WorldWideScience

Sample records for facility esrf beamline

  1. Instrumentation of the ESRF medical imaging facility

    CERN Document Server

    Elleaume, H; Berkvens, P; Berruyer, G; Brochard, T; Dabin, Y; Domínguez, M C; Draperi, A; Fiedler, S; Goujon, G; Le Duc, G; Mattenet, M; Nemoz, C; Pérez, M; Renier, M; Schulze, C; Spanne, P; Suortti, P; Thomlinson, W; Estève, F; Bertrand, B; Le Bas, J F

    1999-01-01

    At the European Synchrotron Radiation Facility (ESRF) a beamport has been instrumented for medical research programs. Two facilities have been constructed for alternative operation. The first one is devoted to medical imaging and is focused on intravenous coronary angiography and computed tomography (CT). The second facility is dedicated to pre-clinical microbeam radiotherapy (MRT). This paper describes the instrumentation for the imaging facility. Two monochromators have been designed, both are based on bent silicon crystals in the Laue geometry. A versatile scanning device has been built for pre-alignment and scanning of the patient through the X-ray beam in radiography or CT modes. An intrinsic germanium detector is used together with large dynamic range electronics (16 bits) to acquire the data. The beamline is now at the end of its commissioning phase; intravenous coronary angiography is intended to start in 1999 with patients and the CT pre-clinical program is underway on small animals. The first in viv...

  2. New beamline dedicated to solution scattering from biological macromolecules at the ESRF

    Energy Technology Data Exchange (ETDEWEB)

    Pernot, P; Theveneau, P; Giraud, T; Fernandes, R Nogueira; Nurizzo, D; Spruce, D; Surr, J; McSweeney, S [ESRF, BP 220, Grenoble (France); Round, A; Felisaz, F; Foedinger, L; Gobbo, A; Huet, J; Villard, C; Cipriani, F, E-mail: rejma@esrf.f, E-mail: around@embl.f [EMBL Grenoble, BP 181, Grenoble (France)

    2010-10-01

    The new bio-SAXS beamline (ID14-3 at the ESRF, Grenoble, France) is dedicated exclusively to small-angle scattering experiments of biological macromolecules in solution and has been in user operation since November 2008. Originally a protein crystallography beamline, ID14-3 was refurbished, still as a part of the ESRF Structural Biology group, with the main aim to provide a facility with 'quick and easy' access to satisfy rapidly growing demands from crystallographers, biochemists and structural biologists. The beamline allows manual and automatic sample loading/unloading, data collection, processing (conversion of a 2D image to a normalized 1D X-ray scattering profile) and analysis. The users obtain on-line standard data concerning the size (radius of gyration, maximum dimension and volume) and molecular weight of samples which allow on-the fly ab-inito shape reconstruction in order to provide feedback enabling the data collection strategies to be optimized. Automation of sample loading is incorporated on the beamline using a device constructed in collaboration between the EMBL (Grenoble and Hamburg outstations) and the ESRF. Semi/automated data analysis is implemented following the model of the SAXS facility at X33, EMBL Hamburg. This paper describes the bio-SAXS beamline and set-up characteristics together with the examples of user data obtained.

  3. Rossendorf Beamline at ESRF (ROBL-CRG). Bi-annual report 2009/2010

    Energy Technology Data Exchange (ETDEWEB)

    Scheinost, Andreas C.; Baehtz, Carsten (eds.)

    2011-07-01

    The Rossendorf Beamline (ROBL) - located at BM20 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France - is in operation since 1998. This 7th report covers the period from January 2009 to December 2010. In these two years, 67 peer- reviewed papers have been published based on experiments done at the beamline, more than in any biannual period before. Six highlight reports have been selected for this report to demonstrate the scientific strength and diversity of the experiments performed on the two end-stations of the beamline, dedicated to Radiochemistry (RCH) and Materials Research (MRH). The beamtime was more heavily overbooked than ever before, with an acceptance rate of only 25% experiments. We would like to thank our external proposal review members, Prof. Andre Maes (KU Leuven, Belgium), Prof. Laurent Charlet (UJF Grenoble, France), Dr. Andreas Leinweber (MPI Metallforschung, Stuttgart, Germany), Prof. David Rafaja (TU Bergakademie Freiberg, Germany), Prof. Dirk Meyer (TU Dresden, Germany), who evaluated the inhouse proposals in a thorough manner, thereby ensuring that beamtime was distributed according to scientific merit. The period was not only characterized by very successful science, but also by intense work on the optics upgrade. In spring 2009, a workshop was held at ROBL, assembling beamline experts from German, Spanish and Swiss synchrotrons, to evaluate the best setup for the new optics. These suggestions was used to prepare the call for tender published in July 2009. From the tender acceptance in November 2009 on, a series of design review meetings and factory acceptance tests followed. Already in July 2010, the first piece of equipment was delivered, the new double-crystal, double-multilayer monochromator. The disassembly of the old optics components started end of July, 2011, followed by the installation of the new components. As of December 2011, the new optics have seen the first test beam and thorough hot commissioning will

  4. Small-angle X-ray scattering at the ESRF high-brillance beamline

    Energy Technology Data Exchange (ETDEWEB)

    Boesecke, P.; Diat, O. [European Synchrotron Radiation Facility (ESRF), 38 -Grenoble (France)

    1997-10-01

    The high-brilliance beamline (BL4/ID2) at the European synchrotron radiation facility (ESRF) in Grenoble has been constructed with the emphasis on time-resolved small-angle X-ray scattering and macromolecular crystallography. It has been open to users for two years. The beamline has opened up new areas in small-angle scattering research, facilitating (a) small-angle crystallography on structures with unit cells of several hundredths of nanometres, (b) overlap with the light scattering range for the study of optical systems, (c) high photon flux for time-resolved experiments and (d) a high spatial coherence allowing submicrometre imaging with X-rays. The set-up and the detector system of the small-angle scattering station are presented. A method for obtaining absolute scattering intensities is described. The parasitic background at the station is discussed in terms of absolute scattering intensities. (orig.). 22 refs.

  5. An industrial SR TXRF facility at ESRF

    Energy Technology Data Exchange (ETDEWEB)

    Comin, F.; Navizet, M.; Mangiagalli, P.; Apostolo, G

    1999-04-02

    A TXRF industrial facility for the mapping of trace impurities on the surface of 300 mm Silicon wafers is presently under construction at the ESRF, European Synchrotron Radiation Facility, in Grenoble (France) and its commissioning phase will start at the end of 1998. The elements to be detected range from Na to Hg with a target routine detection limit of 10{sup 8} atoms /cm{sup 2}. The facility is the result of a collaboration between the ESRF and some of the major European semiconductor companies in the framework of the MEDEA consortium. Preliminary experiments at ESRF reached a detection limit of 1.7x10{sup 8} for Ni atoms (17 fg) in not optimised experimental conditions. The facility will improve the detection limit by a factor of 50. However, this gain in sensitivity will be traded in the possibility of mapping the surface of 300 mm wafer with a resolution of 500 pixels and a throughput of three wafers/h.

  6. Progress at the ESRF multilayer facility

    Science.gov (United States)

    Morawe, Ch; Peffen, J. Ch; Friedrich, K.; Osterhoff, M.

    2013-03-01

    The ESRF multilayer (ML) deposition facility is fully operational since 2009. By the end of 2011, almost 50 ML projects were completed using the new machine, bringing the total number to 143 since 1998. Thanks to the new equipment and its improved performance the throughput could be significantly increased. The ESRF upgrade project caused strong demands for new ML optics, in particular dynamically bent KB focusing devices requiring very precise and steeply graded ML coatings. Thanks to this technology, the ESRF nano-imaging end-station ID22NI now provides the users with spot sizes of the order of 50×50 nm2 at a photon flux of 1012 ph/s. Among various in-house research and development activities the study of stress evolution during thin film and ML growth will be highlighted. Additional projects involving a PhD student and a PostDoc fellow cover the fields of wave optical simulations using curved MLs and the exposure of ML based monochromators to the white beam.

  7. The ID23-2 structural biology microfocus beamline at the ESRF

    Energy Technology Data Exchange (ETDEWEB)

    Flot, David, E-mail: flot@esrf.fr [European Molecular Biology Laboratory, 6 rue Jules Horowitz, BP 181, 38042 Grenoble (France); Mairs, Trevor; Giraud, Thierry; Guijarro, Matias; Lesourd, Marc; Rey, Vicente; Brussel, Denis van; Morawe, Christian; Borel, Christine; Hignette, Olivier; Chavanne, Joel; Nurizzo, Didier; McSweeney, Sean; Mitchell, Edward [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 181, 38043 Grenoble (France)

    2010-01-01

    Beamline ID23-2, the first dedicated and highly automated high-throughput monochromatic macromolecular crystallography microfocus beamline, is described. The first phase of the ESRF beamline ID23 to be constructed was ID23-1, a tunable MAD-capable beamline which opened to users in early 2004. The second phase of the beamline to be constructed is ID23-2, a monochromatic microfocus beamline dedicated to macromolecular crystallography experiments. Beamline ID23-2 makes use of well characterized optical elements: a single-bounce silicon (111) monochromator and two mirrors in Kirkpatrick–Baez geometry to focus the X-ray beam. A major design goal of the ID23-2 beamline is to provide a reliable, easy-to-use and routine microfocus beam. ID23-2 started operation in November 2005, as the first beamline dedicated to microfocus macromolecular crystallography. The beamline has taken the standard automated ESRF macromolecular crystallography environment (both hardware and software), allowing users of ID23-2 to be rapidly familiar with the microfocus environment. This paper describes the beamline design, the special considerations taken into account given the microfocus beam, and summarizes the results of the first years of the beamline operation.

  8. ROBL - a CRG beamline for radiochemistry and materials research at the ESRF

    Energy Technology Data Exchange (ETDEWEB)

    Matz, W.; Schell, N.; Bernhard, G.; Claussner, J.; Oehme, W.; Prokert, F.; Reich, T.; Schlenk, R.; Proehl, D.; Funke, H.; Eichhorn, F.; Betzl, M.; Dienel, S.; Brendler, V.; Denecke, M.A.; Krug, H.; Neumann, W.; Huettig, G.; Reichel, P.; Strauch, U.

    1999-04-01

    The paper describes the Rossendorf Beamline (ROBL) built by the Forschungszentrum Rossendorf at th ESRF. ROBL comprises two different and independently operating experimental stations: a radiochemistry laboratory for X-ray absorption spectroscopy of non-sealed radioactive samples and a general purpose materials research station for X-ray diffraction and reflectometry mainly of thin films and interfaces modified by ion beam techniques. The radiochemistry set-up is worldwide a unique installation at a modern synchrotron radiation source. (orig.) [Deutsch] Der Bericht beschreibt die Rossendorfer Beamline (ROBL), die vom Forschungszentrum Rossendorf an der ESRF errichtet wurde. ROBL besteht aus zwei unabhaengigen Messplaetzen: einem kleinen radiochemischen Labor fuer Roentgen-Adsorptionsspektroskopie an offenen radioaktiven Proben und einem Vielzweckmessplatz fuer Materialuntersuchungen insbesondere mit Roentgendiffraktion und Reflektometrie. Der Radiochemie-Messplatz ist eine weltweit unikale Einrichtung an einer modernen Synchrontronstrahlungsquelle. (orig.)

  9. Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pernot, Petra, E-mail: rejma@esrf.fr [ESRF, 6 Jules Horowitz, F-38043 Grenoble (France); Round, Adam [EMBL, 6 Jules Horowitz, F-38042 Grenoble (France); Barrett, Ray; De Maria Antolinos, Alejandro [ESRF, 6 Jules Horowitz, F-38043 Grenoble (France); Gobbo, Alexandre [EMBL, 6 Jules Horowitz, F-38042 Grenoble (France); Gordon, Elspeth [ESRF, 6 Jules Horowitz, F-38043 Grenoble (France); Huet, Julien [EMBL, 6 Jules Horowitz, F-38042 Grenoble (France); Kieffer, Jerôme; Lentini, Mario; Mattenet, Muriel; Morawe, Christian; Mueller-Dieckmann, Christoph; Ohlsson, Staffan; Schmid, Werner; Surr, John; Theveneau, Pascal; Zerrad, Louiza; McSweeney, Sean [ESRF, 6 Jules Horowitz, F-38043 Grenoble (France)

    2013-07-01

    A description of the new ESRF BioSAXS beamline is given. The beamline presented is dedicated to small-angle X-ray scattering of macromolecules in solution operating with a high-throughput sample-changer robot and automated data analysis for quality control and feedback. Small-angle X-ray scattering (SAXS) measurements of proteins in solution are becoming increasingly popular with biochemists and structural biologists owing to the presence of dedicated high-throughput beamlines at synchrotron sources. As part of the ESRF Upgrade program a dedicated instrument for performing SAXS from biological macromolecules in solution (BioSAXS) has been installed at the renovated BM29 location. The optics hutch has been equipped with new optical components of which the two principal elements are a fixed-exit double multilayer monochromator and a 1.1 m-long toroidal mirror. These new dedicated optics give improved beam characteristics (compared with the previous set-up on ID14-3) regarding the energy tunability, flux and focusing at the detector plane leading to reduced parasitic scattering and an extended s-range. User experiments on the beamline have been successfully carried out since June 2012. A description of the new BioSAXS beamline and the set-up characteristics are presented together with examples of obtained data.

  10. Effect of horizontal fast electron beam position feedback on the performance of ESRF beamlines

    CERN Document Server

    Pascarelli, S

    2001-01-01

    ESRF is a state of the art third generation synchrotron light source optimized to produce very bright and collimated hard X-ray beams using insertion devices. Instabilities of the electron beam, resulting in source point transverse displacements, spoil these outstanding beam qualities. At the beginning of operation a fast active feedback system was installed to damp the transverse motion of the electron beam in the vertical plane. Recently it became evident that also the relatively smaller horizontal instabilities may have specific detrimental effects on the operation of particularly sensitive beamlines. The dispersive XAS beamline (ID24) was the first to benefit from the activation of a local horizontal feedback. Optimized to perform time-resolved studies and high-pressure experiments, its operation was strongly perturbed. This paper briefly describes the work carried out to identify and solve these problems, presenting the outcome of the implementation of a fast orbit feedback on this beamline.

  11. The Rossendorf Beamline at ESRF (ROBL-CRG). Bi-annual report 2003/04

    Energy Technology Data Exchange (ETDEWEB)

    Scheinost, A.C.; Schell, N. (eds.)

    2005-01-01

    In this report the work performed at the Rossendorf beam-line at the ESRF is described. It concerns neptunium (IV) uptake by iron metalloproteins, in-situ speciation of actinides using a newly developed spectro-electrochemical cell, quantitative antimony speciation in Swiss shooting-range soils, in-situ studies of ITO film properties and structure during annealing in vacuum, high-temperature investigations of Si/SiGe based quantum cascade structures using X-ray diffraction and reflectivity, and in-situ characterization of stress states in copper dual inlaid interconnects at high temperatures by synchrotron X-ray diffraction. (HSI)

  12. Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution.

    Science.gov (United States)

    Pernot, Petra; Round, Adam; Barrett, Ray; De Maria Antolinos, Alejandro; Gobbo, Alexandre; Gordon, Elspeth; Huet, Julien; Kieffer, Jerôme; Lentini, Mario; Mattenet, Muriel; Morawe, Christian; Mueller-Dieckmann, Christoph; Ohlsson, Staffan; Schmid, Werner; Surr, John; Theveneau, Pascal; Zerrad, Louiza; McSweeney, Sean

    2013-07-01

    Small-angle X-ray scattering (SAXS) measurements of proteins in solution are becoming increasingly popular with biochemists and structural biologists owing to the presence of dedicated high-throughput beamlines at synchrotron sources. As part of the ESRF Upgrade program a dedicated instrument for performing SAXS from biological macromolecules in solution (BioSAXS) has been installed at the renovated BM29 location. The optics hutch has been equipped with new optical components of which the two principal elements are a fixed-exit double multilayer monochromator and a 1.1 m-long toroidal mirror. These new dedicated optics give improved beam characteristics (compared with the previous set-up on ID14-3) regarding the energy tunability, flux and focusing at the detector plane leading to reduced parasitic scattering and an extended s-range. User experiments on the beamline have been successfully carried out since June 2012. A description of the new BioSAXS beamline and the set-up characteristics are presented together with examples of obtained data.

  13. A decade of user operation on the macromolecular crystallography MAD beamline ID14-4 at the ESRF.

    Science.gov (United States)

    McCarthy, Andrew A; Brockhauser, Sandor; Nurizzo, Didier; Theveneau, Pascal; Mairs, Trevor; Spruce, Darren; Guijarro, Matias; Lesourd, Marc; Ravelli, Raimond B G; McSweeney, Sean

    2009-11-01

    ID14-4 at the ESRF is the first tunable undulator-based macromolecular crystallography beamline that can celebrate a decade of user service. During this time ID14-4 has not only been instrumental in the determination of the structures of biologically important molecules but has also contributed significantly to the development of various instruments, novel data collection schemes and pioneering radiation damage studies on biological samples. Here, the evolution of ID14-4 over the last decade is presented, and some of the major improvements that were carried out in order to maintain its status as one of the most productive macromolecular crystallography beamlines are highlighted. The experimental hutch has been upgraded to accommodate a high-precision diffractometer, a sample changer and a large CCD detector. More recently, the optical hutch has been refurbished in order to improve the X-ray beam quality on ID14-4 and to incorporate the most modern and robust optical elements used at other ESRF beamlines. These new optical elements will be described and their effect on beam stability discussed. These studies may be useful in the design, construction and maintenance of future X-ray beamlines for macromolecular crystallography and indeed other applications, such as those planned for the ESRF upgrade.

  14. A decade of user operation on the macromolecular crystallography MAD beamline ID14-4 at the ESRF

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Andrew A., E-mail: andrewmc@embl.fr; Brockhauser, Sandor [European Molecular Biology Laboratory, 6 rue Jules Horowitz, BP 181, 38042 Grenoble (France); Unit of Virus Host Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Nurizzo, Didier; Theveneau, Pascal; Mairs, Trevor; Spruce, Darren; Guijarro, Matias; Lesourd, Marc [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38042 Grenoble (France); Ravelli, Raimond B. G. [European Molecular Biology Laboratory, 6 rue Jules Horowitz, BP 181, 38042 Grenoble (France); McSweeney, Sean [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38042 Grenoble (France)

    2009-11-01

    The improvement of the X-ray beam quality achieved on ID14-4 by the installation of new X-ray optical elements is described. ID14-4 at the ESRF is the first tunable undulator-based macromolecular crystallography beamline that can celebrate a decade of user service. During this time ID14-4 has not only been instrumental in the determination of the structures of biologically important molecules but has also contributed significantly to the development of various instruments, novel data collection schemes and pioneering radiation damage studies on biological samples. Here, the evolution of ID14-4 over the last decade is presented, and some of the major improvements that were carried out in order to maintain its status as one of the most productive macromolecular crystallography beamlines are highlighted. The experimental hutch has been upgraded to accommodate a high-precision diffractometer, a sample changer and a large CCD detector. More recently, the optical hutch has been refurbished in order to improve the X-ray beam quality on ID14-4 and to incorporate the most modern and robust optical elements used at other ESRF beamlines. These new optical elements will be described and their effect on beam stability discussed. These studies may be useful in the design, construction and maintenance of future X-ray beamlines for macromolecular crystallography and indeed other applications, such as those planned for the ESRF upgrade.

  15. Facilitating best practices in collecting anomalous scattering data for de novo structure solution at the ESRF Structural Biology Beamlines

    Science.gov (United States)

    de Sanctis, Daniele; Oscarsson, Marcus; Popov, Alexander; Svensson, Olof; Leonard, Gordon

    2016-01-01

    The constant evolution of synchrotron structural biology beamlines, the viability of screening protein crystals for a wide range of heavy-atom derivatives, the advent of efficient protein labelling and the availability of automatic data-processing and structure-solution pipelines have combined to make de novo structure solution in macromolecular crystallography a less arduous task. Nevertheless, the collection of diffraction data of sufficient quality for experimental phasing is still a difficult and crucial step. Here, some examples of good data-collection practice for projects requiring experimental phasing are presented and recent developments at the ESRF Structural Biology beamlines that have facilitated these are illustrated. PMID:26960128

  16. In crystallo optical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF.

    Science.gov (United States)

    von Stetten, David; Giraud, Thierry; Carpentier, Philippe; Sever, Franc; Terrien, Maxime; Dobias, Fabien; Juers, Douglas H; Flot, David; Mueller-Dieckmann, Christoph; Leonard, Gordon A; de Sanctis, Daniele; Royant, Antoine

    2015-01-01

    The analysis of structural data obtained by X-ray crystallography benefits from information obtained from complementary techniques, especially as applied to the crystals themselves. As a consequence, optical spectroscopies in structural biology have become instrumental in assessing the relevance and context of many crystallographic results. Since the year 2000, it has been possible to record such data adjacent to, or directly on, the Structural Biology Group beamlines of the ESRF. A core laboratory featuring various spectrometers, named the Cryobench, is now in its third version and houses portable devices that can be directly mounted on beamlines. This paper reports the current status of the Cryobench, which is now located on the MAD beamline ID29 and is thus called the ID29S-Cryobench (where S stands for `spectroscopy'). It also reviews the diverse experiments that can be performed at the Cryobench, highlighting the various scientific questions that can be addressed.

  17. The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23

    Energy Technology Data Exchange (ETDEWEB)

    Mathon, O., E-mail: mathon@esrf.fr; Beteva, A.; Borrel, J.; Bugnazet, D.; Gatla, S.; Hino, R.; Kantor, I.; Mairs, T. [European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9 (France); Munoz, M. [European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9 (France); Université Joseph Fourier, 1381 rue de la Piscine, BP 53, 38041 Grenoble Cedex 9 (France); Pasternak, S.; Perrin, F.; Pascarelli, S. [European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9 (France)

    2015-10-17

    BM23 is the general-purpose EXAFS bending-magnet beamline at the ESRF, replacing the former BM29 beamline in the framework of the ESRF upgrade. Its mission is to serve the whole XAS user community by providing access to a basic service in addition to the many specialized instruments available at the ESRF. BM23 offers high-signal-to-noise ratio EXAFS in a large energy range (5–75 keV), continuous energy scanning for quick-EXAFS on the second timescale and a micro-XAS station delivering a spot size of 4 µm × 4 µm FWHM. BM23 is the general-purpose EXAFS bending-magnet beamline at the ESRF, replacing the former BM29 beamline in the framework of the ESRF upgrade. Its mission is to serve the whole XAS user community by providing access to a basic service in addition to the many specialized instruments available at the ESRF. BM23 offers high signal-to-noise ratio EXAFS in a large energy range (5–75 keV), continuous energy scanning for quick-EXAFS on the second timescale and a micro-XAS station delivering a spot size of 4 µm × 4 µm FWHM. It is a user-friendly facility featuring a high degree of automation, online EXAFS data reduction and a flexible sample environment.

  18. The status of the macromolecular crystallography beamlines at the European Synchrotron Radiation Facility

    Science.gov (United States)

    Mueller-Dieckmann, Christoph; Bowler, Matthew W.; Carpentier, Philippe; Flot, David; McCarthy, Andrew A.; Nanao, Max H.; Nurizzo, Didier; Pernot, Petra; Popov, Alexander; Round, Adam; Royant, Antoine; de Sanctis, Daniele; von Stetten, David; Leonard, Gordon A.

    2015-04-01

    The European Synchrotron Radiation Facility (ESRF) is the oldest and most powerful 3rd generation synchrotron in Europe, providing X-rays to more than 40 experimental stations welcoming several thousand researchers per year. A major success story has been the ESRF's facilities for macromolecular crystallography (MX). These are grouped around 3 straight sections: On ID23 canted undulators accommodate ID23-1, a mini-focus tuneable energy end station and ID23-2, the world's first micro-focus beamline dedicated to MX; ID29 houses a single, mini-focus, tuneable energy end station; ID30 will provide three end stations for MX due in operation from mid-2014 to early 2015. Here, one branch of a canted X-ray source feeds two fixed-energy end stations (MASSIF-1, MASSIF-3). The second feeds ID30B, a variable focus, tuneable energy beamline. MASSIF-1 is optimised for automatic high-throughput experiments requiring a relatively large beam size at the sample position, MASSIF-3 is a high-intensity, micro-focus facility designed to complement ID23-2. All end stations are highly automated, equipped with sample mounting robots and large area, fast-readout photon-counting detectors. Experiment control and tracking is achieved via a combination of the MXCuBE2 graphical user interface and the ISPyB database, the former allowing user-friendly control of all beamline components, the latter providing data tracking before, after and during experiments.

  19. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32

    Science.gov (United States)

    Kummer, K.; Fondacaro, A.; Jimenez, E.; Velez-Fort, E.; Amorese, A.; Aspbury, M.; Yakhou-Harris, F.; van der Linden, P.; Brookes, N. B.

    2016-01-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014. PMID:26917134

  20. Control and Data Acquisitions System for the spanish Beamline (BM25) at the ESRF; Sistema de Control y Acquisicion de Datos para la Linea Espanola (BN25) del ESRF

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Gonzalez, A.; Olalla Garcia, C.; Sanchez Sanz, J.; Castro, G. R.

    2005-07-01

    A new control and data acquisition system has been developed for BM25 Spanish Line at the ESRF. The system is based in VMEbus, Motorola PreP architecture and Linux Operating System and it's linked to a local ETHERNET network which provides the way of communicate with the servers (PC workstations). In these computers, the data are available for general usage in order to analyze them. The data acquisition consists of many channels connected to the VME crates mainly, independent between them, and fully programmable by drivers, CLUI's and GUI's interfaces, and a set of independent systems (embedded ones, PLCs, others) controlling the security aspects. This report is described in terms of their architecture, their electronic system to the process hard ware and the functionality and the application development facilities they provide using the software and the data acquisition. (Author) 18 refs.

  1. The In situ growth of Nanostructures on Surfaces (INS) endstation of the ESRF BM32 beamline: a combined UHV-CVD and MBE reactor for in situ X-ray scattering investigations of growing nanoparticles and semiconductor nanowires.

    Science.gov (United States)

    Cantelli, V; Geaymond, O; Ulrich, O; Zhou, T; Blanc, N; Renaud, G

    2015-05-01

    This paper presents the upgraded `In situ growth of Nanoscructures on Surfaces' (INS) endstation of the InterFace beamline IF-BM32 at the European Synchrotron Radiation Facility (ESRF). This instrument, originally designed to investigate the structure of clean surfaces/interfaces/thin-films by surface X-ray diffraction, has been further developed to investigate the formation and evolution of nanostructures by combining small- and wide-angle X-ray scattering methodologies, i.e. grazing-incidence small-angle X-ray scattering (GISAXS) and grazing-incidence X-ray diffraction (GIXD). It consists of a UHV chamber mounted on a z-axis type goniometer, equipped with residual gas analysis, reflection high-energy electron diffraction (RHEED) and Auger electron spectroscopy (AES) to complete the X-ray scattering investigations. The chamber has been developed so as up to eight sources of molecular beam epitaxy (MBE) can be simultaneously mounted to elaborate the nanostructures. A chemical vapor deposition (CVD) set-up has been added to expand the range of growing possibilities, in particular to investigate in situ the growth of semiconductor nanowires. This setup is presented in some detail, as well as the first in situ X-ray scattering measurements during the growth of silicon nanowires.

  2. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introduced briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.

  3. Canadian macromolecular crystallography facility: a suite of fully automated beamlines.

    Science.gov (United States)

    Grochulski, Pawel; Fodje, Michel; Labiuk, Shaunivan; Gorin, James; Janzen, Kathryn; Berg, Russ

    2012-06-01

    The Canadian light source is a 2.9 GeV national synchrotron radiation facility located on the University of Saskatchewan campus in Saskatoon. The small-gap in-vacuum undulator illuminated beamline, 08ID-1, together with the bending magnet beamline, 08B1-1, constitute the Canadian Macromolecular Crystallography Facility (CMCF). The CMCF provides service to more than 50 Principal Investigators in Canada and the United States. Up to 25% of the beam time is devoted to commercial users and the general user program is guaranteed up to 55% of the useful beam time through a peer-review process. CMCF staff provides "Mail-In" crystallography service to users with the highest scored proposals. Both beamlines are equipped with very robust end-stations including on-axis visualization systems, Rayonix 300 CCD series detectors and Stanford-type robotic sample auto-mounters. MxDC, an in-house developed beamline control system, is integrated with a data processing module, AutoProcess, allowing full automation of data collection and data processing with minimal human intervention. Sample management and remote monitoring of experiments is enabled through interaction with a Laboratory Information Management System developed at the facility.

  4. Absorbed dose distributions in a tissue-equivalent absorber for Bremsstrahlung produced at the beamlines of the European Synchrotron Radiation Facility

    CERN Document Server

    Pisharody, M; Berkvens, P; Colomp, P

    2000-01-01

    The absorbed-dose distributions for Bremsstrahlung, incident on a tissue-equivalent phantom, were measured with LiF : Mg,Ti thermoluminescent dosimeters at two insertion device beamlines of the European Synchrotron Radiation Facility (ESRF). The measurements were carried out for two different electron beam energies of 4 and 6 GeV. The corresponding Bremsstrahlung spectra and power were measured using a high-resolution lead glass total absorption calorimeter. The results are compared with similar measurements carried out at other facilities. The normalized Bremsstrahlung absorbed dose in a cross-sectional area of 100 mm sup sup 2 , at a depth of 150 mm of the phantom, was measured as 6.1 and 3.6 kGy h sup sup - sup sup 1 W sup sup - sup sup 1 for the corresponding Bremsstrahlung spectra of 4 and 6 GeV.

  5. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography. (LSP)

  6. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang [Columbia Univ., New York, NY; Frenkel, Anatoly [Yeshiva Univ., New York, NY (United States); Rodriguez, Jose [Brookhaven National Lab. (BNL), Upton, NY (United States); Adzic, Radoslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Bare, Simon R. [UOP LLC, Des Plaines, IL (United States); Hulbert, Steve L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karim, Ayman [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullins, David R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steve [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  7. Status of the ELIMED Beamline at the ELIMAIA facility

    Science.gov (United States)

    Schillaci, F.; Cirrone, G. A. P.; Cuttone, G.; Romano, F.; Scuderi, V.; Allegra, L.; Amato, A.; Andó, L.; Costa, M.; Gallo, G.; Leanza, R.; Maggiore, M.; Milluzzo, G.; Petringa, G.; Pipek, J.; Russo, A. D.; Korn, G.; Margarone, D.; Leray, M. J.; Tasset-Maye, O.; Antoine, S.; Jehanno, P.

    2016-12-01

    Laser-target acceleration represents a very promising alternative to conventional accelerators for several potential applications, from the nuclear physics to the medical ones. However, some extreme features, not suitable for multidisciplinary applications, as the wide energy and angular spreads, characterize optically accelerated ion beams. Therefore, beyond the improvements at the laser-target interaction level, a lot of efforts have been recently devoted to the development of specific beam-transport devices in order to obtain controlled and reproducible output beams. In this framework, a three years contract has been signed between the INFN-LNS (IT) and Eli-Beamlines-IoP (CZ) to provide the design and the realization of a complete transport beam-line, named ELIMED, dedicated to the transport, diagnostics and dosimetry of laser-driven ion beams. The transport devices will be composed by a set of super-strong permanent magnet quadrupoles able to collect and focus laser driven ions up to 70 MeV/u, and a magnetic chicane made of conventional electromagnetic dipoles to select particles within a narrow energy range. Here, the actual status of the design and development of these magnetic systems is described.

  8. Undulator beamline optimization with integrated chicanes for X-ray free-electron-laser facilities.

    Science.gov (United States)

    Prat, Eduard; Calvi, Marco; Ganter, Romain; Reiche, Sven; Schietinger, Thomas; Schmidt, Thomas

    2016-07-01

    An optimization of the undulator layout of X-ray free-electron-laser (FEL) facilities based on placing small chicanes between the undulator modules is presented. The installation of magnetic chicanes offers the following benefits with respect to state-of-the-art FEL facilities: reduction of the required undulator length to achieve FEL saturation, improvement of the longitudinal coherence of the FEL pulses, and the ability to produce shorter FEL pulses with higher power levels. Numerical simulations performed for the soft X-ray beamline of the SwissFEL facility show that optimizing the advantages of the layout requires shorter undulator modules than the standard ones. This proposal allows a very compact undulator beamline that produces fully coherent FEL pulses and it makes possible new kinds of experiments that require very short and high-power FEL pulses.

  9. 16. ESRF users meeting

    Energy Technology Data Exchange (ETDEWEB)

    Coraux, J.; Renevier, H.; Favre-Nicolin, V.; Daudin, B.; Proietti, M.G.; Renaud, G.; Fowler, B.; Mercer, D.L.; Omar, A.H.; Thompson, P.; Markovic, N.M.; Stamenkovic, V.; Lucas, C.A.; Andrejczuk, A.; Kwiatkowska, J.; Dobrzynski, L.; Zukowski, E.; Bellin, Ch.; Loupias, G.; Shukla, A.; Buslaps, Th.; Stankov, S.; Sladecek, M.; Slezak, T.; Korecki, J.; Spiridis, N.; Sepiol, B.; Vogl, G.; Chumakov, A.; Ruffer, R.; Hermann, R.P.; Grandjean, F.; Schweika, W.; Long, G.J.; Leupold, O.; Belrhall, H.; Caserotto, H.; Dauvergne, F.; Geoffroy, L.; Guljarro, M.; Launer, L.; Levault, B.; Walsh, M.; Beckers, M.; Schell, N.; Martins, R.M.S.; Mucklich, A.; Moller, W.; Silva, R.J.C.; Mahesh, K.K.; Braz Fernandes, F.M.; Tejas, Parikh; Neil, Fellows; Durodola, J.; Slawinski, W.; Przenioslo, R.; Sosnowska, I.; Suard, E

    2006-07-01

    This document gathers the posters that were presented during the poster session of this workshop. These posters highlight the results obtained by ESRF'users in different fields such as surface structure, Compton scattering studies, localized vibrational modes in thermoelectric materials, Ni-Ti thin films, residual stresses in superconducting wires, and changes in crystal and magnetic structure of NdFeO{sub 3}.

  10. Highlights from e-EPS: New milestone for ELI Beamlines facility

    CERN Multimedia

    Jorge Rivero González, e-EPS News

    2013-01-01

    e-EPS News is a monthly addition to the CERN Bulletin line-up, showcasing articles from e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   On 16 September 2013, the Extreme Light Infrastructure (ELI) Beamlines facility awarded a contract worth approximately €34.5m to Lawrence Livermore National Security LLC (LLNS, California, USA) to develop and deliver a state-of-the-art laser system that will be at the heart of the ELI Beamlines user facility. Located in the village of Dolní Břežany, Czech Republic, the ELI Beamlines facility aims to pioneer work in a number of research fields using ultra-high intensity lasers. The facility will host a cutting-edge research laser, around 100 times more powerful than any other laser in operation today. In particular, it will focus on providing users with ultra-short energetic particle beams (10 GeV) and radiation beams (up to a few MeV), produced by...

  11. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    Science.gov (United States)

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  12. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments.

    Science.gov (United States)

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren; Bowler, Matthew W; Brockhauser, Sandor; Flot, David; Gordon, Elspeth J; Hall, David R; Lavault, Bernard; McCarthy, Andrew A; McCarthy, Joanne; Mitchell, Edward; Monaco, Stéphanie; Mueller-Dieckmann, Christoph; Nurizzo, Didier; Ravelli, Raimond B G; Thibault, Xavier; Walsh, Martin A; Leonard, Gordon A; McSweeney, Sean M

    2010-09-01

    The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1.

