solutions, the immediate technical challenges and motivation were clear. The move to a multi-site Cloud Computing model meant that the tool chains that were growing around this ecosystem would be a good choice, the challenge was to leverage them. The use of open-source tools brings challenges other than merely how to deploy them. Homegrown software, for all the deficiencies identified at the outset of the project, has the benefit of growing with the organization. This paper will examine what challenges there were in adapting open-source tools to the needs of the organization, particularly in the areas of multi-group development and security. Additionally, the increase in scale of the plant required changes to how Change Management was organized and managed. Continuous Integration techniques are used in order to manage the rate of change across multiple groups, and the tools and workflow for this will be examined.

  4. Infrastructure for distributed enterprise simulation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.M.; Yoshimura, A.S.; Goldsby, M.E. [and others

    1998-01-01

    Traditional discrete-event simulations employ an inherently sequential algorithm and are run on a single computer. However, the demands of many real-world problems exceed the capabilities of sequential simulation systems. Often the capacity of a computer`s primary memory limits the size of the models that can be handled, and in some cases parallel execution on multiple processors could significantly reduce the simulation time. This paper describes the development of an Infrastructure for Distributed Enterprise Simulation (IDES) - a large-scale portable parallel simulation framework developed to support Sandia National Laboratories` mission in stockpile stewardship. IDES is based on the Breathing-Time-Buckets synchronization protocol, and maps a message-based model of distributed computing onto an object-oriented programming model. IDES is portable across heterogeneous computing architectures, including single-processor systems, networks of workstations and multi-processor computers with shared or distributed memory. The system provides a simple and sufficient application programming interface that can be used by scientists to quickly model large-scale, complex enterprise systems. In the background and without involving the user, IDES is capable of making dynamic use of idle processing power available throughout the enterprise network. 16 refs., 14 figs.

  5. The EGEE user support infrastructure

    CERN Document Server

    Antoni, Torsten

    2008-01-01

    Grid user support is a challenging task due to the distributed nature of the Grid. The variety of users and Virtual Organisations adds further to the challenge. Support requests come from Grid beginners, from users with specific applications, from site administrators, or from Grid monitoring operators. With the GGUS infrastructure, EGEE provides a portal where users can find support in their daily use of the Grid. The current use of the system shows that the goal has been achieved with success. The Grid user support model in EGEE can be captioned "regional support with central coordination". This model is realised through a support process which is clearly defined and involves all the parties that are needed to run a project-wide support service. This process is sustained by a help desk system which consists of a central platform integrated with several satellite systems belonging to the Regional Operations Centres (ROCs) and the Virtual Organisations (VOs). The central system (Global Grid User Support, GGUS)...

  6. Modernising ATLAS Software Build Infrastructure

    CERN Document Server

    Ritsch, Elmar; The ATLAS collaboration

    2017-01-01

    In the last year ATLAS has radically updated its software development infrastructure hugely reducing the complexity of building releases and greatly improving build speed, flexibility and code testing. The first step in this transition was the adoption of CMake as the software build system over the older CMT. This required the development of an automated translation from the old system to the new, followed by extensive testing and improvements. This resulted in a far more standard build process that was married to the method of building ATLAS software as a series of $12$ separate projects from Subversion. We then proceeded with a migration of the code base from Subversion to Git. As the Subversion repository had been structured to manage each package more or less independently there was no simple mapping that could be used to manage the migration into Git. Instead a specialist set of scripts that captured the software changes across official software releases was developed. With some clean up of the repositor...

  7. Modernising ATLAS Software Build Infrastructure

    CERN Document Server

    Gaycken, Goetz; The ATLAS collaboration

    2017-01-01

    In the last year ATLAS has radically updated its software development infrastructure hugely reducing the complexity of building releases and greatly improving build speed, flexibility and code testing. The first step in this transition was the adoption of CMake as the software build system over the older CMT. This required the development of an automated translation from the old system to the new, followed by extensive testing and improvements. This resulted in a far more standard build process that was married to the method of building ATLAS software as a series of 12 separate projects from SVN. We then proceeded with a migration of its code base from SVN to git. As the SVN repository had been structured to manage each package more or less independently there was no simple mapping that could be used to manage the migration into git. Instead a specialist set of scripts that captured the software changes across official software releases was developed. With some clean up of the repository and the policy of onl...

  8. Removing poverty and inequality in India: the role of infrastructure

    OpenAIRE

    Majumder, Rajarshi

    2012-01-01

    Developing countries attach enormous importance to physical infrastructure for poverty reduction. We contend that this association is different across types of infrastructure and regions. The present paper explores the multidimensional association between infrastructure and poverty in India in a regional framework. Infrastructural availability improves average living standards and lowers the incidence of poverty but the relation between infrastructural situation and inequality indicates highe...

  9. Integrating research infrastructures for solid Earth science in Europe: the European Plate Observing System

    Science.gov (United States)

    Cocco, M.; Giardini, D.; EPOS-PP Consortium

    2011-12-01

    The European Plate Observing System (EPOS) coordinates and integrates the research infrastructures in the European-Mediterranean region, to promote innovative approaches for a better understanding of the physical processes controlling earthquakes, volcanic eruptions, tsunamis as well as those driving tectonics and Earth surface dynamics. The EPOS 30-year plan aims at integrating the currently scattered, but highly advanced European facilities into one distributed, coherent multidisciplinary Research Infrastructure allowing sustainable long-term Earth science research strategies and an effective coordinated European-scale monitoring facility for solid Earth dynamics taking full advantage of new e-science opportunities. EPOS has been approved by ESFRI (the European Scientific Forum for Research Infrastructures) as one of the critical European Research Infrastructures, and the EPOS Preparatory Phase is supported by the European Commission FP7 program. The cooperation between EPOS and similar US infrastructures (i.e. Earthscope) will be ensured by dedicated NSF-EC funding. EPOS is integrating data from permanent national and regional geophysical monitoring networks (seismological, GPS), with the observations from "in-situ" observatories (volcano observatories, in-situ fault zone test sites) and temporary-monitoring and laboratory experiments through a cyber-infrastructure for data mining and processing, and facilities for data integration, archiving and exchange. The vision is to integrate these existing research infrastructures in order to increase the accessibility and usability of multidisciplinary data from monitoring networks, laboratory experiments and computational simulations enhancing worldwide interoperability in Earth Science by establishing a leading integrated European infrastructure and services. More recently the EPOS and the satellite Earth Observation communities are collaborating in order to promote the integration of data from in-situ monitoring

  10. Financail Disaster Risk Mangement Solutions for Life Systems Infrastructure in Low and Middle Income Countries

    Science.gov (United States)

    Skees, J. R.

    2016-12-01

    Growing populations and increased frequency of extreme climate events as a result of anthropogenic climate change will make poor populations more vulnerable in the future. Seismic events (earthquakes and tsunamis) also create extreme hazards for the poor and vulnerable living in cities in low and middle income countries. Vulnerability of life-systems infrastructure (e.g., water treatment facilities, hospitals, protective sea walls, etc.) to extreme climate and seismic events compound problems for the poor and vulnerable. By using risk hazard modelling with engineering design, it is possible to blend improved engineering in concert with financial disaster risk management (including insurance) solutions to improve the resiliency of life-systems infrastructure.

  11. A Sustainable approach to large ICT Science based infrastructures; the case for Radio Astronomy

    CERN Document Server

    Barbosa, Domingos; Boonstra, Albert-Jan; Aguiar, Rui; van Ardenne, Arnold; de Santander-Vela, Juande; Verdes-Montenegro, Lourdes

    2014-01-01

    Large sensor-based infrastructures for radio astronomy will be among the most intensive data-driven projects in the world, facing very high power demands. The geographically wide distribution of these infrastructures and their associated processing High Performance Computing (HPC) facilities require Green Information and Communications Technologies (ICT). A combination is needed of low power computing, efficient data storage, local data services, Smart Grid power management, and inclusion of Renewable Energies. Here we outline the major characteristics and innovation approaches to address power efficiency and long-term power sustainability for radio astronomy projects, focusing on Green ICT for science.

  12. Managing facilities in a Scandinavian manner:

    DEFF Research Database (Denmark)

    Elle, Morten; Engelmark, Jesper; Jørgensen, Bo

    2004-01-01

    Presents the aims and needs of research in facilities management (FM) at the section of Planning and Management of Building Processes at BYG*DTU. As the building stock in Denmark is rapidly increasing, socio-demographic developments implies profound changes in both the needs of inhabitants...... infrastructure within the mainstream FM field. There is an urgent need to address how society can best manage the growing (and decaying) building stock, to develop life-cycle rooted infrastructure and building design, and finally allow buildings to be appropriated by their current and future users....

  13. The problems of the providing the regions with health care infrastructure in conditions of increase of migratory mobility

    Directory of Open Access Journals (Sweden)

    Yelena Borisovna Bedrina

    2013-06-01

    Full Text Available Subject matter of the article is a question of the providing the newcomers to regions of the Russian Federation with healthcare infrastructure facilities. The purpose of the research is an assessment of level of this providing. On the basis of calculation of the integrated indicators of the development of health care infrastructure and the providing the population with healthcare infrastructure facilities the grouping of regions is carried out. By means of the two-dimensional analysis, we made a comparison of regions on indicators of arrival of the population and the above-named settlement indicators. The analysis of dynamics of the number change of healthcare infrastructure facilities during its reforming from 2005 to 2011 is performed. As a result of the research, the following conclusion is drawn: the level of investment into the regions as well as in its health care infrastructure do influence on the intensity of migratory flows, however, distribution of investments into health care facilities in regions does not take in to account the directions of migratory flows and poorly considers the population size of territories. This article may be interesting to the experts dealing with issues of development of regions.

  14. Model for Railway Infrastructure Management Organization

    Directory of Open Access Journals (Sweden)

    Gordan Stojić

    2012-03-01

    Full Text Available The provision of appropriate quality rail services has an important role in terms of railway infrastructure: quality of infrastructure maintenance, regulation of railway traffic, line capacity, speed, safety, train station organization, the allowable lines load and other infrastructure parameters.The analysis of experiences in transforming the railway systems points to the conclusion that there is no unique solution in terms of choice for institutional rail infrastructure management modes, although more than nineteen years have passed from the beginning of the implementation of the Directive 91/440/EEC. Depending on the approach to the process of restructuring the national railway company, adopted regulations and caution in its implementation, the existence or absence of a clearly defined transport strategy, the willingness to liberalize the transport market, there are several different ways for institutional management of railway infrastructure.A hybrid model for selection of modes of institutional rail infrastructure management was developed based on the theory of artificial intelligence, theory of fuzzy sets and theory of multicriteria optimization.KEY WORDSmanagement, railway infrastructure, organizational structure, hybrid model

  15. Underground Facilities, Technological Challenges

    CERN Document Server

    Spooner, N

    2010-01-01

    This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

  16. Emergency navigation without an infrastructure.

    Science.gov (United States)

    Gelenbe, Erol; Bi, Huibo

    2014-08-18

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.

  17. Emergency Navigation without an Infrastructure

    Directory of Open Access Journals (Sweden)

    Erol Gelenbe

    2014-08-01

    Full Text Available Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF and a cognitive packet network (CPN-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.

