WorldWideScience

Sample records for facility ftf target

  1. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber

  2. Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas

    Energy Technology Data Exchange (ETDEWEB)

    C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain

    2009-09-21

    It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering metmethods for implementing a viable gas shield strategy in the FTF.

  3. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  4. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum.

    Science.gov (United States)

    Niño-Sánchez, Jonathan; Casado-Del Castillo, Virginia; Tello, Vega; De Vega-Bartol, José J; Ramos, Brisa; Sukno, Serenella A; Díaz Mínguez, José María

    2016-09-01

    The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved. © 2016 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  5. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  6. National Ignition Facility Target Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This

  7. Target Visualization at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Daniel Abraham [Univ. of California, Davis, CA (United States)

    2011-01-01

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

  8. Fixed target facility at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Loken, S.C.; Morfin, J.G.

    1985-01-01

    The question of whether a facility for fixed target physics should be provided at the SSC must be answered before the final technical design of the SSC can be completed, particularly if the eventual form of extraction would influence the magnet design. To this end, an enthusiastic group of experimentalists, theoreticians and accelerator specialists have studied this point. The accelerator physics issues were addressed by a group led by E. Colton whose report is contained in these proceedings. The physics addressable by fixed target was considered by many of the Physics area working groups and in particular by the Structure Function Group. This report is the summary of the working group which considered various SSC fixed target experiments and determined which types of beams and detectors would be required. 13 references, 5 figures.

  9. National Ignition Facility Target Design and Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R C; Kozioziemski, B J; Nikroo, A; Wilkens, H L; Bhandarkar, S; Forsman, A C; Haan, S W; Hoppe, M L; Huang, H; Mapoles, E; Moody, J D; Sater, J D; Seugling, R M; Stephens, R B; Takagi, M; Xu, H W

    2007-12-10

    The current capsule target design for the first ignition experiments at the NIF Facility beginning in 2009 will be a copper-doped beryllium capsule, roughly 2 mm in diameter with 160-{micro}m walls. The capsule will have a 75-{micro}m layer of solid DT on the inside surface, and the capsule will driven with x-rays generated from a gold/uranium cocktail hohlraum. The design specifications are extremely rigorous, particularly with respect to interfaces, which must be very smooth to inhibit Rayleigh-Taylor instability growth. This paper outlines the current design, and focuses on the challenges and advances in capsule fabrication and characterization; hohlraum fabrication, and D-T layering and characterization.

  10. Ignition target design for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Haan, S.W.; Pollaine, S.M.; Lindl, J.D. [Los Alamos National Laboratory, NM (United States)] [and others

    1996-06-01

    The goal of inertial confinement fusion (ICF) is to produce significant thermonuclear burn from a target driven with a laser or ion beam. To achieve that goal, the national ICF Program has proposed a laser capable of producing ignition and intermediate gain. The facility is called the National Ignition Facility (NIF). This article describes ignition targets designed for the NIF and their modeling. Although the baseline NIF target design, described herein, is indirect drive, the facility will also be capable of doing direct-drive ignition targets - currently being developed at the University of Rochester.

  11. The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Simos N.; Hanson A.; Brown, D.; Elbakhshawn, M.

    2016-04-11

    BLAIRR STUDY STATUS OVERVIEW Beamline Complex Evaluation/Assessment and Adaptation to the Goals Facility Radiological Constraints ? Large scale analyses of conventional facility and integrated shield (concrete, soil)Target Optimization and Design: Beam-target interaction optimization Hadronic interaction and energy deposition limitations Single phase and Hybrid target concepts Irradiation Damage Thermo-mechanical considerations Spallation neutron fluence optimization for (a) fast neutron irradiation damage (b) moderator/reflector studies, (c) NTOF potential and optimization (d) mono-energetic neutron beam

  12. Developmental profiles on the basis of the FTF (Five to Fifteen) questionnaire

    DEFF Research Database (Denmark)

    Trillingsgaard, Anegen; Damm, Dorte; Sommer, Søren;

    2004-01-01

    The Five to Fifteen parent questionnaire (FTF) was developed to offer a neuropsychological dimension to the assessment of children with Attention Deficit/Hyperactivity Disorder and other child psychiatric disorders. The domains included in the FTF were motor skills, executive functions, perception......, memory, language, social skills and learning, in addition to a domain for emotional and behavioural problems. The aim of the present study was to test the clinical validity and utility of the FTF with a main focus on discriminant and criterion validity. The clinical sample consisted of 155 clinically...... diagnosed children (ICD-10 criteria), 102 were tested with WISC-III. The parents rated their children independent of the diagnostic evaluation. The results were presented as profiles. These clinical profiles were compared to those of a Swedish norm sample consisting of 854 children from the age of five...

  13. Technical Evaluation of Oak Ridge Filter Test Facility

    CERN Document Server

    Kriskovich, J R

    2002-01-01

    Two evaluations of the Oak Ridge Department of Energy (DOE) Filter Test Facility (FTF) were performed on December 11 and 12, 2001, and consisted of a quality assurance and a technical evaluation. This report documents results of the technical evaluation.

  14. Tritium and ignition target management at the National Ignition Facility.

    Science.gov (United States)

    Draggoo, Vaughn

    2013-06-01

    Isotopic mixtures of hydrogen constitute the basic fuel for fusion targets of the National Ignition Facility (NIF). A typical NIF fusion target shot requires approximately 0.5 mmoles of hydrogen gas and as much as 750 GBq (20 Ci) of 3H. Isotopic mix ratios are specified according to the experimental shot/test plan and the associated test objectives. The hydrogen isotopic concentrations, absolute amounts, gas purity, configuration of the target, and the physical configuration of the NIF facility are all parameters and conditions that must be managed to ensure the quality and safety of operations. An essential and key step in the preparation of an ignition target is the formation of a ~60 μm thick hydrogen "ice" layer on the inner surface of the target capsule. The Cryogenic Target Positioning System (Cryo-Tarpos) provides gas handling, cyro-cooling, x-ray imaging systems, and related instrumentation to control the volumes and temperatures of the multiphase (solid, liquid, and gas) hydrogen as the gas is condensed to liquid, admitted to the capsule, and frozen as a single spherical crystal of hydrogen in the capsule. The hydrogen fuel gas is prepared in discrete 1.7 cc aliquots in the LLNL Tritium Facility for each ignition shot. Post-shot hydrogen gas is recovered in the NIF Tritium Processing System (TPS). Gas handling systems, instrumentation and analytic equipment, material accounting information systems, and the shot planning systems must work together to ensure that operational and safety requirements are met.

  15. A multiple sampling ionization chamber for the External Target Facility

    Science.gov (United States)

    Zhang, X. H.; Tang, S. W.; Ma, P.; Lu, C. G.; Yang, H. R.; Wang, S. T.; Yu, Y. H.; Yue, K.; Fang, F.; Yan, D.; Zhou, Y.; Wang, Z. M.; Sun, Y.; Sun, Z. Y.; Duan, L. M.; Sun, B. H.

    2015-09-01

    A multiple sampling ionization chamber used as a particle identification device for high energy heavy ions has been developed for the External Target Facility. The performance of this detector was tested with a 239Pu α source and RI beams. A Z resolution (FWHM) of 0.4-0.6 was achieved for nuclear fragments of 18O at 400 AMeV.

  16. Direct drive targets for the megajoule facility UFL-2M

    Science.gov (United States)

    Rozanov, V. B.; Gus'kov, S. Yu; Vergunova, G. A.; Demchenko, N. N.; Stepanov, R. V.; Doskoch, I. Ya; Yakhin, R. A.; Zmitrenko, N. V.

    2016-03-01

    Development of direct drive target schemes for the megajoule facility is a topical problem of up-to-date inertial fusion physics. The choice of possible schemes and solutions depends essentially on the irradiation conditions. The installations both running (NIF) and under construction (LMJ) are destined to the 3ω irradiation in PDD (polar direct drive) configuration. The UFL-2M installation that is under construction is based on 2ω irradiation and a symmetrical scheme of direct drive target irradiation. Under these conditions possible schemes for direct drive targets demonstrating the ignition and the achievement of gain G=10÷20 are considered in this report. At the same time, the possibilities are analyzed for the target compression and ignition with a reliability reserve at the conditions that can deviate from the standard ones, and if our understanding of the physics of the processes is not completely adequate to the physics of the real processes.

  17. A multiple sampling ionization chamber for the External Target Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhxh@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Tang, S.W.; Ma, P.; Lu, C.G.; Yang, H.R.; Wang, S.T.; Yu, Y.H.; Yue, K.; Fang, F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yan, D.; Zhou, Y.; Wang, Z.M.; Sun, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Z.Y.; Duan, L.M. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Sun, B.H. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2015-09-21

    A multiple sampling ionization chamber used as a particle identification device for high energy heavy ions has been developed for the External Target Facility. The performance of this detector was tested with a {sup 239}Pu α source and RI beams. A Z resolution (FWHM) of 0.4–0.6 was achieved for nuclear fragments of {sup 18}O at 400 AMeV.

  18. I and C functional test facility malfunction cause and effect

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon

    1997-06-01

    The objective of I and C function test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. To realize transient and accident situation in the FTF, the result of the activation of malfunction should be similar to the situation of real nuclear power plants. In this technical report, describe the Group, Malfunction No., Description, Option, Recommendations, Considered in Subroutine, Limitations, Cause, and Effect of the malfunctions implemented in FTF. (author).

  19. Tuning of the GEANT4 FRITIOF (FTF) Model Using NA61/SHINE Experimental Data

    CERN Document Server

    Uzhinsky, V

    2011-01-01

    The NA61/SHINE collaboration measured inclusive cross sections of \\pi^+ and \\pi^- meson production in the interactions of 31 GeV/c protons with carbon nuclei at forward emission angles (0 - 420 mrad). The collaboration also presented predictions of Monte Carlo models - FLUKA, VENUS and UrQMD, in comparison with the data. A careful analysis shows that deviations of the FLUKA and VENUS predictions from the data have different tendencies. The worst description of the data was observed for the UrQMD model results. All the models assume the creation of quark-gluon strings in the interactions, but it is complicated to analyze the models in order to find the source of the deviations. Thus, the quark-gluon string model - FRITIOF (FTF) - was implemented in the GEANT4 toolkit and is used to understand the deviations mentioned above. It was found that the most important factor influencing the FTF calculations is the sampling of quark-gluon string masses. The other factors/parameters are not essential for a description o...

  20. ADHD and language impairment: A study of the parent questionnaire FTF (Five to Fifteen).

    Science.gov (United States)

    Bruce, Barbro; Thernlund, Gunilla; Nettelbladt, Ulrika

    2006-02-01

    The parental questionnaire FTF (Five to Fifteen) was given to parents of 76 children (mean age 11 years) diagnosed with ADHD. About half of the children had at least once been referred to a speech- and language pathologist. Most of them had not received any intervention or follow-up. A factor analysis identified six problem areas, which explain close to 75% of the total variation: Cognitive Skills, Motor/Perception, Emotion/Socialisation/Behaviour, Attention, Literacy Skills and Activity Control. The majority of the children had pragmatic problems, which are associated with some of the core aspects of the ADHD symptoms, especially inattention and impulsiveness. Communication and language comprehension caused these children many more problems than expressive language. Problems of reading and writing were very frequent. IQ-score was associated with maths and reading/writing. Additional items reflecting language skills, in particular language comprehension and pragmatics, were also found in other domains in the FTF, mainly in Executive functions, Learning and Social skills. Problems with language and pragmatics thus seem to be associated with the typical problems with learning and social skills in children with ADHD.

  1. The first target experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O.L.; Glenzer, S.H.; Froula, D.H.; Dewald, E.L.; Suter, L.J.; Schneider, M.B.; Hinkel, D.E.; Fernandez, J.C.; Kline, J.L.; Goldman, S.R.; Braun, D.G.; Celliers, P.M.; Moon, S.J.; Robey, H.S.; Lanier, N.E.; Glendinning, S.G.; Blue, B.E.; Wilde, B.H.; Jones, O.S.; Schein, J.; Divol, L.; Kalantar, D.H.; Campbell, K.M.; Holder, J.P.; McDonald, J.W.; Niemann, C.; Mackinnon, A.J.; Collins, G.W.; Bradley, D.K.; Eggert, J.H.; Hicks, D.G.; Gregori, G.; Kirkwood, R.K.; Young, B.K.; Foster, J.M.; Hansen, J.F.; Perry, T.S.; Munro, D.H.; Baldis, H.A.; Grim, G.P.; Heeter, R.F.; Hegelich, M.B.; Montgomery, D.S.; Rochau, G.A.; Olson, R.E.; Turner, R.E.; Workman, J.B.; Berger, R.L.; Cohen, B.I.; Kruer, W.L.; Langdon, A.B.; Langer, S.H.; Meezan, N.B.; Rose, H.A.; Still, C.H.; Williams, E.A.; Dodd, E.A.; Edwards, M.J.; Monteil, M.C.; Stevenson, R.M.; Thomas, B.R.; Coker, R.F.; Magelssen, G.R.; Rosen, P.A.; Stry, P.E.; Woods, D.; Weber, S.V.; Young, P.E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, G.L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F.D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P

    2007-08-15

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3-dimensional codes by extending the study of laser driven hydrodynamic jets to 3-dimensional geometries. (authors)

  2. Visualization of Target Inspection data at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Potter, D; Antipa, N

    2012-02-16

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.

  3. Laser-Plasma Interactions on NIKE and the Fusion Test Facility

    Science.gov (United States)

    Phillips, Lee; Weaver, James

    2008-11-01

    Recent proposed designs for a Fusion Test Facility (FTF) (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) but the proposed use of a 248 nm KrF laser to drive these targets is expected to minimize the LPI risk. We examine, using simulation results from NRL's FAST hydrocode, the proposed operational regimes of the FTF in relation to the thresholds for the SRS, SBS, and 2-plasmon instabilities. Simulations are also used to help design and interpret ongoing experiments being conducted at NRL's NIKE facility for the purpose of generating and studying LPI. Target geometries and laser pulseshapes were devised in order to create plasma conditions with long scalelengths and low electron temperatures that allow the growth of parametric instabilities. These simulations include the effects of finite beam angles through the use of raytracing.

  4. STUDY ON FAST TRANSVERSAL FILTER (FTF)ALGORITHM FOR ACTIVE CONTROL OF STRUCTURAL RESPONSE (ACSR) OF HELICOPTER

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Vibration suppression is one of the most important tasks for helicopter research. ACSR (Active Control of Structural Response) in time domain has turned out to be an effective technique to deal with this issue. In this paper, based on Least Square Principle and ACSR Principle, a multichannel delayed filtered-x FTF (Fast Transversal Filter) algorithm is developed for suppressing helicopter vibration. In order to keep the algorithm running in a stable and efficient state, DRR (Desired Response Reconstruction) technique is developed and a Constraint Stabilization Technique is firstly presented for the developed algorithm. Computer simulations are conducted on attenuating helicopter vibration and remarkable vibration reductions are achieved. The results demonstrate good properties of the obtained FTF algorithm in stability, robustness, convergence speed, tracking capability, etc.. They also show that time delay and DRR technique play important and effective roles in keeping ACSR system working efficiently.

  5. The Scottish Structural Proteomics Facility: targets, methods and outputs

    DEFF Research Database (Denmark)

    Oke, Muse; Carter, Lester G; Johnson, Kenneth A;

    2010-01-01

    The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report ...

  6. Development of high temperature targets at IRIS facility

    CERN Document Server

    Panteleev, V N; Fedorov, D V; Moroz, F V; Orlov, S Y; Poljakov, A G; Seliverstov, D M; Volkov, Y M

    2002-01-01

    High-temperature targets with different kind of target material, as tantalum foils, tungsten foils, NbC powder, TaC powder and UC powder have been developed and off-line and on-line tested. The yield and delay time measurements have been carried out for radioactive isotopes of Li, Rb and Cs.

  7. SATIF-2 shielding aspects of accelerators, targets and irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Particle accelerators have evolved over the last 50 years from simple devices to powerful machines, and will continue to have an important impact on research, technology and lifestyle. Today they cover a wide range of applications, from television and computer displays in households to the investigation of the origin and structure of matter. It has become common practice to use them for material science and medical applications. In recent years, requirements from new technological and research applications have emerged, such as increased particle beams intensities, higher flexibility, etc., giving rise to new radiation shielding aspects and problems. These proceedings review recent progress in radiation shielding of accelerator facilities, and evaluate advancements with respect to international co-operation in this field.

  8. Analysis of electromagnetic pulse (EMP measurements in the National Ignition Facility's target bay and chamber

    Directory of Open Access Journals (Sweden)

    Brown C.G.

    2013-11-01

    Full Text Available From May 2009 to the present we have recorded electromagnetic pulse (EMP strength and spectrum (100 MHz – 5 GHz in the target bay and chamber of the National Ignition Facility (NIF. The dependence of EMP strength and frequency spectrum on target type and laser energy is discussed. The largest EMP measured was for relatively low-energy, short-pulse (100 ps flat targets.

  9. 0.5MJ Targets for an IFE Fusion Test Facility

    Science.gov (United States)

    Lafortune, K. N.; Perkins, L. J.; Bedrossian, P.; Betti, R.; Schmitt, A.; Obenschain, S.

    2006-10-01

    There has been much recent progress in the development of both the source and targets for laser-driven, inertial confinement fusion (ICF). The next step to apply this approach to inertial fusion energy (IFE) is to build a facility that has all the required components of a reactor and demonstrates the reliability and robustness. The Fusion Test Facility proposed by NRL is one such facility [S.Obenschain, Bull. APS v50, 2005]. The cost, complexity and scale of any fusion test facility are driven by the energy required for the fusion target. As the laser-target physics has become better understood, target geometries that require less drive energy have been found. Using conventional hotspot ignition, rad-hydro-burn simulations using HYDRA of low-drive-energy, direct-drive reactor targets requiring just 0.5 MJ of drive energy to achieve gain of 10's are being studied. 1-D scoping studies have been performed to outline the source requirements. Good agreement with comprehensive, time-dependent 1-D simulations in LASNEX has been obtained for integral quantities such as gain, yield and ignition margins. The robustness of the small targets has been explored with 2-D stability studies. Shock ignition of similar targets could be employed to achieve yet higher gains with similar drive energies.

  10. Facilities for preparing actinide or fission product-based targets

    CERN Document Server

    Sors, M

    1999-01-01

    Research and development work is currently in progress in France on the feasibility of transmutation of very long-lived radionuclides such as americium, blended with an inert medium such as magnesium oxide and pelletized for irradiation in a fast neutron reactor. The process is primarily designed to produce ceramics for nuclear reactors, but could also be used to produce targets for accelerators. The Actinide Development Laboratory is part of the ATALANTE complex at Marcoule, where the CEA investigates reprocessing, liquid and solid waste treatment and vitrification processes. The laboratory produces radioactive sources; after use, their constituents are recycled, notably through R and D programs requiring such materials. Recovered americium is purified, characterized and transformed for an experiment known as ECRIX, designed to demonstrate the feasibility of fabricating americium-based ceramics and to determine the reactor transmutation coefficients.

  11. Target Area design basis and system performance for the National Ignition Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, M.; Karpenko, V.; Hagans, K.; Anderson, A.; Latkowski, J.; Warren, R. [Lawrence Livermore National Lab., CA (United States); Wavrik, R.; Garcia, R.; Boyes, J. [Sandia National Labs., Albuquerque, NM (United States)

    1994-10-01

    The NIF Target Area is designed to confine the ICF target experiments leading up to and including fusion ignition and gain. The Target Area will provide appropriate in-chamber conditions before, during, and after each shot. The repeated introduction of large amounts of laser energy into the chamber and emission of fusion energy from targets represents a new challenge in ICF facility design. Prior to a shot, the facility provides proper illumination geometry, target chamber vacuum, and a stable platform for the target and its diagnostics. During a shot, the impact of the energy introduced into the chamber is minimized, and workers and the public are protected from excessive prompt radiation doses. After the shot, the residual radioactivation is managed to allow required accessibility. Tritium and other radioactive wastes are confined and disposed of. Diagnostic data is also retrieved, and the facility is readied for the next shot. The Target Area will accommodate yields up to 20 MJ, and its design lifetime is 30 years. The Target Area provides the personnel access needed to support the use precision diagnostics. The annual shot mix for design purposes is shown. Designing to this experimental envelope ensures the ability and flexibility to move through the experimental campaign to ignition efficiently.

  12. New target solution for a muon collider or a muon-decay neutrino beam facility: The granular waterfall target

    Science.gov (United States)

    Cai, Han-Jie; Yang, Guanghui; Vassilopoulos, Nikos; Zhang, Sheng; Fu, Fen; Yuan, Ye; Yang, Lei

    2017-02-01

    A new target solution, the granular waterfall target, is proposed here for a muon collider or a muon-decay neutrino beam facility, especially for the moment which adopts a 15 MW continuous-wave (cw) superconducting linac. Compared to the mercury jet target, the granular waterfall target works by a much simpler mechanism which can operate with a much more powerful beam, which are indicated by the detailed investigations into the heat depositions and the evaluations of the temperature increases for different target concepts. By varying proton beam kinetic energy and the geometrical parameters of the waterfall target, an overall understanding of the figure of merit concerning muon production for this target concept as the target solutions of the long-baseline neutrino factory and the medium-baseline moment is obtained. With 8 GeV beam energy and the optimal geometrical parameters, the influence on muon yield by adopting different beam-target interaction parameters is explored. Studies and discussions of the design details concerning beam dumping are also presented.

  13. The Multi MegaWatt target station of EURISOL facility and its performance (SATIF9)

    CERN Document Server

    Kharoua, C

    This presentation summarises the work carried out for the Multi Megawatt target station of the EURISOL Design Study with a special attention to the coupled neutronics of the liquid converter and fission target (MAFF/PIAFE design like) and the overall performance of the facility, which will sustain fast neutron fluxes of the order of 1014 n/cm2/s. The production of radionuclides in the actinide targets as well as in the liquid metal are also evaluated, showing that the targeted 1015 fissions/s can be achieved.

  14. Gadolinium-148 And Other Spallation Production Cross Section Measurements For Accelerator Target Facilities

    CERN Document Server

    Kelley, K C

    2004-01-01

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as “nuclear facilities.” Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is t...

  15. What is the Impact of Students' Ability to Choose across and within Course Modality (OL or FTF) on Course Completions?

    Science.gov (United States)

    DeCosta, James

    2013-01-01

    The participants were college students who attended an accredited private college offering associate, baccalaureate, and graduate degrees in the western United States. The research variables included student choice of modality (either OL or FTF), the covariate was students' GPA. Data were collected from institutional records and analyzed…

  16. Target fabrication for the POLAR experiment on the Orion laser facility

    Institute of Scientific and Technical Information of China (English)

    C.Spindloe; D.Wyatt; D.Haddock; I.East; J.E.Cross; C.N.Danson; E.Falize; J.M.Foster; M.Koenig; G.Gregori

    2015-01-01

    This article describes the fabrication of a suite of laser targets by the Target Fabrication group in the Central Laser Facility(CLF), STFC Rutherford Appleton Laboratory for the first academic-access experiment on the Orion laser facility(Hopps et al., Appl. Opt. 52, 3597–3601(2013)) at Atomic Weapons Establishment(AWE). This experiment, part of the POLAR project(Falize et al., Astrophys. Space Sci. 336, 81–85(2011); Busschaert et al., New J. Phys. 15, 035020(2013)),studied conditions relevant to the radiation-hydrodynamic processes occurring in a remarkable class of astrophysical star systems known as magnetic cataclysmic variables. A large number of complex fabrication technologies and research and development activities were required to field a total of 80 high-specification targets. Target design and fabrication procedures are described and initial alignment and characterization data are discussed.

  17. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, D. [Institut für Kernphysik der Goethe Universität, Max von Laue Straße 1, D-60438, Frankfurt am Main (Germany); Stiebing, K.E., E-mail: stiebing@em.uni-frankfurt.de [Institut für Kernphysik der Goethe Universität, Max von Laue Straße 1, D-60438, Frankfurt am Main (Germany); Winters, D.F.A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Quint, W. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Physikalisches Institut der Universität Heidelberg, Im Neuenheimer Feld 226, D-69120, Heidelberg (Germany); Varentsov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Facility for Antiproton and Ion Research in Europe (FAIR), Darmstadt (Germany); Warczak, A.; Malarz, A. [Institute of Physics, Jagiellonian University, Krakow (Poland); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Physikalisch-Astronomische Fakultät der Friedrich-Schiller-Universität Jena, Helmholtz-Institut Jena, Fröbelstieg 3, D-07743, Jena (Germany)

    2014-11-11

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×10{sup 12} atoms/cm{sup 3} for helium and 8.1×10{sup 12} atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  18. Analysis and manufacturing of ShenGuangIII facility target chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingzhi; Chen, Xiaojuan [Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China); Xu, Yuanli, E-mail: xuyl@caep.ac.cn [Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China); Gao, Haiying; Que, Xinghua; Wu, Wenkai [Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China); Liu, Huilin [China Erzhong Group Co., Ltd., Deyang 618000, Sichuan (China); Xiang, Yong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China)

    2014-04-15

    This paper will present a summary of the ShenGuangIII facility target chamber. During the machining the sphericity tolerances were addressed in forming process and numerical control vertical lathe for the individual plates. Procedure was developed for weld groove and welding of individual plates. The two hemispheric shells of the target chamber were welded in China Erzhong Group Co., Ltd. and sent to a temporary enclosure near the target bay for welding together. A drilling machine that can be accurately positioned on the sphere shell was used to bore the holes for the ports. After construction, the target chamber was lifted and placed on the support pedestal. The adjustment system and the precision surveyors with laser trackers were used to accurately position the target chamber on the pedestal support. The helium spray probe was used for the leak testing of the vacuum target chamber. Leak testing and repair of discovered leaks were performed to insure the vacuum integrity of the target chamber. A complete survey of the port flanges and custom contour machining of spacer plates were completed to insure that the devices attached to these port flanges meet the alignment requirement. The target shooting experiment of the sixth bundles of ShenGuangIII facility has shown that the target chamber satisfied the stability and precision criteria.

  19. Design Optimisation of a High Intensity Beam Facility and Feasibility Experiment of a Solid Fragmented Target

    CERN Document Server

    Charitonidis, Nikolaos; Rivkin, Leonid

    2014-06-13

    The present PhD thesis describes the design, execution and results of the HRMT-10 experiment performed at the HiRadMat facility of the CERN/SPS complex. The first part of the thesis covers the design optimization studies of the HiRadMat facility, focusing in particular on the radiation protection issues. A detailed Monte-Carlo model of the facility has been developed and validated through comparison with measurements. A very satisfactory agreement between the simulation and the experimental data is observed. In the second part of this thesis, a novel feasibility experiment of a fragmented solid target for a future Neutrino Factory or a Super Beam facility, able to support high beam powers ( 1 MW) is presented in detail. A solid granular target has been proposed as an interesting alternative to an open Hg jet target, presently considered as the baseline for such facilities, but posing considerable technical challenges. The HRMT-10 experiment seeks to address the lack of experimental data of the feasibility of...

  20. Application for the On-line Isotope Mass Separator ISOLDE Facility: the Target Heater

    CERN Document Server

    Sánchez-Conejo, Jorge

    2003-01-01

    The purpose of the Heater Application is to heat and cool the target and line used on the On-Line Isotope Mass Separator ISOLDE facility up to a desired temperature selected by the user. The application has been developed in Java, making use of the Java Development Kit 1.4 and the PS Java environment.

  1. Target irradiation facility and targetry development at 160 MeV proton beam of Moscow linac

    CERN Document Server

    Zhuikov, B L; Konyakhin, N A; Vincent, J

    1999-01-01

    A facility has been built and successfully operated with the 160 MeV proton beam of Moscow Meson factory LINAC, Institute for Nuclear Research (INR) of Russian Academy of Science, Troitsk. The facility was created for various isotope production goals as well as for fundamental nuclear investigations at high intensity beam (100 mu A and more). An important part of the facility targetry system is a high-intensity beam monitoring collimator device. Measurements of the temperature distribution between collimator sectors, cooling water flow and temperature, and the beam current, provide an opportunity to compute beam losses and beam position. The target holder design allows easy insertion by manipulator and simultaneous bombardment of several different targets of various types and forms, and variation of proton energy on each target over a wide range below 160 MeV. The main target utilized for commercial sup 8 sup 2 Sr isotope production is metallic rubidium in a stainless-steel container. A regular wet chemistry ...

  2. Hospital to Post-Acute Care Facility Transfers: Identifying Targets for Information Exchange Quality Improvement.

    Science.gov (United States)

    Jones, Christine D; Cumbler, Ethan; Honigman, Benjamin; Burke, Robert E; Boxer, Rebecca S; Levy, Cari; Coleman, Eric A; Wald, Heidi L

    2017-01-01

    Information exchange is critical to high-quality care transitions from hospitals to post-acute care (PAC) facilities. We conducted a survey to evaluate the completeness and timeliness of information transfer and communication between a tertiary-care academic hospital and its related PAC facilities. This was a cross-sectional Web-based 36-question survey of 110 PAC clinicians and staff representing 31 PAC facilities conducted between October and December 2013. We received responses from 71 of 110 individuals representing 29 of 31 facilities (65% and 94% response rates). We collapsed 4-point Likert responses into dichotomous variables to reflect completeness (sufficient vs insufficient) and timeliness (timely vs not timely) for information transfer and communication. Among respondents, 32% reported insufficient information about discharge medical conditions and management plan, and 83% reported at least occasionally encountering problems directly related to inadequate information from the hospital. Hospital clinician contact information was the most common insufficient domain. With respect to timeliness, 86% of respondents desired receipt of a discharge summary on or before the day of discharge, but only 58% reported receiving the summary within this time frame. Through free-text responses, several participants expressed the need for paper prescriptions for controlled pain medications to be sent with patients at the time of transfer. Staff and clinicians at PAC facilities perceive substantial deficits in content and timeliness of information exchange between the hospital and facilities. Such deficits are particularly relevant in the context of the increasing prevalence of bundled payments for care across settings as well as forthcoming readmissions penalties for PAC facilities. Targets identified for quality improvement include structuring discharge summary information to include information identified as deficient by respondents, completion of discharge summaries

  3. Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases.

    Science.gov (United States)

    Shemesh, Moshe; Tam, Avshalom; Feldman, Mark; Steinberg, Doron

    2006-09-04

    Dental caries is one of the most common infectious diseases that affects humans. Streptococcus mutans, the main pathogenic bacterium associated with dental caries, produces a number of extracellular sucrose-metabolizing enzymes, such as glucosyltransferases (GTFB, GTFC and GTFD) and fructosyltransferase (FTF). The cooperative action of these enzymes is essential for sucrose-dependent cellular adhesion and biofilm formation. A global response regulator (vicR) plays important roles in S. mutans ftf and gtf expression in response to a variety of stimuli. A real-time reverse-transcription polymerase chain-reaction was used to quantify the relative levels of ftf, gtfB, gtfC, gtfD and vicR transcription of S. mutans in the presence of various dietary carbohydrates: sucrose, D-glucose, D-fructose, D-glucitol (D-sorbitol), D-mannitol and xylitol. Ftf was highly expressed at late exponential phase in the presence of sorbitol and mannitol. GtfB was highly expressed in the presence of all the above carbohydrates except for xylitol at early exponential growth phase and glucose and fructose at late exponential growth phase. Similar to gtfB, the expression of gtfC was also induced with the presence of all the tested carbohydrates except for xylitol at early growth and glucose and fructose at late exponential phase. In addition, no effect of mannitol on gtfC expression at early exponential phase was observed. GtfD was less influenced compared to the gtfB and gtfC, demonstrating enhanced expression especially in the presence of sorbitol, glucose, mannitol and xylitol at early exponential phase and mannitol at late exponential phase. VicR expression was induced only at the presence of xylitol at late exponential phase, and a decrease in expression was recorded at early exponential phase. Our findings show that dietary carbohydrates have a major influence on the transcription of ftf, gtfB, gtfC and gtfD, but less on vicR. Sorbitol and mannitol, which are considered as noncariogenic

  4. Energetics Measurements of Silver Halfraum Targets at the National Ignition Facility

    Science.gov (United States)

    May, M. J.; Fournier, K. B.; Brown, C. G.; Dunlop, W. H.; Kane, J. O.; Mirkarimi, P. B.; Patterson, R.; Schneider, M.; Widmann, K.; Guyton, R.; Giraldez, E.

    2013-10-01

    The energetics of silver halfraum targets are presented from laser plasma experiments at the National Ignition Facility (NIF). Four beams from the NIF laser were used to heat the halfraum targets with ~ 10 kJ of energy in a 1 ns square laser pulse. The silver halfraum targets were spheres 2 mm in diameter with an 800 μm laser entrance hole (LEH). Targets with different sphere wall thicknesses (8 to 16 μm) were characterized. The energetics and the laser coupling to the targets were determined to be 0.92 by using the NIF X-ray (Dante) and optical backscatter diagnostics (NBI and FABS). The energy losses from the targets were through X-ray radiation and backscatter from laser plasma instabilities (SRS and SBS) from the LEH. As expected the different wall thickness had different levels of burn through emission. The thickest walled target (~ 15.9 μm) had very low radiative losses through the target wall. The thinnest walled targets (~ 8 μm) radiated about 0.2 of the input energy into the X-ray region. This work was done under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Debris and shrapnel assessments for National Ignition Facility targets and diagnostics

    Science.gov (United States)

    Masters, N. D.; Fisher, A.; Kalantar, D.; Stölken, J.; Smith, C.; Vignes, R.; Burns, S.; Doeppner, T.; Kritcher, A.; Park, H.-S.