  13. 15. ESRF users meeting

    Energy Technology Data Exchange (ETDEWEB)

    Fotis C, Kafatos; Ulrich, K.U.; Weib, S.; Rossberg, A.; Scheinost, A.C.; Foerstendorf, H.; Zanker, H.; Meyerheim, H.L.; Sander, D.; Popescu, R.; Kirschner, J.; Robach, O.; Ferrer, S.; Lyman, P.F.; Shneerson, V.L.; Fung, R.; Harder, R.J.; Parihar, S.S.; Johnson-Steigelman, H.T.; Lu, E.D.; Saldin, D.K.; Eastwood, D.S.; Atkinson, D.; Tanner, B.K.; Hase, T.P.A.; Van Kampen, M.; Hjorvarsson, B.; Brown, S.; Thompson, P.; Konovalov, O.; Saint-Martin, E.; Daillant, J.; Luzet, D.; Szlachetko, J.; Barrett, R.; Berset, M.; Dousse, J.C.; Fennane, K.; Hoszowska, J.; Kubala-Kukus, A.; Pajek, M.; Szlachetko, M.; Monaco, A.; Chumakov, A.; Crichton, W.; Van Buerck, I.; Wortmann, G.; Meyer, A.; Ponkratz, U.; Ruffer, R.; Sakurai, Y.; Hiraoka, N.; Itou, M.; Buslaps, T.; Honkimki, V.; Maeno, Y.; Collart, E.; Shukla, A.; Rueff, J.P.; Leininger, Ph.; Ishii, H.; Cai, Y.; Cheong, S.W.; Martins, R.M.S.; Schell, N.; Beckers, M.; Silva, R.; Braz Fernandes, F.M.; Acapito, F.; Seta, M. de; Capelini, G.; Giorgi, M.; Schorr, G.; Geandier, G.; Alves Marques, M.; Barros Marquesa, M.I. de; Cabaco, M.I.; Gaspara, A.M.; Marques, M.P.M.; Amado, A.M.; Amorim da Costa, A.M.; Bruneseaux, F.; Weisbecker, P.; Brandao, M.J.; Aeby-Gautier, E.; Simmonds, H.; Lei, C.; Das, A.; Trolley, D.; Thomas, H.E.; Macdonald, J.E.; Wiegart, L.; Tolan, M.; Struth, B.; Petukhov, A.V.; Thijssen, J.H.J.; Hart, D.C.; Imhof, A.; Van Blaaderen, A.; Dolbnya, I.P.; Snigirev, A.; Mossaid, A.; Snigireva, I.; Reconditi, M.; Brunello, E

    2005-07-01

    This document gathers the posters presented on the one day and a half long plenary meeting workshop. This meeting workshop is a privileged forum where ESRF users can exchange their views on the latest scientific and technical development involving synchrotron radiation. One poster deals with the investigation of colloid composition and uranium bond structure to see whether the migration of contaminants from abandoned mines could be stimulated or attenuated by colloids. Another poster is dedicated to the investigation of the uranium speciation in covered mine tailings by a combination of micro-spectroscopic and wet chemical approaches. 2 posters deal with the contribution of synchrotron radiation to radiotherapy.

  14. Radiation field characterization and shielding studies for the ELI Beamlines facility

    Science.gov (United States)

    Ferrari, A.; Amato, E.; Margarone, D.; Cowan, T.; Korn, G.

    2013-05-01

    The ELI (Extreme Light Infrastructure) Beamlines facility in the Czech Republic, which is planned to complete the installation in 2015, is one of the four pillars of the ELI European project. Several laser beamlines with ultrahigh intensities and ultrashort pulses are foreseen, offering versatile radiation sources in an unprecedented energy range: laser-driven particle beams are expected to range between 1 and 50 GeV for electrons and from 100 MeV up to 3 GeV for protons. The number of particles delivered per laser shot is estimated to be 109-1010 for the electron beams and 1010-1012 for the proton beams. The high energy and current values of the produced particles, together with the potentiality to operate at 10 Hz laser repetition rate, require an accurate study of the primary and secondary radiation fields to optimize appropriate shielding solutions: this is a key issue to minimize prompt and residual doses in order to protect the personnel, reduce the radiation damage of electronic devices and avoid strong limitations in the operational time. A general shielding study for the 10 PW (0.016 Hz) and 2 PW (10 Hz) laser beamlines is presented here. Starting from analytical calculations, as well as from dedicated simulations, the main electron and proton fields produced in the laser-matter interaction have been described and used to characterize the "source terms" in full simulations with the Monte Carlo code FLUKA. The secondary radiation fields have been then analyzed to assess a proper shielding. The results of this study and the proposed solutions for the beam dumps of the high energy beamlines, together with a cross-check analysis performed with the Monte Carlo code GEANT4, are presented.

  15. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellent training for students and postdoctoral scientists in the field.

  16. A new experiment station on beamline 4B7A at Beijing Synchrotron Radiation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L., E-mail: zhenglei@ihep.ac.cn; Zhao, Y.D.; Tang, K.; Ma, C.Y.; Hong, C.H.; Han, Y.; Cui, M.Q.; Guo, Z.Y.

    2014-11-01

    A new experiment station was installed on beamline 4B7A at Beijing Synchrotron Radiation Facility (BSRF), making it possible to record X-ray absorption fine structure (XAFS) spectrum in three modes over an energy range from 1750 eV to 6000 eV. A 13-element Si(Li) array detector and a single-element SDD detector were used to acquire data in partial fluorescence yield (PFY) mode. Two low-pressure noble gas ion chambers were adopted for measuring XAFS in transmission mode. In total electron yield (TEY) mode the current of sample is recorded. Solid, wet and liquid samples were suitable for this experimental station. Some representative results obtained from this station were shown and discussed. - Highlights: • A new experiment station was installed on beamline 4B7A at BSRF. • This experiment station has three modes for recording X-ray XAFS spectrum. • The energy region covers the K-edge of elements Si, P, S, Cl, K, Ca and Ti. • Solid, wet and liquid samples can be measured in this experiment station.

  17. Workshop on surface and interface science at the ESRF

    Energy Technology Data Exchange (ETDEWEB)

    Norris, C.; Stierle, A.; Kasper, N.; Dosch, H.; Schmidt, S.; Hufner, S.; Moritz, W.; Fedley, Ch.S.; Rossi, G.; Durr Hermann, A.; Rohlsberger, R.; Dalmas, J.; Oughaddou, H.; Leandri, Ch.; Gay, J.M.; Treglia, G.; Le Lay, G.; Aufray, B.; Bunk, O.; Johnson, R.L.; Frenken, J.W.M.; Lucas, C.A.; Bauer, G.; Zhong, Z.; Springholz, G.; Lechner, R.; Stang, J.; Schulli, T.; Metzger, T.H.; Holy, V.; Woodruff, D.P.; Dellera, C.; Zegenhagen, J.; Robinson, I.; Malachias, A.; Schulli, T.U.; Magalhaes-Paniago, R.; Stoffel, M.; Schmidt, O.G.; Boragno, C.; Buatier de Mongeot, F.; Valbusa, U.; Felici, R.; Yacoby, Y.; Bedzyk, M.J.; Van der Veen, J.F

    2004-07-01

    The main aim of the workshop is to reflect the future of surface and interface research at the high brilliance synchrotron radiation source ESRF taking into account experimental facilities which are becoming available at new synchrotron radiation facilities in Europe. 6 sessions have been organized: 1) surface and interface research and synchrotron radiation - today and tomorrow -, 2) aspects of surface and interface research, 3) real surfaces and interfaces, 4) synchrotron techniques in surface and interface research, 5) new directions in surface and interface research, and 6) surface and interface science at ESRF. This document gathers the abstracts of the presentations.

  18. A new experiment station on beamline 4B7A at Beijing Synchrotron Radiation Facility

    Science.gov (United States)

    Zheng, L.; Zhao, Y. D.; Tang, K.; Ma, C. Y.; Hong, C. H.; Han, Y.; Cui, M. Q.; Guo, Z. Y.

    2014-11-01

    A new experiment station was installed on beamline 4B7A at Beijing Synchrotron Radiation Facility (BSRF), making it possible to record X-ray absorption fine structure (XAFS) spectrum in three modes over an energy range from 1750 eV to 6000 eV. A 13-element Si(Li) array detector and a single-element SDD detector were used to acquire data in partial fluorescence yield (PFY) mode. Two low-pressure noble gas ion chambers were adopted for measuring XAFS in transmission mode. In total electron yield (TEY) mode the current of sample is recorded. Solid, wet and liquid samples were suitable for this experimental station. Some representative results obtained from this station were shown and discussed.

  19. A white-beam fast-shutter for microbeam radiation therapy at the ESRF

    CERN Document Server

    Renier, M; Nemoz, C; Thomlinson, W

    2002-01-01

    The ID17 Medical Beamline port at the European Synchrotron Radiation Facility (ESRF) delivers white beam generated by a 1.4 T wiggler. It is devoted to medical applications of synchrotron radiation. One major program of the beamline is called Microbeam Radiation Therapy (MRT). In this radiotherapy technique, still under development, the white beam fan is divided into several microbeams before reaching the target which is a tumoral brain. The maximum skin-entrance absorbed dose can reach extremely high values (over 1000 Gy) before causing tissue necrosis, while causing tumor necrosis. One of the key parameters for the success of the MRT is the accurate control of the radiation dose delivered to the target, as well as its location with respect to the tumor, to prevent unnecessary damage to normal tissues. Therefore, the opening and closing positions of the shutter while the target is moving vertically at a constant speed reaching 150 mm/s must be carefully controlled. Shutter opening times as short as 5+-0.5 ms...

  20. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    Energy Technology Data Exchange (ETDEWEB)

    Wysokinski, Tomasz W., E-mail: bmit@lightsource.ca [Canadian Light Source, Saskatoon, SK (Canada); Chapman, Dean [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Adams, Gregg [Western College of Veterinary Medicine, Saskatoon, SK (Canada); Renier, Michel [European Synchrotron Radiation Facility, Grenoble (France); Suortti, Pekka [Department of Physics, University of Helsinki (Finland); Thomlinson, William [Department of Physics, University of Saskatchewan, Saskatoon, SK (Canada)

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  1. Status of NEG Coating at ESRF

    CERN Document Server

    Hahn, Michael

    2005-01-01

    The ESRF non-evaporable getter (NEG) coating facility is in operation since two years now. A large part of the insertion device straight sections of the electron storage ring has been equipped with in-house coated 5m long aluminum vacuum chambers with an inner vertical aperture of 8 mm. Operational experience with different coating parameters leading to different film thicknesses will be given and compared to bremsstrahlung data. The paper deals also with improvements of the coating production and chamber preparation, and describes some aspects of NEG coating data acquisition, visualization, and remote control. The R&D program leading to a more powerful DC solenoidal coating tool to further improve the NEG coating production throughput and quality aspects is also discussed.

  2. Jet-Cooled Spectroscopy on the Ailes Infrared Beamline of the Synchrotron Radiation Facility Soleil

    Science.gov (United States)

    Georges, Robert

    2015-06-01

    The Advanced Infrared Line Exploited for Spectroscopy (AILES) extracts the bright far infrared (FIR) synchrotron continuum of the third generation radiation facility SOLEIL. This beamline is equipped with a high resolution (10-3 cm-1) Bruker IFS125 Fourier transform spectrometer which can be operated in the FIR but also in the mid and near infrared by using its internal conventional sources. The jet-AILES consortium (IPR, PhLAM, MONARIS, SOLEIL) has implemented a supersonic-jet apparatus on the beamline to record absorption spectra at very low temperature (5-50 K) and in highly supersaturated gaseous conditions. Heatable slit-nozzles of various lengths and widths are used to set properly the stagnation conditions. A mechanical pumping (roots pumps) was preferred for its ability to evacuate important mass flow rates and therefore to boost the experimental sensitivity of the set-up, the counterpart being a non-negligible consumption of both carrier (argon, helium or nitrogen) and spectroscopic gases. Various molecular systems were investigated up to now using the Jet-AILES apparatus. The very low temperature achieved in the gas expansion was either used to simplify the rotation-vibration structure of monomers, such as SF6, CF4 or naphthalene, or to stabilize the formation of weakly bonded molecular complexes such as the trimer of HF or the dimer of acetic acid. The nucleation of water vapor and the nuclear spin conversion of water were also investigated under free-jet conditions in the mid infrared. High-resolution spectroscopy and analysis of the νb{2} + νb{3} combination band of SF6 in a supersonic jet expansion. V. Boudon, P. Asselin, P. Soulard, M. Goubet, T. R. Huet, R. Georges, O. Pirali, P. Roy, Mol. Phys. 111, 2154-2162 (2013) The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations. O. Pirali, M. Goubet, T.R. Huet, R. Georges, P. Soulard, P. Asselin, J. Courbe, P. Roy and M

  3. The Structural Biology Center 19ID undulator beamline: facility specifications and protein crystallographic results.

    Science.gov (United States)

    Rosenbaum, Gerd; Alkire, Randy W; Evans, Gwyndaf; Rotella, Frank J; Lazarski, Krzystof; Zhang, Rong Guang; Ginell, Stephan L; Duke, Norma; Naday, Istvan; Lazarz, Jack; Molitsky, Michael J; Keefe, Lisa; Gonczy, John; Rock, Larry; Sanishvili, Ruslan; Walsh, Martin A; Westbrook, Edwin; Joachimiak, Andrzej

    2006-01-01

    The 19ID undulator beamline of the Structure Biology Center has been designed and built to take full advantage of the high flux, brilliance and quality of X-ray beams delivered by the Advanced Photon Source. The beamline optics are capable of delivering monochromatic X-rays with photon energies from 3.5 to 20 keV (3.5-0.6 A wavelength) with fluxes up to 8-18 x 10(12) photons s(-1) (depending on photon energy) onto cryogenically cooled crystal samples. The size of the beam (full width at half-maximum) at the sample position can be varied from 2.2 mm x 1.0 mm (horizontal x vertical, unfocused) to 0.083 mm x 0.020 mm in its fully focused configuration. Specimen-to-detector distances of between 100 mm and 1500 mm can be used. The high flexibility, inherent in the design of the optics, coupled with a kappa-geometry goniometer and beamline control software allows optimal strategies to be adopted in protein crystallographic experiments, thus maximizing the chances of their success. A large-area mosaic 3 x 3 CCD detector allows high-quality diffraction data to be measured rapidly to the crystal diffraction limits. The beamline layout and the X-ray optical and endstation components are described in detail, and the results of representative crystallographic experiments are presented.

  4. Design, construction, and demonstration of a neutron beamline and a neutron imaging facility at a Mark-I TRIGA reactor

    Science.gov (United States)

    Craft, Aaron E.

    The fleet of research and training reactors is aging, and no new research reactors are planned in the United States. Thus, there is a need to expand the capabilities of existing reactors to meet users' needs. While many research reactors have beam port facilities, the original design of the United States Geological Survey TRIGA Reactor (GSTR) did not include beam ports. The MInes NEutron Radiography (MINER) facility developed by this thesis and installed at the GSTR provides new capabilities for both researchers and students at the Colorado School of Mines. The facility consists of a number of components, including a neutron beamline and beamstop, an optical table, an experimental enclosure and associated interlocks, a computer control system, a multi-channel plate imaging detector, and the associated electronics. The neutron beam source location, determined through Monte Carlo modeling, provides the best mixture of high neutron flux, high thermal neutron content, and low gamma radiation content. A Monte Carlo n-Particle (MCNP) model of the neutron beam provides researchers with a tool for designing experiments before placing objects in the neutron beam. Experimental multi-foil activation results, compared to calculated multi-foil activation results, verify the model. The MCNP model predicts a neutron beamline flux of 2.2*106 +/- 6.4*105 n/cm2-s based on a source particle rate determined from the foil activation experiments when the reactor is operating at a power of 950 kWt with the beam shutter fully open. The average cadmium ratio of the beamline is 7.4, and the L/D of the neutron beam is approximately 200+/-10. Radiographs of a sensitivity indicator taken using both the digital detector and the transfer foil method provide one demonstration of the radiographic capabilities of the new facility. Calibration fuel pins manufactured using copper and stainless steel surrogate fuel pellets provide additional specimens for demonstration of the new facility and offer a

  5. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    Science.gov (United States)

    Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Spagnolo, S.; Spolaore, M.; Veltri, P.

    2016-11-01

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  6. Beamline for Schools 2016

    CERN Multimedia

    2016-01-01

    Two teams of high-school students from the UK and Poland had the opportunity to conduct their own experiments at a fully equipped CERN beamline. Two teams of high-school students from the UK and Poland had the opportunity to conduct their own experiments at a fully equipped CERN beamline, after winning the Beamline for Schools competition. The teams, ‘Pyramid Hunters’ from Poland and ‘Relatively Special’ from the United Kingdom, spent 10 days at CERN conducting the experiments they had dreamt up in their winning proposals. The Beamline for Schools competition gives high-school students the chance to run an experiment on a fully equipped CERN beamline, in the same way researchers do at the Large Hadron Collider and other CERN facilities every day. 

  7. MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Matthew W., E-mail: mbowler@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, F-38042 Grenoble (France); Université Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, F-38042 Grenoble (France); Nurizzo, Didier, E-mail: mbowler@embl.fr; Barrett, Ray; Beteva, Antonia; Bodin, Marjolaine [European Synchrotron Radiation Facility, 71 avenue des Martyrs, F-38043 Grenoble (France)

    2015-10-03

    MASSIF-1 (ID30A-1) is a new beamline dedicated to the completely automatic characterization and data collection from crystals of biological macromolecules. MASSIF-1 (ID30A-1) is an ESRF undulator beamline operating at a fixed wavelength of 0.969 Å (12.8 keV) that is dedicated to the completely automatic characterization of and data collection from crystals of biological macromolecules. The first of the ESRF Upgrade MASSIF beamlines to be commissioned, it has been open since September 2014, providing a unique automated data collection service to academic and industrial users. Here, the beamline characteristics and details of the new service are outlined.

  8. Measurement of integral diffraction coefficients of crystals on beamline 4B7of Beijing Synchrotron Radiation Facility

    Institute of Scientific and Technical Information of China (English)

    Yang Jia-Min; Hu Zhi-Min; Wei Min-Xi; Zhang Ji-Yan; Yi Rong-Qing; Gan Xin-Shi; Zhao Yang; Cui Ming-Qi; Zhu Tuo; Zhao Yi-Dong; Sun Li-Juan; Zheng Lei; Yan Fen

    2011-01-01

    Integral diffraction coefficients of the crystal are the essential data of a crystal spectrometer which is extensively used to measure quantitative x-ray spectra of high temperature plasmas in kilo-electron-volt region. An experimental method has been developed to measure the integral diffraction coefficients of crystals on beamline 4B7 of Beijing Synchrotron Radiation Facility. The integral diffraction coefficients of several crystals including polyethylene terephthalate (PET), thallium acid phthalate (TIAP) and rubidium acid phthalate (RAP) crystals have been measured in the x-ray energy range 2100-5600 eV and compared with the calculations of the 'Darwin Prins' and the 'Mosaic' models. It is shown that the integral diffraction coefficients of these crystals are between the calculations of the 'Darwin Prins' and the 'Mosaic' models, but more close to the 'Darwin Prins' model calculations.

  9. Implementation of ultrafast X-ray diffraction at the 1W2B wiggler beamline of Beijing Synchrotron Radiation Facility.

    Science.gov (United States)

    Sun, Da Rui; Xu, Guang Lei; Zhang, Bing Bing; Du, Xue Yan; Wang, Hao; Li, Qiu Ju; Zhou, Yang Fan; Li, Zhen Jie; Zhang, Yan; He, Jun; Yue, Jun Hui; Lei, Ge; Tao, Ye

    2016-05-01

    The implementation of a laser pump/X-ray probe scheme for performing picosecond-resolution X-ray diffraction at the 1W2B wiggler beamline at Beijing Synchrotron Radiation Facility is reported. With the hybrid fill pattern in top-up mode, a pixel array X-ray detector was optimized to gate out the signal from the singlet bunch with interval 85 ns from the bunch train. The singlet pulse intensity is ∼2.5 × 10(6) photons pulse(-1) at 10 keV. The laser pulse is synchronized to this singlet bunch at a 1 kHz repetition rate. A polycapillary X-ray lens was used for secondary focusing to obtain a 72 µm (FWHM) X-ray spot. Transient photo-induced strain in BiFeO3 film was observed at a ∼150 ps time resolution for demonstration.

  10. Induced radioactivity studies of the shielding and beamline equipment of the high intensity proton accelerator facility at PSI

    Directory of Open Access Journals (Sweden)

    Otiougova Polina

    2017-01-01

    Full Text Available The Paul Scherrer Institute (PSI is the largest national research center in Switzerland. Its multidisciplinary research is dedicated to a wide ↓eld in natural science and technology as well as particle physics. The High Intensity Proton Accelerator Facility (HIPA has been in operation at PSI since 1974. It includes an 870 keV Cockroft-Walton pre-accelerator, a 72 MeV injector cyclotron as well as a 590 MeV ring cyclotron. The experimental facilities, the meson production graphite targets, Target E and Target M, and the spallation target stations (SINQ and UCN are used for material research and particle physics. In order to ful↓ll the request of the regulatory authorities and to be reported to the regulators, the expected radioactive waste and nuclide inventory after an anticipated ↓nal shutdown in the far future has to be estimated. In this contribution, calculations for the 20 m long beamline between Target E and the 590 MeV beam dump of HIPA are presented. The ↓rst step in the calculations was determining spectra and spatial particle distributions around the beamlines using the Monte-Carlo particle transport code MCNPX2.7.0 [1]. To perform the analysis of the MCNPX output and to determine the radionuclide inventory as well as the speci↓c activity of the nuclides, an activation script [2] using the FISPACT10 code with the cross sections from the European Activation File (EAF2010 [3] was applied. The speci↓c activity values were compared to the currently existing Swiss exemption limits (LE [4] as well as to the Swiss liberation limits (LL [5], becoming e↑ective in the near future. The obtained results were used to estimate the total volume of the radioactive waste produced at HIPA and have to be reported to the Swiss regulatory authorities. The comparison of the performed calculations to measurements is discussed as well.

  11. Induced radioactivity studies of the shielding and beamline equipment of the high intensity proton accelerator facility at PSI

    Science.gov (United States)

    Otiougova, Polina; Bergmann, Ryan; Kiselev, Daniela; Talanov, Vadim; Wohlmuther, Michael

    2017-09-01

    The Paul Scherrer Institute (PSI) is the largest national research center in Switzerland. Its multidisciplinary research is dedicated to a wide ↓eld in natural science and technology as well as particle physics. The High Intensity Proton Accelerator Facility (HIPA) has been in operation at PSI since 1974. It includes an 870 keV Cockroft-Walton pre-accelerator, a 72 MeV injector cyclotron as well as a 590 MeV ring cyclotron. The experimental facilities, the meson production graphite targets, Target E and Target M, and the spallation target stations (SINQ and UCN) are used for material research and particle physics. In order to ful↓ll the request of the regulatory authorities and to be reported to the regulators, the expected radioactive waste and nuclide inventory after an anticipated ↓nal shutdown in the far future has to be estimated. In this contribution, calculations for the 20 m long beamline between Target E and the 590 MeV beam dump of HIPA are presented. The ↓rst step in the calculations was determining spectra and spatial particle distributions around the beamlines using the Monte-Carlo particle transport code MCNPX2.7.0 [1]. To perform the analysis of the MCNPX output and to determine the radionuclide inventory as well as the speci↓c activity of the nuclides, an activation script [2] using the FISPACT10 code with the cross sections from the European Activation File (EAF2010) [3] was applied. The speci↓c activity values were compared to the currently existing Swiss exemption limits (LE) [4] as well as to the Swiss liberation limits (LL) [5], becoming e↑ective in the near future. The obtained results were used to estimate the total volume of the radioactive waste produced at HIPA and have to be reported to the Swiss regulatory authorities. The comparison of the performed calculations to measurements is discussed as well. Note to the reader: the pdf file has been changed on September 22, 2017.

  12. A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids.

    Science.gov (United States)

    Mauro, N A; Kelton, K F

    2011-03-01

    High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum (∼10(-8) Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here, we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.

  13. Applied and industrial activities at the ESRF: Present status and future development

    CERN Document Server

    Doucet, J

    2003-01-01

    Be it proteins, new superconductors, polymers or ferro-magnetic compounds, fundamental research is laying foundations for possible technical applications as well as industrial exploitation. At the ESRF, industrial companies can be involved in two main ways, depending on the type of research they are interested in. The first concerns beam time allocation for non-proprietary and fully-published research, the procedure is the same as for public laboratories. The second concerns the proprietary research, for which a fee is charged and where results are kept confidential. The use of synchrotron radiation for the characterisation of materials is certain to play a crucial role in the development of new materials in the close future. It is a policy of the ESRF that European industry should share the benefit of its facilities. A survey of the today industrial activity at the ESRF and of its perspective in near future is presented.

  14. MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules

    Science.gov (United States)

    Bowler, Matthew W.; Nurizzo, Didier; Barrett, Ray; Beteva, Antonia; Bodin, Marjolaine; Caserotto, Hugo; Delagenière, Solange; Dobias, Fabian; Flot, David; Giraud, Thierry; Guichard, Nicolas; Guijarro, Mattias; Lentini, Mario; Leonard, Gordon A.; McSweeney, Sean; Oskarsson, Marcus; Schmidt, Werner; Snigirev, Anatoli; von Stetten, David; Surr, John; Svensson, Olof; Theveneau, Pascal; Mueller-Dieckmann, Christoph

    2015-01-01

    MASSIF-1 (ID30A-1) is an ESRF undulator beamline operating at a fixed wavelength of 0.969 Å (12.8 keV) that is dedicated to the completely automatic characterization of and data collection from crystals of biological macromolecules. The first of the ESRF Upgrade MASSIF beamlines to be commissioned, it has been open since September 2014, providing a unique automated data collection service to academic and industrial users. Here, the beamline characteristics and details of the new service are outlined. PMID:26524320

  15. Multipurpose monochromator for the Basic Energy Science Synchrotron Radiation Center Collaborative Access Team beamlines at the Advanced Photon Source x-ray facility

    Science.gov (United States)

    Ramanathan, M.; Beno, M. A.; Knapp, G. S.; Jennings, G.; Cowan, P. L.; Montano, P. A.

    1995-02-01

    The Basic Energy Science Synchrotron Radiation Center (BESSRC) Collaborative Access Team (CAT) will construct x-ray beamlines at two sectors of the Advanced Photon Source facility. In most of the beamlines the first optical element will be a monochromator, so that a standard design for this critical component is advantageous. The monochromator is a double-crystal, fixed exit scheme with a constant offset designed for ultrahigh vacuum windowless operation. In this design, the crystals are mounted on a turntable with the first crystal at the center of rotation. Mechanical linkages are used to correctly position the second crystal and maintain a constant offset. The main drive for the rotary motion is provided by a vacuum compatible Huber goniometer isolated from the main vacuum chamber. The design of the monochromator is such that it can accommodate water, gallium, or liquid-nitrogen cooling for the crystal optics.

  16. The large volume press facility at ID06 beamline of the European synchrotron radiation facility as a High Pressure-High Temperature deformation apparatus.

    Science.gov (United States)

    Guignard, Jeremy; Crichton, Wilson A

    2015-08-01

    We report here the newly developed deformation setup offered by the 20MN (2000T) multi-anvil press newly installed at sector 7 of the European synchrotron radiation facility, on the ID06 beamline. The press is a Deformation-DIA (D-DIA) type apparatus, and different sets of primary anvils can be used for deformation experiments, from 6 mm to 3 mm truncations, according to the target pressure needed. Pressure and temperature calibrations and gradients show that the central zone of the assemblies is stable. Positions of differential RAMs are controlled with a sub-micron precision allowing strain rate from 10(-4) to 10(-6) s(-1). Moreover, changing differential RAM velocity is immediately visible on sample, making faster reaching of steady state. Lattice stresses are determined by the shifting of diffraction peak with azimuth angle using a linear detector covering typically a 10° solid-angle in 2θ mounted on rotation perpendicular to the beam. Acquisition of diffraction pattern, at a typical energy of 55 keV, is less than a minute to cover the whole azimuth-2θ space. Azimuth and d-spacing resolution are respectively better than 1° and 10(-3) Å making it possible to quantify lattice stresses with a precision of ±20 MPa (for silicates, which have typically high values of elastic properties), in pure or simple shear deformation measurements. These mechanical data are used to build fully constrained flow laws by varying P-T-σ-ε̇ conditions with the aim to better understanding the rheology of Earth's mantle. Finally, through texture analysis, it is also possible to determine lattice preferred orientation during deformation by quantifying diffraction peak intensity variation with azimuth angle. This press is therefore included as one of the few apparatus that can perform such experiments combining with synchrotron radiation.

  17. Radiation protection of a proton beamline at ELI-Beamlines

    Science.gov (United States)

    Bechet, S.; Versaci, R.; Rollet, S.; Olsovcova, V.; Fajstavr, A.; Zakova, M.; Margarone, D.

    2016-12-01

    ELI-Beamlines (ELI stands for Extreme Light Infrastructure) is a new EU funded laser facility located near Prague, in Czech Republic. It will use laser-driven plasma sources to accelerate particles and host a dedicated proton beamline called ELIMAIA (ELI Multidisciplinary Applications of laser- Ion Acceleration) designed to reach energies up to 250 MeV. This beamline could be exploited to study possible future medical application of laser-driven beams. The first part of this paper introduces the beamline, the corresponding source terms and the complete set-up. The second part of the paper details the evaluation of the ambient dose equivalent and the activation study inside the experimental halls based on Monte-Carlo simulation. These calculations show that the ELIMAIA operation is safe as long as nobody is present in the hall when the beam is on.

  18. ESRF-type lattice design and optimization for the High Energy Photon Source

    Science.gov (United States)

    Xu, Gang; Jiao, Yi; Peng, Yue-Mei

    2016-02-01

    A new generation of storage ring-based light sources, called diffraction-limited storage rings (DLSRs), with emittance approaching the diffraction limit for multi-keV photons by means of multi-bend achromat lattices, has attracted extensive studies worldwide. Among various DLSR proposals, the hybrid multi-bend achromat concept developed at the European Synchrotron Radiation Facility (ESRF) predicts an effective way of minimizing the emittance while keeping the required chromatic sextupole strengths to an achievable level. For the High Energy Photon Source planned to be built in Beijing, an ESRF-type lattice design consisting of 48 hybrid seven-bend achromats is proposed to reach emittance as low as 60 pm·rad with a circumference of about 1296 m. Sufficient dynamic aperture, allowing vertical on-axis injection, and moderate momentum acceptance are achieved simultaneously for a promising ring performance. Supported by NSFC (11475202, 11405187) and Youth Innovation Promotion Association CAS (2015009)

  19. A new limit on the light speed isotropy from the GRAAL experiment at the ESRF

    CERN Document Server

    Gurzadyan, V G; Beretta, M; Bocquet, J -P; D'Angelo, A; Di Salvo, R; Fantini, A; Franco, D; Gervino, G; Giardina, G; Ghio, F; Girolami, B; Giusa, A; Kashin, A; Khachatryan, H G; Knyazyan, S; Lapik, A; Sandri, P Levi; Lleres, A; Mammoliti, F; Mandaglio, G; Manganaro, M; Margarian, A; Mehrabyan, S; Messi, R; Moricciani, D; Nedorezov, V; Rebreyend, D; Russo, G; Rudnev, N; Schaerf, C; Sperduto, M -L; Sutera, M -C; Turinge, A; Vegna, V

    2010-01-01

    When the electrons stored in the ring of the European Synchrotron Radiation Facility (ESRF, Grenoble) scatter on a laser beam (Compton scattering in flight) the lower energy of the scattered electron spectra, the Compton Edge (CE), is given by the two body photon-electron relativistic kinematics and depends on the velocity of light. A precision measurement of the position of this CE as a function of the daily variations of the direction of the electron beam in an absolute reference frame provides a one-way test of Relativistic Kinematics and the isotropy of the velocity of light. The results of GRAAL-ESRF measurements improve the previously existing one-way limits, thus showing the efficiency of this method and the interest of further studies in this direction.

  20. Design of the LBNF Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitriou, V.; Andrews, R.; Hylen, J.; Kobilarcik, T.; Krafczyk, G.; Marchinonni, A.; Moore, C. D.; Schlabach, P.; Tariq, S.

    2015-08-30

    The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a wide band neutrino beam toward underground detectors placed at the SURF Facility in South Dakota, about 1,300 km away. The main elements of the facility are a primary proton beamline and a neutrino beamline. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab’s Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are subsequently focused by magnetic horns into a 204 m long decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial proton beam power is expected to be 1.2 MW; however, the facility is designed to be upgradeable to 2.4 MW. We discuss here the design status and the associated challenges as well as plans for improvements before baselining the facility.

  1. The Time-resolved and Extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24.

    Science.gov (United States)

    Pascarelli, S; Mathon, O; Mairs, T; Kantor, I; Agostini, G; Strohm, C; Pasternak, S; Perrin, F; Berruyer, G; Chappelet, P; Clavel, C; Dominguez, M C

    2016-01-01

    The European Synchrotron Radiation Facility has recently made available to the user community a facility totally dedicated to Time-resolved and Extreme-conditions X-ray Absorption Spectroscopy--TEXAS. Based on an upgrade of the former energy-dispersive XAS beamline ID24, it provides a unique experimental tool combining unprecedented brilliance (up to 10(14) photons s(-1) on a 4 µm × 4 µm FWHM spot) and detection speed for a full EXAFS spectrum (100 ps per spectrum). The science mission includes studies of processes down to the nanosecond timescale, and investigations of matter at extreme pressure (500 GPa), temperature (10000 K) and magnetic field (30 T). The core activities of the beamline are centered on new experiments dedicated to the investigation of extreme states of matter that can be maintained only for very short periods of time. Here the infrastructure, optical scheme, detection systems and sample environments used to enable the mission-critical performance are described, and examples of first results on the investigation of the electronic and local structure in melts at pressure and temperature conditions relevant to the Earth's interior and in laser-shocked matter are given.

  2. Design of the LBNE Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitriou, Vaia [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Andrews, Richard [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hylen, James [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kobilarcik, Thomas [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchionni, Alberto [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Moore, Craig D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schlabach, Phil [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Tariq, Salman [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-02-05

    The Long Baseline Neutrino Experiment (LBNE) will utilize a beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a wide band beam of neutrinos toward a detector placed at the Sanford Underground Research Facility in South Dakota, about 1,300 km away. The main elements of the facility are a primary proton beamline and a neutrino beamline. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab’s Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are sign selected and subsequently focused by a set of magnetic horns into a 204 m long decay pipe where they decay mostly into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints, and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~1.2 MW; however, the facility is designed to be upgradeable for 2.3 MW operation. We discuss here the status of the design and the associated challenges.

  3. Design of the LBNE Beamline

    CERN Document Server

    Papadimitriou, V; Hylen, J; Kobilarcik, T; Marchionni, A; Moore, C D; Schlabach, P; Tariq, S

    2015-01-01

    The Long Baseline Neutrino Experiment (LBNE) will utilize a beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a wide band beam of neutrinos toward a detector placed at the Sanford Underground Research Facility in South Dakota, about 1,300 km away. The main elements of the facility are a primary proton beamline and a neutrino beamline. The primary proton beam (60 -120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are sign selected and subsequently focused by a set of magnetic horns into a 204 m long decay pipe where they decay mostly into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~1.2 MW, however the facility is desi...