  18. EPM - The European Facility for human physiology research on ISS.

    Science.gov (United States)

    Rieschel, Mats; Nasca, Rosario; Junk, Peter; Gerhard, Ingo

    2002-07-01

    The European Physiology Modules (EPM) Facility is one of the four major Space Station facilities being developed within the framework of ESA's Microgravity Facilities for Columbus (MFC) programme. In order to allow a wide spectrum of physiological studies in weightlessness conditions, the facility provides the infrastructure to accommodate a variable set of scientific equipment. The initial EPM configuration supports experiments in the fields of neuroscience, bone & muscle research, cardiovascular research and metabolism. The International Space Life Science Working Group (ISLSWG) has recommended co-locating EPM with the 2 NASA Human Research Facility racks.

  19. Scientific computing infrastructure and services in Moldova

    Science.gov (United States)

    Bogatencov, P. P.; Secrieru, G. V.; Degteariov, N. V.; Iliuha, N. P.

    2016-09-01

    In recent years distributed information processing and high-performance computing technologies (HPC, distributed Cloud and Grid computing infrastructures) for solving complex tasks with high demands of computing resources are actively developing. In Moldova the works on creation of high-performance and distributed computing infrastructures were started relatively recently due to participation in implementation of a number of international projects. Research teams from Moldova participated in a series of regional and pan-European projects that allowed them to begin forming the national heterogeneous computing infrastructure, get access to regional and European computing resources, and expand the range and areas of solving tasks.

  20. UNIVERSITY ICT INFRASTRUCTURE CONSTRUCTION: PROBLEMS AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Oleksandr V. Spivakovskyi

    2014-02-01

    Full Text Available The paper analyzes the main problems and development of ICT infrastructure of a higher education establishment. The influence of the University’s IT development on its ratings is studied. There are four variants of ICT infrastructure development of the University according to the administrative division of its IT departments and the main structural elements of the system “University Governance -n governing and IT maintaining departments”, their activity direction and forms are determined. In addition, the main components of information and communication pedagogical environment of the University and ICT of administrative direction as the main components of ICT university infrastructure are described and determined.

  1. Smart and multifunctional concrete toward sustainable infrastructures

    CERN Document Server

    Han, Baoguo; Ou, Jinping

    2017-01-01

    This book presents the latest research advances and findings in the field of smart/multifunctional concretes, focusing on the principles, design and fabrication, test and characterization, performance and mechanism, and their applications in infrastructures. It also discusses future challenges in the development and application of smart/multifunctional concretes, providing useful theory, ideas and principles, as well as insights and practical guidance for developing sustainable infrastructures. It is a valuable resource for researchers, scientists and engineers in the field of civil-engineering materials and infrastructures.

  2. Bike Infrastructures and Design Qualities: Enhancing Cycling

    DEFF Research Database (Denmark)

    Silva, Victor; Jensen, Ole B.; Harder, Henrik

    2011-01-01

    characteristics related to the urban environment and the bike infrastructure. The part of the project described in this article concerns an in-depth case study of three bike infrastructures with distinct typologies – Vestergade Vest/Mageløs in Odense; Hans Broges Gade in Aarhus and Bryggebroen in Copenhagen...... of safety in shared-used spaces. These are findings that should be taken into consideration by architects, planners and engineers when designing bike infrastructures. Bridging research and policy, the findings of this research project can also support bike friendly design and planning, and cyclist advocacy....

  3. Transforming the U.S. Energy Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2010-07-01

    The U.S. energy infrastructure is among the most reliable, accessible and economic in the world. On the other hand, the U.S. energy infrastructure is excessively reliant on foreign sources of energy, experiences high volatility in energy prices, does not practice good stewardship of finite indigenous energy resources and emits significant quantities of greenhouse gases (GHG). This report presents a Technology Based Strategy to achieve a full transformation of the U.S. energy infrastructure that corrects these negative factors while retaining the positives.

  4. Thumbnail Images: Uncertainties, Infrastructures and Search Engines

    DEFF Research Database (Denmark)

    Thylstrup, Nanna; Teilmann, Stina

    2017-01-01

    and strategic terms; and a cultural question of how human-computer interaction design works with navigational uncertainty, both as an experience to be managed and a resource to be exploited. This paper considers two copyright infringement cases that involved search engines as defendants, Kelly v. Arriba Soft......This article argues that thumbnail images are infrastructural images that raise issues of uncertainty in two distinct, but interrelated, areas: a legal question of how to define, understand and govern visual information infrastructures, in particular image search systems in epistemological...... been negotiated in legal terms, its cultural infrastructures, and the information behaviours they are designed to produce....

  5. The MEUST deep sea infrastructure in the Toulon site

    Directory of Open Access Journals (Sweden)

    Lamare Patrick

    2016-01-01

    Full Text Available The MEUST infrastructure (Mediterranean Eurocentre for Underwater Sciences and Technologies is a permanent deep sea cabled infrastructure currently being deployed off shore of Toulon, France. The design and the status of the infrastructure are presented.

  6. A semantic-web approach for modeling computing infrastructures

    NARCIS (Netherlands)

    M. Ghijsen; J. van der Ham; P. Grosso; C. Dumitru; H. Zhu; Z. Zhao; C. de Laat

    2013-01-01

    This paper describes our approach to modeling computing infrastructures. Our main contribution is the Infrastructure and Network Description Language (INDL) ontology. The aim of INDL is to provide technology independent descriptions of computing infrastructures, including the physical resources as w

  7. 76 FR 17933 - Infrastructure Protection Data Call Survey

    Science.gov (United States)

    2011-03-31

    ... SECURITY Infrastructure Protection Data Call Survey AGENCY: National Protection and Programs Directorate... Directorate, Office of Infrastructure Protection. Title: Infrastructure Protection Data Call. OMB Number: 1670.... SUMMARY: The Department of Homeland Security (DHS), National Protection and Programs Directorate...

  8. 77 FR 44641 - Critical Infrastructure Private Sector Clearance Program Request

    Science.gov (United States)

    2012-07-30

    ...: Once. Affected Public: Designated private sector employees of critical infrastructure entities or... SECURITY Critical Infrastructure Private Sector Clearance Program Request AGENCY: National Protection and... Programs Directorate (NPPD), Office of Infrastructure Protection (IP) will submit the following...

  9. Regional security assessments : a strategic approach to securing federal facilities

    OpenAIRE

    Consolini, Todd

    2009-01-01

    CHDS State/Local The 18 critical infrastructure sectors identified by the U.S. Department of Homeland Security form a vast and complex network of interdependent assets that supports the functioning of nearly every aspect of business, government, and commerce. The disruption of even one critical infrastructure sector by a terrorist attack or natural or manmade disaster is likely to have cascading effects on other sectors. As the Sector-Specific Agency for the Government Facilities Sector, t...

  10. Cost-Benefit Analysis of Green Infrastructures on Community Stormwater Reduction and Utilization: A Case of Beijing, China

    Science.gov (United States)

    Liu, Wen; Chen, Weiping; Feng, Qi; Peng, Chi; Kang, Peng

    2016-12-01

    Cost-benefit analysis is demanded for guiding the plan, design and construction of green infrastructure practices in rapidly urbanized regions. We developed a framework to calculate the costs and benefits of different green infrastructures on stormwater reduction and utilization. A typical community of 54,783 m2 in Beijing was selected for case study. For the four designed green infrastructure scenarios (green space depression, porous brick pavement, storage pond, and their combination), the average annual costs of green infrastructure facilities are ranged from 40.54 to 110.31 thousand yuan, and the average of the cost per m3 stormwater reduction and utilization is 4.61 yuan. The total average annual benefits of stormwater reduction and utilization by green infrastructures of the community are ranged from 63.24 to 250.15 thousand yuan, and the benefit per m3 stormwater reduction and utilization is ranged from 5.78 to 11.14 yuan. The average ratio of average annual benefit to cost of four green infrastructure facilities is 1.91. The integrated facilities had the highest economic feasibility with a benefit to cost ratio of 2.27, and followed by the storage pond construction with a benefit to cost ratio of 2.14. The results suggested that while the stormwater reduction and utilization by green infrastructures had higher construction and maintenance costs, their comprehensive benefits including source water replacements benefits, environmental benefits and avoided cost benefits are potentially interesting. The green infrastructure practices should be promoted for sustainable management of urban stormwater.

  11. Critical Infrastructure References: Documented Literature Search

    Science.gov (United States)

    2012-10-01

    complex policy fabric that has developed over time. This paper summarises key parts of the federal critical infrastructure (CI) protection policy...vulnerability assessments. At each participating organization, interviewers talked with personnel from departments that had participated in the

  12. Pilot Implementations as an Approach to Infrastructure

    DEFF Research Database (Denmark)

    Manikas, Maria Ie; Torkilsheyggi, Arnvør Martinsdóttir á

    In this paper we introduce pilot implementation, a supplement to information systems development, as an approach to study and design work infrastructures. We report from two pilot implementations in the Danish healthcare, which showed signs of grappling with aligning the past, present...... and the future while using a pilot system in real use situations and with real users. Based on our initial findings we believe that pilot implementations can address some of the challenges of studying infrastructures, because they make the infrastructure visible and because they can integrate the long......-term with the short-term aspects. The paper is based on work-in-progress and the purpose is not as much to make conclusions as to spark discussion about whether pilot implementations could offer a way to study and design work infrastructures during information system development....

  13. Managing Transportation Infrastructure for Sustainable Development

    NARCIS (Netherlands)

    Akinyemi, Edward O.; Zuidgeest, M.H.P.

    Major requirements for operationalization of the concept of sustainable development in urban transportation infrastructure operations management are presented. In addition, it is shown that the current approach to management is incompatible with the requirements for sustainable urban development.

  14. Towards infrastructural architecture and urban planning

    Directory of Open Access Journals (Sweden)

    Irene Pérez López

    2016-01-01

    Full Text Available This article conceptually explores notions of architecture, urban planning and infrastructure in order to discover structures that are able to integrate these three dimensions. Within this framework, and based on Stan Allen ́s text Urbanismo Infraestructural (Infrastructural Urban Planning, three categories of study are established. First, Flow Systems, reviews concepts and case studies from the perspective of flow systems, movement networks and architectures that use them as project material. Field Conditions, studies two cases, Berlin Haupstadt and PotteriesThinkbelt, as settings for a new way to build the place itself, supported by infrastructural systems, to generate solutions that leave the system open to new developments and possibilities. Lastly, Infrastructural Architecture and Urban Planning takes as a case study Japanese stations and associated malls, as they are settings where certain conditions are concentrated and expand, thus creating new types and new spatial and programmatic possibilities.

  15. Integrated sustainable urban infrastructures in building projects

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Quitzau, Maj-Britt; Elle, Morten

    2007-01-01

    Current strategies in urban planning and development merely promote standardized building solutions, while failing to prioritize innovative approaches of integration between building projects and sustainable urban infrastructures. As a result of this, urban infrastructures – the urban veins...... – are outdated from a sustainability perspective. This paper looks into more holistic ways of approaching building projects and discuss whether this provide a basis for an increased integration of urban infrastructures within building projects. In our study, we especially emphasise how conventional ways...... of approaching building projects are influenced by lock-in of existing infrastructural systems and compare this with two examples of more holistic ways of approaching building projects, developed by two architecture firms. The paper points out that such holistic perspective in building projects provide...

