WorldWideScience

Sample records for facility hfef complex

  1. Hot Fuel Examination Facility (HFEF)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  2. Post-irradiation handling and examination at the HFEF complex

    Bacca, J.P.

    1980-01-01

    The Hot Fuel Examination Facility provides postirradiation handling and examination of fast reactor irradiation experiments and safety tests for the United States Breeder Reactor Program. Nondestructive interim examinations and destructive terminal examinations at HFEF derive data from tests irradiated in the Experimental Breeder Reactor No. II, in the Transient Reactor Test Facility (TREAT), and in the Sodium Loop Safety Facility. Similar support will be provided in the near future for tests irradiated in the Fast Flux Test Facility, and for the larger sodium loops to be irradiated in TREAT

  3. Modifications to HFEF/S for IFR fuel cycle demonstration

    Lineberry, M.J.; Phipps, R.D.; Forrester, R.J.; Carnes, M.D.; Rigg, R.H.

    1988-01-01

    Modifications have begun to the Hot Fuel Examination Facility-South (HFEF/S) in order to demonstrate the technology of the integral fast reactor (IFR) fuel cycle. This paper describes the status of the modifications to the facility and briefly reviews the status of the development of the process equipment. The HFEF/S was the demonstration facility for the early Experimental Breeder Reactor II (EBR-II) melt refining/injection-casting fuel cycle. Then called the Fuel Cycle Facility, ∼400 EBR-II fuel assemblies were recycled in the two hot cells of the facility during the 1964-69 period. Since then it has been utilized as a fuels examination facility. The objective of the IFR fuel cycle program is to upgrade HFEF/S to current standards, install new process equipment, and demonstrate the commercial feasibility of the IFR pyroprocess fuel cycle

  4. An improved out-cell to in-cell rapid transfer system at the HFEF-south

    Bacca, J.P.; Sherman, E.K.

    1990-01-01

    The Argonne National Laboratory (ANL) Hot Fuel Examination Facility-South (HFEF-S), located at the ANL-West site of the Idaho National Engineering Laboratory, is currently undergoing extensive refurbishment and modifications in preparation for its use, beginning in 1991, in demonstrating remote recycling of fast reactor, metal-alloy fuel as part of the US Department of Energy liquid-metal reactor, Integral Fast Reactor (IFR) program. Included in these improvements to HFEF-S is a new, small-item, rapid transfer system (RTS). When installed, this system will enable the rapid transfer of small items from the hot-cell exterior into the argon cell (argon-gas atmosphere) of the facility without necessitating the use of time-consuming and laborious procedures. The new RTS will also provide another important function associated with HFEF-S hot-cell operation in the IFR Fuel Recycle Program; namely, the rapid insertion of clean, radioactive contamination-measuring smear paper specimens into the hot cells for area surveys, and the expedited removal of these contaminated (including alpha as well as beta/gamma contamination) smears from the argon cell for transfer to an adjacent health physics field laboratory in the facility for nuclear contamination/radiation counting

  5. Field maintenance of radiation-shielding windows at HFEF

    Tobias, D.A.

    1983-01-01

    The achievement of excellent viewing through hot-cell shielding windows does not occur by chance. Instead, it requires a well planned and executed program of field maintenance. The lack of such a program is a major factor when a hot-cell facility has poor window viewing. At HFEF, all preventive maintenance is performed by one group of trained technical-support personnel under the immediate direction of a Systems Engineer, who has responsibility for the shielding windows. Window maintenance is prescheduled and recorded by being incorporated into the computerized Maintenance Data System (MDS). Measurements of window light transmission are scheduled annually to determine glass browning or oil cloudiness conditions within the window tank. The tank oil is sampled and chemically analyzed annually to determine the moisture content, the acidity, and the probable deterioration rate caused by irradiation

  6. Criticality safety training at the Hot Fuel Examination Facility

    Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

    1983-01-01

    HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program

  7. Hot Fuel Examination Facility/South

    1990-05-01

    This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

  8. Hot Fuel Examination Facility/South

    1990-05-01

    This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs

  9. Analytical throughput-estimating methods for the Hot Fuel Examination Facility

    Keyes, R.W.; Phipps, R.D.

    1983-01-01

    The Hot Fuel Examination Facility (HFEF) supports the operation and experimental programs of the major Liquid Metal Fast Breeder Reactor (LMFBR) test facilities; specifically, the Fast Flux Test Facility (FFTF), the Experimental Breeder Reactor II (EBR-II), and the Transient Reactor Test (TREAT) Facility. Successful management of HFEF and of LMFBR safety and fuels and materials programs, therefore, requires reliable information regarding HFEF's capability to handle expected or proposed program work loads. This paper describes the 10-step method that has been developed to consider all variables which significantly affect the HFEF examination throughput and quickly provide the necessary planning information

  10. Remote waste handling at the Hot Fuel Examination Facility

    Vaughn, M.E.

    1982-01-01

    Radioactive solid wastes, some of which are combustible, are generated during disassembly and examination of irradiated fast-reactor fuel and material experiments at the Hot Fuel Examination Facility (HFEF). These wastes are remotely segregated and packaged in doubly contained, high-integrity, clean, retrievable waste packages for shipment to the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). This paper describes the equipment and techniques used to perform these operations

  11. Causal Analysis of The Uncontrolled Moderator In The HFEF Main Cell

    Posegate, Charles R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Crofts, Bryan P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2012-12-01

    On 11/07/2012 while investigating the cause of defects in neutron radiography film at HFEF, oil was discovered near the elevator shaft located at the 4M location within the Main Cell. Subsequent investigation identified oil (untracked moderator) in several locations ofthe HFEF Main Cell. Initial analysis determined that oil leaking from a 1M shielding window had leaked past a compensatory containment system resulting in a thin layer of oil found in several locations on the main cell floor. The result of this condition is uncontrolled moderator in moderator controlled zones, which is a violation of Criticality Hazard Control Statements (CHCS) for HFEF.

  12. An improved out-cell to in-cell rapid transfer system at the HFEF/South

    Bacca, J.P.; Sherman, E.K.

    1991-01-01

    This paper reports on Argonne National Laboratory's Fuel Cycle Facility (FCF) (formerly named Hot Fuel Examination Facility-South) (HFEF/South) which is currently being refurbished and upgraded in preparation for demonstrating remote, fast reactor metal-fuel reprocessing and refabrication, as part of the Integral Fast Reactor (IFR) Program. Among the FCF hot-cell system upgrades being provided is a newly fabricated, direct, out-of-cell to in-cell, small-item transfer system for the FCF argon cell. This system will enable the rapid transfer of selected small items from the hot cell exterior into the argon cell (argon-gas atmosphere) of the facility, without necessitating the use of formerly employed, very time-consuming, and quite laborious procedures. The new system will be especially valuable for the rapid insertion of IFR fuel processing makeup materials and small tools into the argon cell, and for use in argon cell and overall FCF radioactive contamination-control activities

  13. Techniques for remote maintenance of in-cell material-handling system in the HFEF/N main cell

    Tobias, D.A.; Frickey, C.A.

    1975-01-01

    Operations in the main cell of HFEF/N have required development of remote handling equipment and unique techniques for maintaining the in-cell material-handling system. Specially designed equipment is used to remove a disabled crane or electromechanical manipulator bridge from its support rails and place it on floor stands for repair or maintenance. Support areas for the main cell, such as the spray chamber and hot repair area, provide essential decontamination, repair, and staging areas for the in-cell material-handling-system equipment and tools. A combined engineering and technical effort in upgrading existing master-slave manipulators has definitely reduced the requirements for their maintenance. The cell is primarily for postirradiation examination of LMFBR materials and fuel elements

  14. Waste Sampling and Characterization Facility (WSCF) Complex Safety Analysis

    MELOY, R.T.

    2003-01-01

    The Waste Sampling and Characterization Facility (WSCF) is an analytical laboratory complex on the Hanford Site that was constructed to perform chemical and low-level radiological analyses on a variety of sample media in support of Hanford Site customer needs. The complex is located in the 600 area of the Hanford Site, east of the 200 West Area. Customers include effluent treatment facilities, waste disposal and storage facilities, and remediation projects. Customers primarily need analysis results for process control and to comply with federal, Washington State, and US. Department of Energy (DOE) environmental or industrial hygiene requirements. This document was prepared to analyze the facility for safety consequences and includes the following steps: Determine radionuclide and highly hazardous chemical inventories; Compare these inventories to the appropriate regulatory limits; Document the compliance status with respect to these limits; and Identify the administrative controls necessary to maintain this status

  15. Physical security technologies for weapons complex reconfiguration facilities

    Jaeger, C.D.

    1994-01-01

    Sandia National Laboratories was a member of the Weapons Complex Reconfiguration (WCR) Safeguards and Security (S ampersand S) team providing assistance to the Department of Energy's (DOE) Office of Weapons Complex Reconfiguration. The physical security systems in the new and upgraded facilities being considered for the WCR had to meet DOE orders and other requirements set forth in the WCR Programmatic Design Criteria (PDC), incorporate the latest physical security technologies using proven state-of-the-art systems and meet fundamental security principles. The outcome was to avoid costly retrofits and provide effective and comprehensive protection against current and projected threats with minimal impact on operations, costs and schedule. Physical security requirements for WCR facilities include: (1) reducing S ampersand S life-cycle costs, (2) where feasible automating S ampersand S functions to minimize operational costs, access to critical assets and exposure of people to hazardous environments, (3) increasing the amount of delay to outsider adversary attack, (4) compartmentalizing the facility to minimize the number of personnel requiring access to critical areas and (5) having reliable and maintainable systems. To be most effective against threats physical security must be integrated with facility operations, safety and other S ampersand S activities, such as material control and accountability, nuclear measurements and computer and information security. This paper will discuss the S ampersand S issues, requirements, technology opportunities and needs. Physical security technologies and systems considered in the design effort of the Weapons Complex Reconfiguration facilities will be reviewed

  16. Safety aspects of the IFR pyroprocess fuel cycle

    Forrester, R.J.; Lineberry, M.J.; Charak, I.; Tessier, J.H.; Solbrig, C.W.; Gabor, J.D.

    1989-01-01

    This paper addresses the important safety considerations related to the unique Integral Fast Reactor (IFR) fuel cycle technology, the pyroprocess. Argonne has been developing the IFR since 1984. It is a liquid metal cooled reactor, with a unique metal alloy fuel, and it utilizes a radically new fuel cycle. An existing facility, the Hot Fuel Examination Facility-South (HFEF/S) is being modified and equipped to provide a complete demonstration of the fuel cycle. This paper will concentrate on safety aspects of the future HFEF/S operation, slated to begin late next year. HFEF/S is part of Argonne's complex of reactor test facilities located on the Idaho National Engineering Laboratory. HFEF/S was originally put into operation in 1964 as the EBR-II Fuel Cycle Facility (FCF) (Stevenson, 1987). From 1964--69 FCF operated to demonstrate an earlier and incomplete form of today's pyroprocess, recycling some 400 fuel assemblies back to EBR-II. The FCF mission was then changed to one of an irradiated fuels and materials examination facility, hence the name change to HFEF/S. The modifications consist of activities to bring the facility into conformance with today's much more stringent safety standards, and, of course, providing the new process equipment. The pyroprocess and the modifications themselves are described more fully elsewhere (Lineberry, 1987; Chang, 1987). 18 refs., 5 figs., 2 tabs

  17. Hanford Facility Dangerous Waste Permit Application, 222-S Laboratory Complex

    WILLIAMS, J.F.

    2000-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the 222-S Laboratory Complex (this document, DOE/RL-91-27). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the 222-S Laboratory Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this 222-S Laboratory Complex permit application documentation is current as of August 2000

  18. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  19. Facile Preparation of Hybrid Zinc Porphyrin Dendrimer Using Coordination Complex

    Choi, Go-Eun; Shin, Eun Ju [Sunchon National University, Suncheon (Korea, Republic of)

    2016-03-15

    Porphyrins and metalloporphyrins have been investigated extensively due to their important role in natural photosynthesis, strong absorption in visible region, good light-harvesting properties, unique photophysical and electrochemical properties, and the development of simple synthetic routes for various derivatives. Dendrimers have globular structure with branches of repeating units and wide diversity of the architecture because their size, shape, and functionalities can be tailored. Numerous dendrimers have been designed and synthesized for various applications ranging from catalyst to drug delivery. Both pyridine dendrons Py-PD and Py-AD were successfully coordinated at axial position on central zinc metal cation in zinc porphyrin dendrimers ZnP-AD, ZnP-AD2, or ZnP-AD4. Therefore, it was proven that the formation of axial coordination complex between metal-centered dendrimer and ligand-containing dendron provides another facile method for the preparation of new hybrid dendrimer.

  20. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    Simonds, J.

    2007-11-06

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

  1. Proposed power upgrade of the hot fuel examination facility's neutron radiography reactor

    Pruett, D.P.; Richards, W.J.; Heidel, C.C.

    1984-01-01

    The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both non-destructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the non-destructive examination techniques utilized at HFEF is neutron radiography. When the NRAD facility was designed and constructed, an operating power level of 250 kw was considered to be adequate for obtaining radiographs of the type of specimens envisaged at that time. Since that time, several things have occurred that have tended to increase radiography exposure times to as much as 90 minutes each. In order to decrease exposure times, the reactor power level is to be increased from 250 kW to 1 MW. This increase in power will necessitate several engineering and design changes. The proposed upgrade of the NRAD facility will increase the neutron flux available in the beam tubes appreciably. The increased flux will enable NRAD to continue to meet its operational commitments in a timely manner and to develop state-of-the-art techniques in the future as it has in the past

  2. Dinuclear Tetrapyrazolyl Palladium Complexes Exhibiting Facile Tandem Transfer Hydrogenation/Suzuki Coupling Reaction of Fluoroarylketone

    Dehury, Niranjan; Maity, Niladri; Tripathy, Suman Kumar; Basset, Jean-Marie; Patra, Srikanta

    2016-01-01

    Herein, we report an unprecedented example of dinuclear pyrazolyl-based Pd complexes exhibiting facile tandem catalysis for fluoroarylketone: Tetrapyrazolyl di-palladium complexes with varying Pd-Pd distances efficiently catalyze the tandem reaction

  3. Accelerator complex for a radioactive ion beam facility at ATLAS

    Nolen, J.A.

    1995-01-01

    Since the superconducting heavy ion linac ATLAS is an ideal post-accelerator for radioactive beams, plans are being developed for expansion of the facility with the addition of a driver accelerator, a production target/ion source combination, and a low q/m pre-accelerator for radioactive ions. A working group including staff from the ANL Physics Division and current ATLAS users are preparing a radioactive beam facility proposal. The present paper reviews the specifications of the accelerators required for the facility

  4. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    J. Simonds

    2006-09-01

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

  5. Radiation protection program at an accelerator facility complex

    Ramanuja, Jaya

    2007-01-01

    Broad aspects of Radiation Protection Program at the Tyco Healthcare/Mallinckrodt Inc. will be presented with emphasis on Occupational dose, Public dose and ALARA program. Regulatory requirements, compliance and radio nuclides of concern for external exposure and internal contamination will be discussed. The facility is subject to in depth annual inspections by the Nuclear Regulatory Commission (NRC) to ensure compliance with regulations and operating license requirements. The facility is required to have an emergency contingency plan in place. A simulated emergency drill scenario is witnessed and graded by the NRC and state inspectors, with full participation by the fire department and the local hospital. Radiation Safety Officer (RSO) is in charge of all radiological aspects of the facility, and reports to the plant manager directly. The RSO or any of his staff has the authority to stop a job if there is a radiological concern. The Radiation protection organization interfaces with Production, QA and Engineering and ensures there is no conflict with Industrial Safety, OSHA and FDA requirements. Any employee has the right to call the regulatory officials if he/she has a concern. Operational aspects of Radiation protection program such as radiological survey, contamination control and limits, air sample survey, radio active waste processing and record retention requirements are per plant procedures and regulatory requirements. Shielding and administrative requirements for designing a modification to an existing design or a new lab/hot cell is subject to in-depth review and approval by Radiation Safety Committee. Each department has a Dose Reduction Subcommittee which meets periodically to discuss if any changes in procedures or facility can be made to decrease the dose. The subcommittee also trends the dose to ensure it is trending downward. Even though 99 Mo/ 99m TC generators are manufactured at the facility, majority of the dose is from cyclotron maintenance

  6. Environmental Assessment for Waterfront Facilities Maintenance and Improvements, Pearl Harbor Naval Complex, Oahu, Hawaii

    2005-01-01

    Commander, Navy Region Hawaii (CNRH) proposes to repair, maintain, and improve waterfront berthing and maintenance facilities for ships and submarines on an as-needed basis within the Pearl Harbor Naval Complex (PHNC...

  7. A Design for an Orbital Assembly Facility for Complex Missions

    Feast, S.; Bond, A.

    A design is presented for an Operations Base Station (OBS) in low earth orbit that will function as an integral part of a space transportation system, enabling assembly and maintenance of a Cis-Lunar transportation infrastructure and integration of vehicles for other high energy space missions to be carried out. Construction of the OBS assumes the use of the SKYLON Single-Stage-to-Orbit (SSTO) spaceplane, which imposes design and assembly constraints due to its payload mass limits and payload bay dimensions. It is assumed that the space transport infrastructure and high mission energy vehicles would also make use of SKYLON to deploy standard transport equipment and stages bound by these same constraints. The OBS is therefore a highly modular arrangement, incorporating some of these other vehicle system elements in its layout design. Architecturally, the facilities of the OBS are centred around the Assembly Dock which is in the form of a large cylindrical spaceframe structure with two large doors on either end incorporating a skin of aluminised Mylar to enclose the dock. Longitudinal rails provide internal tether attachments to anchor vehicles and components while manipulators are used for the handling and assembling of vehicle structures. The exterior of the OBS houses the habitation modules for workforce and vehicle crews along with propellant farms and other operational facilities.

  8. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  9. Coping with complexity: designing homes and facilities for frail and dependent elderly in a changing society

    Verkerk, M.J.; van Hoof, J.; Demiris, G.; Wouters, E.J.M.

    2017-01-01

    Demographic changes, technological innovations, and plurality in values place architects and consulting engineers for large challenges. This chapter unravels the different types of complexity that play a role in designing homes for frail elderly and facilities for adults with dementia. Five types of

  10. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  11. Design features of isotope production facility at Inshas cyclotron complex. Vol. 1

    Comsan, M N [Nuclear Research Center, Atomic Energy Aurhority, Cairo, (Egypt)

    1996-03-01

    The nuclear research center, AEA, Egypt is erecting at its Inshas campus cyclotron complex for multidisciplinary use for research and application. The complex is to utilize a russian made AVF cyclotron accelerator of the type MGC-20 with MeV protons. Among its applications, the accelerator will be used for the production of short lived cyclotron isotopes. This article presents a concise description of the design features of isotope production facility to be annexed to the complex layout, schemes for radio waste, ventilation, and air conditioning systems. 2 figs., 2 tabs.

  12. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  13. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Harvego, Lisa; Bennett, Brion

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  14. A strategic approach to the conceptual design of complex radwaste facilities

    Mackay, Stewart; Scott Dam, A.; Holmes, Robert G.G.

    1992-01-01

    The design of radwaste treatment facilities is often complicated by the variety of waste types being treated. Further uncertainties over their composition and final waste form specifications can make the normal conceptual design phase difficult and unreliable. This paper describes the strategic planning necessary to define the facility functions and the process to prepare a Functional Design Criteria. The paper shows clearly, that for complex waste management problems, it is vital to consider and resolve uncertainties by means of a strategic plan before embarking on conceptual design. The paper shows an approach to preparation of design criteria using functional analysis. The paper provides examples where these methods were and are being used, both in the U.K. and the U.S. Strategic plans and functional criteria can be used as a basis for conceptual design which then provides a more meaningful basis for detailed technology selection during the detailed design process. The paper discusses experiences and lessons learned in the planning process. This process is widely applicable to a number of complex waste treatment facilities being planned and developed to process wastes generated at government facilities. (author)

  15. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA reg-sign canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA reg-sign, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities

  16. Operation of the UKK-2 facility for tube complex testing and way of its further improvement

    Ogarkov, N.V.; Senyutkin, P.A.; Silaev, A.N.; Topychkanov, V.V.

    1987-01-01

    The UKK-2 ultrasonic 8-channel facility for complex control is designed for control of continuity, wall thickness of 0.3-1.0 mm, inner diameter of tubes and external diameter of 7-15 mm. Utilization of UKK-2 increased reliability of control, stabilized tube quality at a higher level, increased control efficiency 2-3 times. The most noticeable shortcomings of the UKK-2 are as follows: impossibility of differential separation of tubes rejected by sizes, by rectifiable and nonrectifiable rejects as well as absence of devices for mechanized loading, unloading and grading the tubes. The flowsheet, design and technological shortcomings of the facility are discovered during its operation. Ways of further improvement of the facility are as follows: development of the system for control result analysis on the basis of a microcomputer, equipment with devices for loading, unloading and grading the tubes; development of more reliable electron devices and units, means of automated diagnostics and automated tuning, increase of the level of metrological provision, improvement of hardware and software of the facility

  17. Descriptions of representative contaminated sites and facilities within the DOE complex

    Short, S.M.; Buck, J.W.; Clark, L.L.; Fletcher, J.F.; Glantz, C.S.; Holdren, G.R.; Huesties, L.R.; Williams, M.D.; Oates, L.

    1994-10-01

    The U.S. Department of Energy (DOE) has initiated efforts to prepare a Programmatic Environmental Impact Statement (PEIS) that will analyze the existing environmental restoration and waste management program and evaluate alternatives for an integrated program. The alternatives being evaluated include (1) a open-quotes No Actionclose quotes alternative as required by the National Environmental Policy Act (NEPA), (2) an Applicable, Relevant, and Appropriate Requirements (ARAR)-driven alternative, (3) a land-use-driven alternative, (4) a health-risk-driven alternative, and (5) a combination land-use and health-risk-driven alternative. The analytical approach being taken to evaluate each of these alternatives is to perform a remedial engineering analysis and human health and ecosystem effects analyses on every contaminated site and facility in the DOE complex. One of Pacific Northwest Laboratory's (PNL) roles in this approach has been to compile the source term and environmental setting data needed to drive each of these analyses. To date, over 10,000 individual contaminated sites and facilities located throughout the DOE complex of installations have been identified and at least some minimal data compiled on each. The PEIS analyses have been appreciably simplified by categorizing all of these contaminated sites and facilities into six broad categories: (1) contaminated buildings, (2) contaminated soils, (3) solid waste sites (e.g., burial grounds), (4) liquid containment structures (e.g., tanks), (5) surface water sites, and (6) contaminated groundwater sites. A report containing a complete description of each of these thousands of contaminated sites and facilities would be tremendously large and unwildy, as would separate reports describing the application of the analytical methodologies to each

  18. Hot fuel examination facility element spacer wire-wrap machine

    Tobias, D.A.; Sherman, E.K.

    1989-01-01

    Nondestructive examinations of irradiated experimental fuel elements conducted in the Argonne National Laboratory Hot Fuel Examination Facility/North (HFEF/N) at the Idaho National Engineering Laboratory include laser and contact profilometry (element diameter measurements), electrical eddy-current testing for cladding and thermal bond defects, bow and length measurements, neutron radiography, gamma scanning, remote visual exam, and photography. Profilometry was previously restricted to spiral profilometry of the element to prevent interference with the element spacer wire wrapped in a helix about the Experimental Breeder Reactor II (EBR-II)-type fuel element from end to end. By removing the spacer wire prior to conducting profilometry examination, axial profilometry techniques may be used, which are considerably faster than spiral techniques and often result in data acquisition more important to experiment sponsors. Because the element must often be reinserted into the nuclear reactor (EBR-II) for additional irradiation, however, the spacer wire must be reinstalled on the highly irradiated fuel element by remote means after profilometry of the wireless elements. The element spacer wire-wrap machine developed at HFEF is capable of helically wrapping fuel elements with diameters up to 1.68 cm (0.660 in.) and 2.44-m (96-in.) lengths. The machine can accommodate almost any desired wire pitch length by simply inserting a new wrapper gear module

  19. Radiation protection in nuclear facilities. Complexity versus systematic approach; Strahlenschutz in Kernanlagen. Komplexitaet versus Systematik

    Jahn, S.G. [Eidgenoessisches Nuklearsicherheitsinspektorat (ENSI), Brugg (Switzerland)

    2016-07-01

    Considering the amount of radiation sources in nuclear power plants, their chemical and physical state, the miscellaneous exposure pathways as well as varying limits, reference values and constraints for the protection of persons, tissues and environment, the number of different exposure situations per year ranges up to several thousands. With this complexity a systematic approach for planning a new facility, modification, decommissioning or operation is necessary to ensure complete radiation protection without gaps. The Swiss federal nuclear safety inspectorate (ENSI) is developing and testing a system of safety objectives, functions and measures, which is complementary to the IAEA fundamental safety objectives and requirements.

  20. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    Pietsch, Thomas [NUKEM Technologies GmbH, Alzenau (Germany); NUKEM Technologies GmbH, Slavutich (Ukraine)

    2009-07-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  1. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    Pietsch, Thomas

    2009-01-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  2. Strategy for introduction of rainwater management facility considering rainfall event applied on new apartment complex

    KIM, H.; Lee, D. K.; Yoo, S.

    2014-12-01

    As regional torrential rains become frequent due to climate change, urban flooding happens very often. That is why it is necessary to prepare for integrated measures against a wide range of rainfall. This study proposes introduction of effective rainwater management facilities to maximize the rainwater runoff reductions and recover natural water circulation for unpredictable extreme rainfall in apartment complex scale. The study site is new apartment complex in Hanam located in east of Seoul, Korea. It has an area of 7.28ha and is analysed using the EPA-SWMM and STORM model. First, it is analyzed that green infrastructure(GI) had efficiency of flood reduction at the various rainfall events and soil characteristics, and then the most effective value of variables are derived. In case of rainfall event, Last 10 years data of 15 minutes were used for analysis. A comparison between A(686mm rainfall during 22days) and B(661mm/4days) knew that soil infiltration of A is 17.08% and B is 5.48% of the rainfall. Reduction of runoff after introduction of the GI of A is 24.76% and B is 6.56%. These results mean that GI is effective to small rainfall intensity, and artificial rainwater retarding reservoir is needed at extreme rainfall. Second, set of target year is conducted for the recovery of hydrological cycle at the predevelopment. And an amount of infiltration, evaporation, surface runoff of the target year and now is analysed on the basis of land coverage, and an arrangement of LID facilities. Third, rainwater management scenarios are established and simulated by the SWMM-LID. Rainwater management facilities include GI(green roof, porous pavement, vegetative swale, ecological pond, and raingarden), and artificial rainwater. Design scenarios are categorized five type: 1)no GI, 2)conventional GI design(current design), 3)intensive GI design, 4)GI design+rainwater retarding reservoir 5)maximized rainwater retarding reservoir. Intensive GI design is to have attribute value to

  3. A systematic method for identifying vital areas at complex nuclear facilities.

    Beck, David Franklin; Hockert, John

    2005-05-01

    Identifying the areas to be protected is an important part of the development of measures for physical protection against sabotage at complex nuclear facilities. In June 1999, the International Atomic Energy Agency published INFCIRC/225/Rev.4, 'The Physical Protection of Nuclear Material and Nuclear Facilities.' This guidance recommends that 'Safety specialists, in close cooperation with physical protection specialists, should evaluate the consequences of malevolent acts, considered in the context of the State's design basis threat, to identify nuclear material, or the minimum complement of equipment, systems or devices to be protected against sabotage.' This report presents a structured, transparent approach for identifying the areas that contain this minimum complement of equipment, systems, and devices to be protected against sabotage that is applicable to complex nuclear facilities. The method builds upon safety analyses to develop sabotage fault trees that reflect sabotage scenarios that could cause unacceptable radiological consequences. The sabotage actions represented in the fault trees are linked to the areas from which they can be accomplished. The fault tree is then transformed (by negation) into its dual, the protection location tree, which reflects the sabotage actions that must be prevented in order to prevent unacceptable radiological consequences. The minimum path sets of this fault tree dual yield, through the area linkage, sets of areas, each of which contains nuclear material, or a minimum complement of equipment, systems or devices that, if protected, will prevent sabotage. This method also provides guidance for the selection of the minimum path set that permits optimization of the trade-offs among physical protection effectiveness, safety impact, cost and operational impact.

  4. Dinuclear Tetrapyrazolyl Palladium Complexes Exhibiting Facile Tandem Transfer Hydrogenation/Suzuki Coupling Reaction of Fluoroarylketone

    Dehury, Niranjan

    2016-07-18

    Herein, we report an unprecedented example of dinuclear pyrazolyl-based Pd complexes exhibiting facile tandem catalysis for fluoroarylketone: Tetrapyrazolyl di-palladium complexes with varying Pd-Pd distances efficiently catalyze the tandem reaction involving transfer hydrogenation of fluoroarylketone to the corresponding alcohol and Suzuki-Miyaura cross coupling reaction of the resulting fluoroarylalcohol under moderate reaction conditions, to biaryl alcohol. The complex with the shortest Pd-Pd distance exhibits the highest tandem activity among its di-metallic analogues, and exceeds in terms of activity and selectivity the analogous mononuclear compound. The kinetics of the reaction indicates clearly that reductive transformation of haloarylketone into haloaryalcohol is the rate determining step in the tandem reaction. Interestingly while fluoroarylketone undergoes the multistep tandem catalysis, the chloro- and bromo-arylketones undergo only a single step C-C coupling reaction resulting in biarylketone as the final product. Unlike the pyrazole based Pd compounds, the precursor PdCl2 and the phosphine based relevant complexes (PPh3)2PdCl2 and (PPh3)4Pd are found to be unable to exhibit the tandem catalysis.