  4. 08B1-1: an automated beamline for macromolecular crystallography experiments at the Canadian Light Source.

    Science.gov (United States)

    Fodje, Michel; Grochulski, Pawel; Janzen, Kathryn; Labiuk, Shaunivan; Gorin, James; Berg, Russ

    2014-05-01

    Beamline 08B1-1 is a recently commissioned bending-magnet beamline at the Canadian Light Source. The beamline is designed for automation and remote access. Together with the undulator-based beamline 08ID-1, they constitute the Canadian Macromolecular Crystallography Facility. This paper describes the design, specifications, hardware and software of beamline 08B1-1. A few scientific results using data obtained at the beamline will be highlighted.

  5. The BioCAT undulator beamline 18ID: a facility for biological non-crystalline diffraction and X-ray absorption spectroscopy at the Advanced Photon Source.

    Science.gov (United States)

    Fischetti, R; Stepanov, S; Rosenbaum, G; Barrea, R; Black, E; Gore, D; Heurich, R; Kondrashkina, E; Kropf, A J; Wang, S; Zhang, Ke; Irving, T C; Bunker, G B

    2004-09-01

    The 18ID undulator beamline of the Biophysics Collaborative Access Team at the Advanced Photon Source, Argonne, IL, USA, is a high-performance instrument designed for, and dedicated to, the study of partially ordered and disordered biological materials using the techniques of small-angle X-ray scattering, fiber diffraction, and X-ray absorption spectroscopy. The beamline and associated instrumentation are described in detail and examples of the representative experimental results are presented.

  6. A new soft X-ray magnetic circular dichroism facility at the BSRF beamline 4B7B

    CERN Document Server

    Guo, Zhi-Ying; Xing, Hai-Ying; Tang, Kun; Xui, Wei; Chen, Dong-liang; Cui, Ming-Qi; Zhao, YI-Dong

    2014-01-01

    X-ray magnetic circular dichroism (XMCD) has become an important and powerful tool because it allows the study of material properties in combination with elemental specificity, chemical state specificity, and magnetic specificity. A new soft X-ray magnetic circular dichroism apparatus has been developed at the Beijing Synchrotron Radiation Facility (BSRF). The apparatus combines three experimental conditions: ultra-high-vacuum environment, moderate magnetic fields and in-situ sample preparation to measure the absorption signal. We designed a C type dipole electromagnet that provides magnetic fields up to 0.5T in parallel (or anti-parallel) direction relative to the incoming X-ray beam. The performances of the electromagnet are measured and the results show good agreement with the simulation ones. Following film grown in situ by evaporation methods, XMCD measurements are performed. Combined polarization corrections, the magnetic moments of the Fe and Co films determined by sum rules are consistent with other t...

  7. A new soft X-ray magnetic circular dichroism facility at the BSRF beamline 4B7B

    Science.gov (United States)

    Guo, Zhi-Ying; Hong, Cai-Hao; Xing, Hai-Ying; Tang, Kun; Zheng, Lei; Xui, Wei; Chen, Dong-Liang; Cui, Ming-Qi; Zhao, Yi-Dong

    2015-04-01

    X-ray magnetic circular dichroism (XMCD) has become an important and powerful tool because it allows the study of material properties in combination with elemental specificity, chemical state specificity, and magnetic specificity. A new soft X-ray magnetic circular dichroism apparatus has been developed at the Beijing Synchrotron Radiation Facility (BSRF). The apparatus combines three experimental conditions: an ultra-high-vacuum environment, moderate magnetic fields and in-situ sample preparation to measure the absorption signal. We designed a C-type dipole electromagnet that provides magnetic fields up to 0.5 T in parallel (or anti-parallel) direction relative to the incoming X-ray beam. The performances of the electromagnet are measured and the results show good agreement with the simulation ones. Following film grown in situ by evaporation methods, XMCD measurements are performed. Combined polarization corrections, the magnetic moments of the Fe and Co films determined by sum rules are consistent with other theoretical predictions and experimental measurements. Supported by National Natural Science Foundation of China (61204008)

  8. Beam Loss Monitors at the ESRF

    CERN Document Server

    Joly, B; Naylor, G A

    2000-01-01

    The European Synchrotron radiation facility is a third generation x-ray source providing x-rays on a continuous basis. As a facility available to external users, the monitoring of radiation caused by the loss of high-energy stored beam is of great concern. A network of beam loss monitors has been installed inside the storage ring tunnel so as to detect and localize the slow loss of electrons during a beam decay. This diagnostic tool allows optimization of beam parameters and physical aperture limits as well as giving useful information on the machine to allow the lifetime to be optimized and defects localized.

  9. Diagnostic X-Multi-Axis Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A C

    2000-04-05

    degrees. An upgrade can later be made by adding beamlines 5-8 azimuthally indexed so as to provide an azimuthal resolution of 22.5 degrees. All eight beamlines point down by 10 degrees (pitch). The x-ray converter target can be located along each beamline anywhere between 0 to 5 meters from the firing point. An example of inter-facing the Diagnostic X facility with the Darht II accelerator located at LANL will be given.

  10. Design of the LBNF Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitriou, Vaia; et al.

    2016-06-01

    The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a neutrino beam of sufficient intensity and appropriate energy range toward DUNE detectors, placed deep underground at the SURF Facility in South Dakota. The primary proton beam (60 - 120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are subsequently focused by magnetic horns into a 194 m long decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015. We discuss here the design status and the associated challenges as well as the R&D and plans for improvements before baselining the facility.

  11. nuSTORM Pion Beamline Design Update

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A. [Indiana U.; Bross, A. [Fermilab; Neuffer, D. [Fermilab; Lee, S. Y. [Indiana U.

    2013-09-01

    A facility producing neutrinos from muons that decay in a racetrack ring can provide extremely well understood neutrino beams for oscillation physics and the search for sterile neutrinos. The “neutrinos from STORed Muons” (nuSTORM) facility based on this idea has been introduced by Bross, Neuffer et al. The design of the nuSTORM facility and the particle tracking have been presented in the paper of Liu, et al. This paper demonstrates the recent optimization results of the pion beamline, with G4beamline simulations. The optimum choice of pion beam center momentum, a new algorithm on fitting bivariate Gaussian distribution to the pion phase space data at the downstream side of the horn, and the comparison of the beamline performance with the optics designed based on Graphite and Inconel targets are also described.

  12. First diffraction topographic results at a third generation synchrotron radiation facility: application to crystals under an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rejmankova, P. [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France); Baruchel, J. [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France)

    1995-05-01

    Diffraction topographic techniques allow the observation of inhomogeneities (defects, domains,..) within a single crystal. The unique capabilities of third generation synchrotron radiation facilities, like the ESRF, add new possibilities to these techniques: (1) the exposure time to record a topograph can be reduced to similar 10{sup -2} s, i.e. a factor 10{sup 2}-10{sup 3} below the present standards; (2) an improved resolution associated with the small source size, even when setting the film far ( similar 60 cm) from the sample, allows the size of the sample environment devices to be increased; (3) high sensitivity to small ({>=}10{sup -7}) distortions (misorientations and/or lattice parameter variations); (4) investigation of thick or heavy materials, which were up to now the exclusive field of neutron diffraction. We briefly describe the future Topography and High Resolution Diffraction beamline ID 19, which is designed to optimize the required experimental conditions, and which will be operational at the end of 1995. The first topographic white beam experiments which illustrate these new possibilities were carried out on two (ID11 and D5) of the presently operational beamlines of the ESRF. In this work, particular attention is dedicated to observations performed on crystals under an electric field ({alpha}-LiIO{sub 3}, KTP, LiNbO{sub 3}). Very interesting and encouraging results were obtained, particularly when using ``section`` topography. (orig.).

  13. Macromolecular crystallography beamline X25 at the NSLS.

    Science.gov (United States)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L; Dvorak, Joseph; Flaks, Leon; Lamarra, Steven; Myers, Stuart F; Orville, Allen M; Robinson, Howard H; Roessler, Christian G; Schneider, Dieter K; Shea-McCarthy, Grace; Skinner, John M; Skinner, Michael; Soares, Alexei S; Sweet, Robert M; Berman, Lonny E

    2014-05-01

    Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community.

  14. Status of the ELIMED multidisciplinary and medical beam-line at ELI-Beamlines

    Science.gov (United States)

    Romano, F.; Cirrone, G. A. P.; Cuttone, G.; Schillaci, F.; Scuderi, V.; Amico, A.; Candiano, G.; Giordanengo, S.; Guarachi, L. F.; Korn, G.; Larosa, G.; Leanza, R.; Manna, R.; Marchese, V.; Marchetto, F.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Sacchi, R.; Vignati, A.

    2017-01-01

    Nowadays, one of the biggest challenges consists in using high intensity laser-target interaction to generate high-energy ions for medical purposes, eventually replacing the old paradigm of acceleration characterized by huge and complex machines. In order to investigate the feasibility of using laser-driven ion beams for multidisciplinary application, a dedicated beam transport line will be installed at the ELI-Beamlines facility in Prague (CZ), as a part of the User-oriented ELIMAIA beam-line dedicated to ion acceleration and their potential applications. The beam-line section dedicated to transport and dosimetric endpoints is called ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) and will be developed by the INFN-LNS.

  15. Distributed control of protein crystallography beamline 5.0 using CORBA

    OpenAIRE

    Timossi, Chris

    1999-01-01

    The Protein Crystallography Beamline at Berkeley Lab's Advanced Light Source is a facility that is being used to solve the structure of proteins. The software that is being used to control this beamline uses Java for user interface applications which communicate via CORBA with workstations that control the beamline hardware. We describe the software architecture for the beamline and our experiences after two years of operation.

  16. The Pulsed Power Converter and Septum Magnet System for Injection into the Electron Storage Ring at ESRF

    CERN Document Server

    Perrine, J P; Völker, F V

    1996-01-01

    At ESRF, the European Synchrotron Radiation Facility in Grenoble, electrons are accelerated, via a 200 MeV Linac and a 6 GeV synchrotron booster, and injected into the storage ring at 10 Hz rate. Two thin septum blade magnets and an eddy current sheet type septum magnet provide the final deflection of the injected beam. The operational requirements of the e- injection scheme and the resulting demanding hardware specifications are recalled. The pulsed septum magnets are briefly described. The design, circuit layout and construction of the power converters are related with emphasis on innovative aspects of general interest. Results of tests during commissioning are reported.

  17. Circular dichroism beamline B23 at the Diamond Light Source.

    Science.gov (United States)

    Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano

    2012-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well established technique in structural biology. The first UV-VIS beamline, dedicated to circular dichroism, at Diamond Light Source Ltd, a third-generation synchrotron facility in south Oxfordshire, UK, has recently become operational and it is now available for the user community. Herein the main characteristics of the B23 SRCD beamline, the ancillary facilities available for users, and some of the recent advances achieved are summarized.

  18. BNL ATF II beamlines design

    Energy Technology Data Exchange (ETDEWEB)

    Fedurin, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jing, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratakis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Swinson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, will be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.

  19. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications.

    Science.gov (United States)

    Strocov, V N; Wang, X; Shi, M; Kobayashi, M; Krempasky, J; Hess, C; Schmitt, T; Patthey, L

    2014-01-01

    Soft-X-ray angle-resolved photoelectron spectroscopy (ARPES) with photon energies around 1 keV combines the momentum space resolution with increasing probing depth. The concepts and technical realisation of the new soft-X-ray ARPES endstation at the ADRESS beamline of SLS are described. The experimental geometry of the endstation is characterized by grazing X-ray incidence on the sample to increase the photoyield and vertical orientation of the measurement plane. The vacuum chambers adopt a radial layout allowing most efficient sample transfer. High accuracy of the angular resolution is ensured by alignment strategies focused on precise matching of the X-ray beam and optical axis of the analyzer. The high photon flux of up to 10(13) photons s(-1) (0.01% bandwidth)(-1) delivered by the beamline combined with the optimized experimental geometry break through the dramatic loss of the valence band photoexcitation cross section at soft-X-ray energies. ARPES images with energy resolution up to a few tens of meV are typically acquired on the time scale of minutes. A few application examples illustrate the power of our advanced soft-X-ray ARPES instrumentation to explore the electronic structure of bulk crystals with resolution in three-dimensional momentum, access buried heterostructures and study elemental composition of the valence states using resonant excitation.

  20. G4beamline Particle Tracking in Matter Dominated Beam Lines

    Energy Technology Data Exchange (ETDEWEB)

    T.J. Roberts, K.B. Beard, S. Ahmed, D. Huang, D.M. Kaplan

    2011-03-01

    The G4beamline program is a useful and steadily improving tool to quickly and easily model beam lines and experimental equipment without user programming. It has both graphical and command-line user interfaces. Unlike most accelerator physics codes, it easily handles a wide range of materials and fields, being particularly well suited for the study of muon and neutrino facilities. As it is based on the Geant4 toolkit, G4beamline includes most of what is known about the interactions of particles with matter. We are continuing the development of G4beamline to facilitate its use by a larger set of beam line and accelerator developers. A major new feature is the calculation of space-charge effects. G4beamline is open source and freely available at http://g4beamline.muonsinc.com

  1. Beamlines at Siam photon laboratory

    CERN Document Server

    Songsiriritthigul, P; Ishii, T; Kakizaki, A

    2003-01-01

    This report provides the up-to-date information on the present and future beamlines at the Siam Photon Laboratory. The first two beamlines, BL-4 and BL-6, have already been installed, and are now in commissioning. BL-4 is a VUV beamline to be used for investigating the electronic structures of solids and solid surfaces using the angle-resolved photoemission experimental technique. BL-6 is a beamline for electron beam monitoring. Future beamlines utilizing synchrotron light generated by a planar undulator and a superconducting magnet wiggler are discussed.

  2. Beamline for schools

    CERN Multimedia

    2015-01-01

    This video is about BL4S Snapshot 22 Sep 2015 12:02:47From 10–20 September, winners of the Beamline for Schools competition visited CERN to perform their experiments. Two teams of high-school students – “Accelerating Africa” from South Africa and “Leo4G” from Italy – were chosen from a total of 119 teams, adding up to 1050 high-school students. “When we were told we’d won we never believed it. People’s parents thought we were lying,” says Michael Copeland from Accelerating Africa. The two teams shared a fully equipped accelerator beamline and conducted their experiment just like other researchers at CERN.

  3. Simulation of beamline alignment operations

    Energy Technology Data Exchange (ETDEWEB)

    Annese, C; Miller, M G

    1999-02-02

    The CORBA-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about distributed control systems. The simulator project used a three-prong approach that studied object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios. The National Ignition Facility's (NIF) optical alignment system was modeled to study control system operations. The alignment of NIF's 192 beamlines is a large complex operation involving more than 100 computer systems and 8000 mechanized devices. The alignment process is defined by a detailed set of procedures; however, many of the steps are deterministic. The alignment steps for a poorly aligned component are similar to that of a nearly aligned component; however, additional operations/iterations are required to complete the process. Thus, the same alignment operations will require variable amounts of time to perform depending on the current alignment condition as well as other factors. Simulation of the alignment process is necessary to understand beamline alignment time requirements and how shared resources such as the Output Sensor and Target Alignment Sensor effect alignment efficiency. The simulation has provided alignment time estimates and other results based on documented alignment procedures and alignment experience gained in the laboratory. Computer communication time, mechanical hardware actuation times, image processing algorithm execution times, etc. have been experimentally determined and incorporated into the model. Previous analysis of alignment operations utilized average implementation times for all alignment operations. Resource sharing becomes rather simple to model when only average values are used. The time required to actually implement the many individual alignment operations will be quite dynamic. The simulation model estimates the time to complete an operation using

  4. X-ray diffraction using synchrotron radiation on the G.I.L.D.A. beam line at the E.S.R.F

    Energy Technology Data Exchange (ETDEWEB)

    Balerna, A. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Meneghini, C. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)]|[INFM, Genoa (Italy); Bordoni, S. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica; Mobilio, S. [Rome Univ. III (Italy). Dip. di Fisica `E. Amaldi`

    1996-09-01

    The aim of this lecture is to make a short introduction on Synchrotron radiation, its history and main properties. The main components of a synchrotron radiation beam line will be described. The Italian beam line, General purpose Italian beam line Line for Diffraction and Absorption (G.I.L.D.A.) at the European Synchrotron Radiation Facility (E.S.R.F.) in Grenoble will be used as an example. The G.I.L.D.A. diffractometer will be described in detail reporting also some experimental results.

  5. The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning.

    Science.gov (United States)

    Svetina, Cristian; Grazioli, Cesare; Mahne, Nicola; Raimondi, Lorenzo; Fava, Claudio; Zangrando, Marco; Gerusina, Simone; Alagia, Michele; Avaldi, Lorenzo; Cautero, Giuseppe; de Simone, Monica; Devetta, Michele; Di Fraia, Michele; Drabbels, Marcel; Feyer, Vitaliy; Finetti, Paola; Katzy, Raphael; Kivimäki, Antti; Lyamayev, Viktor; Mazza, Tommaso; Moise, Angelica; Möller, Thomas; O'Keeffe, Patrick; Ovcharenko, Yevheniy; Piseri, Paolo; Plekan, Oksana; Prince, Kevin C; Sergo, Rudi; Stienkemeier, Frank; Stranges, Stefano; Coreno, Marcello; Callegari, Carlo

    2015-05-01

    The Low Density Matter (LDM) beamline has been built as part of the FERMI free-electron laser (FEL) facility to serve the atomic, molecular and cluster physics community. After the commissioning phase, it received the first external users at the end of 2012. The design and characterization of the LDM photon transport system is described, detailing the optical components of the beamline.

  6. Beamline for Schools 2016: How to be a CERN scientist

    CERN Multimedia

    2016-01-01

    Two teams of high-school students from the UK and Poland had the opportunity to conduct their own experiments at a fully equipped CERN beamline.   Students from the 2016 Beamline for Schools competition working on their experiment. (Image: Noemí Carabán Gonzalez/CERN) Two teams of high-school students from the UK and Poland had the opportunity to conduct their own experiments at a fully equipped CERN beamline, after winning the Beamline for Schools competition. The teams, ”Pyramid Hunters” from Poland and “Relatively Special” from the United Kingdom, spent 10 days at CERN conducting the experiments they had dreamt up in their winning proposals. The Beamline for Schools competition gives high-school students the chance to run an experiment on a fully equipped CERN beamline, in the same way researchers do at the Large Hadron Collider and other CERN facilities every day. To know more about their stay at CERN and the experiments they&r...

  7. SRX - a X-ray spectroscopy beamline with sub-100nm spatial resolution at NSLS-II

    Science.gov (United States)

    Thieme, J.

    2011-12-01

    J. Thieme, V. deAndrade, Y. Yao, J. Prietzel* (NSLS-II, Brookhaven National Laboratory, USA; *TU Munich, Germany) The new electron storage ring NSLS-II will be a source of synchrotron radiation with an unmatched low emittance. Such a facility is very well suited for hosting experiments in need of coherent radiation. One of first six beamlines to be constructed at NSLS-II will be a high resolution spectroscopy station, dedicated especially for environmental and geo-sciences. A canted setup of two undulators will serve as independent light sources for two branches of this beamline. One branch line is planned to address the energy range from 4.65 keV to 24 keV focusing the beam down to a small spot size with Kirkpatrick-Baez mirrors. The expected photon flux in the spot is in the range of above 10^13 phot/sec. A horizontally deflecting double crystal monochromator with maximum stability will ensure the possibility of spectroscopy with very high spectral resolution. The second branch is planned for reaching lower X-ray energies, addressing the range of 2 keV up to 15 keV, but with a higher spatial resolution. Using a Fresnel zoneplate, the spatial resolution aimed for is in the range of 30 nm. It can be expected that this branch would be attractive for more biological applications from environmental science due to the many elements of interest within that energy range. The experimental station will be designed to not only host X-ray fluorescence experiments but diffraction imaging experiments as well. The commissioning of this beamline will start in 2014, therefore a detailed design description will be presented here. As an example of what is achievable at this NSLS-II beamline we will present a spatially resolved study on the co-localization of iron and sulfur in a forest soil. The scientific topic to be addressed was to identify unambiguously the relationship between the speciation of iron and sulfur as a function of the chemical state of the surrounding soil when

  8. A Remote and Virtual Synchrotron Beamline

    Science.gov (United States)

    Jackson, J. M.; Alp, E.; Sturhahn, W.

    2012-12-01

    National facilities offer one-of-a-kind opportunities to apply state-of-the-art experimental techniques to the pressing scientific problems of today. Yet, few students are able to experience research projects at national facilities due to limited accessibility caused in part by limited involvement in the local academic institution, constrained working areas at the experimental stations, and/or travel costs. We present a virtual and remote beam-line for Earth science studies using nuclear resonant and inelastic x-ray scattering methods at Sector 3 of the Advanced Photon Source at Argonne National Laboratory. Off-site students have the capability of controlling their measurements via secure internet connections and webcams. Students can access a 'view only mode' for ease of interaction and safety-control. More experienced users have exclusive control of the experiment and can remotely change variables within the experimental setup. Students may also access the virtual aspects these experiments by simulating certain conditions with our newly developed software. We evaluate such a tool by giving "before" and "after" assignments to students at different levels. These levels include high-school students from the Pasadena and greater Los Angeles area school districts, undergraduate students from Caltech's SURF/MURF program, and graduate students at Caltech. We specifically target underrepresented groups. Our results thus far show that the capabilities offered by our remote and virtual beamline show improved knowledge and understanding of applying experimental-based studies at the synchrotron to solve problems in the Earth sciences.

  9. Positron separators in Superomega muon beamline at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Ikedo, Y., E-mail: ikedo@post.kek.jp [Institute of Materials and Structure Science, High Energy Accelerator Research Organization, Tokai Campus, 230-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Japan Proton Accelerator Research Complex, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Miyake, Y.; Shimomura, K.; Strasser, P.; Kawamura, N.; Nishiyama, K.; Makimura, S.; Fujimori, H.; Koda, A.; Nakamura, J.; Nagatomo, T.; Kobayashi, Y. [Institute of Materials and Structure Science, High Energy Accelerator Research Organization, Tokai Campus, 230-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Japan Proton Accelerator Research Complex, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Adachi, T. [Faculty of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0501 (Japan); Pant, A.D. [Interdisciplinary Graduate School of Medicine and Engineering, Yamanashi University, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ogitsu, T.; Nakamoto, T.; Sasaki, K.; Ohata, H.; Okada, R.; Yamamoto, A. [Cryogenics Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0501 (Japan); Japan Proton Accelerator Research Complex, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); and others

    2013-12-15

    Highlights: • Three stage positron separators was installed onto the U-line in the MLF/J-PARC. • The separators can be applied 400 kV to the both electrodes. • The separators were tested and were confirmed to successfully eliminate the positrons from the beam. -- Abstract: A positron separator is one of the essential components of a muon beamline to eliminate contamination in the beam, mainly positrons that have the same momentum as muons and are transported together with the beam. In order to eliminate positrons efficiently, we selected a Wien filter type three-stage positron separator for the new muon beamline, called Superomega, that is under construction in the Materials and Life Science Experimental Facility (MLF) of the Japan Accelerator Research Complex (J-PARC). The Superomega muon beamline is the second muon beamline at MLF/J-PARC, and started operation in October of 2012. Here, we report on the features and the test results of the positron separators installed in the Superomega muon beamline.

  10. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  11. AI-BL1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm.

    Science.gov (United States)

    Xi, Shibo; Borgna, Lucas Santiago; Zheng, Lirong; Du, Yonghua; Hu, Tiandou

    2017-01-01

    In this report, AI-BL1.0, an open-source Labview-based program for automatic on-line beamline optimization, is presented. The optimization algorithms used in the program are Genetic Algorithm and Differential Evolution. Efficiency was improved by use of a strategy known as Observer Mode for Evolutionary Algorithm. The program was constructed and validated at the XAFCA beamline of the Singapore Synchrotron Light Source and 1W1B beamline of the Beijing Synchrotron Radiation Facility.

  12. Recent Major Improvements to the ALS Sector 5 MacromolecularCrystallography Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Morton, Simon A.; Glossinger, James; Smith-Baumann, Alexis; McKean, John P.; Trame, Christine; Dickert, Jeff; Rozales, Anthony; Dauz,Azer; Taylor, John; Zwart, Petrus; Duarte, Robert; Padmore, Howard; McDermott, Gerry; Adams, Paul

    2007-07-01

    Although the Advanced Light Source (ALS) was initially conceived primarily as a low energy (1.9GeV) 3rd generation source of VUV and soft x-ray radiation it was realized very early in the development of the facility that a multipole wiggler source coupled with high quality, (brightness preserving), optics would result in a beamline whose performance across the optimal energy range (5-15keV) for macromolecular crystallography (MX) would be comparable to, or even exceed, that of many existing crystallography beamlines at higher energy facilities. Hence, starting in 1996, a suite of three beamlines, branching off a single wiggler source, was constructed, which together formed the ALS Macromolecular Crystallography Facility. From the outset this facility was designed to cater equally to the needs of both academic and industrial users with a heavy emphasis placed on the development and introduction of high throughput crystallographic tools, techniques, and facilities--such as large area CCD detectors, robotic sample handling and automounting facilities, a service crystallography program, and a tightly integrated, centralized, and highly automated beamline control environment for users. This facility was immediately successful, with the primary Multiwavelength Anomalous Diffraction beamline (5.0.2) in particular rapidly becoming one of the foremost crystallographic facilities in the US--responsible for structures such as the 70S ribosome. This success in-turn triggered enormous growth of the ALS macromolecular crystallography community and spurred the development of five additional ALS MX beamlines all utilizing the newly developed superconducting bending magnets ('superbends') as sources. However in the years since the original Sector 5.0 beamlines were built the performance demands of macromolecular crystallography users have become ever more exacting; with growing emphasis placed on studying larger complexes, more difficult structures, weakly diffracting or

  13. Status of the LBNE Neutrino Beamline

    CERN Document Server

    Papadimitriou, Vaia

    2011-01-01

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a beam of neutrinos toward a detector placed at the Homestake Mine in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector (60-120 GeV) hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined taking into account several factors including the physics goals, the Monte Carlo modeling of the facility, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW. We discuss here the stat...

  14. Design of the LBNF Beamline Target Station

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, S. [Fermilab; Ammigan, K. [Fermilab; Anderson, K.; ; Buccellato, S. A. [Fermilab; Crowley, C. F. [Fermilab; Hartsell, B. D. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Kasper, P. [Fermilab; Krafczyk, G. E. [Fermilab; Lee, A. [Fermilab; Lundberg, B. [Fermilab; Reitzner, S. D. [Fermilab; Sidorov, V. [Fermilab; Stefanik, A. M. [Fermilab; Tropin, I. S. [Fermilab; Vaziri, K. [Fermilab; Williams, K. [Fermilab; Zwaska, R. M. [Fermilab; Densham, C. [RAL, Didcot

    2016-10-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding in a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.

  15. The 57Fe Synchrotron Mössbauer Source at the ESRF.

    Science.gov (United States)

    Potapkin, Vasily; Chumakov, Aleksandr I; Smirnov, Gennadii V; Celse, Jean Philippe; Rüffer, Rudolf; McCammon, Catherine; Dubrovinsky, Leonid

    2012-07-01

    The design of a (57)Fe Synchrotron Mössbauer Source (SMS) for energy-domain Mössbauer spectroscopy using synchrotron radiation at the Nuclear Resonance beamline (ID18) at the European Synchrotron Radiation Facility is described. The SMS is based on a nuclear resonant monochromator employing pure nuclear reflections of an iron borate ((57)FeBO(3)) crystal. The source provides (57)Fe resonant radiation at 14.4 keV within a bandwidth of 15 neV which is tunable in energy over a range of about ±0.6 µeV. In contrast to radioactive sources, the beam of γ-radiation emitted by the SMS is almost fully resonant and fully polarized, has high brilliance and can be focused to a 10 µm × 5 µm spot size. Applications include, among others, the study of very small samples under extreme conditions, for example at ultrahigh pressure or combined high pressure and high temperature, and thin films under ultrahigh vacuum. The small cross section of the beam and its high intensity allow for rapid collection of Mössbauer data. For example, the measuring time of a spectrum for a sample in a diamond anvil cell at ∼100 GPa is around 10 min, whereas such an experiment with a radioactive point source would take more than one week and the data quality would be considerably less. The SMS is optimized for highest intensity and best energy resolution, which is achieved by collimation of the incident synchrotron radiation beam and thus illumination of the high-quality iron borate crystal within a narrow angular range around an optimal position of the rocking curve. The SMS is permanently located in an optics hutch and is operational immediately after moving it into the incident beam. The SMS is an in-line monochromator, i.e. the beam emitted by the SMS is directed almost exactly along the incident synchrotron radiation beam. Thus, the SMS can be easily utilized with all existing sample environments in the experimental hutches of the beamline. Owing to a very strong

  16. Construction and characterization of a laser-driven proton beamline at GSI

    OpenAIRE

    Busold, Simon

    2014-01-01

    The thesis includes the first experiments with the new 100 TW laser beamline of the PHELIX laser facility at GSI Darmstadt to drive a TNSA (Target Normal Sheath Acceleration) proton source at GSI's Z6 experimental area. At consecutive stages a pulsed solenoid has been applied for beam transport and energy selection via chromatic focusing, as well as a radiofrequency cavity for energy compression of the bunch. This novel laser-driven proton beamline, representing a central experiment of the...

  17. Small angle X-ray scattering beamline at SSRF

    Institute of Scientific and Technical Information of China (English)

    田丰; 李小芸; 缪夏然; 边风刚; 王吉力; 李秀宏; 王玉柱; 杨春明; 周平; 林金友; 曾建荣; 洪春霞; 滑文强

    2015-01-01

    Beamline BL16B1 at Shanghai Synchrotron Radiation Facility (SSRF) is dedicated to studying the mi-crostructure and dynamic processes of polymers, nanomaterials, mesoporous materials, colloids, liquid crystals, metal materials, etc. At present, SAXS, wide angle X-ray scattering (WAXS), simultaneous SAXS/WAXS, grazing incident SAXS, and anomalous SAXS techniques are available for end user to conduct diverse ex-periments at this beamline. The sample-to-detector distance is adjustable from 0.2 m to 5 m. The practicable q-range is 0.03–3.6 nm−1 at incident X-ray of 10 keV for conventional SAXS whilst a continuous q-region of 0.06–33 nm−1 can be achieved in simultaneous SAXS/WAXS mode. Time-resolved SAXS measurements in sub-second level was achieved by the beamline upgrating in 2013. This paper gives detailed descriptions about the status, performance and applications of the SAXS beamline.

  18. Microbeam MAD Beamline for Challenging Protein Crystallography in TPS

    Science.gov (United States)

    Liu, D. G.; Chao, C. H.; Chang, C. H.; Juang, J. M.; Liu, C. Y.; Chang, S. H.; Chang, C. F.; Chou, C. K.; Tseng, C. C.; Chiang, C. H.; Jean, Y. C.; Tang, M. T.; Chung, S. C.; Chang, S. L.

    2013-03-01

    The TPS-05A beamline is the first X-ray beamline at NSRRC built for micro protein crystallography experiment as well as one of the seven ID beamlines in phase I at the TPS synchrotron facility. A 2-meter in-vacuum undulator (IU22) serves as the photon source from which the harmonics #3 to #9 will provide brilliance of 1018-1020 photons s-1 mrad-2 mm-2 (0.1% bandwidth)-1 and photon flux of 1013-1014 photons s-1 (0.1% bandwidth)-1 in the required energy range of 5.7-20 keV (2.175-0.620 Å) to cover MAD phasing experiments at 1 Å and SAD phasing experiments at 2 Å. The beamline optics consists of a cryo-cooled double crystal monochromator (DCM) and a pair of focusing K-B mirrors. Requirements from the user group include a target focus size of 50 μm × 50 μm (H × V) at the sample position, photon flux greater than 2 × 1012 photons s-1 at Se K-edge (0.9795 Å), pinholes for adjusting the beam size down to 5 μm. Calculation of heat load for the first optical element, i.e. the first crystal of DCM, is included in this paper.

  19. The High Energy Materials Science Beamline (HEMS) at PETRA III

    Science.gov (United States)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, René; Kiehn, Rüdiger; Müller, Martin; Schreyer, Andreas

    2010-06-01

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  20. ALS beamline design requirements: A guide for beamline designers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This manual is written as a guide for researchers in designing beamlines and endstations acceptable for use at the ALS. It contains guidelines and policies related to personnel safety and equipment and vacuum protection. All equipment and procedures must ultimately satisfy the safety requirements set aside in the Lawrence Berkeley National Laboratory (LBNL) Health and Safety Manual (PUB-3000) which is available from the ALS User Office or on the World WideWeb from the LBNL Homepage (http:// www.lbl.gov).

  1. FLASH2: Operation, beamlines, and photon diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Plönjes, Elke, E-mail: elke.ploenjes@desy.de; Faatz, Bart; Kuhlmann, Marion; Treusch, Rolf [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg (Germany)

    2016-07-27

    FLASH2, a major extension of the soft X-ray free-electron laser FLASH at DESY, turns FLASH into a multi-user FEL facility. A new undulator line is located in a separate accelerator tunnel and driven additionally by the FLASH linear accelerator. First lasing of FLASH2 was achieved in August 2014 with simultaneous user operation at FLASH1. The new FLASH2 experimental hall offers space for up to six experimental end stations, some of which will be installed permanently. The wide wavelength range spans from 4-60 nm and 0.8 nm in the 5{sup th} harmonic and in the future deep into the water window in the fundamental. While this is of high interest to users, it is challenging from the beamline instrumentation point of view. Online diagnostics - which are mostly pulse resolved - for beam intensity, position, wavelength, wave front, and pulse length have been to a large extent developed at FLASH(1) and have now been optimized for FLASH2. Pump-probe facilities for XUV-XUV, XUV optical and XUV-THz experiments will complete the FLASH2 user facility.

  2. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F., E-mail: francesco.romano@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F.; Cirrone, G.A.P.; Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Scuderi, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Giordanengo, S.; Guarachi, L. Fanola [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Universita' di Torino, Dipartimento di Fisica, Via P. Giuria 1, Torino (Italy); Korn, G. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Larosa, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Leanza, R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Universita' di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R.; Marchese, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Margarone, D. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); and others

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  3. TIME-RESOLVED INFRARED SPECTROSCOPY IN THE U121R BEAMLINE AT THE NSLS

    Energy Technology Data Exchange (ETDEWEB)

    CARR,G.L.; LAVEIGNE,J.D.; LOBO,R.P.S.M.; REITZE,D.H.; TANNER,D.B.

    1999-07-19

    A facility for performing time-resolved infrared spectroscopy has been developed at the NSLS, primarily at beamline U12IR. The pulsed IR light from the synchrotron is used to perform pump-probe spectroscopy. The authors present here a description of the facility and results for the relaxation of photoexcitations in both a semiconductor and superconductor.