  16. Green Infrastructure Siting and Cost Effectiveness Analysis

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Parcel scale green infrastructure siting and cost effectiveness analysis. You can find more details at the project's website.

  17. 76 FR 36137 - National Infrastructure Advisory Council

    Science.gov (United States)

    2011-06-21

    ... Infrastructure Advisory Council (NIAC) will meet on Tuesday, July 12, 2011, at the Washington Marriott at Metro... NIAC@dhs.gov . ADDRESSES: The meeting will be held at the Washington Marriott at Metro Center, Salon...

  18. 2011 Biomass Program Platform Peer Review. Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Lindauer, Alicia [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Infrastructure Platform Review meeting.

  19. Infrastructure monitoring with spaceborne SAR sensors

    CERN Document Server

    ANGHEL, ANDREI; CACOVEANU, REMUS

    2017-01-01

    This book presents a novel non-intrusive infrastructure monitoring technique based on the detection and tracking of scattering centers in spaceborne SAR images. The methodology essentially consists of refocusing each available SAR image on an imposed 3D point cloud associated to the envisaged infrastructure element and identifying the reliable scatterers to be monitored by means of four dimensional (4D) tomography. The methodology described in this book provides a new perspective on infrastructure monitoring with spaceborne SAR images, is based on a standalone processing chain, and brings innovative technical aspects relative to conventional approaches. The book is intended primarily for professionals and researchers working in the area of critical infrastructure monitoring by radar remote sensing.

  20. Green infrastructure monitoring in Camden, NJ

    Science.gov (United States)

    The Camden County Municipal Utilities Authority (CCMUA) installed green infrastructure Stormwater Control Measures (SCMs) at multiple locations around the city of Camden, NJ. The SCMs include raised downspout planter boxes, rain gardens, and cisterns. The cisterns capture water ...

  1. Water Infrastructure and Resiliency Finance Center

    Science.gov (United States)

    The Water Infrastructure and Resiliency Finance Center serves as a resource to communities to improve their wastewater, drinking water and stormwater systems, particularly through innovative financing and increased resiliency to climate change.

  2. National infrastructure maintenance strategy for South Africa

    CSIR Research Space (South Africa)

    Wall, K

    2009-05-01

    Full Text Available especially in respect of those at local government level. The National Infrastructure Maintenance Strategy sets overarching national policy for sector-based initiatives, and describes the framework for a coordinated programme of actions. Simultaneous...

  3. Fortran Testing and Refactoring Infrastructure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Tech-X proposes to develop a comprehensive Fortran testing and refactoring infrastructure that allows developers and scientists to leverage the benefits of a...

  4. National Infrastructure Maintenance Strategy and its implementation

    CSIR Research Space (South Africa)

    Wall, K

    2008-10-01

    Full Text Available The National Infrastructure Maintenance Strategy (NIMS) was approved by Cabinet in 2006. This Strategy sets overarching policy for sector-based initiatives and describes the framework for a coordinated programme of actions. It is an essential part...

  5. Progress with the national infrastructure maintenance strategy

    CSIR Research Space (South Africa)

    Wall, K

    2008-07-01

    Full Text Available The National Infrastructure Maintenance Strategy was approved by Cabinet in August 2006. This strategy sets overarching policy for sector-based initiatives, and describes the framework for a coordinated programme of actions. Simultaneous...

  6. Fortran Testing and Refactoring Infrastructure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Tech-X proposes to develop a comprehensive Fortran testing and refactoring infrastructure that allows developers and scientists to leverage the benefits of...

  7. The Europlanet Research Infrastructure and Technology Foresight

    Science.gov (United States)

    Grande, M.; Europlanet Community

    2016-10-01

    The Europlanet 2020 Research Infrastructure is a project to integrate and support planetary science activities across Europe. The project is funded under the European Commission's Horizon 2020 programme. Technology Foresight is a key activity.

  8. School infrastructure performance indicator system (SIPIS)

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2007-05-01

    Full Text Available and describes how these could be addressed. The paper describes how the project identified the critical aspects of school infrastructure required to support efficient, equitable and highly quality education and showed how findings informed the development...

  9. Building Infrastructure for Peace in Nigerian Schools

    African Journals Online (AJOL)

    structure for peace, infrastructure for peace has become more imperative in contemporary times to ... norms, and where possible, through laws (Rogers and Hall, 2003, p.1). .... resource person rather than a 'fount of all knowledge'. Obviously ...

  10. A technological infrastructure to sustain Internetworked Enterprises

    Science.gov (United States)

    La Mattina, Ernesto; Savarino, Vincenzo; Vicari, Claudia; Storelli, Davide; Bianchini, Devis

    In the Web 3.0 scenario, where information and services are connected by means of their semantics, organizations can improve their competitive advantage by publishing their business and service descriptions. In this scenario, Semantic Peer to Peer (P2P) can play a key role in defining dynamic and highly reconfigurable infrastructures. Organizations can share knowledge and services, using this infrastructure to move towards value networks, an emerging organizational model characterized by fluid boundaries and complex relationships. This chapter collects and defines the technological requirements and architecture of a modular and multi-Layer Peer to Peer infrastructure for SOA-based applications. This technological infrastructure, based on the combination of Semantic Web and P2P technologies, is intended to sustain Internetworked Enterprise configurations, defining a distributed registry and enabling more expressive queries and efficient routing mechanisms. The following sections focus on the overall architecture, while describing the layers that form it.

  11. Cloud Infrastructure Service Management - A Review

    Directory of Open Access Journals (Sweden)

    A. Anasuya Threse Innocent

    2012-03-01

    Full Text Available The new era of computing called Cloud Computing allows the user to access the cloud services dynamically over the Internet wherever and whenever needed. Cloud consists of data and resources; and the cloud services include the delivery of software, infrastructure, applications, and storage over the Internet based on user demand through Internet. In short, cloud computing is a business and economic model allowing the users to utilize high-end computing and storage virtually with minimal infrastructure on their end. Cloud has three service models namely, Cloud Software-as-a-Service (SaaS, Cloud Platform-as-a-Service (PaaS, and Cloud Infrastructure-as-a-Service (IaaS. This paper talks in depth of cloud infrastructure service management.

  12. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    Energy Technology Data Exchange (ETDEWEB)

    National Research Council

    2011-04-22

    . Consequently, a coordinated national plan for making future strategic investments becomes an imperative to address societal needs. Such a plan should be based upon known priorities and should be reviewed every 5-10 years to optimize the federal investment. The committee examined the past 20 years of technological advances and ocean infrastructure investments (such as the rise in use of self-propelled, uncrewed, underwater autonomous vehicles), assessed infrastructure that would be required to address future ocean research questions, and characterized ocean infrastructure trends for 2030. One conclusion was that ships will continue to be essential, especially because they provide a platform for enabling other infrastructure autonomous and remotely operated vehicles; samplers and sensors; moorings and cabled systems; and perhaps most importantly, the human assets of scientists, technical staff, and students. A comprehensive, long-term research fleet plan should be implemented in order to retain access to the sea. The current report also calls for continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. The committee also provided a framework for prioritizing future investment in ocean infrastructure. They recommend that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit, with particular consideration given to usefulness for addressing important science questions; affordability, efficiency, and longevity; and ability to contribute to other missions or applications. These criteria are the foundation for prioritizing ocean research infrastructure investments by estimating the economic costs and benefits

  13. 76 FR 70730 - The Critical Infrastructure Partnership Advisory Council (CIPAC)

    Science.gov (United States)

    2011-11-15

    ... resilience, reconstituting critical infrastructure assets and systems for both man-made as well as naturally... information. Organizational Structure: CIPAC members are organized into eighteen (18) critical infrastructure...

  14. 76 FR 29775 - The Critical Infrastructure Partnership Advisory Council (CIPAC)

    Science.gov (United States)

    2011-05-23

    ... resilience, reconstituting critical infrastructure assets and systems for both man-made as well as naturally... information. Organizational Structure: CIPAC members are organized into eighteen (18) critical infrastructure...

  15. 75 FR 21011 - Critical Infrastructure Partnership Advisory Council

    Science.gov (United States)

    2010-04-22

    ... protection security measures, incident response, recovery, and infrastructure resilience; reconstituting CIKR..., risk mitigation, and infrastructure continuity information. Organizational Structure: CIPAC members are...

  16. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs

  17. Informatics Infrastructure for the Materials Genome Initiative

    Science.gov (United States)

    Dima, Alden; Bhaskarla, Sunil; Becker, Chandler; Brady, Mary; Campbell, Carelyn; Dessauw, Philippe; Hanisch, Robert; Kattner, Ursula; Kroenlein, Kenneth; Newrock, Marcus; Peskin, Adele; Plante, Raymond; Li, Sheng-Yen; Rigodiat, Pierre-François; Amaral, Guillaume Sousa; Trautt, Zachary; Schmitt, Xavier; Warren, James; Youssef, Sharief

    2016-08-01

    A materials data infrastructure that enables the sharing and transformation of a wide range of materials data is an essential part of achieving the goals of the Materials Genome Initiative. We describe two high-level requirements of such an infrastructure as well as an emerging open-source implementation consisting of the Materials Data Curation System and the National Institute of Standards and Technology Materials Resource Registry.

  18. Science Data Infrastructure for Preservation - Earth Science

    OpenAIRE

    Albani, Mirko; Marelli, Fulvio; Giaretta, David; Shaon, Arif

    2012-01-01

    The proper preservation of both current and historical scientific data will underpin a multitude of ecological, economic and political decisions in the future of our society. The SCIDIP-ES project addresses the long-term persistent storage, access and management needs of scientific data by providing preservation infrastructure services. Taking exemplars from the Earth Science domain we highlight the key preservation challenges and barriers to be overcome by the SCIDIP-ES infrastructure. SCIDI...

  19. Medication as Infrastructure: Decentring Self-care

    Directory of Open Access Journals (Sweden)

    Peter Danholt

    2012-11-01

    Full Text Available Drawing on science and technology studies (STS, and specifically the concept of infrastructure as conceptualised by Bowker and Star (2000; Star 1999, this paper argues and empirically demonstrates that self-care may be considered a practice that is thoroughly sociotechnical, material, distributed and de-centred. Comparing the practices related to medication in the treatment of asthma, type 2 diabetes and haemophilia, we show that in practice there is no ‘self’ in self-care. More specifically, the ‘self’ in self-care is an actor who is highly dependent on, and intertwined with infrastructures of care, in order to be self-caring. Infrastructures of care are the more or less embedded ‘tracks’ along which care may ‘run’, shaping and being shaped by actors and settings along the way. Obtaining prescriptions, going to the pharmacy, bringing medication home and administering it as parts of daily life are commonplace activities embedded in the fabric of life, especially for those living with a chronic condition. However, this procurement and emplacement of medication involves the establishment and ongoing enactment of infrastructures of care, that is, the connections between various actors and locations that establish caring spaces and caring selves. Locations and actors are included as allies in treating chronic conditions outside the clinical setting, but these infrastructures may also be ambiguous, with respect to their effects; they may simultaneously contribute to the condition’s management and neglect. Particularly precarious is management at the fringes of healthcare infrastructure, where allies, routines and general predictability are scarce. We conclude by arguing that these insights may induce a greater sensitivity to existing infrastructures and practices, when seeking to introduce new infrastructures of care, such as those promoted under the headings of ‘telemedicine’ and ‘healthcare IT’.