  5. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  6. Environmental assessment report: Nuclear Test Technology Complex. [Construction and operation of proposed facility

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report.

  7. Scoping-level Probabilistic Safety Assessment of a complex experimental facility: Challenges and first results from the application to a neutron source facility (MEGAPIE)

    Podofillini, L.; Dang, V.N.; Thomsen, K.

    2008-01-01

    This paper presents a scoping-level application of Probabilistic Safety Assessment (PSA) to selected systems of a complex experimental facility. In performing a PSA for this type of facility, a number of challenges arise, mainly due to the extensive use of electronic and programmable components and of one-of-a-kind components. The experimental facility is the Megawatt Pilot Target Experiment (MEGAPIE), which was hosted at the Paul Scherrer Institut (PSI). MEGAPIE demonstrated the feasibility of a liquid lead-bismuth target for spallation facilities at a proton beam power level of 1 MW. Given the challenges to estimate initiating event frequencies and failure event probabilities, emphasis is placed on the qualitative results obtainable from the PSA. Even though this does not allow a complete and appropriate characterization of the risk profile, some level of importance/significance evaluation was feasible, and practical and detailed recommendations on potential system improvements were derived. The second part of the work reports on a preliminary quantification of the facility risk. This provides more information on risk significance, which allows prioritizing the insights and recommendations obtained from the PSA. At the present stage, the limited knowledge on initiating and failure events is reflected in the uncertainties in their probabilities as well as in inputs quantified with bounding values. Detailed analyses to improve the quantification of these inputs, many of which turn out to be important contributors, were out of the scope of this study. Consequently, the reported results should be primarily considered as a demonstration of how quantification of the facility risk by a PSA can support risk-informed decisions, rather than precise figures of the facility risk

  8. A quantitative approach to design of material accounting system for a complex facility. Study at the PNC reprocessing plants

    Ikawa, K.

    1994-01-01

    An approach to a design of nuclear materials accounting sysyem for a complex facility in Japan is discussed. Near-real-time materials accountancy model studied at the PNC reprocessing plant is described. Main features of the computerized nuclear materials accounting system are considered as well as the PROMAC - C code algorithm for statistical data processing is presented. 18 refs., 5 figs., 1 tab

  9. Assessment of the Idaho National Laboratory Hot Fuel Examination Facility Stack Monitoring Site for Compliance with ANSI/HPS N13.1 1999

    Glissmeyer, John A.; Flaherty, Julia E.

    2010-01-01

    This document reports on a series of tests to determine whether the location of the air sampling probe in the Hot Fuels Examination Facility (HFEF) heating, ventilation and air conditioning (HVAC) exhaust duct meets the applicable regulatory criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria of the ANSI/HPS N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that is representative of the effluent stream. The tests conducted by PNNL during July 2010 on the HFEF system are described in this report. The sampling probe location is approximately 20 feet from the base of the stack. The stack base is in the second floor of the HFEF, and has a building ventilation stream (limited potential radioactive effluent) as well as a process stream (potential radioactive effluent, but HEPA-filtered) that feeds into it. The tests conducted on the duct indicate that the process stream is insufficiently mixed with the building ventilation stream. As a result, the air sampling probe location does not meet the criteria of the N13.1-1999 standard. The series of tests consists of various measurements taken over a grid of points in the duct cross section at the proposed sampling-probe location. The results of the test series on the HFEF exhaust duct as it relates to the criteria from ANSI/HPS N13.1-1999 are desribed in this report. Based on these tests, the location of the air sampling probe does not meet the requirements of the ANSI/HPS N13.1-1999 standard, and modifications must be made to either the HVAC system or the air sampling probe for compliance. The recommended approaches are discussed and vary from sampling probe modifications to modifying the junction of the two air exhaust streams.

  10. Corrective Measures Study Modeling Results for the Southwest Plume - Burial Ground Complex/Mixed Waste Management Facility

    Harris, M.K.

    1999-01-01

    Groundwater modeling scenarios were performed to support the Corrective Measures Study and Interim Action Plan for the southwest plume of the Burial Ground Complex/Mixed Waste Management Facility. The modeling scenarios were designed to provide data for an economic analysis of alternatives, and subsequently evaluate the effectiveness of the selected remedial technologies for tritium reduction to Fourmile Branch. Modeling scenarios assessed include no action, vertical barriers, pump, treat, and reinject; and vertical recirculation wells

  11. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site`s centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million.

  12. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site's centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million

  13. Improved worst-case and liely accident definition in complex facilities for 40 CFR 68 compliance

    O'Kula, K.R., Taylor, Robert P., Jr; Hang, P.

    1997-04-01

    Many DOE facilities potentially subject to compliance with offsite consequence criteria under the 40 CFR 68 Risk Management Program house significant inventories of toxic and flammable chemicals. The accident progression event tree methodology is suggested as a useful technical basis to define Worst-Case and Alternative Release Scenarios in facilities performing operations beyond simple storage and/or having several barriers between the chemical hazard and the environment. For multiple chemical release scenarios, a chemical mixture methodology should be applied to conservatively define concentration isopleths. In some instances, the region requiring emergency response planning is larger under this approach than if chemicals are treated individually

  14. Three-dimensional coupled Monte Carlo-discrete ordinates computational scheme for shielding calculations of large and complex nuclear facilities

    Chen, Y.; Fischer, U.

    2005-01-01

    Shielding calculations of advanced nuclear facilities such as accelerator based neutron sources or fusion devices of the tokamak type are complicated due to their complex geometries and their large dimensions, including bulk shields of several meters thickness. While the complexity of the geometry in the shielding calculation can be hardly handled by the discrete ordinates method, the deep penetration of radiation through bulk shields is a severe challenge for the Monte Carlo particle transport technique. This work proposes a dedicated computational scheme for coupled Monte Carlo-Discrete Ordinates transport calculations to handle this kind of shielding problems. The Monte Carlo technique is used to simulate the particle generation and transport in the target region with both complex geometry and reaction physics, and the discrete ordinates method is used to treat the deep penetration problem in the bulk shield. The coupling scheme has been implemented in a program system by loosely integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and a newly developed coupling interface program for mapping process. Test calculations were performed with comparison to MCNP solutions. Satisfactory agreements were obtained between these two approaches. The program system has been chosen to treat the complicated shielding problem of the accelerator-based IFMIF neutron source. The successful application demonstrates that coupling scheme with the program system is a useful computational tool for the shielding analysis of complex and large nuclear facilities. (authors)

  15. Extrinsic and intrinsic complexities of the Los Alamos plutonium processing facility

    Bearse, R.C.; Roberts, N.J.; Longmire, V.L.

    1985-01-01

    Analysis of the data obtained in one year of plutonium accounting at Los Alamos reveals significant complexity. Much of this complexity arises from the complexity of the processes themselves. Additional complexity is induced by errors in the data entry process. It is important to note that there is no evidence that this complexity is adversely affecting the accounting in the plant. The authors have been analyzing transaction data from fiscal year 1983 processing. This study involved 62,595 transactions. The data have been analyzed using the relational database program INGRES on a VAX 11/780 computer. This software allows easy manipulation of the original data and subsets drawn from it. The authors have been attempting for several years to understand the global features of the TA-55 accounting data. This project has underscored several of the system's complexities

  16. Extrinsic and intrinsic complexities of the Los Alamos Plutonium Processing Facility

    Bearse, R.C.; Longmire, V.L.; Roberts, N.J.

    1985-01-01

    Analysis of the data obtained in one year of plutonium accounting at Los Alamos reveals significant complexity. Much of this complexity arises from the complexity of the processes themselves. Additional complexity is induced by errors in the data entry process. It is important to note that there is no evidence that this complexity is adversely affecting the accounting in the plant. We have been analyzing transaction data from fiscal year 1983 processing. This study involved 62,595 transactions. The data have been analyzed using the relational database program INGRES on a VAX 11/780 computer. This software allows easy manipulation of the original data and subsets drawn from it. We have been attempting for several years to understand the global features of the TA-55 accounting data. This project has underscored several of the system's complexities. Examples that will be reported here include audit trails, lot-name multiplicity, etc

  17. Facile synthesis of RuII Schiff base complexes: spectral characterization and antimicrobial applications

    Arunachalam, S.; Padma Priya, N.; Shahul Meeran, H.

    2014-01-01

    Diamagnetic ruthenium (II) complexes of the type (RuCl (CO) (pyridine) (L)) (where L = monobasic tridentate Schiff base ligands) were synthesized by the reactions of Schiff bases derived from the reactions of o-aminobenzoic acid and Knovenegal condensate of β - ketoesters and appropriate ruthenium metal precursor (RuHCl (CO) (PPh 3 ) 2 (py)). Elemental analyses and spectral (FT-IR, UV-Vi s and 1 H, 31 P NMR) studies of all the new synthesized complexes suggest the presence of an octahedral environment around the Ru II ion. Cyclic voltammograms of all the complexes display oxidation and reduction potentials. Superoxide dismutase activity (SOD) of these complexes has also been examined. These complexes were also subjected to study their biocidal activity against Staphylococcus epidermidis, Escherichia coli, Botrytis cinerea and Aspergillus niger. (author)

  18. Overview of Japan Proton Accelerator Research Complex (J-PARC) project and Materials and Life Science Experimental Facility (MLF)

    Ikeda, Yujiro

    2008-01-01

    The J-PARC project has been conducted jointly by JAERI and KEK since 2001. This paper reports an overview and current status of the project. The high intensity proton accelerator consists of a 400 MeV Linac, a 3 GeV synchrotron and 50 GeV synchrotron to deliver MW level pulsed proton beam to experimental facilities. The MW proton power will provide an advanced scientific experimental research complex aiming at making breakthroughs in materials and life science with neutron and muon, nuclear and elementary physics, etc. Regarding the project being close to its completion in 2008, this paper describes the overview of J-PARC project with emphasis of the Materials and Life Science Experimental Facility, in which the MW pulsed neutron and muon sources, are placed to provide high quality neutron and muon beams to the world wide users. (author)

  19. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  20. Experimental complex to study nuclei far from beta-stability line-isol-facility YASNAPP-2

    Kalinnikov, V.G.; Gromov, K.Ya.; Ianicki, M.

    1990-01-01

    A complex of installations (complex YASNAPP-2), developed for spectroscopic investigations of short-lived isotopes and working on the line of the proton beam of the JINR phasotron, is briefly described. The first physics results of investigations of short-lived nuclides in the rare earth region are presented: the alpha-spectrum of A=155 and the gamma-gamma coincidence spectrum for A=157. 25 refs.; 9 figs.; 2 tabs

  1. Facile reactions of gold(i) complexes with tri(tert-butyl)azadiboriridine.

    Shang, Rong; Saito, Souta; Jimenez-Halla, J Oscar C; Yamamoto, Yohsuke

    2018-04-17

    Direct structural evidence for group 11 metal-mediated B-B bond activation was obtained from reactions of tri(tert-butyl)azadiboriridine (1) with AuCl(L) complexes. The AuCl(SMe2) reaction afforded [η2-B,B-B(tBu)N(tBu)B(tBu)]AuCl (2) by ligand displacement. More donating phosphines as co-ligands led to B-B bond cleavage accompanied by either halide or L migration to form boron-gold complexes 3 (L = PPh3) and 4 (L = PMe3). A similar product 5, which is isostructural to 4, was obtained by the addition of dimethylaminopyridine (DMAP) to 2-4. Complexes 2-5 constitute rare examples of metal complexes bearing two Lewis acidic centres. The effect of the boryl ligand was demonstrated in the formation of a gold(i) complex 6 bearing a 5-membered heterocycle from 3 and tert-butylisonitrile. Plausible reaction mechanisms that led to these complexes and their bonding situation were explored computationally at the DFT level.

  2. Facile CO cleavage by a multimetallic CsU2 nitride complex

    Falcone, Marta; Scopelliti, Rosario; Mazzanti, Marinella; Kefalidis, Christos E.; Maron, Laurent

    2016-01-01

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU 2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU IV -N-U IV core to yield CsU III (OTf) and [MeN=U V ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms.

  3. A survey of atmospheric dispersion models applicable to risk studies for nuclear facilities in complex terrain

    Wittek, P.

    1985-09-01

    Atmospheric dispersion models are reviewed with respect to their application to the consequence assessment within risk studies for nuclear power plants located in complex terrain. This review comprises: seven straight-line Gaussian models, which have been modified in order to take into account in a crude way terrain elevations, enhanced turbulence and some others effects; three trajectory/puff-models, which can handle wind direction changes and the resulting plume or puff trajectories; five three-dimensional wind field models, which calculate the wind field in complex terrain for the application in a grid model; three grid models; one Monte-Carlo-model. The main features of the computer codes are described, along with some informations on the necessary computer time and storage capacity. (orig.) [de

  4. Comparison of risk-dominant scenario assumptions for several TRU waste facilities in the DOE complex

    Foppe, T.L.; Marx, D.R.

    1999-01-01

    In order to gain a risk management perspective, the DOE Rocky Flats Field Office (RFFO) initiated a survey of other DOE sites regarding risks from potential accidents associated with transuranic (TRU) storage and/or processing facilities. Recently-approved authorization basis documents at the Rocky Flats Environmental Technology Site (RFETS) have been based on the DOE Standard 3011 risk assessment methodology with three qualitative estimates of frequency of occurrence and quantitative estimates of radiological consequences to the collocated worker and the public binned into three severity levels. Risk Class 1 and 2 events after application of controls to prevent or mitigate the accident are designated as risk-dominant scenarios. Accident Evaluation Guidelines for selection of Technical Safety Requirements (TSRs) are based on the frequency and consequence bin assignments to identify controls that can be credited to reduce risk to Risk Class 3 or 4, or that are credited for Risk Class 1 and 2 scenarios that cannot be further reduced. This methodology resulted in several risk-dominant scenarios for either the collocated worker or the public that warranted consideration on whether additional controls should be implemented. RFFO requested the survey because of these high estimates of risks that are primarily due to design characteristics of RFETS TRU waste facilities (i.e., Butler-type buildings without a ventilation and filtration system, and a relatively short distance to the Site boundary). Accident analysis methodologies and key assumptions are being compared for the DOE sites responding to the survey. This includes type of accidents that are risk dominant (e.g., drum explosion, material handling breach, fires, natural phenomena, external events, etc.), source term evaluation (e.g., radionuclide material-at-risk, chemical and physical form, damage ratio, airborne release fraction, respirable fraction, leakpath factors), dispersion analysis (e.g., meteorological

  5. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Plan for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.

  6. Cold storage facilities in the home. A complex question; Kotitalouden kylmaesaeilytys on monitahoinen kysymys

    Marjomaa, T. [Work Efficiency Inst., Helsinki (Finland)

    1997-08-01

    Cold storage plays a central station in the management of food matters in Banish household. The need for freezing becomes especially emphasised in preserving berries, vegetables and game. The matter of how much and what kind of a cold storage is needed varies from household to household and according to people`s stage in life - even according to the days of the week. The average Banish household uses an average of 1-4 refrigeration devices. Most of them are switched on throughout the year. Despite the low connected loads, the yearly consumption of electricity is significant. The daily (24 h) power consumption of freezer-refrigerators included in TTS-Institute`s study in 1995-1996 was 1.13-2.13 kWh with the corresponding annual consumption then being 412-777 kWh. The methods provided by product development have made it possible to improve the energy-saving effects of refrigeration devices. For instance the structural properties of devices have.been developed: these include thicker insulation and the structure of compressors. condensers and evaporators. The TTS-Institute has proposed product development ideas. e.g. on the convertibility of cold-storage facilities. (orig.)

  7. Facile CO Cleavage by a Multimetallic CsU2 Nitride Complex.

    Falcone, Marta; Kefalidis, Christos E; Scopelliti, Rosario; Maron, Laurent; Mazzanti, Marinella

    2016-09-26

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU(IV) -N-U(IV) core to yield CsU(III) (OTf) and [MeN=U(V) ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Facile CO cleavage by a multimetallic CsU{sub 2} nitride complex

    Falcone, Marta; Scopelliti, Rosario; Mazzanti, Marinella [Ecole Polytechnique de Federale de Lausanne (EPFL) (Switzerland). Inst. des Sciences et Ingenierie Chimiques; Kefalidis, Christos E.; Maron, Laurent [Toulouse Univ. (France). LPCNO, CNRS et INSA, UPS

    2016-09-26

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU{sub 2}(μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU{sup IV}-N-U{sup IV} core to yield CsU{sup III}(OTf) and [MeN=U{sup V}] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms.

  9. Simulating storm surge inundation and damage potential within complex port facilities

    Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan

    2017-04-01

    Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular

  10. Routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities fiscal year 1995 report

    Galloway, K.J.; Jolley, J.G.

    1995-12-01

    This report presents the data and results of the routine organic air emissions monitoring performed in the Radioactive Waste Management Complex Waste Storage Facility, WMF-628, from January 4, 1995 to September 3, 1995. The task objectives were to systematically identify and measure volatile organic compound (VOC) concentrations within WMF-628 that could be emitted into the environment. These routine measurements implemented a dual method approach using Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) monitoring and the Environmental Protection Agency (EPA) analytical method TO-14, Summa reg-sign Canister sampling. The data collected from the routine monitoring of WNF-628 will assist in estimating the total VOC emissions from WMF-628

  11. Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments

    Kenji Nakajima

    2017-11-01

    Full Text Available The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex (J-PARC, is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

  12. Storage for the Fast Flux Test Facility unirradiated fuel in the Plutonium Finishing Plant Complex, Hanford Site, Richland, Washington

    1992-01-01

    This Environmental Assessment evaluates the proposed action to relocate and store unirradiated Fast Flux Test Facility fuel in the Plutonium Finishing Plant Complex on the Hanford Site, Richland, Washington. The US Department of Energy has decided to cease fuel fabrication activities in the 308 Building in the 300 Area. This decision was based on a safety concern over the ability of the fuel fabrication portion of the 308 Building to withstand a seismic event. The proposed action to relocate and store the fuel is based on the savings that could be realized by consolidating security costs associated with storage of the fuel. While the 308 Building belowgrade fuel storage areas are not at jeopardy by a seismic event, the US Department of Energy is proposing to cease storage operations along with the related fabrication operations. The US Department of Energy proposes to remove the unirradiated fuel pins and fuel assemblies from the 308 Building and store them in Room 192A, within the 234-5Z Building, a part of the Plutonium Finishing Plant Complex, located in the 200 West Area. Minor modifications to Room 192A would be required to accommodate placement of the fuel. The US Department of Energy estimates that removing all of the fuel from the 308 Building would save $6.5 million annually in security expenditures for the Fast Flux Test Facility. Environmental impacts of construction, relocation, and operation of the proposed action and alternatives were evaluated. This evaluation concluded that the proposed action would have no significant impacts on the human environment

  13. The Sellafield contaminated land and groundwater management project: Characterisation of a complex nuclear facility

    Cruickshak, Julian

    2012-01-01

    The Sellafield site in North West England is one of the oldest and largest nuclear sites in the world, with a 70 year industrial history of processing and power generation. At certain points in time this industrial activity has affected the quality of land on parts of the site and one of the main tasks for Sellafield Ltd is to understand and control the legacy of ground contamination to ensure protection of the workforce, the public and the environment. Sellafield Ltd has recently completed a multi-million Pound investigation of the most complex part of the site in order to understand the impact of the various known and potential sources of contamination. The constraints of working in a challenging operational environment required both the use of tried and tested approaches and experimentation with innovative techniques. As experience was gained during implementation of the project, the characterisation plan was evolved and adapted to ensure a successful outcome. The presentation will outline the role and importance of characterising land and groundwater at Sellafield, explain how the site investigation strategy and techniques were designed to meet the challenge and describe the performance of the investigation in practice. It will conclude with a summary of how the results will be used to better support ongoing safety and environmental management and to aid the development of strategy and planning for the future. (author)

  14. Summary of Laboratory Capabilities Fact Sheets Waste Sampling and Characterization Facility and 222-S Laboratory Complex

    HADLEY, R.M.

    2002-01-01

    This summary of laboratory capabilities is provided to assist prospective responders to the CH2M HILL Hanford Group, Inc. (CHG) Requests for Proposal (RFP) issued or to be issued. The RFPs solicit development of treatment technologies as categorized in the CHG Requests for Information (RFI): Solid-Liquid Separations Technology - SOL: Reference-Number-CHG01; Cesium and Technetium Separations Technology - SOL: Reference-Number-CHG02; Sulfate Removal Technology - SOL: Reference-Number-CHG03; Containerized Grout Technology - SOL: Reference-Number-CHG04; Bulk Vitrification Technology - SOL: Reference-Number-CHG05; and TRU Tank Waste Solidification for Disposal at the Waste Isolation Pilot Plant - SOL: Reference-Number-CHG06 Hanford Analytical Services, Technology Project Management (TPM), has the capability and directly related experience to provide breakthrough innovations and solutions to the challenges presented in the requests. The 222-S Complex includes the 70,000 sq ft 222-S Laboratory, plus several support buildings. The laboratory has 11 hot cells for handling and analyzing highly radioactive samples, including tank farm waste. Inorganic, organic, and radiochemical analyses are performed on a wide variety of air, liquid, soil, sludge, and biota samples. Capabilities also include development of process technology and analytical methods, and preparation of analytical standards. The TPM staff includes many scientists with advanced degrees in chemistry (or closely related fields), over half of which are PhDs. These scientists have an average 20 years of Hanford experience working with Hanford waste in a hot cell environment. They have hundreds of publications related to Hanford tank waste characterization and process support. These would include, but are not limited to, solid-liquid separations engineering, physical chemistry, particle size analysis, and inorganic chemistry. TPM has had revenues in excess of $1 million per year for the past decade in above

  15. A nuclear desalination complex with a VK-300 boiling type reactor facility

    Kuznetzov, Y.N.; Mishanina, Y.A.; Romenkov, A.A.

    2004-01-01

    RDIPE has developed a detailed design of an enhanced safety nuclear steam supply system (NSSS) with a VK-300 boiling water reactor for combined heat and power generation. The thermal power of the reactor is 750 MW. The maximum electrical power in the condensation mode is 250 MWe. The maximum heat generation capacity of 400 Gcal/h is reached at 150 MWe. This report describes, in brief, the basic technical concepts for the VK-300 NSSS and the power unit, with an emphasis on enhanced safety and good economic performance. With relatively small power, good technical and economic performance of the VK-300 reactor that is a base for the desalination complex is attained through: reduced capital costs of the nuclear plant construction thanks to technical approaches ensuring maximum simplicity of the reactor design and the NSSS layout; a single-circuit power unit configuration (reactor-turbine) excluding expensive equipment with a lot of metal, less pipelines and valves; reduced construction costs of the basic buildings thanks to reduced construction volumes due to rational arrangement concepts; higher reliability of equipment and reduced maintenance and repair costs; longer reactor design service life of up to 60 years; selection of the best reactor and desalination equipment interface pattern. The report considers the potential application of the VK-300 reactor as a source of energy for distillation desalination units. The heat from the reactor is transferred to the desalination unit via an intermediate circuit. Comparison is made between variants of the reactor integration with desalination units of the following types: multi-stage flash (MSF technology); multi-effect distillation horizontal-tube film units of the DOU GTPA type (MED technology). The NDC capacity with the VK-300 reactor, in terms of distillate, will be more than 200,000 m 3 /day, with the simultaneous output of electric power from the turbine generator buses of around 150 MWe. The variants of the

  16. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  17. A Complex Facility

    Federal Laboratory Consortium — TEST STAND CAPABILITIES:Thrust capability of 1.5 M-lbFlame Deflector Cooling 220,000 gal/minDeluge System 75,000 gal/minData measurement systemTwo derricks - 75 ton...

  18. Approach to the open advanced facilities initiative for innovation (strategic use by industry) at the University of Tsukuba, Tandem Accelerator Complex

    Sasa, K.; Tagishi, Y.; Naramoto, H.; Kudo, H.; Kita, E.

    2010-01-01

    The University of Tsukuba, Tandem Accelerator Complex (UTTAC) possesses the 12UD Pelletron tandem accelerator and the 1 MV Tandetron accelerator for University's inter-department education research. We have actively advanced collaborative researches with other research institutes and industrial users. Since the Open Advanced Facilities Initiative for Innovation by the Ministry of Education, Culture, Sports, Science and Technology started in 2007, 12 industrial experiments have been carried out at the UTTAC. This report describes efforts by University's accelerator facility to get industrial users. (author)

  19. Chemical mass balance modeling for air quality analysis near a waste-to-energy facility in a complex urban area: Program design

    Wells, R.; Watson, J.

    1997-01-01

    This paper describes the design and implementation of an ambient monitoring and receptor modeling study to evaluate air quality impacts from a state-of-the-art municipal waste management facility in a major urban area. The Robbins Resource Recovery Facility (RRRF), located in the Chicago metropolitan area, processes municipal solid waste (MSW) to recover recyclables, process the residual waste to create refuse-derived fuel (RDF), and burns the RDF to reduce the residual waste volume and recover energy. The RRRF is cooperating with the Illinois Environmental Protection Agency (IEPA) and the Illinois Office of the Attorney General (OAG) to analyze air quality and facility impacts in the plant vicinity. An ambient monitoring program began one year before plant operation and will continue for five years after startup. Because the impacts of the RRRF are projected to be very low, and because the Chicago area includes a complex mix of existing industrial, commercial, and residential activity, the ambient data will be analyzed using Version 7.0 of the USEPA s Chemical Mass Balance (CMB) model to estimate the extent of the RRRF's impact on air quality in the area. The first year of pre-operational ambient data is currently under analysis. This paper describes the study design considerations, ambient monitoring program, emission data acquisition, background source data needs, and data analysis procedures developed to conduct CMB modeling in a complex industrialized area

  20. The effect of nuclear facilities operation on fish populations and the Dukovany-Dalesice power complex under construction

    Penaz, M.

    1979-01-01

    The scope and the main results are described of the hydrobiological and ichthyological research into the Jihlava river in the neighbourhood of the Dukovany - Dalesice power plant complex. The effect of the power plant complex on the ecosystem of the affected river stretch is predicted, mainly on the fish community. (author)

  1. When Richard Branson wants to build his own facility; Quand Richard Branson veut construire son propre complexe

    Cosnard, D

    2005-10-01

    The capacity of petroleum refineries is today insufficient to meet the demand. In front of this shortage, Sir Richard Branson, the owner of Virgin Atlantic Airways, has decided to invest in the building of a refinery in Europe or in Canada. His new company, Virgin Oil, is already launched. However, the setting up of a new facility is very expensive and raises important problems of permits and public contestation which remain to be solved. Short paper. (J.S.)

  2. A comparison of MCNP6-1.0 and GEANT 4-10.1 when evaluating the neutron output of a complex real world nuclear environment: The thermal neutron facility at the Tri Universities Meson facility

    Monk, S.D., E-mail: s.monk@lancaster.ac.uk [Department of Engineering, Lancaster University, Lancaster LA1 4YW (United Kingdom); Shippen, B.A. [Department of Engineering, Lancaster University, Lancaster LA1 4YW (United Kingdom); Colling, B.R. [Department of Engineering, Lancaster University, Lancaster LA1 4YW (United Kingdom); Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Cheneler, D.; Al Hamrashdi, H.; Alton, T. [Department of Engineering, Lancaster University, Lancaster LA1 4YW (United Kingdom)

    2017-05-15

    Highlights: • Comparison of the use of MCNP6 and GEANT4 Monte Carlo software when large distances and thicknesses are considered. • The Thermal Neutron Facility (TNF) at TRIUMF used as an example real life example location. • The effects of water, aluminium, iron and lead considered over various thicknesses up to 3 m. - Abstract: A comparison of the Monte Carlo based simulation codes MCNP6-1.0 and GEANT4-10.1 as used for modelling large scale structures is presented here. The high-energy neutron field at the Tri Universities Meson Facility (TRIUMF) in Vancouver, British Columbia is the structure modelled in this work. Work with the emphasis on the modelling of the facility and comparing with experimental results has been published previously, whereas this work is focussed on comparing the performance of the codes over relatively high depths of material rather than the accuracy of the results themselves in comparison to experimental data. Comparisons of three different locations within the neutron facility are modelled and presented using both codes as well as analysis of the transport of typical neutrons fields through large blocks of iron, water, lead and aluminium in order to determine where any deviations are likely to have occurred. Results indicate that over short distances, results from the two codes are in broad agreement – although over greater distances and within more complex geometries, deviation increases dramatically. The conclusions reached are that it is likely the deviations between the codes is caused by both the compounding effect of slight differences between the cross section files used by the two codes to determine the neutron transport through iron, and differences in the processes used by both codes.

  3. Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex III: Neutron Devices and Computational and Sample Environments

    Kaoru Sakasai

    2017-08-01

    Full Text Available Neutron devices such as neutron detectors, optical devices including supermirror devices and 3He neutron spin filters, and choppers are successfully developed and installed at the Materials Life Science Facility (MLF of the Japan Proton Accelerator Research Complex (J-PARC, Tokai, Japan. Four software components of MLF computational environment, instrument control, data acquisition, data analysis, and a database, have been developed and equipped at MLF. MLF also provides a wide variety of sample environment options including high and low temperatures, high magnetic fields, and high pressures. This paper describes the current status of neutron devices, computational and sample environments at MLF.

  4. The facile synthesis of a chitosan Cu(II) complex by solution plasma process and evaluation of their antioxidant activities.