  4. The EIS-TIMER beamline: transient grating spectroscopy at FERMI (Conference Presentation)

    Science.gov (United States)

    Svetina, Cristian

    2016-09-01

    FERMI, the Italian Free Electron Laser user facility, provides VUV/soft x-ray photons pulses with unprecedented high brilliance and coherence. The unique design of EIS-TIMER is conceived to exploit such kind of non-linear coherent experiments to probe collective vibrational and electronic properties of matter at the nanoscale. After the proof of principle experiment successfully carried out at the DiProI beamline employing a simplified and compact setup (mini-TIMER), the EIS-TIMER beamline has been installed and commissioned. The beamlines employs 24 mirrors and three photon beams in order to create a wide set of transient grating able to reach Q vectors so far impossible to probe. In the presentation the scientific case, the commissioning results as well as the future development of the beamline will be shown. The future project nano-TIMER will be described in detail with particular attention to it's unique optical scheme mainly composed by diffraction gratings.

  5. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Heimann, P.A.; Mossessian, D. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  6. Design and simulation of the nuSTORM pion beamline

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A., E-mail: aoliu@fnal.gov; Neuffer, D.; Bross, A.

    2015-11-21

    The nuSTORM (neutrinos from STORed Muons) proposal presents a detailed design for a neutrino facility based on a muon storage ring, with muon decay in the production straight section of the ring providing well defined neutrino beams. The facility includes a primary high-energy proton beam line, a target station with pion production and collection, and a pion beamline for pion transportation and injection into a muon decay ring. The nuSTORM design uses “stochastic injection”, in which pions are directed by a chicane, referred to as the Orbit Combination Section (OCS), into the production straight section of the storage ring. Pions that decay within that straight section provide muons within the circulating acceptance of the ring. The design enables injection without kickers or a separate pion decay transport line. The beam line that the pions traverse before being extracted from the decay ring is referred to as the pion beamline. This paper describes the design and simulation of the pion beamline, and includes full beam dynamics simulations of the system.

  7. Time-resolved neutron imaging at ANTARES cold neutron beamline

    CERN Document Server

    Tremsin, A S; Tittelmeier, K; Schillinger, B; Schulz, M; Lerche, M; Feller, W B

    2015-01-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and...

  8. Gifford McMahon Machine Used for Precooling of Two Superconducting Cavities at ESRF

    Science.gov (United States)

    Rossat, M.; Bredy, P.; Jacob, J.; Torrecillas, F.; Boilot, D.; Bruas, E.

    2004-06-01

    A cryo-module housing two superconducting 352 MHz-cavities has been developed within the framework of the SOLEIL project design phase. In 2002, the prototype was installed on the ESRF storage ring and tested with beam in the accelerating regime at 4.5 K with the cavities cooled by liquid helium from Dewars. Four such tests have been carried out at the end of scheduled shutdowns. In order not to disturb the ESRF machine performance during the user mode of operation, the cavities were maintained detuned at room temperature in a passive regime, where they remained transparent to the beam. Less than 100 W of heat generated by the beam had then to be evacuated by a helium gas flow. The week of shut down before each test period was used to pre-cool the module by means of helium gas at a flow rate of 12.5 Nm3/h, the helium being cooled by a Gifford McMahon machine AL300 built by Cryomech (USA). The aim of this poster is to show the special design of the cold head and the way of cooling down the system.

  9. Some aspects of SR beamline alignment

    Energy Technology Data Exchange (ETDEWEB)

    Gaponov, Yu.A., E-mail: Yury.Gaponov@maxlab.lu.se [MAX-lab, Lund University, P.O.B. 118, SE-221 00 Lund (Sweden); Cerenius, Y. [MAX-lab, Lund University, P.O.B. 118, SE-221 00 Lund (Sweden); Nygaard, J. [Faculty of Life Sciences, University of Copenhagen, DK-1871 Frederiksberg C (Denmark); Ursby, T.; Larsson, K. [MAX-lab, Lund University, P.O.B. 118, SE-221 00 Lund (Sweden)

    2011-09-01

    Based on the Synchrotron Radiation (SR) beamline optical element-by-element alignment with analysis of the alignment results an optimized beamline alignment algorithm has been designed and developed. The alignment procedures have been designed and developed for the MAX-lab I911-4 fixed energy beamline. It has been shown that the intermediate information received during the monochromator alignment stage can be used for the correction of both monochromator and mirror without the next stages of alignment of mirror, slits, sample holder, etc. Such an optimization of the beamline alignment procedures decreases the time necessary for the alignment and becomes useful and helpful in the case of any instability of the beamline optical elements, storage ring electron orbit or the wiggler insertion device, which could result in the instability of angular and positional parameters of the SR beam. A general purpose software package for manual, semi-automatic and automatic SR beamline alignment has been designed and developed using the developed algorithm. The TANGO control system is used as the middle-ware between the stand-alone beamline control applications BLTools, BPMonitor and the beamline equipment.

  10. Beamline for Schools Safety Awareness Day

    CERN Multimedia

    Photo Service, CERN

    2014-01-01

    The first two teams to participate in CERN's Beamline for Schools project spent their first day at CERN at the Safety Training Center in Prévessin. They covered amongst others radiation protection, cryogenics and fire-fighting. The teams will spend the rest of the week at the T9 beamline.

  11. ERLP Gun Commissioning Beamline Design

    CERN Document Server

    Holder, D J; Hannon, F E

    2004-01-01

    The 4GLS project is a novel next-generation solution for a UK national light source. It is based on an energy recovery linac (ERL) operating at high average beam currents up to 100 mA and with compression schemes producing pulses in the 10 - 100 fs range. This challenging accelerator technology, new to Europe, necessitates a significant R&D programme and a major part of this is a low-energy prototype, the ERLP, which is currently under construction at Daresbury Laboratory, in the north-west of England. The first components of ERLP to be built will be the DC photocathode gun and low-energy beam transport and diagnostics. The gun will initially be operated with a diagnostic beamline in order to measure the properties of the high-brightness beams generated as fully as possible. This will allow comparison of its performance with the results of multi-particle tracking codes, prior to its integration into the ERLP machine. The diagnostic beamline will include diagnostics for measuring the transverse and longitu...

  12. CAT Guide and Beamline Directory. A key to APS Collaborative Access Teams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-08

    The Advanced Photon Source (APS), a national user facility for synchrotrons radiation research, is located at Argonne National Laboratory, approximately 25 miles southwest of Chicago, Illinois. The APS is considered a third-generation synchrotrons radiation facility (specifically designed to accommodate insertion devices to serve as radiation sources) and is one of three such facilities in the world. Currently, it is the most brilliant source in the United States for research in such diverse fields as biology, medicine, materials science, chemistry, geology, agriculture and soil science, physics, and manufacturing technology. Researchers use the APS either as members of Collaborative Access Teams (CATS) or as Independent Investigators (IIs). CATS are responsible for designing, building, and operating beamlines in one or more sectors, each sector consisting of an insertion-device (ID) beamline and a bending-magnet (BM) beamline. Each beamline is designed to accommodate a specific type of research program(s) and is optimized accordingly. CAT members are entitled to use 75% of the available beam time to pursue CAT research goals. The remaining 25% of the available beam time must be made available to IIs. This document was written to help prospective IIs determine which beamlines are suitable for their specific experiments.

  13. Beamline for low-energy transport of highly charged ions at HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Andelkovic, Z., E-mail: z.andelkovic@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Herfurth, F.; Kotovskiy, N. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); König, K.; Maaß, B.; Murböck, T. [Technische Universität Darmstadt (Germany); Neidherr, D. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Schmidt, S. [Technische Universität Darmstadt (Germany); Johannes Gutenberg-Universität Mainz (Germany); Steinmann, J. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Hochschule Darmstadt (Germany); Vogel, M.; Vorobjev, G. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany)

    2015-09-21

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency.

  14. Measurement of the polarization for soft x-ray magnetic circular dichroism at the BSRF beamline 4B7B

    CERN Document Server

    Zhi-Ying, Guo; Jing-Tao, Zhu; YI-Dong, Zhao; Lei, Zheng; Cai-Hao, Hong; Kun, Tang; Dong-Liang, Yang; Ming-Qi, Cui

    2012-01-01

    Three ultra-short-period W/B4C multilayers (1.244nm, 1.235nm and 1.034nm) have been fabricated and used for polarization measurement at the 4B7B Beamline of Beijing Synchrotron Radiation Facility (BSRF). By rotating analyzer ellipsometry method, the linear polarization degree of light emerging from this beamline has been measured and the circular polarization evaluated for 700eV-860eV. The first soft x-ray magnetic circular dichroism measurements are carried out at BSRF by positioning the beamline aperture out of the plane of the electron storage ring.

  15. From Beamline to Scanner with 225Ac

    Science.gov (United States)

    Robertson, Andrew K. H.; Ramogida, Caterina F.; Kunz, Peter; Rodriguez-Rodriguez, Cristina; Schaffer, Paul; Sossi, Vesna

    2016-09-01

    Due to the high linear energy transfer and short range of alpha-radiation, targeted radiation therapy using alpha-emitting pharmaceuticals that successfully target small disease clusters will kill target cells with limited harm to healthy tissue, potentially treating the most aggressive forms of cancer. As the parent of a decay chain with four alpha- and two beta-decays, 225Ac is a promising candidate for such a treatment. However, this requires retention of the entire decay chain at the target site, preventing the creation of freely circulating alpha-emitters that reduce therapeutic effect and increase toxicity to non-target tissues. Two major challenges to 225Ac pharmaceutical development exist: insufficient global supply, and the difficulty of preventing toxicity by retaining the entire decay chain at the target site. While TRIUMF works towards large-scale (C i amounts) production of 225Ac, we already use our Isotope Separation On-Line facility to provide small (overview of this research program and the journey of 225Ac from the beamline to the scanner. This research is funded by the Natural Sciences and Engineering Research Council of Canada.

  16. Confining continuous manipulations of accelerator beamline optics

    CERN Document Server

    Amstutz, Philipp; Bödewadt, Jörn; Lechner, Christoph; Plath, Tim; Vogt, Mathias

    2016-01-01

    Altering the optics in one section of a linear accelerator beamline will in general cause an alteration of the optics in all downstream sections. In circular accelerators, changing the optical properties of any beamline element will have an impact on the optical functions throughout the whole machine. In many cases, however, it is desirable to change the optics in a certain beamline section without disturbing any other parts of the machine. Such a local optics manipulation can be achieved by adjusting a number of additional corrector magnets that restore the initial optics after the manipulated section. In that case, the effect of the manipulation is confined in the region between the manipulated and the correcting beamline elements. Introducing a manipulation continuously, while the machine is operating, therefore requires continuous correction functions to be applied to the correcting quadrupole magnets. In this paper we present an analytic approach to calculate such continuous correction functions for six ...

  17. Imaging beamline for high energy proton radiography

    Institute of Scientific and Technical Information of China (English)

    WEI Tao; YANG Guo-Jun; LONG Ji-Dong; WANG Shao-Heng; HE Xiao-Zhong

    2012-01-01

    Proton radiography is a new tool for advanced hydrotesting.This article will discuss the basic concept of proton radiography first,especially the magnetic lens system.Then a scenario of 50 GeV imaging beamline will be described in every particular,including the matching section,Zumbro lens system and imaging system.The simulation result shows that the scenario of imaging beamline performs well,and the influence of secondary particles can be neglected.

  18. Construction Status of the Beamline for Radio-Isotope Production in the Korea Multi-purpose Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. H.; Yoon, S. P.; Seol, K. T.; Kim, H. S.; Kwon, H. J.; Cho, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The 100-MeV beamline consist of 5 target room, a TR 103 as one of these is operating beamline, and a TR 101 as the other beamline is under construction as shown in Fig. 1. The TR 101 as beamline target room will be used for the high value-added medical isotope production and increased utilization of the proton accelerator. The optical system of the beamline consisted of dipole and quadrupole, and it included beam position monitor (BPM) and current transformer (CT) for beam diagnostics. The beamline was inserted into the carbon block and the aluminum collimator, the end of pipe as beam window was used for the aluminum to reduce the radioactive of materials. The target transfer equipment is being installed for RI production. The RI Beamline was aligned using the laser tracker, and vacuum leak was not detected by the helium leak detector. This facility is expected to the high value-added medical isotope production and increased utilization of the proton accelerator.

  19. Understanding the instrumental profile of synchrotron radiation X-ray powder diffraction beamlines.

    Science.gov (United States)

    Rebuffi, Luca; Sánchez Del Río, Manuel; Busetto, Edoardo; Scardi, Paolo

    2017-05-01

    A Monte Carlo algorithm has been developed to calculate the instrumental profile function of a powder diffraction synchrotron beamline. Realistic models of all optical elements are implemented in a ray-tracing software. The proposed approach and the emerging paradigm have been investigated and verified for several existing X-ray powder diffraction beamlines. The results, which can be extended to further facilities, show a new and general way of assessing the contribution of instrumental broadening to synchrotron radiation data, based on ab initio simulations.

  20. Light flux density threshold at which protein denaturation is induced by synchrotron radiation circular dichroism beamlines.

    Science.gov (United States)

    Miles, A J; Janes, Robert W; Brown, A; Clarke, D T; Sutherland, J C; Tao, Y; Wallace, B A; Hoffmann, S V

    2008-07-01

    New high-flux synchrotron radiation circular dichroism (SRCD) beamlines are providing important information for structural biology, but can potentially cause denaturation of the protein samples under investigation. This effect has been studied at the new CD1 dedicated SRCD beamline at ISA in Denmark, where radiation-induced thermal damage effects were observed, depending not only on the radiation flux but also on the focal spot size of the light. Comparisons with similar studies at other SRCD facilities worldwide has lead to the estimation of a flux density threshold under which SRCD beamlines should be operated when samples are to be exposed to low-wavelength vacuum ultraviolet radiation for extended periods of time.

  1. High resolution neutron imaging capabilities at BOA beamline at Paul Scherrer Institut

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 (United States); Morgano, M.; Panzner, T.; Lehmann, E.; Filgers, U. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Vallerga, J.V.; McPhate, J.B.; Siegmund, O.H.W. [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2015-06-01

    The cold neutron spectrum of the Beamline for neutron Optics and other Applications (BOA) at Paul Scherrer Institut enables high contrast neutron imaging because neutron cross sections for many materials increase with neutron wavelength. However, for many neutron imaging applications, spatial resolution can be as important as contrast. In this paper the neutron transmission imaging capabilities of an MCP/Timepix detector installed at the BOA beamline are presented, demonstrating the possibilities for studying sub-20 µm features in various samples. In addition to conventional neutron radiography and microtomography, the high degree of neutron polarization at the BOA beamline can be very attractive for imaging of magnetic fields, as demonstrated by our measurements. We also show that a collimated cold neutron beamline combined with a high resolution detector can produce image artifacts, (e.g. edge enhancements) due to neutron refraction and scattering. The results of our experiments indicate that the BOA beamline is a valuable addition to neutron imaging facilities, providing improved and sometimes unique capabilities for non-destructive studies with cold neutrons.

  2. Ring beamlines and instrumentation for industrial applications

    Science.gov (United States)

    Pearce, W. Jorge; Trippe, Anthony P.

    1994-08-01

    Many recently constructed storage rings are catering to the needs of industrial applications in addition to providing the traditional services required for synchrotron radiation research. The Center for Advanced Microstructures and Devices (CAMD) was established by Louisiana State University to pioneer development of microfabrication while supporting research in basic science. Maxwell Laboratories designed, built, and successfully commissioned the 1.2 GeV, 400 mA light source for CAMD. Maxwell Laboratories has completed one X-ray lithography beamline at CAMD, and two more are now being manufactured. The completed beamline system, designed for thin resists, delivers photons up to 2 keV. The two beamlines currently under construction deliver photons up to 6 keV for thick (> 50 μm) resists, which play a role in the fabrication of 3-D nanostructures. One of the thick-resist beamlines includes an aspheric mirror that collimates the synchrotron-radiation beam in the horizontal plane while focusing it in the vertical direction - creating a sharp, uniform line image at the workpiece. The other thick-resist beamline has conventional planar optics. Beam position monitors (BPMs) developed for the CAMD beamlines provide a precise vertical profile of the beam by measuring differential photocurrents generated in the BPM probes. Beam power measurements are accomplished with a fixed-aperture calorimeter. Since each calorimeter is precisely calibrated before shipment, its thermal response in the beam is an accurate means to determine beam power for setting lithography exposure times or for computing beamline energy balance.

  3. Breaking New Ground with High Resolution Turn-By-Turn BPMs at the ESRF

    CERN Document Server

    Farvacque, L; Scheidt, K

    2001-01-01

    This High-Resolution, Turn-by-Turn BPM system is a low-cost extension to the existing BPM system, based on the RF-multiplexing concept, used for slow Closed-Orbit measurements. With this extension Beam Position measurements in both planes, at all (224) BPMs in the 844 m ESRF Storage Ring, for up to 2048 Orbit Turns with 1 μm resolution are performed. The data acquisition is synchronised to a single, flat 1 μs, transverse deflection kick to the 1μs beamfill in the 2.8μs revolution period. The high quality of this synchronisation, together with the good reproducibility of the deflection kick and the overall stability of the Closed Orbit beam allows to repeat the kick and acquisition in many cycles. The subsequent averaging of the data obtained in these cycles yields the 1um resolution. The latter allows lattice measurements with high precision such as the localisation of very small focussing errors and modulation in Beta values and phase advances. It also finds an unique ...

  4. One-dimensional numerical simulation of shock wave propagation induced by vacuum accidents in a beamline

    Energy Technology Data Exchange (ETDEWEB)

    Takiya, Toshio; Terada, Yukihiro; Komura, Akio [Hitachi Zosen Corp., Osaka (Japan); Higashino, Fumio; Miyajima, Shinichi; Ando, Masami

    1997-05-01

    A simulation for shock wave propagation in a vacuum tube has been conducted from the viewpoint of protection from vacuum accidents in beamlines of a synchrotron radiation facility. Inserted devices in beamlines such as absorbers, slits, masks and beryllium windows were replaced with orifices installed in a shock tube as a simulation model. One-dimensional Euler`s equations with friction terms were used for estimating the effects on shock wave decay as well as the effects of friction along a tube on shock attenuation. The results indicated that the entrance diameter of the shock tube was an important parameter for determining the strength of shock waves generated by the expansion of gases at the tube entrance and that the friction effects were too large to delay the arrival time of shock waves at the end of a long tube. Moreover, shock wave propagation in a long beamline model based on the MR beamline in the National Laboratory for High Energy Physics was simulated for designing adequate protection from vacuum accidents. The present simulation provides necessary information for the design of a protection system for vacuum accidents in other facilities. (author)

  5. Hard X-ray photoelectron spectroscopy on the GALAXIES beamline at the SOLEIL synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Céolin, D.; Ablett, J.M.; Prieur, D.; Moreno, T. [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, FR-91192 Gif-sur-Yvette Cedex (France); Rueff, J.-P. [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, FR-91192 Gif-sur-Yvette Cedex (France); Laboratoire de Chimie Physique-Matière et Rayonnement, Université Pierre et Marie Curie and CNRS UMR7614, FR-75231 Paris Cedex 05 (France); Marchenko, T.; Journel, L.; Guillemin, R.; Pilette, B.; Marin, T. [Laboratoire de Chimie Physique-Matière et Rayonnement, Université Pierre et Marie Curie and CNRS UMR7614, FR-75231 Paris Cedex 05 (France); Simon, M., E-mail: marc.simon@upmc.fr [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, FR-91192 Gif-sur-Yvette Cedex (France); Laboratoire de Chimie Physique-Matière et Rayonnement, Université Pierre et Marie Curie and CNRS UMR7614, FR-75231 Paris Cedex 05 (France)

    2013-10-15

    Highlights: ► We developed a new HAXPES endstation at the French synchrotron facility SOLEIL. ► The setup is operational for both solid state and gas phase experiments. ► Beamline performances allow working in the Auger Raman conditions. ► Beamline flux compensates for ionization cross section decrease at high photon energy. ► Spectrometer compensates for ionization cross section decrease at high photon energy. -- Abstract: We report on the newly operational HAXPES endstation located on the GALAXIES beamline of the SOLEIL French synchrotron facility. The photon energy provided by the beamline covers the 2.4–12 keV range, and electrons of kinetic energy up to 12 keV can be analyzed. The HAXPES station is comprised of a UHV analysis chamber designed for investigating both solid samples and gases for the first time at high kinetic energy, and a fully equipped preparation chamber. We present the first results of X-ray photoemission and photoabsorption collected with this setup.

  6. National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition

    Energy Technology Data Exchange (ETDEWEB)

    Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

    1989-01-01

    This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions.

  7. Status of the Design of the LBNE Neutrino Beamline

    CERN Document Server

    Andrews, R; Childress, S C; Moore, C D; Papadimitriou, V; Campbell, M R

    2013-01-01

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a beam of neutrinos toward a detector placed at the Homestake Mine in South Dakota, about 1300 km away. The neutrinos are produced as follows: First, protons extracted from the MI-10 section of the Main Injector (60-120 GeV) hit a solid target above grade and produce mesons. Then, the charged mesons are focused by a set of focusing horns into a 250 m long decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined taking into account several factors including the physics goals, the modeling of the facility, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~700 kW, however some of the parameters were chosen to be able to deal with a...

  8. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Antici, P. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati (Italy); SAPIENZA, University of Rome, Dip. SBAI, Via A. Scarpa 14, 00161 Rome (Italy); INFN - Sezione di Roma, c/o Dipartimento di Fisica - SAPIENZA, University of Rome, P.le Aldo Moro, 2 - 00185 Rome (Italy); Bacci, A.; Chiadroni, E.; Ferrario, M.; Rossi, A. R. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati (Italy); Benedetti, C. [University of Bologna and INFN - Bologna (Italy); Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L. [SAPIENZA, University of Rome, Dip. SBAI, Via A. Scarpa 14, 00161 Rome (Italy); INFN - Sezione di Roma, c/o Dipartimento di Fisica - SAPIENZA, University of Rome, P.le Aldo Moro, 2 - 00185 Rome (Italy); Serafini, L. [INFN-Milan and Department of Physics, University of Milan, Via Celoria 16, 20133 Milan (Italy)

    2012-08-15

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  9. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    Science.gov (United States)

    Antici, P.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Rossi, A. R.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Serafini, L.

    2012-08-01

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  10. Basic design of beamline and polarization control

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The basic concept of synchrotron radiation beamlines for vacuum ultraviolet and X-ray experiments has been introduced to beginning users and designers of beamlines. The beamline defined here is composed of a front end,pre-mirrors, and a monochromator with refocusing mirrors, which are connected by beam pipes, providing monochromatic light for the experiments. Firstly, time characteristics of the synchrotron radiation are briefly reviewed.Secondly, the basic technology is introduced as the fundamental knowledge required to both users and designers. The topics are photoabsorption by air and solids, front ends and beam pipes, mirrors, monochromators, and filters. Thirdly,the design consideration is described mainly for the designers. The topics are design principle, principle of ray tracing,optical machinery and control, and vacuum. Fourthly, polarization control is considered. The topics are polarizers,polarization diagnosis of beamline, and circularly-polarized light generation. Finally, a brief summary is given introducing some references for further knowledge of the users and the designers.

  11. Beamline for schools beam line training day

    CERN Multimedia

    Photo Service, CERN

    2014-01-01

    The first two teams to participate in CERN's Beamline for Schools project spent their second day at CERN learning the basics of beam physics, and visiting their experimental setup at the T9 beam line in CERN's East Hall on the Meyrin site.

  12. Confining continuous manipulations of accelerator beamline optics

    Energy Technology Data Exchange (ETDEWEB)

    Amstutz, P.; Lechner, C.; Plath, T. [Hamburg Univ. (Germany). Dept. of Physics; Ackermann, S.; Boedewadt, J.; Vogt, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-04-15

    Altering the optics in one section of a linear accelerator beamline will in general cause an alteration of the optics in all downstream sections. In circular accelerators, changing the optical properties of any beamline element will have an impact on the optical functions throughout the whole machine. In many cases, however, it is desirable to change the optics in a certain beamline section without disturbing any other parts of the machine. Such a local optics manipulation can be achieved by adjusting a number of additional corrector magnets that restore the initial optics after the manipulated section. In that case, the effect of the manipulation is confined in the region between the manipulated and the correcting beamline elements. Introducing a manipulation continuously, while the machine is operating, therefore requires continuous correction functions to be applied to the correcting quadrupole magnets. In this paper we present an analytic approach to calculate such continuous correction functions for six quadrupole magnets by means of a homotopy method. Besides a detailed derivation of the method, we present its application to an algebraic example, as well as its implementation at the seeding experiment sFLASH at the free-electron laser FLASH located at DESY in Hamburg.

  13. Design, Installation, and Initial Commissioning of the MTA Beamline

    CERN Document Server

    Moore, Craig; Garcia, Fernanda; Gerardi, Michael; Johnstone, Carol; Kobilarcik, Thomas; Kucera, Michael; Kufer, Mathew; Newhart, Duane; Rakhno, Igor; Vogel, Gregory

    2012-01-01

    A new experimental area designed to develop, test and verify muon ionization cooling apparatus using the 400-MeV Fermilab Linac proton beam has been fully installed and is presently being commissioned. Initially, this area was used for cryogenic tests of liquid-hydrogen absorbers for the MUCOOL R&D program and, now, for high-power beam tests of absorbers, high-gradient rf cavities in the presence of magnetic fields (including gas-filled cavities), and other prototype muon-cooling apparatus. The experimental scenarios being developed for muon facilities involve collection, capture, and cooling of large-emittance, high-intensity muon beams--~10**13 muons, so that conclusive tests of the apparatus require full Linac beam, which is 1.6 x 10**13 p/pulse. To support the muon cooling facility, this new primary beamline extracts and transports beam directly from the Linac to the test facility. The design concept for the MuCool facility is taken from an earlier proposal, but modifications were necessary to accommo...

  14. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Pešić, Z. D.; De Fanis, A.; Rau, C.

    2013-03-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  15. Comparing the effect of low and high emittance on synchrotron radiation and beamline design

    Directory of Open Access Journals (Sweden)

    A Gholampour Azhir

    2017-08-01

    Full Text Available In this paper, we have discussed about the role of two emittance values suggested for Iranian Light Source Facility (ILSF (3.278 and 0.476 nm.rad on different radiation features of the synchrotron light sources (bending magnet, shaker and oscillator such as spot size, divergence of the beam on light spot, brilliance and important quantities in beamline design such as photon cross-section, optical element sizes and energy resolution  

  16. X-ray absorption spectroscopy investigations on radioactive matter using MARS beamline at SOLEIL synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Llorens, Isabelle; Solari, Pier Lorenzo; Sitaud, Bruno [Synchrotron SOLEIL - l' Orme des Merisiers Saint Aubin, Gif-sur-Yvette (France); and others

    2014-07-01

    The MARS beamline at the SOLEIL synchrotron is dedicated to the characterization of radioactive material samples. One great advantage of the beamline is the possibility to characterize about 380 radionuclides by different X-ray techniques in the same place. This facility is unique in Europe. A wide energy range from around 3.5 keV to 36 keV K-edges from K to Cs, and L3 edges from Cd to Am and beyond can be used. The MARS beamline is optimized for X-ray absorption spectroscopy techniques (XANES/EXAFS), powder diffraction (XRD) but X-ray fluorescence (XRF) analysis, High Energy Resolution Fluorescence Detected-XAS (HERFD-XAS), X-ray Emission (XES) and μ-XAS/XRD are also possible. A description of the beamline as well as its performances are given in a first part. Then some scientific examples of XAS studies from users are presented which cover a wide variety of topics in radiochemistry and nuclear materials.

  17. CERN’s 2016 Beamline for Schools competition starts on 17 November

    CERN Multimedia

    2015-01-01

    Spread the word: CERN is offering high-school students from around the world the chance to create and perform a scientific experiment on a CERN accelerator beamline. What better way to learn about physics?    (Video: Noemi Caraban​/CERN ) Now in its third year, the Beamline for Schools competition is open to teams of at least five students aged 16 and with at least one adult supervisor or “coach”. Students can find out about the beamline and facilities via http://cern.ch/bl4s, then think of a simple, creative experiment. They can register their team from 17 November to start receiving e-mail updates. They then submit a written proposal and a short video by 31 March 2016. The winners will be announced in June and will come to CERN, preferably in September 2016. Previous winners have tested webcams and classroom-grown crystals at the beamline, others have studied how particles decay and investigated high-energy gamma rays. All participants will receive...

  18. Optical design of the NSRL undulator beamline.

    Science.gov (United States)

    Zhang, Y W; Sheng, L S; Zhang, G B; Gao, H

    1998-05-01

    The optical design of the NSRL undulator beamline is presented. The NSRL undulator has 29 periods of 9.2 cm that produce a photon energy of 7.7-124 eV with the fundamental and third harmonics at a ring energy of 800 MeV. The beamline consists of a typical Kirkpatrick-Baez prefocusing mirror system, a modified spherical-grating monochromator (SGM) and a refocusing toroidal mirror. The monochromator has two including angles of 148 and 157 degrees with two plane mirrors inserted into the entrance arm in order to cover the wide energy range with high grating diffraction efficiency. Calculation shows that the resolving power of the monochromator can be greater than 5000 with the slits fully opened and 20000 with a 20 micro m opening of the slits. The spot at the sample is about 1.5 (H) mm x 0.5 (V) mm.

  19. EIS: the scattering beamline at FERMI.

    Science.gov (United States)

    Masciovecchio, Claudio; Battistoni, Andrea; Giangrisostomi, Erika; Bencivenga, Filippo; Principi, Emiliano; Mincigrucci, Riccardo; Cucini, Riccardo; Gessini, Alessandro; D'Amico, Francesco; Borghes, Roberto; Prica, Milan; Chenda, Valentina; Scarcia, Martin; Gaio, Giulio; Kurdi, Gabor; Demidovich, Alexander; Danailov, Miltcho B; Di Cicco, Andrea; Filipponi, Adriano; Gunnella, Roberto; Hatada, Keisuke; Mahne, Nicola; Raimondi, Lorenzo; Svetina, Cristian; Godnig, Roberto; Abrami, Alessandro; Zangrando, Marco

    2015-05-01

    The Elastic and Inelastic Scattering (EIS) beamline at the free-electron laser FERMI is presented. It consists of two separate end-stations: EIS-TIMEX, dedicated to ultrafast time-resolved studies of matter under extreme and metastable conditions, and EIS-TIMER, dedicated to time-resolved spectroscopy of mesoscopic dynamics in condensed matter. The scientific objectives are discussed and the instrument layout illustrated, together with the results from first exemplifying experiments.

  20. An Updated AP2 Beamline TURTLE Model

    Energy Technology Data Exchange (ETDEWEB)

    Gormley, M.; O' Day, S.

    1991-08-23

    This note describes a TURTLE model of the AP2 beamline. This model was created by D. Johnson and improved by J. Hangst. The authors of this note have made additional improvements which reflect recent element and magnet setting changes. The magnet characteristics measurements and survey data compiled to update the model will be presented. A printout of the actual TURTLE deck may be found in appendix A.

  1. Novel approaches in the SR beamline design

    Energy Technology Data Exchange (ETDEWEB)

    Kaznatcheev, K., E-mail: kaznatch@bnl.gov [Photon Science Directorates, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Idir, M.; Chubar, O. [Photon Science Directorates, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2013-05-11

    High brightness third generation x-ray sources bring new experimental possibilities and impose new challenges. Coherent scattering and diffraction-limited microscopy require wave-preserving optics, high-resolution inelastic scattering novel optical elements, where x-ray interferometry or the requirements of precise polarization measurements change the optical layout. With NSLS-II development as an illustration we discuss recent trends in beamline design.

  2. Development of the XFP beamline for x-ray footprinting at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Bohon, Jen, E-mail: jbohon@bnl.gov; Sullivan, Michael; Abel, Don; Toomey, John; Chance, Mark R., E-mail: mark.chance@case.edu [Case Center for Synchrotron Biosciences, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH (United States); Dvorak, Joseph [Brookhaven National Laboratory, Upton, NY (United States)

    2016-07-27

    For over a decade, synchrotron-based footprinting studies at the NSLS X28C beamline have provided unique insights and approaches for examining the solution-state structures of large macromolecular assemblies, membrane proteins, and soluble proteins, for time-resolved studies of macromolecular dynamics, and most recently for in vivo studies of RNA-protein complexes. The transition from NSLS to NSLS-II has provided the opportunity to create an upgraded facility for the study of increasingly complex systems; progress on the development of the XFP (X-ray Footprinting for In Vitro and In Vivo Structural Studies of Biological Macromolecules) beamline at NSLS-II is presented here. The XFP beamline will utilize a focused 3-pole wiggler source to deliver a high flux density x-ray beam, where dynamics can be studied on the microsecond to millisecond timescales appropriate for probing biological macromolecules while minimizing sample perturbation. The beamline optics and diagnostics enable adaptation of the beam size and shape to accommodate a variety of sample morphologies with accurate measurement of the incident beam, and the upgrades in sample handling and environment control will allow study of highly sensitive or unstable samples. The XFP beamline is expected to enhance relevant flux densities more than an order of magnitude from that previously available at X28C, allowing static and time-resolved structural analysis of highly complex samples that have previously pushed the boundaries of x-ray footprinting technology. XFP, located at NSLS-II 17-BM, is anticipated to become available for users in 2016.

  3. 7-GeV advanced photon source beamline initiative: Conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R&D plans for the Beamline Initiative activities and provides the cost estimates for the required R&D.

  4. A comparative study of the spectra recorded at RRCAT synchrotron BL-8 dispersive EXAFS beamline with other beamlines

    Indian Academy of Sciences (India)

    Abhijeet Gaur; B D Shrivastava; S N Jha; D Bhattacharyya; A Poswal

    2013-01-01

    The aim of the present work is to make a comparative study of the EXAFS spectra recorded at the BL-8 dispersive EXAFS beamline at 2 GeV Indus-2 synchrotron source at RRCAT, Indore (India) with those recorded at other synchrotron EXAFS beamlines, viz., X-19A at NSLS, BNL (USA), EXAFS wiggler beamline 4-1 at the SSRL (USA) and beamline 11.1 at ELETTRA (Italy). For this purpose, EXAFS spectra at Cu K-edge in copper metal have been recorded at these four beamlines. Further, EXAFS spectra at Cu K-edge in a copper complex have also been recorded at BL-8 beamline and beamline 11.1 at ELETTRA (Italy). The obtained experimental () data have been background-subtracted and then normalized. The normalized data have been then converted to () data, which have been Fourier-transformed and then fitted with the theoretical model, thereby yielding different structural parameters. It has been shown that the results obtained from the EXAFS spectra recorded at the BL-8 beamline are comparable with those obtained from other synchrotron EXAFS beamlines and also with the crystallographic results reported by earlier workers. The reliability, usefulness and data quality of the BL-8 beamline have been discussed.

  5. (SUNY beamline facilities at the National Synchrotron Light Source)

    Energy Technology Data Exchange (ETDEWEB)

    Coppens, P.

    1992-01-01

    This report contains short discussions on the following topics which mainly deal with superconductors: crystallography; surface structure; scattering and EXAFS studies; small angle scattering of x-rays. (LSP)

  6. Validation of Monte-Carlo simulations with measurements at the ICON beam-line at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Giller, L. [LRS, Physics Department, Ecole Polytechnique Federal de Lausanne, CH-1015 Lausanne (Switzerland); Filges, U. [LDM, NUM Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)], E-mail: uwe.filges@psi.ch; Kuehne, G. [ASQ, NUM Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Wohlmuther, M. [ABE, GFA Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Zanini, L. [ASQ, NUM Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2008-02-11

    ICON is the new cold neutron imaging facility at the neutron spallation source SINQ. The ICON facility is placed at beam-line S52 with direct view to the cold liquid D{sub 2} moderator. The beam-line includes a 4.4 m long collimation section followed by a 11 m long flight path to the imaging system. The essential part of the collimation section is composed of six revolving drums and a variable aperture wheel. Depending on the investigated object, different apertures are used. Measurements have shown that each setup has a different spatial neutron flux distribution and specific beam profiles. Measured beam profiles have been used to validate results of simulations coupling the Monte-Carlo program MCNPX with the neutron ray-tracing program McStas. In a first step, MCNPX was used to calculate neutron spectra closed to the SINQ target, at the entrance of the collimation section. These results served as an input for McStas where the beam-line itself was simulated. In the present paper, experimental and theoretical results will be compared and discussed.