    2016-05-01

    High-energy laser experiments at the National Ignition Facility (NIF) can create debris and shrapnel capable of damaging laser optics and diagnostic instruments. The size, composition and location of target components and sacrificial shielding (e.g., disposable debris shields, or diagnostic filters) and the protection they provide is constrained by many factors, including: chamber and diagnostic geometries, experimental goals and material considerations. An assessment of the generation, nature and velocity of shrapnel and debris and their potential threats is necessary prior to fielding targets or diagnostics. These assessments may influence target and shielding design, filter configurations and diagnostic selection. This paper will outline the approach used to manage the debris and shrapnel risk associated with NIF targets and diagnostics and present some aspects of two such cases: the Material Strength Rayleigh- Taylor campaign and the Mono Angle Crystal Spectrometer (MACS).

  6. Research on interactions of plasma streams with CFC targets in the Rod Plasma Injector facility

    Directory of Open Access Journals (Sweden)

    Zaloga Dobromil R.

    2016-06-01

    Full Text Available This paper present results of optical spectroscopy studies of interactions of intense plasma streams with a solid target made of carbon fibre composite (CFC. The experiments were carried out within the Rod Plasma Injector (RPI IBIS facility. The optical measurements were performed first for a freely propagating plasma stream in order to determine the optimal operational parameters of this facility. Optical emission spectra (OES were recorded for different operational modes of the RPI IBIS device, and spectral lines were identified originating from the working gas (deuterium as well as some lines from the electrode material (molybdenum. Subsequently, optical measurements of plasma interacting with the CFC target were performed. In the optical spectra recorded with the irradiated CFC samples, in addition to deuterium and molybdenum lines, many carbon lines, which enabled to estimate erosion of the investigated targets, were recorded. In order to study changes in the irradiated CFC samples, their surfaces were analysed (before and after several plasma discharges by means of scanning electron microscope (SEM and energy dispersive spectroscopy (EDS techniques. The analysis of the obtained SEM images showed that the plasma irradiation induces noticeable changes in the surface morphology, for example vaporisation of some carbon fibres and formation of microcracks. The obtained EDS images showed that upon the irradiated target surface, some impurity ions are also deposited, particularly molybdenum ions from the applied electrodes.

  7. Facile Synthesis of Biocompatible Fluorescent Nanoparticles for Cellular Imaging and Targeted Detection of Cancer Cells.

    Science.gov (United States)

    Tang, Fu; Wang, Chun; Wang, Xiaoyu; Li, Lidong

    2015-11-18

    In this work, we report the facile synthesis of functional core-shell structured nanoparticles with fluorescence enhancement, which show specific targeting of cancer cells. Biopolymer poly-l-lysine was used to coat the silver core with various shell thicknesses. Then, the nanoparticles were functionalized with folic acid as a targeting agent for folic acid receptor. The metal-enhanced fluorescence effect was observed when the fluorophore (5-(and-6)-carboxyfluorescein-succinimidyl ester) was conjugated to the modified nanoparticle surface. Cellular imaging assay of the nanoparticles in folic acid receptor-positive cancer cells showed their excellent biocompatibility and selectivity. The as-prepared functional nanoparticles demonstrate the efficiency of the metal-enhanced fluorescence effect and provide an alternative approach for the cellular imaging and targeting of cancer cells.

  8. Overview on the target fabrication facilities at ELI-NP and ongoing strategies

    Science.gov (United States)

    Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.

    2016-10-01

    Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.

  9. Initiated chemical vapor deposited nanoadhesive for bonding National Ignition Facility's targets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tom [Univ. of California, Berkeley, CA (United States)

    2016-05-19

    Currently, the target fabrication scientists in National Ignition Facility Directorate at Lawrence Livermore National Laboratory (LLNL) is studying the propagation force resulted from laser impulses impacting a target. To best study this, they would like the adhesive used to glue the target substrates to be as thin as possible. The main objective of this research project is to create adhesive glue bonds for NIF’s targets that are ≤ 1 μm thick. Polyglycidylmethacrylate (PGMA) thin films were coated on various substrates using initiated chemical vapor deposition (iCVD). Film quality studies using white light interferometry reveal that the iCVD PGMA films were smooth. The coated substrates were bonded at 150 °C under vacuum, with low inflow of Nitrogen. Success in bonding most of NIF’s mock targets at thicknesses ≤ 1 μm indicates that our process is feasible in bonding the real targets. Key parameters that are required for successful bonding were concluded from the bonding results. They include inert bonding atmosphere, sufficient contact between the PGMA films, and smooth substrates. Average bond strength of 0.60 MPa was obtained from mechanical shearing tests. The bonding failure mode of the sheared interfaces was observed to be cohesive. Future work on this project will include reattempt to bond silica aerogel to iCVD PGMA coated substrates, stabilize carbon nanotube forests with iCVD PGMA coating, and kinetics study of PGMA thermal crosslinking.

  10. 基于本体和 FTF 的风力发电设备维护优化%Maintenance Optimization for Wind Power Generation Equipment Based on Ontology and FTF

    Institute of Scientific and Technical Information of China (English)

    周安美; 于德介; 刘坚; 李蓉

    2014-01-01

    To meet the needs of maintenance optimization for wind power generation equipment,an ontology-based fault tree analysis(FTA)method was presented,which was the combination of failure mode effects and criticality analysis (FMECA)and FTA.According to the characteristics of failure modes,the FMECA ontology of wind power generation equipment was modeled from four steps.The fault tree could be deduced from the ontology,then the risk priority numbers of the minimal cut sets were calculated,which was used to guide maintenance plan optimization.The problem that FMECA could not investigate multiple failure modes might be solved,and the sharing,reuse and reasoning of maintenance knowledge was realized.The application examples show that the maintenance efficiency of wind power generation equipment can be increased greatly by means of the proposed method.%为满足优化风电设备维护计划的需求,提出了用本体将故障模式影响及危害性分析(FMECA)与故障树分析(FTA)相结合的方法,即 FTF 方法。该方法根据风电设备故障模式的特点,分四个步骤建立了风电 FMECA 领域本体,然后利用本体推导出故障树,计算故障树最小割集的风险顺序数以优化维护计划。该方法解决了 FMECA 不能研究多故障的问题,并实现了知识的共享、重用和推理,能有效提高风电设备维护效率。

  11. Engineering validation for lithium target facility of the IFMIF under IFMIF/EVEDA project

    Directory of Open Access Journals (Sweden)

    E. Wakai

    2016-12-01

    Full Text Available The International Fusion Materials Irradiation Facility (IFMIF, presently in the Engineering Validation and Engineering Design Activities (EVEDA phase was started from 2007 under the frame of the Broader Approach (BA agreement. In the activities, a prototype Li loop with the world's highest flow rate of 3000L/min was constructed in 2010, and it succeeded in generating a 100mm wide and 25mm thick with a free-surface lithium flow along a concave back plate steadily at a high-speed of 15m/s at 250°C for 1300h. In the demonstration operation it was needed to develop the Li flowing measurement system with precious resolution less than 0.1mm, and a new wave height measuring method which is laser-probe method was developed for measurements of the 3D geometry of the liquid Li target surface. Using the device, the stability of the variation in the Li flowing thickness which is required in the IFMIF specification was ±1mm or less as the liquid Li target, and the result was satisfied with it and the feasibility of the long-term stable liquid Li flow was also verified. The results of the other engineering validation tests such as lithium purification tests of lithium target facility have also been evaluated and summarized.

  12. Studies of timing properties for a TOF counter at an external target facility

    Institute of Scientific and Technical Information of China (English)

    YU Yu-Hong; XU Hua-Gen; XU Hu-Shan; ZHAN Wen-Long; SUN Zhi-Yu; GUO Zhong-Yan; HU Zheng-Guo; CHEN Jun-Ling; TANG Shu-Wen

    2009-01-01

    Timing and amplitude properties of a prototype scintillator TOF counter at an external target facility are studied with a cosmic rays test. The dependence of signal pulse height and time resolution on the coordinate along the scintillator TOF counter is investigated with two different discriminators. A time resolution of 165 ps can be achieved at the center of the counter with a constant fraction discriminator. Time resolution better than 150 ps is obtained at the center with a leading edge discriminator after time walk correction is applied for off-line analysis.

  13. A flexible testing facility for high-power targets (Tiara FP7 program)

    CERN Document Server

    Fusco, Y.; Samec, K.; Kadi, Y.

    2014-01-01

    Building on recent experience in the field of applied physics, TIARA Work package n° 9 focuses on target applications for accelerators in Europe. A roadmap for target development has been derived from major achievements in the EU-FP6 and EU-FP7 programs such as the MEGAPIE and EURISOL experiments. The TIARA management board concluded that a worthwhile continuation of such projects would be in the development of a flexible material irradiation facility easily transportable and which could be installed in different laboratories. The power is limited to 100 kW in a very compact arrangement so as to obtain the best neutron economy from a moderate beam power which is more likely to be found in laboratories across Europe. The challenges posed by such a compact design and accompanying calculations are presented in the current work.

  14. Design and modeling of ignition targets for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Haan, S.W.; Pollaine, S.M.; Lindl, J.D.; Suter, L.J.; Berger, R.L.; Powers, L.V.; Alley, W.E.; Amendt, P.A.; Futterman, J.A.; Levedahl, W.K.; Rosen, M.D.; Rowley, D.P.; Sacks, R.A.; Shestakov, A.I.; Strobel, G.L.; Tabak, M.; Weber, S.V.; Zimmerman, G.B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Krauser, W.J.; Wilson, D.C.; Coggeshall, S.V.; Harris, D.B.; Hoffman, N.M.; Wilde, B.H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1995-06-01

    Several targets are described that in simulations give yields of 1--30 MJ when indirectly driven by 0.9--2 MJ of 0.35 {mu}m laser light. The article describes the targets, the modeling that was used to design them, and the modeling done to set specifications for the laser system in the proposed National Ignition Facility. Capsules with beryllium or polystyrene ablators are enclosed in gold hohlraums. All the designs utilize a cryogenic fuel layer; it is very difficult to achieve ignition at this scale with a noncryogenic capsule. It is necessary to use multiple bands of illumination in the hohlraum to achieve sufficiently uniform x-ray irradiation, and to use a low-{ital Z} gas fill in the hohlraum to reduce filling of the hohlraum with gold plasma. Critical issues are hohlraum design and optimization, Rayleigh--Taylor instability modeling, and laser--plasma interactions.

  15. Status of cleanliness maintaining in target beam enclosures in SG III facilities and contamination sources analysis

    Science.gov (United States)

    Wang, Meicong; Wang, Baoxu; Miao, Xinxiang; Cheng, Xiaofeng; Wu, Wenkai

    2014-09-01

    In SGIII lasers there are large number of transport mirrors in target beam enclosures. Surface contaminations could easily introduce optical damage, and increase laser energy loss under high laser influence conditions. It is significant for lasers to control contamination and maintain cleanliness. In SGIII prototype, the target beam enclosures are test to be seriously contaminated after about two years of routine operations. Volume cleanliness in mirror boxes are monitored through 24 hours before, during and after a shot. Ingredients of particle and organics are tested. Reconstructions are performed on the mirror boxes to remove debris and keep cleanliness for upward facing surface of mirrors effectively. In SGIII facility some contaminations are found in beam enclosures and on the mirrors after several months of test running. Contaminations sources are analyzed to further know about the contamination mechanisms. Some engineering countermeasures are introduced for controlling contamination and keeping cleanliness for optics.

  16. Conceptual design of the beryllium rotating target for the ESS-Bilbao facility

    Energy Technology Data Exchange (ETDEWEB)

    Terrón, S., E-mail: santiago.terron@essbilbao.org [ESS-Bilbao, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja. 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Sordo, F.; Magán, M.; Ghiglino, A.; Martínez, F.; Vicente, P.J. de; Vivanco, R. [ESS-Bilbao, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja. 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Thomsen, K. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Perlado, J.M. [Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bermejo, F.J. [Instituto de Estructura de la Materia, IEM-CSIC, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain); ESS-Bilbao, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja. 48160 Derio (Spain); Abánades, A. [Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C José Gutiérrez Abascal, 2, 28006 Madrid (Spain)

    2013-10-01

    The ESS-Bilbao facility, hosted by the University of the Basque Country (UPV/EHU), envisages the operation of a high-current proton accelerator delivering beams with energies up to 50 MeV. The time-averaged proton current will be 2.25 mA, delivered by 1.5 ms proton pulses with a repetition rate of 20 Hz. This beam will feed a neutron source based upon the Be (p,n) reaction, which will enable the provision of relevant neutron experimentation capabilities. The neutron source baseline concept consists in a rotating beryllium target cooled by water. The target structure will comprise a rotatable disk made of 6061-T6 aluminium alloy holding 20 beryllium plates. Heat dissipation from the target relies upon a distribution of coolant-flow channels. The practical implementation of such a concept is here described with emphasis put on the beryllium plates thermo-mechanical optimization, the chosen coolant distribution system as well as the mechanical behavior of the assembly. -- Highlights: • The conceptual design of ESS-Bilbao neutron production target has been carried out. • This device is a rotating disk holding Be elements cooled by water. • Thermo-mechanical and lifespan behavior of the Be elements have been analyzed. • Disk structure ensures coolability and a proper mechanical behavior of the assembly.

  17. Shock-Ignited High Gain/Yield Targets for the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K. N.; Bedrosiian, P.; Tabak, M.; Miles, A.; Dixit, S.; Betti, R.; Anderson, K.; Zhou, C.

    2006-10-01

    Shock-ignition, a new concept for ICF ignition [C.Zhou, R.Betti Bull APS, v50, 2005], is being studied as a future option for efficiently achieving high gains in large laser facilities such as NIF. Accordingly, this offers the potential for testing: (1)High yield (up to 200MJ), reactor-relevant targets for inertial fusion energy (2)High fusion yield targets for DOE NNSA stockpile application (3)Targets with appreciable gain at low laser drive energies (gains of 10's at 150kJ) (4)Ignition of simple, non-cryo (room temperature) single shell gas targets at (unity gain). By contrast to conventional hotspot ignition, we separate the assembly and ignition phases by initially imploding a massive cryogenic shell on a low adiabat (alpha 0.7) at low velocity (less than 2e7cm/s) using a direct drive pulse of modest total energy. The assembled fuel is then separately ignited by a strong, spherically convergent shock driven by a high intensity spike at the end of the pulse and timed to reach the center as the main fuel is stagnating and starting to rebound. Like fast ignition, shock ignition can achieve high gains with low drive energy, but has the advantages of requiring only a single laser with less demanding timing and spatial focusing requirements.

  18. Selection of RIB targets using ion implantation at the Holifield Radioactive Ion Beam Facility

    Science.gov (United States)

    Alton, G. D.; Dellwo, J.

    1996-02-01

    Among several major challenges posed by generating and accelerating adequate intensities of RIBs, selection of the most appropriate target material is perhaps the most difficult because of the requisite fast and selective thermal release of minute amounts of the short-lived product atoms from the ISOL target in the presence of bulk amounts of target material. Experimental studies are under way at the Oak Ridge National Laboratory (ORNL) which are designed to measure the time evolution of implanted elements diffused from refractory target materials which are candidates for forming radioactive ion beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF). The diffusion coefficients are derived by comparing experimental data with numerical solutions to a one-dimensional form of Fick's second equation for ion implanted distributions. In this report, we describe the experimental arrangement, experimental procedures, and provide time release data and diffusion coefficients for releasing ion implanted 37Cl from Zr 5Si 3 and 75As, 79Br, and 78Se from Zr 5Ge 3 and estimates of the diffusion coefficients for 35Cl, 63Cu, 65Cu, 69Ga, and 71Ga diffused from BN; 35Cl, 63Cu, 65Cu, 69Ga, 75As, and 78Se diffused from C; 35Cl, 68Cu, 69Ga, 75As, and 78Se diffused from Ta.

  19. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    Energy Technology Data Exchange (ETDEWEB)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  20. I and C functional test facility user guide

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ki Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ``C`` language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author).

  1. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi [Department of Fussion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Yutani, Toshiaki [Toshiba Corp., Tokyo (Japan)

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m{sup 2}) up to 200 dpa and a sufficient irradiation volume (500 cm{sup 3}) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  2. Be target development for the accelerator-based SPES-BNCT facility at INFN Legnaro.

    Science.gov (United States)

    Esposito, J; Colautti, P; Fabritsiev, S; Gervash, A; Giniyatulin, R; Lomasov, V N; Makhankov, A; Mazul, I; Pisent, A; Pokrovsky, A; Rumyantsev, M; Tanchuk, V; Tecchio, L

    2009-07-01

    An accelerator-driven thermal neutron source for BNCT, planned to be installed at the INFN Laboratori Nazionali di Legnaro (LNL), is in progress in the framework of the SPES (selective production of exotic species) research program. The most critical element of such a facility is the construction of a reliable neutron converter based on the (9)Be(p,xn) nuclear reaction, working at a high power level (150 kW) and 5 MeV beam energy, due to the SPES driver constraints. Two original, beryllium-based, target concepts have been designed for such a purpose. The present status of the neutron converter, as well as the test results performed so far on prototypes constructed, is reported here.

  3. IRIS : A reaction spectroscopy facility with solid H2 /D2 target

    Science.gov (United States)

    Holl, Matthias; Kanungo, Ritu; Alcorta, Martin; Andreoiu, Corina; Bidaman, Harris; Burbadge, Christina; Burke, Devin; Chen, Alan; Davids, Barry; Diaz Varela, Alejandra; Garrett, Paul; Hackman, Greg; Ishimoto, Shigeru; Kaur, Satbir; Keefe, Matthew; Kruecken, Reiner; Mansour, Iymad; Randhawa, Jaspreet; Sanetullaev, Alisher; Shotter, Alan; Smith, Jenna; Tanaka, Junki; Tanihata, Isao; Turko, Joseph; Workman, Orry

    2016-09-01

    The charged particle reaction spectroscopy station IRIS at TRIUMF is designed to allow studies of inelastic scattering and transfer reactions for low intensity beams. To do so, a novel solid H2 /D2 target is used in combination with a low pressure ionization chamber for the identification of incoming beam particles. The light ejectiles are measured using a ΔE - E telescope consisting of an annular silicon detector followed by CsI(Tl) array. Another ΔE - E telescope, consisting of two segmented silicon detectors, is used to identify the heavy outgoing particles. An overview of the faciltity will be given and examples from recent experiments that illustrate that facility's capability for reaction studies of exotic nuclei will be shown. Support from Canada Foundation for Innovation, Nova Scotia Research and Innovation Trust and NSERC.

  4. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective.

    Science.gov (United States)

    Kockmann, Tobias; Trachsel, Christian; Panse, Christian; Wahlander, Asa; Selevsek, Nathalie; Grossmann, Jonas; Wolski, Witold E; Schlapbach, Ralph

    2016-08-01

    Quantitative mass spectrometry is a rapidly evolving methodology applied in a large number of omics-type research projects. During the past years, new designs of mass spectrometers have been developed and launched as commercial systems while in parallel new data acquisition schemes and data analysis paradigms have been introduced. Core facilities provide access to such technologies, but also actively support the researchers in finding and applying the best-suited analytical approach. In order to implement a solid fundament for this decision making process, core facilities need to constantly compare and benchmark the various approaches. In this article we compare the quantitative accuracy and precision of current state of the art targeted proteomics approaches single reaction monitoring (SRM), parallel reaction monitoring (PRM) and data independent acquisition (DIA) across multiple liquid chromatography mass spectrometry (LC-MS) platforms, using a readily available commercial standard sample. All workflows are able to reproducibly generate accurate quantitative data. However, SRM and PRM workflows show higher accuracy and precision compared to DIA approaches, especially when analyzing low concentrated analytes.

  5. Physical Design of Critical Experiment Facility for Verifying Characteristics and Effects of Coupling Between Reactor and Spallation Target of ADS

    Institute of Scientific and Technical Information of China (English)

    YIN; Sheng-gui; ZHOU; Qi; LI; Yan

    2013-01-01

    For the purpose of studying and verifying characteristics and effects of coupling between reactor and spallation target of ADS,based on the critical experimental facility design criteria and the availableexperiment condition,physical design of a critical experiment facility with lead coolant is completed,using critical calculation code MONK-9A.The contents of physical designs mainly include nuclear fuel,array of fuel rods,neutron source

  6. Digitizer architecture analysis for target diagnostics on the National Ignition Facility

    Science.gov (United States)

    Carpenter, A. C.; Clancy, T. J.; Beeman, B.; Bell, P.

    2015-08-01

    This paper covers a systems engineering analysis of existing scope-based Target Diagnostics (TD) on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL), for the purpose of selecting a standard digitizer architecture future diagnostics. Key performance criteria and a summary of test results are presented. Currently of the 60+ Target Diagnostics, at least fifteen use a type of high speed electrical signal data read-out device leading to over 200 digitization channels spread over six types of CRT and digital oscilloscopes, each with multiple models and versions. The proposed standard architecture discussed in this paper allows the NIF to efficiently and reliably operate digitizers that meet the required performance metrics for the lifetime of the NIF. The systems engineering analysis identifies key stakeholders for multiple subsets of scope-based diagnostics including but not limited to the nToFs (neutron Time of Flight), DANTE a broadband, time-resolved x-ray spectrometer, SPBT (South Pole Bang Time), GRH (Gamma Reaction History), and FFLEX (Filter Fluorescer Diagnostic). From these stakeholders, key performance metrics are derived and feed into test and evaluation criteria for different digitizers and architectures.

  7. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    Energy Technology Data Exchange (ETDEWEB)

    Nitti, F.S., E-mail: francesco.nitti@enea.it [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Ida, M. [IHI Corporation, Tokyo (Japan); Favuzza, P. [ENEA Research Center Firenze (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Karlsruhe (Germany); Heidinger, R. [F4E Research Center, Garching (Germany); Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Micchiche, G. [ENEA Research Center, Brasimone (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho Japan (Japan); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2015-11-15

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  8. Facile synthesis of manganese ferrite/graphene oxide nanocomposites for controlled targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guangshuo, E-mail: wgs8136@163.com; Ma, Yingying; Zhang, Lina; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Che, Hongwei; Bai, Yongmei; Hou, Junxian

    2016-03-01

    In this study, manganese ferrite/graphene oxide (MnFe{sub 2}O{sub 4}/GO) nanocomposites as controlled targeted drug delivery were prepared by a facile sonochemical method. It was found that GO nanosheets were fully exfoliated and decorated with MnFe{sub 2}O{sub 4} nanoparticles having diameters of 5–13 nm. The field-dependent magnetization curve indicated superparamagnetic behavior of the obtained MnFe{sub 2}O{sub 4}/GO with saturation magnetization of 34.9 emu/g at room temperature. The in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared MnFe{sub 2}O{sub 4}/GO even at the concentration as high as 150 μg/mL. Doxorubicin hydrochloride (DOX) as an anti-tumor model drug was utilized to explore the application potential of MnFe{sub 2}O{sub 4}/GO for controlled drug delivery. The drug loading capacity of this nanocarrier was as high as 0.97 mg/mg and the drug release behavior showed a sustained and pH-responsive way. - Highlights: • Manganese ferrite/graphene oxide (MnFe{sub 2}O{sub 4}/GO) were prepared by a facile sonochemical method. • GO nanosheets were fully exfoliated and decorated homogeneously with MnFe{sub 2}O{sub 4} nanoparticles. • MnFe{sub 2}O{sub 4}/GO exhibited superparamagnetic behavior with saturation magnetization of 34.9 emu/g. • The in vitro cytotoxicity testing showed negligible cytotoxicity of the obtained MnFe{sub 2}O{sub 4}/GO. • Drug loading capacity was as high as 0.97 mg/mg and drug release showed pH-sensitive feature.

  9. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Roccella, S. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Candura, D.; Palermo, M. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Rossi, P.; Pizzuto, A. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy)

    2015-10-15

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m{sup 2} but the capability to remove up to 20 MW/m{sup 2} during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  10. Robustness studies of ignition targets for the National Ignition Facility in two dimensionsa)

    Science.gov (United States)

    Clark, Daniel S.; Haan, Steven W.; Salmonson, Jay D.

    2008-05-01

    Inertial confinement fusion capsules are critically dependent on the integrity of their hot spots to ignite. At the time of ignition, only a certain fractional perturbation of the nominally spherical hot spot boundary can be tolerated and the capsule still achieve ignition. The degree to which the expected hot spot perturbation in any given capsule design is less than this maximum tolerable perturbation is a measure of the ignition margin or robustness of that design. Moreover, since there will inevitably be uncertainties in the initial character and implosion dynamics of any given capsule, all of which can contribute to the eventual hot spot perturbation, quantifying the robustness of that capsule against a range of parameter variations is an important consideration in the capsule design. Here, the robustness of the 300eV indirect drive target design for the National Ignition Facility [Lindl et al., Phys. Plasmas 11, 339 (2004)] is studied in the parameter space of inner ice roughness, implosion velocity, and capsule scale. A suite of 2000 two-dimensional simulations, run with the radiation hydrodynamics code LASNEX, is used as the data base for the study. For each scale, an ignition region in the two remaining variables is identified and the ignition cliff is mapped. In accordance with the theoretical arguments of Levedahl and Lindl [Nucl. Fusion 37, 165 (1997)] and Kishony and Shvarts [Phys. Plasmas 8, 4925 (2001)], the location of this cliff is fitted to a power law of the capsule implosion velocity and scale. It is found that the cliff can be quite well represented in this power law form, and, using this scaling law, an assessment of the overall (one- and two-dimensional) ignition margin of the design can be made. The effect on the ignition margin of an increase or decrease in the density of the target fill gas is also assessed.

  11. Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility

    Science.gov (United States)

    Hinkel, D. E.; Callahan, D. A.; Moody, J. D.; Amendt, P. A.; Lasinski, B. F.; MacGowan, B. J.; Meeker, D.; Michel, P. A.; Ralph, J.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Storm, E.; Strozzi, D. J.; Williams, E. A.

    2016-03-01

    The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented.

  12. Facile synthesis of manganese ferrite/graphene oxide nanocomposites for controlled targeted drug delivery

    Science.gov (United States)

    Wang, Guangshuo; Ma, Yingying; Zhang, Lina; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Che, Hongwei; Bai, Yongmei; Hou, Junxian

    2016-03-01

    In this study, manganese ferrite/graphene oxide (MnFe2O4/GO) nanocomposites as controlled targeted drug delivery were prepared by a facile sonochemical method. It was found that GO nanosheets were fully exfoliated and decorated with MnFe2O4 nanoparticles having diameters of 5-13 nm. The field-dependent magnetization curve indicated superparamagnetic behavior of the obtained MnFe2O4/GO with saturation magnetization of 34.9 emu/g at room temperature. The in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared MnFe2O4/GO even at the concentration as high as 150 μg/mL. Doxorubicin hydrochloride (DOX) as an anti-tumor model drug was utilized to explore the application potential of MnFe2O4/GO for controlled drug delivery. The drug loading capacity of this nanocarrier was as high as 0.97 mg/mg and the drug release behavior showed a sustained and pH-responsive way.

  13. Emergency skills learning on video (ESLOV): A single-blinded randomized control trial of teaching common emergency skills using self-instruction video (SIV) versus traditional face-to-face (FTF) methods.

    Science.gov (United States)

    Mohd Saiboon, Ismail; Jaafar, Mohd Johar; Ahmad, Nurul Saadah; Nasarudin, Nazhatul Muna Ahmad; Mohamad, Nabishah; Ahmad, Mohd Radhi; Gilbert, John H V

    2014-03-01

    Self-instruction video (SIV) has been widely explored as a teaching mode for cardiopulmonary resuscitation (CPR) and automated external defibrillation (AED), but not with other basic emergency skills. To evaluate the effectiveness of SIV in teaching other basic emergency skill in comparison with traditional face-to-face (FTF) methods. Participants were randomized into SIV and FTF groups. Each group was assigned to learn basic airway management (BAM), cervical collar application (CCA), manual cardiac defibrillation (MCD), and emergency extremity splinting (EES) skills. Confidence level was assessed using questionnaires, and skills performances were assessed using calibrated-blinded assessors through an Objective Structured Clinical Examination (OSCE). Forty-five participants took part in the assessment exercises. There were no significant differences between both groups, on all four skill categories. The mean OSCE-score of an individual category between the FTF-group vs. the SIV-group were as follows: BAM (10.23 ± 1.04 vs. 10.04 ± 1.49; p = 0.62); CCA (7.86 ± 4.39 vs. 7.13 ± 4.12; p = 0.57); MCD (8.24 ± 0.89 vs. 7.58 ± 1.14; p = 0.39); EES (5.43 ± 2.11 vs. 4.63 ± 2.30; p = 0.23). The composite mean score for the FTF-group was 6.85, and for the SIV-group was 6.20 (p < 0.05). There was no significant different in the level of confidence for both groups. SIV is as effective as FTF in teaching and learning basic emergency skills.

  14. K-Shell absorpsion spectroscopy of direct drive, shock compressed aluminum targets at the Omega laser facility

    Science.gov (United States)

    Shepherd, Ronnie; Boehley, Thomas; Bradley, David; Ng, Andrew; Iglesias, Carlos; Moon, Steve; Food, Mark; Collins, Gilbert; Rogers, Forrest; Heeter, Robert; Springer, Paul

    2003-10-01

    We have performed experiments to study plasma effects on bound states. The experiments were performed at the Laboratory for Laser Energetics Omega laser facility. The targets consisted of 25 μ m Be, 15 μ m Si, and 10 μ m of Al with an additional 15 μ m step. The targets were shock compressed using direct drive to form dense, strongly coupled plasmas. The plasma conditions were inferred from equation of state models in conjunction with shock breakout time measurements from VISAR. Time resolved absorption spectroscopy was also performed to study the degree of ionization. Data and simulations will be presented.

  15. National Ignition Facility subsystem design requirements target diagnostics subsystem SSDR 1.8.3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.

    1996-10-28

    This SSDR establishes the performance, design, development and test requirements for the Target Experimental System`s Diagnostic, WBS 1.8. 3. This includes the individual diagnostic components, the Target Diagnostic Data Acquisition System (Target DAS), the diagnostic vacuum system, the timing/fiducial system, and the EMI protection system.

  16. Laser Coupling to Reduced-Scale Targets at the Early Light Program of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hinkel, D E; Schneider, M B; Baldis, H A; Bower, D; Campbell, K M; Celeste, J R; Compton, S; Costa, R; Dewald, E L; Dixit, S; Eckart, M J; Eder, D C; Edwards, M J; Ellis, A; Emig, J; Froula, D H; Glenzer, S H; Hargrove, D; Haynam, C A; Heeter, R F; Holder, J P; Holtmeier, G; James, L; Jancaitis, K S; Kalantar, D H; Kauffman, R L; Kimbrough, J; Kirkwood, R K; Koniges, A E; Kamperschroer, J; Landen, O L; Landon, M; Langdon, A B; Lee, F D; MacGowan, B J; MacKinnon, A J; Manes, K R; May, M J; McDonald, J W; Munro, D H; Murray, J R; Niemann, C; Pellinen, D; Rekow, V; Ruppe, J A; Schein, J; Shepherd, R; Singh, M S; Springer, P T; Still, C H; Suter, L J; Turner, R E; Wallace, R J; Warrick, A; Watts, P; Weber, F; Williams, E A; Young, B K; Young, P E

    2004-11-18

    A platform for analysis of material properties under extreme conditions, where a sample is bathed in radiation with a high temperature, is under development. This hot environment is produced with a laser by depositing maximum energy into a small, high-Z can. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility, under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, there is a unique wavelength dependence of the Raman backscattered light that is consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Finally, novel diagnostic capabilities indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light.

  17. Computational design of high efficiency release targets for use at ISOL facilities

    CERN Document Server

    Liu, Y

    1999-01-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected t...

  18. The target of the CNGS facility at CERN, which will enable the production of neutrino

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The final target system (base table, alignment table with target magazine and BPKG) was installed in the target chamber on 8 March 2006. The pictures show the material in the test set-up in the laboratory, before transportation. On 29 May, CNGS (CERN Neutrinos to Gran Sasso) will send the first neutrino beams from CERN to the Gran Sasso Laboratory in Italy. The neutrinos will journey 730 km through the earth's crust.

  19. Computational Design of High Efficiency Release Targets for Use at ISOL Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Alton, G.D.; Liu, Y.; Middleton, J.W.

    1998-11-04

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated vitreous carbon fiber (RVCF) or carbon-bonded-carbon-fiber (CBCF) to form highly permeable composite target matrices. Computational studies which simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived tlom diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation will be presented in this report.