  20. Critical Infrastructure Protection- Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bofman, Ryan K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-24

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  1. SMEs need formative infrastructure for business transformation

    OpenAIRE

    2011-01-01

    Purpose – The purpose is to study conditions for ICT-use in SMEs, actors and roles involved and concepts constituting a formative infrastructure. Method - The methodological point of departure and approach in this study is qualitative and more than 60 interviews are performed within a geographical region. Findings – Important findings from the present research is a formative ICT infrastructure can be viewed as constituted by identified needs among SMEs, in (1) sensemaking, (2) sensegiving, an...

  2. Risk Analysis of Accounting Information System Infrastructure

    OpenAIRE

    MIHALACHE, Arsenie-Samoil

    2011-01-01

    National economy and security are fully dependent on information technology and infrastructure. At the core of the information infrastructure society relies on, we have the Internet, a system designed initially as a scientists’ forum for unclassified research. The use of communication networks and systems may lead to hazardous situations that generate undesirable effects such as communication systems breakdown, loss of data or taking the wrong decisions. The paper studies the risk analysis of...

  3. Infrastructural urbanism that learns from place

    DEFF Research Database (Denmark)

    Carruth, Susan

    2015-01-01

    dimensions, pointing towards not only the cultural impact of infrastructure, but also the influence of culture on infrastructure. With some notable exceptions these two bodies of research have, however, remained largely disconnected: architecture pushing towards the ‘systemic’, and anthropology pulling...... anthropological and cultural geographical findings to evolve architectural theories and practices. Triangulating hermeneutical analysis, fieldwork, and research-through-design workshops, the mutual prioritisation of practices in progressive understandings of place; cross-disciplinary comprehensions...

  4. Intelligent infrastructures systems for sustainable urban environment

    Directory of Open Access Journals (Sweden)

    Daniel Amariei

    2008-10-01

    Full Text Available Extensive research is now under way around the world to develop advanced technologies to enhance the performances of infrastructure systems. While these technological advances are incremental in nature, they will eventually lead to structures which are distinctly different from the actual infrastructure systems. These new structures will be therefore capable of Structural Health Monitoring (SHM, involving applications of electronics and smart materials, aiming to assist engineers in realizing the full benefits of structural health monitoring.

  5. Creating sustainable fiscal space for infrastructure

    OpenAIRE

    Ter-Minassian, Teresa; Hughes, Richard; Hajdenberg, Alejandro

    2015-01-01

    A common dilemma facing governments around the world is how to meet the sizeable fiscal costs of providing and maintaining infrastructure networks. Over the past decade, developed and developing countries have looked to fiscal rules, budgetary reforms, tax policy and administration measures, public-private partnerships and other innovative financial instruments to raise additional finance for infrastructure investment. This paper looks at the range of options for raising the financing to meet...

  6. New Financing Schemes of Public Infrastructure

    OpenAIRE

    Ignacio de la Riva

    2017-01-01

    Public works procurements and concessions are traditional legal techniques used to shape the financing of public infrastructure. Fiscal constraints faced by public administrations at the end of the 20th century, and the subsequent increase of private participation in the provision of public goods and services, encouraged the development of new legal schemes allowing a higher degree of private investment in public infrastructure; such as Public Private Partnerships, project finance, securitiza...

  7. Public-Private Partnerships for Transport Infrastructure

    DEFF Research Database (Denmark)

    Figueroa, Maria Josefina; Greve, Carsten

    The provision of transport infrastructure and services creates fundamental value to society. With traditional sources of transport public funding running short, governments around the world are increasingly turning to public-private finance (PPPs) as a promising tool of public infrastructure...... of the public but of the private actor as well, to act perhaps motivated by corporate social responsibility, committing to bringing innovation and transparency in their efforts for advancing sustainability....

  8. International Civil and Infrastructure Engineering Conference 2014

    CERN Document Server

    Yusoff, Marina; Alisibramulisi, Anizahyati; Amin, Norliyati; Ismail, Zulhabri

    2015-01-01

    The special focus of this proceedings is to cover the areas of infrastructure engineering and sustainability management. The state-of-the art information in infrastructure and sustainable issues in engineering covers earthquake, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems. It provides precise information with regards to innovative research development in construction materials and structures in addition to a compilation of interdisciplinary finding combining nano-materials and engineering.

  9. International Civil and Infrastructure Engineering Conference 2013

    CERN Document Server

    Yusoff, Marina; Ismail, Zulhabri; Amin, Norliyati; Fadzil, Mohd

    2014-01-01

    The special focus of this proceedings is to cover the areas of infrastructure engineering and sustainability management. The state-of-the art information in infrastructure and sustainable issues in engineering covers earthquake, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems. It provides precise information with regards to innovative research development in construction materials and structures in addition to a compilation of interdisciplinary finding combining nano-materials and engineering.

  10. International Conference on Durability of Critical Infrastructure

    CERN Document Server

    Cherepetskaya, Elena; Pospichal, Vaclav

    2017-01-01

    This book presents the proceedings of the International Conference on Durability of Critical Infrastructure. Monitoring and Testing held in Satov, Czech Republic from 6 to 9 December 2016. It discusses the developments in the theoretical and practical aspects in the fields of Safety, Sustainability and Durability of the Critical Infrastructure. The contributions are dealing with monitoring and testing of structural and composite materials with a new methods for their using for protection and prevention of the selected objects.

  11. Benchmarking infrastructure for mutation text mining

    Science.gov (United States)

    2014-01-01

    Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600

  12. Toolkit of Available EPA Green Infrastructure Modeling ...

    Science.gov (United States)

    This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC). This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC).

  13. Asian Facilities

    Science.gov (United States)

    Nakahata, M.

    2011-04-01

    Asian underground facilities are reviewed. The YangYang underground Laboratory in Korea and the Kamioka observatory in Japan are operational and several astrophysical experiments are running. Indian Neutrino Observatory(INO) and China JinPing Underground Laboratory (CJPL) are under construction and underground experiments are being prepared. Current activities and future prospects at those underground sites are described.

  14. Assessing Socioeconomic Impacts of Cascading Infrastructure Disruptions in a Dynamic Human-Infrastructure Network

    Science.gov (United States)

    2016-07-01

    directional impacts from system failure to population response, the impacts of human activities on physical system performances should also be considered...ER D C TR -1 6- 11 Human Infrastructure System Assessment for Military Operations Assessing Socioeconomic Impacts of Cascading...Infrastructure Disruptions in a Dynamic Human -Infrastructure Network Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry Liqun Lu, Xin

  15. USAF engineering and service roles in space operations - Building the foundation for our future space infrastructure

    Science.gov (United States)

    Martin, Robert J.

    The USAF Engineering and Services (E&S) is described in terms of its activities that support ground stations, launch bases, and space-based facilities. E&S is structured according to a master plan for space support and exploitation which includes infrastructure operations and management, infrastructure acquisition, environmental protection, and technology transfer. Also included in the E&S masterplan are personnel education and development, human services, and readiness objectives for the support of space operations and general USAF operations. The USAF E&S operations are expected to support the modernization of space-launch and -range infrastructure, develop training methods and personnel for space support, and improve traditional E&S support technologies and techniques.

  16. Environmental Monitoring using Measurements from Cellular Network Infrastructure

    Science.gov (United States)

    David, N.; Gao, O. H.

    2015-12-01

    Accurate measurements of atmospheric parameters at ground level are fundamentally essential for hazard warning, meteorological forecasting and for various applications in agriculture, hydrology, transportation and more. The accuracy of existing instruments, however, is often limited as a result of technical and practical constraints. Existing technologies such as satellite systems cover large areas but may experience lack of precision at near surface level. On the other hand, ground based in-situ sensors often suffer from low spatial representativity. In addition, these conventional monitoring instruments are costly to implement and maintain. At frequencies of tens of GHz, various atmospheric hydrometeors affect microwave beams, causing perturbations to radio signals. Consequently, commercial wireless links that constitute the infrastructure for data transport between cellular base stations can be considered as a built in environmental monitoring facility (Messer et al., Science, 2006). These microwave links are widely deployed worldwide at surface level altitudes and can provide measurements of various atmospheric phenomena. The implementation costs are minimal since the infrastructure is already situated in the field. This technique has been shown to be applicable for 2D rainfall monitoring (e.g. Overeem et al., PNAS, 2013; Liberman et al., AMT, 2014) and potentially for water vapor observations (David et al., ACP, 2009; Chwala et al., Atmos. Res., 2013). Moreover, it has been recently shown that the technology has strong potential for detection of fog and estimation of its intensity (David et al., JGR-Atmos., 2013; David et al., BAMS, 2014). The research conducted to this point forms the basis for the initiation of a research project in this newly emerging field at the School of Civil and Environmental Engineering of Cornell University. The presentation will provide insights into key capabilities of the novel approach. The potential to monitor various

  17. Military Infrastructure: Is It as Bad as the Nation’s Infrastructure

    Science.gov (United States)

    1990-06-01

    clipboard" and in use (using optical bar coding) Why hasn’t this technology been used to gather the necessary data to allow managers to make good ...0TU FILE COPY MILITARY INFRASTRUCTURE: IS IT AS BAD AS THE NATION’S INFRASTRUCTURE? 00 N A thesis presented to the Faculty of the U. S. Army ICommand...NUMBERS Military Infrastructure: Is it as Bad as the Nation’s Infrastructure? 6. AUTHOR(S) Major Robert R. Derrick 7. PERFORMING ORGANIZATION NAME(S) AND

  18. Clean Energy Infrastructure Educational Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master's program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master's Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master's Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify

  19. Hydrogen and Storage Initiatives at the NASA JSC White Sands Test Facility

    Science.gov (United States)

    Maes, Miguel; Woods, Stephen S.

    2006-01-01

    NASA WSTF Hydrogen Activities: a) Aerospace Test; b) System Certification & Verification; c) Component, System, & Facility Hazard Assessment; d) Safety Training Technical Transfer: a) Development of Voluntary Consensus Standards and Practices; b) Support of National Hydrogen Infrastructure Development.

  20. Healthcare Accessibility Shortfalls and Hospital Infrastructures in Chile

    Directory of Open Access Journals (Sweden)

    Stefano Mainardi

    2009-03-01

    Full Text Available To measure healthcare accessibility, a previous study formulated a stochastic cost frontier model, and applied it to distances of communal centres from nearest emergency hospitals in Chile. Based on a larger set of variables, this study re-estimates the distance threshold, and tests alternative specifications and distribution assumptions over the period 2000-05. Complementing the analysis, ordered probit regressions help examine the cross-commune allocation of hospitals with varying complexity of medical services. Thirdly, excess distance estimates are used with other covariates in tobit models of health sector infrastructure investments. Socio-economic, demographic and geophysical conditions, along with non-hospital healthcare facilities, explain spatial inequality of hospitals. Excess distances are robust to different model specifications and distribution assumptions, and do not appear to be compensated by standards of services of the nearest hospitals or new healthcare infrastructure and upgrading investments in support to the communes concerned. Communes with perceived inadequacy in timing of medical attention turn out to often register large location inefficiency too. For the most critical communal cases, the excess distance burden amounts.