  7. Validation of Monte-Carlo simulations with measurements at the ICON beam-line at SINQ

    Science.gov (United States)

    Giller, L.; Filges, U.; Kühne, G.; Wohlmuther, M.; Zanini, L.

    2008-02-01

    ICON is the new cold neutron imaging facility at the neutron spallation source SINQ. The ICON facility is placed at beam-line S52 with direct view to the cold liquid D 2 moderator. The beam-line includes a 4.4 m long collimation section followed by a 11 m long flight path to the imaging system. The essential part of the collimation section is composed of six revolving drums and a variable aperture wheel. Depending on the investigated object, different apertures are used. Measurements have shown that each setup has a different spatial neutron flux distribution and specific beam profiles. Measured beam profiles have been used to validate results of simulations coupling the Monte-Carlo program MCNPX with the neutron ray-tracing program McStas. In a first step, MCNPX was used to calculate neutron spectra closed to the SINQ target, at the entrance of the collimation section. These results served as an input for McStas where the beam-line itself was simulated. In the present paper, experimental and theoretical results will be compared and discussed.

  8. A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, N.; Kunz, M.; Chen, K.; Celestre, R.S.; MacDowell, A.A.; Warwick, T.

    2009-03-10

    Beamline 12.3.2 at the Advanced Light Source is a newly commissioned beamline dedicated to x-ray microdiffraction. It operates in both monochromatic and polychromatic radiation mode. The facility uses a superconducting bending magnet source to deliver an X-ray spectrum ranging from 5 to 22 keV. The beam is focused down to {approx} 1 um size at the sample position using a pair of elliptically bent Kirkpatrick-Baez mirrors enclosed in a vacuum box. The sample placed on high precision stages can be raster-scanned under the microbeam while a diffraction pattern is taken at each step. The arrays of diffraction patterns are then analyzed to derive distribution maps of phases, strain/stress and/or plastic deformation inside the sample.

  9. Recent developments on techniques for differential phase imaging at the medical beamline of ELETTRA

    Science.gov (United States)

    Arfelli, F.; Pelliccia, D.; Cedola, A.; Astolfo, A.; Bukreeva, I.; Cardarelli, P.; Dreossi, D.; Lagomarsino, S.; Longo, R.; Rigon, L.; Sodini, N.; Menk, R. H.

    2013-06-01

    Over the last decade different phase contrast approaches have been exploited at the medical beamline SYRMEP of the synchrotron radiation facility Elettra in Trieste, Italy. In particular special focus has been drawn to analyzer based imaging and the associated imaging theory and processing. Analyzer based Imaging (ABI) and Diffraction Enhanced Imaging (DEI) techniques have been successfully applied in several biomedical applications. Recently it has been suggested to translate the acquired knowledge in this field towards a Thomson Backscattering Source (TBS), which is presently under development at the Frascati National Laboratories of INFN (Istituto Nazionale di Fisica Nucleare) in Rome, Italy. Such source is capable of producing intense and quasi-monochromatic hard X-ray beams. For the technical implementation of biomedical phase imaging at the TBS a grating interferometer for differential phase contrast imaging has been designed and successfully tested at SYRMEP beamline.

  10. Calibration and standards beamline 6.3.2 at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, J.H.; Gullikson, E.M.; Koike, M. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    More sophisticated optics for the x-ray, soft x-ray and far ultraviolet spectral regions being developed for synchrotron radiation research and many other applications, require accurate calibration and standards facilities for measuring reflectivity of mirrors and multilayer coatings, transmission of thin films, bandpass of multilayers, efficiency of gratings or detectors, etc. For this purpose beamline 6.3.2 was built at the ALS. Its energy coverage, versatility, simplicity and convenience also make it useful for a wide range of other experiments. The paper describes the components of this beamline, consisting of: a four jaw aperture; a horizontal focusing mirror; a monochromator; exit slit; vertical focusing mirror; mechanical and vacuum system; reflectometer; filter wheels; and data acquisition system.

  11. SASE3: soft x-ray beamline at European XFEL

    Science.gov (United States)

    La Civita, Daniele; Gerasimova, Natalia; Sinn, Harald; Vannoni, Maurizio

    2014-09-01

    The European XFEL in Hamburg will be comprised of a linear accelerator and three Free-Electron-Laser beamlines (SASE1, SASE2 and SASE3) covering the energy range from 250 eV to 24 keV. It will provide up to 2700 pulses in trains of 600 microsecond duration at a repetition rate of 10 Hz. SASE3 beamline is the soft X-ray beamline (0.25 - 3 keV) and delivers photon pulses to SQS (Small Quantum System) and SCS (Spectroscopy & Coherent Scattering) experiments. The beamline is able to operate in both monochromatic and non-monochromatic mode. The latter provides the inherent FEL bandwidth at higher intensities. The beamline from photon source to experimental station is about 450 m long. The length of the beamline is related to the optics single-shotdamage issue. The almost diffraction-limited beam is propagated along the beamline with very long (up to 800 mm clear aperture), cooled (with eutectic bath) and super-polished (50 nrad RMS slope error and less than 3 nm PV residual height error) mirrors. The VLS-PG (variable line spacing - plane grating) monochromator covers the entire beamline energy range and its optical design is guided by the optimization of the energy resolving power, the minimization of the pulse broadening and the maximization of optics damage tolerance. Grating substrates are 530 mm long, eutectic cooled and present outstanding surface quality. The VLS parameters of the blazed profile are also a real challenge under manufacturing and measuring point of view. Adaptive optics in the horizontal (the second offset mirror) and vertical (monochromator premirror) plane are foreseen in the optical layout to increase the beamline tunability and to preserve the highly coherent beam properties. Beamline optical design, expected performance and also mechanical aspects of main beamline components are reported.

  12. Diagnostics Beamline for the SRF Gun Project

    CERN Document Server

    Kamps, T; Goldammer, K; Krämer, Dietrich; Kuske, P; Kuszynski, J; Lipka, D; Marhauser, F; Quast, T; Richter, R

    2005-01-01

    A superconducting rf photo electron injector (SRF gun) is currently under construction by a collaboration between BESSY, DESY, FZR and MBI. The project aims at the design and setup of an CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 pi mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies be...

  13. Beam Characterization at the KAERI UED Beamline

    CERN Document Server

    Setiniyaz, Sadiq; Baek, In-Hyung; Nam, Jinhee; Chae, MoonSik; Han, Byung-Heon; Gudkov, Boris; Jang, Kyu Ha; Park, Sunjeong; Miginsky, Sergey; Vinokurov, Nikolay; Jeong, Young Uk

    2016-01-01

    The UED (ultrafast electron diffraction) beamline of the KAERI's (the Korea Atomic Energy Research Institute's) WCI (World Class Institute) Center has been successfully commissioned. We have measured the beam emittance by using the quadrupole scan technique and the charge by using a novel measurement system we have developed. In the quadrupole scan, a larger drift distance between the quadrupole and the screen is preferred because it gives a better thin-lens approximation. A high bunch-charge beam, however, will undergo emittance growth in the long drift caused by the space-charge force. We present a method that mitigates this growth by introducing a quadrupole scan with a short drift and without using the thin-lens approximation. The quadrupole in this method is treated as a thick lens, and the emittance is extracted by using the thick-lens equations. Apart from being precise, our method can be readily applied without making any change to the beamline and has no need for a big drift space. For charge measure...

  14. Diagnostics Beamline for the SRF Gun Project

    Energy Technology Data Exchange (ETDEWEB)

    T. Kamps; V. Durr; K. Goldammer; D. Kramer; P. Kuske; J. Kuszynski; D. Lipka; F. Marhauser; T. Quast; D. Richter; U. Lehnert; P. Michel; J. Teichert; P. Evtushenko; I. Will

    2005-08-22

    A superconducting radio-frequency photo electron injector (SRF gun) is currently under construction by a collaboration of BESSY, DESY, FZR and MBI. The project aims at the design and setup of a CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies between 5 ps and 50 ps, two schemes using electro-optical sampling and Cherenkov radiation are detailed. The beam energy and energy spread is measured with a 180-degree spectrometer.

  15. Optimization of a general-purpose, actively scanned proton beamline for ocular treatments: Geant4 simulations.

    Science.gov (United States)

    Piersimoni, Pierluigi; Rimoldi, Adele; Riccardi, Cristina; Pirola, Michele; Molinelli, Silvia; Ciocca, Mario

    2015-03-08

    The Italian National Center for Hadrontherapy (CNAO, Centro Nazionale di Adroterapia Oncologica), a synchrotron-based hospital facility, started the treatment of patients within selected clinical trials in late 2011 and 2012 with actively scanned proton and carbon ion beams, respectively. The activation of a new clinical protocol for the irradiation of uveal melanoma using the existing general-purpose proton beamline is foreseen for late 2014. Beam characteristics and patient treatment setup need to be tuned to meet the specific requirements for such a type of treatment technique. The aim of this study is to optimize the CNAO transport beamline by adding passive components and minimizing air gap to achieve the optimal conditions for ocular tumor irradiation. The CNAO setup with the active and passive components along the transport beamline, as well as a human eye-modeled detector also including a realistic target volume, were simulated using the Monte Carlo Geant4 toolkit. The strong reduction of the air gap between the nozzle and patient skin, as well as the insertion of a range shifter plus a patient-specific brass collimator at a short distance from the eye, were found to be effective tools to be implemented. In perspective, this simulation toolkit could also be used as a benchmark for future developments and testing purposes on commercial treatment planning systems.

  16. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.

    Science.gov (United States)

    Alcock, Simon G; Nistea, Ioana; Sutter, John P; Sawhney, Kawal; Fermé, Jean Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the `junction effect': a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼ 0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  17. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca [Thales-SESO, 305 rue Louis Armand, Pôle d’Activités d’Aix les Milles, Aix-en-Provence (France)

    2015-01-01

    A next-generation bimorph mirror with piezos bonded to the side faces of a monolithic substrate was created. When replacing a first-generation bimorph mirror suffering from the junction effect, the new type of mirror significantly improved the size and shape of the reflected synchrotron X-ray beam. No evidence of the junction effect was observed even after eight months of continuous beamline usage. Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  18. Students on the Beamline: classroom, research, and discovery

    Science.gov (United States)

    Patry, J.; Walker, T.

    2012-12-01

    High level research is mainly the focus of trained scientists who possess a science specific background. The Canadian Light Source outreach service has developed a two stage research immersion approach which brings together students, teachers, and renowned scientists: Students on the Beamline. The first stage offers a training session for teachers to develop their professional competencies in regards to authentic science research and the synchrotron facility. During the second stage, students from classrooms apply a research protocol of their own design with the help of their teacher and synchrotron scientists. During this presentation, we will first explain the professional approach of the training. In the second part, two experiments designed by students will be presented which are geophysically based so to speak: Study of the Meteoritic Melt Sheet of the Manicouagan Basin and Effects of Olivine on the capture of NOx. Results have shown that teachers bring in the classroom a more authentic and new experience in research application. As for the students, their unique research has contributed to the increase of our knowledge and a better understanding of the scientific inquiry process.Scientist and teacher working together on the synchrotron

  19. On the Light Speed Anisotropy vs Cosmic Microwave Background Dipole: European Synchrotron Radiation Facility Measurements

    CERN Document Server

    Gurzadyan, V G; Kashin, A; Margarian, A T; Bartalini, O; Bellini, V; Castoldi, M; D'Angelo, A; Didelez, J P; Salvo, R D; Fantini, A; Gervino, G; Ghio, F; Girolami, B; Giusa, A; Guidal, M; Hourany, E; Knyazyan, S; Kouznetsov, V; Kunne, Ronald Alexander; Lapik, A; Levi-Sandri, P; Llères, A; Mehrabyan, S S; Moricciani, D; Nedorezov, V; Perrin, C; Rebreyend, D; Russo, G; Rudnev, N; Schärf, C; Sperduto, M L; Sutera, M C; Turinge, A

    2007-01-01

    The measurement of the Compton edge of the scattered electrons in GRAAL facility in European Synchrotron Radiation Facility (ESRF) in Grenoble with respect to the Cosmic Microwave Background dipole reveals up to 10 sigma variations larger than the statistical errors. We now show that the variations are not due to the frequency variations of the accelerator. The nature of Compton edge variations remains unclear, thus outlining the imperative of dedicated studies of light speed anisotropy.

  20. Radiation protection at synchrotron radiation facilities.

    Science.gov (United States)

    Liu, J C; Vylet, V

    2001-01-01

    A synchrotron radiation (SR) facility typically consists of an injector, a storage ring, and SR beamlines. The latter two features are unique to SR facilities, when compared to other types of accelerator facilities. The SR facilities have the characteristics of low injection beam power, but high stored beam power. The storage ring is generally above ground with people occupying the experimental floor around a normally thin concrete ring wall. This paper addresses the radiation issues, in particular the shielding design, associated with the storage ring and SR beamlines. Normal and abnormal beam losses for injection and stored beams, as well as typical storage ring operation, are described. Ring shielding design for photons and neutrons from beam losses in the ring is discussed. Radiation safety issues and shielding design for SR beamlines, considering gas bremsstrahlung and synchrotron radiation, are reviewed. Radiation source terms and the methodologies for shielding calculations are presented.

  1. MX: A beamline control system toolkit

    Science.gov (United States)

    Lavender, William M.

    2000-06-01

    The development of experimental and beamline control systems for two Collaborative Access Teams at the Advanced Photon Source has resulted in the creation of a portable data acquisition and control toolkit called MX. MX consists of a set of servers, application programs and libraries that enable the creation of command line and graphical user interface applications that may be easily retargeted to new and different kinds of motor and device controllers. The source code for MX is written in ANSI C and Tcl/Tk with interprocess communication via TCP/IP. MX is available for several versions of Unix, Windows 95/98/NT and DOS. It may be downloaded from the web site http://www.imca.aps.anl.gov/mx/.

  2. Facilities for small-molecule crystallography at synchrotron sources.

    Science.gov (United States)

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  3. LNLS: light source, beamlines, end stations and scientific instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Vicentin, Flavio Cesar [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The LNLS is operational since 1997 and has a second-generation light source with a 1,37GeV electron storage ring and 2,08 keV critical energy. Besides the storage ring there are various beamlines installed mainly in magnetic dipoles, however were opened three beamlines based in insertion devices, wiggler and undulator. The LNLS is now operating with 16 beamlines which are open to the external user community: 9 of them are dedicated to structural studies and the other 7 to spectroscopic techniques. The beamlines devoted to structural studies involve X-ray diffraction (XRD1, XRD2, XPD and XDS), small-angle X-ray scattering (SAXS1 and SAXS2), protein crystallography (MX1 and MX2) and X-ray fluorescence (XRF). The beamlines dedicated to spectroscopic studies are X-ray absorption fine structure (XAFS1, XAFS2 and DXAS), soft X-ray spectroscopy (SXS), spherical grating monochromator (SGM), plane grating monochromator (PGM) and toroidal grating monochromator (TGM). Two more beamlines are expected to begin their operation in 2012: X-ray tomography and infrared spectroscopy. Each beamline has its own characteristics in terms of photon energy range, flux, resolution and beam size, but many of the optical elements and instrumentation are common to various beamlines and the main are mirrors, monochromators (crystal and diffraction grating), slits and filters. For X-ray and VUV spectroscopy, several experimental techniques can be explored including XAS, XMCD, XMLD, XPS, AES, UPS, XEOL, reflectivity and PePiCo. For that, these beamlines share different end stations and instrumentation that can be easily installed and commissioned for attend a specific experiment. (author)

  4. The test beamline of the European Spallation Source - Instrumentation development and wavelength frame multiplication

    DEFF Research Database (Denmark)

    Woracek, R.; Hofmann, T.; Bulat, M.

    2016-01-01

    The European Spallation Source (ESS), scheduled to start operation in 2020, is aiming to deliver the most intense neutron beams for experimental research of any facility worldwide. Its long pulse time structure implies significant differences for instrumentation compared to other spallation sources...... which, in contrast, are all providing short neutron pulses. In order to enable the development of methods and technology adapted to this novel type of source well in advance of the first instruments being constructed at ESS, a test beamline (TBL) was designed and built at the BER II research reactor...

  5. Target and orbit feedback simulations of a muSR beamline at BNL

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, W. W. [Residence, 25 Rhododendron Circle, Asheville, NC (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. The use of the AGS complex at BNL has been explored for a muSR facility previously. Here we report simulations of a beamline with a target inside a solenoidal field, and of an orbit feed-back system with single muon beam positioning monitors based on technology available today

  6. Target and orbit feedback simulations of a muSR beamline at BNL

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, W. W. [Residence, 25 Rhododendron Circle, Asheville, NC (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. The use of the AGS complex at BNL has been explored for a muSR facility previously. Here we report simulations of a beamline with a target inside a solenoidal field, and of an orbit feed-back system with single muon beam positioning monitors based on technology available today

  7. Synchrotron total reflection X-ray fluorescence at BL-16 microfocus beamline of Indus-2

    Science.gov (United States)

    Tiwari, M. K.; Singh, A. K.; Das, Gangadhar; Chowdhury, Anupam; Lodha, G. S.

    2014-04-01

    Determination of ultra trace elements is important in many disciplines both in basic and applied sciences. Numerous applications show their importance in medical science, environmental science, materials science, food processing and semiconductor industries and in maintaining the quality control of ultra pure chemicals and reagents. We report commissioning of a synchrotron based total reflection x-ray fluorescence (TXRF) facility on the BL-16 microfocus beamline of Indus-2. This paper describes the performance of the BL-16 TXRF spectrometer and the detailed description of its capabilities through examples of measured results.

  8. A new method to suppress high-order harmonics for synchrotron radiation soft x-ray beamline

    CERN Document Server

    Guo, Zhi-Ying; Xing, Hai-Ying; Tang, Kun; Han, Yong; Chen, Dong-Liang; Zhao, Yi-Dong

    2014-01-01

    A feasible and convenient method has been proposed to suppress higher-harmonics for varied-line-spacing (VLS) plane grating monochromator in soft x-ray region. Related calculations and experiments demonstrate that decreasing the included angle slightly by changing the parameter of exit arm length can significantly improve light purity. This method is suitable and has been used for experiments of detector calibration in beamline 4B7B at Beijing Synchrotron Radiation Facility (BSRF).

  9. Conceptual design of an undulator system for a dedicated bio-imaging beamline at the European X-ray FEL

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2012-01-01

    We describe a future possible upgrade of the European XFEL consisting in the construction of an undulator beamline dedicated to life science experiments. The availability of free undulator tunnels at the European XFEL facility offers a unique opportunity to build a beamline optimized for coherent diffraction imaging of complex molecules, like proteins and other biologically interesting structures. Crucial parameters for such bio-imaging beamline are photon energy range, peak power, and pulse duration. Key component of the setup is the undulator source. The peak power is maximized in the photon energy range between 3 keV and 13 keV by the use of a very efficient combination of self-seeding, fresh bunch and tapered undulator techniques. The unique combination of ultra-high peak power of 1 TW in the entire energy range, and ultrashort pulse duration tunable from 2 fs to 10 fs, would allow for single shot coherent imaging of protein molecules with size larger than 10 nm. Also, the new beamline would enable imagin...

  10. Upgrading design of the 3B1A beamline for x-ray nanometre lithography of microelectronic devices at BSRF

    Institute of Scientific and Technical Information of China (English)

    Yi Fu-Ting; Ye Tian-Chun; Peng Liang-Qiang; Chen Da-Peng; Zhang Ju-Fang; Han Yong

    2004-01-01

    Beijing Synchrotron Radiation Facility is a partly dedicated synchrotron radiation source operated in either parasitic or dedicated mode. The 3B1A beamline, extracted from a bending magnet, was originally designed as a soft x-ray beamline for submicro x-ray lithography with critical lateral size just below 1μm in 1988 and no change has been made since it was built. But later the required resolution of x-ray lithography has changed from sub-micrometre to the nanometre in the critical lateral size. This beamline can longer more meet the requirement for x-ray nano lithography and has to be modified to fit the purpose. To upgrade the design of the 3B1A beamline for x-ray nano lithography, a mirror is used to reflect and scan the x-ray beam for the nano lithography station, but the mirror's grazing angle is changed to 27.9mrad in the vertical direction, and the convex curve needs to be modified to fit the change; the tiny change of mirror scanning angle is firstly considered to improve the uniformity of the x-ray spot on the wafer by controlling the convex curve.

  11. A study on radiation shielding and safety analysis for a synchrotron radiation beamline

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro [Japan Atomic Energy Research Inst., Kansai Research Establishment, Synchrotron Radiation Research Center, Mikazuhi, Hyogo (Japan)

    2001-03-01

    Methods of shielding design and safety analysis are presented for a beam-line of synchrotron radiation. This paper consists of the shielding and safety study of synchrotron radiation with extremely intense and low energy photon below several hundreds keV, and the study for the behavior of remarkable high-energy photons up to 8 GeV, which can creep into beam-lines. A new shielding design code, STAC8 was developed to estimate the leakage dose outside the beam line hutch (an enclosure of the beam, optical elements or experimental instruments) easily and quickly with satisfactory accuracy. The code can calculate consistently from sources of synchrotron radiation to dose equivalent outside hutches with considering the build up effect and polarization effect. Validity of the code was verified by comparing its calculations with those of Monte Carlo simulations and measurement results of the doses inside the hutch of the BL14C of Photon Factory in the High Energy Accelerator Research Organization (KEK), showing good agreements. The shielding design calculations using STAC8 were carried out to apply to the practical beam-lines with the considering polarization effect and clarified the characteristics of the typical beam-line of the third generation synchrotron radiation facility, SPring-8. In addition, the shielding calculations were compared with the measurement outside the shield wall of the bending magnet beam-line of SPring-8, and showed fairly good agreement. The new shielding problems, which have usually been neglected in shielding designs for existing synchrotron radiation facilities, are clarified through the analysis of the beam-line shielding of SPring-8. The synchrotron radiation from the SPring-8 has such extremely high-intensity involving high energy photons that the scattered synchrotron radiation from the concrete floor of the hutch, the ground shine, causes a seriously high dose. The method of effective shielding is presented. For the estimation of the gas

  12. Status of the crystallography beamlines at PETRA III

    Science.gov (United States)

    Burkhardt, Anja; Pakendorf, Tim; Reime, Bernd; Meyer, Jan; Fischer, Pontus; Stübe, Nicolas; Panneerselvam, Saravanan; Lorbeer, Olga; Stachnik, Karolina; Warmer, Martin; Rödig, Philip; Göries, Dennis; Meents, Alke

    2016-03-01

    Since 2013, three beamlines for macromolecular crystallography are available to users at the third-generation synchrotron PETRA III in Hamburg: P11, P13 and P14, the latter two operated by EMBL. Beamline P11 is operated by DESY and is equipped with a Pilatus 6M detector. Together with the photon flux of 2× 10^{13} ph/s provided by the very brilliant X-ray source of PETRA III, a full data set can be typically collected in less than 2min. P11 provides state-of-the-art microfocusing capabilities with beam sizes down to 1× 1 μ m2, which makes the beamline ideally suited for investigation of microcrystals and serial crystallography experiments. An automatic sample changer allows fast sample exchange in less than 20s, which enables high-throughput crystallography and fast crystal screening. For sample preparation, an S2 biosafety laboratory is available in close proximity to the beamline.

  13. Optical pseudomotors for soft x-ray beamlines.

    Science.gov (United States)

    Pedreira, P; Sics, I; Sorrentino, A; Pereiro, E; Aballe, L; Foerster, M; Pérez-Dieste, V; Escudero, C; Nicolas, J

    2016-05-01

    Optical elements of soft x-ray beamlines usually have motorized translations and rotations that allow for the fine alignment of the beamline. This is to steer the photon beam at some positions and to correct the focus on slits or on sample. Generally, each degree of freedom of a mirror induces a change of several parameters of the beam. Inversely, several motions are required to actuate on a single optical parameter, keeping the others unchanged. We define optical pseudomotors as combinations of physical motions of the optical elements of a beamline, which allow modifying one optical parameter without affecting the others. We describe a method to obtain analytic relationships between physical motions of mirrors and the corresponding variations of the beam parameters. This method has been implemented and tested at two beamlines at ALBA, where it is used to control the focus of the photon beam and its position independently.

  14. Experimental stations at I13 beamline at Diamond Light Source

    Science.gov (United States)

    Pešić, Z. D.; De Fanis, A.; Wagner, U.; Rau, C.

    2013-03-01

    The I13 beamline of Diamond Light Source has been operational since December 2011. The beamline encompass two fully independent branches devoted to coherent imaging experiments (coherent x-ray diffraction, coherent diffraction imaging and ptychography) and x-ray imaging (in-line phase contrast imaging, tomography and full-field microscopy). This paper gives an overview of the current status of experimental stations on both branches and outlines planned developments.

  15. A new Mtest beamline for the 1999 fixed target run

    Energy Technology Data Exchange (ETDEWEB)

    C. N. Brown and T. R. Kobilarcik

    2000-05-18

    The beamline cryogenic system for the Meson area will not be run for the 1999 fixed target run. The current MTest (MT) beamline relies on cryogenic magnets. A non-cryogenic solution is proposed which can yield up to 1 x 10{sup 6} pions per cycle at 120 GeV/c per 1 x 10{sup 11} incident protons at 800 GeV/c.

  16. Beamline Insertions Manager at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael C. [Jefferson Lab., Newport News, VA (United States)

    2015-09-01

    The beam viewer system at Jefferson Lab provides operators and beam physicists with qualitative and quantitative information on the transverse electron beam properties. There are over 140 beam viewers installed on the 12 GeV CEBAF accelerator. This paper describes an upgrade consisting of replacing the EPICS-based system tasked with managing all viewers with a mixed system utilizing EPICS and high-level software. Most devices, particularly the beam viewers, cannot be safely inserted into the beam line during high-current beam operations. Software is partly responsible for protecting the machine from untimely insertions. The multiplicity of beam-blocking and beam-vulnerable devices motivates us to try a data-driven approach. The beamline insertions application components are centrally managed and configured through an object-oriented software framework created for this purpose. A rules-based engine tracks the configuration and status of every device, along with the beam status of the machine segment containing the device. The application uses this information to decide on which device actions are allowed at any given time.

  17. Conceptual design of an undulator system for a dedicated bio-imaging beamline at the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-05-15

    We describe a future possible upgrade of the European XFEL consisting in the construction of an undulator beamline dedicated to life science experiments. The availability of free undulator tunnels at the European XFEL facility offers a unique opportunity to build a beamline optimized for coherent diffraction imaging of complex molecules, like proteins and other biologically interesting structures. Crucial parameters for such bio-imaging beamline are photon energy range, peak power, and pulse duration. Key component of the setup is the undulator source. The peak power is maximized in the photon energy range between 3 keV and 13 keV by the use of a very efficient combination of self-seeding, fresh bunch and tapered undulator techniques. The unique combination of ultra-high peak power of 1 TW in the entire energy range, and ultrashort pulse duration tunable from 2 fs to 10 fs, would allow for single shot coherent imaging of protein molecules with size larger than 10 nm. Also, the new beamline would enable imaging of large biological structures in the water window, between 0.3 keV and 0.4 keV. In order to make use of standardized components, at present we favor the use of SASE3-type undulator segments. The number segments, 40, is determined by the tapered length for the design output power of 1 TW. The present plan assumes the use of a nominal electron bunch with charge of 0.1 nC. Experiments will be performed without interference with the other three undulator beamlines. Therefore, the total amount of scheduled beam time per year is expected to be up to 4000 hours.

  18. Surface and interface analysis of nanomaterials at microfocus beamline (BL-16) of Indus-2

    Science.gov (United States)

    Das, Gangadhar; Khooha, Ajay; Kane, S. R.; Singh, A. K.; Tiwari, M. K.

    2016-05-01

    Analysis of chemical nature and electronic structure at the interface of a thin film medium is important in many technological applications as well as to understand overall efficiency of a thin film device. Synchrotron radiation based x-ray spectroscopy is a promising technique to study interface nature of the nanomaterials with atomic resolutions. A combined x-ray reflectivity and grazing incidence x-ray fluorescence measurement facility has been recently constructed at the BL-16 microfocus beamline of Indus-2 synchrotron facility to accomplish surface-interface microstructural characterization of thin layered materials. It is also possible to analyze contaminates or adsorbed ad-atoms on the surface of the thin nanostructure materials. The BL-16 beamline also provides an attractive platform to perform a variety of analytical research activities especially in the field of micro x-ray fluorescence and ultra-trace elements analysis using Synchrotron radiation. We describe various salient features of the BL-16 reflectometer experimental station and the detailed description of its capabilities through the measured results, obtained for various thin layered nanomaterials.

  19. Support for the Advanced Polymers Beamline at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Benjamin S. [State Univ. of New York (SUNY), Stonybrook, NY (United States)

    2008-10-01

    The primary focus of the X27C beamline is to investigate frontier polymer science and engineering problems with emphasis on real-time studies of structures, morphologies and dynamics from atomic, nanoscopic, microscopic to mesoscopic scales using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. The scientific merit of this project is as follows. Currently, many unique sample chambers for in-situ synchrotron studies, developed by the PI (B. Hsiao) and Co-PI (B. Chu), are available for general users of X27C at NSLS. These instruments include a gel/melt spinning apparatus, a continuous fiber drawing apparatus, a tensile stretching apparatus, a high pressure X-ray cell using supercritical carbon dioxide, a parallel plate strain-controlled shear stage and a dynamic rheometer for small-strain oscillatory deformation study. Based on the use of these instruments in combination with synchrotron X-rays, many new insights into the relationships between processing and structure have been obtained in recent years. The broader impact of this project is as follows. The X27C beamline is the first synchrotron facility in the United States dedicated to chemistry/materials research (with emphasis on polymers). The major benefit of this facility to the materials community is that no extensive synchrotron experience and equipment preparation are required from general users to carry out cutting-edge experiments.

  20. Diamond beamline I07: a beamline for surface and interface diffraction.

    Science.gov (United States)

    Nicklin, Chris; Arnold, Tom; Rawle, Jonathan; Warne, Adam

    2016-09-01

    Beamline I07 at Diamond Light Source is dedicated to the study of the structure of surfaces and interfaces for a wide range of sample types, from soft matter to ultrahigh vacuum. The beamline operates in the energy range 8-30 keV and has two endstations. The first houses a 2+3 diffractometer, which acts as a versatile platform for grazing-incidence techniques including surface X-ray diffraction, grazing-incidence small- (and wide-) angle X-ray scattering, X-ray reflectivity and grazing-incidence X-ray diffraction. A method for deflecting the X-rays (a double-crystal deflector) has been designed and incorporated into this endstation, extending the surfaces that can be studied to include structures formed on liquid surfaces or at liquid-liquid interfaces. The second experimental hutch contains a similar diffractometer with a large environmental chamber mounted on it, dedicated to in situ ultrahigh-vacuum studies. It houses a range of complementary surface science equipment including a scanning tunnelling microscope, low-energy electron diffraction and X-ray photoelectron spectroscopy ensuring that correlations between the different techniques can be performed on the same sample, in the same chamber. This endstation allows accurate determination of well ordered structures, measurement of growth behaviour during molecular beam epitaxy and has also been used to measure coherent X-ray diffraction from nanoparticles during alloying.

  1. Justification for the development of a bending magnet beamline at sector 10 at the APS.

    Energy Technology Data Exchange (ETDEWEB)

    Kemner, K. M.; Biosciences Division

    2006-09-18

    The long-planned and much-needed merger of EnviroCAT into the Materials Research Collaborative Access Team (MR-CAT) will provide dedicated state-of-the-art facilities that are critical to research on a broad range of issues in environmental sciences. These CATs will focus on developing a bending magnet (BM) beamline for x-ray absorption fine structure (XAFS) and micro x-ray analysis of environmental samples through integration with existing insertion device (ID) capabilities in XAFS, micro x-ray analysis, and x-ray scattering. In addition, the expanded MR-CAT will serve as the hub of personnel and laboratory infrastructure support for molecular environmental science and biogeochemical science at the Advanced Photon Source (APS). In conjunction with the merger of EnviroCAT into MR-CAT, the US Environmental Protection Agency (EPA) will become a member institution of MR-CAT, joining the present members (University of Notre Dame, Illinois Institute of Technology, University of Florida, British Petroleum, and Argonne's Chemical Engineering and Biosciences Division). The motivation for blending capabilities meeting the needs of EnviroCAT users into the MR-CAT facilities is the explosion of synchrotron-radiation-based research in the field known as molecular environmental science (MES). This research is driven largely by the need to remediate contaminated environmental materials and to understand the scientific foundations that govern contaminant transport in the environment. Synchrotron radiation is playing a crucial role in solving environmental science problems by offering x-ray-based analytical techniques for detailed molecular- and atomic-level studies of these systems. This document focuses on the scientific justification for developing a specific type of BM beamline capability at Sector 10 for XAFS and micro x-ray analysis to support the growing MES community. However, the modification of Sector 10 will meet other future needs by providing (1) an existing

  2. Medical research and multidisciplinary applications with laser-accelerated beams: the ELIMED netwotk at ELI-Beamlines

    Science.gov (United States)

    Tramontana, A.; Anzalone, A.; Candiano, G.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Korn, G.; Licciardello, T.; Maggiore, M.; Manti, L.; Margarone, D.; Musumarra, A.; Perozziello, F.; Pisciotta, P.; Raffaele, L.; Romano, F.; Romano, F. P.; Stancampiano, C.; Schillaci, F.; Scuderi, V.; Torrisi, L.; Tudisco, S.

    2014-04-01

    Laser accelerated proton beams represent nowadays an attractive alternative to the conventional ones and they have been proposed in different research fields. In particular, the interest has been focused in the possibility of replacing conventional accelerating machines with laser-based accelerators in order to develop a new concept of hadrontherapy facilities, which could result more compact and less expensive. With this background the ELIMED (ELIMED: ELI-Beamlines MEDical applications) research project has been launched by LNS-INFN researchers (Laboratori Nazionali del Sud-Istituto Nazionale di Fisica Nucleare, Catania, IT) and ASCR-FZU researchers (Academy of Sciences of the Czech Republic-Fyzikální ústar, Prague, Cz), within the pan-European ELI-Beamlines facility framework. Its main purposes are the demonstration of future applications in hadrontherapy of optically accelerated protons and the realization of a laser-accelerated ion transport beamline for multidisciplinary applications. Several challenges, starting from laser-target interaction and beam transport development, up to dosimetric and radiobiological issues, need to be overcome in order to reach the final goals. The design and the realization of a preliminary beam handling and dosimetric system and of an advanced spectrometer for high energy (multi-MeV) laser-accelerated ion beams will be shortly presented in this work.

  3. Measuring circular dichroism in a capillary cell using the b23 synchrotron radiation CD beamline at diamond light source.