    Ma, Fengming; Li, Pu; Zhang, Baiqing; Wang, Zhenyu

    2017-10-01

    Synthesis of chitosan-Cu(II) complex by solution plasma process (SPP) irradiation was investigated. The effects of the distance between the electrodes, initial Cu(II) concentration, and initial pH on the Cu(II) adsorption capacity were evaluated. The results showed that narrower distance between the electrodes, higher initial Cu(II) concentration and higher initial pH (at pHchitosan-Cu(II) complex by ultraviolet-visible (UV-vis), fourier transform infrared (FT-IR) and electron spin resonance (ESR) spectroscopy revealed that the main structure of chitosan was not changed after irradiation. Thermogravimetry (TG) analysis indicated that Cu(II) ions were well incorporated into the chitosan. The antioxidant activity of the chitosan-Cu(II) complex was evaluated by DPPH, ABTS, and reducing power assays. The chitosan-Cu(II) complex exhibited greater antioxidant activity than the original chitosan. Thus, SPP could be used for preparation of chitosan-Cu(II) complexes. Copyright © 2017. Published by Elsevier B.V.

  5. Retention-tank systems: A unique operating practice for managing complex waste streams at research and development facilities

    Brigdon, S.

    1996-01-01

    The importance of preventing the introduction of prohibited contaminants to the sanitary sewer is critical to the management of large federal facilities such as the Lawrence Livermore National Laboratory (LLNL). LLNL operates 45 retention-tank systems to control wastewater discharges and to maintain continued compliance with environmental regulations. LLNL's unique internal operation practices successfully keep prohibited contaminants out of the sanitary waste stream and maintain compliance with federal, state, and local regulations, as well as determining appropriate wastewater-disposal options. Components of the system include sampling and analysis of the waste stream, evaluation of the data, discharge approval, and final disposition of the waste stream

  6. Hanford facility dangerous waste Part A, Form 3, and Part B permit application documentation for the Central Waste Complex (WA7890008967) (TSD: TS-2-4)

    Saueressig, D.G.

    1998-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998

  7. Hanford facility dangerous waste Part A, Form 3 and Part B permit application documentation, Central Waste Complex (WA7890008967)(TSD: TS-2-4)

    Saueressig, D.G.

    1998-05-20

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998.

  8. Successful Characterization Strategies for the Active High Risk Y-12 National Security Complex 9201-5 (Alpha-5) Facility, Oak Ridge, TN - 12164

    Birchfield, Joseph W. III [Link Technologies (United States); Albrecht, Linda [Alliant Corporation (United States)

    2012-07-01

    Building 9201-5 (Alpha 5) was completed in May 1944 and served as a production facility for National Nuclear Security Administration (NNSA) Y-12 Weapons Plant. During the Manhattan Project, it functioned as a uranium enrichment facility. The facility was renovated and altered over the years, converting the calutrons to support other missions. Alpha 5 consists of 4 floors and a basement measuring approximately 600,000 square feet. The facility contains various pieces of equipment remaining from legacy operations. A significant amount (approximately 200,000 kgs) of mercury (Hg) has been spilled in the facility over the operational history of the building. To further complicate matters, beryllium (Be) contamination in 9201-5 is found throughout approximately sixty percent of the facility. Concentrations varying from very low (< 0.2 micrograms (μg)/100 cm{sup 2}) to areas where concentrations are relatively high, approximately 600 μg/100 cm{sup 2}, in regulated beryllium areas. The primary site related contaminants (SRCs) for the waste in this facility are enriched uranium, depleted uranium, beryllium and mercury. This facility represents the highest environmental risk for DOE-ORO EM and NNSA at Y-12 and must be quickly addressed to minimize impacts to future Y-12 missions, as well as human health and the environment. As part of the American Recovery and Reinvestment Act (ARRA), approximately 700,000 cubic feet of legacy material was removed in 2010 and 2011. In addition, characterization of the 9201-5 facility was scheduled in the winter and spring of 2011. This activity was initiated in January 2011 and was completed in July 2011. Heavy schedule pressure was further complicated by the fact that this building has active utility, security and process systems. Given these complex variables, a unique, out of the box characterization strategy was forged in an effort to bound radiological and chemical contaminants, as well as providing the appropriate level of quality to

  9. Reconfiguration of the NRAD delay loop for proposed 1 MW operations

    Heidel, C.C.; Richards, W.J.; Pruett, D.P.

    1984-01-01

    The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both nondestructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the nondestructive examination technqiues utilized at HFEF is neutron radiography. Neutron radiography is provided by the NRAD reactor facility, which is located beneath the HFEF hot cell. The NRAD reactor is a TRIGA reactor and is operated at a steady-state power level of 250 kw solely for neutron radiography and the development of radiography techniques. Modifications of the NRAD delay loop for 1 MW operations are described

  10. The complex scenario of obesity, diabetes and hypertension in the area of influence of primary healthcare facilities in Mexico.

    Alcalde-Rabanal, J E; Orozco-Núñez, E; Espinosa-Henao, O E; Arredondo-López, A; Alcayde-Barranco, L

    2018-01-01

    Among non-communicable chronic diseases (NCCD), diabetes and hypertension are the main cause of adult mortality worldwide. Among the members of the Organization for Economic Cooperation and Development, Mexico is first in prevalence of diabetes and second in obesity. To face this problematic situation of NCCDs the Ministry of Health declared a national epidemiological alert against the overweight, obesity and diabetes. The target of this study is to characterize the status of obesity, diabetes and hypertension in the adult population in the area of influence of primary health facilities located in high social marginality areas. We conducted a cross-sectional observational study and used a convenience sample. A survey was conducted on a population of 18 years old and above in four primary health facilities in four Mexican States. The survey explored sociodemographic characteristics, the presence of chronic diseases, the access to healthcare services, risk factors and life styles. We also applied a complementary questionnaire to 20% of the participants, in order to explore food consumption during the last week and physical activity (International Physical Activity Questionnaire). We based our analysis on descriptive statistics and logistic multivariate regression to analyze factors associated with diabetes and hypertension. 73% (n = 7531, CI 0.72-0.74) percent of the population reported being diabetic, hypertensive and/or overweight. The majority of them receive healthcare in public health services. People over 40 years old, are 11 times more probable of living with diabetes and 8.7 times more probable of living with hypertension. Both conditions affect mostly women, whose main activity is to be a housewife. People who have lunch and dinner out of home are more likely to develop diabetes. People who perform intense physical activity are less likely to live with hypertension. According to the self-report, more than 70% of adult population living in areas with high

  11. A cationic Ag-I(PNPtBu) species acting as PNP transfer agent: Facile synthesis of Pd(PNPtBu)(alkyl) complexes and their reactivity compared to PCPtBu analogues

    van der Vlugt, J.I.; Siegler, M.A.; Janssen, M.; Vogt, D.; Spek, A.L.

    2009-01-01

    The straightforward Synthesis of cationic complex 1, [Ag(PNtBu)]BF4 (PNPtBu = 1,2-bis[(di-tert-butylphosphino)methyl]pyridine), and its facile transmetalating properties toward gold and palladium are described. The corresponding Au complex [Au(PNPtBu)](2)(BF4)(2) (2) exists its a dimer in the solid

  12. A cationic Agi( PNPtBu) species acting as PNP transfer agent: facile synthesis of Pd(PNPtBu)(alkyl) complexes and their reactivity compared to PCPtBu analogues

    Vlugt, van der J.I.; Siegler, M.A.; Janssen, M.C.C.; Vogt, D.; Spek, A.L.

    2009-01-01

    The straightforward synthesis of cationic complex 1, [Ag(PNPtBu)]BF4 (PNPtBu = 1,2-bis[(di-tert-butylphosphino)methyl]pyridine), and its facile transmetalating properties toward gold and palladium are described. The corresponding Au complex [Au(PNPtBu)]2(BF4)2 (2) exists as a dimer in the solid

  13. The neutron total cross-section measurement of 56Fe and 57Fe by using Japan Proton Accelerator Research Complex facility

    Kim, Eun Ae; Shvetsov, Valery; Cho, Moo Hyun; Won, Nam Kung; Kim, Kwang Soo; Yang, Sung Chul; Lee, Man Woo; Kim, Guin Yun; Yi, Kyoung Rak; Choi, Hong Yub; Ro, Tae Ik; Mizumoto, Motoharu; Katabuchi, Tatsuya; Igashira, Masayuki

    2012-01-01

    The measurement of neutron cross section using Time-Of-Flight (TOF) method gives significant information for the nuclear data research. In the present work, the neutron total cross section of 56 Fe and 57 Fe has been measured in the energy range between 10 eV and 100 keV by using the neutron beam produced from 3-GeV proton synchrotron accelerator. The 3-GeV proton synchrotron accelerator is located at Japan Proton Accelerator Research Complex (J-PARC) facility in Tokai village. In this study, the neutron total cross section data measured by 6 Li glass scintillator detector was compared with the evaluated values of ENDF/B-VII.0

  14. The neutron total cross-section measurement of {sup 56}Fe and {sup 57}Fe by using Japan Proton Accelerator Research Complex facility

    Kim, Eun Ae; Shvetsov, Valery; Cho, Moo Hyun [Pohang University of Science and Technology, Pohang (Korea, Republic of); Won, Nam Kung [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, Kwang Soo; Yang, Sung Chul; Lee, Man Woo; Kim, Guin Yun [Kyungpook National University, Daegu (Korea, Republic of); Yi, Kyoung Rak; Choi, Hong Yub; Ro, Tae Ik [Dong-A University, Pusan (Korea, Republic of); Mizumoto, Motoharu; Katabuchi, Tatsuya; Igashira, Masayuki [Tokyo Institute of Technology, Tokyo (Japan)

    2012-05-15

    The measurement of neutron cross section using Time-Of-Flight (TOF) method gives significant information for the nuclear data research. In the present work, the neutron total cross section of {sup 56}Fe and {sup 57}Fe has been measured in the energy range between 10 eV and 100 keV by using the neutron beam produced from 3-GeV proton synchrotron accelerator. The 3-GeV proton synchrotron accelerator is located at Japan Proton Accelerator Research Complex (J-PARC) facility in Tokai village. In this study, the neutron total cross section data measured by {sup 6}Li glass scintillator detector was compared with the evaluated values of ENDF/B-VII.0

  15. Comparative analysis of Pu spread resistance of chemico-technological (out of pile) complexes of electronuclear molten salt and heavy water blanket facilities for transmutation

    Volk, V.I.; Vakhrushin, A.Yu.; Gorbunov, V.F.; Kushnikov, V.V.

    1997-01-01

    Technological processes used for radiochemical reprocessing of molten salt and heavy water blankets of an electronuclear facility for Pu transmutation and Pu distribution in those processes are characterized. Below the major parameters are given that affect the resistance of the technological to Pu proliferation. Types of Pu migration: process losses, accident related losses, theft. Factors affecting migration are total inventory of Pu in a reprocessing complex, purity of Pu and its compounds, chemical condition of Pu, the feasibility of equipping technological processes with instruments of control. The comparative analysis carried out taking into account the above parameters established that the technological processes related to heavy water blanket reprocessing, specifically a homogeneous (solution) option, are much more resistant to Pu proliferation, including both Pu migration to the environment and the unsanctioned withdrawal of Pu from the technological process. 5 refs., 4 figs

  16. Adaptive algorithm of selecting optimal variant of errors detection system for digital means of automation facility of oil and gas complex

    Poluyan, A. Y.; Fugarov, D. D.; Purchina, O. A.; Nesterchuk, V. V.; Smirnova, O. V.; Petrenkova, S. B.

    2018-05-01

    To date, the problems associated with the detection of errors in digital equipment (DE) systems for the automation of explosive objects of the oil and gas complex are extremely actual. Especially this problem is actual for facilities where a violation of the accuracy of the DE will inevitably lead to man-made disasters and essential material damage, at such facilities, the diagnostics of the accuracy of the DE operation is one of the main elements of the industrial safety management system. In the work, the solution of the problem of selecting the optimal variant of the errors detection system of errors detection by a validation criterion. Known methods for solving these problems have an exponential valuation of labor intensity. Thus, with a view to reduce time for solving the problem, a validation criterion is compiled as an adaptive bionic algorithm. Bionic algorithms (BA) have proven effective in solving optimization problems. The advantages of bionic search include adaptability, learning ability, parallelism, the ability to build hybrid systems based on combining. [1].

  17. National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities

    Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James

    2016-01-01

    Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220

  18. Facile and reversible formation of iron(III)-oxo-cerium(IV) adducts from nonheme oxoiron(IV) complexes and cerium(III)

    Draksharapu, Apparao; Rasheed, Waqas; Klein, Johannes E.M.N.; Que, Lawrence Jr. [Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN (United States)

    2017-07-24

    Ceric ammonium nitrate (CAN) or Ce{sup IV}(NH{sub 4}){sub 2}(NO{sub 3}){sub 6} is often used in artificial water oxidation and generally considered to be an outer-sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)Fe{sup III}-O-Ce{sup IV}(OH{sub 2})(NO{sub 3}){sub 4}]{sup +} (3), a complex obtained from the reaction of [(N4Py)Fe{sup II}(NCMe)]{sup 2+} with 2 equiv CAN or [(N4Py)Fe{sup IV}=O]{sup 2+} (2) with Ce{sup III}(NO{sub 3}){sub 3} in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the Fe{sup IV} and Ce{sup IV} centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S=1 Fe{sup IV} in 2 to S=5/2 in 3, which is found to be facile despite the formal spin-forbidden nature of this process. This observation suggests that Fe{sup IV}=O complexes may avail of reaction pathways involving multiple spin states having little or no barrier. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Softball Complex

    Ellis, Jim

    1977-01-01

    The Parks and Recreation Department of Montgomery, Alabama, has developed a five-field softball complex as part of a growing community park with facilities for camping, golf, aquatics, tennis, and picnicking. (MJB)

  20. Novel and facile method, dynamic self-assemble, to prepare SnO₂/rGO droplet aerogel with complex morphologies and their application in supercapacitors.

    Chen, Mingxi; Wang, Huan; Li, Lingzhi; Zhang, Zhe; Wang, Cong; Liu, Yu; Wang, Wei; Gao, Jianping

    2014-08-27

    A facile and novel method to prepare SnO2/reduced graphene oxide (rGO) droplet aerogels with complex morphologies had been developed. This method has been named dynamic self-assemble. Aerogels with both "egg-tart" and "mushroom" shapes were obtained by this method. The changes in the graphene oxide (GO) droplet morphologies during the dynamic process of a GO droplet falling into a SnCl2 target solution were monitored using a high speed camera. The formed SnO2/rGO aerogels were then characterized by Raman spectroscopy, thermogravimetric analysis, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The microstructures of the SnO2/rGO aerogels were observed with scanning electron microscopy and transmission electron microscopy. Finally, the SnO2/rGO droplet aerogels were used as the electrode material in a symmetrical two-electrode supercapacitor and the electrochemical performance of the supercapacitor was investigated using cyclic voltammetry and galvanostatic charge/discharge methods. The SnO2/rGO electrodes demonstrated excellent electrochemical performance and stability. At a scan rate of 5 mV/s, their highest gravimetric and volumetric specific capacitances were 310 F/g and 180 F/cm(3), respectively, and their energy and power densities were as high as 30 Wh·kg(-1) and 8.3 kW·kg(-1), respectively.

  1. Technical merits and leadership in facility management

    Shoemaker, Jerry J

    1997-01-01

    After almost ten years of experience and formal education in design, construction, and facility operations and maintenance, the challenges and complexity of facility management still seem overwhelming and intangible. This document explores those complexities and challenges, and presents several philosophies and strategies practiced in facility management. The document is divided into six chapters; the introduction, facility management and leadership, building systems, facility operations, fac...

  2. Facile synthesis of highly biocompatible folic acid-functionalised SiO2 nanoparticles encapsulating rare-earth metal complexes, and their application in targeted drug delivery.

    Xu, Xiuling; Hu, Fan; Shuai, Qi

    2017-11-14

    Mesoporous silica core-shell nanospheres encapsulating a rare-earth metal complex (RC) were first synthesised through a facile W/O (water in oil) inverse microemulsion method. In order to achieve targeted complex delivery, folic acid (FA) was used as the targeting component due to its high affinity for over-expressed folate receptors (FRs) in cancer cells. The RC 2 @SiO 2 -FA nanospheres were characterised via ultraviolet-visible light absorption spectroscopy (UV-vis spectroscopy), dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A microwave method was used to synthesise five RC cores based on 4-chlorophenoxyacetic acid, and their crystal structures were further confirmed using X-ray diffraction. The five RC cores have the following chemical formulae: [Er 2 (p-CPA) 6 (H 2 O) 6 ] RC 1 , [Ho 2 (p-CPA) 6 (H 2 O) 6 ] RC 2 , [Sm(p-CPA) 3 (H 2 O)] RC 3 , [Pr(p-CPA) 3 (H 2 O)]·3H 2 O RC 4 and [Ce(p-CPA) 3 (H 2 O) 2 ]·2H 2 O RC 5 . The carboxyl groups showed two kinds of coordination modes, namely μ 2 -η 1 :η 1 and μ 2 -η 1 :η 2 , among RC 1 -RC 5 . The flexible -OCH 2 COO- spacer group, which can undergo rotation of its C-O and C-C bonds, offered great potential for structural diversity. In vivo experiments revealed that the nanospheres exhibited no obvious cytotoxicity on HepG2 cells and 293 T cells, even at concentrations of up to 80 μg mL -1 . Nevertheless, all of the RC cores showed a certain degree of anti-tumour efficacy; in particular, RC 2 showed the strongest cytotoxicity against HepG2 cells. Interestingly, the cytotoxicity of all of the RC 2 @SiO 2 -FA nanospheres was higher than that of lone RC 2 . These types of FA-targeted mesoporous silica nanocarriers can be used for the delivery of anti-tumour RC, and provide a basis for the further study of affordable non-platinum-based complexes.

  3. Thorium-U Recycle Facility (7930)

    Federal Laboratory Consortium — The Thorium-U Recycle Facility (7930), along with the Transuranic Processing Facility (7920). comprise the Radiochemical Engineering Development Complex. 7930 is a...

  4. Causal Analysis of the Unanticipated Extremity Exposure at HFEF

    David E. James; Charles R. Posegate; Thomas P. Zahn; Alan G. Wagner

    2011-11-01

    This report covers the unintended extremity exposure to an operator while handling a metallurgical mount sample of irradiated fuel following an off-scale high beta radiation reading of the sample. The decision was made to continue working after the meter indicated high off-scale by the HPT Supervisor, which resulted in the operator at the next operation being exposed.

  5. Advanced Microscopy Facility

    Federal Laboratory Consortium — FUNCTION: Provides a facility for high-resolution studies of complex biomolecular systems. The goal is an understanding of how to engineer biomolecules for various...

  6. Environmental Assessment and Finding of No Significant Impact: Interim Measures for the Mixed Waste Management Facility Groundwater at the Burial Ground Complex at the Savannah River Site

    N/A

    1999-12-08

    The U. S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed interim measures for the Mixed Waste Management Facility (MW) groundwater at the Burial Ground Complex (BGC) at the Savannah River Site (SRS), located near Aiken, South Carolina. DOE proposes to install a small metal sheet pile dam to impound water around and over the BGC groundwater seepline. In addition, a drip irrigation system would be installed. Interim measures will also address the reduction of volatile organic compounds (VOCS) from ''hot-spot'' regions associated with the Southwest Plume Area (SWPA). This action is taken as an interim measure for the MWMF in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC) to reduce the amount of tritium seeping from the BGC southwest groundwater plume. The proposed action of this EA is being planned and would be implemented concurrent with a groundwater corrective action program under the Resource Conservation and Recovery Act (RCRA). On September 30, 1999, SCDHEC issued a modification to the SRS RCRA Part B permit that adds corrective action requirements for four plumes that are currently emanating from the BGC. One of those plumes is the southwest plume. The RCRA permit requires SRS to submit a corrective action plan (CAP) for the southwest plume by March 2000. The permit requires that the initial phase of the CAP prescribe a remedy that achieves a 70-percent reduction in the annual amount of tritium being released from the southwest plume area to Fourmile Branch, a nearby stream. Approval and actual implementation of the corrective measure in that CAP may take several years. As an interim measure, the actions described in this EA would manage the release of tritium from the southwest plume area until the final actions under the CAP can be implemented. This proposed action is expected to reduce the

  7. Installation of a permeable reactive barrier at the mining complex facility in Los Gigantes - Cordoba : Monitoring plan of surface and underground water

    Grande Cobian, Juan D.; Sanchez Proano, Paula; Cicerone, Daniel S.

    2009-01-01

    The Argentine National Atomic Energy Commission declares under its Environmental policy the commitment to restore those sites where activities concerning Uranium mining were developed. It makes it beyond the scope of the Project of Environmental Restitution of the Uranium Mining (PRAMU from its Spanish abbreviation). The Chemistry of Water and Soil Division at the Environmental Chemistry and Energy Generation Department belonging to the Chemistry Management Office assist the PRAMU on the installation of an hydroxyapatite permeable reactive barrier (PRB) inside the Mining Complex facility placed at Los Gigantes in the Argentine province of Cordoba (in advance named the site). Among the preliminary assessment activities that are being carried out before the installation of the PRB, it has been prepared a monitoring program of surface water and groundwater useful to develop an environmental baseline suitable for the efficiency assessment of the corrective action to be applied. An exploratory campaign was conducted in the site with the aim of establishing a monitoring net of meteorological and hydrological, as well as physical, chemical and biological parameters in matrixes of sediments, water and suspended particulate matter collected on a regular time basis from its surface water and groundwater bodies. The processed results turn into useful environmental information to: a) determine the status of the environmental baseline of the site, b) establish a water quality index (WQI) to manage the natural resource quality according to a rational basis, c) plan experiments related to the design process of a biogenic hydroxyapatite PRB and d) apply chemometric and mechanistic models to forecast the contaminants mobilization through different scenarios and improve the engineering design of the PRB. Once achieved the hydrogeological characterisation of the site and taking into account the originality of the system the following results have been reached: 1) The boundaries of

  8. Facilities & Leadership

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  9. Biochemistry Facility

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  10. Dance Facilities.

    Ashton, Dudley, Ed.; Irey, Charlotte, Ed.

    This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…

  11. Facility transition instruction

    Morton, M.R.

    1997-01-01

    The Bechtel Hanford, Inc. facility transition instruction was initiated in response to the need for a common, streamlined process for facility transitions and to capture the knowledge and experience that has accumulated over the last few years. The instruction serves as an educational resource and defines the process for transitioning facilities to long-term surveillance and maintenance (S and M). Generally, these facilities do not have identified operations missions and must be transitioned from operational status to a safe and stable configuration for long-term S and M. The instruction can be applied to a wide range of facilities--from process canyon complexes like the Plutonium Uranium Extraction Facility or B Plant, to stand-alone, lower hazard facilities like the 242B/BL facility. The facility transition process is implemented (under the direction of the US Department of Energy, Richland Operations Office [RL] Assistant Manager-Environmental) by Bechtel Hanford, Inc. management, with input and interaction with the appropriate RL division and Hanford site contractors as noted in the instruction. The application of the steps identified herein and the early participation of all organizations involved are expected to provide a cost-effective, safe, and smooth transition from operational status to deactivation and S and M for a wide range of Hanford Site facilities

  12. The problems associated with the monitoring of complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    Bilski, P.; Blomgren, J.; d´Errico, F.; Esposito, A.; Fehrenbacher, G.; Fernández, F.; Fuchs, A.; Golnik, N.; Lacoste, V.; Leuschner, A.; Sandri, S.; Silari, M.; Spurný, František; Wiegel, B.; Wright, P.

    2007-01-01

    Roč. 126, 1-4 (2007), s. 491-496 ISSN 0144-8420 R&D Projects: GA MŠk 1P05OC032 Grant - others:ES(XE) Contract no FI6R-012684 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiation fields * european high-energy accelerators * thermonuclear fusion facilities Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.528, year: 2007

  13. Facilities Management Service Delivery in Public and Private High Rise Residential Buildings in Nigeria: A case study of Eko Court Complex and Niger Towers

    Olanrele O. O.

    2014-01-01

    Full Text Available This study assessed and compared the delivery of Facilities Management (FM services in public and private high rise residential buildings in Lagos, Nigeria. While some facilities or services may not be available in some public estates, the efficiency of the available ones is inadequate in comparison with the adequacy and efficiency of services provided in private estates. The objectives set for the study include identification of services that are provided in the case studies, service delivery method, and an assessment of the residents’ satisfaction of the services. This study adopted questionnaire survey for collection of data. 127 questionnaires were distributed to the residents of the case studies and 93 were returned. Three of which were discarded for incompleteness, thus 90 were analysed. The study found that most but not all of the facilities services expected in high rise buildings are available in the case studies and the services are outsourced under a standard Service Level Agreement. The service delivery in private high rise residential building is better than the public residential high rise buildings as revealed by the study. The study recommends improved standardization of services, customized services and meeting customer’s expectation for improved service delivery.

  14. Waste Facilities

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  15. Health Facilities

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  16. Fabrication Facilities

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  17. Selection of the DC-60 cyclotron as the basic facility for the Inter-disciplinary research complex in the L.N. Gumilev Eurasian State University. Chapter 2

    2003-01-01

    In the Chapter 2 the DC-60 specialized accelerator project of the Inter-disciplinary research complex in the L.N. Gumilev Eurasian State University is described. The DC-60 cyclotron is intended for applied studies which can be accomplished on both the ion beams of the electron cyclotron resonance source with voltage up to 25 kV and the accelerated ions from carbon to xenon. The cyclotron is design on the base of compact magnet with weight about 74 tonnes, and it mean magnetic field is 1.6 T, section angle - 50 Deg. Design of the Inter-disciplinary research complex building in the L.N. Gumilev Eurasian State University is described as well. Technical performances of the building and their parameters are given

  18. The control and automation of a complex experimental plant: The Sesta test facility; L`automazione di un impiuanto sperimentale complesso: La stazione di Sesta

    Maini, Michele; Prandoni, Walter [ENEL Spa, Cologno Monzese (Italy). Polo Elettrico e Automazione. Unita` Robotica

    1997-05-01

    The running of complex experimental plants in the field of energetic sources involves a strong component of automation. Since they are unique and innovative plants there are not well defined ways to run them. So it is necessary to design the automation each time and then to select the proper resources for the implementation. The plant for the testing of gas turbine components of Sesta is an important example of this type of approach.

  19. Animal facilities

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  20. Technical Merits and Leadership in Facility Management

    Shoemaker, Jerry

    1997-01-01

    After almost ten years of experience and formal education in design, construction, and facility operations and maintenance, the challenges and complexity of facility management still seem overwhelming and intangible...

  1. Facilities Programming.

    Bullis, Robert V.

    1992-01-01

    A procedure for physical facilities management written 17 years ago is still worth following today. Each of the steps outlined for planning, organizing, directing, controlling, and evaluating must be accomplished if school facilities are to be properly planned and constructed. However, lessons have been learned about energy consumption and proper…

  2. Post-remedial-action radiological survey report for the Plutonium Facility of the Battelle Memorial Institute, Columbus Division, West Jefferson Complex, West Jefferson, Ohio, April 1980-June 1982

    Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

    1987-01-01

    The post-remedial-action surveys involved only the remaining, newer segment of the original Plutonium Facility and those outdoor environs at the former location of the buried autoclave and old holding tanks. The assessment activities conducted during the three surveys included determination of surface contamination levels, both fixed and removable, through direct instrument and smear surveys; measurement of ambient external penetrating radiation levels at 1-meter heights throughout the involved areas; measurement of the concentrations of radon, thoron, and actinon daughters and longer-lived radionuclides within air samples; and determination of concentrations of uranium, plutonium, americium, neptunium, the thorium-232 decay chain, and the radium-226 decay chain in soil and other material samples from the involved areas. The direct instrument and smear surveys were performed on all accessible floor, wall, and overhead surfaces and ductwork in the laboratory and corridor areas, mechanical room, and men's locker room, where the false ceiling, formerly at the 12-ft level, had been removed. In the office areas, the accessible floors, walls, and overheads were surveyed to the height of the existing 8-ft false ceiling. Although the office areas were adjacent to, not part of, the affected areas, it was possible that radioactive materials could have been carried by the ventilation system, spilled, or otherwise tracked into these adjacent areas. In some building areas, surfaces might hae been retiled, painted, or otherwise covered since the beginning of use of radioactive materials; however, the instruments used for the direct survey had some capability to detect beta-gamma activity on the underlying surfaces. 5 refs., 8 figs., 8 tabs

  3. Nuclear facilities

    Anon.

    2000-01-01

    Here is given the decree (2000-1065) of the 25. of October 2000 reporting the publication of the convention between the Government of the French Republic and the CERN concerning the safety of the LHC (Large Hadron Collider) and the SPS (Proton Supersynchrotron) facilities, signed in Geneva on July 11, 2000. By this convention, the CERN undertakes to ensure the safety of the LHC and SPS facilities and those of the operations of the LEP decommissioning. The French legislation and regulations on basic nuclear facilities (concerning more particularly the protection against ionizing radiations, the protection of the environment and the safety of facilities) and those which could be decided later on apply to the LHC, SPS and auxiliary facilities. (O.M.)