  20. Development of a liquid Pb-Bi target for high-power ISOL facilities

    Energy Technology Data Exchange (ETDEWEB)

    Houngbo, D., E-mail: dhoungbo@sckcen.be [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Department of Flow, Heat and Combustion Mechanics, Ghent University (UGent), St.-Pietersnieuwstraat 41, B-9000 Gent (Belgium); Bernardes, A.P. [CERN, 1211 Geneva 23 (Switzerland); David, J.C. [CEA/Saclay, 91191 Gif-sur-Yvette cedex (France); Delonca, M. [CERN, 1211 Geneva 23 (Switzerland); IRTES-M3M & IRTES-LERMPS, Université de Technologie de Belfort-Montbeliard, 90010 Belfort Cedex (France); Kravalis, K. [Institute of Physics of University of Latvia (IPUL), 32 Miera iela, Salaspils LV-2169 (Latvia); Lahiri, S. [Saha Institute of Nuclear Physics 1/AF Bidhannagar, Kolkata 700064 (India); Losito, R.; Maglioni, C. [CERN, 1211 Geneva 23 (Switzerland); Marchix, A. [CEA/Saclay, 91191 Gif-sur-Yvette cedex (France); Mendonca, T.M. [CERN, 1211 Geneva 23 (Switzerland); Popescu, L. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Schumann, D. [Paul Scherrer Institute (PSI), 5232 Villigen PSI (Switzerland); Schuurmans, P. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Stora, T.; Vollaire, J. [CERN, 1211 Geneva 23 (Switzerland); Vierendeels, J. [Department of Flow, Heat and Combustion Mechanics, Ghent University (UGent), St.-Pietersnieuwstraat 41, B-9000 Gent (Belgium)

    2016-06-01

    This paper describes some R&D activities conducted in support of the design and safe operation of a high-power liquid Pb-Bi target within the LIEBE (Liquid Eutectic Lead Bismuth Loop Target for EURISOL) project. The target material is lead bismuth eutectic (LBE) which also acts as a primary coolant. As a consequence of interaction of the highly pulsed 1.4-GeV protons at ISOLDE with the target, heat powers of the order of 2 GW would be instantaneously deposited in the target during a bunch. Considerable R&D effort is thus required to demonstrate its continued coolability and structural integrity. This paper mainly reports on the conjugate flow (CFD) and heat deposition (Monte Carlo) calculations, not accounting for Fluid–Structure Interactions.

  1. Large Dog Relinquishment to Two Municipal Facilities in New York City and Washington, D.C.: Identifying Targets for Intervention

    Directory of Open Access Journals (Sweden)

    Emily Weiss

    2014-07-01

    Full Text Available While the overall trend in euthanasia has been decreasing nationally, large dogs are at a higher risk of euthanasia than other sized dogs in most animal shelters in the United States. We hypothesized one way to increase the lives saved with respect to these large dogs is to keep them home when possible. In order to develop solutions to decrease relinquishment, a survey was developed to learn more about the reasons owners relinquish large dogs. The survey was administered to owners relinquishing their dogs at two large municipal facilities, one in New York City and one in Washington, D.C. There were 157 responses between the two facilities. We found both significant similarities and differences between respondents and their dogs from the two cities. We identified opportunities to potentially support future relinquishers and found that targets for interventions are likely different in each community.

  2. Research of target uniform illumination on SG-III laser facility

    Science.gov (United States)

    Zhang, Rui; Jia, Huaiting; Geng, Yuanchao; Li, Ping; Liu, Lanqin; Tian, Xiaocheng; Yuan, Haoyu; Fan, Chen; Su, Jingqin; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo

    2016-10-01

    In the research of inertial confinement fusion, laser plasma interaction (LPI) is becoming a key problem that affects ignition. Here, multi-frequency modulation (Multi-FM) smoothing by spectral dispersion (SSD), continuous phase plate (CPP) and polarization smoothing (PS) were experimentally studied and equipped on SG-III laser facility. After using these technologies, the focal spots of SG-III laser facility can be adjusted, controlled and repeated accurately. Experiments on SG-III laser facility indicate when the number of color cycles adopts 1, imposing SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of the preamplifier and the main amplifier with 30-TDL pinhole size. The nonuniformity of the focal spots using Multi-FM SSD, CPP and PS drops to 0.18, comparing to 0.26 with CPP+SSD, and 0.84 with CPP and wedged lens. Polarization smoothing using flat birefringent plate in the convergent beam of final optics assembly (FOA) was studied.

  3. Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities

    Energy Technology Data Exchange (ETDEWEB)

    Macek, R.J.

    1994-07-01

    The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D).

  4. The antihypercholesterolemic effect of columbamine from Rhizoma Coptidis in HFHC-diet induced hamsters through HNF-4α/FTF-mediated CYP7A1 activation.

    Science.gov (United States)

    Wang, Yue; Han, Yulong; Chai, Fangni; Xiang, Hongmei; Huang, Tao; Kou, Shuming; Han, Bing; Gong, Xiaobao; Ye, Xiaoli

    2016-12-01

    The aim of this study was to investigate the antihypercholesterolemic activity and potential molecular mechanism of columbamine (COL) that was prepared by extraction from Rhizoma Coptidis in hamsters and HepG2 cells. The results displayed that the COL from Rhizoma Coptidis was a safe natural compound with a LD50 0f 1524.6mg/kg and no detectable toxic symptoms during the observation of chronic toxicity. COL dose-dependently reversed the abnormal lipid levels induced by HFHC diet. Specifically, COL(M) and COL(H) significantly reduced the blood lipid levels(TC, TG and LDL-c) and enhanced the fecal contents of TBA by 21.8% and 25.1% respectively in hamsters. COL up-regulated the genes of CYP8B1, CYP7A1 and LDLR in mRNA and protein level, and down-regulated those of HMGCR to a different degree. Especially, CYP7A1 were significantly up-regulated by COL in hamsters (pCYP7A1, which accelerated the conversion of liver cholesterol to bile acids. It concluded that the COL showed high lipid-lowering activities through indirectly transactivating CYP7A1 by upregulating FTF and HNF-4α, and directly activating CYP7A1 catalytic activity by strongly interacting with receptor and ligand, therefore promoting cholesterol catabolism and accelerating the excretion of bile acids.

  5. Effects of Lactobacillus reuteri-derived biosurfactant on the gene expression profile of essential adhesion genes (gtfB, gtfC and ftf of Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Rasoul Salehi

    2014-01-01

    Full Text Available Background: Streptococci are the main causative agents in plaque formation and mutans streptococci are the principle etiological agent of dental plaque and caries. The process of biofilm formation is a step-wise process, starting with adhesion of planktonic cells to the surfaces. It is now a well known fact that expression of glucosyltransferases (gtfs and fructosyltransferase (ftf genes play a critical role in the initial adhesion of Streptococcus mutans to the tooth surface, which results in the formation of dental plaques and consequently caries and other periodontal diseases. Materials and Methods: In the present study, we have determined the effect of biosurfactants purified from Lactobacillus reuteri (DSM20016 culture on gene expression profile of gftB/C and fft of S. mutans (ATCC35668 using quantitative real-time polymerase chain reaction. Results: The application of biosurfactant caused considerable down-regulation of the expression of all three genes under study. The reduction in gene expression was statistically very significant (P > 0.0001 for all three genes. Conclusions: Inhibition of these genes by the extracted L. reuteri biosurfactant shows the emergence of a powerful alternative to the presently practicing alternatives. In view of the importance of these gene products for S. mutans attachment to the tooth surface, which is the initial important step in biofilm production and dental caries, we believe that the biosurfactant prepared in this study could be considered as a step ahead in dental caries prevention.

  6. Test of high density UC targets development at Gatchina for neutron rich radioactive beam facilities

    CERN Document Server

    Lhersonneau, G; Lanchais, A; Rizzi, V; Tecchio, L.B; Bajeat, O; Essabaa, S; Lau, C; Cheikh Mhamed, M; Roussière, B; Barzakh, A.E; Fedorov, D.V; lonan, A.M; lvanov, V.S; Mezilev, K.A; Moroz, F.V; Orlov, S.YU; Panteleevc, V.N; Volkovc, YU.M; Dubois, M; Eléon, C; Gaubert, G; Jardin, P; Leroy, R; Saint Laurent, M.G; Villari, A.C.C; Stroe, L; 10.1016/j.nimb.2008.05.033

    2008-01-01

    Production of on-line mass separator neutron rich isotopes using fission induced by 1 GeV protons on high density uranium carbide has been investigate and results compared with the low density targets yields.

  7. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, L J; Betti, R; Schurtz, G P; Craxton, R S; Dunne, A M; LaFortune, K N; Schmitt, A J; McKenty, P W; Bailey, D S; Lambert, M A; Ribeyre, X; Theobald, W R; Strozzi, D J; Harding, D R; Casner, A; Atzemi, S; Erbert, G V; Andersen, K S; Murakami, M; Comley, A J; Cook, R C; Stephens, R B

    2010-04-12

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term ({approx}3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of {approx}60 may be achievable on NIF at laser drive energies around {approx}0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R&D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  8. Investigation into the electromagnetic impulses from long-pulse laser illuminating solid targets inside a laser facility

    Science.gov (United States)

    Yi, Tao; Yang, Jinwen; Yang, Ming; Wang, Chuanke; Yang, Weiming; Li, Tingshuai; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Xiao, Shaoqiu

    2016-09-01

    Emission of the electromagnetic pulses (EMP) due to laser-target interaction in laser facility had been evaluated using a cone antenna in this work. The microwave in frequencies ranging from several hundreds of MHz to 2 GHz was recorded when long-pulse lasers with several thousands of joules illuminated the solid targets, meanwhile the voltage signals from 1 V to 4 V were captured as functions of laser energy and backlight laser, where the corresponding electric field strengths were obtained by simulating the cone antenna in combination with conducting a mathematical process (Tiknohov Regularization with L curve). All the typical coupled voltage oscillations displayed multiple peaks and had duration of up to 80 ns before decaying into noise and mechanisms of the EMP generation was schematically interpreted in basis of the practical measuring environments. The resultant data were expected to offer basic know-how to achieve inertial confinement fusion.

  9. X-ray laser experiments by using a gas puff target with the ASTERIX IV facility

    Energy Technology Data Exchange (ETDEWEB)

    Fiedorowicz, H.; Bartnik, A.; Fill, E.; Li, Y.; Pretzler, G.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, Warsaw (Poland)

    1996-05-01

    We report the first X-ray laser experiments with the use of laser-irradiated gas puff targets. The targets, produced by pulsed injection of a small amount of gas from a high-pressure solenoid valve through a nozzle in a form of a slit, has been characterized by optical interferometry and X-ray backlighting. The formation of elongated hot plasma columns up to 30-mm long is demonstrated. The spatial uniformity of the column was monitored by means of an X-ray pinhole camera. XUV spectra measurements for SF{sub 6} gas puff targets show predominant 3{endash}2 line of hydrogenic fluorine ({lambda}=8.1 nm), however, only linear increasing of its intensity with the target length was observed. An inversion on the lithium-like 4{ital d}-3{ital p} line can be inferred from the relative intensities of the Li-like resonance lines. Results for Kr target indicate that the plasma temperature was too low to create Ne-like ions. {copyright} {ital 1996 American Institute of Physics.}

  10. Optical spectroscopy of free-propagating plasma and its interaction with tungsten targets in PF-1000 facility

    Energy Technology Data Exchange (ETDEWEB)

    Skladnik-Sadowska, E.; Malinowski, K. [The Andrzej Soltan Institute for Nuclear Studies, IPJ, 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [The Andrzej Soltan Institute for Nuclear Studies, IPJ, 05-400 Otwock-Swierk (Poland)] [Institute of Plasma Physics and Laser Microfusion, IPPLM, 01-497 Warsaw (Poland); Kubkowska, M.; Jakubowska, K.; Paduch, M.; Scholz, M. [Institute of Plasma Physics and Laser Microfusion, IPPLM, 01-497 Warsaw (Poland); Garkusha, I.E.; Ladygina, M.; Tereshin, V.I. [Institute of Plasma Physics, NSC KIPT, 61-108 Kharkov (Ukraine)

    2011-07-01

    The paper reports on optical spectroscopy of pulsed plasma streams during their free propagation within a vacuum chamber and their interaction with tungsten targets. Experiments were performed with the PF-1000 facility and particular attention was paid to improvements in spectroscopic diagnostics techniques. In contrary to preliminary studies, the recent spectroscopic measurements of the free plasma streams were carried out perpendicular to the z-axis and at a larger distance from the electrode outlet. The center of the observation quartz-window was located at z = 30 cm in order to observe first a pure deuterium-plasma stream, and later on some heavy impurities which might reach that distance with a delay induced by differences in their production and time-of-flight. The recorded spectral lines were identified by means of a Kurucz database. It was confirmed that at the pure D{sub 2}-filling the PF-1000 facility emits first the deuterium-plasma stream and one can observe intense deuterium Balmer lines, but at a distance z = 30 cm, after about 2 microseconds there appear many impurity lines originating mainly from the Cu-electrodes, i.e. Cu-lines. The second part of the experiment concerned the spectroscopic measurements of metal plasma 'pillow' produced by the plasma stream impinging upon a solid target made of pure tungsten. The described measurements enabled the most intense spectral lines to be identified. This document is composed of an abstract followed by the slides of the presentation

  11. Long Baseline Neutrino Experiment Target Material Radiation Damage Studies Using Energetic Protons of the Brookhaven Linear Isotope Production (BLIP) Facility

    CERN Document Server

    Simos, N; Hurh, P; Mokhov, N; Kotsina, Z

    2014-01-01

    One of the future multi-MW accelerators is the LBNE Experiment where Fermilab aims to produce a beam of neutrinos with a 2.3 MW proton beam as part of a suite of experiments associated with Project X. Specifically, the LBNE Neutrino Beam Facility aims for a 2+ MW, 60 -120 GeV pulsed, high intensity proton beam produced in the Project X accelerator intercepted by a low Z solid target to facilitate the production of low energy neutrinos. The multi-MW level LBNE proton beam will be characterized by intensities of the order of 1.6 e+14 p/pulse, {\\sigma} radius of 1.5 -3.5 mm and a 9.8 microsecond pulse length. These parameters are expected to push many target materials to their limit thus making the target design very challenging. To address a host of critical design issues revealed by recent high intensity beam on target experience a series of experimental studies on radiation damage and thermal shock response conducted at BNL focusing on low-Z materials have been undertaken with the latest one focusing on LBNE.

  12. Shock Ignition: A New Approach to High Gain Targets for the National Ignition Facility

    Science.gov (United States)

    Perkins, L. John; Lafortune, Kai; Divol, Laurent; Betti, Riccardo

    2008-11-01

    Shock-ignition is being studied as a future option for achieving high target gains on NIF, offering the potential for testing high yield (200MJ), reactor-relevant targets for inertial fusion energy and targets with appreciable gains at drive energies much less than 1MJ. In contrast to conventional hotspot ignition, the assembly and ignition phases are separated by imploding a high mass shell at low velocity. The assembled fuel is then separately ignited by a strong, spherical shock driven by a high intensity spike at the end of the pulse and timed to reach the center as the main fuel is stagnating. Because the implosion velocity is significantly less than that required for hotspot ignition, considerably more fuel mass can be assembled and burned for the same kinetic energy in the shell. Like fast ignition, shock ignition could achieve high gains at low drive energy, but has the advantages of requiring only a single laser with less demanding timing and spatial focusing requirements. We will discuss gain curves for shock-ignited NIF targets in both UV and green light and examine the feasibility of designs that employ indirect drive fuel assembly with direct drive shock ignition

  13. Commissioning and quality assurance of Calypso four-dimensional target localization system in linear accelerator facility.

    Science.gov (United States)

    Muralidhar, K R; Komanduri, Krishna; Rout, Birendra Kumar; Ramesh, K K D

    2013-07-01

    Four dimensional (4D) target localization system (Calypso System) was installed at our hospital, which is equipped with Beacon Transponders, Console, Electromagnetic Array, Optical System, Tracking Station, Treatment table overlay, and Calypso kVue Couch top. The objective of this presentation is to describe the results of commissioning measurements carried out on the Calypso System to verify the manufacturer specifications and also to evolve a quality assurance (QA) procedure which can be used to test its performance routinely. The QA program consists of a series of tests (QA for checking the calibration or system accuracy, Camera Calibration with L-frame fixture, Camera Calibration with T-frame fixture, System calibration Fixture targets test, Localization, and Tracking). These tests were found to be useful to assess the performance of the Calypso System.

  14. Management of unconverted light for the National Ignition Facility target chamber

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A. T.; Bletzer, K.; Burnham, A. K.; Dixit, S; Genin, F. Y.; Hibbard, W.; Norton, J.; Scott, J. M.; Whitman, P. K.

    1998-07-08

    The NIF target chamber beam dumps must survive high x-ray, laser, ion, and shrapnel exposures without excessive generation of vapors or particulate that will contaminate the final optics debris shields, thereby making the debris shields susceptible to subsequent laser damage. The beam dumps also must be compatible with attaining and maintaining the required target chamber vacuum and must not activate significantly under high neutron fluxes. Finally, they must be developed, fabricated, and maintained for a reasonable cost. The primary challenge for the beam dump is to survive up to 20 J/cm{sup 2} of lpm light and 1 - 2 J/cm{sup 2} of nominally 200 - 350 eV blackbody temperature x rays. Additional threats include target shrapnel, and other contamination issues. Designs which have been evaluated include louvered hot-pressed boron carbide (B{sub 4}C) or stainless steel (SS) panels, in some cases covered with transparent Teflon film, and various combinations of inexpensive low thermal expansion glasses backed by inexpensive absorbing glass. Louvered designs can recondense a significant amount of ablated material that would otherwise escape into the target chamber. Transparent Teflon was evaluated as an alternative way to capture ablated material. The thin Teflon sheet would need to be replaced after each shot since it exhibits both laser damage and considerable x- ray ablation with each shot. Uncontaminated B{sub 4}C, SS, and low thermal expansion glasses have reasonably small x-ray and laser ablation rates, although the glasses begin to fail catastrophically after 100 high fluence shots. Commercially available absorbing glasses require a pre-shield of either Teflon or low thermal expansion glass to prevent serious degradation by the x-ray fluence. Advantages of the hot-pressed B{sub 4}C and SS over glass are their performance against microshrapnel, their relative indifference to contamination, and their ability to be refurbished by aggressive cleaning using CO{sub 2

  15. Multi-keV x-ray sources from HYBRID targets on GEKKO and OMEGA facilities

    Directory of Open Access Journals (Sweden)

    Primout M.

    2013-11-01

    Full Text Available The feasibility of efficient X-ray sources for radiography on the LMJ (Laser MégaJoule in the multi-kJ/ns range was demonstrated on the OMEGA laser facility (Univ. Rochester from 2002 to 2004 [1,2]. We significantly enhanced the conversion efficiency of titanium (4–6 keV, copper (8–10 keV and germanium (9–13 keV foils by using an optimized pre-pulse/pulse combination. Since higher X-ray energy and therefore electronic temperature need hydroconfinement, plastic cylindrical hohlraums internally coated with titanium, copper and germanium with various OMEGA beam configurations were successfully tested from 2005 to 2009 [3–5]. In addition, many shots with metal-doped aerogel (Ti, Fe, Ge were tested on OMEGA [6]. Recently we tested a new concept of “HYBRID sources” based on the combination of a thin titanium foil at the exit hole of a plastic cylinder filled with very low density SiO2 aerogel (2 and 5 mg/cc. The benefit of the underdense medium is, first, to transport the laser energy to the titanium foil after its conversion into a supersonic ionization front and, second, to prevent foil expansion and excessive kinetic energy losses by longitudinal hydroconfinement.

  16. Investigation of interactions of intense plasma streams with tungsten and carbon fibre composite targets in the PF-1000 facility

    Science.gov (United States)

    Kubkowska, Monika; Skladnik-Sadowska, Elzbieta; Kwiatkowski, Roch; Malinowski, Karol; Kowalska-Strzęciwilk, Ewa; Paduch, Marian; Sadowski, Marek J.; Pisarczyk, Tadeusz; Chodukowski, Tomasz; Kalinowska, Zofia; Zielinska, Ewa; Scholz, Marek

    2014-05-01

    This paper presents the results of research on interactions of pulsed plasma streams, as generated by the PF-1000 facility, with solid targets made of tungsten or carbon fibre composite. The device was equipped with a modified inner electrode with a central tungsten insert of 50 mm in diameter. The PF-1000 experimental chamber was filled with pure deuterium at p0 = 1.47 hPa. At the charging voltage U0 = 24 kV, the maximum current amounted to 1.8 MA in about 5.5 μs after the discharge initiation. The investigated targets were located on the z-axis, at a distance of 9 cm from the inner electrode end. For plasma diagnostics, optical emission spectroscopy, 16-frame laser interferometry and a soft x-ray measuring system of four silicon pin diodes were used. It was observed that plasma streams reached the target about 100 ns after the maximum compression and generated a plasma pillow at the sample surface, as proved from time-resolved optical spectra.

  17. Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, R T; O' Brien, D W; Kamperschroer, J H; Nelson, J R

    2007-10-03

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated and gated X-ray sensors, and laser velocity interferometry. Diagnostics to diagnose fusion ignition implosion and neutron emissions are being planned. Many diagnostics will be developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. An instrument-based controls (I-BC) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the I-BC architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. I-BCs are reusable by replication and reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and better reliability. Collaborators save costs by assembling diagnostics with existing I-BCs. This paper discusses target diagnostic instrumentation used on NIF and presents the I-BC architecture and framework.

  18. Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility

    Science.gov (United States)

    Yang, Jinwen; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Yang, Ming; Yang, Weiming; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2016-10-01

    Significant electromagnetic pulses (EMP) can be generated by the intensive laser irradiating solid targets in inertial confinement fusion (ICF). To evaluate the EMP intensity and distribution in and outside the laser chamber, we designed and fabricated a discone antenna with ultra-wide bands of over 10 GHz. The return loss (S11 parameter) of this antenna was below -10 dB and could even achieve under -30 dB at 3.1 GHz. The EMP intensity in this study at 80 cm and 40 cm away from the target chamber center (TCC) reached 400 kV/m and 2000 kV/m. The current results are expected to offer preliminary information to study physics regarding laser plasma interactions and will also lay experimental foundation for EMI shielding design to protect various diagnostics. supported by the Fundamental Research Funds for the Central Universities of China (No. ZYGX2015J108) and National Natural Science Foundation of China (Nos. 11575166 and 51581140)

  19. Experiments and analysis of gold disk targets irradiated by smoothing beams of Xingguang II facilities with 350 nm wavelength

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Gold disk targets were irradiated using focusing and beam smoothing methods on Xingguang (XG-II) laser facilities with 350 nm wavelength, 0.6 ns pulse width and 20-80 Joules energies. Laser absorption, light scattering and X-ray conversion were experimentally investigated. The experimental results showed that laser absorption and scattered light were about 90% and 10%, respectively, under focusing irradiation, but the laser absorption increased 5%-10% and the scattered light about 1% under the condition of beam smoothing. Compared with the case of focusing irradiation, the laser absorption was effectively improved and the scattered light remarkably dropped under uniform irradiation; then due to the decrease in laser intensity, X-ray conversion increased. This is highly advantageous to the inertial confinement fusion. However, X-ray conversion mechanism basically did not change and X-ray conversion efficiency under beam smoothing and focusing irradiation was basically the same.

  20. Experiments and analysis of gold disk targets irradiated by smoothing beams of Xingguang II facilities with 350 nm wavelength

    Institute of Scientific and Technical Information of China (English)

    JIANG; ShaoEn

    2007-01-01

    Gold disk targets were irradiated using focusing and beam smoothing methods on Xingguang (XG-II) laser facilities with 350 nm wavelength, 0.6 ns pulse width and 20-80 Joules energies. Laser absorption, light scattering and X-ray conversion were experimentally investigated. The experimental results showed that laser absorption and scattered light were about 90% and 10%, respectively, under focusing irradiation, but the laser absorption increased 5%-10% and the scattered light about 1% under the condition of beam smoothing. Compared with the case of focusing irradiation, the laser absorption was effectively improved and the scattered light remarkably dropped under uniform irradiation; then due to the decrease in laser intensity, X-ray conversion increased. This is highly advantageous to the inertial confinement fusion. However, X-ray conversion mechanism basically did not change and X-ray conversion efficiency under beam smoothing and focusing irradiation was basically the same.……

  1. A method for targeting air samplers for facility monitoring in an urban environment

    Science.gov (United States)

    Bieringer, Paul E.; Longmore, Scott; Bieberbach, George; Rodriguez, Luna M.; Copeland, Jeff; Hannan, John

    2013-12-01

    /Exceedence spatial maps for prescribed concentration thresholds or standards. The method is flexible and can be tuned to allow the detailed characterization of Probability of Detection (POD) for a given sampler detection threshold and sampling period (e.g. sampling duration, season, time of day). An example of this methodology is illustrated for a single facility in an urban location surrounded by numerous multi-story buildings.

  2. Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities

    Energy Technology Data Exchange (ETDEWEB)

    Towell, Marcie G. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Bellarby, Jessica; Paton, Graeme I. [Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU (United Kingdom); Coulon, Frederic; Pollard, Simon J.T. [School of Applied Sciences, Sustainable Systems Department, Cranfield University, Cranfield (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.u [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-02-15

    This study investigated the microbial degradation of {sup 14}C-labelled hexadecane, octacosane, phenanthrene and pyrene and considered how degradation might be optimised in three genuinely hydrocarbon-contaminated soils from former petroleum refinery sites. Hydrocarbon mineralisation by the indigenous microbial community was monitored over 23 d. Hydrocarbon mineralisation enhancement by nutrient amendment (biostimulation), hydrocarbon degrader addition (bioaugmentation) and combined nutrient and degrader amendment, was also explored. The ability of indigenous soil microflora to mineralise {sup 14}C-target hydrocarbons was appreciable; {>=}16% mineralised in all soils. Generally, addition of nutrients or degraders increased the rates and extents of mineralisation of {sup 14}C-hydrocarbons. However, the addition of nutrients and degraders in combination had a negative effect upon {sup 14}C-octacosane mineralisation and resulted in lower extents of mineralisation in the three soils. In general, the rates and extents of mineralisation will be dependent upon treatment type, nature of the contamination and adaptation of the ingenious microbial community. - Research highlights: Indigenous microbes actively degrade {sup 14}C-hydrocarbons in field contaminated soils. Addition of nutrients or degraders enhance mineralisation in contaminated soils. Biodegradation is related to the presence of hydrocarbons and microbial activity. - Bioremediation strategy, native hydrocarbon concentrations and prior exposure histories of the microbial community influence hydrocarbon degradation in soil.

  3. Use of the target diagnostic control system in the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, R; Lagin, L; Nelson, J

    2011-07-25

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated, time resolved and gated X-ray sensors, laser velocity interferometry, and neutron time of flight. Diagnostics to diagnose fusion ignition implosion and neutron emissions have been developed. A Diagnostic Control System (DCS) for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Window XP processor and Java application. Instruments are aggregated as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. During the past several years, over thirty-six diagnostics have been deployed using this architecture in support of the National Ignition Campaign (NIC). The DCS architecture facilitates the expected additions and upgrades to diagnostics as more experiments are performed. This paper presents the DCS architecture, framework and our experiences in using it during the NIC to operate, upgrade and maintain a large set of diagnostic instruments.

  4. Target Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — [Part of the ATLAS user facility.] The Physics Division operates a target development laboratory that produces targets and foils of various thickness and substrates,...

  5. Target Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — [Part of the ATLAS user facility.] The Physics Division operates a target development laboratory that produces targets and foils of various thickness and substrates,...

  6. Facile synthesis of CdTe@GdS fluorescent-magnetic nanoparticles for tumor-targeted dual-modal imaging.

    Science.gov (United States)

    Zhang, Fei; Kong, Xiu-Qi; Li, Qiong; Sun, Ting-Ting; Chai, Chao; Shen, Wen; Hong, Zhang-Yong; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2016-01-01

    Multimodal imaging has made great contribution for diagnosis and therapy of disease since it can provide more effective and complementary information in comparison to any single imaging modality. The design and fabrication of fluorescent-magnetic nanoparticles for multimodal imaging has rapidly developed over the years. Herein, we demonstrate the facile synthesis of GdS coated CdTe nanoparticles (CdTe@GdS NPs) as multimodal agents for fluorescence (FL) and T1-weighted magnetic resonance (MR) imaging. These nanoparticles obtain both prominent fluorescent and paramagnetic properties by coating the GdS shell on the surface of CdTe core via a simple room-temperature route in aqueous solution directly. It is shown that the as-prepared CdTe@GdS NPs have high quantum yield (QY) value of 12% and outstanding longitudinal relaxation rate (r1) of 11.25 mM s(-1), which allow them to be employed as FL/MR dual-modal imaging contrast agents. They also exhibit small particle size of 5 nm, excellent colloidal stability and low cellular toxicity for concentrations up to 750 μg mL(-1). In addition, with the conjugation of folic acid, the nanoparticles were successfully used for tumor-targeted FL/MR dual-modal imaging in vitro and in vivo.

  7. ANEM: A rotating composite target to produce an atmospheric-like neutron beam at the LNL SPES facility

    Science.gov (United States)

    Acosta Urdaneta, Gabriela Carolina; Bisello, Dario; Esposito, Juan; Mastinu, Pierfrancesco; Prete, Gianfranco; Silvestrin, Luca; Wyss, Jeffery

    2016-09-01

    A fast neutron (E> MeV) irradiation facility is under development at the 70 MeV SPES proton cyclotron at LNL (Legnaro, Italy) to investigate neutron-induced Single Event Effects (SEE) in microelectronic devices and systems. After an overview on neutron-induced SEE in electronics, we report on the progress in the design of ANEM (Atmospheric Neutron EMulator), a water-cooled rotating target made of Be and W to produce neutrons with an energy spectrum similar to that of neutrons produced by cosmic rays at sea-level. In ANEM, the protons from the cyclotron alternatively impinge on two circular sectors of Be and W of different areas; the effective neutron spectrum is a weighted combination of the spectra from the two sectors. In this contribution, we present the results of thermal-mechanical Finite Element Analysis (ANSYS) calculations of the performance of the ANEM prototype. The calculations at this stage indicate that ANEM can deliver fast neutrons with an atmospheric-like energy spectrum and with an integral flux Φn(1-70 MeV) ˜107 n cm-2s-1 that is 3×109 more intense than the natural one at sea-level: a very competitive flux for SEE testing.

  8. Possible version of the compression degradation of the thermonuclear indirect-irradiation targets at the national ignition facility and a reason for the failure of ignition

    Science.gov (United States)

    Rozanov, V. B.; Vergunova, G. A.

    2017-01-01

    The main parameters of compression of a target and tendencies at change in the irradiation conditions are determined by analyzing the published results of experiments at the megajoule National Ignition Facility (NIF) on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry. A possible version of the "failure of ignition" of an indirect-irradiation target under the NIF conditions is attributed to radiation transfer. The application of onedimensional model to analyze the National Ignition Campaign (NIC) experiments allows identifying conditions corresponding to the future ignition regime and distinguishing them from conditions under which ignition does not occur.

  9. Possible version of the compression degradation of the thermonuclear indirect-irradiation targets at the national ignition facility and a reason for the failure of ignition

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-01-15

    The main parameters of compression of a target and tendencies at change in the irradiation conditions are determined by analyzing the published results of experiments at the megajoule National Ignition Facility (NIF) on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry. A possible version of the “failure of ignition” of an indirect-irradiation target under the NIF conditions is attributed to radiation transfer. The application of onedimensional model to analyze the National Ignition Campaign (NIC) experiments allows identifying conditions corresponding to the future ignition regime and distinguishing them from conditions under which ignition does not occur.

  10. TARGET:?

    National Research Council Canada - National Science Library

    James M Acton

    2014-01-01

      By 2003. as military planners had become worried that the country's long-range conventional weapons, such as cruise missiles, might be too slow to reach hypothetical distant targets that needed to be struck urgently...

  11. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Grenier, D.; Wollmann, D. [CERN-AB, 1211 Geneva 23 (Switzerland); Blanco Sancho, J. [CERN-AB, 1211 Geneva 23, Switzerland and Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Burkart, F. [CERN-AB, 1211 Geneva 23, Switzerland and Goethe University, Frankfurt (Germany); Tahir, N. A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany); Shutov, A. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A. R. [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2014-08-15

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  12. Sexual predators who target elders: findings from the first national study of sexual abuse in care facilities.

    Science.gov (United States)

    Ramsey-Klawsnik, Holly; Teaster, Pamela B; Mendiondo, Marta S; Marcum, Jennifer L; Abner, Erin L

    2008-01-01

    This article reports research findings concerning 119 alleged sexual perpetrators who were reported to state authorities for abusing elderly individuals residing in care facilities. The largest group of accused was employees of the facilities, followed by facility residents. Family members of the alleged victims and visitors to the facilities also were among those reported as sexually abusive. Investigation of the allegations by Adult Protective Services and regulatory staff resulted in 32 of these individuals being confirmed as sexual perpetrators against vulnerable elders. Male and female alleged and confirmed sexual perpetrators were identified as well as both male and female elderly sexual abuse victims. Perpetrator characteristics, victim vulnerabilities, abuse acts, locations of assaults, and available case outcomes are presented. Implications of the findings are discussed.