    Science.gov (United States)

    Jávorfi, Tamás; Hussain, Rohanah; Myatt, Daniel; Siligardi, Giuliano

    2010-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well-established method in structural biology. The first UV-VIS beamline dedicated to circular dichroism at Diamond Light Source, a third generation synchrotron facility in South Oxfordshire, has recently become operational and it is now available for the user community. Herein we present an important application of SRCD: the CD measurement of protein solutions in fused silica rectangular capillary cells. This was achieved without the use of any lens between the photoelastic modulator and the photomultiplier tube detectors by exploiting the high photon flux of the collimated beam that can be as little as half a millimeter squared. Measures to minimize or eliminate vacuum-UV protein denaturation effects are discussed. The CD spectra measured in capillaries is a proof of principle to address CD measurements in microdevice systems using the new B23 SRCD beamline.

  4. The National Ignition Facility front-end laser system

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, S.C.; Beach, R.J.; Crane, J.H.; Davin, J.M.; Perry, M.D.; Wilcox, R.B.

    1995-07-07

    The proposed National Ignition Facility is a 192 beam Nd:glass laser system capable of driving targets to fusion ignition by the year 2005. A key factor in the flexibility and performance of the laser is a front-end system which provides a precisely formatted beam to each beamline. Each of the injected beams has individually controlled energy, temporal pulseshape, and spatial shape to accommodate beamline-to-beamline variations in gain and saturation. This flexibility also gives target designers the options for precisely controlling the drive to different areas of the target. The design of the Front-End laser is described, and initial results are discussed.

  5. The SLS Beamlines Data Acquisition and Control System

    CERN Document Server

    Krempasky, J; Vermeulen, D; Maden, D; Korhonen, T T; Portmann, W; Hunt, S; Abela, R; Muntwiler, M

    2001-01-01

    On December 15th the Swiss Light Source (SLS) produced a stored beam for the first time. This important milestone was achieved in a very tight time schedule. The fact that all major systems are controlled by Epics made this challenge feasible. In the first phase there are four beamlines: two for the surface science community, one for powder and surface diffraction and computed micro-tomography, and the last one for protein crystallography. All of them are equipped with insertion devices, which users want to treat as active sub-systems like a monochromator or experimental station. The beamline control systems are based on the same hardware and software technology as is the machine. This implies extensive use of Personal Computers running Linux RedHat 6.2 and VME systems (PowerPC). The advantage of this choice is a staightforward implementation of the insertion devices into the beamline and experiment framework. Although the experiment Application Program Interfaces differ from beamline to beamline, the standar...

  6. Optics Concept for a Pair of Undulator Beamlines for MX.

    Science.gov (United States)

    Berman, L E; Allaire, M; Chance, M R; Hendrickson, W A; Héroux, A; Jakoncic, J; Liu, Q; Orville, A M; Robinson, H H; Schneider, D K; Shi, W; Soares, A S; Stojanoff, V; Stoner-Ma, D; Sweet, R M

    2011-09-01

    We describe a concept for x-ray optics to feed a pair of macromolecular crystallography (MX) beamlines which view canted undulator radiation sources in the same storage ring straight section. It can be deployed at NSLS-II and at other low-emittance third-generation synchrotron radiation sources where canted undulators are permitted, and makes the most of these sources and beamline floor space, even when the horizontal angle between the two canted undulator emissions is as little as 1-2 mrad. The concept adopts the beam-separation principles employed at the 23-ID (GM/CA-CAT) beamlines at the Advanced Photon Source (APS), wherein tandem horizontally-deflecting mirrors separate one undulator beam from the other, following monochromatization by a double-crystal monochromator. The scheme described here would, in contrast, deliver the two tunable monochromatic undulator beams to separate endstations that address rather different and somewhat complementary purposes, with further beam conditioning imposed as required. A downstream microfocusing beamline would employ dual-stage focusing for work at the micron scale and, unique to this design, switch to single stage focusing for larger beams. On the other hand, the upstream, more highly automated beamline would only employ single stage focusing.

  7. Optics Concept for a Pair of Undulator Beamlines for MX*

    Science.gov (United States)

    Berman, L.E.; Allaire, M.; Chance, M.R.; Hendrickson, W.A.; Héroux, A.; Jakoncic, J.; Liu, Q.; Orville, A.M.; Robinson, H.H.; Schneider, D.K.; Shi, W.; Soares, A.S.; Stojanoff, V.; Stoner-Ma, D.; Sweet, R.M.

    2011-01-01

    We describe a concept for x-ray optics to feed a pair of macromolecular crystallography (MX) beamlines which view canted undulator radiation sources in the same storage ring straight section. It can be deployed at NSLS-II and at other low-emittance third-generation synchrotron radiation sources where canted undulators are permitted, and makes the most of these sources and beamline floor space, even when the horizontal angle between the two canted undulator emissions is as little as 1-2 mrad. The concept adopts the beam-separation principles employed at the 23-ID (GM/CA-CAT) beamlines at the Advanced Photon Source (APS), wherein tandem horizontally-deflecting mirrors separate one undulator beam from the other, following monochromatization by a double-crystal monochromator. The scheme described here would, in contrast, deliver the two tunable monochromatic undulator beams to separate endstations that address rather different and somewhat complementary purposes, with further beam conditioning imposed as required. A downstream microfocusing beamline would employ dual-stage focusing for work at the micron scale and, unique to this design, switch to single stage focusing for larger beams. On the other hand, the upstream, more highly automated beamline would only employ single stage focusing. PMID:21822346

  8. DCS - A High Flux Beamline for Time Resolved Dynamic Compression Science – Design Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Capatina, D. [Argonne National Lab. (ANL), Argonne, IL (United States); D' Amico, Kevin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Nudell, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Collins, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Schmidt, Oliver [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures. Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm2. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm2. A new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.

  9. DCS - A high flux beamline for time resolved dynamic compression science – Design highlights

    Energy Technology Data Exchange (ETDEWEB)

    Capatina, D., E-mail: capatina@aps.anl.gov; D’Amico, K., E-mail: kdamico@aps.anl.gov; Nudell, J., E-mail: jnudell@aps.anl.gov; Collins, J., E-mail: collins@aps.anl.gov; Schmidt, O., E-mail: oschmidt@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States)

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures. Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm{sup 2}. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm{sup 2}. A new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.

  10. Design of a large acceptance, high efficiency energy selection system for the ELIMAIA beam-line

    Science.gov (United States)

    Schillaci, F.; Maggiore, M.; Andó, L.; Cirrone, G. A. P.; Cuttone, G.; Romano, F.; Scuderi, V.; Allegra, L.; Amato, A.; Gallo, G.; Korn, G.; Leanza, R.; Margarone, D.; Milluzzo, G.; Petringa, G.

    2016-08-01

    A magnetic chicane based on four electromagnetic dipoles is going to be realized by INFN-LNS to be used as an Energy Selection System (ESS) for laser driven proton beams up to 300 MeV and C6+ up to 70 MeV/u. The system will provide, as output, ion beams with a contrallable energy spread varying from 5% up to 20% according to the aperture slit size. Moreover, it has a very wide acceptance in order to ensure a very high transmission efficiency and, in principle, it has been designed to be used also as an active energy modulator. This system is the core element of the ELIMED (ELI-Beamlines MEDical and Multidisciplinary applications) beam transport, dosimetry and irradiation line that will be developed by INFN-LNS (It) and installed at the ELI-Beamlines facility in Prague (Cz). ELIMED will be the first user's open transport beam-line where a controlled laser-driven ion beam will be used for multidisciplinary research. The definition of well specified characteristics, both in terms of performance and field quality, of the magnetic chicane is crucial for the system realization, for the accurate study of the beam dynamics and for the proper matching with the Permanent Magnet Quadrupoles (PMQs) used as a collection system already designed. Here, the design of the magnetic chicane is described in details together with the adopted solutions in order to realize a robust system form the magnetic point of view. Moreover, the first preliminary transport simulations are also described showing the good performance of the whole beam line (PMQs+ESS).

  11. Performance specifications for proton medical facility

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.T.; Staples, J.W.; Ludewigt, B.A.; Renner, T.R.; Singh, R.P.; Nyman, M.A.; Collier, J.M.; Daftari, I.K.; Petti, P.L.; Alonso, J.R. [Lawrence Berkeley Lab., CA (United States); Kubo, H.; Verhey, L.J. [University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine; Castro, J.R. [Lawrence Berkeley Lab., CA (United States)]|[University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine

    1993-03-01

    Performance specifications of technical components of a modern proton radiotherapy facility are presented. The technical items specified include: the accelerator; the beam transport system including rotating gantry; the treatment beamline systems including beam scattering, beam scanning, and dosimetric instrumentation; and an integrated treatment and accelerator control system. Also included are treatment ancillary facilities such as diagnostic tools, patient positioning and alignment devices, and treatment planning systems. The facility specified will accommodate beam scanning enabling the three-dimensional conformal therapy deliver .

  12. Simulating the Beam-line at CERN's ISOLDE Experiment

    CERN Document Server

    McGrath, Casey

    2013-01-01

    Maximizing the optical matching along portions of the ISOLDE beam-line and automating this procedure will make it easier for scientists to determine what the strengths of the electrical elds of each beam-line element should be in order to reduce particle loss. Simulations are run using a program called MAD-X, however, certain issues were discovered that hindered an immediate success of the simulations. Specifically, the transfer matrices for electrostatic components like the switchyards, kickers, and electric quadrupoles were missing from the original coding. The primary aim of this project was to design these components using AutoCAD and then extract the transfer matrices using SIMION. Future work will then implement these transfer matrices into the MAD-X code to make the simulations of the beam-line more accurate.

  13. Hard X-ray micro-focusing beamline at SSRF

    Institute of Scientific and Technical Information of China (English)

    张丽丽; 兰旭颖; 毛成文; 王娟; 蒋晖; 郑怡; 董朝晖; 曾乐勇; 李爱国; 闫帅; 蒋升; 杨科; 王华; 何上明; 梁东旭; 张玲; 何燕

    2015-01-01

    The hard X-ray micro-focusing beamline (BL15U1) of SSRF is dedicated to hard X-ray micro/nano-spectrochemical analysis consisting of X-ray fluorescence (XRF), X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques. It is one of the most versatile instruments in hard X-ray microscopy sci-ence. Since its commission in 2009, BL15U1 has allocated over 25000 h beamtime for users, and about 700 proposals have been executed. The beamline and the experimental end-station were upgraded for several times to facilitate the users’ experimental needs and make it more convenient to operate. In this paper, we give a review on the beamline, describing its characteristics, recent technical developments, and a few examples of scientific progresses achieved in recent years on BL15U1.

  14. The Materials Science beamline upgrade at the Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Willmott, P. R., E-mail: philip.willmott@psi.ch; Meister, D.; Leake, S. J.; Lange, M.; Bergamaschi, A. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); and others

    2013-07-16

    The wiggler X-ray source of the Materials Science beamline at the Swiss Light Source has been replaced with a 14 mm-period cryogenically cooled in-vacuum undulator. In order to best exploit the increased brilliance of this new source, the entire front-end and optics have been redesigned. The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs.

  15. Beam Position Monitoring in the CSU Accelerator Facility

    Science.gov (United States)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  16. Current schemes for National Synchrotron Light Source UV beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.; Howells, M.R.; McKinney, W.R.

    1979-01-01

    We describe in some detail four beamlines proposed for the National Synchrotron Light Source uv ring at Brookhaven National Laboratory. Three grazing-incidence instruments, one of the plane grating Mijake type and two with toroidal gratings at grazing angles of 2-1/2/sup 0/ and 15/sup 0/ are described. Two normal incidence instruments, one using the source as entrance slit and accepting 75 milliradians horizontally are also discussed. In each case we have estimated the output fluxes expected from such beamlines.

  17. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  18. The Pharmaceutical Industry Beamline of Pharmaceutical Consortium for Protein Structure Analysis

    CERN Document Server

    Nishijima, K

    2002-01-01

    The Pharmaceutical Industry Beamline was constructed by the Pharmaceutical Consortium for Protein Structure Analysis which was established in April 2001. The consortium is composed of 22 pharmaceutical companies affiliating with the Japan Pharmaceutical Manufacturers Association. The beamline is the first exclusive on that is owned by pharmaceutical enterprises at SPring-8. The specification and equipments of the Pharmaceutical Industry Beamline is almost same as that of RIKEN Structural Genomics Beamline I and II. (author)

  19. A BEAMLINE FOR HIGH PRESSURE STUDIES AT THE ADVANCED LIGHT SOURCE WITH A SUPERCONDUCTING BENDING MAGNET AS THE SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, M; MacDowell, A A; Caldwell, W A; Cambie, D; Celestre, R S; Domning, E E; Duarte, R M; Gleason, A; Glossinger, J; Kelez, N; Plate, D W; Yu, T; Zaug, J M; Padmore, H A; Jeanloz, R; Alivisatos, A P; Clark, S M

    2005-04-19

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/{Delta}E {approx} 7000) and a W/B{sub 4}C multilayer (E/{Delta}E {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  20. A Beamline for High-Pressure Studies at the Advanced Light Sourcewith a Superconducting Bending Magnet as the Source

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Martin; MacDowell, Alastair A.; Caldwell, Wendel A.; Cambie, Daniella; Celestre, Richard S.; Domning, Edward E.; Duarte,Robert M.; Gleason, Arianna E.; Glossinger, James M.; Kelez, Nicholas; Plate, David W.; Yu, Tony; Zaug, Joeseph M.; Padmore, Howard A.; Jeanloz,Raymond; Alivisatos, A. Paul; Clark, Simon M.

    2005-06-30

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/DE {approx}7000) and a W/B4C multilayers (E/DE {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  1. Third-Order Apochromatic Drift-Quadrupole Beamline

    CERN Document Server

    Balandin, V; Decking, W; Golubeva, N

    2012-01-01

    In this paper we present the design of a straight drift-quadrupole system which can transport certain beam ellipses (apochromatic beam ellipses) without influence of the second and of the third order chromatic and geometric aberrations of the beamline transfer map.

  2. The Diamond Beamline Controls and Data Acquisition Software Architecture

    Science.gov (United States)

    Rees, N.

    2010-06-01

    The software for the Diamond Light Source beamlines[1] is based on two complementary software frameworks: low level control is provided by the Experimental Physics and Industrial Control System (EPICS) framework[2][3] and the high level user interface is provided by the Java based Generic Data Acquisition or GDA[4][5]. EPICS provides a widely used, robust, generic interface across a wide range of hardware where the user interfaces are focused on serving the needs of engineers and beamline scientists to obtain detailed low level views of all aspects of the beamline control systems. The GDA system provides a high-level system that combines an understanding of scientific concepts, such as reciprocal lattice coordinates, a flexible python syntax scripting interface for the scientific user to control their data acquisition, and graphical user interfaces where necessary. This paper describes the beamline software architecture in more detail, highlighting how these complementary frameworks provide a flexible system that can accommodate a wide range of requirements.

  3. New X-ray emission spectrometer at the Rossendorf Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, Kristina O.; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Molecular Structures

    2016-07-01

    A preliminary Johann-type X-ray emission spectrometer has recently been installed and tested at the Rossendorf Beamline (ROBL). The spectrometer consists of a single spherically bent crystal analyzer and an avalanche photodiode detector positioned on the vertical Rowland cycle with 1 m diameter. The instrument has been tested at the Zr-K edge.

  4. Remote access and automation of SPring-8 MX beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Go, E-mail: ueno@spring8.or.jp; Hikima, Takaaki; Yamashita, Keitaro; Hirata, Kunio; Yamamoto, Masaki [RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 JAPAN (Japan); Hasegawa, Kazuya; Murakami, Hironori; Furukawa, Yukito; Mizuno, Nobuhiro; Kumasaka, Takashi [SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 JAPAN (Japan)

    2016-07-27

    At SPring-8 MX beamlines, a remote access system has been developed and started user operation in 2010. The system has been developed based on an automated data collection and data management architecture utilized for the confirmed scheme of SPring-8 mail-in data collection. Currently, further improvement to the remote access and automation which covers data processing and analysis are being developed.

  5. Design of 3B3 beamline control system

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Both structure and design of the control system in BSRF-3B3 beamline, are discussed and the subsystems are described. The LabVIEW software has advantages on data collecting and real time inspecting. In the process of data collecting, some methods are taken to solve the problems that may be met.

  6. The CG-1D Neutron Imaging Beamline at the Oak Ridge National Laboratory High Flux Isotope Reactor

    Science.gov (United States)

    Santodonato, Lou; Bilheux, Hassina; Bailey, Barton; Bilheux, Jean; Nguyen, Phong; Tremsin, Anton; Selby, Doug; Walker, Lakeisha

    The Oak Ridge National Laboratory Neutron Sciences Directorate has installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. CG-1D is one of the three instruments that make up the CG1 instrument suite. The beamline optics and detector have recently been upgraded to meet the needs of the neutron imaging community (better "smoothing" of guide system artifacts, higher flux or spatial resolution). These upgrades comprise a new diffuser/aperture system, two new detectors, a He-filled flight tube and silicon (Si) windows. Shielding inside the flight tube, beam scrapers and a beam stop ensure that biological dose is less than 50 μSv/hr outside of the radiation boundary. A set of diffusers and apertures (pinhole geometry) has been installed at the exit of the guide system to allow motorized L/D variation. Samples sit on a translation/rotation stage for alignment and tomography purposes. Detectors for the CG-1D beamline are (1) an ANDOR DW936 charge coupled device (CCD) camera with a field of view of approximately 7 cm x 7 cm and ∼ 80 microns spatial resolution and 1 frame per second time resolution, (2) a new Micro-Channel Plate (MCP) detector with a 2.8 cm x 2.8 cm field of view and 55 microns spatial resolution, and 5 μs timing capability. 6LiF/ZnS scintillators of thickness varying from 50 to 200 microns are being used at this facility. An overview of the beamline upgrade and preliminary data is presented here.

  7. Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation.

    Science.gov (United States)

    Panaccione, G; Vobornik, I; Fujii, J; Krizmancic, D; Annese, E; Giovanelli, L; Maccherozzi, F; Salvador, F; De Luisa, A; Benedetti, D; Gruden, A; Bertoch, P; Polack, F; Cocco, D; Sostero, G; Diviacco, B; Hochstrasser, M; Maier, U; Pescia, D; Back, C H; Greber, T; Osterwalder, J; Galaktionov, M; Sancrotti, M; Rossi, G

    2009-04-01

    We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beam facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.

  8. A Johann-type X-ray emission spectrometer at the Rossendorf beamline.

    Science.gov (United States)

    Kvashnina, Kristina O; Scheinost, Andreas C

    2016-05-01

    This paper gives a detailed description, including equations, of the Johann-type X-ray emission spectrometer which has been recently installed and tested at the Rossendorf beamline (ROBL) of the European Synchrotron Radiation Facility. The spectrometer consists of a single spherically bent crystal analyzer and an avalanche photodiode detector positioned on the vertical Rowland cycle of 1 m diameter. The hard X-ray emission spectrometer (∼3.5-25 keV) operates at atmospheric pressure and covers the Bragg angles of 65°-89°. The instrument has been tested at high and intermediate incident energies, i.e. at the Zr K-edge and at the Au L3-edge, in the second experimental hutch of ROBL. The spectrometer is dedicated for studying actinides in materials and environmental samples by high-energy-resolution X-ray absorption and X-ray emission spectroscopies.

  9. ELIMED: MEDICAL APPLICATION AT ELI-BEAMLINES. STATUS OF THE COLLABORATION AND FIRST RESULTS

    Directory of Open Access Journals (Sweden)

    Francesco Schillaci

    2014-08-01

    Full Text Available ELI-Beamlines is one of the four pillars of the ELI (Extreme Light Infrastructure pan-European project. It will be an ultrahigh-intensity, high repetition-rate, femtosecond laser facility whose main goal is to generate and apply high-brightness X-ray sources and accelerated charged particles. In particular, medical applications are treated by the ELIMED task force, which has been launched by collaboration between ELI and INFN researchers. ELIMED aims to demonstrate the clinical applicability of laser accelerated ions. In this article, the state of the ELIMED project and the first scientific results are reported. The design and realisation of a preliminary beam handling system and of an advanced spectrometer for diagnostics of high energy (multi-MeV laser-accelerated ion beams will also be briefly presented.

  10. Low-dose, high-resolution and high-efficiency ptychography at STXM beamline of SSRF

    Science.gov (United States)

    Xu, Zijian; Wang, Chunpeng; Liu, Haigang; Tao, Xulei; Tai, Renzhong

    2017-06-01

    Ptychography is a diffraction-based X-ray microscopy method that can image extended samples quantitatively while remove the resolution limit imposed by image-forming optical elements. As a natural extension of scanning transmission X-ray microscopy (STXM) imaging method, we developed soft X-ray ptychographic coherent diffraction imaging (PCDI) method at the STXM endstation of BL08U beamline of Shanghai Synchrotron Radiation Facility. Compared to the traditional STXM imaging, the new PCDI method has resulted in significantly lower dose, higher resolution and higher efficiency imaging in our platform. In the demonstration experiments shown here, a spatial resolution of sub-10 nm was obtained for a gold nanowires sample, which is much better than the limit resolution 30 nm of the STXM method, while the radiation dose is only 1/12 of STXM.

  11. Beamline 9.3.2 - a high-resolution, bend-magnet beamline with circular polarization capability

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.2 is a high resolution, SGM beamline on an ALS bending magnet with access to photon energies from 30-1500 eV. Features include circular polarization capability, a rotating chamber platform that allows switching between experiments without breaking vacuum, an active feedback system that keeps the beam centered on the entrance slit of the monochromator, and a bendable refocusing mirror. The beamline optics consist of horizontally and vertically focussing mirrors, a Spherical Grating Monochromator (SGM) with movable entrance and exit slits, and a bendable refocussing mirror. In addition, a movable aperature has been installed just upstream of the vertically focussing mirror which can select the x-rays above or below the plane of the synchrotron storage ring, allowing the user to select circularly or linearly polarized light. Circularly polarized x-rays are used to study the magnetic properties of materials. Beamline 9.3.2 can supply left and right circularly polarized x-rays by a computer controlled aperture which may be placed above or below the plane of the synchrotron storage ring. The degree of linear and circular polarization has been measured and calibrated.

  12. Monte Carlo simulation for the transport beamline

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Attili, A.; Marchetto, F.; Russo, G. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)

    2013-07-26

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.

  13. A new method to suppress high-order harmonics for a synchrotron radiation soft X-ray beamline

    Science.gov (United States)

    Guo, Zhi-Ying; Xing, Hai-Ying; Hong, Cai-Hao; Tang, Kun; Han, Yong; Chen, Dong-Liang; Zhao, Yi-Dong

    2015-04-01

    A feasible and convenient method is proposed to suppress higher-harmonics for a varied-line-spacing plane grating monochromator in the soft X-ray region. Related calculations and experiments demonstrate that decreasing the included angle slightly by changing the parameter of the exit arm length can significantly improve light purity. This method is suitable and has been used for experiments of detector calibration in beamline 4B7B at the Beijing Synchrotron Radiation Facility (BSRF). Supported by National Natural Science Foundation of China (11375227, 61204008)

  14. The At-Wavelength Metrology Facility at BESSY-II

    Directory of Open Access Journals (Sweden)

    Franz Schäfers

    2016-02-01

    Full Text Available The At-Wavelength Metrology Facility at BESSY-II is dedicated to short-term characterization of novel UV, EUV and XUV optical elements, such as diffraction gratings, mirrors, multilayers and nano-optical devices like reflection zone plates. It consists of an Optics Beamline PM-1 and a Reflectometer in a clean-room hutch as a fixed end station. The bending magnet Beamline is a Plane Grating Monochromator beamline (c-PGM equipped with an SX700 monochromator. The beamline is specially tailored for efficient high-order suppression and stray light reduction. The versatile 11-axes UHV-Reflectometer can house life-sized optical elements, which are fully adjustable and of which the reflection properties can be measured in the full incidence angular range as well as in the full azimuthal angular range to determine polarization properties.

  15. Monochromator development at 4W1B beamline of BSRF

    Science.gov (United States)

    Xie, Yaning; Yan, Y.; Hu, T. D.; Liu, T.; Xian, D. C.

    2001-07-01

    The 4W1B is a X-ray monochromator beamline for XAFS at BSRF. During the upgrading phase, we have redesigned the monochromator to improve the performance of the beamline. It is a goniometer based, fixed exit double crystal monochromator. A mechanical linkage is employed to adjust the distance between the surfaces of the two crystals as the Bragg angle is changed to keep the outgoing beam direction constant. The whole mechanism is driven by only one stepping motor. The testing result shows that over the scanning range of 5-30°, the shift of outgoing beam position is less then 70 μm in the vertical direction. The basic principle, the mechanical realization, and the error analysis are discussed in detail. The performance and the testing results are also presented in this paper.

  16. Advances on the Brazilian toroidal grating monochromator (TGM) beamline

    Energy Technology Data Exchange (ETDEWEB)

    Cavasso Filho, R.L. [Laboratorio Nacional de Luz Sincrotron, Box 6192, Campinas, SP 13084-971 (Brazil); Homem, M.G.P. [Laboratorio Nacional de Luz Sincrotron, Box 6192, Campinas, SP 13084-971 (Brazil); Landers, R. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Box 6165, Campinas, SP 13083-970 (Brazil); Naves de Brito, A. [Laboratorio Nacional de Luz Sincrotron, Box 6192, Campinas, SP 13084-971 (Brazil)]. E-mail: arnaldo@lnls.br

    2005-06-15

    We report on an important advance for the vacuum ultraviolet and soft X-ray TGM beamline at Laboratorio Nacional de Luz Sincrotron (LNLS). This beamline provides photons in the energy range 12-330 eV using three gratings. It is well known that TGMs deliver relatively high flux at these energies but harmonic contamination can be a serious problem. Of special interest for the users is the range between 12 and 21 eV covered by one of the gratings for studies of outer and inner valence ionization processes in gases as well as solids. Here, we report a solution to the harmonic contamination problems based on a noble gas phase filter combined with thin metal foil barriers.

  17. Elliptical multipole wiggler beamlines at the advanced photon source

    Energy Technology Data Exchange (ETDEWEB)

    Beno, M.A. E-mail: beno@anl.gov; Kurtz, C.; Munkholm, A.; Ruett, U.; Engbretson, M.; Jennings, G.; Linton, J.; Knapp, G.S.; Montano, P.A

    2001-07-21

    The Basic Energy Sciences Synchrotron Radiation Center Collaborative Access Team has built three independent beamlines, which simultaneously utilize the X-ray radiation from an elliptical multipole wiggler, located at Sector 11 of the Advanced Photon Source. This insertion device produces circularly polarized X-rays on-axis and linearly polarized X-rays above and below the ring plane. The lower linearly polarized radiation is used in the monochromatic 11ID-D station for scattering and spectroscopy experiments in the 5-40 keV range. The on-axis circularly polarized photons are used for magnetic Compton scattering experiments in the 11ID-B station. The upper linearly polarized radiation is utilized by the high-energy diffraction station, 11ID-C. We report here on the beamline optics and experimental station equipment.

  18. Successful test of SPS-to-LHC beamline

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    On 23 October there was great excitement in the Prevessin control room when, on the first attempt, a beam passed over 2.5 km down the new SPS-to-LHC transfer line, TI8, to within a few metres of the LHC tunnel. Members of the AB, AT and TS departments involved in the beamline and its test, celebrate their success with the Director General, Robert Aymar, and the LHC Project Leader, Lyn Evans.

  19. Successful test of SPS-to-LHC beamline

    CERN Multimedia

    2004-01-01

    On 23 October there was great excitement in the Prevessin control room when, on the first attempt, a beam passed over 2.5 km down the new SPS-to-LHC transfer line, TI8, to within a few metres of the LHC tunnel. Above: members of the AB, AT and TS departments involved in the beamline and its test, celebrate their success with the Director General, Robert Aymar, and the LHC Project Leader, Lyn Evans.

  20. Surface science station of the infrared beamline at SPring-8

    CERN Document Server

    Sakurai, M; Kimura, H; Nishida, S; Nanba, T

    2001-01-01

    An experimental station for surface science has been constructed at the infrared beamline (BL43IR) of SPring-8, Japan. The station utilizes synchrotron radiation in the energy range of 100-20000 cm sup - sup 1 to perform infrared reflection absorption spectroscopy (IRAS) of surfaces. It consists of an experimental section, a preparation chamber, gas handling equipment and a pair of focusing optics. In situ observation of vibrational spectra is possible using both IRAS and high-resolution electron energy loss spectroscopy.

  1. X-ray grazing incidence studies of the 2D crystallization of monolayers of 1-alcohols at the air water interface

    DEFF Research Database (Denmark)

    Legrand, J.F.; Renault, A.; Konovalov, O.

    1994-01-01

    A new undulator producing an X-ray beam of high brilliance has been used at the European Synchrotron Radiation Facility (ESRF, Beamline-9, Troika) for investigating the structure of two-dimensional crystals of 1-tetradecanol, 1-dodecanol, 1-decanol and 1-nonanol. These fatty alcohols...

  2. Confining continuous manipulations of accelerator beam-line optics

    Science.gov (United States)

    Amstutz, Ph.; Plath, T.; Ackermann, S.; Bödewadt, J.; Lechner, C.; Vogt, M.

    2017-04-01

    Altering the optics in one section of a linear accelerator beam line will in general cause an alteration of the optics in all downstream sections. In circular accelerators, changing the optical properties of any beam-line element will have an impact on the optical functions throughout the whole machine. In many cases, however, it is desirable to change the optics in a certain beam-line section without disturbing any other parts of the machine. Such a local optics manipulation can be achieved by adjusting a number of additional corrector magnets that restore the initial optics after the manipulated section. In that case, the effect of the manipulation is confined in the region between the manipulated and the correcting beam-line elements. Introducing a manipulation continuously, while the machine is operating, therefore requires continuous correction functions to be applied to the correcting quadrupole magnets. In this paper, we present an approach to calculate such continuous correction functions for six quadrupole magnets by means of a homotopy method. Besides a detailed derivation of the method, we present its application to an algebraic example, as well as its demonstration at the seeding experiment sFLASH at the free-electron laser FLASH located at DESY in Hamburg.

  3. New fast closing shutter for the PETRA III beamlines

    Science.gov (United States)

    Hahn, U.; Hesse, M.; Müller, S.; Peters, H.-B.; Timmann, B.; Wengler, R.; Zink, H.

    2008-03-01

    The conversion of the PETRA storage ring at the Deutsches Elektronen Synchrotron (DESY) to the third generation synchrotron radiation light source PETRAIII [1] poses a challenge to the design of the beamline transport system. One of these challenges is to supply 14 beamlines and experiments windowless with the extremely collimated undulator radiation from the storage ring. The windowless connection includes the risk of accidental venting of the storage ring by experiments connected to the beamlines. To stop the inrush of such an accidental venting fast closing shutter (FCS) systems with closing times in the 10msec range are mandatory. The strong radiation background in the storage ring tunnel requires the installation of all metal valves. A new small fast closing shutter with an aperture of 40mm fitting to the strong collimated undulator beams and with a closing time beam time losses for all users. The mechanical and electronic layouts as well as first experiences with the new fast closing shutter system developed for PETRAIII are presented.

  4. Performance of a novel VUV bending magnet beamline

    CERN Document Server

    Song, Y F; Hsieh, T F; Huang, L R; Chung, S C; Cheng, N F; Hsiung, G Y; Wang, D J; Chen, C T; Tsang, K L

    2001-01-01

    A novel high resolution, high flux bending magnet beamline with an energy range from 5 to 40 eV has been constructed at SRRC. This Dragon-like beamline, which horizontally collects 50 mrad of synchrotron radiation from a bending magnet source, uses four cylindrical gratings with an included angle of 140 deg. and a movable curved exit slit. The average photon flux with an energy resolving power of 1000 is about 2x10 sup 1 sup 2 photons/s, which is among the highest of all existing VUV bending magnet beamlines. An energy resolving power of 24,000 at 6.8 eV has been obtained from the Schumann-Runge bands (B sup 3 limit construction operator in a limit construction/sum L: summation operator operator End lower limit of a limit construction u lower limit End limit End sup - /leftarrow/gets A: =leftward arrow X sup 3 limit construction operator in a limit construction/sum L: summation operator operator End lower limit of a limit construction g lower limit End limit End sup -) absorption spectra of O sub 2 gas. A pho...

  5. Pulsed beam tests at the SANAEM RFQ beamline

    Science.gov (United States)

    Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.

    2017-07-01

    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.

  6. Conceptual design of NBI beamline for VEST plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.S., E-mail: tskim@kaeri.re.kr; In, S.R.; Jeong, S.H.; Park, M.; Chang, D.H.; Jung, B.K.; Lee, K.W.

    2016-11-01

    Highlights: • VEST NBI injector is conceptually designed to support further VEST plasma experiment. • VEST NBI injector composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, electrostatic ion dumps, NB vessel with cryopump, and rotating calorimerter. • The vacuum vessel of the beamline is divided into two parts for high injection efficiency and different direction (co- and counter-current) of neutral beam injection. • An ion source for the VEST NBI system was also designed to deliver neutral hydrogen beams with a power of 0.3 MW. The plasma generator of the VEST NB ion source has modified TFTR bucket multi-cusp chamber. The plasma generator has twelve hair-pin shaped tungsten filaments used as a cathode and an arc chamber including a bucket and an electron dump which serve as anode. The accelerator system consists of three grids, each having extraction area of 100 mm × 320 mm and 64 shaped slits of 3 mm spacing. • The preliminary structure design and the layout of the main components of the injector have been completed. Simulation and calculation for optimization of the NB beamline design results prove that the parameters of ion source, neutralization efficiency (76%:95% equilibrium neutralization efficiency), and beam power transmission efficiency (higher than 90%) are in agreement with design targets of the VEST NB beamline. • This VEST NBI system will provide a neutral beam of ∼0.6 MW for both heating and current drive in torus plasma. - Abstract: A 10 m s-pulsed NBI (Neutral Beam Injection) system for VEST (Versatile Experiment Spherical Torus) plasma heating is designed to provide a beam power of more than 0.6 MW with 20 keV H° neutrals. The VEST NBI injector is composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, residual ion dump, NB vessel with a cryopump, and rotating calorimeter. The position and size of these beamline components are roughly determined with geometric

  7. Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline

    Energy Technology Data Exchange (ETDEWEB)

    Petitgirard, Sylvain, E-mail: sylvain.petitgirard@uni-bayreuth.de [ID27, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9 (France); Bayerisches GeoInstitut (BGI), University of Bayreuth, 95444 Bayreuth (Germany); Salamat, Ashkan, E-mail: sylvain.petitgirard@uni-bayreuth.de [ID27, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9 (France); Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138 (United States); Beck, Pierre [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d’Astrophysique de Grenoble (IPAG), 414 rue de la Piscine, 38000 Grenoble (France); Weck, Gunnar [Commissariat à l’Energie Atomique (CEA), DPTA, 91680 Bruyères le Châtel (France); Bouvier, Pierre [Laboratoire des Materiaux et du Genie Physique, CNRS, Grenoble Institute of Technology, 3 parvis Louis Neel, F-38016 Grenoble (France)

    2013-11-08

    An overview of several innovations regarding in situ laser-heating techniques in the diamond anvil cell at the high-pressure beamline ID27 of the European Synchrotron Radiation Facility is presented. An overview of several innovations regarding in situ laser-heating techniques in the diamond anvil cell at the high-pressure beamline ID27 of the European Synchrotron Radiation Facility is presented. Pyrometry measurements have been adapted to allow simultaneous double-sided temperature measurements with the installation of two additional online laser systems: a CO{sub 2} and a pulsed Nd:YAG laser system. This reiteration of laser-heating advancements at ID27 is designed to pave the way for a new generation of state-of-the-art experiments that demand the need for synchrotron diffraction techniques. Experimental examples are provided for each major development. The capabilities of the double pyrometer have been tested with the Nd:YAG continuous-wave lasers but also in a time-resolved configuration using the nanosecond-pulsed Nd:YAG laser on a Fe sample up to 180 GPa and 2900 K. The combination of time-resolved X-ray diffraction with in situ CO{sub 2} laser heating is shown with the crystallization of a high-pressure phase of the naturally found pyrite mineral MnS{sub 2} (11 GPa, 1100–1650 K)

  8. NIST high throughput variable kinetic energy hard X-ray photoelectron spectroscopy facility

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, C., E-mail: cweiland@bnl.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Rumaiz, A.K. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States); Lysaght, P. [SEMATECH, 257 Fuller Road, Albany, NY 12203 (United States); Karlin, B.; Woicik, J.C.; Fischer, D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2013-10-15

    Highlights: •High throughput HAPXES beamline provides beam energies between 2.1 and 6 keV. •Recent results in depth profiling of materials for next-generation CMOS. •Facility ideal or measurement of energy level alignment at buried interfaces. •Approved beamline NSLS II will provide wider energy range and X-ray flux. -- Abstract: We present an overview of the National Institute of Standards and Technology beamline X24A at the National Synchrotron Light Source at Brookhaven National Lab and recent work performed at the facility. The beamline is equipped for HAXPES measurements, with an energy range from 2.1 to 6 keV with Si(1 1 1) crystals. Recent measurements performed at the beamline include non-destructive depth dependent variable kinetic energy measurements of dielectric and semiconductor films and interfaces for microelectronics applications, band alignment at buried interfaces, and the electronic structure of bulk-like materials. The design and operation of the current beamline will be discussed, as well as the future NIST beamline at NSLS II.