  4. High-pressure water facility

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  5. FY 2000 report on the results of the model project on facilities for the effective utilization of industrial waste from industrial complex. Separate Volume 3; 2000 nendo Kogyo danchi sangyo haikibutsu yuko riyo setsubi model jigyo. Dai 3 Bunsatsu

    NONE

    2002-03-01

    For the purpose of promoting the effective utilization of industrial waste as petroleum substitution energy resource and reducing the consumption of fossil fuels in Thailand, a model project on facilities for the effective utilization of industrial waste from industrial complex was worked on, and the FY 2000 results were reported. In Separate Volume 3, drawings of the following were included: furnace, free board spray nozzle, dispersion air nozzle, secondary burner, sand make-up conveyor, sand discharge gate, boiler, silencer for boiler safety valve, steam header, steam accumulator, gas cooling tower, refuse drainage storage tank, small sized drainage pump, pressure tank, flue gas duct, air damper, incombustible conveyor 2, sand circulation system bag filter, weighing bridge, fan starter panel, control panel, control panel, local switch box, distributed control system, field instrument, flue gas analyzer. (NEDO)

  6. Electronics and Telemetry Engineering and Test Facility

    Federal Laboratory Consortium — The Electronics Laboratory is a fully equipped facility providing the capability to support electronic product development from highly complex weapon system sensors,...

  7. Mammography Facilities

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  8. Canyon Facilities

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  9. SSPA Equipment Engineering Feasibility Report

    N.E. Woolstenhulme; C.R. Clark

    2011-09-01

    In response to a demanding reactor conversion schedule, construction of the Shielded Sample Preparation Area (SSPA) was initiated in 2010 to augment the existing capabilities of the Hot Fuel Examination Facility (HFEF). While HFEF is and will remain the workhorse for post irradiation sample preparation, there is currently a large backlog of Post-Irradiation Examination (PIE) experiments caused by numerous competing projects (this backlog is expected to continue for the foreseeable future). HFEF, in its present configuration also lacks the ability to prepare samples suitable for several of the tests that have been identified for the successful conclusion of the RERTR program; these samples require fine detail machining of irradiated fuel plates.

  10. Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s.

    Zhan, Fengping; Liao, Xiaolei; Gao, Feng; Qiu, Weiwei; Wang, Qingxiang

    2017-06-15

    A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu 2+ ) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu 2+ by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Japan hadron facility

    Shibata, Tokushi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1998-03-01

    JHF aims at promoting the variety of research fields using various secondary beams produced by high-intensity proton beams. The accelerator of JHF will be an accelerator complex of a 200 MeV LINAC, a 3 GeV booster proton synchrotron, and a 50 GeV proton synchrotron. The four main experimental facilities of K-Arena, M-Arena, N-Arena, and E-Arena are planed. The outline of the project is presented. (author)

  12. Support facilities

    Williamson, F.S.; Blomquist, J.A.; Fox, C.A.

    1977-01-01

    Computer support is centered on the Remote Access Data Station (RADS), which is equipped with a 1000 lpm printer, 1000 cpm reader, and a 300 cps paper tape reader with 500-foot spools. The RADS is located in a data preparation room with four 029 key punches (two of which interpret), a storage vault for archival magnetic tapes, card files, and a 30 cps interactive terminal principally used for job inquiry and routing. An adjacent room provides work space for users, with a documentation library and a consultant's office, plus file storage for programs and their documentations. The facility has approximately 2,600 square feet of working laboratory space, and includes two fully equipped photographic darkrooms, sectioning and autoradiographic facilities, six microscope cubicles, and five transmission electron microscopes and one Cambridge scanning electron microscope equipped with an x-ray energy dispersive analytical system. Ancillary specimen preparative equipment includes vacuum evaporators, freeze-drying and freeze-etching equipment, ultramicrotomes, and assorted photographic and light microscopic equipment. The extensive physical plant of the animal facilities includes provisions for holding all species of laboratory animals under controlled conditions of temperature, humidity, and lighting. More than forty rooms are available for studies of the smaller species. These have a potential capacity of more than 75,000 mice, or smaller numbers of larger species and those requiring special housing arrangements. There are also six dog kennels to accommodate approximately 750 dogs housed in runs that consist of heated indoor compartments and outdoor exercise areas

  13. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    Soelberg, Renae [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of the INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at

  14. Emission Facilities - Erosion & Sediment Control Facilities

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  15. CLIC Test Facility 3

    Kossyvakis, I; Faus-golfe, A

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  16. Air Quality Facilities

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  17. Japan Hadron Facility (JHF) project

    Nagamiya, S.

    1999-01-01

    The Japan Hadron Facility (JHF) is the next accelerator project proposed at KEK to promote exciting sciences by utilising high-intensity proton beams. The project is characterised by three unique features: hadronic beams of the world's highest intensity; a variety of beams from one accelerator complex; frontier sciences to cover a broad research area including nuclear physics, particle physics, material sciences and life sciences by utilising a common accelerator complex. (author)

  18. ORNL Isotopes Facilities Shutdown Program Plan

    Gibson, S.M.; Patton, B.D.; Sears, M.B.

    1990-10-01

    This plan presents the results of a technical and economic assessment for shutdown of the Oak Ridge National Laboratory (ORNL) isotopes production and distribution facilities. On December 11, 1989, the Department of Energy (DOE), Headquarters, in a memorandum addressed to DOE Oak Ridge Operations Office (DOE-ORO), gave instructions to prepare the ORNL isotopes production and distribution facilities, with the exception of immediate facility needs for krypton-85, tritium, and yttrium-90, for safe shutdown. In response to the memorandum, ORNL identified 17 facilities for shutdown. Each of these facilities is located within the ORNL complex with the exception of Building 9204-3, which is located at the Y-12 Weapons Production Plant. These facilities have been used extensively for the production of radioactive materials by the DOE Isotopes Program. They currently house a large inventory of radioactive materials. Over the years, these aging facilities have inherited the problems associated with storing and processing highly radioactive materials (i.e., facilities' materials degradation and contamination). During FY 1990, ORNL is addressing the requirements for placing these facilities into safe shutdown while maintaining the facilities under the existing maintenance and surveillance plan. The day-to-day operations associated with the surveillance and maintenance of a facility include building checks to ensure that building parameters are meeting the required operational safety requirements, performance of contamination control measures, and preventative maintenance on the facility and facility equipment. Shutdown implementation will begin in FY 1993, and shutdown completion will occur by the end of FY 1994

  19. Reactor facility

    Suzuki, Hiroaki; Murase, Michio; Yokomizo, Osamu.

    1997-01-01

    The present invention provides a BWR type reactor facility capable of suppressing the amount of steams generated by the mutual effect of a failed reactor core and coolants upon occurrence of an imaginal accident, and not requiring spacial countermeasures for enhancing the pressure resistance of the container vessel. Namely, a means for supplying cooling water at a temperature not lower by 30degC than the saturated temperature corresponding to the inner pressure of the containing vessel upon occurrence of an accident is disposed to a lower dry well below the pressure vessel. As a result, upon occurrence of such an accident that the reactor core should be melted and flown downward of the pressure vessel, when cooling water at a temperature not lower than the saturated temperature, for example, cooling water at 100degC or higher is supplied to the lower dry well, abrupt generation of steams by the mutual effect of the failed reactor core and cooling water is scarcely caused compared with a case of supplying cooling water at a temperature lower than the saturation temperature by 30degC or more. Accordingly, the amount of steams to be generated can be suppressed, and special countermeasure is no more necessary for enhancing the pressure resistance of the container vessel is no more necessary. (I.S.)

  20. Nuclear facilities

    Anon.

    2002-01-01

    During September and October 2001, 15 events were recorded on the first grade and 1 on the second grade of the INES scale. The second grade event is in fact a re-classification of an incident that occurred on the second april 2001 at Dampierre power plant. This event happened during core refueling, a shift in the operation sequence led to the wrong positioning of 113 assemblies. A preliminary study of this event shows that this wrong positioning could have led, in other circumstances, to the ignition of nuclear reactions. Even in that case, the analysis made by EDF shows that the consequences on the staff would have been limited. Nevertheless a further study has shown that the existing measuring instruments could not have detected the power increase announcing the beginning of the chain reaction. The investigation has shown that there were deficiencies in the control of the successive operations involved in refueling. EDF has proposed a series of corrective measures to be implemented in all nuclear power plants. The other 15 events are described in the article. During this period 121 inspections have been made in nuclear facilities. (A.C.)

  1. FRACTURING FLUID CHARACTERIZATION FACILITY

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  2. Achievement report in fiscal 1999 on commissioned research project. 'Model project for facilities to effectively utilize wastes from industrial complexes in Thailand' Project for 1999 Volume 3; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 3

    NONE

    2001-03-01

    With an objective to reuse industrial wastes and effectively utilize them as a petroleum replacing energy resource, and attempt to reduce consumption of fossil fuel in Thailand where increase in discharge of industrial wastes is estimated, a model project for facilities to effectively utilize wastes from industrial complexes has been carried out. This paper reports the achievements in fiscal 1999. Specifically, the project calls for incineration in fluidized bed incinerators of industrial wastes discharged from factories in industrial complexes possessed by the Industrial Estate Authority of Thailand (IEAT), recovery of waste heat from waste heat recovering boilers to generate process steam, which is supplied to the factories in the complexes. The current fiscal year, which is the first current year of the project, has put into order the operations shared by Japan and Thailand, compiled the various procedures and schedules into the form of appendices to the agreement, and executed signing of the agreement. Thereafter, the Japanese side has carried out decision on the specifications of the facilities, the basic designs, the detailed designs of facilities to be arranged by Japan, and the fabrication of some of the devices according to the descriptions of the agreement appendices. The volume 3 summarizes the inspection reports other than those included in the Volume 2. (NEDO)

  3. Achievement report in fiscal 1999 on commissioned research project. 'Model project for facilities to effectively utilize wastes from industrial complexes in Thailand' Project for 1999 Volume 1; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 1

    NONE

    2001-03-01

    With an objective to reuse industrial wastes and effectively utilize them as a petroleum replacing energy resource, and attempt to reduce consumption of fossil fuel in Thailand where increase in discharge of industrial wastes is estimated, a model project for facilities to effectively utilize wastes from industrial complexes has been carried out. This paper reports the achievements in fiscal 1999. Specifically, the project calls for incineration in fluidized bed incinerators of industrial wastes discharged from factories in industrial complexes possessed by the Industrial Estate Authority of Thailand (IEAT), recovery of waste heat from waste heat recovering boilers to generate process steam, which is supplied to the factories in the complexes. The current fiscal year, which is the first current year of the project, has put into order the operations shared by Japan and Thailand, compiled the various procedures and schedules into the form of appendices to the agreement, and executed signing of the agreement. Thereafter, the Japanese side has carried out decision on the specifications of the facilities, the basic designs, the detailed designs of facilities to be arranged by Japan, and the fabrication of some of the devices according to the descriptions of the agreement appendices. The volume 1 summarizes the agreement appendices, and the specifications of the main devices. (NEDO)

  4. Achievement report in fiscal 1999 on commissioned research project. 'Model project for facilities to effectively utilize wastes from industrial complexes in Thailand' Project for 1999 Volume 2; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 2

    NONE

    2001-03-01

    With an objective to reuse industrial wastes and effectively utilize them as a petroleum replacing energy resource, and attempt to reduce consumption of fossil fuel in Thailand where increase in discharge of industrial wastes is estimated, a model project for facilities to effectively utilize wastes from industrial complexes has been carried out. This paper reports the achievements in fiscal 1999. Specifically, the project calls for incineration in fluidized bed incinerators of industrial wastes discharged from factories in industrial complexes possessed by the Industrial Estate Authority of Thailand (IEAT), recovery of waste heat from waste heat recovering boilers to generate process steam, which is supplied to the factories in the complexes. The current fiscal year, which is the first current year of the project, has put into order the operations shared by Japan and Thailand, compiled the various procedures and schedules into the form of appendices to the agreement, and executed signing of the agreement. Thereafter, the Japanese side has carried out decision on the specifications of the facilities, the basic designs, the detailed designs of facilities to be arranged by Japan, and the fabrication of some of the devices according to the descriptions of the agreement appendices. The volume 2 summarizes the inspection reports in the referential materials. (NEDO)

  5. 340 Waste Handling Facility interim safety basis

    Bendixsen, R.B.

    1995-01-01

    This document establishes the interim safety basis (ISB) for the 340 Waste Handling Facility (340 Facility). An ISB is a documented safety basis that provides a justification for the continued operation of the facility until an upgraded final safety analysis report is prepared that complies with US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports. The ISB for the 340 Facility documents the current design and operation of the facility. The 340 Facility ISB (ISB-003) is based on a facility walkdown and review of the design and operation of the facility, as described in the existing safety documentation. The safety documents reviewed, to develop ISB-003, include the following: OSD-SW-153-0001, Operating Specification Document for the 340 Waste Handling Facility (WHC 1990); OSR-SW-152-00003, Operating Limits for the 340 Waste Handling Facility (WHC 1989); SD-RE-SAP-013, Safety Analysis Report for Packaging, Railroad Liquid Waste Tank Cars (Mercado 1993); SD-WM-TM-001, Safety Assessment Document for the 340 Waste Handling Facility (Berneski 1994a); SD-WM-SEL-016, 340 Facility Safety Equipment List (Berneski 1992); and 340 Complex Fire Hazard Analysis, Draft (Hughes Assoc. Inc. 1994)

  6. Irradiation Facilities at CERN

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-01-01

    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  7. Research Facilities | Wind | NREL

    Research Facilities Research Facilities NREL's state-of-the-art wind research facilities at the Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being tested. Structural Research Facilities A photo of two people silhouetted against a computer simulation of

  8. North Slope, Alaska ESI: FACILITY (Facility Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  9. Indoor Lighting Facilities

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs

  10. Jupiter Laser Facility

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  11. Basic Research Firing Facility

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  12. Meson facility. Powerful new research tool

    Lobashev, V.M.; Tavkhelidze, A.N.

    A meson facility is being built at the Institute of Nuclear Research, USSR Academy of Sciences, in Troitsk, where the Scientific Center, USSR Academy of Sciences is located. The facility will include a linear accelerator for protons and negative hydrogen ions with 600 MeV energy and 0.5-1 mA beam current. Some fundamental studies that can be studied at a meson facility are described in the areas of elementary particles, neutron physics, solid state physics, and applied research. The characteristics of the linear accelerator are given and the meson facility's experimental complex is described

  13. Decommissioning of surplus facilities at ORNL

    Myrick, T.E.; Coobs, J.H.

    1985-01-01

    The Surplus Facilities Management Program (SFMP) at Oak Ridge National Laboratory (ORNL) is part of the Department of Energy's (DOE) National SFMP, administered by the Richland Operations Office. This program was established to provide for the management of certain DOE surplus radioactively contaminated facilities from the end of their operating life until final facility disposition is completed. As part of this program, the ORNL SFMP oversees some 75 facilities, ranging in complexity from abandoned waste storage tanks to large experimental reactors. This paper describes the scope of the ORNL program and outlines the decommissioning activities currently underway, including a brief description of the decontamination techniques being utilized. 4 refs., 3 figs., 2 tabs

  14. Aperture area measurement facility

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  15. High Throughput Facility

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  16. Licensed Healthcare Facilities

    California Natural Resource Agency — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  17. Facility Registry Service (FRS)

    U.S. Environmental Protection Agency — The Facility Registry Service (FRS) provides an integrated source of comprehensive (air, water, and waste) environmental information about facilities across EPA,...

  18. Mixed Waste Management Facility

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  19. TESLA Test Facility. Status

    Aune, B.

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 μs). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.)

  20. Guide to research facilities

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  1. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    Reiss, Troy P.; Andrus, Jason

    2016-07-01

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excess of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the

  2. Facility design consequences of different employees’ quality perceptions

    Kok, Herman; Mobach, Mark P.; Omta, Onno

    2015-01-01

    An important challenge for facility management is to integrate the complex and comprehensive construct of different service processes and physical elements of the service facility into a meaningful and functional facility design. The difficulty of this task is clearly indicated by the present study

  3. Los Alamos Critical Assemblies Facility

    Malenfant, R.E.

    1981-06-01

    The Critical Assemblies Facility of the Los Alamos National Laboratory has been in existence for thirty-five years. In that period, many thousands of measurements have been made on assemblies of 235 U, 233 U, and 239 Pu in various configurations, including the nitrate, sulfate, fluoride, carbide, and oxide chemical compositions and the solid, liquid, and gaseous states. The present complex of eleven operating machines is described, and typical applications are presented

  4. Communication grounding facility

    Lee, Gye Seong

    1998-06-01

    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.

  5. FY 1999 report on the results of the contract project 'The model project for facilities for effective utilization of industrial waste at the industrial complex in Thailand.' Separate Volume 4 - FY 1999 project; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 4

    NONE

    2001-03-01

    For the purpose of reducing the consumption of fossil fuel by recycling industrial waste for effective use as petroleum substituting energy in Thailand where the amount of industrial waste is expected to increase, a model project on facilities for effective use of industrial waste at the industrial complex was carried out, and the FY 1999 results were reported. Concretely, the industrial waste generated from each plant at the industrial complex owned by IEAT is to be incinerated in fluidized bed incinerator, and the process steam is to be generated by recovering waste heat by waste heat recovery boiler and to be supplied to plants within the complex. In this fiscal year, the first year of the project, the attachment to the agreement was prepared in terms of the allotment of the project work between Japan and Thailand, various kinds of gist, schedules, etc. and signed. After that, the following were conducted at the Japan side according to the attachment to the agreement: determination of the basic specifications for facilities, basic design, detailed design, manufacture of a part of the equipment, etc. Separate Volume 4 included the results of the inspection of the tank, pump, blower, etc. (NEDO)

  6. FY 1999 report on the results of the contract project 'The model project for facilities for effective utilization of industrial waste at the industrial complex in Thailand.' Separate Volume 5 - FY 1999 project; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 5

    NONE

    2001-03-01

    For the purpose of reducing the consumption of fossil fuel by recycling industrial waste for effective use as petroleum substituting energy in Thailand where the amount of industrial waste is expected to increase, a model project on facilities for effective use of industrial waste at the industrial complex was carried out, and the FY 1999 results were reported. Concretely, the industrial waste generated from each plant at the industrial complex owned by IEAT is to be incinerated in fluidized bed incinerator, and the process steam is to be generated by recovering waste heat by waste heat recovery boiler and to be supplied to plants within the complex. In this fiscal year, the first year of the project, the attachment to the agreement was prepared in terms of the allotment of the project work between Japan and Thailand, various kinds of gist, schedules, etc. and signed. After that, the following were conducted at the Japan side according to the attachment to the agreement: determination of the basic specifications for facilities, basic design, detailed design, manufacture of a part of the equipment, etc. Separate Volume 5 included the drawing of the basic design, drawing of building/design, drawing of manufacturing equipment, etc. (NEDO)

  7. FY 1999 report on the results of the contract project 'The model project for facilities for effective utilization of industrial waste at the industrial complex in Thailand.' Separate Volume 4 - FY 1999 project; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 4

    NONE

    2001-03-01

    For the purpose of reducing the consumption of fossil fuel by recycling industrial waste for effective use as petroleum substituting energy in Thailand where the amount of industrial waste is expected to increase, a model project on facilities for effective use of industrial waste at the industrial complex was carried out, and the FY 1999 results were reported. Concretely, the industrial waste generated from each plant at the industrial complex owned by IEAT is to be incinerated in fluidized bed incinerator, and the process steam is to be generated by recovering waste heat by waste heat recovery boiler and to be supplied to plants within the complex. In this fiscal year, the first year of the project, the attachment to the agreement was prepared in terms of the allotment of the project work between Japan and Thailand, various kinds of gist, schedules, etc. and signed. After that, the following were conducted at the Japan side according to the attachment to the agreement: determination of the basic specifications for facilities, basic design, detailed design, manufacture of a part of the equipment, etc. Separate Volume 4 included the results of the inspection of the tank, pump, blower, etc. (NEDO)

  8. FY 1999 report on the results of the contract project 'The model project for facilities for effective utilization of industrial waste at the industrial complex in Thailand.' Separate Volume 6 - FY 1999 project; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 6

    NONE

    2001-03-01

    For the purpose of reducing the consumption of fossil fuel by recycling industrial waste for effective use as petroleum substituting energy in Thailand where the amount of industrial waste is expected to increase, a model project on facilities for effective use of industrial waste at the industrial complex was carried out, and the FY 1999 results were reported. Concretely, the industrial waste generated from each plant at the industrial complex owned by IEAT is to be incinerated in fluidized bed incinerator, and the process steam is to be generated by recovering waste heat by waste heat recovery boiler and to be supplied to plants within the complex. In this fiscal year, the first year of the project, the attachment to the agreement was prepared in terms of the allotment of the project work between Japan and Thailand, various kinds of gist, schedules, etc. and signed. After that, the following were conducted at the Japan side according to the attachment to the agreement: determination of the basic specifications for facilities, basic design, detailed design, manufacture of a part of the equipment, etc. Separate Volume 6 included drawings of assembling of the equipment such as crane, crusher and valve. (NEDO)

  9. FY 1999 report on the results of the contract project 'The model project for facilities for effective utilization of industrial waste at the industrial complex in Thailand.' Separate Volume 6 - FY 1999 project; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 6

    NONE

    2001-03-01

    For the purpose of reducing the consumption of fossil fuel by recycling industrial waste for effective use as petroleum substituting energy in Thailand where the amount of industrial waste is expected to increase, a model project on facilities for effective use of industrial waste at the industrial complex was carried out, and the FY 1999 results were reported. Concretely, the industrial waste generated from each plant at the industrial complex owned by IEAT is to be incinerated in fluidized bed incinerator, and the process steam is to be generated by recovering waste heat by waste heat recovery boiler and to be supplied to plants within the complex. In this fiscal year, the first year of the project, the attachment to the agreement was prepared in terms of the allotment of the project work between Japan and Thailand, various kinds of gist, schedules, etc. and signed. After that, the following were conducted at the Japan side according to the attachment to the agreement: determination of the basic specifications for facilities, basic design, detailed design, manufacture of a part of the equipment, etc. Separate Volume 6 included drawings of assembling of the equipment such as crane, crusher and valve. (NEDO)

  10. Implementing RCRA during facility deactivation

    Lebaron, G.J.

    1997-01-01

    RCRA regulations require closure of permitted treatment, storage and disposal (TSD) facilities within 180 days after cessation of operations, and this may essentially necessitate decommissioning to complete closure. A more cost effective way to handle the facility would be to significantly reduce the risk to human health and the environment by taking it from its operational status to a passive, safe, inexpensive-to-maintain surveillance and maintenance condition (deactivation) prior to decommissioning. This paper presents an innovative approach to the cost effective deactivation of a large, complex chemical processing facility permitted under RCRA. The approach takes into account risks to the environment posed by this facility in comparison to risks posed by neighboring facilities at the site. The paper addresses the manner in which: 1) stakeholders and regulators were involved; 2) identifies a process by which the project proceeds and regulators and stakeholders were involved; 3) end points were developed so completion of deactivation was clearly identified at the beginning of the project, and 4) innovative practices were used to deactivate more quickly and cost effectively

  11. The Australian National Proton Facility

    Jackson, M.; Rozenfeld, A.; Bishop, J.

    2002-01-01

    Full text: Protons have been used in the treatment of cancer since 1954 and over 30,000 patients have been treated around the world. Their precise dose distribution allows the treatment of small tumours in critical locations such as the base of skull and orbit and is an alternative to stereotactic radiotherapy in other sites. With the development of hospital-based systems in the 1990's, common tumours such as prostate, breast and lung cancer can now also be treated using simple techniques. The therapeutic ratio is improved as the dose to the tumour can be increased while sparing normal tissues. The well defined high dose region and low integral dose compared with photon treatments is a particular advantage in children and other situations where long-term survival is expected and when used in combination with chemotherapy. In January 2002, the NSW Health Department initiated a Feasibility Study for an Australian National Proton Facility. This Study will address the complex medical, scientific, engineering, commercial and legal issues required to design and build a proton facility in Australia. The Facility will be mainly designed for patient treatment but will also provide facilities for biological, physical and engineering research. The proposed facility will have a combination of fixed and rotating beams with an energy range of 70-250 MeV. Such a centre will enable the conduct of randomised clinical trials and a comparison with other radiotherapy techniques such as Intensity Modulated Radiation Therapy. Cost-utility comparisons with other medical treatments will also be made and further facilities developed if the expected benefit is confirmed. When patients are not being treated, the beam will be available for commercial and research purposes. This presentation will summarize the progress of the Study and discuss the important issues that need to be resolved before the Facility is approved and constructed

  12. Exposure management in a hot-cell decontamination and refurbishment campaign

    Courtney, J.C.; Ferguson, K.R.; Chesnovar, D.L.; Huebner, M.F.

    1984-01-01

    We developed a minicomputer-based system to provide rapid access to personnel dosimetry data during a campaign to decontaminate and refurbish a hot-cell at the Hot Fuel Examination Facility (HFEF) Complex. This system allows project management to estimate doses for future tasks, assess the effectiveness of decontamination and personnel protection techniques, and balance exposures among members of various skill groups. As the campaign progresses, projected total exposures can be minimized by tradeoffs between estimated doses during decontamination and estimated dose savings during the refurbishment phase. The effectiveness of various dose-reduction procedures can be compared on the basis of data from a few cell entries before more extensive routine operations are scheduled. Because the radiation fields vary significantly with location in the cell, we find that measurements of whole-body, skin, and extremity doses are more valuable than dose-rate information. Penetrating and skin radiation doses to personnel can be compared to administrative guidelines. This helps us to select the most effective combination of protective clothing. For example, leaded gauntlets reduce the dose rate to the workers' hands, but their use can increase the time required for some in-cell tasks. Hence, use of gauntlets can lead to higher whole-body and skin doses. The program is written for the HFEF Complex Harris/6 minimainframe computer with a disk-monitor operating system

  13. AOV Facility Tool/Facility Safety Specifications -

    Department of Transportation — Develop and maintain authorizing documents that are standards that facilities must follow. These standards are references of FAA regulations and are specific to the...

  14. ICD Complex Operations and Maintenance Plan

    Gibson, P. L.

    2007-06-25

    This Operations and Maintenance (O&M) Plan describes how the Idaho National Laboratory (INL) conducts operations, winterization, and startup of the Idaho CERCLA Disposal Facility (ICDF) Complex. The ICDF Complex is the centralized INL facility responsible for the receipt, storage, treatment (as necessary), and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation waste.

  15. ICDF Complex Remedial Action Report

    W. M. Heileson

    2007-09-26

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  16. Complexity explained

    Erdi, Peter

    2008-01-01

    This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. Readers will learn the basic concepts and methods of complex system research.

  17. Complex chemistry

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  18. Fire protection program evaluation of Argonne National Laboratory, West for the Department of Energy

    1984-01-01

    A fire protection engineering survey was conducted of the Argonne National Laboratory, West Facility, near Idaho Falls, Idaho. This facility includes EBR-II, TREAT, ZPPR, and HFEF. The facility meets the improved risk criteria as set forth in DOE Order 5480.1, Chapter VII. Some recommendations are given

  19. Lesotho - Health Facility Survey

    Millennium Challenge Corporation — The main objective of the 2011 Health Facility Survey (HFS) was to establish a baseline for informing the Health Project performance indicators on health facilities,...

  20. Armament Technology Facility (ATF)

    Federal Laboratory Consortium — The Armament Technology Facility is a 52,000 square foot, secure and environmentally-safe, integrated small arms and cannon caliber design and evaluation facility....

  1. Projectile Demilitarization Facilities

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  2. Rocketball Test Facility

    Federal Laboratory Consortium — This test facility offers the capability to emulate and measure guided missile radar cross-section without requiring flight tests of tactical missiles. This facility...

  3. Wastewater Treatment Facilities

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  4. Materiel Evaluation Facility

    Federal Laboratory Consortium — CRREL's Materiel Evaluation Facility (MEF) is a large cold-room facility that can be set up at temperatures ranging from −20°F to 120°F with a temperature change...

  5. Environmental Toxicology Research Facility

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  6. Dialysis Facility Compare

    U.S. Department of Health & Human Services — Dialysis Facility Compare helps you find detailed information about Medicare-certified dialysis facilities. You can compare the services and the quality of care that...

  7. Energetics Conditioning Facility

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  8. Explosive Components Facility

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  9. Facilities for US Radioastronomy.

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  10. Neighbourhood facilities for sustainability

    Gibberd, Jeremy T

    2013-01-01

    Full Text Available . In this paper these are referred to as ‘Neighbourhood Facilities for Sustainability’. Neighbourhood Facilities for Sustainability (NFS) are initiatives undertaken by individuals and communities to build local sustainable systems which not only improve...

  11. Cold Vacuum Drying Facility

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  12. Ouellette Thermal Test Facility

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  13. Integrated Disposal Facility

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  14. Facility design: introduction

    Unger, W.E.

    1980-01-01

    The design of shielded chemical processing facilities for handling plutonium is discussed. The TRU facility is considered in particular; its features for minimizing the escape of process materials are listed. 20 figures

  15. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    Adams, N

    2007-01-01

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to successfully

  16. SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)

    Hazen, Terry

    2002-08-26

    On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

  17. The Radiological Research Accelerator Facility:

    Hall, E.J.; Goldhagen, P.