  1. TWRS phase 1 infrastructure project (W-519) characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, C.J.

    1998-09-24

    In order to treat the mixed radioactive and hazardous waste stored in 177 underground tanks, the Tank Waste Remediation System (TWRS) program is developing a `demonstration` site for treatment and immobilization of these wastes by a private contractor. Project W-519 is providing the infrastructure support to this site by developing the designs and emplacing required pipelines, roads, electrical, etc. In support of the TWRS Phase 1 Infrastructure Project (W-519) Characterization, Numatec Hanford Corporation (NHC) contracted with Waste Management Federal Services, Inc., Northwest Operations (WMNW) to investigate a number of locations in and just outside the 200 East Area eastern fenceline boundary. These areas consisted of known or suspected waste lines or waste sites that could potentially impact the construction and emplacement of the proposed facility improvements, including waterlines and roads. These sites were all located subsurface and sugaring would be required to obtain sample material from the desired depth. The soils would then be sampled and submitted to the laboratory for analysis of radioactivity.

  2. The challenge of developing ethical guidelines for a research infrastructure

    Science.gov (United States)

    Kutsch, Werner Leo

    2016-04-01

    The mission of the Integrated Carbon Observation System (ICOS RI) is to enable research to understand the greenhouse gas (GHG) budgets and perturbations. The ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and GHG emissions. Technological developments and implementations, related to GHGs, will be promoted by the linking of research, education and innovation. In order to provide this data ICOS RI is a distributed research infrastructure. The backbones of ICOS RI are the national measurement stations such as ICOS atmosphere, ecosystem and ocean stations. ICOS Central Facilities are the European level ICOS RI Centres, which have the specific tasks in collecting and processing the data and samples received from the national measurement networks. During the establishment of ICOS RI ethical guidelines were developed. These guidelines describe principles of ethics in the research activities that should be applied within ICOS RI. They should be acknowledged and followed by all researchers affiliated to ICOS RI and should be supported by all participating institutions. The presentation describes (1) the general challenge to develop ethical guidelines in a complex international infrastructure and (2) gives an overview about the content that includes different kinds of conflicts of interests, data ethics and social responsibility.

  3. LEMON - LHC Era Monitoring for Large-Scale Infrastructures

    Science.gov (United States)

    Marian, Babik; Ivan, Fedorko; Nicholas, Hook; Hector, Lansdale Thomas; Daniel, Lenkes; Miroslav, Siket; Denis, Waldron

    2011-12-01

    At the present time computer centres are facing a massive rise in virtualization and cloud computing as these solutions bring advantages to service providers and consolidate the computer centre resources. However, as a result the monitoring complexity is increasing. Computer centre management requires not only to monitor servers, network equipment and associated software but also to collect additional environment and facilities data (e.g. temperature, power consumption, cooling efficiency, etc.) to have also a good overview of the infrastructure performance. The LHC Era Monitoring (Lemon) system is addressing these requirements for a very large scale infrastructure. The Lemon agent that collects data on every client and forwards the samples to the central measurement repository provides a flexible interface that allows rapid development of new sensors. The system allows also to report on behalf of remote devices such as switches and power supplies. Online and historical data can be visualized via a web-based interface or retrieved via command-line tools. The Lemon Alarm System component can be used for notifying the operator about error situations. In this article, an overview of the Lemon monitoring is provided together with a description of the CERN LEMON production instance. No direct comparison is made with other monitoring tool.

  4. Green technologies for the environmental upgrading of infrastructures

    Directory of Open Access Journals (Sweden)

    Alessandra Battisti

    2013-05-01

    Full Text Available Over the last few decades, the globalization phenomenon has determined the exponential development - from an economic, cultural and political standpoint - of traffic flows, the number of means and infrastructures involved in communication and exchange. At the same time, these represent one of the most complicated environmental issues of contemporary times, but perhaps also one of the most outstanding opportunities for setting up processes aimed at upgrading the territory and its constructions, towards environmental regeneration and social reorganization. These, in turn, would produce and spread (as in some already established examples of infrastructure upgrading innovative and more sustainable forms of urban lifestyles. The present contribution aims at illustrating the former, beginning with research and experiments involving the development of eco-friendly meta-design models for the correct employment of “green technologies” in: meta-project research for small mobility facilities; expansion and redevelopment works for the Stazione Termini; experiments in design for some energy-efficient underground metro stops in Rome.

  5. 3D spatial information infrastructure: The case of Port Rotterdam

    Science.gov (United States)

    Zlatanova, S.; Beetz, J.

    2012-10-01

    The development and maintenance of the infrastructure, facilities, logistics and other assets of the Port of Rotterdam requires a broad spectrum of heterogeneous information. This information concerns features, which are spatially distributed above ground, underground, in the air and in the water. The data are managed in a variety of data models with varying levels of dimensionality, granularity, accuracy and up-to-dateness. Additionally increasing number of 3D design models is becoming available. This complexity of tasks and diversity of information challenges the Port authority to look for more advanced 3D solutions. This paper presents research in progress related to developing a 3D SII in support of information and process management within the Port of Rotterdam.

  6. e-Infrastructures for Astronomy: An Integrated View

    Science.gov (United States)

    Pasian, F.; Longo, G.

    2010-12-01

    As for other disciplines, the capability of performing “Big Science” in astrophysics requires the availability of large facilities. In the field of ICT, computational resources (e.g. HPC) are important, but are far from being enough for the community: as a matter of fact, the whole set of e-infrastructures (network, computing nodes, data repositories, applications) need to work in an interoperable way. This implies the development of common (or at least compatible) user interfaces to computing resources, transparent access to observations and numerical simulations through the Virtual Observatory, integrated data processing pipelines, data mining and semantic web applications. Achieving this interoperability goal is a must to build a real “Knowledge Infrastructure” in the astrophysical domain. Also, the emergence of new professional profiles (e.g. the “astro-informatician”) is necessary to allow defining and implementing properly this conceptual schema.

  7. Development of knowledge management infrastructure in organization

    Directory of Open Access Journals (Sweden)

    N.I. Sytnik

    2016-03-01

    Full Text Available The aim of the article. The aim of the article is to analyze development of knowledge management infrastructure (KM infrastructure at various stages of knowledge management evolution at organization. The results of the analysis. KM infrastructure is an important issue of the improvement of existing knowledge management systems. KM infrastructure could be defined as a set of interrelated organizational factors that ensure long-term operation and development of KM and support organizational processes of knowledge capture, share, accumulation, transfer, and use. Theoretically the concept of KM infrastructure is close to the concept of «ba» – enabling context, space, conditions needed to manage knowledge flows effectively. However, these concepts are not identical and the differences between them are highlighted and discussed in the study. Content analysis of the academic literature devoted to KM provision allowed determining major components of well-developed KM infrastructure. It consists of common knowledge, physical space, human resources management procedures, IT, organizational structure and culture. Their specific roles in KM functioning are discussed. It is shown that KM evolution at organization is associated with the development of corresponding KM infrastructure. At the spontaneous stage employees exchanged data and information on demand and knowledge processes were rather sporadic and badly organized. KM infrastructure incorporated mainly common knowledge (in tacit form and physical space for job-related communications between employees. Growing awareness of knowledge value at high management levels leaded to development of human resources management procedures specific to KM processes support. These procedures were directed mainly at accumulation of personal knowledge through vocational training and enhancing organizational knowledge basis through recruitment of highly qualified employees. The attempts to codify and store valuable

  8. The impact of transportation infrastructure on bicycling injuries and crashes: a review of the literature

    Directory of Open Access Journals (Sweden)

    Cripton Peter A

    2009-10-01

    Full Text Available Abstract Background Bicycling has the potential to improve fitness, diminish obesity, and reduce noise, air pollution, and greenhouse gases associated with travel. However, bicyclists incur a higher risk of injuries requiring hospitalization than motor vehicle occupants. Therefore, understanding ways of making bicycling safer and increasing rates of bicycling are important to improving population health. There is a growing body of research examining transportation infrastructure and the risk of injury to bicyclists. Methods We reviewed studies of the impact of transportation infrastructure on bicyclist safety. The results were tabulated within two categories of infrastructure, namely that at intersections (e.g. roundabouts, traffic lights or between intersections on "straightaways" (e.g. bike lanes or paths. To assess safety, studies examining the following outcomes were included: injuries; injury severity; and crashes (collisions and/or falls. Results The literature to date on transportation infrastructure and cyclist safety is limited by the incomplete range of facilities studied and difficulties in controlling for exposure to risk. However, evidence from the 23 papers reviewed (eight that examined intersections and 15 that examined straightaways suggests that infrastructure influences injury and crash risk. Intersection studies focused mainly on roundabouts. They found that multi-lane roundabouts can significantly increase risk to bicyclists unless a separated cycle track is included in the design. Studies of straightaways grouped facilities into few categories, such that facilities with potentially different risks may have been classified within a single category. Results to date suggest that sidewalks and multi-use trails pose the highest risk, major roads are more hazardous than minor roads, and the presence of bicycle facilities (e.g. on-road bike routes, on-road marked bike lanes, and off-road bike paths was associated with the lowest

  9. Rehabilitation of the hospital infrastructure in a developing country.

    Science.gov (United States)

    Kotilainen, H

    2001-01-01

    Mongolia is in fact not a developing country at all but a country of transitional economy (since 1990) with a fairly comprehensive health care infrastructure. However, the health care is facing great difficulties comparable to those in a developing country. Hospital infrastructure rehabilitation was a part of a wider health sector development project with 3 remote aimags (provinces) as the target areas. The Mongolian system of health care has been built up over many years as a country-wide network of community-based feldschers and doctors, supported by a hierarchy of hospitals and mobile emergency teams. Health standards are also impacted by many factors (better housing, water supplies, better roads and rail links) outside the control of the Ministry of Health, and of health care providers. The majority of the rural hospitals lack the basic facilities. There are operating theatres without running water, hospitals with electricity only from 8 to 10 in the evening etc. The hygienic standard is unacceptable. Central heating systems do not function. Many of the facilities are underutilised and in poor condition due an ongoing lack of maintenance. The project aimed for a network that would offer services for all people, including nomadic people. The number of rural hospitals was slightly reduced and some of them were upgraded to first referral unit with basic clinical services. Approximately one third of the rural hospitals had to be rebuilt. The project recommended and started multiphased long-term master planning for those 3 aimag hospitals, all of which displayed difficulties similar to the rural hospitals.