  13. Effects of biosurfactant produced by Lactobacillus casei on gtfB, gtfC, and ftf gene expression level in S. mutans by real-time RT-PCR

    Directory of Open Access Journals (Sweden)

    Omid Savabi

    2014-01-01

    Full Text Available Background: The Streptococci are the pioneer strains in plaque formation and Streptococcus mutans are the main etiological agent of dental plaque and caries. In general, biofilm formation is a step-wise process, which begins by adhesion of planktonic cells to the surfaces. Evidences show that expression of glucosyltransferase B and C (gtfB and gtfC and fructosyltransferase (ftf genes play critical role in initial adhesion of S. mutans to the tooth surface which results in formation of dental plaques and consequently caries and other periodontal disease. Materials and Methods: The aim of this study was to determine the effect of biosurfactants produced by a probiotic strain; Lactobacillus casei (ATCC39392 on gene expression profile of gftB/C and tft of S. mutans (ATCC35668 using quantitative real-time PCR. Results: The application of the prepared biosurfactant caused dramatic down regulation of all the three genes under study. The reduction in gene expression was statistically highly significant (for gtfB, P > 0.0002; for gtfC, P > 0.0063, and for ftf, P > 0.0057. Conclusion: Considerable downregulation of all three genes in the presence of the prepared biosurfactant comparing to untreated controls is indicative of successful inhibition of influential genes in bacterial adhesion phenomena. In view of the importance of glucosyltransferase gene products for S.mutans attachment to the tooth surface which is the initial important step in biofilm production and dental caries, further research in this field may lead to an applicable alternative for successful with least adverse side effects in dental caries prevention.

  14. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emission of targets at the National Ignition Facility (NIF)

    Science.gov (United States)

    Malone, Robert M.; Celeste, John R.; Celliers, Peter M.; Frogget, Brent C.; Guyton, Robert L.; Kaufman, Morris I.; Lee, Tony L.; MacGowan, Brian J.; Ng, Edmund W.; Reinbachs, Imants P.; Robinson, Ronald B.; Tunnell, Thomas W.; Watts, Phillip W.

    2007-09-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator-friendly. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities and shock breakout times of 1- to 5-mm targets at a location remote to the NIF target chamber. A third imaging system measures self-emission of the targets. These three optical systems using the same vacuum chamber port each have a total track of 21 m. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be systematically checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Floating apertures, placed before and after lens groups, display misalignment by showing the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beam splitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment is achieved before each shot.

  15. Optical Alignment Techniques for Line-Imaging Velocity Interferometry and Line-Imaging Self-Emission of Targets at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R M; Celeste, J R; Celliers, P M; Frogget, B .; Guyton, R L; Kaufman, M I; Lee, T L; MacGowan, B J; Ng, E W; Reinbachs, I P; Robinson, R B; Tunnell, T W; Watts, P W

    2007-07-31

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator friendly. The Velocity Interferometer System for Any Reflector measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 21 meters. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Movable aperture cards, placed before and after lens groups, show the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  16. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emission of targets at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Malone, Robert; Celeste, John; Celliers, Peter; Frogget, Brent; Robert Guyton,,; Kaufman, Morris; Lee, Tony; MacGowan, Brian; Ng, Edmend; Reinbachs, Imants; Robinson, Ronald; Tunnell, Thomas; Watts, Phillip

    2007-08-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator friendly. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 21 m. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Movable aperture cards, placed before and after lens groups, show the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  17. PEG-b-AGE Polymer Coated Magnetic Nanoparticle Probes with Facile Functionalization and Anti-fouling Properties for Reducing Non-specific Uptake and Improving Biomarker Targeting.

    Science.gov (United States)

    Li, Yuancheng; Lin, Run; Wang, Liya; Huang, Jing; Wu, Hui; Cheng, Guojun; Zhou, Zhengyang; MacDonald, Tobey; Yang, Lily; Mao, Hui

    2015-05-07

    Non-specific surface adsorption of bio-macromolecules (e.g. proteins) on nanoparticles, known as biofouling, and the uptake of nanoparticles by the mononuclear phagocyte system (MPS) and reticuloendothelial system (RES) lead to substantial reduction in the efficiency of target-directed imaging and delivery in biomedical applications of engineered nanomaterials in vitro and in vivo. In this work, a novel copolymer consisting of blocks of poly ethylene glycol and allyl glycidyl ether (PEG-b-AGE) was developed for coating magnetic iron oxide nanoparticles (IONPs) to reduce non-specific protein adhesion that leads to formation of "protein corona" and uptake by macrophages. The facile surface functionalization was demonstrated by using targeting ligands of a small peptide of RGD or a whole protein of transferrin (Tf). The PEG-b-AGE coated IONPs exhibited anti-biofouling properties with significantly reduced protein corona formation and non-specific uptake by macrophages before and after the surface functionalization, thus improving targeting of RGD-conjugated PEG-b-AGE coated IONPs to integrins in U87MG glioblastoma and MDA-MB-231 breast cancer cells that overexpress αvβ3 integrins, and Tf-conjugated PEG-b-AGE coated IONPs to transferrin receptor (TfR) in D556 and Daoy medulloblastoma cancer cells with high overexpression of transferrin receptor, compared to respective control cell lines. Magnetic resonance imaging (MRI) of cancer cells treated with targeted IONPs with or without anti-biofouling PEG-b-AGE coating polymers demonstrated the target specific MRI contrast change using anti-biofouling PEG-b-AGE coated IONP with minimal off-targeted background compared to the IONPs without anti-biofouling coating, promising the highly efficient active targeting of nanoparticle imaging probes and drug delivery systems and potential applications of imaging quantification of targeted biomarkers.

  18. Diagnostics improvement in the ABC facility and preliminary tests on laser interaction with light-atom clusters and p+{sup 11}B targets

    Energy Technology Data Exchange (ETDEWEB)

    Consoli, Fabrizio, E-mail: fabrizio.consoli@enea.it [Associazione Euratom - ENEA sulla Fusione, via E. Fermi 45, CP 65-00044 Frascati, Rome (Italy); De Angelis, Riccardo; Andreoli, Pierluigi; Cristofari, Giuseppe; Di Giorgio, Giorgio [Associazione Euratom - ENEA sulla Fusione, via E. Fermi 45, CP 65-00044 Frascati, Rome (Italy); Bonasera, Aldo [INFN - LNS, via S. Sofia 62, I-95123 Catania (Italy); Cyclotron Institute, Texas A and M University, College Station, TX, 77843 (United States); Barbui, Marina [Cyclotron Institute, Texas A and M University, College Station, TX, 77843 (United States); Mazzocco, Marco [Dipartimento di Fisica G. Galilei, Università degli Studi di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Bang, Woosuk; Dyer, Gilliss; Quevedo, Hernan [Texas Center for High Intensity Laser Science, University of Texas at Austin, Austin 78712, TX (United States); Hagel, Kris; Schmidt, Katarzyna [Cyclotron Institute, Texas A and M University, College Station, TX, 77843 (United States); Gaul, Erhard; Borger, Ted; Bernstein, Aaron; Martinez, Mikael; Donovan, Michael [Texas Center for High Intensity Laser Science, University of Texas at Austin, Austin 78712, TX (United States); Barbarino, Matteo [Cyclotron Institute, Texas A and M University, College Station, TX, 77843 (United States); Kimura, Sachie [INFN - LNS, via S. Sofia 62, I-95123 Catania (Italy); and others

    2013-08-21

    The diagnostics of particle flows in Inertial Confinement Fusion experiments is a delicate issue, due to the fast timescales and to the strong radiative electromagnetic contributions. This makes the discrimination of the different particles produced by the laser–plasma interaction not trivial, and requires the use of several diagnostic techniques. We describe here the diagnostics improvement in the ABC facility. They will provide more detailed analysis of microwave fields and particles originating from the interaction of laser with targets foreseen for future experiments.

  19. Simple model of the indirect compression of targets under conditions close to the national ignition facility at an energy of 1.5 MJ

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-11-15

    The possibility of the analysis and interpretation of the reported experiments with the megajoule National Ignition Facility (NIF) laser on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry has been studied. The problem of the energy balance in a target and the determination of the laser energy that should be used in the spherical model of the target has been considered. The results of action of pulses differing in energy and time profile (“low-foot” and “high-foot” regimes) have been analyzed. The parameters of the compression of targets with a high-density carbon ablator have been obtained. The results of the simulations are in satisfactory agreement with the measurements and correspond to the range of the observed parameters. The set of compared results can be expanded, in particular, for a more detailed determination of the parameters of a target near the maximum compression of the capsule. The physical foundation of the possibility of using the one-dimensional description is the necessity of the closeness of the last stage of the compression of the capsule to a one-dimensional process. The one-dimensional simulation of the compression of the capsule can be useful in establishing the boundary behind which two-dimensional and three-dimensional simulation should be used.

  20. Simple model of the indirect compression of targets under conditions close to the national ignition facility at an energy of 1.5 MJ

    Science.gov (United States)

    Rozanov, V. B.; Vergunova, G. A.

    2015-11-01

    The possibility of the analysis and interpretation of the reported experiments with the megajoule National Ignition Facility (NIF) laser on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry has been studied. The problem of the energy balance in a target and the determination of the laser energy that should be used in the spherical model of the target has been considered. The results of action of pulses differing in energy and time profile ("low-foot" and "high-foot" regimes) have been analyzed. The parameters of the compression of targets with a high-density carbon ablator have been obtained. The results of the simulations are in satisfactory agreement with the measurements and correspond to the range of the observed parameters. The set of compared results can be expanded, in particular, for a more detailed determination of the parameters of a target near the maximum compression of the capsule. The physical foundation of the possibility of using the one-dimensional description is the necessity of the closeness of the last stage of the compression of the capsule to a one-dimensional process. The one-dimensional simulation of the compression of the capsule can be useful in establishing the boundary behind which two-dimensional and three-dimensional simulation should be used.

  1. Assessment of Personal Airborne Exposures and Surface Contamination from X-ray Vaporization of Beryllium Targets at the National Ignition Facility.

    Science.gov (United States)

    Paik, Samuel Y; Epperson, Patrick M; Kasper, Kenneth M

    2017-02-28

    This study presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measures in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 μg/100 cm(2) and 27 results were above the analytical reporting limit of 0.01 μg/100 cm(2), for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present

  2. Reliability Study of the Liquid Target Chamber for 18F Production at the BATAN’s Cyclotron Facilities

    Directory of Open Access Journals (Sweden)

    I. Kambali

    2011-04-01

    Full Text Available The liquid target chamber for 18F production at the Cyclotron Division, Centre for Radioisotopes and Radiopharmaceuticals (PRR of the National Nuclear Energy Agency of Indonesia (BATAN has been analysed for its reliability in enduring high pressures and heat transfer requirements during proton beam bombardment as well as the recommended irradiation parameters for effective 18F production. The target chamber was subject to house the 18O-enriched water bombarded with high energy proton beam to produce 18F. A range of SRIM-computer simulations have also been conducted to calculate the ranges of several energetic proton beams (of up to 20 MeV into pure water target. A study of radioactive impurities which might be produced from the proton-irradiated chamber’s materials was also included based on some references. Due to concern over the heat produced during target irradiation, a heat transfer analysis - particularly for the target’s cavity - was also included in the presented studies to obtain a brief preliminary calculation of the heating impacts prior to irradiation tests. The calculation was performed for various proton beam currents and energies of up to 30 A and 20 MeV respectively. It was found that the chamber was reliable for production of 18F from proton irradiated-18O enriched-water target by maintaining the chamber’s pressure of up to 3.6 bar if the proton beam current was kept below 16 A for all energies or the proton beam energy was kept to or below 10 MeV for any employed beam currents. The overall heat transfer coefficient was also found to depend on the power deposited into the water target

  3. Experimental capabilities of the GARPUN MTW Ti : sapphire - KrF laser facility for investigating the interaction of subpicosecond UV pulses with targets

    Science.gov (United States)

    Zvorykin, V. D.; Goncharov, S. A.; Ionin, A. A.; Mokrousova, D. V.; Ryabchuk, S. V.; Seleznev, L. V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.

    2017-05-01

    This paper describes the first experiments carried out on the GARPUN MTW Ti : sapphire - KrF hybrid laser facility and aimed at gaining insight into the interaction of subpicosecond UV pulses with solid and structured low-density carbon nanotube targets at peak intensities of ~1016 W cm-2 in a focal spot ~70 μm in size. Using X-ray absorbers, the plasma electron temperature has been measured to be ~850 eV. In our experiments, we used an optimal configuration: direct double-pass ultrashort-pulse (USP) amplification in KrF amplifier stages, with multiple laser beam filamentation suppression in a xenon-filled cell. The highest energy on a target was 0.25 J at a USP contrast relative to amplified spontaneous emission of ~3 × 1010 for intensities and ~3 × 105 for fluences. Owing to two-photon resonance in the UV spectral region, the use of xenon, with a negative nonlinear refractive index, allowed us to make the cross-sectional fluence distribution more uniform and reduce the beam divergence to 0.14 mrad (at the 10 % intensity level). Reducing the USP duration via negatively chirped pulse amplification and filamentation suppression and reducing the focal spot size on a target by using parabolic short-focus optics are expected to ensure an increase in the intensity incident on the target by one to two orders of magnitude. Presented at the ECLIM 2016 conference (Moscow, 18 - 23 September 2016.

  4. Above scaling short-pulse ion acceleration from flat foil and ``Pizza-top Cone'' targets at the Trident laser facility

    Science.gov (United States)

    Flippo, Kirk; Hegelich, B. Manuel; Cort Gautier, D.; Johnson, J. Randy; Kline, John L.; Shimada, Tsutomu; Fernández, Juan C.; Gaillard, Sandrine; Rassuchine, Jennifer; Le Galloudec, Nathalie; Cowan, Thomas E.; Malekos, Steve; Korgan, Grant

    2006-10-01

    Ion-driven Fast Ignition (IFI) has certain advantages over electron-driven FI due to a possible large reduction in the amount of energy required. Recent experiments at the Los Alamos National Laboratory's Trident facility have yielded ion energies and efficiencies many times in excess of recent published scaling laws, leading to even more potential advantages of IFI. Proton energies in excess of 35 MeV have been observed from targets produced by the University of Nevada, Reno - dubbed ``Pizza-top Cone'' targets - at intensities of only 1x10^19 W/cm^2 with 20 joules in 600 fs. Energies in excess of 24 MeV were observed from simple flat foil targets as well. The observed energies, above any published scaling laws, are attributed to target production, preparation, and shot to shot monitoring of many laser parameters, especially the laser ASE prepulse level and laser pulse duration. The laser parameters are monitored in real-time to keep the laser in optimal condition throughout the run providing high quality, reproducible shots.

  5. 77 FR 16796 - Lead Requirements for Lead-Based Paint Activities in Target Housing and Child-Occupied Facilities...

    Science.gov (United States)

    2012-03-22

    ... AGENCY 40 CFR Part 745 Lead Requirements for Lead-Based Paint Activities in Target Housing and Child... requirements, training program accreditation requirements, and work practice standards for lead-based paint... the Arkansas lead-based paint program and passed a new statute establishing a State lead-based paint...

  6. The targeting of nutritionally at-risk children attending a primary health care facility in the Western Cape Province of South Africa.

    Science.gov (United States)

    Schoeman, S E; Hendricks, M K; Hattingh, S P; Benadé, A J S; Laubscher, J A; Dhansay, M A

    2006-12-01

    The aim of this study was to determine the practices of primary health care (PHC) nurses in targeting nutritionally at-risk infants and children for intervention at a PHC facility in a peri-urban area of the Western Cape Province of South Africa. Nutritional risk status of infants and children nutrition case management guidelines developed for PHC facilities in the province. Children were identified as being nutritionally at-risk if their weight was below the 3rd centile, their birth weight was less than 2500 g, and their growth curve showed flattening or dropping off for at least two consecutive monthly visits. The study assessed the practices of nurses in identifying children who were nutritionally at-risk and the entry of these children into the food supplementation programme (formerly the Protein-Energy Malnutrition Scheme) of the health facility. Structured interviews were conducted with nurses to determine their knowledge of the case management guidelines; interviews were also conducted with caregivers to determine their sociodemographic status. One hundred and thirty-four children were enrolled in the study. The mean age of their caregivers was 29.5 (standard deviation 7.5) years and only 47 (38%) were married. Of the caregivers, 77% were unemployed, 46% had poor household food security and 40% were financially dependent on non-family members. Significantly more children were nutritionally at-risk if the caregiver was unemployed (54%) compared with employed (32%) (P=0.04) and when there was household food insecurity (63%) compared with household food security (37%) (Pnutritionally at-risk if the caregiver was financially self-supporting or supported by their partners (61%) compared with those who were financially dependent on non-family members (35%) (P=0.003). The weight results of the nurses and the researcher differed significantly (Pnurses' (Pinfants and children as being nutritionally at-risk compared with 14 (10%) by the nurses. The nurses' poor

  7. Principal component analysis of soft x-ray signals generated by the PF-1000 facility in experiments with solid targets

    Science.gov (United States)

    Kowalska-Strzęciwilk, Ewa; Skrzeczanowski, Wojciech; Czarnecka, Agata; Kubkowska, Monika; Paduch, Marian; Zielińska, Ewa

    2014-05-01

    The paper presents the analysis of soft x-ray signals generated in the PF-1000 facility equipped with a modified inner electrode with a central tungsten insert of 50 mm diameter in experiments with tungsten and carbon samples. The PF-1000 machine was operated with pure deuterium filling under the initial pressure of 1.3 hPa. The machine was powered using a condenser bank charged initially to 24 kV, corresponding to the stored energy of 380 kJ, with the maximum discharge current amounted to 1.8 MA. For investigation of plasma stream-sample interactions, we applied 16-frame laser interferometry, optical spectroscopy and soft x-ray measurements with the use of a system of four silicon pin-diodes. In this paper, we mainly focus on the principal component analysis (PCA) of the registered x-ray signals to find a corelation between the neutron yield and observed maxima in signals. X-ray signals collected by four pin-diodes covered a 9 cm range in front of the electrode ends. Each diode collected a signal from the circle of 3 cm diameter. The presented PCA analysis is based on 57 PF discharges and 16 parameters are taken into account in the analysis. The study of signals from the pin-diode system showed good correlation between the neutron yield and the maximum in the x-ray signal, which appeared about 1000-1300 ns after the maximum of plasma compression.

  8. A rich revenue from the use of radioactive beams and radioactive targets: recent highlights from the nTOF and ISOLDE facilities (1/2)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    The On-Line Isotope Mass Separator ISOLDE is a facility dedicated to the production of a large variety of radioactive ion beams for a great number of different experiments, e.g. in the field of nuclear and atomic physics, solid-state physics, life sciences and material science. At ISOLDE, radioactive nuclides are produced in thick high-temperature targets via spallation, fission or fragmentation reactions. The targets are placed in the external proton beam of the PSB, which has an energy of 1.0 or 1.4 GeV and an intensity of about 2 microA. The target and ion-source together represent a small chemical factory for converting the nuclear reaction products into a radioactive ion beam. An electric field accelerates the ions, which are mass separated and steered to the experiments. Until now more than 600 isotopes of more than 60 elements (Z=2 to 88) have been produced with half-lives down to milliseconds and intensities up to 1011 ions per second. Through the advent of post-accelerated beams with the REX-ISOLDE c...

  9. Facile synthesis of mosquitocidal silver nanoparticles using Mussaenda glabra leaf extract: characterisation and impact on non-target aquatic organisms.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Nicoletti, Marcello; Benelli, Giovanni

    2016-11-01

    Plant-borne compounds have been proposed for extracellular synthesis of mosquitocidal nanoparticles. However, their impact against mosquito natural enemies has been scarcely studied. Here, we synthesised silver nanoparticles (Ag NPs) using Mussaenda glabra leaf extract as reducing and stabilising agent. Biofabricated Ag NPs were characterised by UV-vis spectrophotometry, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Compared to the leaf aqueous extract, biosynthesised Ag NPs showed higher toxicity against mosquito vectors Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus with LC50 of 17-19 μg/mL, respectively. Ag NPs were found safer to non-target organisms Diplonychus indicus and Gambusia affinis, with respective LC50 values ranging from 1446 to 8628 μg/mL. Overall, M. glabra-fabricated Ag NPs are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against other non-target aquatic organisms.

  10. Facile Carbonization of Microporous Organic Polymers into Hierarchically Porous Carbons Targeted for Effective CO2 Uptake at Low Pressures.

    Science.gov (United States)

    Gu, Shuai; He, Jianqiao; Zhu, Yunlong; Wang, Zhiqiang; Chen, Dongyang; Yu, Guipeng; Pan, Chunyue; Guan, Jianguo; Tao, Kai

    2016-07-20

    The advent of microporous organic polymers (MOPs) has delivered great potential in gas storage and separation (CCS). However, the presence of only micropores in these polymers often imposes diffusion limitations, which has resulted in the low utilization of MOPs in CCS. Herein, facile chemical activation of the single microporous organic polymers (MOPs) resulted in a series of hierarchically porous carbons with hierarchically meso-microporous structures and high CO2 uptake capacities at low pressures. The MOPs precursors (termed as MOP-7-10) with a simple narrow micropore structure obtained in this work possess moderate apparent BET surface areas ranging from 479 to 819 m(2) g(-1). By comparing different activating agents for the carbonization of these MOPs matrials, we found the optimized carbon matrials MOPs-C activated by KOH show unique hierarchically porous structures with a significant expansion of dominant pore size from micropores to mesopores, whereas their microporosity is also significantly improved, which was evidenced by a significant increase in the micropore volume (from 0.27 to 0.68 cm(3) g(-1)). This maybe related to the collapse and the structural rearrangement of the polymer farmeworks resulted from the activation of the activating agent KOH at high temperature. The as-made hierarchically porous carbons MOPs-C show an obvious increase in the BET surface area (from 819 to 1824 m(2) g(-1)). And the unique hierarchically porous structures of MOPs-C significantly contributed to the enhancement of the CO2 capture capacities, which are up to 214 mg g(-1) (at 273 K and 1 bar) and 52 mg g(-1) (at 273 K and 0.15 bar), superior to those of the most known MOPs and porous carbons. The high physicochemical stabilities and appropriate isosteric adsorption heats as well as high CO2/N2 ideal selectivities endow these hierarchically porous carbon materials great potential in gas sorption and separation.

  11. Interaction of Super Proton Synchrotron beam with solid copper target: Simulations of future experiments at HiRadMat facility at CERN

    CERN Document Server

    Tahir, N A; Brugger, M; Assmann, R; Shutov, A; Lomonosov, I V; Fortov, V E; Piriz, A R; Deutsch, C; Hoffmann, D H H

    2009-01-01

    In this paper we present numerical simulations of interaction of 450 GeV/c proton beam that is generated by Super Proton Synchrotron (SPS) at CERN, with a solid copper target. These simulations have been carried out using a two-dimensional hydrodynamic computer code, BIG2. This study has been done to assess the damage caused by these highly relativistic protons to equipment including collimators, absorbers and others in case of an uncontrolled accidental release of the beam. In fact a dedicated experimental facility named HiRadMat is under construction at CERN that will allow one to study these problems experimentally. The simulations presented in this paper will be very useful in designing these experiments and later to interpret the experimental results.

  12. Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms.

    Science.gov (United States)

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-03-01

    Mosquitoes (Diptera: Culicidae) act as vectors of important pathogens and parasites, such as malaria, dengue, chikungunya, Japanese encephalitis and lymphatic filariasis. The use of synthetic mosquitocides often leads to high operational costs and adverse non-target effects. Recently, plant-borne compounds have been proposed for rapid extracellular biosynthesis of mosquitocidal nanoparticles. However, the impact of these nanomosquitocides against biological control agents of mosquito larval populations has been poorly studied. In this research, we biosynthesized silver nanoparticles (Ag NP) using the Barleria cristata leaf extract as a reducing and stabilizing agent. The biosynthesis of Ag NP was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectrophotometry. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed the clustered and irregular shapes of Ag NP. The presence of silver was confirmed by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy investigated the identity of secondary metabolites, which may also act as Ag NP capping agents. The acute toxicity of B. cristata leaf extract and biosynthesized Ag NP was evaluated against larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with lethal concentration (LC)50 values of 12.46, 13.49, and 15.01 μg/mL, respectively. Notably, biosynthesized Ag NP were found safer to non-target organisms Diplonychus indicus, Anisops bouvieri, and Gambusia affinis, with respective LC50 values ranging from 633.26 to 866.92 μg/mL. Overall, our results highlight that B. cristata-fabricated Ag NP are a promising and eco-friendly tool against young instar populations of mosquito vectors of medical and veterinary importance.

  13. Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging.

    Science.gov (United States)

    Wang, Hongdi; Zhu, Wei; Huang, Yunna; Li, Zhixian; Jiang, Yanbin; Xie, Qiuling

    2017-10-01

    Nano-drug delivery systems that integrate inorganic and organic or even bioactive components into a single nanoscale platform are playing a hugely important role in cancer treatment. In this article, the fabrication of a versatile nanocarrier based on self-assembled structures of gold nanoparticles (AuNPs)-zein is reported, which displays high drug-loading efficiency for needle-shaped hydroxycamptothecin (HCPT) nanocrystals. The surface modification with folate-conjugated polydopamine (PFA) renders them stable and also facilitates their selective cellular internalization and enhancement of endocytosis. The release of payloads from nanocomplexes (NCs) was shown to be limited at physiological pH (17.1±2.8%) but significantly elevated at endosomal/lysosomal pH (58.4±3.0%) and at enzymatic environment (81.4±4.2%). Compared to free HCPT and its non-targeting equivalent, HCPT@AuNPs-Zein-PFA exerted a superior tumor suppression capacity as well as low side effects due to its active and passive targeting delivery both in vitro and in vivo. These results suggest that the NCs with well-defined core@shell nanostructures encapsulated with HCPT nanocrystals hold great promise to improve cancer therapy with high efficiency in the clinic. A novel nanocomplex with HCPT nanocrystals encapsulated was designed to achieve selective cellular uptake by endocytosis, acid responsive release in the tumor microenvironment and excellent tumor suppression without toxicity. This nanocomplex with conjugation of folate was stable in the bloodstream, with minimal drug release in extracellular conditions, leading to prolonged blood circulation and high accumulation in tumor tissues. The entrapment of a nanocrystal drug into nanomaterials might be capable of delivering drugs in a predictable and controllable manner. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emulsion of targets at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Malone, Brent C. Frogget, Morris I. Kaufman, Thomas W. Tunnell, Robert L. Guyton, Imants P. Reinbachs, Phillip W. Watts, et al.

    2007-08-31

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 69 feet. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. The orange alignment laser is introduced at the entrance to the two-level interferometer table and passes forward through the optical systems to the recording streak cameras. The red alignment laser is introduced in front of the recording streak cameras and passes in the reverse direction through all optical elements, out of the interferometer table, eventually reaching the target chamber center. Red laser wavelength is selected to be at the 50 percent reflection point of a special beamsplitter used to separate emission light from the Doppler-shifted interferometer light. Movable aperture cards, placed before and after lens groups, show the spread of alignments spots created by the orange and red alignment lasers. Optical elements include 1- to 15-inch-diameter mirrors, lenses with up to 10.5-inch diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  15. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility

    Science.gov (United States)

    Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.; Owen, A. C.; McKenney, J.; Johnson, D. W.; Radovich, S.; Kaye, R. J.; McBride, R. D.; Alexander, C. S.; Awe, T. J.; Slutz, S. A.; Sefkow, A. B.; Haill, T. A.; Jones, P. A.; Argo, J. W.; Dalton, D. G.; Robertson, G. K.; Waisman, E. M.; Sinars, D. B.; Meissner, J.; Milhous, M.; Nguyen, D. N.; Mielke, C. H.

    2014-12-01

    Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  16. Millimeter-wave Instrumentation Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Millimeter-wave Instrumentation Test Facility conducts basic research in propagation phenomena, remote sensing, and target signatures. The facility has a breadth...

  17. Development and testing of a deuterium gas target assembly for neutron production via the H-2(d,n)He-3 reaction at a low-energy accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Feautrier, D.; Smith, D.L.

    1992-03-01

    This report describes the development and testing of a deuterium gas target intended for use at a low-energy accelerator facility to produce neutrons for basic research and various nuclear applications. The principle source reaction is H-2(d,n)He-3. It produces a nearly mono-energetic group of neutrons. However, a lower-energy continuum neutron spectrum is produced by the H-2(d;n,p)H-2 reaction and also by deuterons which strike various components in the target assembly. The present target is designed to achieve the following objectives: (1) minimize unwanted background neutron production from the target assembly, (2) provide a relatively low level of residual long-term activity within the target components, (3) have the capacity to dissipate up to 150 watts of beam power with good target longevity, and (4) possess a relatively modest target mass in order to minimize neutron scattering from the target components. The basic physical principles that have to be considered in designing an accelerator target are discussed and the major engineering features of this particular target design are outlined. The results of initial performance tests on this target are documented and some conclusions concerning the viability of the target design are presented.

  18. Transition from Consultation to Monitoring-NRC's Increasingly Focused Review of Factors Important to F-Area Tank Farm Facility Performance - 13153

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Cynthia; Grossman, Christopher; Alexander, George; Parks, Leah; Fuhrmann, Mark; Shaffner, James; McKenney, Christepher [U.S. NRC, Rockville, MD (United States); Pabalan, Roberto; Pickett, David [Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, TX (United States); Dinwiddie, Cynthia [Southwest Research Institute, San Antonio, TX (United States)

    2013-07-01

    In consultation with the NRC, DOE issued a waste determination for the F-Area Tank Farm (FTF) facility in March 2012. The FTF consists of 22 underground tanks, each 2.8 to 4.9 million liters in capacity, used to store liquid high-level waste generated as a result of spent fuel reprocessing. The waste determination concluded stabilized waste residuals and associated tanks and auxiliary components at the time of closure are not high-level and can be disposed of as LLW. Prior to issuance of the final waste determination, during the consultation phase, NRC staff reviewed and provided comments on DOE's revision 0 and revision 1 FTF PAs that supported the waste determination and produced a technical evaluation report documenting the results of its multi-year review in October 2011. Following issuance of the waste determination, NRC began to monitor DOE disposal actions to assess compliance with the performance objectives in 10 CFR Part 61, Subpart C. To facilitate its monitoring responsibilities, NRC developed a plan to monitor DOE disposal actions. NRC staff was challenged in developing a focused monitoring plan to ensure limited resources are spent in the most cost-effective manner practical. To address this challenge, NRC prioritized monitoring areas and factors in terms of risk significance and timing. This prioritization was informed by NRC staff's review of DOE's PA documentation, independent probabilistic modeling conducted by NRC staff, and NRC-sponsored research conducted by the Center for Nuclear Waste Regulatory Analyses in San Antonio, TX. (authors)

  19. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles

    Energy Technology Data Exchange (ETDEWEB)

    Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. (Minnesota Geological Survey, St. Paul, MN (United States))

    1991-06-01

    Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

  20. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    Science.gov (United States)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-03-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different

  1. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  2. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  3. Project Closeout Report Francium trapping facility at Triumf

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, Luis A [Univ. of Maryland, College Park, MD (United States)

    2014-09-30

    This is a report of the construction of a Francium Trapping Facility (FTF) at the Isotope Separator and Accelerator (ISAC) of TRIUMF in Vancouver, Canada, where the Francium Parity Non Conservation (FrPNC) international collaboration has its home. This facility will be used to study fundamental symmetries with high-resolution atomic spectroscopy. The primary scientific objective of the program is a measurement of the anapole moment of francium in a chain of isotopes by observing the parity violation induced by the weak interaction. The anapole moment of francium and associated signal are expected to be ten times larger than in cesium, the only element in which an anapole moment has been observed. The measurement will provide crucial information for better understanding weak hadronic interactions in the context of Quantum Chromodynamics (QCD). The methodology combines nuclear and particle physics techniques for the production of francium with precision measurements based on laser cooling and trapping and microwave spectroscopy. The program builds on an initial series of atomic spectroscopy measurements of the nuclear structure of francium, based on isotope shifts and hyperfine anomalies, before conducting the anapole moment measurements, these measurements performed during commissioning runs help understand the atomic and nuclear structure of Fr.