    1988-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generated a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Radiological Research Laboratory (RRL) of Columbia University, and its operation is supported as a National Facility by the U.S. Department of Energy. As such, RARAF is available to all potential users on an equal basis, and scientists outside the RRL are encouraged to submit proposals for experiments at RARAF. Facilities and services are provided to users, but the research projects themselves must be supported separately. RARAF was located at BNL from 1967 until 1980, when it was dismantled and moved to the Nevis Laboratories of Columbia University, where it was then reassembled and put back into operation. Data obtained from experiment using RARAF have been of pragmatic value to radiation protection and to neutron therapy. At a more fundamental level, the research at RARAF has provided insight into the biological action of radiation and especially its relation to energy distribution in the cell. High-LET radiations are an agent of special importance because they can cause measurable cellular effects by single particles, eliminating some of the complexities of multievent action and more clearly disclosing basic features. This applies particularly to radiation carcinogenesis. Facilities are available at RARAF for exposing objects to different radiations having a wide range of linear energy transfers (LETs)

  18. CLEAR test facility

    Ordan, Julien Marius

    2017-01-01

    A new user facility for accelerator R&D, the CERN Linear Electron Accelerator for Research (CLEAR), started operation in August 2017. CLEAR evolved from the former CLIC Test Facility 3 (CTF3) used by the Compact Linear Collider (CLIC). The new facility is able to host and test a broad range of ideas in the accelerator field.

  19. Facility or Facilities? That is the Question.

    Viso, M.

    2018-04-01

    The management of the martian samples upon arrival on the Earth will require a lot of work to ensure a safe life detection and biohazard testing during the quarantine. This will induce a sharing of the load between several facilities.

  20. Facilities inventory protection for nuclear facilities

    Schmitt, F.J.

    1989-01-01

    The fact that shut-down applications have been filed for nuclear power plants, suggests to have a scrutinizing look at the scopes of assessment and decision available to administrations and courts for the protection of facilities inventories relative to legal and constitutional requirements. The paper outlines the legal bases which need to be observed if purposeful calculation is to be ensured. Based on the different actual conditions and legal consequences, the author distinguishes between 1) the legal situation of facilities licenced already and 2) the legal situation of facilities under planning during the licencing stage. As indicated by the contents and restrictions of the pertinent provisions of the Atomic Energy Act and by the corresponding compensatory regulation, the object of the protection of facilities inventor in the legal position of the facility owner within the purview of the Atomic Energy Act, and the licensing proper. Art. 17 of the Atomic Energy Act indicates the legislators intent that, once issued, the licence will be the pivotal point for regulations aiming at protection and intervention. (orig./HSCH) [de

  1. Facilities projects performance measurement system

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  2. 340 Facility compliance assessment

    English, S.L.

    1993-10-01

    This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility

  3. Trauma facilities in Denmark

    Weile, Jesper; Nielsen, Klaus; Primdahl, Stine C

    2018-01-01

    Background: Trauma is a leading cause of death among adults aged challenge. Evidence supports the centralization of trauma facilities and the use multidisciplinary trauma teams. Because knowledge is sparse on the existing distribution of trauma facilities...... and the organisation of trauma care in Denmark, the aim of this study was to identify all Danish facilities that care for traumatized patients and to investigate the diversity in organization of trauma management. Methods: We conducted a systematic observational cross-sectional study. First, all hospitals in Denmark...... were identified via online services and clarifying phone calls to each facility. Second, all trauma care manuals on all facilities that receive traumatized patients were gathered. Third, anesthesiologists and orthopedic surgeons on call at all trauma facilities were contacted via telephone...

  4. Kauai Test Facility hazards assessment document

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.

  5. (II) complexes

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  6. Synchrotron radiation facilities

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  7. Facility of aerosol filtration

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  8. Textiles Performance Testing Facilities

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  9. Geodynamics Research Facility

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  10. Materials Characterization Facility

    Federal Laboratory Consortium — The Materials Characterization Facility enables detailed measurements of the properties of ceramics, polymers, glasses, and composites. It features instrumentation...

  11. Mobile Solar Tracker Facility

    Federal Laboratory Consortium — NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. It incorporates meteorological instruments, a solar...

  12. Proximal Probes Facility

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  13. Geospatial Data Analysis Facility

    Federal Laboratory Consortium — Geospatial application development, location-based services, spatial modeling, and spatial analysis are examples of the many research applications that this facility...

  14. Facility Environmental Management System

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  15. Heated Tube Facility

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  16. Magnetics Research Facility

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  17. Transonic Experimental Research Facility

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  18. Engine Test Facility (ETF)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  19. Target Assembly Facility

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  20. Pavement Testing Facility

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  1. Composite Structures Manufacturing Facility

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  2. GPS Test Facility

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  3. Manufacturing Demonstration Facility (MDF)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  4. Surplus Facilities Management Program

    Coobs, J.H.

    1983-01-01

    This is the second of two programs that are concerned with the management of surplus facilities. The facilities in this program are those related to commercial activities, which include the three surplus experimental and test reactors [(MSRE, HRE-2, and the Low Intensity Test Reactor (LITR)] and seven experimental loops at the ORR. The program is an integral part of the Surplus Facilities Management Program, which is a national program administered for DOE by the Richland Operations Office. Very briefly reported here are routine surveillance and maintenance of surplus radioactively contaminated DOE facilities awaiting decommissioning

  5. Imagery Data Base Facility

    Federal Laboratory Consortium — The Imagery Data Base Facility supports AFRL and other government organizations by providing imagery interpretation and analysis to users for data selection, imagery...

  6. Neutron Therapy Facility

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  7. Universal Drive Train Facility

    Federal Laboratory Consortium — This vehicle drive train research facility is capable of evaluating helicopter and ground vehicle power transmission technologies in a system level environment. The...

  8. High Combustion Research Facility

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  9. Catalytic Fuel Conversion Facility

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  10. Flexible Electronics Research Facility

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  11. DUPIC facility engineering

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  12. Facility effluent monitoring plan determinations for the 400 Area facilities

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  13. Comparative Prevalence of Immune Evasion Complex Genes Associated with β-Hemolysin Converting Bacteriophages in MRSA ST5 Isolates from Swine, Swine Facilities, Humans with Swine Contact, and Humans with No Swine Contact.

    Samantha J Hau

    Full Text Available Livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA draws concern from the public health community because in some countries these organisms may represent the largest reservoir of MRSA outside hospital settings. Recent studies indicate LA-MRSA strains from swine are more genetically diverse than the first reported sequence type ST398. In the US, a diverse population of LA-MRSA is found including organisms of the ST398, ST9, and ST5 lineages. Occurrence of ST5 MRSA in swine is of particular concern since ST5 is among the most prevalent lineages causing clinical infections in humans. The prominence of ST5 in clinical disease is believed to result from acquisition of bacteriophages containing virulence or host-adapted genes including the immune-evasion cluster (IEC genes carried by β-hemolysin converting bacteriophages, whose absence in LA-MRSA ST398 is thought to contribute to reduced rates of human infection and transmission associated with this lineage. The goal of this study was to investigate the prevalence of IEC genes associated with β-hemolysin converting bacteriophages in MRSA ST5 isolates obtained from agricultural sources, including swine, swine facilities, and humans with short- or long-term swine exposure. To gain a broader perspective, the prevalence of these genes in LA-MRSA ST5 strains was compared to the prevalence in clinical MRSA ST5 strains from humans with no known exposure to swine. IEC genes were not present in any of the tested MRSA ST5 strains from agricultural sources and the β-hemolysin gene was intact in these strains, indicating the bacteriophage's absence. In contrast, the prevalence of the β-hemolysin converting bacteriophage in MRSA ST5 strains from humans with no exposure to swine was 90.4%. The absence of β-hemolysin converting bacteriophage in LA-MRSA ST5 isolates is consistent with previous reports evaluating ST398 strains and provides genetic evidence indicating LA-MRSA ST5 isolates

  14. Comparative Prevalence of Immune Evasion Complex Genes Associated with β-Hemolysin Converting Bacteriophages in MRSA ST5 Isolates from Swine, Swine Facilities, Humans with Swine Contact, and Humans with No Swine Contact

    Hau, Samantha J.; Sun, Jisun; Davies, Peter R.; Frana, Timothy S.; Nicholson, Tracy L.

    2015-01-01

    Livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA) draws concern from the public health community because in some countries these organisms may represent the largest reservoir of MRSA outside hospital settings. Recent studies indicate LA-MRSA strains from swine are more genetically diverse than the first reported sequence type ST398. In the US, a diverse population of LA-MRSA is found including organisms of the ST398, ST9, and ST5 lineages. Occurrence of ST5 MRSA in swine is of particular concern since ST5 is among the most prevalent lineages causing clinical infections in humans. The prominence of ST5 in clinical disease is believed to result from acquisition of bacteriophages containing virulence or host-adapted genes including the immune-evasion cluster (IEC) genes carried by β-hemolysin converting bacteriophages, whose absence in LA-MRSA ST398 is thought to contribute to reduced rates of human infection and transmission associated with this lineage. The goal of this study was to investigate the prevalence of IEC genes associated with β-hemolysin converting bacteriophages in MRSA ST5 isolates obtained from agricultural sources, including swine, swine facilities, and humans with short- or long-term swine exposure. To gain a broader perspective, the prevalence of these genes in LA-MRSA ST5 strains was compared to the prevalence in clinical MRSA ST5 strains from humans with no known exposure to swine. IEC genes were not present in any of the tested MRSA ST5 strains from agricultural sources and the β-hemolysin gene was intact in these strains, indicating the bacteriophage’s absence. In contrast, the prevalence of the β-hemolysin converting bacteriophage in MRSA ST5 strains from humans with no exposure to swine was 90.4%. The absence of β-hemolysin converting bacteriophage in LA-MRSA ST5 isolates is consistent with previous reports evaluating ST398 strains and provides genetic evidence indicating LA-MRSA ST5 isolates may harbor a

  15. Communication complexity and information complexity

    Pankratov, Denis

    Information complexity enables the use of information-theoretic tools in communication complexity theory. Prior to the results presented in this thesis, information complexity was mainly used for proving lower bounds and direct-sum theorems in the setting of communication complexity. We present three results that demonstrate new connections between information complexity and communication complexity. In the first contribution we thoroughly study the information complexity of the smallest nontrivial two-party function: the AND function. While computing the communication complexity of AND is trivial, computing its exact information complexity presents a major technical challenge. In overcoming this challenge, we reveal that information complexity gives rise to rich geometrical structures. Our analysis of information complexity relies on new analytic techniques and new characterizations of communication protocols. We also uncover a connection of information complexity to the theory of elliptic partial differential equations. Once we compute the exact information complexity of AND, we can compute exact communication complexity of several related functions on n-bit inputs with some additional technical work. Previous combinatorial and algebraic techniques could only prove bounds of the form theta( n). Interestingly, this level of precision is typical in the area of information theory, so our result demonstrates that this meta-property of precise bounds carries over to information complexity and in certain cases even to communication complexity. Our result does not only strengthen the lower bound on communication complexity of disjointness by making it more exact, but it also shows that information complexity provides the exact upper bound on communication complexity. In fact, this result is more general and applies to a whole class of communication problems. In the second contribution, we use self-reduction methods to prove strong lower bounds on the information

  16. 2016 Annual Report - Argonne Leadership Computing Facility

    Collins, Jim [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The Argonne Leadership Computing Facility (ALCF) helps researchers solve some of the world’s largest and most complex problems, while also advancing the nation’s efforts to develop future exascale computing systems. This report presents some of the ALCF’s notable achievements in key strategic areas over the past year.

  17. The BNL Accelerator Test Facility control system

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package

  18. Service quality for facilities management in hospitals

    Sui Pheng, Low

    2016-01-01

    This book examines the Facilities Management (FM) of hospitals and healthcare facilities, which are among the most complex, costly and challenging kind of buildings to manage. It presents and evaluates the FM service quality standards in Singapore’s hospitals from the patient’s perspective, and provides recommendations on how to successfully improve FM service quality and achieve higher patient satisfaction. The book also features valuable supplementary materials, including a checklist of 32 key factors for successful facilities management and another checklist of 24 service attributes for hospitals to achieve desirable service quality in connection with facilities management. The book adopts a unique approach of combining service quality and quality theory to provide a more holistic view of how FM service quality can be achieved in hospitals. It also integrates three instruments, namely the SERVQUAL model, the Kano model and the QFD model to yield empirical results from surveys for implementation in hosp...

  19. Deactivating a major nuclear fuels reprocessing facility

    LeBaron, G.J.

    1997-01-01

    This paper describes three key processes used in deactivating the Plutonium Uranium Extraction (PUREX) Facility, a large, complex nuclear reprocessing facility, 15 months ahead of schedule and $77 million under budget. The organization was reengineered to refine its business processes and more effectively organize around the deactivation work scope. Multi-disciplined work teams were formed to be self-sufficient and empowered to make decisions and perform work. A number of benefits were realized by reengineering. A comprehensive process to develop end points which clearly identified specific results and the post-project facility configuration was developed so all areas of a facility were addressed. Clear and specific end points allowed teams to focus on completing deactivation activities and helped ensure there were no unfulfilled end-of-project expectations. The RCRA regulations require closure of permitted facilities within 180 days after cessation of operations which may essentially necessitate decommissioning. A more cost effective approach was adopted which significantly reduced risk to human health and the environment by taking the facility to a passive, safe, inexpensive-to-maintain surveillance and maintenance condition (deactivation) prior to disposition. PUREX thus became the first large reprocessing facility with active TSD [treatment, storage, and disposal] units to be deactivated under the RCRA regulations

  20. Operational and safety requirement of radiation facility

    Zulkafli Ghazali

    2007-01-01

    Gamma and electron irradiation facilities are the most common industrial sources of ionizing radiation. They have been used for medical, industrial and research purposes since the 1950s. Currently there are more than 160 gamma irradiation facilities and over 600 electron beam facilities in operation worldwide. These facilities are either used for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, or the eradication of insect infestation. Irradiation with electron beam, gamma ray or ultra violet light can also destroy complex organic contaminants in both liquid and gaseous waste. EB systems are replacing traditional chemical sterilization methods in the medical supply industry. The ultra-violet curing facility, however, has found more industrial application in printing and furniture industries. Gamma and electron beam facilities produce very high dose rates during irradiation, and thus there is a potential of accidental exposure in the irradiation chamber which can be lethal within minutes. Although, the safety record of this industry has been relatively very good, there have been fatalities recorded in Italy (1975), Norway (1982), El Salvador (1989) and Israel (1990). Precautions against uncontrolled entry into irradiation chamber must therefore be taken. This is especially so in the case of gamma irradiation facilities those contain large amounts of radioactivity. If the mechanism for retracting the source is damaged, the source may remain exposed. This paper will, to certain extent, describe safety procedure and system being installed at ALURTRON, Nuclear Malaysia to eliminate accidental exposure of electron beam irradiation. (author)

  1. The DOE/EM facility transition program

    Bixby, W.

    1994-01-01

    The mission of EM-60 is to plan, implement, and manage receipt of surplus facilities resulting from downsizing of the DOE Weapons Complex facilities and DOE operating program offices to EM, and to ensure prompt deactivation of such facilities in order to reach a minimum surveillance and maintenance condition. The revised organizational structure of EM-60 into four offices (one at headquarters, and the other three at field sites), reflects increased operating functions associated with deactivation, surveillance, and maintenance of facilities. EM-60's deactivation and transition role concerns technical, socioeconomic, institutional, and administrative issues. The primary objective of the deactivation process is to put facilities in the lowest surveillance and maintenance condition safely and quickly by driving down the open-quotes mortgageclose quotes costs of maintaining them until final disposition. EM-60's three key activities are: (1) Inventory of surplus facilities - The 1993 Surplus Facility Inventory and Assessment (SFIA) serves as a planning tool to help the Department and EM-60 determine optimal transition phasing, with safety and cost-effectiveness remaining a priority. (2) Management of accelerated facility life cycle transition - Transitions currently underway illustrate site issues. These include addressing the interests of federal and state regulatory agencies as well as interests of local stakeholders, safe management of large amounts of production residues, and options for treatment, storage, transportation, and disposal. Of equal importance in the transition process is planning the optimal transition of the labor force. (3) Economic development - to address the socio-economic impacts on affected communities of the severe and rapid downsizing of the DOE Weapons Complex, DOE is pursuing an approach that uses the land, equipment, technology assets, and highly skilled local workforces as a basis for alternative economic development

  2. Comparisons of CAP88PC version 2.0 default parameters to site specific inputs

    Lehto, M. A.; Courtney, J. C.; Charter, N.; Egan, T.

    2000-01-01

    The effects of varying the input for the CAP88PC Version 2.0 program on the total effective dose equivalents (TEDEs) were determined for hypothetical releases from the Hot Fuel Examination Facility (HFEF) located at the Argonne National Laboratory site on the Idaho National Engineering and Environmental Laboratory (INEEL). Values for site specific meteorological conditions and agricultural production parameters were determined for the 80 km radius surrounding the HFEF. Four nuclides, 3 H, 85 Kr, 129 I, and 137 Cs (with its short lived progeny, 137m Ba) were selected for this study; these are the radioactive materials most likely to be released from HFEF under normal or abnormal operating conditions. Use of site specific meteorological parameters of annual precipitation, average temperature, and the height of the inversion layer decreased the TEDE from 137 Cs- 137m Ba up to 36%; reductions for other nuclides were less than 3%. Use of the site specific agricultural parameters reduced TEDE values between 7% and 49%, depending on the nuclide. Reductions are associated with decreased committed effective dose equivalents (CEDEs) from the ingestion pathway. This is not surprising since the HFEF is located well within the INEEL exclusion area, and the surrounding area closest to the release point is a high desert with limited agricultural diversity. Livestock and milk production are important in some counties at distances greater than 30 km from the HFEF

  3. Introduction to nuclear facilities engineering

    Sapy, Georges

    2012-06-01

    Engineering, or 'engineer's art', aims at transforming simple principle schemes into operational facilities often complex especially when they concern the nuclear industry. This transformation requires various knowledge and skills: in nuclear sciences and technologies (nuclear physics, neutronics, thermal-hydraulics, material properties, radiation protection..), as well as in non-nuclear sciences and technologies (civil engineering, mechanics, electricity, computer sciences, instrumentation and control..), and in the regulatory, legal, contractual and financial domains. This book explains how this huge body of knowledge and skills must be organized and coordinated to create a reliable, exploitable, available, profitable and long-lasting facility, together with respecting extremely high safety, quality, and environmental impact requirements. Each aspect of the problem is approached through the commented presentation of nuclear engineering macro-processes: legal procedures and administrative authorizations, nuclear safety/radiation protection/security approach, design and detailed studies, purchase of equipments, on-site construction, bringing into operation, financing, legal, contractual and logistic aspects, all under the global control of a project management. The 'hyper-complexness' of such an approach leads to hard points and unexpected events. The author identifies the most common ones and proposes some possible solutions to avoid, mitigate or deal with them. In a more general way, he proposes some thoughts about the performance factors of a nuclear engineering process

  4. Green facility location

    Velázquez Martínez, J.C.; Fransoo, J.C.; Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.

    2017-01-01

    Transportation is one of the main contributing factors of global carbon emissions, and thus, when dealing with facility location models in a distribution context, transportation emissions may be substantially higher than the emissions due to production or storage. Because facility location models

  5. A Remote WIRELESS Facility

    Kees Uiterwijk

    2007-10-01

    Full Text Available Continuing need for available distance learning facilities has led to the development of a remote lab facility focusing on wireless technology. In the field of engineering there is a student need of gaining experience in set-up, monitoring and maintenance of 802.11A/B/G based wireless LAN environments.

  6. Medical cyclotron facilities

    1984-09-01

    This report examines the separate proposals from the Austin Hospital and the Australian Atomic Energy Commission for a medical cyclotron facility. The proponents have argued that a cyclotron facility would benefit Australia in areas of patient care, availability and export of radioisotopes, and medical research. Positron emission tomography (PET) and neutron beam therapy are also examined

  7. Global Environment Facility |

    environment Countries pledge US$4.1 billion to the Global Environment Facility Ringtail lemur mom with two of paradise Nations rally to protect global environment Countries pledge US$4.1 billion to the Global Environment Facility Stockholm, Sweden birds-eye view Events GEF-7 Replenishment Trung Truong Son Landscapes

  8. Samarbejdsformer og Facilities Management

    Storgaard, Kresten

    Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges.......Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges....

  9. DUPIC facility engineering

    Park, J. J.; Lee, H. H.; Kim, K. H.

    2002-03-01

    With starting DUPIC fuel fabrication experiment by using spent fuels, 1) operation and refurbishment for DFDF (DUPIC fuel development facility), and 2) operation and improvement of transportation equipment for radioactive materials between facilities became the objectives of this study. This report describes objectives of the project, necessities, state of related technology, R and D scope, R and D results, proposal for application etc

  10. Economics of reusable facilities

    Antia, D.D.J.

    1992-01-01

    In this paper some of the different economic development strategies that can be used for reusable facilities in the UK, Norway, Netherlands and in some production sharing contracts are outlined. These strategies focus on an integrated decision analysis approach which considers development phasing, reservoir management, tax planning and where appropriate facility purchase, leasing, or sale and leaseback decisions

  11. Optimal control of hydroelectric facilities

    Zhao, Guangzhi

    challenging problem of optimizing a sequence of two hydro dams sharing the same river system. The complexity of this problem is magnified and we just scratch its surface here. The thesis concludes with suggestions for future work in this fertile area. Keywords: dynamic programming, hydroelectric facility, optimization, optimal control, switching cost, turbine efficiency.

  12. Nuclear physics accelerator facilities

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  13. Complexity Plots

    Thiyagalingam, Jeyarajan

    2013-06-01

    In this paper, we present a novel visualization technique for assisting the observation and analysis of algorithmic complexity. In comparison with conventional line graphs, this new technique is not sensitive to the units of measurement, allowing multivariate data series of different physical qualities (e.g., time, space and energy) to be juxtaposed together conveniently and consistently. It supports multivariate visualization as well as uncertainty visualization. It enables users to focus on algorithm categorization by complexity classes, while reducing visual impact caused by constants and algorithmic components that are insignificant to complexity analysis. It provides an effective means for observing the algorithmic complexity of programs with a mixture of algorithms and black-box software through visualization. Through two case studies, we demonstrate the effectiveness of complexity plots in complexity analysis in research, education and application. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  14. Outline of NUCEF facility

    Takeshita, Isao

    1996-01-01

    NUCEF is a multipurpose research facility in the field of safety and advanced technology of nuclear fuel cycle back-end. Various experiment facilities and its supporting installations, in which nuclear fuel materials, radio isotopes and TRU elements can be handled, are arranged in more than one hundred rooms of two experiment buildings. Its construction was completed in middle of 1994 and hot experiments have been started since then. NUCEF is located on the site (30,000 m 2 ) of southeastern part in the Tokai Research Establishment of JAERI facing to the Pacific Ocean. The base of Experiment Buildings A and B was directly founded on the rock existing at 10-15 m below ground level taking the aseismatic design into consideration. Each building is almost same sized and composed of one basement and three floors of which area is 17,500 m 2 in total. In the basement, there are exhaust facilities of ventilation system, treatment system of solution fuel and radioactive waste solution and storage tanks of them. Major experiment facilities are located on the first or the second floors in each building. An air-inlet facility of ventilation system for each building is equipped on the third floor. Most of experiment facilities for criticality safety research including two critical facilities: Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) are installed in Experiment Building A. Experiment equipments for research on advanced fuel reprocessing process and on TRU waste management, which are named BECKY (Back End Fuel Cycle Key Elements Research Facility), are installed in laboratories and a-g cells in Experiment Building B. (J.P.N.)

  15. Complex concentrate pretreatment

    Lokken, R.O.; Scheele, R.D.; Strachan, D.M.; Toste, A.P.

    1991-03-01

    After removal of the transuranics (TRU) by the TRUEX process, complex concentrate waste will be grouted for final storage. The purpose of this project, conducted at the Pacific Northwest Laboratory, is to support a future decision to grout the complexant waste without destruction of the organic contents. It has been demonstrated that grouts with acceptable parameters for the Transportable Grout Facility can be made using actual waste. The acceptability of these grouts from a regulatory view seems to be less of a problem than previously. None of the organics found in the waste have been found on the EPA hazardous chemicals list. Two potential problems with the processing of the complex concentrate wastes were identified during the use of the TRUEX process on samples of several milliliters. One was the amount of foam that is generated during acid addition to the alkaline waste. Some of this foam appears to be of a waxy nature but does redissolve when the waste is strongly acid. The second potential problem is that noticeable amounts of NO x gases are generated. No quantitative measure of the NO x gas generation was made. The problem relates to processing the waste in B-plant where there are no facilities to handle NO x gases. 5 refs., 4 figs., 4 tabs

  16. Beneficial Re-use of Decommissioned Former Nuclear Facilities

    Boing, L.E.

    1997-01-01

    With the decision to decommission a nuclear facility, it is necessary to evaluate whether to fully demolish a facility or to re-use the facility in some capacity. This evaluation is often primarily driven by both the past mission of the site and the facility and the site's perceived future mission. In the case where the facility to be decommissioned is located within a large research or industrial complex and represents a significant resource to the site's future mission, it may be a perfect candidate to be re-used in some fashion. However, if the site is a rather remote older facility with little chance of being modified to today's standards for its re-use, the chances for its re-use will be substantially reduced. In this presentation, some specific cases of former nuclear facilities being decommissioned and re-used will be reviewed and some factors required to be considered in making this decision will be reviewed

  17. An outline of research facilities of high intensity proton accelerator

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  18. DUPIC facility engineering

    Lee, J S; Choi, J W; Go, W I; Kim, H D; Song, K C; Jeong, I H; Park, H S; Im, C S; Lee, H M; Moon, K H; Hong, K P; Lee, K S; Suh, K S; Kim, E K; Min, D K; Lee, J C; Chun, Y B; Paik, S Y; Lee, E P; Yoo, G S; Kim, Y S; Park, J C

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  19. DUPIC facility engineering

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs

  20. STAR facility tritium accountancy

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  1. Complexity Theory

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  2. Sustainable Facilities Management

    Nielsen, Susanne Balslev; Elle, Morten; Hoffmann, Birgitte

    2004-01-01

    The Danish public housing sector has more than 20 years of experience with sustainable facilities management based on user involvement. The paper outlines this development in a historical perspective and gives an analysis of different approaches to sustainable facilities management. The focus...... is on the housing departments and strateies for the management of the use of resources. The research methods used are case studies based on interviews in addition to literature studies. The paper explores lessons to be learned about sustainable facilities management in general, and points to a need for new...

  3. WORKSHOPS: Hadron facilities

    Anon.

    1987-01-01

    'Hadron facilities' – high intensity (typically a hundred microamps), medium energy (30-60 GeV) machines producing intense secondary beams of pions, kaons, etc., are being widely touted as a profitable research avenue to supplement what is learned through the thrust for higher and higher energies. This interest was reflected at an International Workshop on Hadron Facility Technology, held in Santa Fe, New Mexico. As well as invited talks describing the various projects being pushed in the US, Europe and Japan, the meeting included working groups covering linacs, beam dynamics, hardware, radiofrequency, polarized beams and experimental facilities

  4. Radioactive facilities classification criteria

    Briso C, H.A.; Riesle W, J.

    1992-01-01

    Appropriate classification of radioactive facilities into groups of comparable risk constitutes one of the problems faced by most Regulatory Bodies. Regarding the radiological risk, the main facts to be considered are the radioactive inventory and the processes to which these radionuclides are subjected. Normally, operations are ruled by strict safety procedures. Thus, the total activity of the radionuclides existing in a given facility is the varying feature that defines its risk. In order to rely on a quantitative criterion and, considering that the Annual Limits of Intake are widely accepted references, an index based on these limits, to support decisions related to radioactive facilities, is proposed. (author)

  5. Wind Energy Facilities

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  6. Test and User Facilities | NREL

    Test and User Facilities Test and User Facilities Our test and user facilities are available to | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Dynamometer Test Facilities

  7. Magnox waste storage complex

    Anon.

    1990-01-01

    This article looks at the design and construction of British Nuclear Fuel Limited's (BNFL) Magnox waste storage complex by Costain Engineering Limited. Magnox swarf from fuel decanning is stored underwater in specially designed silos. Gas processing capabilities from Costain Engineering Limited and the experience of BNFL combined in this project to provide the necessary problem-solving skills necessary for this waste storage upgrading and extension project. A retrofitted inerting facility was fitted to an existing building and a new storage extension was fitted, both without interrupting reprocessing operations at Sellafield. (UK)

  8. Hanford's Radioactive Mixed Waste Disposal Facility

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  9. Aviation Flight Support Facility

    Federal Laboratory Consortium — This facility consists of a 75' x 200' hanger with two adjacent helicopter pads located at Felker Army Airfield on Fort Eustis. A staff of Government and contractor...

  10. Airborne & Field Sensors Facilities

    Federal Laboratory Consortium — RTTC facilities include an 800' x 60' paved UAV operational area, clearapproach/departure zone, concrete pads furnished with 208VAC, 3 phase,200 amp power, 20,000 sq...

  11. Field Research Facility

    Federal Laboratory Consortium — The Field Research Facility (FRF) located in Duck, N.C. was established in 1977 to support the U.S. Army Corps of Engineers' coastal engineering mission. The FRF is...

  12. Air Data Calibration Facility

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  13. Robotics Research Facility

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  14. Ballistic Test Facility

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  15. Concrete Research Facility

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  16. Climatic Environmental Test Facilities

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  17. HNF - Helmholtz Nano Facility

    Wolfgang Albrecht

    2017-05-01

    Full Text Available The Helmholtz Nano Facility (HNF is a state-of-the-art cleanroom facility. The cleanroom has ~1100 m2 with cleanroom classes of DIN ISO 1-3. HNF operates according to VDI DIN 2083, Good Manufacturing Practice (GMP and aquivalent to Semiconductor Industry Association (SIA standards. HNF is a user facility of Forschungszentrum Jülich and comprises a network of facilities, processes and systems for research, production and characterization of micro- and nanostructures. HNF meets the basic supply of micro- and nanostructures for nanoelectronics, fluidics. micromechanics, biology, neutron and energy science, etc.. The task of HNF is rapid progress in nanostructures and their technology, offering efficient access to infrastructure and equipment. HNF gives access to expertise and provides resources in production, synthesis, characterization and integration of structures, devices and circuits. HNF covers the range from basic research to application oriented research facilitating a broad variety of different materials and different sample sizes.