  10. Accelerating sustainability in large-scale facilities

    CERN Multimedia

    Marina Giampietro

    2011-01-01

    Scientific research centres and large-scale facilities are intrinsically energy intensive, but how can big science improve its energy management and eventually contribute to the environmental cause with new cleantech? CERN’s commitment to providing tangible answers to these questions was sealed in the first workshop on energy management for large scale scientific infrastructures held in Lund, Sweden, on the 13-14 October.   Participants at the energy management for large scale scientific infrastructures workshop. The workshop, co-organised with the European Spallation Source (ESS) and  the European Association of National Research Facilities (ERF), tackled a recognised need for addressing energy issues in relation with science and technology policies. It brought together more than 150 representatives of Research Infrastrutures (RIs) and energy experts from Europe and North America. “Without compromising our scientific projects, we can ...

  11. Physics studies with brilliant narrow-width -beams at the new ELI-NP Facility

    Indian Academy of Sciences (India)

    Dimiter L Balabanski; ELI-NP Science Team

    2014-11-01

    The Extreme Light Infrastructure Nuclear Physics (ELI-NP) Facility in Magurele is a European research centre for ultrahigh intensity lasers, laser–matter interaction, nuclear science and material science using laser-driven radiation beams. It is the first project within the European Strategic Forum for Research Infrastructure (ESFRI) agenda financed by the European Regional Development Fund. The nuclear physics research programme of the facility is focussed on studies with brilliant narrow-width -beams and experiments in extreme laser fields.

  12. Centre for Research Infrastructure of Polish GNSS Data - response and possible contribution to EPOS

    Science.gov (United States)

    Araszkiewicz, Andrzej; Rohm, Witold; Bosy, Jaroslaw; Szolucha, Marcin; Kaplon, Jan; Kroszczynski, Krzysztof

    2017-04-01

    In the frame of the first call under Action 4.2: Development of modern research infrastructure of the science sector in the Smart Growth Operational Programme 2014-2020 in the late of 2016 the "EPOS-PL" project has launched. Following institutes are responsible for the implementation of this project: Institute of Geophysics, Polish Academy of Sciences - Project Leader, Academic Computer Centre Cyfronet AGH University of Science and Technology, Central Mining Institute, the Institute of Geodesy and Cartography, Wrocław University of Environmental and Life Sciences, Military University of Technology. In addition, resources constituting entrepreneur's own contribution will come from the Polish Mining Group. Research Infrastructure EPOS-PL will integrate both existing and newly built National Research Infrastructures (Theme Centre for Research Infrastructures), which, under the premise of the program EPOS, are financed exclusively by the national founds. In addition, the e-science platform will be developed. The Centre for Research Infrastructure of GNSS Data (CIBDG - Task 5) will be built based on the experience and facilities of two institutions: Military University of Technology and Wrocław University of Environmental and Life Sciences. The project includes the construction of the National GNNS Repository with data QC procedures and adaptation of two Regional GNNS Analysis Centres for rapid and long-term geodynamical monitoring.

  13. The European Research Infrastructures of the ESFRI Roadmap in Biological and Medical Sciences: status and perspectives

    Directory of Open Access Journals (Sweden)

    Alessia Calzolari

    2014-06-01

    Full Text Available INTRODUCTION. Since 2002, the European Strategy Forum on Research Infrastructures identified the needs for Research Infrastructures (RIs in Europe in priority fields of scientific research and drafted a strategic document, the ESFRI Roadmap, defining the specific RIs essential to foster European research and economy. The Biological and Medical Sciences RIs (BMS RIs were developed thanks to the active participation of many institutions in different European member states associated to address the emerging needs in biomedicine and, among these, the Italian National Institute of Health (ISS, in virtue of its role in public health and research, has been specifically involved in the national development and implementation of three RIs: the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI, the European Advanced Translational Research Infrastructure in Medicine (EATRIS and the European Clinical Research Infrastructures Network (ECRIN. AIM. This article outlines the design and development of these RIs up to the recent achievement of the ERIC status, their importance in the Horizon 2020 programme and their societal and economic potential impact, with special attention to their development and significance in Italy. CONCLUSIONS. The ISS plays a unique role in fostering a coordinated participation of excellence Italian institutes/facilities to different European biomedical RIs, thus contributing to health innovation, healthcare optimization, and healthcare cost containment.

  14. Final Report on National NGV Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    GM Sverdrup; JG DeSteese; ND Malcosky

    1999-01-07

    This report summarizes work fimded jointly by the U.S. Department of Energy (DOE) and by the Gas Research Institute (GRI) to (1) identi& barriers to establishing sustainable natural gas vehicle (NGV) infrastructure and (2) develop planning information that can help to promote a NGV infrastructure with self-sustaining critical maw. The need for this work is driven by the realization that demand for NGVS has not yet developed to a level that provides sufficient incentives for investment by the commercial sector in all necessary elements of a supportive infrastructure. The two major objectives of this project were: (1) to identifi and prioritize the technical barriers that may be impeding growth of a national NGV infrastructure and (2) to develop input that can assist industry in overcoming these barriers. The approach used in this project incorporated and built upon the accumulated insights of the NGV industry. The project was conducted in three basic phases: (1) review of the current situation, (2) prioritization of technical infrastructure btiiers, and (3) development of plans to overcome key barriers. An extensive and diverse list of barriers was obtained from direct meetings and telephone conferences with sixteen industry NGV leaders and seven Clean Cities/Clean Corridors coordinators. This information is filly documented in the appendix. A distillation of insights gained in the interview process suggests that persistent barriers to developing an NGV market and supporting infrastructure can be grouped into four major categories: 1. Fuel station economics 2. Value of NGVs from the owner/operator perspective 3. Cooperation necessary for critical mass 4. Commitment by investors. A principal conclusion is that an efficient and effective approach for overcoming technical barriers to developing an NGV infrastructure can be provided by building upon and consolidating the relevant efforts of the NGV industry and government. The major recommendation of this project is the

  15. The role of public communication in decision making for waste management infrastructure.

    Science.gov (United States)

    Kirkman, Richard; Voulvoulis, Nikolaos

    2016-06-18

    Modern waste management provision seeks to meet challenging objectives and strategies while reflecting community aspirations and ensuring cost-effective compliance with statutory obligations. Its social acceptability, which affects both what systems (infrastructure) can be put in place and to what extent their implementation will be successful, is a multi-dimensional phenomenon, often not well understood. In light of the growing evidence that decisions to build new infrastructure are often contested by the public, there is a clear need to understand the role of scientific evidence in public perception, particularly as environmental infrastructure delivery is often objected to by the public on environmental grounds. In this paper the need for waste management infrastructure is reviewed, and the way its delivery in the UK has evolved is used as an example of the role of public perception in the planning and delivery of waste facilities. Findings demonstrate the vital role of public communication in waste management infrastructure delivery. Public perception must be taken into account early in the decision making process, with the public informed and engaged from the start. There is a pressing need for people not simply to accept but to understand and appreciate the need for infrastructure, the nature of infrastructure investments and development, the costs and the benefits involved, and the technological aspects. Scientific evidence and literacy have a critical role to play, facilitating public engagement in a process that empowers people, allowing them to define and handle challenges and influence decisions that will impact their lives. Problem ownership, and an increased probability of any solutions proposed being selected and implemented successfully are potential benefits of such approach.

  16. Assessment of socio-economic potential of regions for placement of the logistic infrastructure objects

    Directory of Open Access Journals (Sweden)

    Aleksandr Nelevich Rakhmangulov

    2014-06-01

    Full Text Available Currently, at the regional markets, there is a disproportion between the growing demand for transportation and logistics services and the availability of facilities needed for their implementation, which is because the high logistics costs and does not meet the strategic objectives of the country to create a common economic space. The article describes the system of market factors that have the most significant influence on the distribution of logistics facilities. Study and evaluation of potential changes in the region of logistics facility disposition are proposed to perform using simulation techniques and statistical data analysis. The article presents the engineered multivariate statistical models that control the kind and effect of correlation between socio-economic development factors of regions, as well as a simulation model, which allows to assess the dynamics of these factors and predict demand for logistics infrastructure facilities. The choice of region (subject dislocation of the logistics center is proposed to realize by the developed technique based on the calculation of the integrated index that takes into account differences in the level of socio-economic and infrastructural development of the regions. This technique in conjunction with a simulation model is applicable to a variety of administrative and territorial levels (region, city and allows to take into account both the current demand in the logistics infrastructure and demand dynamics. The technique given in the article can be used to assess the level of attractiveness of the Russian Federation in the development of public and private investment projects for the development of logistics infrastructure

  17. Assessing infrastructure vulnerability to major floods

    Energy Technology Data Exchange (ETDEWEB)

    Jenssen, Lars

    1998-12-31

    This thesis proposes a method for assessing the direct effects of serious floods on a physical infrastructure or utility. This method should be useful in contingency planning and in the design of structures likely to be damaged by flooding. A review is given of (1) methods of floodplain management and strategies for mitigating floods, (2) methods of risk analysis that will become increasingly important in flood management, (3) methods for hydraulic computations, (4) a variety of scour assessment methods and (5) applications of geographic information systems (GIS) to the analysis of flood vulnerability. Three computer codes were developed: CULVCAP computes the headwater level for circular and box culverts, SCOUR for assessing riprap stability and scour depths, and FASTFLOOD prepares input rainfall series and input files for the rainfall-runoff model used in the case study. A road system in central Norway was chosen to study how to analyse the flood vulnerability of an infrastructure. Finally, the thesis proposes a method for analysing the flood vulnerability of physical infrastructure. The method involves a general stage that will provide data on which parts of the infrastructure are potentially vulnerable to flooding and how to analyse them, and a specific stage which is concerned with analysing one particular kind of physical infrastructure in a study area. 123 refs., 59 figs., 17 tabs= .

  18. Bicycle infrastructure: can good design encourage cycling?

    Directory of Open Access Journals (Sweden)

    Angela Hull

    2014-01-01

    Full Text Available This research posits the question that good design of the bicycle infrastructure in a city will encourage more people to cycle. Research is carried out to compare the cycle infrastructure in selected European cities against an adapted Level of Service concept using accompanied ride-alongs. The literature review on the factors that encourage/dissuade cycle use suggests that it is the potential rider’s perceptions on the safety of cycling in their neighbourhood that is the deciding feature. Moreover, the literature review showed that contextual factors such as whether the actual infrastructure meets the needs of different cyclists are relatively under-researched. Six case study cities were selected (Edinburgh, Cambridge, Amsterdam, Rotterdam, The Hague, Utrecht and compared on a range of factors by the riders including the coherence, directness, attractiveness, safety and comfort of the network. A cycle infrastructure scoring system was derived from the cycling research literature and the research was carried out by the researcher, an experienced cyclist, accompanied by an inexperienced cyclist. Using this research, the article makes several recommendations for improving and enhancing existing cycle infrastructure provision.