  9. The EIS beamline at the seeded free-electron laser FERMI

    Science.gov (United States)

    Simoncig, A.; Mincigrucci, R.; Principi, E.; Bencivenga, F.; Calvi, A.; Foglia, L.; Kurdi, G.; Raimondi, L.; Manfredda, M.; Mahne, N.; Gobessi, R.; Gerusina, S.; Fava, C.; Zangrando, M.; Matruglio, A.; Dal Zilio, S.; Masciotti, V.; Masciovecchio, C.

    2017-05-01

    Among the fourth-generation light sources, the Italian free-electron laser (FEL) FERMI is the only one operating in the high-gain harmonic generation (HGHG) seeding mode. FERMI delivers pulses characterized by a quasi transform limited temporal structure, photon energies lying in the extreme ultra-violet (EUV) region, supreme transversal and longitudinal coherences, high peak brilliance, and full control of the polarization. Such state of the art performances recently opened the doors to a new class of time-resolved spectroscopies, difficult or even impossible to be performed using self-amplified spontaneous sources (SASE) light sources. FERMI is currently equipped with three operating beamlines opened to external users (DiProI, LDM and EIS), while two more are under commissioning (MagneDYN and TeraFERMI). Here, we present the recent highlights of the EIS (Elastic and Inelastic Scattering) beamline, which has been purposely designed to take full advantage from the coherence, the intensity, the harmonics content, and the temporal duration of the pulses. EIS is a flexible experimental facility for time-resolved EUV scattering experiments on condensed matter systems, consisting of two independent end-stations. The first one (EIS-TIMEX) aims to study materials in metastable and warm dense matter (WDM) conditions, while the second end-station (EIS-TIMER) is fully oriented to the extension of four-wave mixing (FWM) spectroscopies towards the EUV spectral regions, trying to reveal the behavior of matter in portions of the mesoscopic regime of exchanged momentum impossible to be probed using conventional light sources.

  10. The macromolecular crystallography beamline I911-3 at the MAX IV laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ursby, Thomas, E-mail: thomas.ursby@maxlab.lu.se; Unge, Johan; Appio, Roberto [Lund University, POB 118, Lund SE-221 00 (Sweden); Logan, Derek T. [Lund University, POB 124, Lund SE-221 00 (Sweden); Fredslund, Folmer; Svensson, Christer; Larsson, Krister; Labrador, Ana [Lund University, POB 118, Lund SE-221 00 (Sweden); Thunnissen, Marjolein M. G. M. [Lund University, POB 124, Lund SE-221 00 (Sweden)

    2013-07-01

    The updated macromolecular crystallography beamline I911-3 at the MAX II storage ring is described. The macromolecular crystallography beamline I911-3, part of the Cassiopeia/I911 suite of beamlines, is based on a superconducting wiggler at the MAX II ring of the MAX IV Laboratory in Lund, Sweden. The beamline is energy-tunable within a range between 6 and 18 keV. I911-3 opened for users in 2005. In 2010–2011 the experimental station was completely rebuilt and refurbished such that it has become a state-of-the-art experimental station with better possibilities for rapid throughput, crystal screening and work with smaller samples. This paper describes the complete I911-3 beamline and how it is embedded in the Cassiopeia suite of beamlines.

  11. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user`s risk and may lead to rejection of the whole assembly.

  12. Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron source

    Indian Academy of Sciences (India)

    K K Pandey; H K Poswal; A K Mishra; Abhilash Dwivedi; R Vasanthi; Nandini Garg; Surinder M Sharma

    2013-04-01

    An energy-dispersive X-ray diffraction beamline has been designed, developed and commissioned at BL-11 bending magnet port of the Indian synchrotron source, Indus-2. The performance of this beamline has been benchmarked by measuring diffraction patterns from various elemental metals and standard inorganic powdered samples. A few recent high-pressure investigations are presented to demonstrate the capabilities of the beamline.

  13. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user`s risk and may lead to rejection of the whole assembly.

  14. Wavefront propagation through the beamline designed for seeding the DESY XUV FEL

    CERN Document Server

    Reininger, R; Gürtler, P; Bahrdt, J

    2001-01-01

    A beamline designed to reduce the spectral bandwidth of the DESY XUV FEL is described. The beamline is intended to cover the wavelength range from 6.4 to 50 nm with three variable line spacing gratings. A plane mirror in front of the grating is used to maintain constant magnification in the dispersion direction. The electric field generated by the first undulator at three wavelengths, 6.4, 13, and 25 nm, is propagated through the beamline. The results show that the beamline has the resolution and imaging properties required for seeding the second undulator at these wavelengths.

  15. HERMES: a soft X-ray beamline dedicated to X-ray microscopy.

    Science.gov (United States)

    Belkhou, Rachid; Stanescu, Stefan; Swaraj, Sufal; Besson, Adrien; Ledoux, Milena; Hajlaoui, Mahdi; Dalle, Didier

    2015-07-01

    The HERMES beamline (High Efficiency and Resolution beamline dedicated to X-ray Microscopy and Electron Spectroscopy), built at Synchrotron SOLEIL (Saint-Auban, France), is dedicated to soft X-ray microscopy. The beamline combines two complementary microscopy methods: XPEEM (X-ray Photo Emitted Electron Microscopy) and STXM (Scanning Transmission X-ray Microscopy) with an aim to reach spatial resolution below 20 nm and to fully exploit the local spectroscopic capabilities of the two microscopes. The availability of the two methods within the same beamline enables the users to select the appropriate approach to study their specific case in terms of sample environment, spectroscopy methods, probing depth etc. In this paper a general description of the beamline and its design are presented. The performance and specifications of the beamline will be reviewed in detail. Moreover, the article is aiming to demonstrate how the beamline performances have been specifically optimized to fulfill the specific requirements of a soft X-ray microscopy beamline in terms of flux, resolution, beam size etc. Special attention has been dedicated to overcome some limiting and hindering problems that are usually encountered on soft X-ray beamlines such as carbon contamination, thermal stability and spectral purity.

  16. MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Cowieson, Nathan Philip; Aragao, David; Clift, Mark; Ericsson, Daniel J.; Gee, Christine; Harrop, Stephen J.; Mudie, Nathan; Panjikar, Santosh; Price, Jason R.; Riboldi-Tunnicliffe, Alan; Williamson, Rachel; Caradoc-Davies, Tom, E-mail: tom.caradoc-davies@synchrotron.org.au [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2015-01-01

    The macromolecular crystallography beamline MX1 at the Australian Synchrotron is described. MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented.

  17. The BALDER Beamline at the MAX IV Laboratory

    Science.gov (United States)

    Klementiev, K.; Norén, K.; Carlson, S.; Sigfridsson Clauss, K. G. V.; Persson, I.

    2016-05-01

    X-ray absorption spectroscopy (XAS) includes well-established methods to study the local structure around the absorbing element - extended X-ray absorption fine structure (EXAFS), and the effective oxidation number or to quantitatively determine the speciation of an element in a complex matrix - X-ray absorption near-edge structure (XANES). The increased brilliance and intensities available at the new generation of synchrotron light sources makes it possible to study, in-situ and in-operando, much more dilute systems with relevance for natural systems, as well as the micro-scale variability and dynamics of chemical reactions on the millisecond time-scale. The design of the BALDER beamline at the MAX IV Laboratory 3 GeV ring has focused on a high flux of photons in a wide energy range, 2.4-40 keV, where the K-edge is covered for the elements S to La, and the L 3-edge for all elements heavier than Sb. The overall design of the beamline will allow large flexibility in energy range, beam size and data collection time. The other focus of the beamline design is the possibility to perform multi-technique analyses on samples. Development of sample environment requires focus on implementation of auxiliary methods in such a way that techniques like Fourier transform infrared (FTIR) spectroscopy, UV-Raman spectroscopy, X-ray diffraction and/or mass spectrometry can be performed simultaneously as the XAS study. It will be a flexible system where different instruments can be plugged in and out depending on the needs for the particular investigation. Many research areas will benefit from the properties of the wiggler based light source and the capabilities to perform in-situ and in-operando measurements, for example environmental and geochemical sciences, nuclear chemistry, catalysis, materials sciences, and cultural heritage.

  18. Preliminary design of multi-function LIGA beamline

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    One design of multi-function LIGA beamline has been reported. In this design, two plane mirrors and a series of filters have been employed. One can choose the spectrum range of X-ray easily according to the exposure requirement by adjusting the grazing angle of mirrors and the thickness of filters. And the spot size in the horizontal direction is up to 120mm, which is large enough for exposing 5 inch silicon slice. The typical exposure time is about 1.2h, 1.8h, 0.5h, corresponding to PMMA thickness of 500 μ m, 200 μ m, 20 t m, respectively.

  19. Microfocusing at the PG1 beamline at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Dziarzhytski, Siarhei, E-mail: siarhei.dziarzhytski@desy.de [DESY, Notkestrasse 85, 22067 Hamburg (Germany); Gerasimova, Natalia [European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Goderich, Rene [University of South Florida (United States); Mey, Tobias [Laser Laboratorium Göttingen eV, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen (Germany); Reininger, Ruben [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Rübhausen, Michael [University of Hamburg and Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg (Germany); Siewert, Frank [Institute for Nanometre Optics and Technology at Helmholtz Zentrum Berlin/BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Weigelt, Holger; Brenner, Günter [DESY, Notkestrasse 85, 22067 Hamburg (Germany)

    2016-01-01

    The Kirkpatrick–Baez (KB) refocusing mirrors unit at the PG1 beamline at FLASH has been newly designed, developed and fully commissioned. The vertical focal size of the KB optics is measured to be 5.8 ± 1 µm FWHM and the horizontal 6 ± 2 µm FWHM; astigmatism has been minimized to below 1 mm between waist positions. Such a tight focus is essential for the VUV double Raman spectrometer as it serves as an entrance slit for the first monochromator and defines its resolution to a very large extent. The Raman spectrometer is a permanent end-station at the PG1 beamline, dedicated to inelastic soft X-ray scattering experiments. The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines and limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus

  20. The polariser beamline at TRIUMF for nuclear structure physics

    Science.gov (United States)

    Voss, A.; Pearson, M. R.; Levy, C. D. P.; Billowes, J.; Buchinger, F.; Chow, K. H.; Crawford, J. E.; Hossein, M. D.; Kiefl, R. F.; Macfarlane, W. A.; Mané, E.; Morris, G. D.; Parolin, T. J.; Saadaoui, H.; Salman, Z.; Shelbaya, O. T. J.; Smadella, M.; Song, Q.; Wang, D.

    2011-10-01

    Originally built to provide polarised ion beams for condensed matter experiments, the polariser beamline at TRIUMF is coupled to both beta-NMR and beta-NQR spectrometers. In addition, the beam can be passed through a radio-frequency quadrupole cooler and buncher (RFQ) providing bunched beams. Recently, a laser spectroscopy and beta-NQR program was started to investigate the ground state structure of exotic nuclei. Results from recent experiments including zero-field beta-NQR studies to determine the quadrupole moment of the halo nucleus Li-11 and laser spectroscopy to determine the charge radius of Rb-74.

  1. ROCK: the new Quick-EXAFS beamline at SOLEIL

    Science.gov (United States)

    Briois, V.; La Fontaine, C.; Belin, S.; Barthe, L.; Moreno, Th; Pinty, V.; Carcy, A.; Girardot, R.; Fonda, E.

    2016-05-01

    ROCK is a new beamline at SOLEIL dedicated to Quick-EXAFS measurements. The optical layout has been optimized to get full advantage of the monochromators, which were designed at SOLEIL and successfully used at SAMBA from 2009 to 2014. ROCK has started user operations since March 2015. It is mainly employed to monitor fast kinetic processes in materials used in catalysis and energy sciences. A review of the ROCK performances and capabilities is presented. The high automation achieved for fast change of monochromators, optimization of mirrors for harmonic rejection and detectors allows the simultaneous operando characterization of different chemical elements present in a material during the same reaction.

  2. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Strait, James [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); McCluskey, Elaine [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lundin, Tracy [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Willhite, Joshua [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Hamernik, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Papadimitriou, Vaia [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Marchionni, Alberto [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Kim, Min Jeong [National Inst. of Nuclear Physics (INFN), Frascati (Italy). National Lab. of Frascati (INFN-LNF); Nessi, Marzio [Univ. of Geneva (Switzerland); Montanari, David [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Heavey, Anne [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  3. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE June 24, 2015

    CERN Document Server

    Strait, James; Lundin, Tracy; Willhite, Joshua; Hamernik, Thomas; Papadimitriou, Vaia; Marchionni, Alberto; Kim, Min Jeong; Nessi, Marzio; Montanari, David; Heavey, Anne

    2016-01-01

    This volume of the LBNF/DUNE Conceptual Design Report cover the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  4. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    Science.gov (United States)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  5. CERN announces the fourth annual Beamline for Schools competition

    CERN Multimedia

    BL4S team

    2016-01-01

    CERN is pleased to announce the fourth annual Beamline for Schools (BL4S) competition. Once again, in 2017, a fully equipped beamline will be made available at CERN for students. As in previous years, two teams will be invited to the Laboratory to execute the experiments they proposed in their applications. The 2017 competition is being made possible thanks to support from the Alcoa Foundation for the second consecutive year.   The competition is open to teams of high-school students aged 16 or older who, if they win, are invited (with two supervisors) to CERN to carry out their experiment. Teams must have at least five students but there is no upper limit to a team’s size (although just nine students per winning team will be invited to CERN). Teams may be composed of pupils from a single school, or from a number of schools working together. As science-loving mega-celebrity Will.I.Am told us: “If you’re interested in science, technology, engineering or ...

  6. In situ beamline analysis and correction of active optics.

    Science.gov (United States)

    Sutter, John; Alcock, Simon; Sawhney, Kawal

    2012-11-01

    At the Diamond Light Source, pencil-beam measurements have enabled long-wavelength slope errors on X-ray mirror surfaces to be examined under ultra-high vacuum and beamline mounting without the need to remove the mirror from the beamline. For an active mirror an automated procedure has been implemented to calculate the actuator settings that optimize its figure. More recently, this in situ pencil-beam method has been applied to additional uses for which ex situ measurements would be inconvenient or simply impossible. First, it has been used to check the stability of the slope errors of several bimorph mirrors at intervals of several weeks or months. Then, it also proved useful for the adjustment of bender and sag compensation actuators on mechanically bent mirrors. Fits to the bending of ideal beams have been performed on the slope errors of a mechanically bent mirror in order to distinguish curvatures introduced by the bending actuators from gravitational distortion. Application of the optimization procedure to another mechanically bent mirror led to an improvement of its sag compensation mechanism.

  7. Design and implementation of a robust and cost-effective double-scattering system at a horizontal proton beamline

    Science.gov (United States)

    Helmbrecht, S.; Baumann, M.; Enghardt, W.; Fiedler, F.; Krause, M.; Lühr, A.

    2016-11-01

    Purpose: particle therapy has the potential to improve radiooncology. With more and more facilities coming into operation, also the interest for research at proton beams increases. Though many centers provide beam at an experimental room, some of them do not feature a device for radiation field shaping, a so called nozzle. Therefore, a robust and cost-effective double-scattering system for horizontal proton beamlines has been designed and implemented. Materials and methods: the nozzle is based on the double scattering technique. Two lead scatterers, an aluminum ridge-filter and two brass collimators were optimized in a simulation study to form a laterally homogeneous 10 cm × 10 cm field with a spread-out Bragg-peak (SOBP). The parts were mainly manufactured using 3D printing techniques and the system was set up at OncoRay's experimental beamline. Measurement of the radiation field were carried out using a water phantom. Results: high levels of dose homogeneity were found in lateral (dose variation ΔD/D design let it appear as a valuable option for proton therapy centers intending to foster their experimental portfolio.

  8. A Project to Design and Build the Magnets for a New Test Beamline, the ATF2, at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Cherrill M.; /slac; Sugahara, Ryuhei; Masuzawa, Mika; /KEK, Tsukuba; Bolzon, Benoit; Jeremie, Andrea; /Annecy, LAPP

    2011-02-07

    In order to achieve the high luminosity required at the proposed International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System, and to maintain the beams collisions with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, a special beamline has been designed and built as an extension of the existing extraction beamline of the Accelerator Test Facility at KEK, Japan. The ATF provides an adequate ultra-low emittance electron beam that is comparable to the ILC requirements; the ATF2 mimics the ILC final focus system to create a tightly focused, stable beam. There are 37 magnets in the ATF2, 29 quadrupoles, 5 sextupoles and 3 bends. These magnets had to be acquired in a short time and at minimum cost, which led to various acquisition strategies; but nevertheless they had to meet strict requirements on integrated strength, physical dimensions, compatibility with existing magnet movers and beam position monitors, mechanical stability and field stability and quality. This paper will describe how 2 styles of quadrupoles, 2 styles of sextupoles, one dipole style and their supports were designed, fabricated, refurbished or modified, measured and aligned by a small team of engineers from 3 continents.

  9. Commissioning and first results of scanning type EXAFS beamline (BL-09) at INDUS-2 synchrotron source

    Energy Technology Data Exchange (ETDEWEB)

    Poswal, A. K., E-mail: poswalashwini@gmail.com; Agrawal, A., E-mail: poswalashwini@gmail.com; Yadav, A. K., E-mail: poswalashwini@gmail.com; Nayak, C., E-mail: poswalashwini@gmail.com; Basu, S., E-mail: poswalashwini@gmail.com; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai -400085 (India); Kane, S. R.; Garg, C. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore- 452013 (India)

    2014-04-24

    An Energy Scanning X-ray Absorption Fine Structure spectroscopy beamline has recently been installed and commissioned at BL-09 bending magnet port of INDUS-2 synchrotron source, Indore. The beamline uses an UHV compatible fixed exit double crystal monochromator (DCM) with two Si (111) crystals. Two grazing incidence cylindrical mirrors are also used in this beamline; the pre-mirror is used as a collimating mirror while the post mirror is used for vertical focusing and higher harmonic rejection. In this beamline it is possible to carry out EXAFS measurements both in transmission and fluorescence mode on various types of samples, using Ionization chamber detectors and solid state drift detector respectively. In this paper, results from first experiments of the Energy Scanning EXAFS beamline are presented.

  10. Performance of beamline 9.3.1 at the ALS: Flux and resolution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Y. [Univ. of Nevada, Las Vegas, NV (United States); Fischer, G.; Kring, J.; Perera, R.C.C. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Beamline 9.3.1 at the ALS is a windowless beamline, covering the 1-6 keV photon-energy range. This beamline is the first monochromatic hard x-ray beamline in the ALS, and designed to achieve the goals of high energy resolution, and preservation of the high brightness from the ALS. It consists of a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator and two toroidal mirrors which are positioned before and after the monochromator. The construction of the beamline was completed in December of 1995, with imperfect mirrors. In this report, the authors describe the experimental results of absolute flux measurements and x-ray absorption measurements of gases and solid samples using the present set of mirrors.

  11. Performance and capabilities of the Canadian Dragon: The SGM beamline at the Canadian Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Regier, T. [Canadian Light Source, Inc. (CLSI), University of Saskatchewan, Saskatoon, SK (Canada)], E-mail: tom.regier@lightsource.ca; Krochak, J. [Canadian Light Source, Inc. (CLSI), University of Saskatchewan, Saskatoon, SK (Canada); Sham, T.K. [Department of Chemistry, University of Western Ontario, London, ON (Canada); Hu, Y.F. [Canadian Light Source, Inc. (CLSI), University of Saskatchewan, Saskatoon, SK (Canada); Thompson, J. [Department of Chemistry, University of Western Ontario, London, ON (Canada); Blyth, R.I.R. [Canadian Light Source, Inc.(CLSI), University of Saskatchewan, Saskatoon, SK (Canada)

    2007-11-11

    The Canadian Dragon is a Spherical Grating Monochromator (SGM) beamline for the photon energy range between 250 and 2000 eV. The high flux from the source, a 45 mm planar undulator, allows for excellent performance in the difficult 1-2 keV range. Resolving powers comparable to those of the leading spectroscopy beamlines are routinely available. The beamline design employs toroidal refocusing optics to allow for two in-line endstation areas. The upstream experimental area hosts a dedicated UHV endstation with a Scienta SES-100 photoelectron energy analyzer. The downstream experimental area is primarily used for solid sample X-ray absorption studies, but can be fitted with a number of different endstations. A 1 metre long differential pumping section between the beamline optics and the second endstation area permits the analysis of non-UHV compatible samples, making the beamline suitable for many environmental or biological experiments.

  12. Computational Modeling in Support of National Ignition Facility Operations

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M J; Sacks, R A; Haynam, C A; Williams, W H

    2001-10-23

    Numerical simulation of the National Ignition Facility (NIF) laser performance and automated control of laser setup process are crucial to the project's success. These functions will be performed by two closely coupled computer codes: the virtual beamline (VBL) and the laser operations performance model (LPOM).

  13. A Fast, Versatile Nanoprobe for Complex Materials: The Sub-micron Resolution X-ray Spectroscopy Beamline at NSLS-II (491st Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Juergen [BNL Photon Sciences Directorate

    2014-02-06

    Time is money and for scientists who need to collect data at research facilities like Brookhaven Lab’s National Synchrotron Light Source (NSLS), “beamtime” can be a precious commodity. While scanning a complex material with a specific technique and standard equipment today would take days to complete, researchers preparing to use brighter x-rays and the new sub-micron-resolution x-ray spectroscopy (SRX) beamline at the National Synchrotron Light Source II (NSLS-II) could scan the same sample in greater detail with just a few hours of beamtime. Talk about savings and new opportunities for researchers! Users will rely on these tools for locating trace elements in contaminated soils, developing processes for nanoparticles to deliver medical treatments, and much more. Dr. Thieme explains benefits for next-generation research with spectroscopy and more intense x-rays at NSLS-II. He discusses the instrumentation, features, and uses for the new SRX beamline, highlighting its speed, adjustability, and versatility for probing samples ranging in size from millimeters down to the nanoscale. He will talk about complementary beamlines being developed for additional capabilities at NSLS-II as well.

  14. Characteristics of radiation safety for synchrotron radiation and X-ray free electron laser facilities.

    Science.gov (United States)

    Asano, Yoshihiro

    2011-07-01

    Radiation safety problems are discussed for typical electron accelerators, synchrotron radiation (SR) facilities and X-ray free electron laser (XFEL) facilities. The radiation sources at the beamline of the facilities are SR, including XFEL, gas bremsstrahlung and high-energy gamma ray and photo-neutrons due to electron beam loss. The radiation safety problems for each source are compared by using 8 GeV class SR and XFEL facilities as an example.

  15. P13, the EMBL macromolecular crystallography beamline at the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focusing

    Science.gov (United States)

    Cianci, Michele; Bourenkov, Gleb; Pompidor, Guillaume; Karpics, Ivars; Kallio, Johanna; Bento, Isabel; Roessle, Manfred; Cipriani, Florent; Fiedler, Stefan; Schneider, Thomas R.

    2017-01-01

    The macromolecular crystallography P13 beamline is part of the European Molecular Biology Laboratory Integrated Facility for Structural Biology at PETRA III (DESY, Hamburg, Germany) and has been in user operation since mid-2013. P13 is tunable across the energy range from 4 to 17.5 keV to support crystallographic data acquisition exploiting a wide range of elemental absorption edges for experimental phase determination. An adaptive Kirk­patrick–Baez focusing system provides an X-ray beam with a high photon flux and tunable focus size to adapt to diverse experimental situations. Data collections at energies as low as 4 keV (λ = 3.1 Å) are possible due to a beamline design minimizing background and maximizing photon flux particularly at low energy (up to 1011 photons s−1 at 4 keV), a custom calibration of the PILATUS 6M-F detector for use at low energies, and the availability of a helium path. At high energies, the high photon flux (5.4 × 1011 photons s−1 at 17.5 keV) combined with a large area detector mounted on a 2θ arm allows data collection to sub-atomic resolution (0.55 Å). A peak flux of about 8.0 × 1012 photons s−1 is reached at 11 keV. Automated sample mounting is available by means of the robotic sample changer ‘MARVIN’ with a dewar capacity of 160 samples. In close proximity to the beamline, laboratories have been set up for sample preparation and characterization; a laboratory specifically equipped for on-site heavy atom derivatization with a library of more than 150 compounds is available to beamline users. PMID:28009574

  16. Overview of the conceptual design of the future VENUS beamline at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Herwig, Kenneth W [ORNL; Keener, Wylie S [ORNL; Davis, Larry E [ORNL

    2015-01-01

    VENUS will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to m). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beamline 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS

  17. Current status of the CXI beamline at the PAL-XFEL

    Science.gov (United States)

    Park, Jaehyun; Kim, Sangsoo; Nam, Ki-Hyun; Kim, Bongsoo; Ko, In Soo

    2016-09-01

    The Pohang Accelerator Laboratory's X-ray free electron laser (PAL-XFEL) is a research facility currently under construction. It will provide ultra-bright (1 × 1012 photons/pulse at 12.4 keV) and ultra-short (10 - 60 femtosecond) X-ray pulses. The CXI (coherent X-ray imaging) hard X-ray experimental station is designed to deliver brilliant hard X-rays (2 - 20.4 keV) and to measure diffraction signals with a forward scattering geometry. It will not only offer imaging studies of biological, chemical and physical samples with the "diffraction-before-destruction" scheme, but also be helpful in high-field hard X-ray physics and material science. The scientific programs are currently aimed at serial femtosecond crystallography (SFX) and coherent diffraction imaging (CDI) for bio specimens, nano materials, etc. In this paper, we describe the beamline layout, beam diagnostics, X-ray focusing optics, sample environments and detector system at the CXI experimental hutch.

  18. Influence of baffle plate geometry on decay of shock waves propagating in a beamline

    Energy Technology Data Exchange (ETDEWEB)

    Takiya, Toshio; Terada, Yukihiro; Komura, Akio [Hitachi Zosen Corp., Osaka (Japan); Higashino, Fumio; Sugiyama, Hiroshi; Ando, Masami

    1998-06-01

    Dependency of geometries of baffle plates in a shock tube on the decay of shock waves was investigated to find an optimal design for acoustic delay lines (ADLs) in beamlines of a synchrotron radiation facility. Fabricating a thin orifice, a coned baffle plate, a diverging tube and a converging tube as a model of the ADL, we performed pressure measurement with piezo-pressure transducers by using a dedicated shock tube and two-dimensional flow visualization around the model by means of Schlieren photography. According to the results of pressure measurements, a theory of one-dimensional steady flow employed generally is not available for the coned baffle. The decay ratios defined by the strength of incident and transmitted shock waves clearly differ among the four types of the ADL models, although all of the models have the same aperture. These results suggest that non-steady phenomena observed by the Schlieren photography, such as shock wave reflection and diffraction, viscous flow behind shock waves, may be involved in shock wave decay through baffle plates. (author)

  19. The performance of a cryogenically cooled monochromator for an in-vacuum undulator beamline.

    Science.gov (United States)

    Zhang, Lin; Lee, Wah Keat; Wulff, Michael; Eybert, Laurent

    2003-07-01

    The channel-cut silicon monochromator on beamline ID09 at the European Synchrotron Radiation Facility is indirectly cooled from the sides by liquid nitrogen. The thermal slope error of the diffracting surface is calculated by finite-element analysis and the results are compared with experiments. The slope error is studied as a function of cooling coefficients, beam size, position of the footprint and power distribution. It is found that the slope error versus power curve can be divided into three regions: (i). The linear region: the thermal slope error is linearly proportional to the power. (ii). The transition region: the temperature of the Si crystal is close to 125 K; the thermal slope error is below the straight line extrapolated from the linear curve described above. (iii). The non-linear region: the temperature of the Si crystal is higher than 125 K and the thermal slope error increases much faster than the power. Heat-load tests were also performed and the measured rocking-curve widths are compared with those calculated by finite-element modeling. When the broadening from the intrinsic rocking-curve width and mounting strain are included, the calculated rocking-curve width versus heat load is in excellent agreement with experiment.

  20. Depolarization in the ILC Linac-to-Ring Positron Beamline

    CERN Document Server

    Riemann, Sabine

    2012-01-01

    To achieve the physics goals of future Linear Colliders, it is important that electron and positron beams are polarized. The positron source planned for the International Linear Collider (ILC) is based on a helical undulator system and can deliver a polarised beam with positron polarization of 60%. To ensure that no significant polarization is lost during the transport of the electron and positron beams from the source to the interaction region, spin tracking has to be included in all transport elements which can contribute to a loss of polarization. These are the positron source, the damping ring, the spin rotators, the main linac and the beam delivery system. In particular, the dynamics of the polarized positron beam is required to be investigated. The results of positron spin tracking and depolarization study at the Positron-Linac-To-Ring (PLTR) beamline are presented.

  1. Beam property studies in the PLS diagnostic beamline

    CERN Document Server

    Ko, I S; Seon, D K; Kim, C B; Lee, T Y

    1999-01-01

    A diagnostic beamline has been operated in the Pohang Light Source (PLS) storage ring for the diagnostics of electron and photon beam properties. It consists of two 1:1 imaging systems: a visible-light imaging system and a soft X-ray imaging system. We have measured the transverse and the longitudinal structures of beams by using a streak camera to obtain a visible image. Accurate transverse beam size have been measured to be 186 mu m horizontally and 43.1 mu m vertically by using soft X-ray images with minimum diffraction errors. The corresponding emittances are 11.7 nm-rad horizontally and 0.59 nm-rad vertically. By comparing the measured data with the design values, we confirmed that the PLS storage ring has reached its designed performance within an error of 3.3 % in the transverse direction.

  2. Lithography beamline design and exposure uniformity controlling and measuring

    Science.gov (United States)

    Qian, Shinan; Jiang, Dikui; Liu, Zewen; Chen, Qianhong; Kan, Ya; Liu, Wanpo

    1989-07-01

    The lithography beamline design of Hefei National Synchrotron Radiation Laboratory is presented. A scanning mirror is used to cut off short wavelength radiation and to expand the vertical exposure dimension to 50 mm. A thin beryllium window is installed before the scanning mirror to prevent the longer wavelength radiation from going through. An exposure chamber with a vacuum of 5×10E-7 Torr is located at 7 m downstream from the source point. Because there is no window at the entrance of the chamber, a differential pumping system is used. The scanning mirror is driven by a stepping motor which oscillates through a 1° angle. The required driving speed curve is determined by a computer in order to obtain a uniform exposure area. An in situ moiré fringe grating system is used to measure the uniformity of the motor speed.

  3. MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron.

    Science.gov (United States)

    Cowieson, Nathan Philip; Aragao, David; Clift, Mark; Ericsson, Daniel J; Gee, Christine; Harrop, Stephen J; Mudie, Nathan; Panjikar, Santosh; Price, Jason R; Riboldi-Tunnicliffe, Alan; Williamson, Rachel; Caradoc-Davies, Tom

    2015-01-01

    MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented.

  4. Undulator beamline of the Brockhouse sector at the Canadian Light Source.

    Science.gov (United States)

    Diaz, B; Gomez, A; Meyer, B; Duffy, A; Hallin, E; Kycia, S

    2014-08-01

    The Brockhouse project at the Canadian Light Source plans the construction of three beamlines, two wiggler beamlines, and one undulator beamline, that will be dedicated to x-ray diffraction and scattering. In this work, we will describe the undulator beamline main components and performance parameters, obtained from ray tracing using XOP-SHADOW codes. The undulator beamline will operate from 4.95 to 21 keV, using a 20 mm period hybrid undulator placed upstream of the wiggler in the same straight section. The beamline optics design was developed in cooperation with the Brazilian Synchrotron - LNLS. The beamline will have a double crystal monochromator with the options of Si(111) or Si(311) crystal pairs followed by two mirrors in the KB configuration to focus the beam at the sample position. The high brilliance of the undulator source will produce a very high flux of ~10(13) photons/s and high energy resolution into a small focus of 170 μm horizontal and 20-60 μm vertical, depending on the optical configuration and energy chosen. Two multi-axis goniometer experimental stations with area detectors and analyzers are foreseen to enable diffraction, resonant and inelastic scattering experiments, and SAXS/WAXS experiments with high resolution and time resolving capabilities.

  5. Control system for the 2nd generation Berkeley automounters (BAM2) at GM/CA-CAT macromolecular crystallography beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, O., E-mail: makarov@anl.gov [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Hilgart, M.; Ogata, C.; Pothineni, S. [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Cork, C. [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-09-01

    GM/CA-CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second-generation Berkeley automounter is being integrated into the beamline control system at the 23BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design.

  6. A compact and low-weight sputtering unit for in situ investigations of thin film growth at synchrotron radiation beamlines.

    Science.gov (United States)

    Walter, P; Dippel, A-C; Pflaum, K; Wernecke, J; van den Hurk, J; Blume, J; Klemradt, U

    2015-05-01

    In this work, we report on a highly variable, compact, and light high-vacuum sputter deposition unit designed for in situ experiments using synchrotron radiation facilities. The chamber can be mounted at various synchrotron beamlines for scattering experiments in grazing incidence geometry. The sample position and the large exit window allow to perform x-ray experiments up to large q values. The sputtering unit is easy to mount on existing experimental setups and can be remote-controlled. In this paper, we describe in detail the design and the performance of the new sputtering chamber and present the installation of the apparatus at different 3rd generation light sources. Furthermore, we describe the different measurement options and present some selected results. The unit has been successfully commissioned and is now available for users at PETRA III at DESY.