  18. Electra Laser Facility

    Federal Laboratory Consortium — FUNCTION: The Electra Laser Facility is used to develop the science and technology needed to develop a reliable, efficient, high-energy, repetitively pulsed krypton...

  19. Mark 1 Test Facility

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  20. Coastal Harbors Modeling Facility

    Federal Laboratory Consortium — The Coastal Harbors Modeling Facility is used to aid in the planning of harbor development and in the design and layout of breakwaters, absorbers, etc.. The goal is...

  1. Corrosion Testing Facility

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  2. Skilled Nursing Facility PPS

    U.S. Department of Health & Human Services — Section 4432(a) of the Balanced Budget Act (BBA) of 1997 modified how payment is made for Medicare skilled nursing facility (SNF) services. Effective with cost...

  3. Frost Effects Research Facility

    Federal Laboratory Consortium — Full-scale study in controlled conditionsThe Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for a...

  4. GPS Satellite Simulation Facility

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  5. VT Telecommunication Facilities

    Vermont Center for Geographic Information — (Link to Metadata) The UtilityTelecom_TELEFAC data layer contains points which are intended to represent the location of telecommunications facilities (towers and/or...

  6. Laser Guidance Analysis Facility

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  7. The Birmingham Irradiation Facility

    Dervan, P; Hodgson, P; Marin-Reyes, H; Wilson, J

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1 x 1 cm^2 ) silicon sensors.

  8. Advanced Microanalysis Facility

    Federal Laboratory Consortium — The Advanced Microanalysis Facility fully integrates capabilities for chemical and structural analysis of electronic materials and devices for the U.S. Army and DoD....

  9. The Birmingham Irradiation Facility

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Wilson, J.

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1×1 cm 2 ) silicon sensors

  10. Decontamination of nuclear facilities

    1982-01-01

    Thirty-seven papers were presented at this conference in five sessions. Topics covered include regulation, control and consequences of decontamination; decontamination of components and facilities; chemical and non-chemical methods of decontamination; and TMI decontamination experience

  11. Pit Fragment Facility

    Federal Laboratory Consortium — This facility contains two large (20 foot high by 20 foot diameter) double walled steel tubs in which experimental munitions are exploded while covered with sawdust....

  12. Joint Computing Facility

    Federal Laboratory Consortium — Raised Floor Computer Space for High Performance ComputingThe ERDC Information Technology Laboratory (ITL) provides a robust system of IT facilities to develop and...

  13. Coastal Inlet Model Facility

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  14. Wind Tunnel Testing Facilities

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  15. Space Power Facility (SPF)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  16. Airborne Evaluation Facility

    Federal Laboratory Consortium — AFRL's Airborne Evaluation Facility (AEF) utilizes Air Force Aero Club resources to conduct test and evaluation of a variety of equipment and concepts. Twin engine...

  17. Pittsburgh City Facilities

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Pittsburgh City FacilitiesIncludes: City Administrative Buildings, Police Stations, Fire Stations, EMS Stations, DPW Sites, Senior Centers, Recreation Centers, Pool...

  18. Combustion Research Facility

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  19. Treated Effluent Disposal Facility

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  20. Plutonium metal burning facility

    Hausburg, D.E.; Leebl, R.G.

    1977-01-01

    A glove-box facility was designed to convert plutonium skull metal or unburned oxide to an oxide acceptable for plutonium recovery and purification. A discussion of the operation, safety aspects, and electrical schematics are included

  1. Geophysical Research Facility

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  2. Mass Properties Facility

    Federal Laboratory Consortium — This facility is used to acquire accurate weight, 3 axis center of gravity and 3 axis moment of inertia measurements for air launched munitions and armament equipment.

  3. Hypersonic Tunnel Facility (HTF)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  4. Powder Metallurgy Facility

    Federal Laboratory Consortium — The facility is uniquely equipped as the only laboratory within DA to conduct PM processing of refractory metals and alloys as well as the processing of a wide range...

  5. Environmental Test Facility (ETF)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  6. Dialysis Facility Compare Data

    U.S. Department of Health & Human Services — These are the official datasets used on the Medicare.gov Dialysis Facility Compare Website provided by the Centers for Medicare and Medicaid Services. These data...

  7. Wind Tunnel Facility

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  8. Structural Test Facility

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  9. Liquid Effluent Retention Facility

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  10. Decommissioning nuclear facilities

    Harmon, K.M.; Jenkins, C.E.; Waite, D.A.; Brooksbank, R.E.; Lunis, B.C.; Nemec, J.F.

    1976-01-01

    This paper describes the currently accepted alternatives for decommissioning retired light water reactor fuel cycle facilities and the current state of decommissioning technology. Three alternatives are recognized: Protective Storage; Entombment; and Dismantling. Application of these alternatives to the following types of facilities is briefly described: light water reactors; fuel reprocessing plants, and mixed oxide fuel fabrication plants. Brief descriptions are given of decommissioning operations and results at a number of sites, and recent studies of the future decommissioning of prototype fuel cycle facilities are reviewed. An overview is provided of the types of operations performed and tools used in common decontamination and decommissioning techniques and needs for improved technology are suggested. Planning for decommissioning a nuclear facility is dependent upon the maximum permitted levels of residual radioactive contamination. Proposed guides and recently developed methodology for development of site release criteria are reviewed. 21 fig, 32 references

  11. Water Tunnel Facility

    Federal Laboratory Consortium — NETL’s High-Pressure Water Tunnel Facility in Pittsburgh, PA, re-creates the conditions found 3,000 meters beneath the ocean’s surface, allowing scientists to study...

  12. Hanford Facility contingency plan

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials

  13. Auditing radiation sterilization facilities

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  14. Managing Complexity

    Maylath, Bruce; Vandepitte, Sonia; Minacori, Patricia

    2013-01-01

    and into French. The complexity of the undertaking proved to be a central element in the students' learning, as the collaboration closely resembles the complexity of international documentation workplaces of language service providers. © Association of Teachers of Technical Writing.......This article discusses the largest and most complex international learning-by-doing project to date- a project involving translation from Danish and Dutch into English and editing into American English alongside a project involving writing, usability testing, and translation from English into Dutch...

  15. Complex variables

    Fisher, Stephen D

    1999-01-01

    The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic

  16. JRR-3 neutron radiography facility

    Matsubayashi, M.; Tsuruno, A.

    1992-01-01

    JRR-3 neutron radiography facility consists of thermal neutron radiography facility (TNRF) and cold neutron radiography facility (CNRF). TNRF is installed in JRR-3 reactor building. CNRF is installed in the experimental beam hall adjacent to the reactor building. (author)

  17. National Solar Thermal Test Facility

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  18. The CUTLASS database facilities

    Jervis, P.; Rutter, P.

    1988-09-01

    The enhancement of the CUTLASS database management system to provide improved facilities for data handling is seen as a prerequisite to its effective use for future power station data processing and control applications. This particularly applies to the larger projects such as AGR data processing system refurbishments, and the data processing systems required for the new Coal Fired Reference Design stations. In anticipation of the need for improved data handling facilities in CUTLASS, the CEGB established a User Sub-Group in the early 1980's to define the database facilities required by users. Following the endorsement of the resulting specification and a detailed design study, the database facilities have been implemented as an integral part of the CUTLASS system. This paper provides an introduction to the range of CUTLASS Database facilities, and emphasises the role of Database as the central facility around which future Kit 1 and (particularly) Kit 6 CUTLASS based data processing and control systems will be designed and implemented. (author)

  19. Mound facility physical characterization

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  20. Coupling of AST-500 heating reactors with desalination facilities

    Kourachenkov, A.V.

    1998-01-01

    The general issues regarding NHR and desalination facility joint operation for potable water production are briefly considered. AST-500 reactor plant and DOU GTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. Similarity of NHR operation for a heating grid and a desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author)

  1. Coupling of AST-500 heating reactors with desalination facilities

    Gureyeva, L.V.; Egorov, V.V.; Podberezniy, V.L.

    1997-01-01

    The general issues regarding the joint operation of a NHR and a desalination facility for potable water production are briefly considered. The AST-500 reactor plant and the DOUGTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. The similarity of NHR operation for heating grid and desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author). 2 refs, 1 fig., 1 tab

  2. Coupling of AST-500 heating reactors with desalination facilities

    Gureyeva, L V; Egorov, V V [OKBM, Nizhny Novgorod (Russian Federation); Podberezniy, V L [Scientific Research Inst. of Machine Building, Ekaterinburg (Russian Federation)

    1997-09-01

    The general issues regarding the joint operation of a NHR and a desalination facility for potable water production are briefly considered. The AST-500 reactor plant and the DOUGTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. The similarity of NHR operation for heating grid and desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author). 2 refs, 1 fig., 1 tab.

  3. Lecithin Complex

    1Department of Food Science and Engineering, Xinyang College of Agriculture and ... Results: The UV and IR spectra of the complex showed an additive effect of polydatin-lecithin, in which .... Monochromatic Cu Ka radiation (wavelength =.

  4. Design of the disposal facility 2012

    Saanio, T.; Ikonen, A.; Keto, P.; Kirkkomaeki, T.; Kukkola, T.; Nieminen, J.; Raiko, H.

    2013-11-01

    The spent nuclear fuel accumulated from the nuclear power plants in Olkiluoto in Eurajoki and in Haestholmen in Loviisa will be disposed of in Olkiluoto. A facility complex will be constructed at Olkiluoto, and it will include two nuclear waste facilities according to Government Degree 736/2008. The nuclear waste facilities are an encapsulation plant, constructed to encapsulate spent nuclear fuel and a disposal facility consisting of an underground repository and other underground rooms and above ground service spaces. The repository is planned to be excavated to a depth of 400 - 450 meters. Access routes to the disposal facility are an inclined access tunnel and vertical shafts. The encapsulated fuel is transferred to the disposal facility in the canister lift. The canisters are transferred from the technical rooms to the disposal area via central tunnel and deposited in the deposition holes which are bored in the floors of the deposition tunnels and are lined beforehand with compacted bentonite blocks. Two parallel central tunnels connect all the deposition tunnels and these central tunnels are inter-connected at regular intervals. The solution improves the fire safety of the underground rooms and allows flexible backfilling and closing of the deposition tunnels in stages during the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level. ONKALO is designed and constructed so that it can later serve as part of the repository. The goal is that the first part of the disposal facility will be constructed under the building permit phase in the 2010's and operations will start in the 2020's. The fuel from 4 operating reactors as well the fuel from the fifth nuclear power plant under construction, has been taken into account in designing the disposal facility. According to the information from TVO and Fortum, the amount of the spent nuclear fuel is 5,440 tU. The disposal facility is being excavated

  5. Advanced reactor experimental facilities

    Amri, A.; Papin, J.; Uhle, J.; Vitanza, C.

    2010-01-01

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  6. Distributed Energy Resources Test Facility

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  7. Usability Briefing - a process model for healthcare facilities

    Fronczek-Munter, Aneta

    2014-01-01

    Background: In complex buildings with many types of users it can be difficult to satisfy the numerous, often contradictory requirements. Research in usability mostly focuses on evaluating products or facilities with users, after they were built. This paper is part of a PhD project “Usability...... with various users/stakeholders, using creative boundary objects at workshops.  Practical Implications: The research results have relevance to researchers, client organisations, facility managers and architects planning new complex facilities.  Research limitations: The proposed model is theoretical and needs...... briefing for hospitals”, where methods for capturing user needs and experiences at hospital facilities are investigated in order to feed into design processes and satisfy the users’ needs and maximise the effectiveness of facilities. Purpose: This paper introduces the concept of usability briefing...

  8. Modeling discrete competitive facility location

    Karakitsiou, Athanasia

    2015-01-01

    This book presents an up-to-date review of modeling and optimization approaches for location problems along with a new bi-level programming methodology which captures the effect of competition of both producers and customers on facility location decisions. While many optimization approaches simplify location problems by assuming decision making in isolation, this monograph focuses on models which take into account the competitive environment in which such decisions are made. New insights in modeling, algorithmic and theoretical possibilities are opened by this approach and new applications are possible. Competition on equal term plus competition between market leader and followers are considered in this study, consequently bi-level optimization methodology is emphasized and further developed. This book provides insights regarding modeling complexity and algorithmic approaches to discrete competitive location problems. In traditional location modeling, assignment of customer demands to supply sources are made ...

  9. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    Bossart, Steven J.; Blair, Danielle M.

    2003-01-01

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D and D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials

  10. Radiation protection in nuclear facilities

    Piechowski, J.; Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th; Lecomte, J.F.; Delmont, D.; Boitel, S.; Le Fauconnier, J.P.; Sugier, A; Zerbib, J.C.; Barbey, P.

    1998-01-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)

  11. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation

  12. Comprehensive facilities plan

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  13. Radiological Research Accelerator Facility

    Goldhagen, P.; Marino, S.A.; Randers-Pehrson, G.; Hall, E.J.

    1986-01-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which can be used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. It is part of the Radiological Research Laboratory (RRL), and its operation is supported as a National Facility by the US Department of Energy. RARAF is available to all potential users on an equal basis, with priorities based on the recommendations of a Scientific Advisory Committee. Facilities and services are provided to users, but the research projects themselves must be supported separately. This chapter presents a brief description of current experiments being carried out at RARAF and of the operation of the Facility from January through June, 1986. Operation of the Facility for all of 1985 was described in the 1985 Progress Report for RARAF. The experiments described here were supported by various Grants and Contracts from NIH and DOE and by the Statens Stralskyddsinstitut of Sweden

  14. European Synchrotron Radiation Facility

    Buras, B.

    1985-01-01

    How a European Synchrotron Radiation Facility has developed into a detailed proposal recently accepted as the basis for construction of the facility at Grenoble is discussed. In November 1977, the General Assembly of the European Science Foundation (ESF) approved the report of the ESF working party on synchrotron radiation entitled Synchrotron Radiation - a Perspective View for Europe. This report contained as one of its principal recommendations that work should commence on a feasibility study for a European synchrotron radiation laboratory having a dedicated hard X-ray storage ring and appropriate advanced instrumentation. In order to prepare a feasibility study the European Science Foundation set up the Ad-hoc Committee on Synchrotron Radiation, which in turn formed two working groups: one for the machine and another for instrumentation. This feasibility study was completed in 1979 with the publication of the Blue Book describing in detail the so called 1979 European Synchrotron Radiation Facility. The heart of the facility was a 5 GeV electron storage ring and it was assumed that mainly the radiation from bending magnets will be used. The facility is described

  15. Berkeley Low Background Facility

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-01-01

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects

  16. Power Systems Development Facility

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell

  17. IPAD Paperless Work Control for Test Complex Facilities Management

    National Aeronautics and Space Administration — The purpose of this project was to identify a way to improve the work control processes used at Stennis Space Center that are traditionally done via paper by...

  18. UHV facility at pelletron

    Gupta, S.K.; Hattangadi, V.A.

    1993-01-01

    One of the important requirements of a heavy ion accelerator is the maintenance of a clean, ultrahigh vacuum (UHV) environment in the accelerating tubes as well as in the beamlines. This becomes necessary in order to minimise transmission losses of the ion beam due to charge exchange or scattering during collisions with the residual gas atoms. In view of these considerations, as an essential ancillary facility, a UHV laboratory with all required facilities has been set up for the pelletron accelerator and the work done in this laboratory is described. First the pelletron accelerator vacuum system is described in brief. The UHV laboratory facilities are described. Our operational experience with the accelerator vacuum system is discussed. The development of accelerator components carried out by the UHV laboratory is also discussed. (author)

  19. FACILITIES MANAGEMENT AT CERN

    2002-01-01

    Recently we have been confronted with difficulties concerning services which are part of a new contract for facilities management. Please see below for some information about this contract. Following competitive tendering and the Finance Committee decision, the contract was awarded to the Swiss firm 'Facilities Management Network (FMN)'. The owners of FMN are two companies 'M+W Zander' and 'Avireal', both very experienced in this field of facilities management. The contract entered into force on 1st July 2002. CERN has grouped together around 20 different activities into this one contract, which was previously covered by separate contracts. The new contract includes the management and execution of many activities, in particular: Guards and access control; cleaning; operation and maintenance of heating plants, cooling and ventilation equipment for buildings not related to the tunnel or the LHC; plumbing; sanitation; lifts; green areas and roads; waste disposal; and includes a centralised helpdesk for these act...

  20. The ORION Facility

    Noble, Robert

    2003-01-01

    ORION will be a user-oriented research facility for understanding the physics and developing the technology for future high-energy particle accelerators, as well as for research in related fields. The facility has as its centerpiece the Next Linear Collider Test Accelerator (NLCTA) at the Stanford Linear Accelerator Center (SLAC). The NLCTA will be modified with the addition of a new, high-brightness photoinjector, its drive laser, an S-band rf power system, a user laser room, a low-energy experimental hall supplied with electron beams up to 60 MeV in energy, and a high-energy hall supplied with beams up to 350 MeV. The facility design and parameters are described here along with highlights from the 2nd ORION Workshop held in February 2003

  1. Complex analysis

    Freitag, Eberhard

    2005-01-01

    The guiding principle of this presentation of ``Classical Complex Analysis'' is to proceed as quickly as possible to the central results while using a small number of notions and concepts from other fields. Thus the prerequisites for understanding this book are minimal; only elementary facts of calculus and algebra are required. The first four chapters cover the essential core of complex analysis: - differentiation in C (including elementary facts about conformal mappings) - integration in C (including complex line integrals, Cauchy's Integral Theorem, and the Integral Formulas) - sequences and series of analytic functions, (isolated) singularities, Laurent series, calculus of residues - construction of analytic functions: the gamma function, Weierstrass' Factorization Theorem, Mittag-Leffler Partial Fraction Decomposition, and -as a particular highlight- the Riemann Mapping Theorem, which characterizes the simply connected domains in C. Further topics included are: - the theory of elliptic functions based on...

  2. Subgroup complexes

    Smith, Stephen D

    2011-01-01

    This book is intended as an overview of a research area that combines geometries for groups (such as Tits buildings and generalizations), topological aspects of simplicial complexes from p-subgroups of a group (in the spirit of Brown, Quillen, and Webb), and combinatorics of partially ordered sets. The material is intended to serve as an advanced graduate-level text and partly as a general reference on the research area. The treatment offers optional tracks for the reader interested in buildings, geometries for sporadic simple groups, and G-equivariant equivalences and homology for subgroup complexes.

  3. Complex manifolds

    Morrow, James

    2006-01-01

    This book, a revision and organization of lectures given by Kodaira at Stanford University in 1965-66, is an excellent, well-written introduction to the study of abstract complex (analytic) manifolds-a subject that began in the late 1940's and early 1950's. It is largely self-contained, except for some standard results about elliptic partial differential equations, for which complete references are given. -D. C. Spencer, MathSciNet The book under review is the faithful reprint of the original edition of one of the most influential textbooks in modern complex analysis and geometry. The classic

  4. Applications of microtron facility

    Sanjeev, Ganesh

    2013-01-01

    An 8 MeV Microtron accelerator installed and commissioned in Mangalore University to strengthen research activities in the area of Radiation Physics and allied sciences is also being used extensively for coordinated research programs in basic and applied areas of science and technology involving researchers from national laboratories and sister universities of the region. The electron accelerator with its versatile features extends energetic electrons, intense photons and neutrons of moderate flux to cater to the needs of the users of the facility. A brief view of this 'first of its kind' facility in the country and the R and D programs with some sample results is presented. (author)

  5. Bevalac Radiotherapy Facility

    Alonso, J.R.; Howard, J.; Criswell, T.

    1979-03-01

    Patient Treatment Room at the Bevalac is now in full operation. In the design of this facility, emphasis has been placed on creating an atmosphere appropriate to a clinical facility; the usual features of an irradiation cave have been hidden behind carpets, curtains and paint. Patient positioning is done with a Philips Ram-style couch, with additional fixtures to accommodate a patient in the seated or standing, as well as the supine, position. Dosimetry apparatus, collimators, ion chambers and the beam flattening system used to produce the highly uniform 20 cm diameter therapy field are described

  6. Line facilities outline

    1998-08-01

    This book deals with line facilities. The contents of this book are outline line of wire telecommunication ; development of line, classification of section of line and theory of transmission of line, cable line ; structure of line, line of cable in town, line out of town, domestic cable and other lines, Optical communication ; line of optical cable, transmission method, measurement of optical communication and cable of the sea bottom, Equipment of telecommunication line ; telecommunication line facilities and telecommunication of public works, construction of cable line and maintenance and Regulation of line equipment ; regulation on technique, construction and maintenance.

  7. Robotics for nuclear facilities

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  8. Next generation storage facility

    Schlesser, J.A.

    1994-01-01

    With diminishing requirements for plutonium, a substantial quantity of this material requires special handling and ultimately, long-term storage. To meet this objective, we at Los Alamos, have been involved in the design of a storage facility with the goal of providing storage capabilities for this and other nuclear materials. This paper presents preliminary basic design data, not for the structure and physical plant, but for the container and arrays which might be configured within the facility, with strong emphasis on criticality safety features

  9. Bevalac Radiotherapy Facility

    Alonso, J.R.; Howard, J.; Criswell, T.

    1979-03-01

    Patient Treatment Room at the Bevalac is now in full operation. In the design of this facility, emphasis has been placed on creating an atmosphere appropriate to a clinical facility; the usual features of an irradiation cave have been hidden behind carpets, curtains and paint. Patient positioning is done with a Philips Ram-style couch, with additional fixtures to accommodate a patient in the seated or standing, as well as the supine, position. Dosimetry apparatus, collimators, ion chambers and the beam flattening system used to produce the highly uniform 20 cm diameter therapy field are described.

  10. RCRA facility stabilization initiative

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program's management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies

  11. Exhaust gas processing facility

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  12. TMX, a new facility

    Thomas, S.R. Jr.

    1977-01-01

    As a mirror fusion facility, the Tandem Mirror Experiment (TMX) at the Lawrence Livermore Laboratory (LLL) is both new and different. It utilizes over 23,000 ft 2 of work area in three buildings and consumes over 14 kWh of energy with each shot. As a systems design, the facility is broken into discreet functional regions. Among them are a mechanical vacuum pumping system, a liquid-nitrogen system, neutral-beam and magnet power supplies, tiered structures to support these supplies, a neutron-shielded vacuum vessel, a control area, and a diagnostics area. Constraints of space, time, and cost have all affected the design

  13. Computer codes for ventilation in nuclear facilities

    Mulcey, P.

    1987-01-01

    In this paper the authors present some computer codes, developed in the last years, for ventilation and radioprotection. These codes are used for safety analysis in the conception, exploitation and dismantlement of nuclear facilities. The authors present particularly: DACC1 code used for aerosol deposit in sampling circuit of radiation monitors; PIAF code used for modelization of complex ventilation system; CLIMAT 6 code used for optimization of air conditioning system [fr

  14. Complex Networks

    Evsukoff, Alexandre; González, Marta

    2013-01-01

    In the last decade we have seen the emergence of a new inter-disciplinary field focusing on the understanding of networks which are dynamic, large, open, and have a structure sometimes called random-biased. The field of Complex Networks is helping us better understand many complex phenomena such as the spread of  deseases, protein interactions, social relationships, to name but a few. Studies in Complex Networks are gaining attention due to some major scientific breakthroughs proposed by network scientists helping us understand and model interactions contained in large datasets. In fact, if we could point to one event leading to the widespread use of complex network analysis is the availability of online databases. Theories of Random Graphs from Erdös and Rényi from the late 1950s led us to believe that most networks had random characteristics. The work on large online datasets told us otherwise. Starting with the work of Barabási and Albert as well as Watts and Strogatz in the late 1990s, we now know th...

  15. Radar Signature Calculation Facility

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  16. Facility effluent monitoring plan determinations for the 200 Area facilities

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  17. Mineral facilities of Europe

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  18. CERN IRRADIATION FACILITIES.

    Pozzi, Fabio; Garcia Alia, Ruben; Brugger, Markus; Carbonez, Pierre; Danzeca, Salvatore; Gkotse, Blerina; Richard Jaekel, Martin; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-09-28

    CERN provides unique irradiation facilities for applications in dosimetry, metrology, intercomparison of radiation protection devices, benchmark of Monte Carlo codes and radiation damage studies to electronics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Shared Facilities Canadian Style.

    Galonski, Mark A.

    1998-01-01

    Describes two projects arising from an Ontario (Canada) Ministry of Education initiative that combined school and nonschool capital funds to build joint facilities. The Stratford Education and Recreation Centre and the Humberwood Community Centre demonstrate that government agencies can cooperate to benefit the community. Success depends on having…

  20. Facility effluent monitoring

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  1. Facility Management Innovation (FMI)

    Mobach, Mark P.; Nardelli, Giulia; Kok, Herman; Konkol, Jennifer; Alexander, Keith; Alexander, Keith

    2014-01-01

    This current green paper deals with innovation in facility management (FM), a subject which is at the heart of Working Group 3, in benefit of the EuroFM Research Network. It aims to stimulate discussion and further collaborative work, and to generate new knowledge for the European FM community. We

  2. PFP Wastewater Sampling Facility

    Hirzel, D.R.

    1995-01-01

    This test report documents the results obtained while conducting operational testing of the sampling equipment in the 225-WC building, the PFP Wastewater Sampling Facility. The Wastewater Sampling Facility houses equipment to sample and monitor the PFP's liquid effluents before discharging the stream to the 200 Area Treated Effluent Disposal Facility (TEDF). The majority of the streams are not radioactive and discharges from the PFP Heating, Ventilation, and Air Conditioning (HVAC). The streams that might be contaminated are processed through the Low Level Waste Treatment Facility (LLWTF) before discharging to TEDF. The sampling equipment consists of two flow-proportional composite samplers, an ultrasonic flowmeter, pH and conductivity monitors, chart recorder, and associated relays and current isolators to interconnect the equipment to allow proper operation. Data signals from the monitors are received in the 234-5Z Shift Office which contains a chart recorder and alarm annunciator panel. The data signals are also duplicated and sent to the TEDF control room through the Local Control Unit (LCU). Performing the OTP has verified the operability of the PFP wastewater sampling system. This Operability Test Report documents the acceptance of the sampling system for use

  3. Toroid magnet test facility

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  4. Facilities of Environmental Distinction

    Pascopella, Angela

    2011-01-01

    Three of nine school buildings that have won the latest Educational Facility Design Awards from the American Institute of Architects (AIA) Committee on Architecture for Education stand out from the crowd of other school buildings because they are sustainable and are connected to the nature that surrounds them. They are: (1) Thurston Elementary…

  5. Improved Emission Spectrographic Facility

    Goergen, C.R.; Lethco, A.J.; Hosken, G.B.; Geckeler, D.R.

    1980-10-01

    The Savannah River Plant's original Emission Spectrographic Laboratory for radioactive samples had been in operation for 25 years. Due to the deteriorated condition and the fire hazard posed by the wooden glove box trains, a project to update the facility was funded. The new laboratory improved efficiency of operation and incorporated numerous safety and contamination control features

  6. Dismantling of nuclear facilities

    Tallec, M.; Kus, J.P.

    2009-01-01

    Nuclear facilities have a long estimable lifetime but necessarily limited in time. At the end of their operation period, basic nuclear installations are the object of cleansing operations and transformations that will lead to their definitive decommissioning and then to their dismantling. Because each facility is somewhere unique, cleansing and dismantling require specific techniques. The dismantlement consists in the disassembly and disposing off of big equipments, in the elimination of radioactivity in all rooms of the facility, in the demolition of buildings and eventually in the reconversion of all or part of the facility. This article describes these different steps: 1 - dismantling strategy: main de-construction guidelines, expected final state; 2 - industries and sites: cleansing and dismantling at the CEA, EDF's sites under de-construction; 3 - de-construction: main steps, definitive shutdown, preparation of dismantling, electromechanical dismantling, cleansing/decommissioning, demolition, dismantling taken into account at the design stage, management of polluted soils; 4 - waste management: dismantlement wastes, national policy of radioactive waste management, management of dismantlement wastes; 5 - mastery of risks: risk analysis, conformability of risk management with reference documents, main risks encountered at de-construction works; 6 - regulatory procedures; 7 - international overview; 8 - conclusion. (J.S.)

  7. ICDF Complex Remedial Action Work Plan

    W. M. Heileson

    2006-12-01

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  8. Managing Complexity

    Chassin, David P.; Posse, Christian; Malard, Joel M.

    2004-08-01

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today’s most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically-based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This paper explores the state of the art in the use physical analogs for understanding the behavior of some econophysical systems and to deriving stable and robust control strategies for them. In particular we review and discussion applications of some analytic methods based on the thermodynamic metaphor according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood.

  9. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  10. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  11. EPA Facility Registry Service (FRS): Facility Interests Dataset

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  12. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  13. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  14. EPA Facility Registry Service (FRS): AIRS_AFS Sub Facilities

    U.S. Environmental Protection Agency — The Air Facility System (AFS) contains compliance and permit data for stationary sources regulated by EPA, state and local air pollution agencies. The sub facility...

  15. Fast Flux Test Facility

    Munn, W.I.