  19. The spatial glaciological data infrastructure

    Directory of Open Access Journals (Sweden)

    T. Y. Khromova

    2014-01-01

    Full Text Available Substantial and rapid environmental changes require developing methods which could be able to manage huge information flows, to optimize processes of the data acquisition, storage, analysis, and exchange. Such facilities can be provided by the newly developed GIS technologies. Digital data bases are used as the key component of the GIS methods. We present the system of glaciological data management, developed in the Institute of Geography of Russian Academy of Sciences (IGRAS. Digital Atlas «Snow and Ice on the Earth», glacier inventories and digital library are the basic structures making possible objective presentation of the glaciological knowledge and data. The system provides the data integration, access to the data base, and makes possible using the GIS techniques for analysis. Data integration technologies are designed to form the united information space of subject areas of the spatial data. The objects of integration in our study are the information resources of glaciology, accumulated in a distributed system of data on the IGRAS web servers and geoportals in forms of data and metadata bases, structured (in a particular format data files, object data files (plain text, documents, images, etc., and electronic atlases. The best option for formation of a large-scale distributed environment, integration of many information resources of glaciology is to provide the so-called interoperability of data. This refers to compliance with certain rules or usage of additional software tools that allows interaction between various spatial data. These are standards to which the integrated information resources of glaciology should satisfy. The result of integration of the glaciological data technology application is the series of software and technology solutions. The main result of this work is creation of geoportals «Electronic Earth» (www.webgeo.ru, «The Nature and Resources of the Russian North» (www.north.webgeo.ru, «IPY-IGRAS» (www

  20. Information Infrastructure Development Recommendations through Analysis of Current Information Technology Infrastructure, Plans and Policies

    Science.gov (United States)

    2007-11-02

    information society , and the military influence on information and communication technologies development; a review of the policy, objectives, concepts and methods, and the resources outlined in the Information Technology Management Strategic Plan, the Defense Information Infrastructure Master Plan, and the Global and National Information Infrastructure

  1. Establishing molecular microbiology facilities in developing countries.

    Science.gov (United States)

    Ahmed, Salman S; Alp, Emine; Ulu-Kilic, Aysegul; Doganay, Mehmet

    2015-01-01

    Microbiology laboratories play an important role in epidemiology and infection control programs. Within microbiology laboratories, molecular microbiology techniques have revolutionized the identification and surveillance of infectious diseases. The combination of excellent sensitivity, specificity, low contamination levels and speed has made molecular techniques appealing methods for the diagnosis of many infectious diseases. In a well-equipped microbiology laboratory, the facility designated for molecular techniques remains indiscrete. However, in most developing countries, poor infrastructure and laboratory mismanagement have precipitated hazardous consequences. The establishment of a molecular microbiology facility within a microbiology laboratory remains fragmented. A high-quality laboratory should include both conventional microbiology methods and molecular microbiology techniques for exceptional performance. Furthermore, it should include appropriate laboratory administration, a well-designed facility, laboratory procedure standardization, a waste management system, a code of practice, equipment installation and laboratory personnel training. This manuscript lays out fundamental issues that need to be addressed when establishing a molecular microbiology facility in developing countries.

  2. Integration of Life Cycle Assessment Into Agent-Based Modeling: Toward Informed Decisions on Evolving Infrastructure Systems

    NARCIS (Netherlands)

    Davis, C.B.; Nikolić, I.; Dijkema, G.P.J.

    2009-01-01

    A method is presented that allows for a life cycle assessment (LCA) to provide environmental information on an energy infrastructure system while it evolves. Energy conversion facilities are represented in an agent-based model (ABM) as distinct instances of technologies with owners capable of making

  3. 77 FR 60687 - Record of Decision for the U.S. Marine Corps Basewide Water Infrastructure Project at Marine...

    Science.gov (United States)

    2012-10-04

    ... construction, operation, and maintenance of a new Northern Advanced Water Treatment plant and associated facilities, an effluent discharge system, and connection of the MCBCP northern and southern water systems... Department of the Navy Record of Decision for the U.S. Marine Corps Basewide Water Infrastructure Project...

  4. Energy Systems Integration Facility (ESIF): Facility Stewardship Plan, Revision 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Art [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hannegan, Bryan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-sq. ft. research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan serves to provide DOE and other decision makers with information on the existing and expected capabilities of ESIF, and the expected performance metrics to be applied to ESIF operations. This Plan is a living document that will be updated and refined throughout the lifetime of the facility.

  5. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  6. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... devices in their costumers household e.g. heat pumps. With these smart services, utility companies can do load balancing on the grid by shifting load using resources the customers have. The problem investigated in this paper is what bandwidth require-ments can be expected when implementing such network...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...

  7. A web service infrastructure for thermochemical data.

    Science.gov (United States)

    Paolini, Christopher P; Bhattacharjee, Subrata

    2008-07-01

    W3C standardized Web Services are becoming an increasingly popular middleware technology used to facilitate the open exchange of chemical data. While several projects in existence use Web Services to wrap existing commercial and open-source tools that mine chemical structure data, no Web Service infrastructure has yet been developed to compute thermochemical properties of substances. This work presents an infrastructure of Web Services for thermochemical data retrieval. Several examples are presented to demonstrate how our Web Services can be called from Java, through JavaScript using an AJAX methodology, and within commonly used commercial applications such as Microsoft Excel and MATLAB for use in computational work. We illustrate how a JANAF table, widely used by chemists and engineers, can be quickly reproduced through our Web Service infrastructure.

  8. Engineering economics and finance for transportation infrastructure

    CERN Document Server

    Prassas, Elena S

    2013-01-01

    Transportation infrastructure is often referred to as society’s bloodstream.  It allows for the movement of people and goods to provide the ability to optimize the production and distribution of goods in an effective and efficient manner, and to provide personal opportunities for employment, recreation, education, health care, and other vital activities.   At the same time, the costs to provide, maintain, and operate this complex infrastructure are enormous.  Because so much of the economic resources to be invested come from public funds, it is critical that expenditures are made in a manner that provides society with the best possible return on the investment.  Further, it is important that sufficient investment is made available, and the costs of the investment are equitably borne by taxpayers.   This textbook provides a fundamental overview of the application of engineering economic principles to transportation infrastructure investments.  Basic theory is presented and illustrated with examples spe...

  9. Challenges in scaling up biofuels infrastructure.

    Science.gov (United States)

    Richard, Tom L

    2010-08-13

    Rapid growth in demand for lignocellulosic bioenergy will require major changes in supply chain infrastructure. Even with densification and preprocessing, transport volumes by mid-century are likely to exceed the combined capacity of current agricultural and energy supply chains, including grain, petroleum, and coal. Efficient supply chains can be achieved through decentralized conversion processes that facilitate local sourcing, satellite preprocessing and densification for long-distance transport, and business models that reward biomass growers both nearby and afar. Integrated systems that are cost-effective and energy-efficient will require new ways of thinking about agriculture, energy infrastructure, and rural economic development. Implementing these integrated systems will require innovation and investment in novel technologies, efficient value chains, and socioeconomic and policy frameworks; all are needed to support an expanded biofuels infrastructure that can meet the challenges of scale.

  10. Securing Infrastructure from High Explosive Threats

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

    2009-03-20

    Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

  11. Infrastructure Vulnerability Assessment Model (I-VAM).

    Science.gov (United States)

    Ezell, Barry Charles

    2007-06-01

    Quantifying vulnerability to critical infrastructure has not been adequately addressed in the literature. Thus, the purpose of this article is to present a model that quantifies vulnerability. Vulnerability is defined as a measure of system susceptibility to threat scenarios. This article asserts that vulnerability is a condition of the system and it can be quantified using the Infrastructure Vulnerability Assessment Model (I-VAM). The model is presented and then applied to a medium-sized clean water system. The model requires subject matter experts (SMEs) to establish value functions and weights, and to assess protection measures of the system. Simulation is used to account for uncertainty in measurement, aggregate expert assessment, and to yield a vulnerability (Omega) density function. Results demonstrate that I-VAM is useful to decisionmakers who prefer quantification to qualitative treatment of vulnerability. I-VAM can be used to quantify vulnerability to other infrastructures, supervisory control and data acquisition systems (SCADA), and distributed control systems (DCS).

  12. The Essential Dynamics of Information Infrastructures

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Hanseth, Ole

    2011-01-01

    This paper inquires into the complexities of contemporary IT solutions based on a case study of the EU’s eCustoms initiatives using Manuel DeLanda’s Assemblage Theory. Technological innovations have enabled information infrastructures with dramatically increased number and heterogeneity of included...... seeking to explain how information infrastructures evolve in social contexts. Accordingly, in this paper it helps us getting a holistic grasp of the complexity of contemporary IT solutions and the “essence” of their dynamics. Through Assemblage Theory we explain how the European eCustoms information...

  13. New Financing Schemes of Public Infrastructure

    Directory of Open Access Journals (Sweden)

    Ignacio de la Riva

    2017-01-01

    Full Text Available Public works procurements and concessions are traditional legal techniques used to shape the financing of public infrastructure. Fiscal constraints faced by public administrations at the end of the 20th century, and the subsequent increase of private participation in the provision of public goods and services, encouraged the development of new legal schemes allowing a higher degree of private investment in public infrastructure; such as Public Private Partnerships, project finance, securitizations, the shadow toll, turn-key agreements, public leasing and public trusts.

  14. Smart grids infrastructure, technology, and solutions

    CERN Document Server

    Borlase, Stuart

    2012-01-01

    What exactly is smart grid? Why is it receiving so much attention? What are utilities, vendors, and regulators doing about it? Answering these questions and more, Smart Grids: Infrastructure, Technology, and Solutions gives readers a clearer understanding of the drivers and infrastructure of one of the most talked-about topics in the electric utility market-smart grid. This book brings together the knowledge and views of a vast array of experts and leaders in their respective fields.Key Features Describes the impetus for change in the electric utility industry Discusses the business drivers, b

  15. Coding and encoding rights in internet infrastructure

    Directory of Open Access Journals (Sweden)

    Stefania Milan

    2017-01-01

    Full Text Available This article explores bottom-up grassroots ordering in internet governance, investigating the efforts by a group of civil society actors to inscribe human rights in internet infrastructure, lobbying the Internet Corporation for Assigned Names and Numbers. Adopting a Science and Technology Studies (STS perspective, we approach this struggle as a site of contestation, and expose the sociotechnical imaginaries animating policy advocacy. Combining quantitative mailing-list analysis, participant observation and qualitative discourse analysis, the article observes civil society in action as it contributes to shape policy in the realm of institutional and infrastructure design.

  16. Risk Perception Related to Critical Infrastructure

    Directory of Open Access Journals (Sweden)

    Badea Dorel

    2016-06-01

    Full Text Available Through this article it is brought to attention the essential aspects related to the perceived risks for critical infrastructure, both theoretically and practically, considering perception as an important input in the risk management process. For the practical part, the added value component in the field consists from the results of research based on survey, conducted in a wider framework of determining the level of awareness of the critical infrastructure issue by a pilot sample, consisting of persons with managerial and operational attributions in this sector.

  17. CRITICAL INFRASTRUCTURE PROTECTION WITHIN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Vasile N. POPA

    2013-01-01

    Full Text Available The new dynamics and intensity of the risks and threats posed to societal functioning and citizens’ security have acquired new meanings. Consequently, an integrated approach to the concept of ”critical infrastructure” is necessary. The critical nature of some of the basic characteristics of the critical infrastructures has made them acquire new meanings within the national/transnational strategic planning. Moreover, the complexity and importance of critical infrastructure protection for social stability have generated the correlaton of the strategies developed by states and organizations.