  4. THERMAL NEUTRON FLUX MAPPING ON A TARGET CAPSULE AT RABBIT FACILITY OF RSG-GAS REACTOR FOR USE IN k0-INAA

    Directory of Open Access Journals (Sweden)

    Sutisna Sutisna

    2015-03-01

    Full Text Available Instrumental neutron activation analysis based on the k0 method (k0-INAA requires the availability of the accurate reactor parameter data, in particular a thermal neutron flux that interact with a targets inside the target capsule. This research aims to determine and map the thermal neutron flux inside the capsule and irradiation channels used for the elemental quantification using the k0-AANI. Mapping of the thermal neutron flux (фth on two type of irradiation capsule have been done for RS01 and RS02 facilities of RSG-GAS reactor. Thermal neutron flux determined using Al-0,1%Au alloy through 197Au(n,g 198Au nuclear reaction, while the flux mapping done using statistics R. Thermal neutron flux are calculated using k0-IAEA software provided by IAEA. The results showed the average thermal neutron flux is (5.6±0.3×10+13 n.cm-2.s-1; (5.6±0.4×10+13 n.cm-2.s-1; (5.2±0.4×10+13 n.cm-2.s-1 and (5.3±0.4×10+13 n.cm-2.s-1 for Polyethylene capsule of 1st , 2nd, 3rd and 4th layer respectively. In the case of Aluminum capsule, the thermal neutron flux was lower compared to that on Polyethylene capsule. There were (3.0±0.2×10+13 n.cm-2.s-1; (2.8±0.1×10+13 n.cm-2.s-1; (3.2±0.3×10+13 n.cm-2.s-1 for 1st, 2nd and 3rd layers respectively. For each layer in the capsule, the thermal neutron flux is not uniform and it was no degradation flux in the axial direction, both for polyethylene and aluminum capsules. Contour map of eight layer on polyethylene capsule and six layers on aluminum capsule for RS01 and RS02 irradiation channels had a similar pattern with a small diversity for all type of the irradiation capsule. Keywords: thermal neutron, flux, capsule, NAA   Analisis aktivasi neutron instrumental berbasis metode k0 (k0-AANI memerlukan ketersediaan data parameter reaktor yang akurat, khususnya data fluks neutron termal yang berinteraksi dengan inti sasaran di dalam kapsul target. Penelitian ini bertujuan menentukan dan memetakan fluks neutron termal

  5. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I. L. [Fermilab; Hylen, J. [Fermilab; Kasper, P. [Fermilab; Mokhov, N. V. [Fermilab; Quinn, M. [Fermilab; Striganov, S. I. [Fermilab; Vaziri, K. [Fermilab

    2017-09-18

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides – 11C, 13N, 15O and 41Ar – are in a good agreement with those calculated with the improved MARS15 code.

  6. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  7. Facility Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  8. Facile Synthesis of Magnetic Covalent Organic Framework with Three-Dimensional Bouquet-Like Structure for Enhanced Extraction of Organic Targets.

    Science.gov (United States)

    He, Sijing; Zeng, Tao; Wang, Saihua; Niu, Hongyun; Cai, Yaqi

    2017-01-25

    A facile strategy for the fabrication of novel bouquet-shaped magnetic porous nanocomposite via grafting a covalent organic framework (COF, TpPa-1) onto the surface-modified Fe3O4 nanoparticles (Fe3O4 NPs) was reported. The magnetic TpPa-1 (a COF synthesized from 1,3,5-triformylphloroglucinol (Tp) and p-phenylenediamine (Pa-1)) contains clusters of core-shell magnetic nanoparticles and interconnected porous TpPa-1 nanofibers. Thus, it possesses larger specific surface area, higher porosity, and supermagnetism, making it an ideal sorbent for enrichment of trace analytes. Its performance was evaluated by the magnetic solid-phase extraction (MSPE) of trace polycyclic aromatic hydrocarbons (PAHs) from environmental samples prior to high-performance liquid chromatographic analysis. The results indicated that the magnetic TpPa-1 possessed superior enrichment capacity of such organic compounds.

  9. Facile synthesis of N–F codoped and molecularly imprinted TiO{sub 2} for enhancing photocatalytic degradation of target contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanyan; Dong, Yuming; Xia, Xiaofeng [The Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Liu, Xiang, E-mail: liuxiang@jiangnan.edu.cn [The Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Li, Hexing, E-mail: hexing-li@shnu.edu.cn [The Key Laboratory of the Chinese Ministry of Education in Resource Chemistry, Shanghai Normal University, Shanghai 200234 (China)

    2016-02-28

    Graphical abstract: N–F codoped and molecularly imprinted TiO{sub 2} were prepared by simple ethanol–water solvothermal method. Their mechanism of high adsorption capacity, preferable photocatalytic degradation activity, good selectivity and excellent reusability for target contaminants were identified and discussed. - Highlights: • Synthesis of N–F codoped and molecularly imprinted TiO{sub 2} (MIP-NFTs) is simple. • Molecular imprinting enhanced the adsorption capacity and selectivity of MIP-NFTs. • MIP-NFTs show high photocatalytic activity under simulated solar light. • MIP-NFTs exhibit excellent reusability due to their inorganic framework. - Abstract: N–F codoped and molecularly imprinted TiO{sub 2} (MIP-NFTs) were successfully prepared by simple ethanol–water solvothermal method using 2-nitrophenol (2NP) and 4-nitrophenol (4NP) as template molecules (target contaminants), respectively. The surface structure and properties of the catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption measurements (BET), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (UV–vis DRS). In comparison with non-imprinted N–F codoped TiO{sub 2} nanocomposites (NIP-NFTs), MIP-NFTs show a higher adsorption, good selectivity and preferable degradation capacity toward the target contaminants. The adsorption amounts of 2NP and 4NP over the corresponding MIP-NFTs are about 1.78 and 2.21 times of that over NIP-NFTs, respectively. MIP-NFTs show a much higher adsorption capacity and selectivity for target contaminants in the mixed solution. Degradation selectivity experiments demonstrate that the selectivity coefficient (R) of degradation of 2NP relative to 4NP over 2NP/MIP-NFTs and 4NP relative to 2NP over 4NP/MIP-NFTs are 1.93 and 1.61, respectively. The enhancement about adsorption capacity and selectivity can be attributed to the chemical interaction and size matching

  10. Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility

    Science.gov (United States)

    Simakov, A. N.; Wilson, D. C.; Yi, S. A.; Loomis, E. N.; Kline, J. L.; Kyrala, G. A.; Zylstra, A. B.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Milovich, J. L.; Rygg, J. R.; Khan, S. F.; Ma, T.; Jarrott, L. C.; Haan, S. W.; Celliers, P. M.; Marinak, M. M.; Rinderknecht, H. G.; Robey, H. F.; Salmonson, J. D.; Stadermann, M.; Baxamusa, S.; Alford, C.; Wang, Y.; Nikroo, A.; Rice, N.; Kong, C.; Jaquez, J.; Mauldin, M.; Youngblood, K. P.; Xu, H.; Huang, H.; Sio, H.

    2017-05-01

    When used with 1.06-mm beryllium (Be) capsules on the National Ignition Facility, gold hohlraums with the inner diameter of 5.75 mm and helium gas fill density of 1.6 mg/cm3 exhibit significant drive degradation due to laser energy backscatter (of order 14%-17%) and "missing" X-ray drive energy (about 32% during the main pulse). Also, hard to simulate cross-beam energy transfer (CBET) must be used to control the implosion symmetry. Larger, 6.72-mm hohlraums with fill densities ≤0.6 mg/cm3 generally offer improved drive efficiency, reduced hot-electron preheat, and better control of the implosion symmetry without CBET. Recently, we carried out an exploratory campaign to evaluate performance of 1.06-mm Be capsules in such hohlraums and determine optimal hohlraum parameters. Specifically, we performed a hohlraum fill-density scan with a three-shock, 9.5-ns laser pulse and found that an appropriate axial laser repointing and azimuthal outer-quad splitting resulted in significantly improved hohlraum energetics at fill densities ≤0.3 mg/cm3 (with backscattered and "missing" energies being of about 5% and 23% of the total laser energy, respectively). The capsule shape at stagnation was slightly oblate and improved with lowering the fill density. We also performed an implosion with a lower-picket, 12.6-ns pulse at the hohlraum fill density of 0.15 mg/cm3 to observe comparable hohlraum energetics (about 3% of backscattered and 27% of "missing" energy) but an even more oblate implosion shape. Thus, achieving symmetric implosions of 1.06-mm Be capsules in low-fill, 6.72-mm gold hohlraums with reasonably low-adiabat pulses may not be feasible. However, symmetric implosions have recently been successfully demonstrated in such hohlraums with 0.8-mm Be capsules.

  11. A step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy and minimization of gate fee.

    Science.gov (United States)

    Kyriakis, Efstathios; Psomopoulos, Constantinos; Kokkotis, Panagiotis; Bourtsalas, Athanasios; Themelis, Nikolaos

    2017-06-23

    This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid» methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.

  12. Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, A. N. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Yi, S. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Loomis, E. N. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Kline, J. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Zylstra, A. B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Dewald, E. L. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Tommasini, R. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Ralph, J. E. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Strozzi, D. J. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; MacPhee, A. G. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Milovich, J. L. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Rygg, J. R. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Khan, S. F. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Ma, T. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Jarrott, L. C. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Haan, S. W. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Celliers, P. M. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Marinak, M. M. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Rinderknecht, H. G. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Robey, H. F. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Salmonson, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Stadermann, M. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Baxamusa, S. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Alford, C. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Wang, Y. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Nikroo, A. [Lawrence Livermore National Laboratory, Livermore, California 94551, USA; Rice, N. [General Atomics, San Diego, California 92186, USA; Kong, C. [General Atomics, San Diego, California 92186, USA; Jaquez, J. [General Atomics, San Diego, California 92186, USA; Mauldin, M. [General Atomics, San Diego, California 92186, USA; Youngblood, K. P. [General Atomics, San Diego, California 92186, USA; Xu, H. [General Atomics, San Diego, California 92186, USA; Huang, H. [General Atomics, San Diego, California 92186, USA; Sio, H. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    2017-05-01

    When used with 1.06-mm beryllium (Be) capsules on the National Ignition Facility, gold hohlraums with the inner diameter of 5.75 mm and helium gas fill density of 1.6 mg/cm3 exhibit significant drive degradation due to laser energy backscatter (of order 14%–17%) and “missing” X-ray drive energy (about 32% during the main pulse). Also, hard to simulate cross-beam energy transfer (CBET) must be used to control the implosion symmetry. Larger, 6.72-mm hohlraums with fill densities ≤0.6 mg/cm3 generally offer improved drive efficiency, reduced hot-electron preheat, and better control of the implosion symmetry without CBET. Recently, we carried out an exploratory campaign to evaluate performance of 1.06-mm Be capsules in such hohlraums and determine optimal hohlraum parameters. Specifically, we performed a hohlraum fill-density scan with a three-shock, 9.5-ns laser pulse and found that an appropriate axial laser repointing and azimuthal outer-quad splitting resulted in significantly improved hohlraum energetics at fill densities ≤0.3 mg/cm3 (with backscattered and “missing” energies being of about 5% and 23% of the total laser energy, respectively). The capsule shape at stagnation was slightly oblate and improved with lowering the fill density. We also performed an implosion with a lower-picket, 12.6-ns pulse at the hohlraum fill density of 0.15 mg/cm3 to observe comparable hohlraum energetics (about 3% of backscattered and 27% of “missing” energy) but an even more oblate implosion shape. Thus, achieving symmetric implosions of 1.06-mm Be capsules in low-fill, 6.72-mm gold hohlraums with reasonably low-adiabat pulses may not be feasible. However, symmetric implosions have recently been successfully demonstrated in such hohlraums with 0.8-mm Be capsules.

  13. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  14. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  15. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  16. Improving medication information transfer between hospitals, skilled-nursing facilities, and long-term-care pharmacies for hospital discharge transitions of care: A targeted needs assessment using the Intervention Mapping framework.

    Science.gov (United States)

    Kerstenetzky, Luiza; Birschbach, Matthew J; Beach, Katherine F; Hager, David R; Kennelty, Korey A

    2017-04-07

    Patients transitioning from the hospital to a skilled nursing home (SNF) are susceptible to medication-related errors resulting from fragmented communication between facilities. Through continuous process improvement efforts at the hospital, a targeted needs assessment was performed to understand the extent of medication-related issues when patients transition from the hospital into a SNF, and the gaps between the hospital's discharge process, and the needs of the SNF and long-term care (LTC) pharmacy. We report on the development of a logic model that will be used to explore methods for minimizing patient care medication delays and errors while further improving handoff communication to SNF and LTC pharmacy staff. Applying the Intervention Mapping (IM) framework, a targeted needs assessment was performed using quantitative and qualitative methods. Using the hospital discharge medication list as reference, medication discrepancies in the SNF and LTC pharmacy lists were identified. SNF and LTC pharmacy staffs were also interviewed regarding the continuity of medication information post-discharge from the hospital. At least one medication discrepancy was discovered in 77.6% (n = 45/58) of SNF and 76.0% (n = 19/25) of LTC pharmacy medication lists. A total of 191 medication discrepancies were identified across all SNF and LTC pharmacy records. Of the 69 SNF staff interviewed, 20.3% (n = 14) reported patient care delays due to omitted documents during the hospital-to-SNF transition. During interviews, communication between the SNF/LTC pharmacy and the discharging hospital was described by facility staff as unidirectional with little opportunity for feedback on patient care concerns. The targeted needs assessment guided by the IM framework has lent to several planned process improvements initiatives to help reduce medication discrepancies during the hospital-to-SNF transition as well as improve communication between healthcare entities. Opening lines of

  17. Facile semi-automated forensic body fluid identification by multiplex solution hybridization of NanoString® barcode probes to specific mRNA targets.

    Science.gov (United States)

    Danaher, Patrick; White, Robin Lynn; Hanson, Erin K; Ballantyne, Jack

    2015-01-01

    A DNA profile from the perpetrator does not reveal, per se, the circumstances by which it was transferred. Body fluid identification by mRNA profiling may allow extraction of contextual 'activity level' information from forensic samples. Here we describe the development of a prototype multiplex digital gene expression (DGE) method for forensic body fluid/tissue identification based upon solution hybridization of color-coded NanoString(®) probes to 23 mRNA targets. The method identifies peripheral blood, semen, saliva, vaginal secretions, menstrual blood and skin. We showed that a simple 5 min room temperature cellular lysis protocol gave equivalent results to standard RNA isolation from the same source material, greatly enhancing the ease-of-use of this method in forensic sample processing. We first describe a model for gene expression in a sample from a single body fluid and then extend that model to mixtures of body fluids. We then describe calculation of maximum likelihood estimates (MLEs) of body fluid quantities in a sample, and we describe the use of likelihood ratios to test for the presence of each body fluid in a sample. Known single source samples of blood, semen, vaginal secretions, menstrual blood and skin all demonstrated the expected tissue-specific gene expression for at least two of the chosen biomarkers. Saliva samples were more problematic, with their previously identified characteristic genes exhibiting poor specificity. Nonetheless the most specific saliva biomarker, HTN3, was expressed at a higher level in saliva than in any of the other tissues. Crucially, our algorithm produced zero false positives across this study's 89 unique samples. As a preliminary indication of the ability of the method to discern admixtures of body fluids, five mixtures were prepared. The identities of the component fluids were evident from the gene expression profiles of four of the five mixtures. Further optimization of the biomarker 'CodeSet' will be required

  18. Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, G. E., E-mail: kemp10@llnl.gov; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M. [Lawrence Livermore National Laboratory, Livermore, California 94550-9698 (United States)

    2015-05-15

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3–5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (∼n{sub c}/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from CRETIN, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3–5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ∼100–150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (∼20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3–5 keV x-ray source on NIF.

  19. The National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G H; Moses, E I; Wuest, C R

    2004-06-03

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility that, when completed in 2008, will contain a 192-beam, 1.8- Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter-diameter target chamber and room for 100 diagnostics. NIF is the world's largest and most energetic laser experimental system and will provide a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar; conditions that exist naturally only in the interior of stars and planets. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5- ns pulses at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance, and results from recent laser commissioning shots. We follow this with a discussion of NIF's high-energy-density and inertial fusion experimental capabilities, the first experiments on NIF, and plans for future capabilities of this unique facility.

  20. 神光-Ⅲ主机装置靶场光传输系统结构设计%Structural design of beam transport system in SG-Ⅲ facility target area

    Institute of Scientific and Technical Information of China (English)

    陈晓娟; 王美聪; 吴文凯; 阙兴华; 朱明智

    2014-01-01

    系统介绍了神光-Ⅲ主机装置靶场光传输系统的结构设计,光传输系统的关键性能包括稳定性、精确性及洁净性,为保证苛刻的稳定性要求,提高结构动力学稳定性的同时提出一种新的稳定性分析方法;通过设计在线可更换单元、运动学支承结构和采用低应力夹持技术实现在线精密调节和快速安装定位;同时在设计、制造和安装过程中建立洁净理念。目前安装完成的束组的测试结果表明,主机装置靶场光传输系统的结构设计满足装置设计要求。%The beam transport system which is an important composition of laser facility target area provides guidance and collimation for laser beams.In this paper,the structural design of the beam transport system of SG-Ⅲ target area is introduced. The main performance of the beam transport system consists the stability,accuracy and cleanliness.In order to meet the stringent stability requirement,the dynamic stability of structure was improved and a new stability analytical method was proposed.The requirement of exact adj usting and fast online replacement was assured by the design of the Line Replaceable Units,the kinematic mounts structure,and the low-stress holding of the mirror mounts.Simultaneously,the clean conception was established in de-sign,fabrication,and operation.The testing results of the installed part of the beam transport system indicate that the structural design satisfies the performance requirements of facility.

  1. Asian Facilities

    Science.gov (United States)

    Nakahata, M.

    2011-04-01

    Asian underground facilities are reviewed. The YangYang underground Laboratory in Korea and the Kamioka observatory in Japan are operational and several astrophysical experiments are running. Indian Neutrino Observatory(INO) and China JinPing Underground Laboratory (CJPL) are under construction and underground experiments are being prepared. Current activities and future prospects at those underground sites are described.

  2. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  3. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  4. Theme: Laboratory Facilities Improvement.

    Science.gov (United States)

    Miller, Glen M.; And Others

    1993-01-01

    Includes "Laboratory Facilities Improvement" (Miller); "Remodeling Laboratories for Agriscience Instruction" (Newman, Johnson); "Planning for Change" (Mulcahy); "Laboratory Facilities Improvement for Technology Transfer" (Harper); "Facilities for Agriscience Instruction" (Agnew et al.); "Laboratory Facility Improvement" (Boren, Dwyer); and…

  5. The National Ignition Facility: Transition to a User Facility

    Science.gov (United States)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  6. Springfield Processing Plant (SPP) Facility Information

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    The Springfield Processing Plant is a hypothetical facility. It has been constructed for use in training workshops. Information is provided about the facility and its surroundings, particularly security-related aspects such as target identification, threat data, entry control, and response force data.

  7. National Biomedical Tracer Facility: Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  8. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  9. High power neutron production targets

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S. [Los Alamos National Lab., NM (United States)

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  10. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  11. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  12. Facility Registry Service (FRS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Facility Registry Service (FRS) provides an integrated source of comprehensive (air, water, and waste) environmental information about facilities across EPA,...

  13. Licensed Healthcare Facilities

    Data.gov (United States)

    California Department of Resources — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  14. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  15. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  16. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology research The Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  17. Licensed Healthcare Facilities

    Data.gov (United States)

    California Department of Resources — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  18. EURISOL High Power Targets

    CERN Document Server

    Kadi, Y; Lindroos, M; Ridikas, D; Stora, T; Tecchio, L; CERN. Geneva. BE Department

    2009-01-01

    Modern Nuclear Physics requires access to higher yields of rare isotopes, that relies on further development of the In-flight and Isotope Separation On-Line (ISOL) production methods. The limits of the In-Flight method will be applied via the next generation facilities FAIR in Germany, RIKEN in Japan and RIBF in the USA. The ISOL method will be explored at facilities including ISAC-TRIUMF in Canada, SPIRAL-2 in France, SPES in Italy, ISOLDE at CERN and eventually at the very ambitious multi-MW EURISOL facility. ISOL and in-flight facilities are complementary entities. While in-flight facilities excel in the production of very short lived radioisotopes independently of their chemical nature, ISOL facilities provide high Radioisotope Beam (RIB) intensities and excellent beam quality for 70 elements. Both production schemes are opening vast and rich fields of nuclear physics research. In this article we will introduce the targets planned for the EURISOL facility and highlight some of the technical and safety cha...

  19. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  20. Ukraine experimental neutron source facility.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Bolshinsky, I.; Nekludov, I.; Karnaukhov, I. (Nuclear Engineering Division); (INL); (Kharkov Institute of Physics and Technology)

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an experimental neutron source facility. The facility has been developed for producing medical isotopes, training young nuclear professionals, supporting the Ukraine nuclear industry, providing capability for performing reactor physics, material research, and basic science experiments. Argonne National Laboratory (ANL) of USA is collaborating with KIPT on developing this facility. A driven subcritical assembly utilizing the KIPT electron accelerator with a target assembly is used to generate the neutron source. The target assembly utilizes tungsten or uranium for neutron production through photonuclear reactions with 100-KW of electron beam power. The neutron source intensity, spectrum, and spatial distribution have been studied to maximize the neutron yield and satisfy different engineering requirements. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with a subcriticality of 0.98. Low enrichment uranium is used for the fuel material because it enhances the neutron source performance. Safety, reliability, and environmental considerations are included in the facility conceptual design. Horizontal neutron channels are incorporated for performing basic research including cold neutron source. This paper describes the conceptual design and summarizes some of the related analyses.

  1. Reliable Facility Location Problem with Facility Protection.

    Science.gov (United States)

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed.

  2. Overview of the Neutron experimental facilities at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-30

    This presentation gives an overview of the neutron experimental facilities at LANSCE. The layout is mentioned in detail, with a map of the south-side experimental facilities, information on Target-4 and the Lujan Center. Then it goes into detail about neutron sources, specifically continuous versus pulsed. Target 4 is then discussed. In conclusion, we have introduced the south-side experimental facilities in operation at LANSCE. 1L target and Target 4 provide complementary neutron energy spectra. Two spallation neutron sources taken together cover more than 11 orders of magnitude in neutron energy.

  3. Nike Facility Diagnostics and Data Acquisition System

    Science.gov (United States)

    Chan, Yung; Aglitskiy, Yefim; Karasik, Max; Kehne, David; Obenschain, Steve; Oh, Jaechul; Serlin, Victor; Weaver, Jim

    2013-10-01

    The Nike laser-target facility is a 56-beam krypton fluoride system that can deliver 2 to 3 kJ of laser energy at 248 nm onto targets inside a two meter diameter vacuum chamber. Nike is used to study physics and technology issues related to laser direct-drive ICF fusion, including hydrodynamic and laser-plasma instabilities, material behavior at extreme pressures, and optical and x-ray diagnostics for laser-heated targets. A suite of laser and target diagnostics are fielded on the Nike facility, including high-speed, high-resolution x-ray and visible imaging cameras, spectrometers and photo-detectors. A centrally-controlled, distributed computerized data acquisition system provides robust data management and near real-time analysis feedback capability during target shots. Work supported by DOE/NNSA.

  4. ORION laser target diagnostics.

    Science.gov (United States)

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  5. ORION laser target diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K. [Plasma Physics Department, Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); and others

    2012-10-15

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  6. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  7. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  8. Dialysis Facility Compare

    Data.gov (United States)

    U.S. Department of Health & Human Services — Dialysis Facility Compare helps you find detailed information about Medicare-certified dialysis facilities. You can compare the services and the quality of care that...

  9. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  10. Materiel Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CRREL's Materiel Evaluation Facility (MEF) is a large cold-room facility that can be set up at temperatures ranging from −20°F to 120°F with a temperature change...

  11. Armament Technology Facility (ATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Armament Technology Facility is a 52,000 square foot, secure and environmentally-safe, integrated small arms and cannon caliber design and evaluation facility....

  12. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  13. Facilities for US Radioastronomy.

    Science.gov (United States)

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  14. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  15. Facility Response Plan (FRP)

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Facility Response Plan (FRP) demonstrates a facility's preparedness to respond to a worst case oil discharge. Under the Clean Water Act, as amended by the Oil...

  16. Financing Professional Sports Facilities

    OpenAIRE

    Baade, Robert A.; Victor A. Matheson

    2011-01-01

    This paper examines public financing of professional sports facilities with a focus on both early and recent developments in taxpayer subsidization of spectator sports. The paper explores both the magnitude and the sources of public funding for professional sports facilities.

  17. FDA Certified Mammography Facilities

    Science.gov (United States)

    ... Program Consumer Information (MQSA) Search for a Certified Facility Share Tweet Linkedin Pin it More sharing options ... Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on Search ...

  18. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  19. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  20. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  1. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to: Evaluate and characterize the effect of flame and thermal...

  2. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  3. The LIL facility quadruplet commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Di-Nicola, J.M.; Fleurot, N.; Lonjaret, T.; Julien, X.; Bordenave, E.; Le Garrec, B.; Mangeant, M.; Behar, G.; Chies, T.; Feral, C.; Graillot, H.; Luttmann, M.; Jequier, F.; Journot, E.; Lutz, O.; Thiell, G. [CEA - Centre d' Etudes Scientifiques et Techniques d' Aquitaine, DLP, 33 - Le Barp (France)

    2006-06-15

    The laser integration line (LIL) facility is currently a 4-beam prototype for the laser Megajoule (LMJ). Following LIL single beamline commissioning in 2003, where performance in terms of power and energy required for LMJ was demonstrated, we spent year 2004 to qualify the quadruplet (or quad) performance at 1{omega}/3{omega}. Over that year, the first quad high power and high energy laser experiments took place on LIL facility. A careful set of test campaigns were conducted to safely ramp up laser performance. The main goal was to measure quad-specific features such as beam synchronization and focal spot (size, smoothing contrast ratio or irradiation nonuniformity {sigma}(rms) versus the LMJ requirements. LIL Quad beam waist was recorded for various pulse durations, smoothing techniques and for a wide range of laser intensities up to LMJ-nominal ones. Now, LIL quad has been commissioned to the center of the target chamber and the first plasma experiments are made. (authors)

  4. n_TOF facility past and future

    CERN Document Server

    Vlachoudis, V

    2010-01-01

    The neutron Time of Flight (n_TOF) facility at CERN is a source of high flux of neutrons obtained by the spallation process of 20 GeV/c protons onto a solid lead target and the remarkable beam intensity of the Proton Synchrotron (PS). From November 2008 the n_TOF facility resumed operation after a halt of 4 years due to radio-protection issues. It features a new lead spallation target with a more robust design, more efficient cooling, separate moderator circuit, target area ventilation and most important without any loss of the unique neutron performances of the previous target. Moreover the separate moderator circuit will permit in the future the use of borated or heavy water instead of normal water to reduce the 2.2 MeV gamma background for the neutron capture measurements. The facility has been commissioned in Nov 2008, with performances similar of the previous target and predicted by Monte Carlo simulations. The facility will resume operation for physics from May 2009 with 4 experimental proposals already...

  5. Pressurized burner test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Norton, T.S.; Hadley, M.A. [Morgantown Energy Technology Center, WV (United States)

    1993-06-01

    The Morgantown Energy Technology Center (METC) is currently fabricating a high-pressure burner test facility. The facility was designed to support the development of gas turbine combustion systems fired on natural gas and coal-derived gaseous fuels containing fuel-bound nitrogen. Upon completion of fabrication and shake-down testing in October 1993, the facility will be available for use by industrial and university partners through Cooperative Research and Development Agreements (CRADAs) or through other cooperative arrangements. This paper describes the burner test facility and associated operating parameter ranges and informs interested parties of the availability of the facility.

  6. Attenuation curves in concrete of neutrons from 1 GeV/u C and U ions on a Fe target for the shielding design of RIB in-flight facilities

    CERN Document Server

    Agosteo, S; Silari, M

    2004-01-01

    Experimental data on neutron emission from the interaction of heavy ion beams with matter are far less abundant than data on neutron production from protons. The aim of the present work is to extend the available computational shielding data to high-energy neutrons produced by heavy ion beams (uranium and carbon) of 1 GeV/u slowed down in a thick iron target. Source terms and attenuation lengths for neutron attenuation in a concrete shield were calculated starting from experimental neutron energy distributions measured at GSI in the angular range from 0 degree to 90 degree . A comparison is also made with previous calculations performed for different ions and energies and with earlier estimates made at GSI for neon beams with 0.8 and 2 GeV/u energy stopped in thick iron, lead and uranium targets.

  7. Overview of the National Ignition Facility.

    Science.gov (United States)

    Brereton, Sandra

    2013-06-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's largest and most energetic laser system for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. The NIF is a 192-beam, Nd-glass laser facility that is capable of producing 1.8 MJ, 500 TW of ultraviolet light, and over 50 times more energetic than other existing ICF facilities. The NIF construction began in 1997, and the facility, which was completed in 2009, is now fully operational. The facility is capable of firing up to 192 laser beams onto a target placed at the center of a 10-m-diameter spherical target chamber. Experiments involving the use of tritium have been underway for some time. These experiments present radiological issues: prompt neutron/gamma radiation, neutron activation, fission product generation, and decay radiation. This paper provides an introduction to the NIF facility and its operation, describes plans for the experimental program, and discusses radiological issues associated with the NIF's operations.

  8. Radioactive Ion Beam Development at the Holifield Radioactive Ion Beam Facility

    CERN Document Server

    Stracener, Dan; Beene, James R; Bilheux, Hassina Z; Bilheux, Jean-Christophe; Blackmon, Jeff C; Carter, Ken; Dowling, Darryl; Juras, Raymond; Kawai, Yoko; Kronenberg, Andreas; Liu, Yuan; Meigs, Martha; Müller, Paul; Spejewski, Eugene H; Tatum, A

    2005-01-01

    Radioactive beams are produced at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory using the Isotope Separator On-Line (ISOL) technique. Radioactive nuclei are produced in a thick target via irradiation with energetic light ions (protons, deuterons, helium isotopes) and then post-accelerated to a few MeV/nucleon for use in nuclear physics experiments. An overview of radioactive beam development at the HRIBF will be presented, including ion source development, improvements in the ISOL production targets, and a description of techniques to improve the quality (intensity and purity) of the beams. Facilities for radioactive ion beam development include two ion source test facilities, a target/ion source preparation and quality assurance facility, and an in-beam test facility where low intensity production beams are used. A new test facility, the High Power Target Laboratory, will be available later this year. At this facility, high intensity production beams will be available t...

  9. The ISOLDE Facility: Radioactive beams at CERN

    CERN Document Server

    CERN. Geneva

    2007-01-01

    The Isope Separation On-Line (ISOL) technique evolved from chemical techniques used to separate radioactive isotopes off-line from irradiated "targets". The ISOL targets of today, used at e.g. ISOLDE, can be of many different types and in different phases but the isotopes are always delivered at very low energies making the technique ideal for study of ground state properties and collections for other applications such as solid state physics and medical physics. The possibility of accelerating these low energy beams for nuclear structure studies, and in the long term future for neutrino physics, is now being explored at first generation radioactive beam facilities. The upgrade towards HIE-ISOLDE aim to consolidate ISOLDE's position as a world leading radioactive nuclear beam facility and it will be a pre-cursor to a future all European ISOL facility, EURISOL, with order of magnitudes higher radioactive beam intensities and energies. Prerequisite knowledge and references: None

  10. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, J.M.

    1991-08-01

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  11. Accelerator design concept for future neutrino facilities

    Energy Technology Data Exchange (ETDEWEB)

    Apollonio, M [Imperial College London, London (United Kingdom); Berg, J S; Fernow, R; Gallardo, J [Brookhaven National Laboratory, Upton, Long Island, NY (United States); Blondel, A [University of Geneva, Geneva (Switzerland); Bogacz, A [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Brooks, S; Edgecock, R [Rutherford Appleton Laboratory, Chilton, Didcot Oxon (United Kingdom); Campagne, J-E [LAL, University Paris-Sud, IN2P3/CNRS, Orsay (France); Caspar, D [University of California-Irvine, Irvine, CA (United States); Cavata, C [CEA, CEN Saclay, Gif-sur-Yvette (France); Chimenti, P [University of Trieste and INFN, Trieste (Italy); Cobb, J [University of Oxford, Oxford (United Kingdom); Dracos, M [Institut de Recherches Subatomiques, Universite Louis Pasteur, Strasbourg (France); Efthymiopoulos, I; Fabich, A; Garoby, R [CERN, Geneva (Switzerland); Filthaut, F [NIKHEF, Amsterdam (Netherlands); Geer, S [Fermi National Accelerator Laboratory, Batavia, IL (United States)], E-mail: mszisman@lbl.gov (and others)

    2009-07-15

    This document summarizes the work of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The main goal of the activity was to reach consensus on a baseline design for a Neutrino Factory complex, including proton driver parameters, choice of target, front-end design, acceleration system design, and decay ring geometry. Another goal was to explore the commonality, if any, between the proton driver for a Neutrino Factory and those for a Superbeam or Beta Beam facility. In general, the requirements for either of the latter facilities are less stringent than those for a Neutrino Factory. Here, we discuss concepts, parameters, and expected performance of the required subsystems for our chosen baseline design of a Neutrino Factory. We also give an indication of the main R and D tasks - many of which are already under way - that must be carried out to finalize facility design approaches.

  12. Holifield Radioactive Ion Beam Facility Development and Status

    CERN Document Server

    Tatum, Alan

    2005-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility dedicated to nuclear structure, reactions, and nuclear astrophysics research with radioactive ion beams (RIBs) using the isotope separator on-line (ISOL) technique. An integrated strategic plan for physics, experimental systems, and RIB production facilities have been developed and implementation of the plan is under way. Specific research objectives are defined for studying the nature of nucleonic matter, the origin of elements, solar physics, and synthesis of heavy elements. Experimental systems upgrade plans include new detector arrays and beam lines, and expansion and upgrade of existing devices. A multifaceted facility expansion plan includes a $4.75M High Power Target Laboratory (HPTL), presently under construction, to provide a facility for testing new target materials, target geometries, ion sources, and beam preparation techniques. Additional planned upgrades include a second RIB production system (IRIS2), an external axi...