    1981-01-01

    The Fast Flux Test Facility (FFTF), located on the Hanford site a few miles north of Richland, Washington, is a major link in the chain of development required to sustain and advance Liquid Metal Fast Breeder Reactor (LMFBR) technology in the United States. This 400 MWt sodium cooled reactor is a three loop design, is operated by Westinghouse Hanford Company for the US Department of Energy, and is the largest research reactor of its kind in the world. The purpose of the facility is three-fold: (1) to provide a test bed for components, materials, and breeder reactor fuels which can significantly extend resource reserves; (2) to produce a complete body of base data for the use of liquid sodium in heat transfer systens; and (3) to demonstrate inherent safety characteristics of LMFBR designs

  16. Pumps for nuclear facilities

    1999-01-01

    The guide describes how the Finnish Radiation and Nuclear Safety Authority (STUK) controls pumps and their motors at nuclear power plants and other nuclear facilities. The scope of the control is determined by the Safety Class of the pump in question. The various phases of the control are: (1) review of construction plan, (2) control of manufacturing, and construction inspection, (3) commissioning inspection, and (4) control during operation. STUK controls Safety Class 1, 2 and 3 pumps at nuclear facilities as described in this guide. STUK inspects Class EYT (non-nuclear) pumps separately or in connection with the commissioning inspections of the systems. This guide gives the control procedure and related requirements primarily for centrifugal pumps. However, it is also applied to the control of piston pumps and other pump types not mentioned in this guide

  17. TIARA electrostatic accelerator facility

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  18. World Class Facilities Management

    Malmstrøm, Ole Emil; Jensen, Per Anker

    2013-01-01

    Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet.......Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet....

  19. Universal Test Facility

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  20. The ISOLDE facility

    Catherall, R.; Andreazza, W.; Breitenfeldt, M.; Dorsival, A.; Focker, G. J.; Gharsa, T. P.; J, Giles T.; Grenard, J.-L.; Locci, F.; Martins, P.; Marzari, S.; Schipper, J.; Shornikov, A.; Stora, T.

    2017-09-01

    The ISOLDE facility has undergone numerous changes over the last 17 years driven by both the physics and technical community with a common goal to improve on beam variety, beam quality and safety. Improvements have been made in civil engineering and operational equipment while continuing developments aim to ensure operations following a potential increase in primary beam intensity and energy. This paper outlines the principal technical changes incurred at ISOLDE by building on a similar publication of the facility upgrades by Kugler (2000 Hyperfine Interact. 129 23-42). It also provides an insight into future perspectives through a brief summary issues addressed in the HIE-ISOLDE design study Catherall et al (2013 Nucl. Instrum. Methods Phys. Res. B 317 204-207).

  1. Separations canyon decontamination facilities

    Hershey, J.H.

    1975-01-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon building so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered

  2. Separations canyon decontamination facilities

    Hershey, J.H.

    1975-05-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon buildings so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered. (U.S.)

  3. Facilities evaluation report

    Sloan, P.A.; Edinborough, C.R.

    1992-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities

  4. A medical facility proposal to use the SSC linac

    Funk, L.W.

    1994-01-01

    A consortium organized by the Texas National Research Laboratory Commission under a Department of Energy grant proposes to build and operate a Regional Medical Technology Center to function as a combined medical radioisotope production complex and proton cancer therapy facility using the Linear Accelerator (Linac) assets of the Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications for linear accelerator technology

  5. A medical facility proposal to use the SSC linac

    Funk, L.W.

    1995-01-01

    A consortium organized by the Texas National Research Laboratory Commission (TNRLC) under a Department of Energy (DOE) grant proposes to build and operate a Regional Medical Technology Center (RMTC) to function as a combined medical radioisotope production complex and proton cancer therapy facility using the linear accelerator (linac) assets of the cancelled Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications of linear accelerator technology. (orig.)

  6. A medical facility proposal to use the SSC linac

    Warren Funk, L.

    1995-05-01

    A consortium organized by the Texas National Research Laboratory Commission (TNRLC) under a Department of Energy (DOE) grant proposes to build and operate a Regional Medical Technology Center (RMTC) to function as a combined medical radioisotope production complex and proton cancer therapy facility using the linear accelerator (linac) assets of the cancelled Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications of linear accelerator technology.

  7. The engineering test facility

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF. (orig.)

  8. Engineering test facility

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper described the design status of the ETF

  9. Large mass storage facility

    Peskin, Arnold M.

    1978-08-01

    This is the final report of a study group organized to investigate questions surrounding the acquisition of a large mass storage facility. The programatic justification for such a system at Brookhaven is reviewed. Several candidate commercial products are identified and discussed. A draft of a procurement specification is developed. Some thoughts on possible new directions for computing at Brookhaven are also offered, although this topic was addressed outside of the context of the group's deliberations. 2 figures, 3 tables.

  10. Proton beam therapy facility

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  11. Facility decontamination technology workshop

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted

  12. Proton beam therapy facility

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  13. SIGMA Experimental Facility

    Rivarola, Martin; Florido, Pablo; Gonzalez, Jose; Brasnarof, Daniel; Orellano, Pablo; Bergallo, Juan

    2000-01-01

    The SIGMA ( Separacion Isotopica Gaseosa por Metodos Avanzados) concept is outlined.The old gaseous diffusion process to enrich uranium has been updated to be economically competitive for small production volumes.Major innovations have been introduced in the membrane design and in the integrated design of compressors and diffusers.The use of injectors and gas turbines has been also adopted.The paper describes the demonstration facility installed by the Argentine Atomic Energy Commission

  14. Facility decontamination technology workshop

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  15. ORNL calibrations facility

    Berger, C.D.; Gupton, E.D.; Lane, B.H.; Miller, J.H.; Nichols, S.W.

    1982-08-01

    The ORNL Calibrations Facility is operated by the Instrumentation Group of the Industrial Safety and Applied Health Physics Division. Its primary purpose is to maintain radiation calibration standards for calibration of ORNL health physics instruments and personnel dosimeters. This report includes a discussion of the radioactive sources and ancillary equipment in use and a step-by-step procedure for calibration of those survey instruments and personnel dosimeters in routine use at ORNL

  16. Bevalac Minibeam Facility

    Schimmerling, W.; Alonso, J.; Morgado, R.; Tobias, C.A.; Grunder, H.; Upham, F.T.; Windsor, A.; Armer, R.A.; Yang, T.C.H.; Gunn, J.T.

    1977-03-01

    The Minibeam Facility is a biomedical heavy-ion beam area at the Bevalac designed to satisfy the following requirements: (1) provide a beam incident in a vertical plane for experiments where a horizontal apparatus significantly increases the convenience of performing an experiment or even determines its feasibility; (2) provide an area that is well shielded with respect to electronic interference so that microvolt signals can be detected with acceptable signal-to-noise ratios; (3) provide a beam of small diameter, typically a few millimeters or less, for various studies of cellular function; and (4) provide a facility for experiments that require long setup and preparation times and apparatus that must be left relatively undisturbed between experiments and that need short periods of beam time. The design of such a facility and its main components is described. In addition to the above criteria, the design was constrained by the desire to have inexpensive, simple devices that work reliably and can be easily upgraded for interfacing to the Biomedical PDP 11/45 computer

  17. Description of pelletizing facility

    Vojin Cokorilo; Dinko Knezevic; Vladimir Milisavljevic [University of Belgrade, Belgrade (Serbia). Faculty of Mining and Geology

    2006-07-01

    A lot of electrical energy in Serbia was used for heating, mainly for domestics. As it is the most expensive source for heating the government announced a National Program of Energy Efficiency with only one aim, to reduce the consumption of electric energy for the heating. One of the contributions to mentioned reduction is production of coal pellets from the fine coal and its use for domestic heating but also for heating of schools, hospitals, military barracks etc. Annual production of fine coal in Serbia is 300,000 tons. The stacks of fine coal present difficulties at each deep mine because of environmental pollution, spontaneous combustion, low price, smaller market etc. To overcome the difficulties and to give the contribution to National Program of Energy Efficiency researchers from the Department of Mining Engineering, the University of Belgrade designed and realized the project of fine coal pelletizing. This paper describes technical aspect of this project. Using a CPM machine Model 7900, a laboratory facility, then a semi-industrial pelletizing facility followed by an industrial facility was set up and produced good quality pellets. The plant comprised a coal fines hopper, conveyor belt, hopper for screw conveyor, screw conveyor, continuous mixer conditioner, binder reservoir, pump and pipelines, pellet mill, product conveyor belt and product hopper. 4 refs., 3 figs., 1 tab.

  18. ATLAS Facility Description Report

    Kang, Kyoung Ho; Moon, Sang Ki; Park, Hyun Sik; Cho, Seok; Choi, Ki Yong

    2009-04-01

    A thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been constructed at KAERI (Korea Atomic Energy Research Institute). The ATLAS has the same two-loop features as the APR1400 and is designed according to the well-known scaling method suggested by Ishii and Kataoka to simulate the various test scenarios as realistically as possible. It is a half-height and 1/288-volume scaled test facility with respect to the APR1400. The fluid system of the ATLAS consists of a primary system, a secondary system, a safety injection system, a break simulating system, a containment simulating system, and auxiliary systems. The primary system includes a reactor vessel, two hot legs, four cold legs, a pressurizer, four reactor coolant pumps, and two steam generators. The secondary system of the ATLAS is simplified to be of a circulating loop-type. Most of the safety injection features of the APR1400 and the OPR1000 are incorporated into the safety injection system of the ATLAS. In the ATLAS test facility, about 1300 instrumentations are installed to precisely investigate the thermal-hydraulic behavior in simulation of the various test scenarios. This report describes the scaling methodology, the geometric data of the individual component, and the specification and the location of the instrumentations in detail

  19. Hot Hydrogen Test Facility

    W. David Swank

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed

  20. Cryogenic Fluid Management Facility

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  1. Complex variables

    Flanigan, Francis J

    2010-01-01

    A caution to mathematics professors: Complex Variables does not follow conventional outlines of course material. One reviewer noting its originality wrote: ""A standard text is often preferred [to a superior text like this] because the professor knows the order of topics and the problems, and doesn't really have to pay attention to the text. He can go to class without preparation."" Not so here-Dr. Flanigan treats this most important field of contemporary mathematics in a most unusual way. While all the material for an advanced undergraduate or first-year graduate course is covered, discussion

  2. Noxious facility impact projection: Incorporating the effects of risk aversion

    Nieves, L.A.

    1993-01-01

    Developing new sites for noxious facilities has become a complex process with many potential pitfalls. In addition to the need to negotiate conditions acceptable to the host community, siting success may depend on the facility proposer's ability to identify a candidate site that not only meets technical requirements, but that is located in a community or region whose population is not highly averse to the risks associated with the type of facility being proposed. Success may also depend on the proposer accurately assessing potential impacts of the facility and offering an equitable compensation package to the people affected by it. Facility impact assessments, as typically performed, include only the effects of changes in population, employment and economic activity associated with facility construction and operation. Because of their scope, such assessments usually show a short-run, net economic benefit for the host region, making the intensely negative public reaction to some types and locations of facilities seem unreasonable. The impact component excluded from these assessments is the long-run economic effect of public perceptions of facility risk and nuisance characteristics. Recent developments in psychological and economic measurement techniques have opened the possibility of correcting this flaw by incorporating public perceptions in projections of economic impacts from noxious facilities

  3. A modern depleted uranium manufacturing facility

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980's, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality

  4. MIMI: Multimodality, Multiresource, Information Integration Environment for Biomedical Core Facilities

    Szymanski, Jacek; Wilson, David L.; Zhang, Guo-Qiang

    2007-01-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administrativel...

  5. The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization

    Simos N.; Hanson A.; Brown, D.; Elbakhshawn, M.

    2016-04-11

    BLAIRR STUDY STATUS OVERVIEW Beamline Complex Evaluation/Assessment and Adaptation to the Goals Facility Radiological Constraints ? Large scale analyses of conventional facility and integrated shield (concrete, soil)Target Optimization and Design: Beam-target interaction optimization Hadronic interaction and energy deposition limitations Single phase and Hybrid target concepts Irradiation Damage Thermo-mechanical considerations Spallation neutron fluence optimization for (a) fast neutron irradiation damage (b) moderator/reflector studies, (c) NTOF potential and optimization (d) mono-energetic neutron beam

  6. Safety analysis report for the Waste Storage Facility. Revision 2

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  7. Fluorido complexes of technetium

    Mariappan Balasekaran, Samundeeswari

    2013-01-01

    -tetraamminefluoridonitrosyltechnetium(I) cation were prepared via a facile route and were characterized by spectroscopic and crystallographic methods. Ligand exchange reactions of the nitrosyltechnetium complexes are presented.

  8. Advanced toroidal facility vaccuum vessel stress analyses

    Hammonds, C.J.; Mayhall, J.A.

    1987-01-01

    The complex geometry of the Advance Toroidal Facility (ATF) vacuum vessel required special analysis techniques in investigating the structural behavior of the design. The response of a large-scale finite element model was found for transportation and operational loading. Several computer codes and systems, including the National Magnetic Fusion Energy Computer Center Cray machines, were implemented in accomplishing these analyses. The work combined complex methods that taxed the limits of both the codes and the computer systems involved. Using MSC/NASTRAN cyclic-symmetry solutions permitted using only 1/12 of the vessel geometry to mathematically analyze the entire vessel. This allowed the greater detail and accuracy demanded by the complex geometry of the vessel. Critical buckling-pressure analyses were performed with the same model. The development, results, and problems encountered in performing these analyses are described. 5 refs., 3 figs

  9. Complex dynamics

    Carleson, Lennart

    1993-01-01

    Complex dynamics is today very much a focus of interest. Though several fine expository articles were available, by P. Blanchard and by M. Yu. Lyubich in particular, until recently there was no single source where students could find the material with proofs. For anyone in our position, gathering and organizing the material required a great deal of work going through preprints and papers and in some cases even finding a proof. We hope that the results of our efforts will be of help to others who plan to learn about complex dynamics and perhaps even lecture. Meanwhile books in the field a. re beginning to appear. The Stony Brook course notes of J. Milnor were particularly welcome and useful. Still we hope that our special emphasis on the analytic side will satisfy a need. This book is a revised and expanded version of notes based on lectures of the first author at UCLA over several \\Vinter Quarters, particularly 1986 and 1990. We owe Chris Bishop a great deal of gratitude for supervising the production of cour...

  10. Carbon Fiber Technology Facility (CFTF)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  11. Shock Thermodynamic Applied Research Facility

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  12. Emission Facilities - Air Emission Plants

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  13. Skilled nursing or rehabilitation facilities

    ... ency/patientinstructions/000435.htm Skilled nursing or rehabilitation facilities To use the sharing features on this page, ... to go to a Skilled Nursing or Rehabilitation Facility? Your health care provider may determine that you ...

  14. Tier II Chemical Storage Facilities

    Iowa State University GIS Support and Research FacilityFacilities that store hazardous chemicals above certain quantities must submit an annual emergency and hazardous chemical inventory on a Tier II form. This is a...

  15. Nitramine Drying & Fine Grinding Facility

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  16. Tandem Van de Graaff facility

    Federal Laboratory Consortium — Completed in 1970, the Tandem Van de Graaff facility was for many years the world's largest electrostatic accelerator facility. It can provide researchers with beams...

  17. New Ideas on Facilities Management.

    Grimm, James C.

    1986-01-01

    Examines trends in facilities management relating to products and people. Reviews new trends in products, including processes, techniques, and programs that are being expounded by business and industry. Discusses the "people factors" involved in facilities management. (ABB)

  18. Arc Heated Scramjet Test Facility

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  19. Environmentally Regulated Facilities in Iowa

    Iowa State University GIS Support and Research Facility — A unique record for each facility site with an environmental interest by DNR (such as permits). This brings together core environmental information in one place for...

  20. User Facilities: The Education of New Neutron Users

    Hernandez, Yamali; Brown, Craig M.

    2009-01-01

    Neutron scattering is a particularly useful tool enabling the study of compositional, structural and dynamical properties of materials down to the atomic scale. Due to the complexity of operating an intense source of neutrons, this technique is primarily practiced at large national facilities that cater to the research needs of chemists, biologists, physicists, engineers, and material scientists in general. In particular, these user facilities provide specialized instrumentation along with the scientific and technical support required to efficiently utilize it. Since neutron scattering experiments are performed at central facilities rather than in the home-laboratories of individual investigators, the facilities themselves must play a key role in the education and development of new users. The role of neutron scattering facilities in educating young scientists will be examined using examples from current programs at the National Institute of Standards and Technology Center for Neutron Research.

  1. Solid waste management complex site development plan

    Greager, T.M.

    1994-01-01

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated

  2. Solid waste management complex site development plan

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  3. Facility planning and site development

    Reisman, R.C.; Handmaker, H.

    1986-01-01

    Planning for a magnetic resonance imaging (MRI) facility should provide for the efficient operation of current and future MRI devices and must also take into consideration a broad range of general planning principles. Control of budgeted facility costs and construction schedules is of increasing importance due to the magnitude of expense of MRI facility development as well as the need to protect institutional or entrepreneurial investment. In a competitive environment facility costs may be the determining factor in a project's success

  4. PUREX facility preclosure work plan

    Engelmann, R.H.

    1997-01-01

    This preclosure work plan presents a description of the PUREX Facility, the history of the waste managed, and addresses transition phase activities that position the PUREX Facility into a safe and environmentally secure configuration. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels (DOE/RL-90/24). Information concerning solid waste management units is discussed in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Appendix 2D)

  5. European accelerator facilities for single event effects testing

    Adams, L; Nickson, R; Harboe-Sorensen, R [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W; Berger, G

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  6. Cosmic Complexity

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  7. Waste sampling and characterization facility (WSCF)

    1994-10-01

    The Waste Sampling and Characterization Facility (WSCF) complex consists of the main structure (WSCF) and four support structures located in the 600 Area of the Hanford site east of the 200 West area and south of the Hanford Meterology Station. WSCF is to be used for low level sample analysis, less than 2 mRem. The Laboratory features state-of-the-art analytical and low level radiological counting equipment for gaseous, soil, and liquid sample analysis. In particular, this facility is to be used to perform Resource Conservation and Recovery Act (RCRA) of 1976 and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 sample analysis in accordance with U.S. Environmental Protection Agency Protocols, room air and stack monitoring sample analysis, waste water treatment process support, and contractor laboratory quality assurance checks. The samples to be analyzed contain very low concentrations of radioisotopes. The main reason that WSCF is considered a Nuclear Facility is due to the storage of samples at the facility. This maintenance Implementation Plan has been developed for maintenace functions associate with the WSCF

  8. Hematite nuclear fuel cycle facility decommissioning

    Hayes, K.

    2004-01-01

    Westinghouse Electric Company LLC ('Westinghouse') acquired a nuclear fuel processing plant at Hematite, Missouri ('Hematite', the 'Facility', or the 'Plant') in April 2000. The plant has subsequently been closed, and its operations have been relocated to a newer, larger facility. Westinghouse has announced plans to complete its clean-up, decommissioning, and license retirement in a safe, socially responsible, and environmentally sound manner as required by internal policies, as well as those of its parent company, British Nuclear Fuels plc. ('BNFL'). Preliminary investigations have revealed the presence of environmental contamination in various areas of the facility and grounds, including both radioactive contamination and various other substances related to the nuclear fuel processing operations. The disparity in regulatory requirements for radiological and nonradiological contaminants, the variety of historic and recent operations, and the number of previous owners working under various contractual arrangements for both governmental and private concerns has resulted in a complex project. This paper discusses Westinghouse's efforts to develop and implement a comprehensive decontamination and decommissioning (D and D) strategy for the facility and grounds. (author)

  9. Technical requirement of experiments and facilities for fusion nuclear technology

    Abdou, M.; Tillak, M.; Gierszwski, P.; Grover, J.; Puigh, R.; Sze, D.K.; Berwald, D.

    1986-06-01

    The technical issues and requirements of experiments and facilities for fusion nuclear technology (FNT) have been investigated. The nuclear subsystems addressed are: a) blanket, b) radiation shield, c) tritium processing system, and d) plasma interactive components. Emphasis has been placed on the important and complex development problems of the blanket. A technical planning process for FNT has been developed and applied, including four major elements: 1) characterization of issues, 2) quantification of testing requirements, 3) evaluation of facilities, and 4) development of a test plan to identify the role, timing, characteristics and costs of major experiments and facilities

  10. Eccentric Coil Test Facility (ECTF)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  11. Hot cell verification facility update

    Titzler, P.A.; Moffett, S.D.; Lerch, R.E.

    1985-01-01

    The Hot Cell Verification Facility (HCVF) provides a prototypic hot cell mockup to check equipment for functional and remote operation, and provides actual hands-on training for operators. The facility arrangement is flexible and assists in solving potential problems in a nonradioactive environment. HCVF has been in operation for six years, and the facility is a part of the Hanford Engineering Development Laboratory

  12. Capital Ideas for Facilities Management.

    Golding, Stephen T.; Gordon, Janet; Gravina, Arthur

    2001-01-01

    Asserting that just like chief financial officers, higher education facilities specialists must maximize the long-term performance of assets under their care, describes strategies for strategic facilities management. Discusses three main approaches to facilities management (insourcing, cosourcing, and outsourcing) and where boards of trustees fit…

  13. Australian national proton facility

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities and apart from the Harvard Cyclotron Laboratory and some low energy machines for eye treatment, only small numbers of patients were treated in each centre and conditions were less than optimal. Limited beam time and lack of support facilities restricted the type of patient treated and conventional fractionation could not be used. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. Since the development of hospital-based facilities, such as the one in Loma Linda in California, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or intensity modulated radiotherapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in the low dose volume is likely to be particularly

  14. Antiproton complex at the FAIR project

    Dolinskii, A.; Knie, K.; Dimopoulou, C.; Gostishchev, V.; Litvinov, S.; Nolden, F.; Steck, M.

    2011-01-01

    This report summarizes a set of calculations for the antiproton production in a complex composed of target area, collector, separator, beam line and collector ring for the antiproton source of the future FAIR facility (Facility for Antiproton and Ion Research) at GSI, Darmstadt, Germany. The emphasis is on the optimization of the accumulation rate of antiprotons in order to maximize the luminosity of experiments with cooled antiproton beams in the High Energy Storage Ring (HESR). Results of simulations for each component of the antiproton production complex are presented in order to identify the present limitations of the antiproton production rate.

  15. Shiva target irradiation facility

    Manes, K.R.; Ahlstrom, H.G.; Coleman, L.W.; Storm, E.K.; Glaze, J.A.; Hurley, C.A.; Rienecker, F.; O'Neal, W.C.

    1977-01-01

    The first laser/plasma studies performed with the Shiva laser system will be two sided irradiations extending the data obtained by other LLL lasers to higher powers. The twenty approximately 1 TW laser pulses will reach the target simultaneously from above and below in nested pentagonal clusters. The upper and lower clusters of ten beams each are radially polarized so that they strike the target in p-polarization and maximize absorption. This geometry introduces laser system isolation problems which will be briefly discussed. The layout and types of target diagnostics will be described and a brief status report on the facility given

  16. Filters in nuclear facilities

    Berg, K.H.; Wilhelm, J.G.

    1985-01-01

    The topics of the nine papers given include the behavior of HEPA filters during exposure to air flows of high humidity as well as of high differential pressure, the development of steel-fiber filters suitable for extreme operating conditions, and the occurrence of various radioactive iodine species in the exhaust air from boiling water reactors. In an introductory presentation the German view of the performance requirements to be met by filters in nuclear facilities as well as the present status of filter quality assurance are discussed. (orig.) [de

  17. Decommissioning nuclear facilities

    Buck, S.

    1996-01-01

    Nuclear facilities present a number of problems at the end of their working lives. They require dismantling and removal but public and environmental protection remain a priority. The principles and strategies are outlined. Experience of decommissioning in France and the U.K. had touched every major stage of the fuel cycle by the early 1990's. Decommissioning projects attempt to restrict waste production and proliferation as waste treatment and disposal are costly. It is concluded that technical means exist to deal with present civil plant and costs are now predictable. Strategies for decommissioning and future financial provisions are important. (UK)

  18. Power source facility

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1998-09-29

    The present invention concerns a power plant, in which power is supplied from an ordinary system battery to an ordinary DC bus system when all of the AC power sources should be lost and a generator is driven by a steam turbine. A generator is connected with an ordinary system battery charger by way of a channel. If all of power sources should be lost, the ordinary system battery charger is driven by using emergency steam turbine generator facilities, and reactor steams are supplied thereby enabling to supply power to the ordinary system DC bus system for a long period of time. (N.H.)

  19. Nuclear reactor facility

    Wampole, N.C.

    1978-01-01

    In order to improve the performance of manitenance and inspections it is proposed for a nuclear reactor facility with a primary circuit containing liquid metal to provide a thermally insulated chamber, within which are placed a number of components of the primary circuit, as e.g. valves, recirculation pump, heat exchangers. The isolated placement permit controlled preheating on one hand, but prevents undesirable heating of adjacent load-bearing elements on the other. The chamber is provided with heating devices and, on the outside, with cooling devices; it is of advantage to fill it with an inert gas. (UWI) 891 HP [de

  20. LEGS data acquisition facility

    LeVine, M.J.

    1985-01-01

    The data acquisition facility for the LEGS medium energy photonuclear beam line is composed of an auxiliary crate controller (ACC) acting as a front-end processor, loosely coupled to a time-sharing host computer based on a UNIX-like environment. The ACC services all real-time demands in the CAMAC crate: it responds to LAMs generated by data acquisition modules, to keyboard commands, and it refreshes the graphics display at frequent intervals. The host processor is needed only for printing histograms and recording event buffers on magnetic tape. The host also provides the environment for software development. The CAMAC crate is interfaced by a VERSAbus CAMAC branch driver

  1. Large coil test facility

    Nelms, L.W.; Thompson, P.B.

    1980-01-01

    Final design of the facility is nearing completion, and 20% of the construction has been accomplished. A large vacuum chamber, houses the test assembly which is coupled to appropriate cryogenic, electrical, instrumentation, diagnostc systems. Adequate assembly/disassembly areas, shop space, test control center, offices, and test support laboratories are located in the same building. Assembly and installation operations are accomplished with an overhead crane. The major subsystems are the vacuum system, the test stand assembly, the cryogenic system, the experimental electric power system, the instrumentation and control system, and the data aquisition system

  2. Seismic modifications to the Hot and Suspect Repair area Argone National Laboratory - West

    Malik, L.E.; Harris, B.G.

    1993-01-01

    The ANL-W WIPP Waste Facility Enhancement Project required substantial remodeling and upgrades to the Hot Fuels Examination Facility (HFEF) building, including the Hot and Suspect Repair Area (HSRA). The HSRA is an enclosed single-storied area inside the HFEF. It is separated into several compartments, some of which are used for handling radioactive materials. The HSRA roof consists of 18 GA steel Robertson Q decking with 1.5 in. concrete topping, and is utilized for storage. Braced steel frames support the HSRA roof, except at the north side, where the steel beams are connected to the HFEF columns. The HSRA has hollow block masonry perimeter and interior walls. Seismic evaluations concluded that the HSRA did not have a competent seismic force resisting system. The structure was upgraded by decoupling it from the HFEF framing for N/S motions, modifying two existing braced frames, adding a new braced frame that can be removed temporarily during maintenance and strengthening the roof diaphragm by a unique modification consisting of special epoxy grout and steel plates installed over the existing concrete roof

  3. Seismic modifications to the hot suspect repair area Argonne National Laboratory, West

    Malik, L.E.; Harris, B.G.

    1993-01-01

    The ANL-W WIPP Waste Facility Enhancement Project required substantial remodeling and upgrades to the Hot Fuels Examination Facility (HFEF) building, including the Hot and Suspect Repair Area (HSRA). The HSRA is an enclosed single-stoned area inside the HFEF. It is separated into several compartments, some of which are used for handling radioactive materials. The HSRA roof consists of 18 GA steel Robertson Q decking with 1.5 in. concrete topping, and is utilized for storage. Braced steel frames support the HSRA roof, except at the north side, where the steel beams arc connected to the HFEF columns. The HSRA has hollow block masonry perimeter and interior walls. Seismic evaluations concluded that the HSRA did not have a competent seismic force resisting system. The structure was upgraded by decoupling it from the HFEF framing for N/S motions, modifying two existing braced frames, adding a now braced frame that can be removed temporarily during maintenance and strengthening the roof diaphragm by a unique modification consisting of special epoxy grout and steel plates installed over the existing concrete roof

  4. INFN Tier-1 Testbed Facility

    Gregori, Daniele; Cavalli, Alessandro; Dell'Agnello, Luca; Dal Pra, Stefano; Prosperini, Andrea; Ricci, Pierpaolo; Ronchieri, Elisabetta; Sapunenko, Vladimir

    2012-01-01

    INFN-CNAF, located in Bologna, is the Information Technology Center of National Institute of Nuclear Physics (INFN). In the framework of the Worldwide LHC Computing Grid, INFN-CNAF is one of the eleven worldwide Tier-1 centers to store and reprocessing Large Hadron Collider (LHC) data. The Italian Tier-1 provides the resources of storage (i.e., disk space for short term needs and tapes for long term needs) and computing power that are needed for data processing and analysis to the LHC scientific community. Furthermore, INFN Tier-1 houses computing resources for other particle physics experiments, like CDF at Fermilab, SuperB at Frascati, as well as for astro particle and spatial physics experiments. The computing center is a very complex infrastructure, the hardaware layer include the network, storage and farming area, while the software layer includes open source and proprietary software. Software updating and new hardware adding can unexpectedly deteriorate the production activity of the center: therefore a testbed facility has been set up in order to reproduce and certify the various layers of the Tier-1. In this article we describe the testbed and the checks performed.