  18. NASA World Wind: Infrastructure for Spatial Data

    Science.gov (United States)

    Hogan, Patrick

    2011-01-01

    The world has great need for analysis of Earth observation data, be it climate change, carbon monitoring, disaster response, national defense or simply local resource management. To best provide for spatial and time-dependent information analysis, the world benefits from an open standards and open source infrastructure for spatial data. In the spirit of NASA's motto "for the benefit of all" NASA invites the world community to collaboratively advance this core technology. The World Wind infrastructure for spatial data both unites and challenges the world for innovative solutions analyzing spatial data while also allowing absolute command and control over any respective information exchange medium.

  19. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Strait, James [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); McCluskey, Elaine [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lundin, Tracy [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Willhite, Joshua [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Hamernik, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Papadimitriou, Vaia [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Marchionni, Alberto [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Kim, Min Jeong [National Inst. of Nuclear Physics (INFN), Frascati (Italy). National Lab. of Frascati (INFN-LNF); Nessi, Marzio [Univ. of Geneva (Switzerland); Montanari, David [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Heavey, Anne [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  20. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE June 24, 2015

    CERN Document Server

    Strait, James; Lundin, Tracy; Willhite, Joshua; Hamernik, Thomas; Papadimitriou, Vaia; Marchionni, Alberto; Kim, Min Jeong; Nessi, Marzio; Montanari, David; Heavey, Anne

    2016-01-01

    This volume of the LBNF/DUNE Conceptual Design Report cover the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  1. Functional Plant Disposition of City Rainwater Landscape Infrastructure Facilities--Taking Xi-wa Water Park in Haidian District as an Example%城市雨水景观基础设施的功能性植物配置要点--以海淀区西洼雨水公园为例

    Institute of Scientific and Technical Information of China (English)

    李凤仪; 汤林子; 李雄

    2014-01-01

    近些年,我国城市内涝问题愈演愈烈,彰显了城市雨水管理的问题。城市在进行雨水管理时开始重视城市雨水管理景观基础设施的重要性,并将其作为可能的生态对策。在进行设计时构建合理有效的雨水收集净化系统是重要目标,而用以净化雨水的水生耐水湿植物群落是雨水收集净化功能体系和景观结构的首要组成部分。本文将以海淀区西洼雨水公园为例阐述城市雨水管理景观基础设施的功能性植物配置要点。%Most of China precipitation concentrated in the summer, the problem of city waterlog during the rainy season highlight the limitations and drawbacks of city rainwater management. The theory of city rainwater management landscape infrastructure proposes ecological and feasible countermeasures to rainwater management. To establish an ef icient rainwater col ection and purification system when designing is an important goal, and aquatic plants purifying rainwater is important to rainwater col ection and purification system function and landscape. This paper wil take Haidian District Xi-wa water garden as an example to expound the point about selecting aquatic functional plants.

  2. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  3. Theme: Laboratory Facilities Improvement.

    Science.gov (United States)

    Miller, Glen M.; And Others

    1993-01-01

    Includes "Laboratory Facilities Improvement" (Miller); "Remodeling Laboratories for Agriscience Instruction" (Newman, Johnson); "Planning for Change" (Mulcahy); "Laboratory Facilities Improvement for Technology Transfer" (Harper); "Facilities for Agriscience Instruction" (Agnew et al.); "Laboratory Facility Improvement" (Boren, Dwyer); and…

  4. Utilizing Instructional Media for Teaching Infrastructure Administration

    Science.gov (United States)

    Fajriah, Ulfah Nur; Churiyah, Madziatul

    2016-01-01

    This study aims to produce instructional media Corel VideoStudio Pro X7-based on teaching infrastructure administration at class XI of APK in SMKN 1 Ngawi, East Java, Indonesia. This study uses Research and Development research design (R & D) through 10 steps, namely: (1) the potential and problems, (2) data collection, (3) the design of the…

  5. MCloud platform - common government informational infrastructure

    Directory of Open Access Journals (Sweden)

    Eugenia CEBOTARU

    2017-03-01

    Full Text Available MCloud platform is foreseen for the exclusive use by the central administrative authorities and organizational structures within their jurisdiction, subordinated to the Government and is an innovative delivery model based on infrastructure consumption, platform and software as services

  6. Strategic Policy Competition with Public Infrastructure

    NARCIS (Netherlands)

    Nahuis, R.; Tang, P.J.G.

    2004-01-01

    Governments try to attract firms and jobs by investing in international infrastructure. We analyse this type of strategic policy competition in a three-country model of monopolistic competition. What governments compete for, is to obtain a so called ‘hub’ position. A hub is a relatively well connect

  7. Infrastructuring When You Don’t

    DEFF Research Database (Denmark)

    Bolmsten, Johan; Dittrich, Yvonne

    2011-01-01

    Technologies promoting End-User Development enable domain experts to adjust and develop tools to fit with their specific work practice and thus to be efficient with respect to their professional tasks. In today’s organizations, however, single applications become part of organizational infrastruc......Technologies promoting End-User Development enable domain experts to adjust and develop tools to fit with their specific work practice and thus to be efficient with respect to their professional tasks. In today’s organizations, however, single applications become part of organizational...... infrastructures. Such infrastructures enable integration between different applications and tasks but, at the same time, introduce constraints to ensure interoperability. How can the ad vantages of End-User Development be kept without jeopardizing the integration between different applications? The article...... presents an empirical study on End-User Development in the context of the development of an organizational IT infrastructure. Based on the analysis of the empirical material we discuss the challenges the infrastructure context provides for End-User Development....

  8. Is the Infrastructure of EHDI Programs Working?

    Science.gov (United States)

    Houston, K. Todd; Hoffman, Jeff; Munoz, Karen F.; Bradham, Tamala S.

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that consisted of 12 evaluative areas of EHDI programs. For the EHDI program infrastructure area, 47 coordinators responded with a total of 292 items, and themes were identified in each…

  9. Configuration management in large scale infrastructure development

    NARCIS (Netherlands)

    Rijn, T.P.J. van; Belt, H. van de; Los, R.H.

    2000-01-01

    Large Scale Infrastructure (LSI) development projects such as the construction of roads, rail-ways and other civil engineering (water)works is tendered differently today than a decade ago. Traditional workflow requested quotes from construction companies for construction works where the works to be

  10. Cyber Security: Critical Infrastructure Controls Assessment Framework

    Science.gov (United States)

    2011-05-01

    recoverability Storm and Lightning Fire Chemical Leakage Nuclear Leakage n ercep on & Spoofing, Hacking Sabotage or Vandalism 4 capability 5...Action  10. ICS – Infrastructure Control System 11. IEC  – International Electrochemical  Commission 12. IED – Intelligent Electronic Devices 13 IEEE

  11. Wireless intelligent network: infrastructure before services?

    Science.gov (United States)

    Chu, Narisa N.

    1996-01-01

    The Wireless Intelligent Network (WIN) intends to take advantage of the Advanced Intelligent Network (AIN) concepts and products developed from wireline communications. However, progress of the AIN deployment has been slow due to the many barriers that exist in the traditional wireline carriers' deployment procedures and infrastructure. The success of AIN has not been truly demonstrated. The AIN objectives and directions are applicable to the wireless industry although the plans and implementations could be significantly different. This paper points out WIN characteristics in architecture, flexibility, deployment, and value to customers. In order to succeed, the technology driven AIN concept has to be reinforced by the market driven WIN services. An infrastructure suitable for the WIN will contain elements that are foreign to the wireline network. The deployment process is expected to seed with the revenue generated services. Standardization will be achieved by simplifying and incorporating the IS-41C, AIN, and Intelligent Network CS-1 recommendations. Integration of the existing and future systems impose the biggest challenge of all. Service creation has to be complemented with service deployment process which heavily impact the carriers' infrastructure. WIN deployment will likely start from an Intelligent Peripheral, a Service Control Point and migrate to a Service Node when sufficient triggers are implemented in the mobile switch for distributed call control. The struggle to move forward will not be based on technology, but rather on the impact to existing infrastructure.

  12. ACRF Data Collection and Processing Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Macduff, M; Egan, D

    2004-12-01

    We present a description of the data flow from measurement to long-term archive. We also discuss data communications infrastructure. The data handling processes presented include collection, transfer, ingest, quality control, creation of Value-Added Products (VAP), and data archiving.

  13. Infrastructure for Peace: The African Experience

    African Journals Online (AJOL)

    Nneka Umera-Okeke

    As stated succinctly by World Health Organisation, just like the way the public health efforts ... infrastructures for peace in Africa, the efficacy of such peace structure in promoting peace and ..... of the concept peace committee in relation to peacebuilding initiatives in. Kenya. Nairobi: ... Hybrid peacemaking: building national.

  14. Modular Infrastructure for Rapid Flight Software Development

    Science.gov (United States)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  15. Monitoring civil infrastructure using satellite radar interferometry

    NARCIS (Netherlands)

    Chang, L.

    2015-01-01

    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new,

  16. Green Infrastructure, Ecosystem Services, and Human Health.

    Science.gov (United States)

    Coutts, Christopher; Hahn, Micah

    2015-08-18

    Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture-in the form of a primer-of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being.

  17. INFRASTRUCTURE AND AGRICULTURAL GROWTH IN NIGERIA1

    African Journals Online (AJOL)

    Eyerusalem

    On the other hand, price policies, with respect to transport pricing might create distorting signals. ... Section five explains the model and results while section six ... author, if farmland behaves like any asset, its price would equal the net present ... capital gains generated by the improvement of road infrastructure. As cited by ...

  18. Telehealth ICT Infrastructures in the Nordic Countries

    DEFF Research Database (Denmark)

    Jørgensen, Daniel Bjerring; Hallenborg, Kasper

    2015-01-01

    This paper presents an overview and recommendations of ICT infrastructures and reference architectures for telehealth in the Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden). This study shows that so far only Denmark has designed a complete reference architecture, and by the end...

  19. PACS infrastructure supporting e-learning

    Energy Technology Data Exchange (ETDEWEB)

    Mildenberger, Peter, E-mail: milden@radiologie.klinik.uni-mainz.de [University Medicine Mainz, Johannes Gutenberg-University Mainz, Langenbeckstr 1, Mainz (Germany); Brueggemann, Kerstin; Roesner, Freya; Koch, Katja; Ahlers, Christopher [University Medicine Mainz, Johannes Gutenberg-University Mainz, Langenbeckstr 1, Mainz (Germany)

    2011-05-15

    Digital imaging is becoming predominant in radiology. This has implications for teaching support, because conventional film-based concepts are now obsolete. The IHE Teaching File and Clinical Study Export (TCE) profile provides an excellent platform to enhance PACS infrastructure with educational functionality. This can be supplemented with dedicated e-learning tools.

  20. Performance analysis of railway infrastructure and operations

    NARCIS (Netherlands)

    Hansen, I.A.; Wiggenraad, P.B.L.; Wolff, J.W.

    2013-01-01

    Research on performance assessment of railway networks and companies has been stimulated by the European policy of deregulation of transport markets, the opening of national railway networks and markets to new entrants and separation of infrastructure and train operation. Recent international benchm