  13. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  14. Thermal distortion test facility

    Science.gov (United States)

    Stapp, James L.

    1995-02-01

    The thermal distortion test facility (TDTF) at Phillips Laboratory provides precise measurements of the distortion of mirrors that occurs when their surfaces are heated. The TDTF has been used for several years to evaluate mirrors being developed for high-power lasers. The facility has recently undergone some significant upgrades to improve the accuracy with which mirrors can be heated and the resulting distortion measured. The facility and its associated instrumentation are discussed.

  15. Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Materials Characterization Facility enables detailed measurements of the properties of ceramics, polymers, glasses, and composites. It features instrumentation...

  16. Mobile Solar Tracker Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. It incorporates meteorological instruments, a solar...

  17. Universal Drive Train Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This vehicle drive train research facility is capable of evaluating helicopter and ground vehicle power transmission technologies in a system level environment. The...

  18. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  19. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  20. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  1. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  2. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  3. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  4. Region 9 NPDES Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...

  5. Geospatial Data Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Geospatial application development, location-based services, spatial modeling, and spatial analysis are examples of the many research applications that this facility...

  6. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  7. Imagery Data Base Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Imagery Data Base Facility supports AFRL and other government organizations by providing imagery interpretation and analysis to users for data selection, imagery...

  8. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural Analyses The ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide...

  9. Nonlinear Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...

  10. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long qaodmasdkwaspemas5ajkqlsmdqpakldnzsdfls 22 ft wide qaodmasdkwaspemas4ajkqlsmdqpakldnzsdfls 7 ft deep concrete...

  11. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  12. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  13. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  14. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  15. Joint Computing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raised Floor Computer Space for High Performance Computing The ERDC Information Technology Laboratory (ITL) provides a robust system of IT facilities to develop and...

  16. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  17. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  18. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  19. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  20. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  1. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  2. A radioactive ion beam facility using photofission

    CERN Document Server

    Diamond, W T

    1999-01-01

    Use of a high-power electron linac as the driver accelerator for a Radioactive Ion Beam (RIB) facility is proposed. An electron beam of 30 MeV and 100 kW can produce nearly 5x10 sup 1 sup 3 fissions/s from an optimized sup 2 sup 3 sup 5 U target and about 60% of this from a natural uranium target. An electron beam can be readily transmitted through a thin window at the exit of the accelerator vacuum system and transported a short distance through air to a water-cooled Bremsstrahlung-production target. The Bremsstrahlung radiation can, in turn, be transported through air to the isotope-production target. This separates the accelerator vacuum system, the Bremsstrahlung target and the isotope-production target, reducing remote handling problems. The electron beam can be scanned over a large target area to reduce the power density on both the Bremsstrahlung and isotope-production targets. These features address one of the most pressing technological challenges of a high-power RIB facility, namely the production o...

  3. The Muon Science Facility at the JKJ Project

    Science.gov (United States)

    Miyake, Y.; Nishiyama, K.; Sakamoto, S.; Shimomura, K.; Kadono, R.; Higemoto, W.; Fukuchi, K.; Makimura, S.; Beveridge, J. L.; Ishida, K.; Matsuzaki, T.; Watanabe, I.; Matsuda, Y.; Kawamura, N.; Nagamine, K.

    2001-12-01

    The muon science facility is one of the experimental arenas of the JKJ project, which was recently approved for construction in a period from 2001 to 2006, as well as neutron science, particle and nuclear physics, neutrino physics and nuclear transmutation science. The muon science experimental area is planned to be located in the integrated building of the facility for the materials and life science study. One muon target will be installed upstream of the neutron target in a period of phase 1. The beam line and facility are designed to allow the later installation of a 2nd muon target in a more upstream location. The detailed design for electricity, cooling water, primary proton beam line, one muon target and secondary beam lines (a superconducting solenoid decay muon channel, a dedicated surface muon channel, and an ultra slow muon channel) is underway. In the symposium, a latest status of the muon science facility at JKJ project will be reported.

  4. The UC Davis/NIH NeuroMab Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of the UC Davis/NIH NeuroMab facility is to generate and distribute high quality, validated mouse monoclonal antibodies against molecular targets found...

  5. ITEP ElectroNuclear neutron and proton facility

    Energy Technology Data Exchange (ETDEWEB)

    Shvedoy, O.V.; Igumnov, M.I.; Katz, M.M.; Kolomietz, A.A.; Kozodaev, A.M.; Lazarev, N.V.; Vasilyev, V.V.; Volkov, E.B.; Shymchukk, G.V. [State Science Centre of Russian Federation, Institute of Theoretical and Experimental Physics, (Russian Federation)

    1997-10-01

    Construction and current stage of the ITEP Subcritical Facility on the base will be described. The facility uses 36 MeV protons, Be neutron producing target and heavy water reflector. Neutron and proton beam parameters are listed. Special attention is devoted to isotope production and isotope application for e{sup -}--e{sup +} tomography 5 refs., 5 tabs., 1fig.

  6. Accelerator-driven subcritical facility:Conceptual design development

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: gohar@anl.gov; Bolshinsky, Igor [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, ID 83403 (United States); Naberezhnev, Dmitry [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Duo, Jose [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Pennsylvania State University, University Park, PA 16802 (United States); Belch, Henry [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Bailey, James [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2006-06-23

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a K {sub eff} of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  7. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. [and others

    2002-03-01

    With starting DUPIC fuel fabrication experiment by using spent fuels, 1) operation and refurbishment for DFDF (DUPIC fuel development facility), and 2) operation and improvement of transportation equipment for radioactive materials between facilities became the objectives of this study. This report describes objectives of the project, necessities, state of related technology, R and D scope, R and D results, proposal for application etc.

  8. Samarbejdsformer og Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten

    Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges.......Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges....

  9. Japan Hadron Facility

    CERN Document Server

    Hayano, R S

    1999-01-01

    Japan Hadron Facility (JHF) is a high-intensity proton accelerator complex consisting of a 200 MeV linac, a 3 GeV booster and a 50 GeV main ring. Its status and future possibilities of realizing a versatile antiproton facility at JHF are presented.

  10. Samarbejdsformer og Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten

    Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges.......Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges....

  11. BIBLIOGRAPHY OF FACILITIES INFORMATION.

    Science.gov (United States)

    American Association of Junior Colleges, Washington, DC.

    PERSONNEL OF THE FACILITIES INFORMATION SERVICE OF THE AMERICAN ASSOCIATION OF JUNIOR COLLEGES COMPILED THIS LISTING OF BOOKS, ARTICLES, MONOGRAPHS, AND OTHER PRINTED MATERIALS RELEVANT TO JUNIOR COLLEGE FACILITIES PLANNING, DESIGN, AND CONSTRUCTION. IN ADDITION TO A "GENERAL" CATEGORY, REFERENCES ARE GROUPED UNDER HEADINGS OF AUDITORIUMS, COLLEGE…

  12. METC Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halow, J.S.; Maloney, D.J.; Richards, G.A.

    1993-11-01

    The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

  13. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  14. Biotechnology Protein Expression and Purification Facility

    Science.gov (United States)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  15. High intensity neutrino oscillation facilities in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Edgecock, T. R.; Caretta, O.; Davenne, T.; Densam, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A. C.; Kravchuk, V. L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T. Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S. K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L. J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J. J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J. S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-01

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  16. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  17. Sustainable Facilities Management

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten; Hoffmann, Birgitte

    2004-01-01

    The Danish public housing sector has more than 20 years of experience with sustainable facilities management based on user involvement. The paper outlines this development in a historical perspective and gives an analysis of different approaches to sustainable facilities management. The focus...... is on the housing departments and strateies for the management of the use of resources. The research methods used are case studies based on interviews in addition to literature studies. The paper explores lessons to be learned about sustainable facilities management in general, and points to a need for new...

  18. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Office of Energy Efficiency and Renewable Energy

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  19. Battelle Primate Facility.

    Science.gov (United States)

    Weller, R E; Wierman, E L; Málaga, C A; Baer, J F; LeMieux, T P

    1991-05-01

    The Battelle Primate Facility houses one of the largest collections of neotropical primates in the United States. The facility is a research resource for undergraduate and graduate students. Battelle staff, as well as staff and faculty from U.S. and international institutions. Researchers have access to the animals for a variety of studies encompassing several disciplines, a large collection of preserved tissues, and an extensive biomedical database. The facility is a World Health Organization Collaborative Center for Clinical Pathology of Neotropical Primates and is involved with the Peruvian Primatological Project in Iquitos, Peru, which provides opportunities for research in primatology and conservation.

  20. National Ignition Facility (NIF) FY2015 Facility Use Plan

    Energy Technology Data Exchange (ETDEWEB)

    Folta, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wisoff, Jeff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-18

    Major features of the FY2015 NIF Use Plan include: • Performing a record number of layered DT experiments with 28 planned compared with 15 in FY2014. Executing the first plutonium experiments on the NIF in support of the Science Campaigns. • Over 300 targets shots, a 57% increase compared to FY14. This is a stretch goal defined in the 120-Day Study document, and relies upon the success of many shot-rate improvement actions, as well as on the distribution of shot type selected by the users. While the Plan is consistent with this goal, the increased proportion of layered DT experiments described above reduces the margin against this goal. • Commissioning of initial ARC capability, which will support both SSP-HED and SSPICF programs. • Increase in days allocated to Discovery Science to a level that supports an ongoing program for academic use of NIF and an annual solicitation for new proposals. • Six Facility Maintenance and Reconfiguration (FM&R) periods totaling 30 days dedicated to major facility maintenance and modifications. • Utilization of the NIF Facility Advisory Schedule Committee (FASC) to provide stakeholder review and feedback on the NIF schedule. The Use Plan assumes a total FY2015 LLNL NIF Operations funding in MTE 10.7 of $229.465M and in MTE 10.3 of 47.0M. This Use Plan will be revised in the event of significant changes to the FY2015 funding or if NNSA provides FY2016 budget guidance significantly reduced compared to FY2015.

  1. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  2. Skilled nursing or rehabilitation facilities

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000435.htm Skilled nursing or rehabilitation facilities To use the sharing features ... facility. Who Needs to go to a Skilled Nursing or Rehabilitation Facility? Your health care provider may ...

  3. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  4. Hydrography - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  5. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  6. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  7. The Birmingham Irradiation Facility

    Science.gov (United States)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Wilson, J.

    2013-12-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1×1 cm2) silicon sensors.

  8. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  9. A cryogenic test facility

    Science.gov (United States)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  10. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  11. Aviation Flight Support Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility consists of a 75' x 200' hanger with two adjacent helicopter pads located at Felker Army Airfield on Fort Eustis. A staff of Government and contractor...

  12. Space Power Facility (SPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  13. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  14. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  15. Airborne Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — AFRL's Airborne Evaluation Facility (AEF) utilizes Air Force Aero Club resources to conduct test and evaluation of a variety of equipment and concepts. Twin engine...

  16. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  17. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  18. IHS Facility Locator

    Data.gov (United States)

    U.S. Department of Health & Human Services — This map can be used to find an Indian Health Service, Tribal or Urban Indian Health Program facility. This map can be used to: Zoom in to a general location to...

  19. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  20. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  1. Mass Properties Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is used to acquire accurate weight, 3 axis center of gravity and 3 axis moment of inertia measurements for air launched munitions and armament equipment.

  2. Airborne & Field Sensors Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC facilities include an 800' x 60' paved UAV operational area, clearapproach/departure zone, concrete pads furnished with 208VAC, 3 phase,200 amp power, 20,000 sq...

  3. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditionsThe Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for a...

  4. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  5. Water Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s High-Pressure Water Tunnel Facility in Pittsburgh, PA, re-creates the conditions found 3,000 meters beneath the ocean’s surface, allowing scientists to study...

  6. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  7. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  8. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  9. Urban Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has access to various facilities for use in urban testing applications,including an agreement with the Hazardous Devices School (HDS): a restrictedaccess Urban...

  10. Wind Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  11. Pittsburgh City Facilities

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Pittsburgh City FacilitiesIncludes: City Administrative Buildings, Police Stations, Fire Stations, EMS Stations, DPW Sites, Senior Centers, Recreation Centers, Pool...

  12. Dialysis Facility Compare Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — These are the official datasets used on the Medicare.gov Dialysis Facility Compare Website provided by the Centers for Medicare and Medicaid Services. These data...

  13. Pittsburgh City Facilities

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Pittsburgh City FacilitiesIncludes: City Administrative Buildings, Police Stations, Fire Stations, EMS Stations, DPW Sites, Senior Centers, Recreation Centers,...

  14. Advanced Microscopy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a facility for high-resolution studies of complex biomolecular systems. The goal is an understanding of how to engineer biomolecules for various...

  15. VT Telecommunication Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The UtilityTelecom_TELEFAC data layer contains points which are intended to represent the location of telecommunications facilities (towers and/or...

  16. Waste Water Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset contains the locations of municipal and industrial direct discharge wastewater treatment facilities throughout the state of Vermont. Spatial data is not...

  17. FDA Certified Mammography Facilities

    Science.gov (United States)

    ... Products Radiation-Emitting Products Home Radiation-Emitting Products Mammography Quality Standards Act and Program Consumer Information (MQSA) ... it Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on ...

  18. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  19. The Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin-Reyes, H; Wilson, J

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1 x 1 cm^2 ) silicon sensors.

  20. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  1. TNO HVAC facilities

    NARCIS (Netherlands)

    Hammink, H.A.J.

    2015-01-01

    TNO has extensive knowledge of heating, ventilation and air conditioning (HVAC), and can offer its services through theoretical studies, laboratory experiments and field measurements. This complete scope, made possible through our test facilities, enables the effective development of new products,

  2. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  3. Advanced Microanalysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Microanalysis Facility fully integrates capabilities for chemical and structural analysis of electronic materials and devices for the U.S. Army and DoD....

  4. Coastal Harbors Modeling Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Harbors Modeling Facility is used to aid in the planning of harbor development and in the design and layout of breakwaters, absorbers, etc.. The goal is...

  5. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  6. Joint Computing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raised Floor Computer Space for High Performance ComputingThe ERDC Information Technology Laboratory (ITL) provides a robust system of IT facilities to develop and...

  7. Skilled Nursing Facility PPS

    Data.gov (United States)

    U.S. Department of Health & Human Services — Section 4432(a) of the Balanced Budget Act (BBA) of 1997 modified how payment is made for Medicare skilled nursing facility (SNF) services. Effective with cost...

  8. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditions The Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for...

  9. Electra Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Electra Laser Facility is used to develop the science and technology needed to develop a reliable, efficient, high-energy, repetitively pulsed krypton...

  10. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  11. Pit Fragment Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility contains two large (20 foot high by 20 foot diameter) double walled steel tubs in which experimental munitions are exploded while covered with sawdust....

  12. Powder Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The facility is uniquely equipped as the only laboratory within DA to conduct PM processing of refractory metals and alloys as well as the processing of a wide range...

  13. Field Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Field Research Facility (FRF) located in Duck, N.C. was established in 1977 to support the U.S. Army Corps of Engineers' coastal engineering mission. The FRF is...

  14. Advanced Microanalysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Microanalysis Facility fully integrates capabilities for chemical and structural analysis of electronic materials and devices for the U.S. Army and DoD....

  15. Laser Guidance Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  16. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  17. Calibration Facilities for NIF

    Energy Technology Data Exchange (ETDEWEB)

    Perry, T.S.

    2000-06-15

    The calibration facilities will be dynamic and will change to meet the needs of experiments. Small sources, such as the Manson Source should be available to everyone at any time. Carrying out experiments at Omega is providing ample opportunity for practice in pre-shot preparation. Hopefully, the needs that are demonstrated in these experiments will assure the development of (or keep in service) facilities at each of the laboratories that will be essential for in-house preparation for experiments at NIF.

  18. Facilities | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  19. Auditing radiation sterilization facilities

    Science.gov (United States)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  20. Mound facility physical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  1. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  2. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  3. Antiproton Target

    CERN Multimedia

    1980-01-01

    Antiproton target used for the AA (antiproton accumulator). The first type of antiproton production target used from 1980 to 1982 comprised a rod of copper 3mm diameter and 120mm long embedded in a graphite cylinder that was itself pressed into a finned aluminium container. This assembly was air-cooled and it was used in conjunction with the Van der Meer magnetic horn. In 1983 Fermilab provided us with lithium lenses to replace the horn with a view to increasing the antiproton yield by about 30%. These lenses needed a much shorter target made of heavy metal - iridium was chosen for this purpose. The 50 mm iridium rod was housed in an extension to the original finned target container so that it could be brought very close to the entrance to the lithium lens. Picture 1 shows this target assembly and Picture 2 shows it mounted together with the lithium lens. These target containers had a short lifetime due to a combination of beam heating and radiation damage. This led to the design of the water-cooled target in...

  4. The National Ignition Facility project

    Energy Technology Data Exchange (ETDEWEB)

    Paisner, J.A.; Boyes, J.D.; Kumpan, S.A.; Sorem, M.

    1996-06-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KD0), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 {mu}m) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, the authors completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program`s site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. This article presents an overview of the NIF project.

  5. A rotating target for Ra production

    NARCIS (Netherlands)

    Sohani, M.; Wilschut, H. W.

    2012-01-01

    A target wheel with pyrolytic graphite targets is designed and constructed at the TRI mu P facility to boost the production rate of Ra isotopes. Simulation, design properties and production results are discussed. (C) 2012 Elsevier B.V. All rights reserved.

  6. Estimation of marginal costs at existing waste treatment facilities

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus

    2016-01-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system...... (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain......, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power...

  7. Facility Environmental Vulnerability Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and

  8. Comprehensive facilities plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  9. Neutronic characterization of the MEGAPIE target

    Energy Technology Data Exchange (ETDEWEB)

    Panebianco, Stefano [CEA, Irfu, Centre de Saclay, F-91191 Gif-sur-Yvette (France)], E-mail: Stefano.panebianco@cea.fr; Berg, Klara [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); David, Jean-Christophe [CEA, Irfu, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Eid, Mohamed [CEA/DEN/DM2S/SERMA, Centre de Saclay, F-91194 Gif-sur-Yvette (France); Filges, Uwe; Groeschel, Friedrich [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Guertin, Arnaud [SUBATECH, Ecole des Mines, F-44307 Nantes (France); Konobeyev, Alexander Yu [Forschungszentrum Karlsruhe, IRS, D-76021 Karlsruhe (Germany); Latge, Christian [CEA/DEN/DTN/DIR, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Lemaire, Sebastien [CEA, DAM Ile de France, F-91297 Bruyeres le Chatel (France); Leray, Sylvie; Letourneau, Alain [CEA, Irfu, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Luethy, Markus [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Michel-Sendis, Franco [CEA, Irfu, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Scazzi, Selene [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Stankunas, Gediminas [CEA, Irfu, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Thiolliere, Nicolas [SUBATECH, Ecole des Mines, F-44307 Nantes (France); Tobler, Leonhard; Zanini, Luca [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2009-04-15

    The MEGAPIE project aimed to design, build and operate a liquid metal spallation neutron target of about 1 MW beam power in the SINQ facility at the Paul Scherrer Institut (Villigen, Switzerland). This project is an important step in the roadmap towards the demonstration of the accelerator driven system (ADS) concept and high power liquid metal targets in general. Following the design phase, an experimental program was defined to provide a complete characterization of the facility by performing a 'mapping' of the neutron flux at different points, from the center of the target to the beam lines. The neutronic performance of the target was studied using different experimental techniques with the goals of validating the Monte Carlo codes used in the design of the target; additionally, the performance was compared with the solid lead targets used before and after the MEGAPIE experiment.

  10. Neutronic characterization of the MEGAPIE target

    Energy Technology Data Exchange (ETDEWEB)

    Panebianco, Stefano; David, Jean-Christophe; Leray, Sylvie; Letourneau, Alain; Michel-Sendis, Franco; Stankunas, Gediminas [CEA/IRFU, Gif-sur-Yvette (France); Berg, Klara; Filges, Uwe; Groeschel, Friedrich; Luethy, Markus; Scazzi, Selene; Tobler, Leonhard; Zanini, Luca [PSI, Villigen (Switzerland); Eid, Mohamed [CEA/DEN/DM2S/SERMA, Gif-sur-Yvette (France); Guertin, Arnaud; Thiolliere, Nicolas [SUBATECH, Nantes (France); Konobeyev, Alexander Yu. [FZK/IRS, Karlsruhe (Germany); Latge, Christian [CEA/DEN/DTN/DIR, St. Paul Lez Durance (France); Lemaire, Sebastien [CEA/DAM/DCSA/SCGA, Bruyeres-le-Chatel (France)

    2008-07-01

    The MEGAPIE project aimed to design, build and operate a liquid metal spallation neutron target of 1 MW beam power in the SINQ facility at the Paul Scherrer Institut (Villigen, Switzerland). The project is an important step in the road-map towards the demonstration of the Accelerator Driven System (ADS) concept and high power liquid metal targets in general. Following the design phase, an experimental program was defined to provide a complete characterization of the facility by performing a 'mapping' of the neutron flux at different points, from the center of the target to the beam lines. The neutronic performance of the target was studied using different experimental techniques with the goals of validating the Monte Carlo codes used in the design of the target; additionally, the performance was compared with the solid lead targets used before and after the MEGAPIE experiment. (authors)

  11. ESO adaptive optics facility

    Science.gov (United States)

    Arsenault, R.; Madec, P.-Y.; Hubin, N.; Paufique, J.; Stroebele, S.; Soenke, C.; Donaldson, R.; Fedrigo, E.; Oberti, S.; Tordo, S.; Downing, M.; Kiekebusch, M.; Conzelmann, R.; Duchateau, M.; Jost, A.; Hackenberg, W.; Bonaccini Calia, D.; Delabre, B.; Stuik, R.; Biasi, R.; Gallieni, D.; Lazzarini, P.; Lelouarn, M.; Glindeman, A.

    2008-07-01

    ESO has initiated in June 2004 a concept of Adaptive Optics Facility. One unit 8m telescope of the VLT is upgraded with a 1.1 m convex Deformable Secondary Mirror and an optimized instrument park. The AO modules GALACSI and GRAAL will provide GLAO and LTAO corrections forHawk-I and MUSE. A natural guide star mode is provided for commissioning and maintenance at the telescope. The facility is completed by a Laser Guide Star Facility launching 4 LGS from the telescope centerpiece used for the GLAO and LTAO wavefront sensing. A sophisticated test bench called ASSIST is being designed to allow an extensive testing and characterization phase of the DSM and its AO modules in Europe. Most sub-projects have entered the final design phase and the DSM has entered Manufacturing phase. First light is planned in the course of 2012 and the commissioning phases should be completed by 2013.

  12. Modernizing sports facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dustin, R. [McKenney`s, Inc., Atlanta, GA (United States)

    1996-09-01

    Modernization and renovation of sports facilities challenge the design team to balance a number of requirements: spectator and owner expectations, existing building and site conditions, architectural layouts, code and legislation issues, time constraints and budget issues. System alternatives are evaluated and selected based on the relative priorities of these requirements. These priorities are unique to each project. At Alexander Memorial Coliseum, project schedules, construction funds and facility usage became the priorities. The ACC basketball schedule and arrival of the Centennial Olympics dictated the construction schedule. Initiation and success of the project depended on the commitment of the design team to meet coliseum funding levels established three years ago. Analysis of facility usage and system alternative capabilities drove the design team to select a system that met the project requirements and will maximize the benefits to the owner and spectators for many years to come.

  13. FACILITIES MANAGEMENT AT CERN

    CERN Multimedia

    2002-01-01

    Recently we have been confronted with difficulties concerning services which are part of a new contract for facilities management. Please see below for some information about this contract. Following competitive tendering and the Finance Committee decision, the contract was awarded to the Swiss firm 'Facilities Management Network (FMN)'. The owners of FMN are two companies 'M+W Zander' and 'Avireal', both very experienced in this field of facilities management. The contract entered into force on 1st July 2002. CERN has grouped together around 20 different activities into this one contract, which was previously covered by separate contracts. The new contract includes the management and execution of many activities, in particular: Guards and access control; cleaning; operation and maintenance of heating plants, cooling and ventilation equipment for buildings not related to the tunnel or the LHC; plumbing; sanitation; lifts; green areas and roads; waste disposal; and includes a centralised helpdesk for these act...

  14. Radiological characterization of targets from the ISOLDE facility at CERN

    CERN Document Server

    Magistris, M; Ulrici, L; Otto, T

    2011-01-01

    The European Laboratory for Particle Physics (CERN, Geneva) has been operating accelerators for high-energy physics both on Swiss and French territory for 50 years. Due to the interaction of the particle beams with matter, part of the accelerator structure and its surroundings become radioactive. Once at the end of their operational lifetime, these materials are defined as waste. The elimination of radioactive waste towards the final repositories in France and Switzerland requires the determination of the radionuclide inventory. The radioactive nuclides generated in accelerators are different from those identified in reactors. With very few exceptions there are no fission products and alpha emitters. One of the requirements for acceptance of an item of waste in a repository is an estimate of the residual long-lived radioactive nuclides with their specific activity. The list should be exhaustive and include also those nuclides which are difficult to be experimentally detected. Different methods for the evaluat...

  15. Targetry at the LANL 100 MeV isotope production facility: lessons learned from facility commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Nortier, F. M. (Francois M.); Fassbender, M. E. (Michael E.); DeJohn, M.; Hamilton, V. T. (Virginia T.); Heaton, R. C. (Richard C.); Jamriska, David J.; Kitten, J. J. (Jason J.); Lenz, J. W.; Lowe, C. E.; Moddrell, C. F.; McCurdy, L. M. (Lisa M.); Peterson, E. J. (Eugene J.); Pitt, L. R. (Lawrence R.); Phillips, D. R. (Dennis R.); Salazar, L. L. (Louie L.); Smith, P. A. (Paul A.); Valdez, Frank O.

    2004-01-01

    The new Isotope Production Facility (IPF) at Los Alamos National Laboratory has been commissioned during the spring of 2004. Commissioning activities focused on the establishment of a radionuclide database, the review and approval of two specific target stack designs, and four trial runs with subsequent chemical processing and data analyses. This paper highlights some aspects of the facility and the targetry of the two approved target stacks used during the commissioning process. Since one niobium encapsulated gallium target developed a blister after the extended irradiation of 4 days, a further evaluation of the gallium targets is required. Beside this gallium target, no other target showed any sign of thermal failure. Considering the uncertainties involved, the production yields obtained for targets irradiated in the same energy slot are consistent for all three 'Prototype' stacks. A careful analysis of the temperature profile in the RbCl targets shows that energy shifts occur in the RbCl and Ga targets. Energy shifts are a result of density variations in the RbCl disk under bombardment. Thickness adjustments of targets in the prototype stack are required to ensure maximum production yields of {sup 82}Sr and {sup 68}Ge in the design energy windows. The {sup 68}Ge yields obtained are still consistently lower than the predicted yield value, which requires further investigation. After recalculation of the energy windows for the RbCl and Ga targets, the measured {sup 82}Sr production yields compare rather well with values predicted on the basis of evaluated experimental excitation function data.

  16. Design of the LBNF Beamline Target Station

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, S. [Fermilab; Ammigan, K. [Fermilab; Anderson, K.; ; Buccellato, S. A. [Fermilab; Crowley, C. F. [Fermilab; Hartsell, B. D. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Kasper, P. [Fermilab; Krafczyk, G. E. [Fermilab; Lee, A. [Fermilab; Lundberg, B. [Fermilab; Reitzner, S. D. [Fermilab; Sidorov, V. [Fermilab; Stefanik, A. M. [Fermilab; Tropin, I. S. [Fermilab; Vaziri, K. [Fermilab; Williams, K. [Fermilab; Zwaska, R. M. [Fermilab; Densham, C. [RAL, Didcot

    2016-10-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding in a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.

  17. Targeted phototherapy

    Directory of Open Access Journals (Sweden)

    Zonun Sanga

    2015-03-01

    Full Text Available Conventional phototherapy uses a whole body cabinet or body part machines for the hand, foot or scalp. It has many disadvantages, due to which new phototherapy techniques have been developed. These new techniques are called targeted phototherapy. They include excimer laser, the intense pulse light (IPL system, photodynamic therapy, and an ultraviolet (UV light source with a sophisticated delivery system which is easy to operate by hand. The mechanisms of action of targeted phototherapy systems are similar to those in conventional UVB/UVA therapy. They have many advantages including lower risk of side effects, avoidance of exposure of unnecessary sites, faster response, and shorter duration of treatment. But they also have disadvantages such as high costs and inability to use them for extensive areas. This review article discusses targeted phototherapy, its mechanisms of action, and advantages and disadvantages in comparison to conventional phototherapy.

  18. Targeted Learning

    CERN Document Server

    van der Laan, Mark J

    2011-01-01

    The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the targe

  19. Facility Modernization Report

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  20. Facilities of Environmental Distinction

    Science.gov (United States)

    Pascopella, Angela

    2011-01-01

    Three of nine school buildings that have won the latest Educational Facility Design Awards from the American Institute of Architects (AIA) Committee on Architecture for Education stand out from the crowd of other school buildings because they are sustainable and are connected to the nature that surrounds them. They are: (1) Thurston Elementary…

  1. Mineral facilities of Europe

    Science.gov (United States)

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  2. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  3. TNO HVAC facilities

    NARCIS (Netherlands)

    Hammink, H.A.J.

    2015-01-01

    TNO has extensive knowledge of heating, ventilation and air conditioning (HVAC), and can offer its services through theoretical studies, laboratory experiments and field measurements. This complete scope, made possible through our test facilities, enables the effective development of new products, i

  4. Facilities: The Tech Edge.

    Science.gov (United States)

    Farmer, Lesley S. J.

    2002-01-01

    Examines the impact of technology on school library facilities and suggests some low-impact ways to optimize its use. Highlights include considering the role technology can play; educational goals; interior environmental factors; circulation desk needs; security; storage for hardware and software; handicapped accessibility; and future planning.…

  5. Variable gravity research facility

    Science.gov (United States)

    Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

    1988-01-01

    Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

  6. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  7. Science and Technology Facilities

    Science.gov (United States)

    Moonen, Jean-Marie; Buono, Nicolas; Handfield, Suzanne

    2004-01-01

    These four articles relate to science and technology infrastructure for secondary and tertiary institutions. The first article presents a view on approaches to teaching science in school and illustrates ideal science facilities for secondary education. The second piece reports on work underway to improve the Science Complex at the "Universite…

  8. Test facilities for VINCI®

    Science.gov (United States)

    Greuel, Dirk; Schäfer, Klaus; Schlechtriem, Stefan

    2013-09-01

    With the replacement of the current upper-stage ESC-A of the Ariane 5 launcher by an enhanced cryogenic upper-stage, ESA's Ariane 5 Midterm Evolution (A5-ME) program aims to raise the launcher's payload capacity in geostationary transfer orbit from 10 to 12 tons, an increase of 20 %. Increasing the in-orbit delivery capability of the A5-ME launcher requires a versatile, high-performance, evolved cryogenic upper-stage engine suitable for delivering multiple payloads to all kinds of orbits, ranging from low earth orbit to geostationary transfer orbit with increased perigee. In order to meet these requirements the re-ignitable liquid oxygen/liquid hydrogen expander cycle engine VINCI® currently under development is designated to power the future upper stage, featuring a design performance of 180 kN of thrust and 464 s of specific impulse. Since 2010 development tests for the VINCI® engine have been conducted at the test benches P3.2 and P4.1 at DLR test site in Lampoldshausen under the ESA A5-ME program. For the VINCI® combustion chamber development the P3.2 test facility is used, which is the only European thrust chamber test facility. Originally erected for the development of the thrust chamber of the Vulcain engine, in 2003 the test facility was modified that today it is able to simulate vacuum conditions for the ignition and startup of the VINCI® combustion chamber. To maintain the test operations under vacuum conditions over an entire mission life of the VINCI® engine, including re-ignition following long and short coasting phases, between 2000 and 2005 the test facility P4.1 was completely rebuilt into a new high-altitude simulation facility. During the past two P4.1 test campaigns in 2010 and 2011 a series of important milestones were reached in the development of the VINCI® engine. In preparation for future activities within the frame of ESA's A5-ME program DLR has already started the engineering of a stage test facility for the prospective upper stage

  9. Pressurized burner test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Norton, T.S.; Hadley, M.A.

    1993-09-01

    The US Department of Energy`s METC has recently completed construction and commissioning of a new high-pressure combustion research facility. Utilities servicing the facility enable combustion tests at scales up to 3 MW (10 MM Btu/h) and pressures in excess of 3000 kPa (30 atm). These include a preheated, high-pressure air supply that can deliver up to 1.7 kg/s (3.7 lbs/s) of combustion air, and a high-pressure, natural gas compressor that can deliver 0.8 kg/s (.19 lbs/s). In the summer of 1994 METC`s syngas generator is scheduled to come on line, at which time combustion tests on a range of fuel gases from low to medium to high heating values will be possible. The syngas generator will simulate a range of fuel gas compositions characteristic of coal gasification product streams. As part of the combustion facility, a high-pressure burner test facility is currently being constructed to support the development of gas turbine combustion systems fired on natural gas and coal-derived gaseous fuels containing fuel-bound nitrogen. The facility, illustrated in Figure 1, is a 61-centimeter (24-inch) diameter, refractory-lined vessel of modular construction, offering the flexibility to test a variety of NO{sub x} control concepts. Burner test modules are sandwiched between gas inlet and sampling plenums with a maximum combustion test zone of 2.2 m (90 inches) in length. Modules are custom designed for specific burners.