  5. Clearance of materials from accelerator facilities

    Rokni Sayed H.

    2017-01-01

    Full Text Available A new Technical Standard that supports the clearance of materials and equipment (personal property from U.S. Department of Energy (DOE accelerator facilities has been developed. The Standard focuses on personal property that has the potential to be radiologically impacted by accelerator operations. It addresses material clearance programs and protocols for off-site releases without restriction on use. Common metals with potential volumetric activation are of main interest with technical bases provided in Appendices of the Standard. The clearance protocols in the Standard include three elements: 1 clearance criteria, 2 process knowledge, and 3 measurement methods. This paper presents the technical aspects of the new Standard, discusses operational experience gained in clearance of materials and equipment from several accelerator facilities at SLAC and examples as to how this Standard can be applied to benefit the entirety of the DOE Accelerator Complex.

  6. Criticality management of Tokai reprocessing facility

    Nojiri, Ichiro [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-01-01

    In fuel cycle centers a number of equipment and vessels of various types and of complex design are used in several processes, i.e. dissolution of spent fuels, separation and storage of uranium and plutonium from fission products and transuranium elements. For each processes, Monte Carlo codes are frequently applied to manage the fuel criticality. Safety design depends largely on specific features of each facilities. The present report describes status of criticality management for main processes in Tokai Reprocessing Facility, JNC, and the criticality conditions specifically existing there. The guiding principle throughout consists of mass control, volume control, design (form) control, concentration control, and control due to employment of neutron poisons. (S. Ohno)

  7. Renovating animal facilities to withstand disasters.

    Cartwright, Jim; Contratto, Jim; Gould, Nathan; Freeman, William

    2013-10-01

    In the aftermath of Superstorm Sandy, new attention has been drawn to planning for and mitigating the effects of disasters on laboratory animal facilities. A number of design approaches and solutions can be easily incorporated into a new vivarium, enhancing its ability to withstand and recover from a disaster. Renovating a vivarium poses special challenges, however. Existing conditions in the project area may dictate which approaches or solutions are feasible, and retrofitting is often more complex and expensive than incorporating the same features into new construction. The authors explain how project design teams can evaluate the types of disasters that a renovated facility will need to address and develop a design strategy that responds to these disasters in the most effective way.

  8. Technical Merits and Leadership in Facility Management

    Shoemaker, Jerry

    1997-01-01

    .... The document is divided into six chapters; the introduction, facility management and leadership, building systems, facility operations, facility maintenance strategies, and the conclusion and final analysis...

  9. Grout Facilities standby plan

    Claghorn, R.D.; Kison, P.F.; Nunamaker, D.R.; Yoakum, A.K.

    1994-09-29

    This plan defines how the Grout Facilities will be deactivated to meet the intent of the recently renegotiated Tri-Party Agreement (TPA). The TPA calls for the use of the grout process as an emergency option only in the event that tank space is not available to resolve tank safety issues. The availability of new tanks is expected by 1997. Since a grout startup effort would take an estimated two years, a complete termination of the Grout Disposal Program is expected in December 1995. The former Tank Waste Remediation (TWRS) Strategy, adopted in 1988, called for the contents of Hanford`s 28 newer double-shell waste tanks to be separated into high-level radioactive material to be vitrified and disposed of in a geologic repository; low-level wastes were to be sent to the Grout Facility to be made into a cement-like-mixture and poured into underground vaults at Hanford for disposal. The waste in the 149 older single-shell tanks (SST) were to undergo further study and analysis before a disposal decision was made.

  10. Underground Facilities, Technological Challenges

    Spooner, N

    2010-01-01

    This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

  11. Tritium Systems Test Facility

    Cafasso, F.A.; Maroni, V.A.; Smith, W.H.; Wilkes, W.R.; Wittenberg, L.J.

    1978-01-01

    This TSTF proposal has two principal objectives. The first objective is to provide by mid-FY 1981 a demonstration of the fuel cycle and tritium containment systems which could be used in a Tokamak Experimental Power Reactor for operation in the mid-1980's. The second objective is to provide a capability for further optimization of tritium fuel cycle and environmental control systems beyond that which is required for the EPR. The scale and flow rates in TSTF are close to those which have been projected for a prototype experimental power reactor (PEPR/ITR) and will permit reliable extrapolation to the conditions found in an EPR. The fuel concentrations will be the same as in an EPR. Demonstrations of individual components of the deuterium-tritium fuel cycle and of monitoring, accountability and containment systems and of a maintenance methodology will be achieved at various times in the FY 1979-80 time span. Subsequent to the individual component demonstrations--which will proceed from tests with hydrogen (and/or deuterium) through tracer levels of tritium to full operational concentrations--a complete test and demonstration of the integrated fuel processing and tritium containment facility will be performed. This will occur near the middle of FY 1981. Two options were considered for the TSTF: (1) The modification of an existing building and (2) the construction of a new facility

  12. PUREX facility hazards assessment

    Sutton, L.N.

    1994-01-01

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities

  13. Released radioactivity reducing facility

    Tanaka, Takeaki.

    1992-01-01

    Upon occurrence of a reactor accident, penetration portions of a reactor container, as a main leakage source from a reactor container, are surrounded by a plurality of gas-tight chambers, the outside of which is surrounded by highly gas-tightly buildings. Branched pipelines of an emergency gas processing system are introduced to each of the gas-tight chambers and they are joined and in communication with an emergency gas processing device. With such a constitution, radioactive materials are prevented from leaking directly from the buildings. Further, pipeline openings of the emergency gas processing facility are disposed in the plurality highly gas-tight penetration chambers. If the radioactive materials are leaked from the reactor to elevate the pressure in the penetration chambers, the radioactive materials are introduced to a filter device in the emergency gas processing facility by way of the branched pipelines, filtered and then released to the atmosphere. Accordingly, the reliability and safety of the system can be improved. (T.M.)

  14. Reactor feedwater facility

    Fujii, Tadashi; Kinoshita, Shoichiro; Akatsu, Jun-ichi

    1996-04-30

    In a reactor feedwater facility in which one stand-by system and at least three ordinary systems are disposed in parallel, each of the feedwater pumps is driven by an electromotor, and has substantially the same capacity. At least two systems among the ordinary systems have a pump rotation number variable means. Since the volume of each of the feedwater pump of each system is determined substantially equal, standardization is enabled to facilitate the production. While the number of electromotors is increased, since they are driven by electromotors, turbines, steam pipelines and valves for driving feed water pumps can be eliminated. Therefore, the feedwater pumps can be disposed to a region of low radiation dose being separated from a main turbine and a main condensator, to improve the degree of freedom in view of the installation. In addition, accessibility to equipments during operation is improved to improve the maintenance of feed water facilities. The number of parts for equipments can be reduced compared with that in a turbine-driving system thereby capable of reducing the operation amount for the maintenance and inspection. (N.H.)

  15. The Torbay fog facility

    Anon.

    1998-01-01

    A series of lighting sources are needed to help helicopters in their approaches to offshore oil platforms. The Torbay fog facility in Newfoundland was created in May 1998 and has been instrumental in studying different light sources. The facility has been used for fog characterization studies to determine the transmission of various light sources through fog up to a distance of 980 meters and correlating this with fog droplet size and concentration. The most cost effective method of increasing visibility is through high intensity searchlights. In this study, a 150 watt searchlight was set up on the south side of Torbay Bay and fog droplet size and concentration were measured. The main objective of the study was to characterize fog and precipitation (rain and snow) to enable daylight approaches to be made to the Hibernia platform in low visibility conditions. Different methods of measuring visibility were investigated to define a suitable sensor/detector which, when installed on the Hibernia platform, will allow a prediction of visibility to be made for flight operational purposes. 2 figs

  16. Grout Facilities standby plan

    Claghorn, R.D.; Kison, P.F.; Nunamaker, D.R.; Yoakum, A.K.

    1994-01-01

    This plan defines how the Grout Facilities will be deactivated to meet the intent of the recently renegotiated Tri-Party Agreement (TPA). The TPA calls for the use of the grout process as an emergency option only in the event that tank space is not available to resolve tank safety issues. The availability of new tanks is expected by 1997. Since a grout startup effort would take an estimated two years, a complete termination of the Grout Disposal Program is expected in December 1995. The former Tank Waste Remediation (TWRS) Strategy, adopted in 1988, called for the contents of Hanford's 28 newer double-shell waste tanks to be separated into high-level radioactive material to be vitrified and disposed of in a geologic repository; low-level wastes were to be sent to the Grout Facility to be made into a cement-like-mixture and poured into underground vaults at Hanford for disposal. The waste in the 149 older single-shell tanks (SST) were to undergo further study and analysis before a disposal decision was made

  17. The LLNL AMS facility

    Roberts, M.L.; Bench, G.S.; Brown, T.A.

    1996-05-01

    The AMS facility at Lawrence Livermore National Laboratory (LLNL) routinely measures the isotopes 3 H, 7 Be, 10 Be, 14 C, 26 Al, 36 Cl, 41 Ca, 59,63 Ni, and 129 I. During the past two years, over 30,000 research samples have been measured. Of these samples, approximately 30% were for 14 C bioscience tracer studies, 45% were 14 C samples for archaeology and the geosciences, and the other isotopes constitute the remaining 25%. During the past two years at LLNL, a significant amount of work has gone into the development of the Projectile X-ray AMS (PXAMS) technique. PXAMS uses induced characteristic x-rays to discriminate against competing atomic isobars. PXAMS has been most fully developed for 63 Ni but shows promise for the measurement of several other long lived isotopes. During the past year LLNL has also conducted an 129 I interlaboratory comparison exercise. Recent hardware changes at the LLNL AMS facility include the installation and testing of a new thermal emission ion source, a new multianode gas ionization detector for general AMS use, re-alignment of the vacuum tank of the first of the two magnets that make up the high energy spectrometer, and a new cryo-vacuum system for the AMS ion source. In addition, they have begun design studies and carried out tests for a new high-resolution injector and a new beamline for heavy element AMS

  18. Geothermal energy conversion facility

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  19. Decommissioning of nuclear facilities: Feasibility, needs and costs

    DeLaney, E.G.; Mickelson, J.R.

    1985-01-01

    The Nuclear Energy Agency's Working Group on Decommissioning is preparing a study entitled ''Decommissioning of Nuclear Facilities: Feasibility, Needs and Costs.'' The study addresses the economics, technical feasibility and waste management aspects of decommissioning larger commercial reactors and nuclear support facilities. Experience on decommissioning small reactors and fuel cycle facilities shows that current technology is generally adequate. Several major projects that are either underway or planned will demonstrate decommissioning of the larger and more complex facilities. This experience will provide a framework for planning and engineering the decommissioning of the larger commercial reactors and fuel cycle facilities. Several areas of technology development are desired for worker productivity improvement, occupational exposure reduction, and waste volume reduction. In order to assess and plan for the decommissioning of large commercial nuclear facilities, projections have been made of the capacity of these facilities that may be decommissioned in the future and the radioactive waste that would be produced from the decommissioning of these facilities. These projections through the year 2025 are based on current data and the OECD reactor capacity forecast through the year 2000. A 25-year operating lifetime for electrical power generation was assumed. The possibilities of plant lifetime extension and the deferral of plant dismantlement make this projection very conservative

  20. Indoor Lighting Facilities

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics on building construction floor area from the Ministry of Land, Infrastructure, Transport and Tourism, the total floor area of building construction started in Japan in 2007 was 160,991 thousand square meters, or 14.8% less than the area of the previous year, and the reduction was the first reduction in the past five years. The office markets in Tokyo and Nagoya were active, as represented by the supplies of skyscrapers, and energy saving measures, such as the adoption of high efficiency lighting equipment, the control for initial stage illuminance, daylight harvesting, and the use of occupancy sensors, were well established. In the field of public construction, including museums, multi-purpose halls, and religious buildings, the total area of the new construction was 10.8% less than the total for the previous year, and this reduction was a continuation of an eleven-year trend. In spaces with high ceiling, the innovation for easy replacement of light sources used with reflection mirror systems and optical fibers was noted. Hospitals adapted to the expectation for improved services in their selection of lighting facilities to improve the residential environment for patients while taking into consideration the needs of the aging population, by their use of devices in corridors to help maintain a continuity of light. In libraries, a pendant system was developed to illuminate both ceilings and book shelves. In the field of theaters and halls, the time limit for repairing existing systems had come for the large facilities that were opened during the theater and hall construction boom of the 1960s through 1980s, and around 26 renovations were done. Almost all the renovations were conversions to intelligent dimming systems and lighting control desks. In the field of stores and commercial facilities, the atmosphere and glitter of the selling floor was produced by new light sources, such as ceramic metal halide lamps and LEDs, which have high

  1. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    Simiele, G.A.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  2. Design of the PRIDE Facility

    You, Gil Sung; Choung, Won Myung; Lee, Eun Pyo; Cho, Il Je; Kwon, Kie Chan; Hong, Dong Hee; Lee, Won Kyung; Ku, Jeong Hoe

    2009-01-01

    From 2007, KAERI is developing a PyRoprocess Integrated inactive DEmonstration facility (the PRIDE facility). The maximum annual treatment capacity of this facility will be a 10 ton-HM. The process will use a natural uranium feed material or a natural uranium mixed with some surrogate material for a simulation of a spent fuel. KAERI has also another plan to construct a demonstration facility which can treat a real spent fuel by pyroprocessing. This facility is called by ESPF, Engineering Scale Pyroprocess Facility. The ESPF will have the same treatment capability of spent fuel with the PRIDE facility. The only difference between the PRIDE and the ESPF is a radiation shielding capability. From the PRIDE facility designing works and demonstration with a simulated spent fuel after construction, it will be able to obtain the basic facility requirements, remote operability, interrelation properties between process equipment for designing of the ESPF. The flow sheet of the PRIDE processes is composed of five main processes, such as a decladding and voloxidation, an electro-reduction, an electrorefining, an electro-winning, and a salt waste treatment. The final products from the PRIDE facility are a simulated TRU metal and U metal ingot

  3. Facility effluent monitoring plan for the fast flux test facility

    Nickels, J.M.; Dahl, N.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  4. Facility effluent monitoring plan for the 327 Facility

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  5. Environmental problems in the nuclear weapons complex

    Fultz, K.O.

    1989-04-01

    This paper provide the authors' views on the environmental problems facing the Department of Energy. Testimony is based on a large body of work, over 50 reports and testimonies since 1981, on environmental, safety, and health aspects of DOE's nuclear weapons complex. This work has shown that the complex faces a wide variety of serious problem areas including aging facilities, safety concerns which have shut down DOE's production reactors, and environmental cleanup

  6. The National Ignition Facility

    Hogan, W.J.; Moses, E.; Warner, B.; Sorem, M.; Soures, J.M.

    2001-01-01

    The National Ignition Facility (NIF) is the largest construction project ever undertaken at Lawrence Livermore National Laboratory (LLNL). NIF consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. NIF is being designed and built by an LLNL-led team from Los Alamos National Laboratory, Sandia National Laboratories, the University of Rochester, and LLNL. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This paper will discuss the status of the NIF project and the plans for completion. (author)

  7. Dismantling of nuclear facilities

    Tallec, Michele; Kus, Jean-Pierre; Mogavero, Robert; Genelot, Gabriel

    2009-01-01

    Although the operational life of nuclear plants is long (around 60 years for French reactors) it is nonetheless limited in time, the stopping of it being essentially due to the obsolescence of materials and processes or to economic or safety considerations. The nuclear power plants are then subjected to cleanup and dismantling operations which have different objectives and require specific techniques. The cleanup and/or dismantling of a nuclear power produces significant quantities of waste which is generally of a different nature to that produced during the operation of the concerned plant. The radioactive waste produced by these operations is destined to be sent to the waste disposal facilities of the French National Agency for the Management of Nuclear Waste. (authors)

  8. Siting controversial facilities

    Baird, R.D.; Blacker, P.B.

    1985-01-01

    There is often significant difficulty involved with siting controversial facilities. The social and political problems are frequently far more difficult to resolve than the technical and economic issues. The tendancy for most developing organizations is to address only technical issues in the search for a technically optimal site, to the exclusion of such weighting considerations as the social and political climate associated with potential sites--an approach which often imperils the success of the project. The site selection processes currently suggested is summarized and two contemporary examples of their application are cited. The difference between developers' real objectives and the objectives they have implicitly assumed by adopting the recommended approaches without augmentation are noted. The resulting morass of public opposition is attributed to the failure to consider the needs of individuals and groups who stand to be negatively impacted by the development. A comprehensive implementation strategy which addresses non-technical consideration in parallel with technical ones is presented and evaluated

  9. Technology Development Facility (TDF)

    Doggett, J.N.

    1982-01-01

    We have been studying small, driven, magnetic-mirror-based fusion reactors for the Technology Development Facility (TDF), that will test fusion reactor materials, components, and subsystems. Magnetic mirror systems are particularly interesting for this application because of their inherent steady-state operation, potentially high neutron wall loading, and relatively small size. Our design is a tandem mirror device first described by Fowler and Logan, based on the physics of the TMX experiments at Lawrence Livermore National Laboratory (LLNL). The device produces 20 MW of fusion power with a first-wall, uncollided 14-MeV neutron flux of 1.4 MW/m 2 on an area of approximately 8 m 2 , while consuming approximately 250 MW of electrical power. The work was done by a combined industrial-laboratory-university group

  10. Pool water cleaning facility

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro [Hitachi Ltd., Tokyo (Japan); Asano, Takashi

    1998-05-29

    Only one system comprising a suppression poor water cleaning system (SPCU) and a filtration desalting tower (F/D) is connected for a plurality of nuclear power plants. Pipelines/valves for connecting the one system of the SPCU pump, the F/D and the plurality of nuclear power plants are disposed, and the system is used in common with the plurality of nuclear power plants. Pipelines/valves for connecting a pipeline for passing SP water to the commonly used SPCU pump and a skimmer surge tank are disposed, and fuel pool water is cooled and cleaned by the commonly used SPCU pump and the commonly used F/D. The number of SPCU pumps and the F/D facilities can be reduced, and a fuel pool water cooling operation mode and a fuel pool water cleaning operation mode which were conducted by an FPC pump so far are conducted by the SPCU pump. (N.H.)

  11. Power Systems Development Facility

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  12. Studsvik thermal neutron facility

    Pettersson, O.A.; Larsson, B.; Grusell, E.; Svensson, P.

    1992-01-01

    The Studsvik thermal neutron facility at the R2-0 reactor originally designed for neutron capture radiography has been modified to permit irradiation of living cells and animals. A hole was drilled in the concrete shielding to provide a cylindrical channel with diameter of 25.3 cm. A shielding water tank serves as an entry holder for cells and animals. The advantage of this modification is that cells and animals can be irradiated at a constant thermal neutron fluence rate of approximately 10 9 n cm -2 s -1 (at 100 kW) without stopping and restarting the reactor. Topographic analysis of boron done by neutron capture autoradiography (NCR) can be irradiated under the same conditions as previously

  13. Discriminative facility and its role in the perceived quality of interactional experiences.

    Cheng, C; Chiu, C Y; Hong, Y Y; Cheung, J S

    2001-10-01

    Discriminative facility refers to an individual's sensitivity to subtle cues about the psychological meaning of a situation. This research aimed at examining (a) the conceptual distinctiveness of discriminative facility, (b) the situation-appropriate aspect of this construct, and (c) the relationship between discriminative facility and interpersonal experiences. Discriminative facility was assessed by a new measure of situation-appropriate behaviors across a variety of novel stressful situations. Results from study 1 showed that discriminative facility had weak positive relationships with cognitive complexity and nonsignificant relationships with self-monitoring and social desirability, indicating that discriminative facility is a unique construct. Results from Study 2 revealed that higher levels of discriminative facility were associated with higher levels of perceived social support and a greater number of pleasant interpersonal events experienced, thus providing support for the theoretical proposition that discriminative facility is an aspect of social intelligence.

  14. The QUASAR facility

    Gates, David

    2013-10-01

    The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.

  15. Decommissioning of nuclear facilities

    Lunning, W.H.

    1977-01-01

    Collaborative studies are in progress in the U.K. between the U.K.A.E.A., the Generating Boards and other outside bodies, to identify the development issues and practical aspects of decommissioning redundant nuclear facilities. The various types of U.K.A.E.A. experimental reactors (D.F.R., W.A.G.R , S.G.H.W.R.) in support of the nuclear power development programme, together with the currently operating commercial 26 Magnox reactors in 11 stations, totalling some 5 GW will be retired before the end of the century and attention is focussed on these. The actual timing of withdrawal from service will be dictated by development programme requirements in the case of experimental reactors and by commercial and technical considerations in the case of electricity production reactors. Decommissioning studies have so far been confined to technical appraisals including the sequence logic of achieving specific objectives and are based on the generally accepted three stage progression. Stage 1, which is essentially a defuelling and coolant removal operation, is an interim phase. Stage 2 is a storage situation, the duration of which will be influenced by environmental pressures or economic factors including the re-use of existing sites. Stage 3, which implies removal of all active and non-active waste material and returning the site to general use, must be the ultimate objective. The engineering features and the radioactive inventory of the system must be assessed in detail to avoid personnel or environmental hazards during Stage 2. These factors will also influence decisions on the degree of Stage 2 decommissioning and its duration, bearing in mind that for Stage 3 activation may govern the waste disposal route and the associated radiation man-rem exposure during dismantling. Ideally, planning for decommissioning should be considered at the design stage of the facility. An objective of present studies is to identify features which would assist decommissioning of future systems

  16. Y‑12 National Security Complex

    Federal Laboratory Consortium — The Y‑12 National Security Complex is a premier manufacturing facility dedicated to making our nation and the world a safer place and plays a vital role in the...

  17. Accelerating complex for basic researches in the nuclear physics

    Dovbnya, A.N.; Guk, I.S.; Kononenko, S.G.; Peev, F.A.; Tarasenko, A.S.; Botman, J.I.M.

    2009-01-01

    In 2003 in NSC KIPT was begun the work on development the project of accelerator, base facility IHEPNP NSC KIPT electron recirculator SALO. The accelerator will be disposed in target hall of accelerator LU 2000 complex. It is projected first of all as facility for basic researches in the field of

  18. Realities of proximity facility siting

    DeMott, D.L.

    1981-01-01

    Numerous commercial nuclear power plant sites have 2 to 3 reactors located together, and a group of Facilities with capabilities for fuel fabrication, a nuclear reactor, a storage area for spent fuel, and a maintenance area for contaminated equipment and radioactive waste storage are being designed and constructed in the US. The proximity of these facilities to each other provides that the ordinary flow of materials remain within a limited area. Interactions between the various facilities include shared resources such as communication, fire protection, security, medical services, transportation, water, electrical, personnel, emergency planning, transport of hazardous material between facilities, and common safety and radiological requirements between facilities. This paper will explore the advantages and disadvantages of multiple facilities at one site. Problem areas are identified, and recommendations for planning and coordination are discussed

  19. Hanford Surplus Facilities Program plan

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  20. A proposed regulatory policy statement on human factors requirements in the design and operation of Canadian nuclear facilities

    1986-10-01

    With the increasing complexity of new nuclear facilities and the extent to which automation is being applied, it is essential that the staff who operate a facility be considered as integral components in the design and safety analyses. This policy statement is proposed to indicate those areas of facility design and operation where the role of the human operator must be especially examined

  1. Regulatory facility guide for Ohio

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  2. The notion of strategy in facility management

    Holzweber, Markus

    2013-01-01

    and components of strategy in Facility Management (FM). Since strategy refers to a complex network of thoughts, insights, experiences, expertise, and expectations that provide general guidance for management action, organizations must keep pace with the changing environment to increase market shares and business......Strategy implementation is critical for any type of organization. Strategy implementation is complex despite previous research describing mechanisms related to the construction of strategy and strategy use of organizations. In this article I attempt to fill this vacuity by examining strategy...... success. Based on a literature review, the findings of the study report a service-strategy classification grid. Such a service-strategy grid provides for a better understanding of the business environment. The study findings are intended to enhance business managers’ understandings of the issues behind FM...

  3. SRS Burial Ground Complex: Remediation in Progress

    Griffin, M.; Crapse, B.; Cowan, S.

    1998-01-01

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities

  4. 304 Concretion facility closure plan

    1990-04-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium Zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets in the 304 Concretion Facility, located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Concretion Facility (304 Facility). Clean closure of the 304 Facility is the proposed method for closure of the facility. Justification for this proposal is presented. 15 refs., 22 figs., 4 tabs

  5. Agency Data on User Facilities

    National Aeronautics and Space Administration — The purpose of the Aerospace Technical Facility Inventory is to facilitate the sharing of specialized capabilities within the aerospace research/engineering...

  6. Poultry Slaughtering and Processing Facilities

    Department of Homeland Security — Agriculture Production Poultry Slaughtering and Processing in the United States This dataset consists of facilities which engage in slaughtering, processing, and/or...

  7. Electronic Warfare Signature Measurement Facility

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  8. Challenges for proteomics core facilities.

    Lilley, Kathryn S; Deery, Michael J; Gatto, Laurent

    2011-03-01

    Many analytical techniques have been executed by core facilities established within academic, pharmaceutical and other industrial institutions. The centralization of such facilities ensures a level of expertise and hardware which often cannot be supported by individual laboratories. The establishment of a core facility thus makes the technology available for multiple researchers in the same institution. Often, the services within the core facility are also opened out to researchers from other institutions, frequently with a fee being levied for the service provided. In the 1990s, with the onset of the age of genomics, there was an abundance of DNA analysis facilities, many of which have since disappeared from institutions and are now available through commercial sources. Ten years on, as proteomics was beginning to be utilized by many researchers, this technology found itself an ideal candidate for being placed within a core facility. We discuss what in our view are the daily challenges of proteomics core facilities. We also examine the potential unmet needs of the proteomics core facility that may also be applicable to proteomics laboratories which do not function as core facilities. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Radio Frequency Anechoic Chamber Facility

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  10. Engine Environment Research Facility (EERF)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  11. Service quality in contracted facilities.

    Rabbani, Fauziah; Pradhan, Nousheen Akber; Zaidi, Shehla; Azam, Syed Iqbal; Yousuf, Farheen

    2015-01-01

    The purpose of this paper is to explore the readiness of contracted and non-contracted first-level healthcare facilities in Pakistan to deliver quality maternal and neonatal health (MNH) care. A balanced scorecard (BSC) was used as the assessment framework. Using a cross-sectional study design, two rural health centers (RHCs) contracted out to Aga Khan Health Service, Pakistan were compared with four government managed RHCs. A BSC was designed to assess RHC readiness to deliver good quality MNH care. In total 20 indicators were developed, representing five BSC domains: health facility functionality, service provision, staff capacity, staff and patient satisfaction. Validated data collection tools were used to collect information. Pearson χ2, Fisher's Exact and the Mann-Whitney tests were applied as appropriate to detect significant service quality differences among the two facilities. Contracted facilities were generally found to be better than non-contracted facilities in all five BSC domains. Patients' inclination for facility-based delivery at contracted facilities was, however, significantly higher than non-contracted facilities (80 percent contracted vs 43 percent non-contracted, p=0.006). The study shows that contracting out initiatives have the potential to improve MNH care. This is the first study to compare MNH service delivery quality across contracted and non-contracted facilities using BSC as the assessment framework.

  12. Materials Engineering Research Facility (MERF)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  13. Making of the NSTX Facility

    Neumeyer, C.; Ono, M.; Kaye, S.M.; Peng, Y.-K.M.

    1999-01-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations

  14. Low background infrared (LBIR) facility

    Federal Laboratory Consortium — The Low background infrared (LBIR) facility was originally designed to calibrate user supplied blackbody sources and to characterize low-background IR detectors and...

  15. 33-GVA interrupter test facility

    Parsons, W.M.; Honig, E.M.; Warren, R.W.

    1979-01-01

    The use of commercial ac circuit breakers for dc switching operations requires that they be evaluated to determine their dc limitations. Two 2.4-GVA facilities have been constructed and used for this purpose at LASL during the last several years. In response to the increased demand on switching technology, a 33-GVA facility has been constructed. Novel features incorporated into this facility include (1) separate capacitive and cryogenic inductive energy storage systems, (2) fiber-optic controls and optically-coupled data links, and (3) digital data acquisition systems. Facility details and planned tests on an experimental rod-array vacuum interrupter are presented

  16. 222-S Laboratory complex hazards assessment

    Sutton, L.N.

    1996-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the 222-S Laboratory Complex on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone is demonstrated

  17. Interactive drama in complex neurological disability management

    Fenech, Anne

    2009-01-01

    Purpose. To establish whether interactive drama has any effect on the responses of people with complex neurological disabilities resident in a long term care facility. Method. This was a service evaluation using interviews with a group of 31 independently consenting long term care residents, and 27

  18. National Ignition Facility system design requirements conventional facilities SDR001

    Hands, J.

    1996-01-01

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions

  19. Fluorido complexes of technetium

    Mariappan Balasekaran, Samundeeswari

    2013-07-04

    complex was isolated as alkali metal salts, and spectroscopic as well as structural features of the complexes are presented. Different salts of the trans-tetraamminefluoridonitrosyltechnetium(I) cation were prepared via a facile route and were characterized by spectroscopic and crystallographic methods. Ligand exchange reactions of the nitrosyltechnetium complexes are presented.

  20. TAN Hot Shop and Support Facility Utilization Study

    Picker, B.A.

    2001-11-16

    Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D and D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D and D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho National Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.