  10. Estimation of marginal costs at existing waste treatment facilities.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically

  11. The Nike Laser Facility and its Capabilities

    Science.gov (United States)

    Serlin, V.; Aglitskiy, Y.; Chan, L. Y.; Karasik, M.; Kehne, D. M.; Oh, J.; Obenschain, S. P.; Weaver, J. L.

    2013-10-01

    The Nike laser is a 56-beam krypton fluoride (KrF) system that provides 3 to 4 kJ of laser energy on target. The laser uses induced spatial incoherence to achieve highly uniform focal distributions. 44 beams are overlapped onto target with peak intensities up to 1016 W/cm2. The effective time-averaged illumination nonuniformity is Nike produces highly uniform ablation pressures on target allowing well-controlled experiments at pressures up to 20 Mbar. The other 12 laser beams are used to generate diagnostic x-rays radiographing the primary laser-illuminated target. The facility includes a front end that generates the desired temporal and spatial laser profiles, two electron-beam pumped KrF amplifiers, a computer-controlled optical system, and a vacuum target chamber for experiments. Nike is used to study the physics and technology issues of direct-drive laser fusion, such as, hydrodynamic and laser-plasma instabilities, studies of the response of materials to extreme pressures, and generation of X rays from laser-heated targets. Nike features a computer-controlled data acquisition system, high-speed, high-resolution x-ray and visible imaging systems, x-ray and visible spectrometers, and cryogenic target capability. Work supported by DOE/NNSA.

  12. Implementing Target Value Design.

    Science.gov (United States)

    Alves, Thais da C L; Lichtig, Will; Rybkowski, Zofia K

    2017-04-01

    An alternative to the traditional way of designing projects is the process of target value design (TVD), which takes different departure points to start the design process. The TVD process starts with the client defining an allowable cost that needs to be met by the design and construction teams. An expected cost in the TVD process is defined through multiple interactions between multiple stakeholders who define wishes and others who define ways of achieving these wishes. Finally, a target cost is defined based on the expected profit the design and construction teams are expecting to make. TVD follows a series of continuous improvement efforts aimed at reaching the desired goals for the project and its associated target value cost. The process takes advantage of rapid cycles of suggestions, analyses, and implementation that starts with the definition of value for the client. In the traditional design process, the goal is to identify user preferences and find solutions that meet the needs of the client's expressed preferences. In the lean design process, the goal is to educate users about their values and advocate for a better facility over the long run; this way owners can help contractors and designers to identify better solutions. This article aims to inform the healthcare community about tools and techniques commonly used during the TVD process and how they can be used to educate and support project participants in developing better solutions to meet their needs now as well as in the future.

  13. Assisted Living Facilities, care facilities, Published in 2006, Washoe County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Assisted Living Facilities dataset, was produced all or in part from Published Reports/Deeds information as of 2006. It is described as 'care facilities'. Data...

  14. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  15. EPA Facility Registry Service (FRS): AIRS_AFS Sub Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Facility System (AFS) contains compliance and permit data for stationary sources regulated by EPA, state and local air pollution agencies. The sub facility...

  16. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  17. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  18. EPA Facility Registry Service (FRS): Facility Interests Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  19. Plant model of KIPT neutron source facility simulator

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, Thomas Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Grelle, Austin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  20. High intensity neutrino oscillation facilities in Europe

    Directory of Open Access Journals (Sweden)

    T. R. Edgecock

    2013-02-01

    Full Text Available The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ^{+} and μ^{-} beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular ^{6}He and ^{18}Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  1. Target Space $\

    CERN Document Server

    Huggett, Nick

    2015-01-01

    This paper investigates the significance of T-duality in string theory: the indistinguishability with respect to all observables, of models attributing radically different radii to space -- larger than the observable universe, or far smaller than the Planck length, say. Two interpretational branch points are identified and discussed. First, whether duals are physically equivalent or not: by considering a duality of the familiar simple harmonic oscillator, I argue that they are. Unlike the oscillator, there are no measurements 'outside' string theory that could distinguish the duals. Second, whether duals agree or disagree on the radius of 'target space', the space in which strings evolve according to string theory. I argue for the latter position, because the alternative leaves it unknown what the radius is. Since duals are physically equivalent yet disagree on the radius of target space, it follows that the radius is indeterminate between them. Using an analysis of Brandenberger and Vafa (1989), I explain wh...

  2. Active shooter in educational facility.

    Science.gov (United States)

    Downs, Scott

    2015-01-01

    The last decade has seen several of the most heinous acts imaginable committed against our educational facilities. In light of the recent shooting in Sandy Hook Elementary School in Monroe (Newtown), CT, which took the lives of 20 children and six employees, a new heightened sense of awareness for safety and security among our educational facilities was created.(1) The law enforcement and public-safety community is now looking to work together with many of the educational representatives across the nation to address this issue, which affects the educational environment now and in the future. The US public and private elementary and secondary school systems' population is approximately 55.2 million students with an additional 19.1 million students attending a 2- and 4-year college or university. These same public and private school and degree-granting institutions employ approximately 7.6 million staff members who can be an enormous threshold of potential targets.(2) A terrorist's act, whether domestic, international, or the actions of a Lone Wolf against one of our educational facilities, would create a major rippling effect throughout our nation. Terrorists will stop at nothing to advance their ideology and they must continue to advance their most powerful tool-fear-to further their agenda and mission of destroying our liberty and the advanced civilization of the Western hemisphere. To provide the safety and security for our children and those who are employed to educate them, educational institutions must address this issue as well as nullify the possible threat to our national security. This thesis used official government reports and data interview methodologies to address various concerns from within our nation's educational system. Educational personnel along with safety and security experts identified, describe, and pinpointed the recommended measures that our educational institutions should include to secure our nation from within. These modifications of

  3. Target developments program to prepare LMJ campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Collier, R; Bachelet, F; Botrel, R; Breton, O; Chicanne, C; Dauteuil, C H; Durut, F; Fleury, E; Guillot, L; Hermerel, C; Jeannot, L; Legaie, O; Legay, G; Martin, M; Reneaume, B; Theobald, M; Vincent-Viry, O, E-mail: remy.collier@cea.f [Commissariat a l' Energie Atomique, Direction des Applications Militaires, Valduc, F-21120 Is-sur-Tille (France)

    2010-08-01

    To carry out laser plasma experiments on CEA laser facilities, a R and D program was set up and is still under way to deliver complex targets. For a decade, specific developments are also dedicated to 'Ligne d'Integration Laser' (LIL) in France and Omega facilities (USA). To prepare the targets intended for the first experiments on the Laser 'Megajoule' (LMJ) facility, new developments are required, such as cocktail hohlraum fabrication, gas barrier coating and foam shells developments. For fusion experiments on LMJ, an important program is also under way to elaborate the Cryogenic Target Assembly (CTA), to fill and transport the CTA and to study the conformation process of the DT layer.

  4. Recent progress on the National Ignition Facility advanced radiographic capability

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, P.; Bowers, M.; Chen, H.; Heebner, J.; Hermann, M.; Kalantar, D.; Martinez, D.

    2016-01-08

    The National Ignition Facility (NIF) is a megajoule (million-joule)-class laser and experimental facility built for Stockpile Stewardship and High Energy Density (HED) science research [1]. Up to several times a day, 192 laser pulses from NIF's 192 laser beamlines converge on a millimeter-scale target located at the center of the facility's 10-meter diameter target chamber. The carefully synchronized pulses, typically a few nanoseconds (billionths of a second) in duration and co-times to better than 20 picoseconds (trillionths of a second), a deliver a combined energy of up to 1.8 megajoules and a peak power of 500 terawatts (trillion watts). Furthermore, this drives temperatures inside the target to tens of millions of degrees and pressures to many billion times greater than Earth's atmosphere.

  5. World Class Facilities Management

    DEFF Research Database (Denmark)

    Malmstrøm, Ole Emil; Jensen, Per Anker

    2013-01-01

    Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet.......Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet....

  6. Facilities evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, P.A.; Edinborough, C.R.

    1992-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities.

  7. World Class Facilities Management

    DEFF Research Database (Denmark)

    Malmstrøm, Ole Emil; Jensen, Per Anker

    2013-01-01

    Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet.......Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet....

  8. Japan hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1998-03-01

    JHF aims at promoting the variety of research fields using various secondary beams produced by high-intensity proton beams. The accelerator of JHF will be an accelerator complex of a 200 MeV LINAC, a 3 GeV booster proton synchrotron, and a 50 GeV proton synchrotron. The four main experimental facilities of K-Arena, M-Arena, N-Arena, and E-Arena are planed. The outline of the project is presented. (author)

  9. Facility decontamination technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  10. Facility Response Plan

    Science.gov (United States)

    1992-10-06

    10,500 gallons)? Yes Are rmarn transfer No opwatbons excsively moble (O.e tank truck at dock)? Signfiant and Substanlla harm substantial harm L Submit...current technology . one or more of the following provisions will normally be found on newer tank installationst " High-liquid level alarms with an...transportation- related facilities in adverse weather. The appropriate limitations for such planning are available technology and the practical and

  11. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  12. Hot Hydrogen Test Facility

    Science.gov (United States)

    Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  13. Medical Image Analysis Facility

    Science.gov (United States)

    1978-01-01

    To improve the quality of photos sent to Earth by unmanned spacecraft. NASA's Jet Propulsion Laboratory (JPL) developed a computerized image enhancement process that brings out detail not visible in the basic photo. JPL is now applying this technology to biomedical research in its Medical lrnage Analysis Facility, which employs computer enhancement techniques to analyze x-ray films of internal organs, such as the heart and lung. A major objective is study of the effects of I stress on persons with heart disease. In animal tests, computerized image processing is being used to study coronary artery lesions and the degree to which they reduce arterial blood flow when stress is applied. The photos illustrate the enhancement process. The upper picture is an x-ray photo in which the artery (dotted line) is barely discernible; in the post-enhancement photo at right, the whole artery and the lesions along its wall are clearly visible. The Medical lrnage Analysis Facility offers a faster means of studying the effects of complex coronary lesions in humans, and the research now being conducted on animals is expected to have important application to diagnosis and treatment of human coronary disease. Other uses of the facility's image processing capability include analysis of muscle biopsy and pap smear specimens, and study of the microscopic structure of fibroprotein in the human lung. Working with JPL on experiments are NASA's Ames Research Center, the University of Southern California School of Medicine, and Rancho Los Amigos Hospital, Downey, California.

  14. Environmentally Regulated Facilities in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — A unique record for each facility site with an environmental interest by DNR (such as permits). This brings together core environmental information in one place for...

  15. Carbon Fiber Technology Facility (CFTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  16. Nitramine Drying & Fine Grinding Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  17. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  18. Air Defense Radar Operations Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of laboratories, experimental test equipment including state-of-theart test bed radar, and test ranges. The facilities are used to design, develop,...

  19. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  20. Air Defense Radar Operations Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of laboratories, experimental test equipment including state-of-theart test bed radar, and test ranges. The facilities are used to design, develop,...

  1. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  2. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  3. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with...

  4. Tier II Chemical Storage Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities that store hazardous chemicals above certain quantities must submit an annual emergency and hazardous chemical inventory on a Tier II form. This is a...

  5. Tandem Van de Graaff facility

    Data.gov (United States)

    Federal Laboratory Consortium — Completed in 1970, the Tandem Van de Graaff facility was for many years the world's largest electrostatic accelerator facility. It can provide researchers with beams...

  6. High intensity neutrino oscillation facilities in Europe

    CERN Document Server

    Edgecock, T R; Davenne, T; Densham, C; Fitton, M; Kelliher, D; Loveridge, P; Machida, S; Prior, C; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Wildner, E; Efthymiopoulos, I; Garoby, R; Gilardoni, S; Hansen, C; Benedetto, E; Jensen, E; Kosmicki, A; Martini, M; Osborne, J; Prior, G; Stora, T; Melo-Mendonca, T; Vlachoudis, V; Waaijer, C; Cupial, P; Chancé, A; Longhin, A; Payet, J; Zito, M; Baussan, E; Bobeth, C; Bouquerel, E; Dracos, M; Gaudiot, G; Lepers, B; Osswald, F; Poussot, P; Vassilopoulos, N; Wurtz, J; Zeter, V; Bielski, J; Kozien, M; Lacny, L; Skoczen, B; Szybinski, B; Ustrycka, A; Wroblewski, A; Marie-Jeanne, M; Balint, P; Fourel, C; Giraud, J; Jacob, J; Lamy, T; Latrasse, L; Sortais, P; Thuillier, T; Mitrofanov, S; Loiselet, M; Keutgen, Th; Delbar, Th; Debray, F; Trophine, C; Veys, S; Daversin, C; Zorin, V; Izotov, I; Skalyga, V; Burt, G; Dexter, A C; Kravchuk, V L; Marchi, T; Cinausero, M; Gramegna, F; De Angelis, G; Prete, G; Collazuol, G; Laveder, M; Mazzocco, M; Mezzetto, M; Signorini, C; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Migliozzi, P; Moro, R; Palladino, V; Gelli, N; Berkovits, D; Hass, M; Hirsh, T Y; Schaumann, M; Stahl, A; Wehner, J; Bross, A; Kopp, J; Neuffer, D; Wands, R; Bayes, R; Laing, A; Soler, P; Agarwalla, S K; Villanueva, A Cervera; Donini, A; Ghosh, T; Cadenas, J J Gómez; Hernández, P; Martín-Albo, J; Mena, O; Burguet-Castell, J; Agostino, L; Buizza-Avanzini, M; Marafini, M; Patzak, T; Tonazzo, A; Duchesneau, D; Mosca, L; Bogomilov, M; Karadzhov, Y; Matev, R; Tsenov, R; Akhmedov, E; Blennow, M; Lindner, M; Schwetz, T; Martinez, E Fernández; Maltoni, M; Menéndez, J; Giunti, C; García, M C González; Salvado, J; Coloma, P; Huber, P; Li, T; López-Pavón, J; Orme, C; Pascoli, S; Meloni, D; Tang, J; Winter, W; Ohlsson, T; Zhang, H; Scotto-Lavina, L; Terranova, F; Bonesini, M; Tortora, L; Alekou, A; Aslaninejad, M; Bontoiu, C; Kurup, A; Jenner, L J; Long, K; Pasternak, J; Pozimski, J; Back, J J; Harrison, P; Beard, K; Bogacz, A; Berg, J S; Stratakis, D; Witte, H; Snopok, P; Bliss, N; Cordwell, M; Moss, A; Pattalwar, S; Apollonio, M

    2013-01-01

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  7. High intensity neutrino oscillation facilities in Europe

    CERN Document Server

    Edgecock, T.R.; Davenne, T.; Densham, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo-Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrzycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A.C.; Kravchuk, V.L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T.Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S.K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J.J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López-Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L.J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J.J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J.S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  8. An industrial SR TXRF facility at ESRF

    Energy Technology Data Exchange (ETDEWEB)

    Comin, F.; Navizet, M.; Mangiagalli, P.; Apostolo, G

    1999-04-02

    A TXRF industrial facility for the mapping of trace impurities on the surface of 300 mm Silicon wafers is presently under construction at the ESRF, European Synchrotron Radiation Facility, in Grenoble (France) and its commissioning phase will start at the end of 1998. The elements to be detected range from Na to Hg with a target routine detection limit of 10{sup 8} atoms /cm{sup 2}. The facility is the result of a collaboration between the ESRF and some of the major European semiconductor companies in the framework of the MEDEA consortium. Preliminary experiments at ESRF reached a detection limit of 1.7x10{sup 8} for Ni atoms (17 fg) in not optimised experimental conditions. The facility will improve the detection limit by a factor of 50. However, this gain in sensitivity will be traded in the possibility of mapping the surface of 300 mm wafer with a resolution of 500 pixels and a throughput of three wafers/h.

  9. Isotope Production Facility (IPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Los Alamos National Laboratory has produced radioactive isotopes for medicine and research since the mid 1970s, when targets were first irradiated using the 800...

  10. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs

  11. Instrumentation Design and Development Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has facilities for design, development and fabrication of: custominstrumentation, mobile instrumentation, miniaturized instrumentation, wirelessinstrumentation,...

  12. A3 Altitude Test Facility

    Science.gov (United States)

    Dulreix, Lionel J.

    2009-01-01

    This slide presentation shows drawings, diagrams and photographs of the A3 Altitude Test Facility. It includes a review of the A3 Facility requirements, and drawings of the various sections of the facility including Engine Deck and Superstructure, Test Cell and Thrust Takeout, Structure and Altitude Support Systems, Chemical Steam generators, and the subscale diffuser. There are also pictures of the construction site, and the facility under construction. A Diagram of the A3 Steam system schematic is also shown

  13. Logistics support of space facilities

    Science.gov (United States)

    Lewis, William C.

    1988-01-01

    The logistic support of space facilities is described, with special attention given to the problem of sizing the inventory of ready spares kept at the space facility. Where possible, data from the Space Shuttle Orbiter is extrapolated to provide numerical estimates for space facilities. Attention is also given to repair effort estimation and long duration missions.

  14. ICStatus and progress of the National Ignition Facility as ICF and HED user facility

    Science.gov (United States)

    Van Wonterghem, B. M.; Kauffman, R. L.; Larson, D. W.; Herrmann, M. C.

    2016-05-01

    Since its completion in 2009, the National Ignition Facility has been operated in support of NNSA's Stockpile Stewardship mission, providing unique experimental data in the high energy density regime. We will describe the progress made by the National Ignition facility in the user office and management, facility capabilities, target diagnostics and diagnostics development. We will also discuss the results of a major effort to increase the shot rate on NIF. An extensive set of projects, developed in conjunction with the HED community and drawing on best practices at other facilities, improved shot rate by over 80% and recently enabled us to deliver 356 target experiments in FY15 in support of the users. Through an updated experimental set-up and review process, computer controlled set-up of the laser and diagnostics and disciplined operations, NIF also continued to deliver experimental reliability, precision and repeatability. New and complex platforms are introduced with a high success rate. Finally we discuss how new capabilities and further efficiency improvements will enable the successful execution of ICF and HED experimental programs required to support the quest for Ignition and the broader Science Based Stockpile Stewardship mission

  15. Current status of Pohang Neutron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.N.; Lee, Y.S.; Cho, M.H. [Pohang Accelerator Laboratory, POSTECH, Pohang (KR)] [and others

    2000-03-01

    We present the current status of Pohang Neutron Facility, which is the pulsed neutron facility, based on the 70-MeV electron linear accelerator completed on Dec.1997. We have prepared the 15-m time-of-flight path, a Ta-target system, and the Data Acquisition System. Meanwhile we have measured the total cross-sections of Dy and Hf samples at the Research Reactor Institute, Kyoto University and the neutron capture cross-sections of {sup 164}Dy isotope at Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology both in Japan. We also were participated the experiment at the 122-m flight path of the IBR-30 pulsed neutron source of Joint Institute of Nuclear Research in Dubna, Russia. (author)

  16. DISPATCHING CAPACITY IN MANUFACTURING FACILITY OFFSHORING

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Knudsen, Mette Præst

    2010-01-01

    transfer process, and which should accordingly be monitored and managed. This paper analyses the challenges in dispatching knowledge from a sending unit to a receiving unit in offshoring manufacturing facilities. The paper identifies motivation of the unit, relational dynamics and structures as important...... a manufacturing facility offshoring process. Using the cases, the paper uses an inductive approach to identify five main themes from the empirical cases. In the discussion, these themes are linked with the theoretical model leading to the identification of six testable propositions for future research...... requested but rarely implemented. The paper therefore concludes by stating that much can be achieved if managers are actively involved early on in the process by preparing teaching programs, carefully planning the process and by ensuring targeted communication about the manufacturing offshoring process...

  17. Occupational medicine programs for animal research facilities.

    Science.gov (United States)

    Wald, Peter H; Stave, Gregg M

    2003-01-01

    Occupational medicine is a key component of a comprehensive occupational health and safety program in support of laboratory animal research and production facilities. The mission of the department is to maximize employee health and productivity utilizing a population health management approach, which includes measurement and analysis of health benefits utilization. The department works in close cooperation with other institutional health and safety professionals to identify potential risks from exposure to physical, chemical, and biological hazards in the workplace. As soon as exposures are identified, the department is responsible for formulating and providing appropriate medical surveillance programs. Occupational medicine is also responsible for targeted delivery of preventive and wellness services; management of injury, disease, and disability; maintenance of medical information; and other clinic services required by the institution. Recommendations are provided for the organization and content of occupational medicine programs for animal research facilities.

  18. J-PARC muon facility, MUSE

    Science.gov (United States)

    Miyake, Y.; Shimomura, K.; Kawamura, N.; Strasser, P.; Makimura, S.; Koda, A.; Fujimori, H.; Nakahara, K.; Takeshita, S.; Kobayashi, Y.; Nishiyama, K.; Higemoto, W.; Ito, T. U.; Ninomiya, K.; Kato, M.; Kadono, R.; Sato, N.; Nagamine, K.

    2010-04-01

    The muon science facility (MUSE, abbreviation of MUon Science Establishment), along with the neutron, hadron, and neutrino facilities, is one of the experimental areas of the J-PARC project, which was approved for construction in a period from 2001 to 2008. The MUSE facility is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. Construction of the MLF building was started in the beginning of 2004, and was completed at the end of the 2006 fiscal year. For Phase 1, we managed to install one super-conducting decay/surface muon channel with a modest-acceptance (about 45 mSr) pion injector in the summer of 2008. Finally, on September 19th, 2008, the 20 mm thick edge-cooled, non-rotating graphite target, which is surrounded by a copper frame, was, for the first time, placed into the 3GeV proton beam obtained from the rapid cycling synchrotron (RCS). The nuclear reactions between the 3 GeV proton beam and the nucleus of carbon produce both positively (π+) and negatively (π-) charged pions. On September 26th, 2008, we finally succeeded to extract? surface muons (μ+), which are obtained from the decay of π+ near the surface of the pion production target in the proton beam line. First, we commissioned the secondary muon beam line optics by tuning the superconducting magnet, the quadrupole and bending magnets, and the DC separator in order to optimize the transport of the surface muon beam and to eliminate the e+ contamination. Then, on December 25th, 2008, we also succeeded in the extraction of the "decay muons (μ+/μ-)", which are obtained through the in-flight decay of π+/π-

  19. Facilities removal working group

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This working group`s first objective is to identify major economic, technical, and regulatory constraints on operator practices and decisions relevant to offshore facilities removal. Then, the group will try to make recommendations as to regulatory and policy adjustments, additional research, or process improvements and/or technological advances, that may be needed to improve the efficiency and effectiveness of the removal process. The working group will focus primarily on issues dealing with Gulf of Mexico platform abandonments. In order to make the working group sessions as productive as possible, the Facilities Removal Working Group will focus on three topics that address a majority of the concerns and/or constraints relevant to facilities removal. The three areas are: (1) Explosive Severing and its Impact on Marine Life, (2) Pile and Conductor Severing, and (3) Deep Water Abandonments This paper will outline the current state of practice in the offshore industry, identifying current regulations and specific issues encountered when addressing each of the three main topics above. The intent of the paper is to highlight potential issues for panel discussion, not to provide a detailed review of all data relevant to the topic. Before each panel discussion, key speakers will review data and information to facilitate development and discussion of the main issues of each topic. Please refer to the attached agenda for the workshop format, key speakers, presentation topics, and panel participants. The goal of the panel discussions is to identify key issues for each of the three topics above. The working group will also make recommendations on how to proceed on these key issues.

  20. Production Facility Prototype Blower Installation Report

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-28

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating.  Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere.  With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig).  An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing.  This report describes this blower/motor/ppressure vessel package and the status of the facility preparations.

  1. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A; Nguyen, F

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  2. The Zwicky Transient Facility

    CERN Document Server

    Bellm, Eric C

    2014-01-01

    The Zwicky Transient Facility (ZTF) is a next-generation optical synoptic survey that builds on the experience and infrastructure of the Palomar Transient Factory (PTF). Using a new 47 deg$^2$ survey camera, ZTF will survey more than an order of magnitude faster than PTF to discover rare transients and variables. I describe the survey and the camera design. Searches for young supernovae, fast transients, counterparts to gravitational-wave detections, and rare variables will benefit from ZTF's high cadence, wide area survey.

  3. On Constrained Facility Location Problems

    Institute of Scientific and Technical Information of China (English)

    Wei-Lin Li; Peng Zhang; Da-Ming Zhu

    2008-01-01

    Given m facilities each with an opening cost, n demands, and distance between every demand and facility,the Facility Location problem finds a solution which opens some facilities to connect every demand to an opened facility such that the total cost of the solution is minimized. The k-Facility Location problem further requires that the number of opened facilities is at most k, where k is a parameter given in the instance of the problem. We consider the Facility Location problems satisfying that for every demand the ratio of the longest distance to facilities and the shortest distance to facilities is at most w, where w is a predefined constant. Using the local search approach with scaling technique and error control technique, for any arbitrarily small constant ∈ > 0, we give a polynomial-time approximation algorithm for the ω-constrained Facility Location problem with approximation ratio 1 + √ω + 1 + ∈, which significantly improves the previous best known ratio (ω + 1)/α for some 1 ≤α≤ 2, and a polynomial-time approximation algorithm for the ω-constrained κ-Facility Location problem with approximation ratio ω + 1 + ∈. On the aspect of approximation hardness, we prove that unless NP (C) DTIME(nO(loglogn)), the ω-constrained Facility Location problem cannot be approximated within 1 + √ω-1,which slightly improves the previous best known hardness result 1.243 + 0.316 ln(ω - 1). The experimental results on the standard test instances of Facility Location problem show that our algorithm also has good performance in practice.

  4. MYRRHA: A multipurpose nuclear research facility

    Science.gov (United States)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  5. PUREX facility hazards assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  6. Underground Facilities, Technological Challenges

    CERN Document Server

    Spooner, N

    2010-01-01

    This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

  7. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  8. TESLA Test Facility. Status

    Energy Technology Data Exchange (ETDEWEB)

    Aune, B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 {mu}s). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.). 19 refs.

  9. SPHERES National Lab Facility

    Science.gov (United States)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  10. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  11. ISIS Facility – Past achievements and future prospects

    Indian Academy of Sciences (India)

    Uschi Steigenberger

    2008-11-01

    The current status of the ISIS Pulsed Neutron and Muon Facility will be described covering operations and developments. Construction of a second target station was approved in 2004 including funding for the first seven neutron scattering instruments. Progress with the second target station project will be reviewed and updates on the design status of the seven `Day One' instruments, as well as plans for the next phase of the instrumentation will be presented.

  12. Simulation Facilities and Test Beds for Galileo

    Science.gov (United States)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  13. Facility effluent monitoring plan for the 327 Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  14. Facility effluent monitoring plan for the fast flux test facility

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, J M; Dahl, N R

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  15. 美国国家点火装置中低温定位器产生的背景中子通量密度的计算%Calculation of Background Neutrons Flux Caused by Cryogenic Target Positioner in National Ignition Facility

    Institute of Scientific and Technical Information of China (English)

    钟伟城; 聂矗; 郭江华; 王柱; 谢诞梅

    2012-01-01

    W.C.Mead等人[1]对美国国家点火装置(NIF)内的氘氚燃料反应产生的信号中子与低温定位器(CTP)、靶室壁反应产生的背景中子和背景光子的通量密度进行了计算.论文对同一系统进行再次研究,得到与W.C.Mead不同的结论.论文对W.C.Mead等人的研究进行勘误和拓展,使用MCNP对NIF中CTP和靶室壁对背景中子和背景光子的产生情况进行了计算和分析.通过计算在靶室内不同半径不同角度上的背景中子通量密度,确定了在靶室内最佳信噪比的角度,同时对探测器布置在靶室内的位置提出了建议.并且在W.C.Mead等人的研究基础上,改变CTP在靶室中的位置,计算并对比了CTP在靶室内不同位置上,所产生的背景中子和背景光子通量密度.%W. C, Mead et al. have calculated the background neutro ns and gamma Time -of- Flight (TOF) spectra which are caused by Cryogenic Target Positioner ( CTP) and chamber in National Ignition Facility (NIF) . The same system is studied again and different conclusion is reached in this paper. Hence, we correct and improve their study. The MCNP Monte Carlo code is used to calculate the neutron TOF spectra in NIF. Background neutron and gamma TOF spectra at different radius and different degree in chamber are calculated and compared to locate the angle of highest ratio of signal to background. To make the further improvement, the position of CTP has been altered to see its influence to the background neutron and gamma TOF spectra.

  16. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics on building construction floor area from the Ministry of Land, Infrastructure, Transport and Tourism, the total floor area of building construction started in Japan in 2007 was 160,991 thousand square meters, or 14.8% less than the area of the previous year, and the reduction was the first reduction in the past five years. The office markets in Tokyo and Nagoya were active, as represented by the supplies of skyscrapers, and energy saving measures, such as the adoption of high efficiency lighting equipment, the control for initial stage illuminance, daylight harvesting, and the use of occupancy sensors, were well established. In the field of public construction, including museums, multi-purpose halls, and religious buildings, the total area of the new construction was 10.8% less than the total for the previous year, and this reduction was a continuation of an eleven-year trend. In spaces with high ceiling, the innovation for easy replacement of light sources used with reflection mirror systems and optical fibers was noted. Hospitals adapted to the expectation for improved services in their selection of lighting facilities to improve the residential environment for patients while taking into consideration the needs of the aging population, by their use of devices in corridors to help maintain a continuity of light. In libraries, a pendant system was developed to illuminate both ceilings and book shelves. In the field of theaters and halls, the time limit for repairing existing systems had come for the large facilities that were opened during the theater and hall construction boom of the 1960s through 1980s, and around 26 renovations were done. Almost all the renovations were conversions to intelligent dimming systems and lighting control desks. In the field of stores and commercial facilities, the atmosphere and glitter of the selling floor was produced by new light sources, such as ceramic metal halide lamps and LEDs, which have high

  17. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  18. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  19. NSTX: Facility/Research Highlights and Near Term Facility Plans

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono

    2008-11-19

    The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

  20. NOVA laser facility for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, W.W.

    1983-11-30

    The NOVA laser consists of ten beams, capable of concentrating 100 to 150 kJ of energy (in 3 ns) and 100 to 150 TW of power (in 100 ps) on experimental targets by 1985. NOVA will also be capable of frequency converting the fundamental laser wavelength (1.05 ..mu..m) to its second (0.525 ..mu..m) or third (0.35 ..mu..m) harmonic. This additional capability (80 to 120 kJ at 0.525 ..mu..m, 40 to 70 kJ at 0.35 ..mu..m) was approved by the US Department of Energy (DOE) in April 1982. These shorter wavelengths are much more favorable for ICF target physics. Current construction status of the NOVA facility, intended for completion in the autumn of 1984, will be presented.

  1. Advances in target design and fabrication for experiments on NIF

    OpenAIRE

    Obrey K.; Schmidt D.; Hamilton C.; Capelli D.; Williams J.; Randolph R.; Fierro F.; Hatch D.; Havrilla G.; Patterson B.

    2013-01-01

    The ability to build target platforms for National Ignition Facility (NIF) is a key feature in LANL's (Los Alamos National Laboratory) Target Fabrication Program. We recently built and manufactured the first LANL targets to be fielded on NIF in March 2011. Experiments on NIF require precision component manufacturing and accurate knowledge of the materials used in the targets. The characterization of foams and aerogels, the Be ignition capsule, and machining unique components are of main mater...

  2. National Ignition Facility under fire over ignition failure

    Science.gov (United States)

    Allen, Michael

    2016-08-01

    The 3.5bn National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in California is no nearer to igniting a sustainable nuclear fusion burn - four years after its initial target date - according to a report by the US National Nuclear Security Administration (NNSA).

  3. Fusion Core Imaging Experiment Based on the Shenguang Ⅱ Facility

    Institute of Scientific and Technical Information of China (English)

    郑志坚; 曹磊峰; 滕浩; 成金秀

    2002-01-01

    A laser fusion experiment was performed based on the Shenguang Ⅱ facility. An image of thermonuclear burning region was obtained with a Fresnel zone plate-coded imaging technique, where the laser-driven target was served as an α-particle source, and the coded image obtained in the experiment was reconstructed by a numerical way.

  4. Radiation safety aspects of the AGOR superconducting cyclotron facility

    NARCIS (Netherlands)

    Beijers, JPM; de Meijer, RJ

    1996-01-01

    This paper describes shielding calculations and skyshine estimates for the new AGOR K=600 superconducting cyclotron facility. Both simple, semi-empirical models and Monte-Carlo simulations were used. The calculations are based on a 200 MeV proton beam incident on a trick aluminum target. Also the

  5. Radiation safety aspects of the AGOR superconducting cyclotron facility

    NARCIS (Netherlands)

    Beijers, JPM; de Meijer, RJ

    1996-01-01

    This paper describes shielding calculations and skyshine estimates for the new AGOR K=600 superconducting cyclotron facility. Both simple, semi-empirical models and Monte-Carlo simulations were used. The calculations are based on a 200 MeV proton beam incident on a trick aluminum target. Also the de

  6. Criteria for selection of target materials and design of high-efficiency-release targets for radioactive ion beam generation

    CERN Document Server

    Alton, G D; Liu, Y

    1999-01-01

    In this report, we define criteria for choosing target materials and for designing, mechanically stable, short-diffusion-length, highly permeable targets for generation of high-intensity radioactive ion beams (RIBs) for use at nuclear physics and astrophysics research facilities based on the ISOL principle. In addition, lists of refractory target materials are provided and examples are given of a number of successful targets, based on these criteria, that have been fabricated and tested for use at the Holifield Radioactive Ion Beam Facility (HRIBF).

  7. Winning market positioning strategies for long term care facilities.

    Science.gov (United States)

    Higgins, L F; Weinstein, K; Arndt, K

    1997-01-01

    The decision to develop an aggressive marketing strategy for its long term care facility has become a priority for the management of a one-hundred bed facility in the Rocky Mountain West. Financial success and lasting competitiveness require that the facility in question (Deer Haven) establish itself as the preferred provider of long term care for its target market. By performing a marketing communications audit, Deer Haven evaluated its present market position and created a strategy for solidifying and dramatizing this position. After an overview of present conditions in the industry, we offer a seven step process that provides practical guidance for positioning a long term care facility. We conclude by providing an example application.

  8. A novel vision-based PET bottle recycling facility

    Science.gov (United States)

    He, Xiangyu; He, Zaixing; Zhang, Shuyou; Zhao, Xinyue

    2017-02-01

    Post-consumer PET bottle recycling is attracting increasing attention due to its value as an energy conservation and environmental protection measure. Sorting by color is a common method in bottle recycling; however, manual operations are unstable and time consuming. In this paper, we design a vision-based facility to perform high-speed bottle sorting. The proposed facility consists mainly of electric and mechanical hardware and image processing software. To solve the recognition problem of isolated and overlapped bottles, we propose a new shape descriptor and utilize the support vector data description classifier. We use color names to represent the colors in the real world in order to avoid problems introduced by colors that are similar. The facility is evaluated by the target error, outlier error and total error. The experimental results demonstrate that the facility we developed is capable of recycling various PET bottles.

  9. DIS prospects at the future muon collider facility

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J., FERMI

    1998-07-01

    We discuss prospects of deep inelastic scattering physics capabilities at the future muon collider facility. In addition to {mu}{sup +}{mu}{sup -} collider itself, the facility provides other possibilities. Among the possibilities, we present muon-proton collider and neutrino fixed target programs at the muon collider facility. This {mu}-p collider program extends kinematic reach and luminosity by an order of magnitude, increasing the possibility of search for new exotic particles. Perhaps most intriguing DIS prospects come from utilizing high intensity neutrino beam resulting from continuous decays of muons in various sections of the muon collider facility. One of the most interesting findings is a precision measurement of electroweak mixing angle, sin{sup 2}{theta}{sub W}, which can be achieved to the precision equivalent to {delta}M{sub W}{approximately} 30MeV.

  10. Thermal Radiation Source Test Facility,

    Science.gov (United States)

    1984-01-01

    KEY WORDS (Continu on revers side I eesr and identify by block nuMb.,) Thermal Radiation Source Thermal Test Facility 20 ABSTRACT (Continue on reverse...SECTION 1 INTRODUCTION 1-1 GENERAL Defense Nuclear Agency’s Field Command, located at Kirtland AFB in New Mexico, has recently upgraded its thermal test facility...is used to evaluate damage and survivability in a nuclear environment. The thermal test facility was first established in 1979 and used O large

  11. Regulatory facility guide for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  12. User facilities at federal laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Baron, S.; Marcuse, W.

    1988-04-01

    Recent initiatives by the Congress and the Administration have been directed to improving American industrial competitiveness. One of these initiatives is directed to encouraging industrial users to avail themselves of special facilities existent at federal laboratories. The facilities available at the National Bureau of Standards (NBS) and seven Department of Energy (DOE) laboratories are presented here. One facility at each Laboratory is described in detail, the remainder are listed with the names and telephone numbers of individuals to contact for further information.

  13. Data Management Facility Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Keck, Nicole N

    2014-06-30

    The Data Management Facility (DMF) is the data center that houses several critical Atmospheric Radiation Measurement (ARM) Climate Research Facility services, including first-level data processing for the ARM Mobile Facilities (AMFs), Eastern North Atlantic (ENA), North Slope of Alaska (NSA), Southern Great Plains (SGP), and Tropical Western Pacific (TWP) sites, as well as Value-Added Product (VAP) processing, development systems, and other network services.

  14. Thermal Simulation Facilities Handbook.

    Science.gov (United States)

    1983-02-01

    as much ultraviolet radiation as possible In the concentrated solar beam. The heliostat automatically tracks the source, the sun or the moon...individually positioned to concentrate the thermal energy at the test object focal plane and are front surfaced the same as the heliostat mirrors. The...energy and redistribute it uniformly over the target area. A beam douser is mounted above the light pipe. The douser, initially positioned to block the

  15. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  16. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  17. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  18. Poultry Slaughtering and Processing Facilities

    Data.gov (United States)

    Department of Homeland Security — Agriculture Production Poultry Slaughtering and Processing in the United States This dataset consists of facilities which engage in slaughtering, processing, and/or...

  19. Establishing nuclear facility drill programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  20. Region 9 NPDES Facilities 2012

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...

  1. Region 9 NPDES 2011 Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...

  2. Low background infrared (LBIR) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Low background infrared (LBIR) facility was originally designed to calibrate user supplied blackbody sources and to characterize low-background IR detectors and...

  3. Agency Data on User Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Aerospace Technical Facility Inventory is to facilitate the sharing of specialized capabilities within the aerospace research/engineering...

  4. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  5. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  6. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  7. Shielding structure analysis for LSDS facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization.

  8. Protection Related to High-power Targets

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Target protection is an important part of machine protection. The beam power in high-intensity accelerators is high enough that a single wayward pulse can cause serious damage. Today's high-power targets operate at the limit of available technology, and are designed for a very narrow range of beam parameters. If the beam pulse is too far off centre, or if the beam size is not correct, or if the beam density is too high, the target can be seriously damaged. We will start with a brief introduction to high-power targets and then move to a discussion of what can go wrong, and what are the risks. Next we will discuss how to control the beam-related risk, followed by examples from a few different accelerator facilities. We will finish with a detailed example of the Oak Ridge Spallation Neutron Source target tune up and target protection.

  9. Development on dynamic nuclear polarized targets

    CERN Document Server

    Penttila, S I

    2002-01-01

    Our interest in understanding the spin content of the nucleon has left its marks on the recent development of the dynamic nuclear polarized (DNP) targets. This can be seen from the targets developed at CERN and SLAC for the measurement of the polarized spin structure functions in deep inelastic scattering. The results of the experiments indicated that less than 30% of the nucleon spin is carried by the quarks. This unpredicted small value initiated planning of new polarized target experiments to determine the gluon polarization on the nucleon using polarized real photons and polarized /sup 6/LiD targets. In several facilities very intense polarized photon beams are available at a wide energy range. During the next few years these photon beams with DNP targets will be used to test the fundamental GDH sum rule. Other DNP target developments are also discussed. (61 refs).

  10. Water, sanitation and hygiene in Jordan's healthcare facilities.

    Science.gov (United States)

    Khader, Yousef Saleh

    2017-08-14

    Purpose The purpose of this paper is to determine water availability, sanitation and hygiene (WSH) services, and healthcare waste management in Jordan healthcare facilities. Design/methodology/approach In total, 19 hospitals (15 public and four private) were selected. The WSH services were assessed in hospitals using the WSH in health facilities assessment tool developed for this purpose. Findings All hospitals (100 percent) had a safe water source and most (84.2 percent) had functional water sources to provide enough water for users' needs. All hospitals had appropriate and sufficient gender separated toilets in the wards and 84.2 percent had the same in outpatient settings. Overall, 84.2 percent had sufficient and functioning handwashing basins with soap and water, and 79.0 percent had sufficient showers. Healthcare waste management was appropriately practiced in all hospitals. Practical implications Jordan hospital managers achieved major achievements providing access to drinking water and improved sanitation. However, there are still areas that need improvements, such as providing toilets for patients with special needs, establishing handwashing basins with water and soap near toilets, toilet maintenance and providing sufficient trolleys for collecting hazardous waste. Efforts are needed to integrate WSH service policies with existing national policies on environmental health in health facilities, establish national standards and targets for the various healthcare facilities to increase access and improve services. Originality/value There are limited WSH data on healthcare facilities and targets for basic coverage in healthcare facilities are also lacking. A new assessment tool was developed to generate core WSH indicators and to assess WSH services in Jordan's healthcare facilities. This tool can be used by a non-WSH specialist to quickly assess healthcare facility-related WSH services and sanitary hazards in other countries. This tool identified some areas

  11. Deflecting cavity dynamics for time-resolved machine studies of SXFEL user facility

    CERN Document Server

    Song, Minghao; Liu, Bo; Wang, Dong

    2016-01-01

    Radio frequency deflectors are widely used for time-resolved electron beam energy, emittance and radiation profile measurements in modern free electron laser facilities. In this paper, we present the beam dynamics aspects of the deflecting cavity of SXFEL user facility, which is located at the exit of the undulator. With a targeted time resolution around 10 fs, it is expected to be an important tool for time-resolved commissioning and machine studies for SXFEL user facility.

  12. Do provisions to advance chemical facility safety also advance chemical facility security? An analysis of possible synergies

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2012-01-01

    endanger neighbouring populated areas. Second, facilities where high-risk chemicals are present could present opportunities for theft. The concern is that relatively small amounts of highly toxic chemicals could be taken to another location selected for higher impact. The Directive on European Critical......The European Commission has launched a study on the applicability of existing chemical industry safety provisions to enhancing security of chemical facilities covering the situation in 18 EU Member States. This paper reports some preliminary analytical findings regarding the extent to which...... exist at the mitigation level. At the strategic policy level, synergies are obvious. The security of chemical facilities is important. First, facilities with large inventories of toxic materials could be attractive targets for terrorists. The concern is sabotage causing an intentional release that could...

  13. Moderator Demonstration Facility Design and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    McClanahan, Tucker C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallmeier, Franz X. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producing target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world

  14. DARHT2 X-ray converter target system comparison

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, P M; Caporaso, G J; Chen, Y J; Ho, D D; McCarrick, J F; Pincosy, P A; Rambo, P W

    1999-03-24

    Four short current pulses with various pulse widths and spacing will be delivered to the x-ray converter target on the second-axis of the Dual-Axis Radiographic Hydrodynamic Test (DARHT-II) facility. To ensure that the DARHT-II multi-pulse target will provide enough target material for x-ray production for all four pulses, the target needs either to survive the strike of four electron pulses or to accommodate target replenishment. A distributed target may survive hitting of four electron pulses. For target replenishment, two types of target configurations are being considered: stationary target systems with beam repositioning and dynamic moving target systems. They compare these three target systems and their radiographic performance.

  15. Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pasamehmetoglu, K.O.; Shelton, J.D.

    1998-08-01

    The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report.

  16. The neutron Time-Of-Flight facility, n_TOF, at CERN (I): Technical Description

    CERN Document Server

    n_TOF, Collaboration

    2013-01-01

    The n_TOF facility is a spallation neutron source operating at CERN from 2001. It produces, thanks to the characteristics of the proton driver and of the massive Pb target, a wide energy, very high instantaneous neutron flux, which is employed for neutron-induced reactions measurement. The n TOF facility resumed operation in November 2008, after a 4 years stop due to radioprotection issues connected with the operation of the spallation target. It features a new lead spallation target with a more robust design a more efficient cooling, separate moderator circuit and a target area ventilation system. In this contribution technical details about this facility and its operation will be given, together with future perspective for the performances of the facility.

  17. Status report of the Jyvaskyla ion guide isotope separator on-line facility

    NARCIS (Netherlands)

    Penttila, H; Dendooven, P; Honkanen, A; Huhta, M; Jauho, PP; Jokinen, A; Lhersonneau, G; Oinonen, M; Parmonen, JM; Perajarvi, K; Aysto, J

    1997-01-01

    The ion guide isotope separator facility IGISOL of the University of Jyvaskyla has been moved to the new K-130 heavy ion cyclotron laboratory. The totally reconstructed facility is described in detail. The primary beams and targets, helium pumping, separator beam line construction and separator beam

  18. Absolute measurement of the DT primary neutron yield on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Leeper R.J.

    2013-11-01

    Full Text Available The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF.

  19. Targets for a Neutral Kaon Beam

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Christopher [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    A secondary beam of neutral Kaons is under consideration for Hall D at Jefferson Lab to perform spectroscopic studies of hyperons produced by K 0 L particles scattering from proton and deuteron targets. The proposed physics program would utilize the GlueX detector package currently installed in Hall D. This contribution looks at potential targets for use in the new facility, paying close attention to the existing infrastructure of GlueX and Hall D. Unpolarized cryotargets of liquid hydrogen and deuerium, as well as polarized solid targets of protons and deuterons are examined.

  20. The National Ignition Facility front-end laser system

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, S.C.; Beach, R.J.; Crane, J.H.; Davin, J.M.; Perry, M.D.; Wilcox, R.B.

    1995-07-07

    The proposed National Ignition Facility is a 192 beam Nd:glass laser system capable of driving targets to fusion ignition by the year 2005. A key factor in the flexibility and performance of the laser is a front-end system which provides a precisely formatted beam to each beamline. Each of the injected beams has individually controlled energy, temporal pulseshape, and spatial shape to accommodate beamline-to-beamline variations in gain and saturation. This flexibility also gives target designers the options for precisely controlling the drive to different areas of the target. The design of the Front-End laser is described, and initial results are discussed.

  1. Thomas Jefferson National Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  2. SUBSURFACE FACILITY WORKER DOES ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    V. Arakali; E. Faillace; A. Linden

    2004-02-27

    The purpose of this design calculation is to estimate radiation doses received by personnel working in the subsurface facility of the repository performing emplacement, maintenance, and retrieval operations under normal conditions. The results of this calculation will be used to support the design of the subsurface facilities and provide occupational dose estimates for the License Application.

  3. EVA Training and Development Facilities

    Science.gov (United States)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  4. Empowering Facilities Teams through Technology

    Science.gov (United States)

    Cormier, Scott

    2013-01-01

    Facilities departments at colleges and universities are facing the same challenge: how not to do just the most projects, but also the right projects with the limited funds they are given. In order to make the best decisions, they need more control over the capital planning process, which requires accurate, current facility condition data. Each…

  5. Empowering Facilities Teams through Technology

    Science.gov (United States)

    Cormier, Scott

    2013-01-01

    Facilities departments at colleges and universities are facing the same challenge: how not to do just the most projects, but also the right projects with the limited funds they are given. In order to make the best decisions, they need more control over the capital planning process, which requires accurate, current facility condition data. Each…

  6. Planning and Designing Safe Facilities

    Science.gov (United States)

    Seidler, Todd

    2006-01-01

    Those who manage physical education, athletic, and recreation programs have a number of legal duties that they are expected to carry out. Among these are an obligation to take reasonable precautions to ensure safe programs and facilities for all participants, spectators, and staff. Physical education and sports facilities that are poorly planned,…

  7. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  8. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  9. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2004-04-30

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  10. Target materials for exotic ISOL beams

    CERN Document Server

    Gottberg, A

    2016-01-01

    The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices t...

  11. Development and Validation of Pathogen Environmental Monitoring Programs for Small Cheese Processing Facilities.

    Science.gov (United States)

    Beno, Sarah M; Stasiewicz, Matthew J; Andrus, Alexis D; Ralyea, Robert D; Kent, David J; Martin, Nicole H; Wiedmann, Martin; Boor, Kathryn J

    2016-12-01

    Pathogen environmental monitoring programs (EMPs) are essential for food processing facilities of all sizes that produce ready-to-eat food products exposed to the processing environment. We developed, implemented, and evaluated EMPs targeting Listeria spp. and Salmonella in nine small cheese processing facilities, including seven farmstead facilities. Individual EMPs with monthly sample collection protocols were designed specifically for each facility. Salmonella was detected in only one facility, with likely introduction from the adjacent farm indicated by pulsed-field gel electrophoresis data. Listeria spp. were isolated from all nine facilities during routine sampling. The overall Listeria spp. (other than Listeria monocytogenes ) and L. monocytogenes prevalences in the 4,430 environmental samples collected were 6.03 and 1.35%, respectively. Molecular characterization and subtyping data suggested persistence of a given Listeria spp. strain in seven facilities and persistence of L. monocytogenes in four facilities. To assess routine sampling plans, validation sampling for Listeria spp. was performed in seven facilities after at least 6 months of routine sampling. This validation sampling was performed by independent individuals and included collection of 50 to 150 samples per facility, based on statistical sample size calculations. Two of the facilities had a significantly higher frequency of detection of Listeria spp. during the validation sampling than during routine sampling, whereas two other facilities had significantly lower frequencies of detection. This study provides a model for a science- and statistics-based approach to developing and validating pathogen EMPs.

  12. Canastota Renewable Energy Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Jillian; Hunt, Allen

    2013-12-13

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  13. Submarine Escape Set Test Facilities

    Directory of Open Access Journals (Sweden)

    G.S.N. Murthy

    2009-07-01

    Full Text Available Submarine Escape Set (SES is used by submariners to escape from a sunken submarine. This set caters for breathing needs of the submariner under water, until he reaches the surface. Evaluation of such life-saving equipment is of paramount importance. This paper describes the submarine escape set and various constructional features and schedules of operation of test facilities designed indegenously and which can evaluate the SES. The test facility is divided into two parts: the reducer test facility, and the breathing bag test facility. The equipment has been rigorously tested and accepted by Indian Navy. Two such test facilities have been developed, one of which is installed at INS Satavahana, Visakhapatnam, and are working satisfactorily.

  14. Facility effluent monitoring plan for the 325 Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  15. Facility effluent monitoring plan for the tank farm facility

    Energy Technology Data Exchange (ETDEWEB)

    Crummel, G.M.

    1998-05-18

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  16. Payment methods for outpatient care facilities

    Science.gov (United States)

    Yuan, Beibei; He, Li; Meng, Qingyue; Jia, Liying

    2017-01-01

    performance of health facilities, policymakers should carefully consider each component of their P4P design, including the choice of performance measures, the performance target, payment frequency, if there will be additional funding, whether the payment level is sufficient to change the behaviours of health providers, and whether the payment to facilities will be allocated to individual professionals. Unfortunately, the studies included in this review did not help to inform those considerations. Well-designed comparisons of different payment methods for outpatient health facilities in low- and middle-income countries and studies directly comparing different designs (e.g. different payment levels) of the same payment method (e.g. P4P or FFS) are needed. Payment methods for outpatient care facilities Review aim The aim of this Cochrane review was to assess the effect of different payment systems for outpatient care facilities. We collected and analysed all relevant studies to answer this question and included 21 studies. Key messages Pay-for-performance systems probably have only small benefits or make little or no difference to healthcare provider behaviour or patients' use of healthcare services. We are uncertain whether they cause harm. We are uncertain about the benefits and harms of other payments systems because the research is lacking or of very low certainty. What was studied in the review? Many healthcare services are offered to patients through outpatient facilities rather than to inpatients in hospitals. Outpatient facilities are also known as ambulatory care facilities, and include primary healthcare centres, outpatient clinics, urgent care centres, family planning centres, mental health centres, and dental clinics. Different systems to reimburse outpatient (ambulatory) care facilities for their services are available to governments and health insurers. These systems include: • budget systems, where the facility is given a fixed amount of money in advance to

  17. ANALYSIS OF TANK 28F SALTCAKE CORE SAMPLES FTF-456 - 467

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C; Daniel McCabe, D; Tommy Edwards, T; Ralph Nichols, R

    2007-02-28

    Twelve LM-75 core samplers from Tank 28F sampling were received by SRNL for saltcake characterization. Of these, nine samplers contained mixtures of free liquid and saltcake, two contained only liquid, and one was empty. The saltcake contents generally appeared wet. A summary of the major tasks performed in this work are as follows: (1) Individual saltcake segments were extruded from the samplers and separated into saltcake and free liquid portions. (2) Free liquids were analyzed to estimate the amount of traced drill-string fluid contained in the samples. (3) The saltcake from each individual segment was homogenized, followed by analysis in duplicate. The analysis used more cost-effective and bounding radiochemical analyses rather than using the full Saltstone WAC suite. (4) A composite was created using an approximately equal percentage of each segment's saltcake contents. Supernatant liquid formed upon creation of the composite was decanted prior to use of the composite, but the composite was not drained. (5) A dissolution test was performed on the sample by contacting the composite with water at a 4:1 mass ratio of water to salt. The resulting soluble and insoluble fractions were analyzed. Analysis focused on a large subset of the Saltstone WAC constituents.

  18. Development of cluster-jet targets: From COSY-11 to FAIR

    CERN Document Server

    Täschner, A; Otte, J; Rausmann, T; Khoukaz, A

    2014-01-01

    The development of cluster-jet targets of M\\"unster type is presented. Starting with the first target installed at the COSY-11 experiment the progress is described which was made at a cluster-jet target facility installed in M\\"unster leading to a prototype for a cluster-jet target for the upcoming PANDA experiment at FAIR.

  19. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  20. 340 Waste handling facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    Stordeur, R.T.

    1996-10-04

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  1. 340 waste handling facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  2. 10 CFR 611.206 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 611.206 Section 611.206 Energy... PROGRAM Facility/Funding Awards § 611.206 Existing facilities. The Secretary shall, in making awards to those manufacturers that have existing facilities, give priority to those facilities that are oldest or...

  3. 18 CFR 1317.410 - Comparable facilities.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Comparable facilities... facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to such facilities provided...

  4. Yields of fission products from various uranium and thorium targets

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A.; Spejewski, E.H.; Mervin, B.; Jost, C.; Carter, H.K. [Oak Ridge Associated Universities, Oak Ridge, TN 37831 (United States); Stracener, D.W. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Greene, J.P. [Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: greene@anl.gov; Nolen, J.A. [Argonne National Laboratory, Argonne, IL 60439 (United States); Talbert, W.L. [TechSource, Inc., Santa Fe, NM 87501 (United States)

    2008-10-15

    Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.

  5. Yields of Fission Products from Various Uranium and Thorium Targets

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, Andreas [Oak Ridge Associated Universities (ORAU); Spejewski, Eugene H. [Oak Ridge Associated Universities (ORAU); Mervin, Brenden T. [Oak Ridge Associated Universities (ORAU); Jost, Cara [Oak Ridge Associated Universities (ORAU); Carter, H Kennon [Oak Ridge Associated Universities (ORAU); Stracener, Daniel W [ORNL; Greene, John P. [Argonne National Laboratory (ANL); Nolen, Jerry A. [Argonne National Laboratory (ANL); Talbert, Willard L. [TechSource, Inc.

    2008-01-01

    Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.

  6. Yields of fission products from various uranium and thorium targets.

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A.; Spejewski, E. H.; Mervin, B.; Jost, C.; Carter, H. K.; Stracener, D. W.; Greene, J. P.; Nolen, J. A.; Talbert, W. L.; Physics; Oak Ridge Associated Univ.; ORNL; TechSource, Inc.

    2008-10-31

    Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.

  7. Low emissions combustor test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Hadley, M.S.; Norton, T.S.

    1993-12-01

    The Morgantown Energy Technology Center (METC) is in the process of constructing a low emissions combustor test and research (LECTR) facility designed to support the development of low emissions gas turbine combustion systems fired on natural gas and coal derived gaseous fuels containing fuel bound nitrogen. The LECTR facility is a major test station located within METC`s new combustion facility. The heart of this test station is a 60 centimeter (24 inch) diameter, refractory lined pressure vessel made up of a series of flanged modules. The facility design offers the flexibility to test a variety of low emissions combustion concepts at pressures up to 3 MPa (30 atm). Upon completion of fabrication and shake-down testing in January of 1994, the facility will be available for use by industrial and university partners through Cooperative Research and Development Agreements (CRADAs) or through other cooperative arrangements. This paper is intended to describe the LECTR facility and associated operating parameter ranges and to inform interested parties of the facility availability.

  8. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  9. Assisted Living Facilities - MO 2010 Long Term Care Facilities (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Long Term Care facilities (nursing homes) in Missouri - Data will not be made available for download via MSDIS. Interested parties should send an email inquiry to...

  10. Design of the NIF Cryogenic Target System

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, C; Baltz, J; Malsbury, T; Atkinson, D; Brugmann, V; Coffield, F; Edwards, O; Haid, B; Locke, S; Shiromizu, S; Skulina, K

    2008-06-10

    The United States Department of Energy has embarked on a campaign to conduct credible fusion ignition experiments on the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in 2010. The target assembly specified for this campaign requires the formation of a deuterium/tritium (DT) fuel ice layer in a 2 mm diameter capsule at the center of a 9 mm long by 5 mm diameter cylinder, called a hohlraum. The ice layer must be formed and maintained at temperatures below 20 K. At laser shot time, the target is positioned at the center of the NIF target chamber, aligned to the laser beams and held stable to less than 7 {micro}m rms. We have completed the final design of the Cryogenic Target System and are integrating the devices necessary to create, characterize and position the cryogenic target for ignition experiments. These designs, with supporting analysis and prototype test results, will be presented.

  11. Radiochemical aspects of liquid mercury spallation targets

    CERN Document Server

    Neuhausen, Joerg; Eichler, Bernd; Eller, Martin; Horn, Susanne; Schumann, Dorothea; Stora, Thierry

    2012-01-01

    Liquid metal spallation targets using mercury as target material are used in state-of-the-art high power pulsed neutron sources that have been constructed in the USA and Japan within the last decade. Similar target concepts were also proposed for next generation ISOL, beta-beam and neutrino facilities. A large amount of radioactivity will be induced in the liquid metal during operation caused by the interaction of the target material with the intense proton beam. This radioactivity - carried by a wide range of radioisotopes of all the elements of the periodic table from hydrogen up to thallium - must be considered for the assessment of safe operation and maintenance procedures as well as for a final disposal of the used target material and components. This report presents an overview on chemical investigations performed in our laboratory that deal with the behavior of radionuclides in proton irradiated mercury samples. The solubility of elements in mercury was calculated using thermodynamical data obtained by...

  12. Measurement of photoneutron spectrum at Pohang Neutron Facility

    CERN Document Server

    Kim, G N; Lee, Y S; Skoy, V; Cho, M H; Ko, I S; Namkung, W; Lee, D W; Kim, H D; Ko, S K; Park, S H; Kim, D S; Ro, T I; Min, Y G

    2002-01-01

    The Pohang Neutron Facility, an electron linear accelerator (linac) based pulsed neutron facility, was constructed for nuclear data production in Korea. It consists of an electron linac, a water-cooled Ta target with a water moderator, and a time-of-flight path with an 11 m length. The neutron energy spectra are measured for different water levels inside the moderator and compared with calculations by the Monte Carlo N-Particle transport code. The optimum size of the water moderator is determined based on these results.

  13. The Orbital Maneuvering Vehicle Training Facility visual system concept

    Science.gov (United States)

    Williams, Keith

    1989-01-01

    The purpose of the Orbital Maneuvering Vehicle (OMV) Training Facility (OTF) is to provide effective training for OMV pilots. A critical part of the training environment is the Visual System, which will simulate the video scenes produced by the OMV Closed-Circuit Television (CCTV) system. The simulation will include camera models, dynamic target models, moving appendages, and scene degradation due to the compression/decompression of video signal. Video system malfunctions will also be provided to ensure that the pilot is ready to meet all challenges the real-world might provide. One possible visual system configuration for the training facility that will meet existing requirements is described.

  14. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  15. The GENEPI accelerator operation feedback at the MASURCA reactor facility

    Science.gov (United States)

    Destouches, C.; Fruneau, M.; Belmont, J. L.; Do Pinhal, J.; Albrand, S.; Carreta, J. M.; Chaussonnet, P.; De Conto, J. M.; Fontenille, A.; Fougeras, P.; Garrigue, A.; Guisset, M.; Laurens, J. M.; Loiseaux, J. M.; Marchand, D.; Micoud, R.; Mellier, F.; Perbet, E.; Planet, M.; Ravel, J. C.; Richaud, J. P.

    2006-06-01

    The MUSE-4 experiment, dedicated to the Accelerator Driven System (ADS) development studies, was achieved in the MASURCA nuclear reactor facility from 2000 to 2004. An external neutron source was introduced in a lead buffer zone located at the centre of the reactor core in order to simulate the spallation source. This paper deals with the GENEPI accelerator operation feedback at the MASURCA reactor facility during the MUSE-4 experimental campaign. After a presentation of the MASURCA mock-up facility and of the experimental programme objectives, the different phases of the accelerator design and realization are detailed. Its installation in the MASURCA nuclear facility, achieved in June 2000, is described concerning the technical and administrative topics. Then, the accelerator operation feedback is given concerning maintenance, tritium target management, source monitoring, technical evolutions, etc. The accelerator partial dismantling, achieved in the first part of 2005, is also presented. In addition, the GENEPI contribution to the MUSE-4 programme is presented in terms of experimental results and experimental measurement method improvements. Also, GENEPI 2, an evolution of the GENEPI concept, is described. This accelerator, is coupled to the PEREN facility which is dedicated to the nuclear cross-section measurements. Last, this paper makes a synthesis of the GENEPI operation feedback at the MASURCA facility and proposes recommendations for future projects involving accelerators used in nuclear reactor environment.

  16. Safety systems and access control in the National Ignition Facility.

    Science.gov (United States)

    Reed, Robert K; Bell, Jayce C

    2013-06-01

    The National Ignition Facility (NIF) is the world's largest and most energetic laser system. The facility has the potential to generate ionizing radiation due to the interaction between the laser beams and target material, with neutrons and gamma rays being produced during deuterium-tritium fusion reactions. To perform these experiments, several types of hazards must be mitigated and controlled to ensure personnel safety. NIF uses a real-time safety system to monitor and mitigate the hazards presented by the facility. The NIF facility Safety Interlock System (SIS) monitors for oxygen deficiency and controls access to the facility preventing exposure to laser light and radiation from the Radiation Generating Devices. It also interfaces to radiation monitoring and other radiological monitoring and alarm systems. The SIS controls permissives to the hazard-generating equipment and annunciates hazard levels in the facility. To do this reliably and safely, the SIS has been designed as a fail-safe system with a proven performance record now spanning over 10 y. This paper discusses the SIS, its design, implementation, operator interfaces, validation/verification, and the hazard mitigation approaches employed in the NIF. A brief discussion of the Failure Modes and Effect Analysis supporting the SIS will also be presented. The paper ends with a general discussion of SIS do's and don'ts and common design flaws that should be avoided in SIS design.

  17. High-Average Power Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David H.; /SLAC; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  18. [Segment analysis of the target market of physiotherapeutic services].

    Science.gov (United States)

    Babaskin, D V

    2010-01-01

    The objective of the present study was to demonstrate the possibilities to analyse selected segments of the target market of physiotherapeutic services provided by medical and preventive-facilities of two major types. The main features of a target segment, such as provision of therapeutic massage, are illustrated in terms of two characteristics, namely attractiveness to the users and the ability of a given medical facility to satisfy their requirements. Based on the analysis of portfolio of the available target segments the most promising ones (winner segments) were selected for further marketing studies. This choice does not exclude the possibility of involvement of other segments of medical services in marketing activities.

  19. Facility effluent monitoring plan for 242-A evaporator facility

    Energy Technology Data Exchange (ETDEWEB)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

  20. The Zwicky Transient Facility

    Science.gov (United States)

    Kulkarni, Shrinivas R.

    2016-01-01

    The Zwicky Transient Facility (ZTF) has been designed with a singular focus: a systematic exploration of the night sky at a magnitude level well suited for spectral classification and follow up with the existing class of 4-m to 10-m class telescopes. ZTF is the successor to the Palomar Transient Factory (PTF). The discovery engine for ZTF is a 47 square degree camera (realized through 16 e2V monolithic CCDs) that fills the entire focal plane of the 48-inch Oschin telescope of the Palomar Observatory. Single 30-s epoch sensitivity is about 20.5 in g and R bands. The Infarared Processing & Analysis Center (IPAC) is the data center for ZTF. ZTF is a public-private partnership with equal contributions from a consortium of world-wide partners and an NSF MSIP grant. Forty percent of ZTF time is set aside for two major community surveys: a 3-day cadence survey of high latitudes (to mimic LSST) and a time domain survey of the entire Northern Galactic plane. We expect first light in February 2017 and begin a 3-year survey starting summer of 2017. The first year will be spent on building up deep reference images of the sky (a must for transient surveys). During the second year IPAC will deliver near archival quality photometric products within 12 hours of observations. By comparison to reference images photometric alerts will be sent out. Year 3 will see the near real-time release of image differencing products. A Community Science Advisory Committee (CSAC), chaired by S. Ridgway (NOAO), has been set up to both advise the PI and to ensure that the US community's interests are well served. Astronomers interested in getting a head start on ZTF may wish to peruse the data releases from PTF. Young people (or young at heart) may wish to attend the annual summer school on PTF/ZTF (August, Caltech campus). The Principal Investigator (PI) for the project is S. Kulkarni and the Project Scientist is Eric Bellm.For further details please consult http://www.ptf.caltech.edu/ztf