  7. The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Simos N.; Hanson A.; Brown, D.; Elbakhshawn, M.

    2016-04-11

    BLAIRR STUDY STATUS OVERVIEW Beamline Complex Evaluation/Assessment and Adaptation to the Goals Facility Radiological Constraints ? Large scale analyses of conventional facility and integrated shield (concrete, soil)Target Optimization and Design: Beam-target interaction optimization Hadronic interaction and energy deposition limitations Single phase and Hybrid target concepts Irradiation Damage Thermo-mechanical considerations Spallation neutron fluence optimization for (a) fast neutron irradiation damage (b) moderator/reflector studies, (c) NTOF potential and optimization (d) mono-energetic neutron beam

  8. First results from the high-brightness x-ray spectroscopy beamline at ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Ng, W.; Jones, G. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology and x-ray optical development programs at ALS. X-ray absorption and time of flight photo emission measurements in 2 - 5 keV photon energy in argon along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  9. XAFS at the new materials science beamline 10 at the DELTA storage ring

    Science.gov (United States)

    Lützenkirchen-Hecht, D.; Wagner, R.; Frahm, R.

    2016-05-01

    The layout and the characteristics of the hard X-ray beamline BL 10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. Equipped with a stable and robust Si(111) channel-cut monochromator, this beamline is suited for XAFS studies in the spectral range from about 4 keV to ca. 16 keV photon energy. We will illustrate the performance of the beamline, and present EXAFS data obtained from several reference compounds. XANES data measured for dilute sample systems as well as surface sensitive grazing incidence EXAFS obtained from thin film samples will also be discussed.

  10. Beam-position monitors in the X-ray undulator beamline at PETRA.

    Science.gov (United States)

    Hahn, U; Brefeld, W; Hesse, M; Schneider, J R; Schulte-Schrepping, H; Seebach, M; Werner, M

    1998-05-01

    At the 12 GeV storage ring PETRA, the first synchrotron radiation beamline uses a 4 m-long undulator. The beamline, with a length of 130 m between source and sample, delivers hard X-ray photons usable up to 300 keV. The photon beam has a total power of 7 kW. Combined with the high brilliance, the powerful beam is very critical for all beamline components. Copper, located at a distance of 26 m, hit by the full undulator beam, melts within 20 ms. Different monitors are described for stable, safe and reliable operation of beam and experiments.

  11. Imaging in real and reciprocal space at the Diamond beamline I13

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C., E-mail: Christoph.rau@diamond.ac.uk [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); University of Manchester, School of Materials Grosvenor St., Manchester, M1 7HS (United Kingdom); Northwestern University School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611-3008 (United States); Wagner, U. H.; Vila-Comamala, J.; Bodey, A.; Parson, A.; García-Fernández, M.; Pešić, Z. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); De Fanis, A. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); European XFEL GmbH, Notkestraße 85, 22607 Hamburg (Germany)

    2016-01-28

    The Diamond Imaging and Coherence beamline I13 consists of two independent branchlines for imaging in real and reciprocal space. Different microscopies are available providing a range of spatial resolution from 5µm to potentially 5nm. The beamline operates in the energy range of 6-35keV covering different scientific areas such as biomedicine, materials science and geophysics. Several original devices have been developed at the beamline, such as the EXCALIBUR photon counting detector and the combined robot arms for coherent X-ray diffraction.

  12. Progress of projection computed tomography by upgrading of the beamline 37XU of SPring-8

    Science.gov (United States)

    Terada, Yasuko; Suzuki, Yoshio; Uesugi, Kentaro; Miura, Keiko

    2016-01-01

    Beamline 37XU at SPring-8 has been upgraded for nano-focusing applications. The length of the beamline has been extended to 80 m. By utilizing this length, the beamline has advantages for experiments such as X-ray focusing, X-ray microscopic imaging and X-ray computed tomography. Projection computed tomography measurements were carried out at experimental hutch 3 located 80 m from the light source. CT images of a microcapsule have been successfully obtained with a wide X-ray energy range.

  13. Progress of projection computed tomography by upgrading of the beamline 37XU of SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Yasuko, E-mail: yterada@spring8.or.jp; Suzuki, Yoshio; Uesugi, Kentaro; Miura, Keiko [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Koto, Sayo, Hyogo 679-5198 (Japan)

    2016-01-28

    Beamline 37XU at SPring-8 has been upgraded for nano-focusing applications. The length of the beamline has been extended to 80 m. By utilizing this length, the beamline has advantages for experiments such as X-ray focusing, X-ray microscopic imaging and X-ray computed tomography. Projection computed tomography measurements were carried out at experimental hutch 3 located 80 m from the light source. CT images of a microcapsule have been successfully obtained with a wide X-ray energy range.

  14. High-throughput Toroidal Grating Beamline for Photoelectron Spectroscopy at CAMD

    Science.gov (United States)

    Kizilkaya, O; Jiles, R W; Patterson, M C; Thibodeaux, C A; Poliakoff, E D; Sprunger, P T; Kurtz, R L; Morikawa, E

    2016-01-01

    A 5 meter toroidal grating (5m-TGM) beamline has been commissioned to deliver 28 mrad of bending magnet radiation to an ultrahigh vacuum endstation chamber to facilitate angle resolved photoelectron spectroscopy. The 5m-TGM beamline is equipped with Au-coated gratings with 300, 600 and 1200 lines/mm providing monochromatized synchrotron radiation in the energy ranges 25-70 eV, 50–120 eV and 100–240 eV, respectively. The beamline delivers excellent flux (~1014-1017 photons/sec/100mA) and a combined energy resolution of 189 meV for the beamline (at 1.0 mm slit opening) and HA-50 hemispherical analyzer was obtained at the Fermi level of polycrystalline gold crystal. Our preliminary photoelectron spectroscopy results of phenol adsorption on TiO2 (110) surface reveals the metal ion (Ti) oxidation. PMID:27134636

  15. I18--the microfocus spectroscopy beamline at the Diamond Light Source.

    Science.gov (United States)

    Mosselmans, J Frederick W; Quinn, Paul D; Dent, Andrew J; Cavill, Stuart A; Moreno, Sofia Diaz; Peach, Andrew; Leicester, Peter J; Keylock, Stephen J; Gregory, Simon R; Atkinson, Kirk D; Rosell, Josep Roque

    2009-11-01

    The design and performance of the microfocus spectroscopy beamline at the Diamond Light Source are described. The beamline is based on a 27 mm-period undulator to give an operable energy range between 2 and 20.7 keV, enabling it to cover the K-edges of the elements from P to Mo and the L(3)-edges from Sr to Pu. Micro-X-ray fluorescence, micro-EXAFS and micro-X-ray diffraction have all been achieved on the beamline with a spot size of approximately 3 microm. The principal optical elements of the beamline consist of a toroid mirror, a liquid-nitrogen-cooled double-crystal monochromator and a pair of bimorph Kirkpatrick-Baez mirrors. The performance of the optics is compared with theoretical values and a few of the early experimental results are summarized.

  16. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source.

    Science.gov (United States)

    Nowell, Harriott; Barnett, Sarah A; Christensen, Kirsten E; Teat, Simon J; Allan, David R

    2012-05-01

    The dedicated small-molecule single-crystal X-ray diffraction beamline (I19) at Diamond Light Source has been operational and supporting users for over three years. I19 is a high-flux tunable-wavelength beamline and its key details are described in this article. Much of the work performed on the beamline involves structure determination from small and weakly diffracting crystals. Other experiments that have been supported to date include structural studies at high pressure, studies of metastable species, variable-temperature crystallography, studies involving gas exchange in porous materials and structural characterizations that require analysis of the diffuse scattering between Bragg reflections. A range of sample environments to facilitate crystallographic studies under non-ambient conditions are available as well as a number of options for automation. An indication of the scope of the science carried out on the beamline is provided by the range of highlights selected for this paper.

  17. The Variable Polarization XUV Beamline P04 at PETRA III: Optics, mechanics and their performance

    Energy Technology Data Exchange (ETDEWEB)

    Viefhaus, Jens, E-mail: jens.viefhaus@desy.de [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); Scholz, Frank; Deinert, Sascha; Glaser, Leif; Ilchen, Markus; Seltmann, Jörn; Walter, Peter [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); Siewert, Frank, E-mail: frank.siewert@helmholtz-berlin.de [Helmholtz-Zentrum Berlin (HZB) für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin (Germany)

    2013-05-11

    The layout of the Variable Polarization XUV Beamline P04 at PETRA III is described with emphasis on selected examples of optics, mirrors and gratings. A precise characterization of the optics, their performance inside the holder and of the surrounding mechanics is presented. This also includes a detailed characterization of the different beamline mechanics as a whole (grating unit, exit slit unit, re-focusing unit) including the environment.

  18. Implementation of remote monitoring and diffraction evaluation systems at the Photon Factory macromolecular crystallography beamlines

    Science.gov (United States)

    Yamada, Yusuke; pHonda, Nobuo; Matsugaki, Naohiro; Igarashi, Noriyuki; Hiraki, Masahiko; Wakatsuki, Soichi

    2008-01-01

    Owing to recent advances in high-throughput technology in macromolecular crystallography beamlines, such as high-brilliant X-ray sources, high-speed readout detectors and robotics, the number of samples that can be examined in a single visit to the beamline has increased dramatically. In order to make these experiments more efficient, two functions, remote monitoring and diffraction image evaluation, have been implemented in the macromolecular crystallography beamlines at the Photon Factory (PF). Remote monitoring allows scientists to participate in the experiment by watching from their laboratories, without having to come to the beamline. Diffraction image evaluation makes experiments easier, especially when using the sample exchange robot. To implement these two functions, two independent clients have been developed that work specifically for remote monitoring and diffraction image evaluation. In the macromolecular crystallography beamlines at PF, beamline control is performed using STARS (simple transmission and retrieval system). The system adopts a client–server style in which client programs communicate with each other through a server process using the STARS protocol. This is an advantage of the extension of the system; implementation of these new functions required few modifications of the existing system. PMID:18421163

  19. High efficiency diffraction grating for EUV lithography beamline monochromator

    Science.gov (United States)

    Voronov, D. L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Naulleau, P.; Artemiev, N. A.; Lum, P.; Padmore, H. A.

    2016-09-01

    A blazed diffraction grating for the EUV lithography Beamline 12.0.1 of the Advanced Light Source has been fabricated using optical direct write lithography and anisotropic wet etching technology. A variable line spacing pattern was recorded on a photoresist layer and transferred to a hard mask layer of the grating substrate by a plasma etch. Then anisotropic wet etching was applied to shape triangular grating grooves with precise control of the ultralow blaze angle. Variation of the groove density along the grating length was measured with a Long Trace Profiler (LTP). Fourier analysis of the LTP data confirmed high groove placement accuracy of the grating. The grating coated with a Ru coating demonstrated diffraction efficiency of 69.6% in the negative first diffraction order which is close to theoretical efficiency at the wavelength of 13.5 nm. This work demonstrates an alternative approach to fabrication of highly efficient and precise x-ray diffraction gratings with ultra-low blaze angles.

  20. Current Status of the SANAEM RFQ Accelerator Beamline

    CERN Document Server

    Turemen, G; Ogur, S; Yildiz, V; Mete, O; Oz, S; Ozbey, A; Yildiz, H; Yaman, F; Akgun, Y; Alacakir, A; Bolukdemir, S; Bozbey, A; Sahin, A; Unel, G; Erhan, S

    2015-01-01

    The design and production studies of the proton beamline of SPP, which aims to acquire know-how on proton accelerator technology thru development of man power and serves as particle accelerator technologies test bench, continue at TAEK-SANAEM as a multi-phase project. For the first phase, 20 keV protons will be accelerated to 1.3 MeV by a single piece RFQ. Currently, the beam current and stability tests are ongoing for the Inductively Coupled Plasma ion source. The measured magnetic field maps of the Low Energy Beam Transport solenoids are being used for matching various beam configurations of the ion source to the RFQ by computer simulations. The installation of the low energy diagnostics box was completed in Q1 of 2015. The production of the RFQ cavity was started with aluminum 7075-T6 which will be subsequently coated by Copper to reduce the RF (Ohmic) losses. On the RF side, the development of the hybrid power supply based on solid state and tetrode amplifiers continues. All RF transmission components hav...

  1. Neutrino Flux Prediction for the NuMI Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga Soplin, Leonidas [William-Mary Coll.

    2016-01-01

    The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvA data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the fl ux for the upcoming DUNE experiment.

  2. Alignment of the photoelectron spectroscopy beamline at NSRL

    CERN Document Server

    Li, Chaoyang; Wen, Shen; Pan, Congyuan; An, Ning; Du, Xuewei; Zhu, Junfa; Wang, Qiuping

    2013-01-01

    The photoelectron spectroscopy beamline at National Synchrotron Radiation Laboratory (NSRL) is equipped with a spherical grating monochromator with the included angle of 174 deg. Three gratings with line density of 200, 700 and 1200 lines/mm are used to cover the energy region from 60 eV to 1000 eV. After several years operation, the spectral resolution and flux throughput were deteriorated, realignment is necessary to improve the performance. First, the wavelength scanning mechanism, the optical components position and the exit slit guide direction are aligned according to the design value. Second, the gratings are checked by Atomic Force Microscopy (AFM). And then the gas absorption spectrum is measured to optimize the focusing condition of the monochromator. The spectral resolving power is recovered to the designed value of 1000@244eV. The flux at the end station for the 200 lines/mm grating is about 10^10 photons/sec/200mA, which is in accordance with the design. The photon flux for the 700 lines/mm grati...

  3. Neutrino Flux Prediction for the NuMI Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Soplin, Leonidas Aliaga [Coll. William and Mary

    2016-01-01

    The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvA data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the flux for the upcoming DUNE experiment.

  4. The LIL facility quadruplet commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Di-Nicola, J.M.; Fleurot, N.; Lonjaret, T.; Julien, X.; Bordenave, E.; Le Garrec, B.; Mangeant, M.; Behar, G.; Chies, T.; Feral, C.; Graillot, H.; Luttmann, M.; Jequier, F.; Journot, E.; Lutz, O.; Thiell, G. [CEA - Centre d' Etudes Scientifiques et Techniques d' Aquitaine, DLP, 33 - Le Barp (France)

    2006-06-15

    The laser integration line (LIL) facility is currently a 4-beam prototype for the laser Megajoule (LMJ). Following LIL single beamline commissioning in 2003, where performance in terms of power and energy required for LMJ was demonstrated, we spent year 2004 to qualify the quadruplet (or quad) performance at 1{omega}/3{omega}. Over that year, the first quad high power and high energy laser experiments took place on LIL facility. A careful set of test campaigns were conducted to safely ramp up laser performance. The main goal was to measure quad-specific features such as beam synchronization and focal spot (size, smoothing contrast ratio or irradiation nonuniformity {sigma}(rms) versus the LMJ requirements. LIL Quad beam waist was recorded for various pulse durations, smoothing techniques and for a wide range of laser intensities up to LMJ-nominal ones. Now, LIL quad has been commissioned to the center of the target chamber and the first plasma experiments are made. (authors)

  5. Upgrade of beamline BL08B at Taiwan Light Source from a photon-BPM to a double-grating SGM beamline.

    Science.gov (United States)

    Yuh, Jih Young; Lin, Shan Wei; Huang, Liang Jen; Fung, Hok Sum; Lee, Long Life; Chen, Yu Joung; Cheng, Chiu Ping; Chin, Yi Ying; Lin, Hong Ji

    2015-09-01

    During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam-position monitor (BPM) to a testing beamline and a single-grating beamline that enables experiments to record X-ray photo-emission spectra (XPS) and X-ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X-ray photon energies in the range 300-1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano-fabrication and topological thin films are increasing. The basic spherical-grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end-stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme-ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L-edge adsorption spectrum.

  6. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin.

    Science.gov (United States)

    Mueller, Uwe; Darowski, Nora; Fuchs, Martin R; Förster, Ronald; Hellmig, Michael; Paithankar, Karthik S; Pühringer, Sandra; Steffien, Michael; Zocher, Georg; Weiss, Manfred S

    2012-05-01

    Three macromolecular crystallography (MX) beamlines at the Helmholtz-Zentrum Berlin (HZB) are available for the regional, national and international structural biology user community. The state-of-the-art synchrotron beamlines for MX BL14.1, BL14.2 and BL14.3 are located within the low-β section of the BESSY II electron storage ring. All beamlines are fed from a superconducting 7 T wavelength-shifter insertion device. BL14.1 and BL14.2 are energy tunable in the range 5-16 keV, while BL14.3 is a fixed-energy side station operated at 13.8 keV. All three beamlines are equipped with CCD detectors. BL14.1 and BL14.2 are in regular user operation providing about 200 beam days per year and about 600 user shifts to approximately 50 research groups across Europe. BL14.3 has initially been used as a test facility and was brought into regular user mode operation during the year 2010. BL14.1 has recently been upgraded with a microdiffractometer including a mini-κ goniometer and an automated sample changer. Additional user facilities include office space adjacent to the beamlines, a sample preparation laboratory, a biology laboratory (safety level 1) and high-end computing resources. In this article the instrumentation of the beamlines is described, and a summary of the experimental possibilities of the beamlines and the provided ancillary equipment for the user community is given.

  7. DESIGN OF VISIBLE DIAGNOSTIC BEAMLINE FOR NSLS2 STORAGE RING

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, W.; Fernandes, H.; Hseuh, H.; Kosciuk, B.; Krinsky, S.; Singh, O.

    2011-03-28

    A visible synchrotron light monitor (SLM) beam line has been designed at the NSLS2 storage ring, using the bending magnet radiation. A retractable thin absorber will be placed in front of the first mirror to block the central x-rays. The first mirror will reflect the visible light through a vacuum window. The light is guided by three 6-inch diameter mirrors into the experiment hutch. In this paper, we will describe design work on various optical components in the beamline. The ultra high brightness NSLS-II storage ring is under construction at Brookhaven National Laboratory. It will have 3GeV, 500mA electron beam circulating in the 792m ring, with very low emittance (0.9nm.rad horizontal and 8pm.rad vertical). The ring is composed of 30 DBA cells with 15 fold symmetry. Three damping wigglers will be installed in long straight sections 8, 18 and 28 to lower the emittance. While electrons pass through the bending magnet, synchrotron radiation will be generated covering a wide spectrum. There are other insertion devices in the storage ring which will generate shorter wavelength radiation as well. Synchrotron radiation has been widely used as diagnostic tool to measure the transverse and longitudinal profile. Three synchrotron light beam lines dedicated for diagnostics are under design and construction for the NSLS-II storage ring: two x-ray beam lines (pinhole and CRL) with the source points from Cell 22 BM{_}A (first bending in the DBA cell) and Cell22 three-pole wiggler; the third beam line is using visible part of radiation from Cell 30 BM{_}B (second bending magnet from the cell). Our paper focuses on the design of the visible beam line - SLM.

  8. Investigation of the heat handling capabilities of DIII-D neutral beamline internal components

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.C.; Baxi, C.B.; Hong, R.

    1993-10-01

    The current DIII-D neutral beam system is a nominal five second pulse length upgrade of a previous design rated for only 500 msec operation. While the ion sources are rated for 60 sec operation, in practice pulse lengths are limited both by the beamline internal components ability to handle the fraction of the power which is scraped off, and by the power supplies ability to provide pulse lengths of greater than 5 sec. This paper examines the capability of the existing DIII-D neutral beamline heat removing components both in terms of present and desired operating parameters. To date, at 2.5 MW per ion source, pulses are limited to 3.5 sec by beamline internal components, while at lower ratings of 2.0 MW per ion source, up to 5 sec pulses have been achieved. Recent advances and demonstration of the extraction of 3.5 MW per DIII-D ion source give an even wider window of operating conditions. A full series of beamline thermocouple data has been collected to determine the heat loading and implied surface temperatures for the various DIII-D neutral beamline internal components. These data will be presented along with an analysis of the needs for specific component upgrades, given a desire for 10 sec operation.

  9. XDS: a flexible beamline for X-ray diffraction and spectroscopy at the Brazilian synchrotron.

    Science.gov (United States)

    Lima, F A; Saleta, M E; Pagliuca, R J S; Eleotério, M A; Reis, R D; Fonseca Júnior, J; Meyer, B; Bittar, E M; Souza-Neto, N M; Granado, E

    2016-11-01

    The majority of the beamlines at the Brazilian Synchrotron Light Source Laboratory (LNLS) use radiation produced in the storage-ring bending magnets and are therefore currently limited in the flux that can be used in the harder part of the X-ray spectrum (above ∼10 keV). A 4 T superconducting multipolar wiggler (SCW) was recently installed at LNLS in order to improve the photon flux above 10 keV and fulfill the demands set by the materials science community. A new multi-purpose beamline was then installed at the LNLS using the SCW as a photon source. The XDS is a flexible beamline operating in the energy range between 5 and 30 keV, designed to perform experiments using absorption, diffraction and scattering techniques. Most of the work performed at the XDS beamline concentrates on X-ray absorption spectroscopy at energies above 18 keV and high-resolution diffraction experiments. More recently, new setups and photon-hungry experiments such as total X-ray scattering, X-ray diffraction under high pressures, resonant X-ray emission spectroscopy, among others, have started to become routine at XDS. Here, the XDS beamline characteristics, performance and a few new experimental possibilities are described.

  10. Application of partially coherent wavefront propagation calculations for design of coherence-preserving synchrotron radiation beamlines

    Science.gov (United States)

    Chubar, Oleg; Chu, Yong S.; Kaznatcheev, Konstantine; Yan, Hanfei

    2011-09-01

    Ultra-low emittance third-generation synchrotron radiation (SR) sources, such as NSLS-II and MAX-IV, will offer excellent opportunities for further development of experimental techniques exploiting X-ray coherence. However, even in these new SR sources, the radiation produced by relativistic electrons (in undulators, wigglers and bending magnets) will remain only partially coherent in the X-ray spectral range. "Extraction" of "coherent portion" of the radiation flux and its transport to sample without loss of coherence must be performed by dedicated SR beamlines, optimized for particular types of experiments. Detailed quantitative prediction of partially coherent X-ray beam properties at propagation through optical elements, which is required for the optimization of such beamlines, can only be obtained from accurate and efficient physical-optics based numerical simulations. Examples of such simulations, made for NSLS-II beamlines, using "Synchrotron Radiation Workshop" (SRW) computer code, are presented. Special attention is paid to the numerical analysis of the basic properties of partially coherent undulator radiation beam and its distinctions from the Gaussian beam. Performance characteristics of importance for particular beamlines, such as radiation spot size and flux at sample vs size of secondary source aperture for high-resolution microscopy beamlines, are predicted by the simulations.

  11. Optimization of the design for beamline with fast polarization switching elliptically polarized undulators.

    Science.gov (United States)

    Cao, Jiefeng; Wang, Yong; Zou, Ying; Zhang, Xiangzhi; Wu, Yanqing; Tai, Renzhong

    2016-03-01

    Fast switching of X-ray polarization with a lock-in amplifier is a good method for acquiring weak signals from background noise for X-ray magnetic circular dichroism (XMCD) experiments. The usual way to obtain a beam with fast polarization switching is to use two series of elliptically polarized undulators (tandem twin EPUs). The two EPUs generate two individual beams. Each beam has a different polarization and is fast switched into the beamline. It is very important to ensure that the energy resolution, the flux and the spot size at the sample of the two beams are equal in XMCD experiments. However, it is difficult in beamline design because the distances from the two EPUs to the beamline optics are different and the beamline is not switchable. In this work, a beamline design without an entrance slit for fast polarization switching EPUs is discussed. The energy resolution of the two beams can be tuned to be equal by minor rotation of the optics in the monochromator. The flux of the two beams can be balanced through separation blades X, Y in the exit slit, and by adjusting the position of the X blades along the beam. The spot size of the two beams can be adjusted to be equal by shifting the sample as well.

  12. Numerical analysis of partially coherent radiation at soft x-ray beamline.

    Science.gov (United States)

    Meng, Xiangyu; Xue, Chaofan; Yu, Huaina; Wang, Yong; Wu, Yanqing; Tai, Renzhong

    2015-11-16

    A new model for numerical analysis of partially coherent x-ray at synchrotron beamlines is presented. The model is based on statistical optics. Four-dimensional coherence function, Mutual Optical Intensity (MOI), is applied to describe the wavefront of the partially coherent light. The propagation of MOI through optical elements in the beamline is deduced with numerical calculation. The coherence of x-ray through beamlines can be acquired. We applied the model to analyze the coherence in the STXM beamline at SSRF, and got the coherence length of the beam at the endstation. To verify the theoretical results, the diffraction experiment of a single slit was performed and the diffraction pattern was simulated to get the coherence length, (31 ± 3.0) µm × (25 ± 2.1) µm (H × V), which had a good agreement with the theoretical results, (30.7 ± 0.6) µm × (31 ± 5.3) µm (H × V). The model is applicable to analyze the coherence in synchrotron beamlines.

  13. Ultraviolet Light Generation and Transport in the Final Optics Assembly of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hackel, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Feit, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Parham, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kozlowski, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitman, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-12

    The design of the National Ignition Facility (NIF) includes a Final Optics Assembly (FOA) subsystem for ultraviolet (UV) light generation and transport for each of the 192 beamlines. Analytical and experimental work has been done to help understand and predict the performance of FOA.

  14. Cleanliness improvements of NIF (National Ignition Facility) amplifiers as compared to previous large-scale lasers

    Energy Technology Data Exchange (ETDEWEB)

    Honig, J

    2004-06-09

    Prior to the recent commissioning of the first NIF (National Ignition Facility) beamline, full-scale laser-amplifier-glass cleanliness experiments were performed. Aerosol measurements and obscuration data acquired using a modified flatbed scanner compare favorably to historical large-scale lasers and indicate that NIF is the cleanest large-scale laser built to date.

  15. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    CERN Document Server

    McGee, M W; Martinez, A; Pischalnikov, Y; Schappert, W

    2012-01-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule #1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  16. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

    2011-03-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  17. A double multilayer monochromator for the B16 Test beamline at the Diamond Light Source

    Science.gov (United States)

    Sawhney, K. J. S.; Dolbnya, I. P.; Scott, S. M.; Tiwari, M. K.; Preece, G. M.; Alcock, S. G.; Malandain, A. W.

    2011-09-01

    The B16 Test beamline at the Diamond Light Source is in user operation. It has been recently upgraded with the addition of a double multilayer monochromator (DMM), which provides further functionality and versatility to the beamline. The multilayer monochromator is equipped with two pairs of multilayer optics (Ni/B4C and Ru/B4C) to cover the wide photon energy range of 2 - 20 keV, with good efficiency. The DMM provides a broad bandpass / high flux operational mode for the beamline and, when used in tandem with the Si (111) double crystal monochromator, it gives a very high higher-order harmonics suppression. The design details of the DMM and the first commissioning results obtained using the DMM are presented.

  18. BEAMLINE-CONTROLLED STEERING OF SOURCE-POINT ANGLE AT THE ADVANCED PHOTON SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Emery, L.; Fystro, G.; Shang, H.; Smith, M.

    2017-06-25

    An EPICS-based steering software system has been implemented for beamline personnel to directly steer the angle of the synchrotron radiation sources at the Advanced Photon Source. A script running on a workstation monitors "start steering" beamline EPICS records, and effects a steering given by the value of the "angle request" EPICS record. The new system makes the steering process much faster than before, although the older steering protocols can still be used. The robustness features of the original steering remain. Feedback messages are provided to the beamlines and the accelerator operators. Underpinning this new steering protocol is the recent refinement of the global orbit feedback process whereby feedforward of dipole corrector set points and orbit set points are used to create a local steering bump in a rapid and seamless way.

  19. Experience with Multi-Beam and Multi-Beamline FEL-Operation

    Science.gov (United States)

    Rönsch-Schulenburg, J.; Faatz, B.; Honkavaara, K.; Kuhlmann, M.; Schreiber, S.; Treusch, R.; Vogt, M.

    2017-07-01

    DESY’s free-electron laser FLASH provides soft X-ray pulses for scientific users at wavelengths down to 4nm simultaneously in two undulator beamlines. They are driven by a common linear superconducting accelerator with a beam energy of up to 1.25 GeV. The superconducting technology allows the acceleration of electron bunch trains of several hundred bunches with a spacing of 1 microsecond or more and a repetition rate of 10 Hz. A fast kickerseptum system directs one part of the bunch train to FLASH1 and the other part to FLASH2 keeping the full 10 Hz repetition rate for both. The unique setup of FLASH allows independent FEL pulse parameters for both beamlines. In April 2016, simultaneous operation of FLASH1 and FLASH2 for external users started. This paper reports on our operating experience with this type of multi-beam, multi-beamline set-up.

  20. High-brightness beamline for x-ray spectroscopy at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Jones, G. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States); Lindle, D.W. [Univ. of Nevada, Las Vegas, NV (United States)

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard x-ray beamline, and its brightness will be an order of magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12 m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS.

  1. Analysis of optics damage growth at the National Ignition Facility

    Science.gov (United States)

    Liao, Z. M.; Nostrand, M.; Whitman, P.; Bude, J.

    2015-11-01

    Optics damage growth modeling and analysis at the National Ignition Facility (NIF) has been performed on fused silica. We will show the results of single shot growth comparisons, damage site lifetime comparisons as well as growth metrics for each individual NIF beamline. These results help validate the consistency of the damage growth models and allow us to have confidence in our strategic planning in regards to projected optic usage.

  2. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    OpenAIRE

    2014-01-01

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried...

  3. BAMline: the first hard X-ray beamline at BESSY II

    Energy Technology Data Exchange (ETDEWEB)

    Goerner, W.; Hentschel, M.P.; Mueller, B.R. E-mail: bernd.mueller@bam.de; Riesemeier, H.; Krumrey, M.; Ulm, G.; Diete, W.; Klein, U.; Frahm, R

    2001-07-21

    The first hard X-ray beamline at BESSY II will be installed by BAM and PTB at a superconducting 7 T wavelength shifter. The main optical elements of the beamline are a Double-Multilayer-Monochromator and a Double-Crystal-Monochromator. The two devices can be used separately or in-line. Main applications of monochromatic radiation with photon energies up to 50 keV are X-ray fluorescence analysis, micro-computed tomography, X-ray topography, detector calibration and reflectometry. Calculable undispersed radiation up to 200 keV will be available for radiometric applications.

  4. Layout and first results of the nanotomography endstation at the P05 beamline at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Ogurreck, M.; Greving, I.; Beckmann, F.; Wilde, F.; Müller, M. [Institute of Materials Research, Helmholtz–Zentrum Geesthacht (Germany); Marschall, F.; Vogt, H.; Last, A. [Institute of Microstructure Technology, Karlsruhe Institute of Technology (Germany); Rosario, J. J. do [Institute of Advanced Ceramics, Technical University Hamburg–Harburg (Germany); Leib, E. W. [Institute of Physical Chemistry, University of Hamburg (Germany)

    2016-01-28

    The Helmholtz-Zentrum Geesthacht operates the P05 Imaging Beamline at the DESY storage ring PETRA III. This beamline is dedicated to micro- and nanotomography with two endstations. This paper will present the nanotomography endstation layout and first results obtained from commissioning and test experiments. First tests have been performed with CRLs as X-ray objectives and newly developed rolled X-ray prism lenses as condenser optics. This setup allows a resolution of 100 nm half period with an effective detector pixel size of 15nm. A first tomograph of a photonic glass sample was measured in early 2014.

  5. CDApps: integrated software for experimental planning and data processing at beamline B23, Diamond Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Rohanah, E-mail: rohanah.hussain@diamond.ac.uk; Benning, Kristian; Javorfi, Tamas; Longo, Edoardo; Rudd, Timothy R.; Pulford, Bill; Siligardi, Giuliano, E-mail: rohanah.hussain@diamond.ac.uk [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-01-31

    CDApps software at Diamond B23 SRCD beamline is presented. The B23 Circular Dichroism beamline at Diamond Light Source has been operational since 2009 and has seen visits from more than 200 user groups, who have generated large amounts of data. Based on the experience of overseeing the users’ progress at B23, four key areas requiring the most assistance are identified: planning of experiments and note-keeping; designing titration experiments; processing and analysis of the collected data; and production of experimental reports. To streamline these processes an integrated software package has been developed and made available for the users. The subsequent article summarizes the main features of the software.

  6. First X-ray fluorescence CT experimental results at the SSRF X-ray imaging beamline

    Institute of Scientific and Technical Information of China (English)

    DENG Biao; YANG Qun; XIE Hong-Lan; DU Guo-Hao; XIAO Wi-Qiao

    2011-01-01

    X-ray fluorescence CT is a non-destructive technique for detecting elemental composition and distribution inside a specimen. In this paper, the first experimental results of X-ray fluorescence CT obtained at the SSRF X-ray imaging beamline (BL13W1) are described. The test samples were investigated and the 2D elemental image was reconstructed using a filtered back-projection algorithm. In the sample the element Cd was observed. Up to now, the X-ray fluorescence CT could be carried out at the SSRF X-ray imaging beamline.

  7. Holographic X-ray optical elements: transition between refraction and diffraction

    CERN Document Server

    Snigireva, I; Rau, C; Weitkamp, T; Aristov, V; Grigoriev, M; Kuznetsov, S; Shabelnikov, L; Yunkin, V; Hoffmann, M; Voges, E

    2001-01-01

    Planar microelectronics technology, involving photolithography and highly anisotropic plasma etching techniques, was applied to fabricate refractive and diffractive (kinoform) lenses. Focusing properties in terms of focus spot and efficiency in the energy range 8-25 keV for both types of lenses were tested at the European Synchrotron Radiation Facility (ESRF) ID22 beamline. Focal spot of 1.5 mu m with a gain of 25 was measured at 15 keV.

  8. A new polarized neutron interferometry facility at the NCNR

    Science.gov (United States)

    Shahi, C. B.; Arif, M.; Cory, D. G.; Mineeva, T.; Nsofini, J.; Sarenac, D.; Williams, C. J.; Huber, M. G.; Pushin, D. A.

    2016-03-01

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  9. A new polarized neutron interferometry facility at the NCNR

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: michael.huber@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: dmitry.pushin@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)

    2016-03-21

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  10. Protein crystallography beamline BL2S1 at the Aichi synchrotron

    Science.gov (United States)

    Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke; Tomita, Ayana; Matsugaki, Naohiro; Tabuchi, Masao

    2017-01-01

    The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7–17 keV (1.8–0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter. The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. High-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline. PMID:28009576

  11. Protein crystallography beamline BL2S1 at the Aichi synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke; Tomita, Ayana; Matsugaki, Naohiro; Tabuchi, Masao (Nagoya); (Photon)

    2017-01-01

    The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7–17 keV (1.8–0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter. The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. Lastly, high-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.

  12. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    Science.gov (United States)

    Haris, K.; Singh, Param Jeet; Shastri, Aparna; Sunanda, K.; Babita, K.; Rao, S. V. N. Bhaskara; Ahmad, Shabbir; Tauheed, A.

    2014-12-01

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 m off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~0.5 Å is achieved for the Xe atomic line at 1469.6 Å. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection system is expected to greatly enhance the utilization of the HRVUV beamline as a number of spectroscopic experiments which require fast recording times combined with a good signal to noise ratio are now feasible.

  13. Possible Scheme of the Analyzing Part of a Cyclotron Injection Beamline with Higher Energy

    CERN Document Server

    Kazarinov, Nikolay; Stetson, Jeffry W

    2005-01-01

    The ion beam produced with an ECR ion source (ECRIS) with an extraction voltage of 30 kV may be additionally accelerated using a negative voltage of -30 kV applied to the last electrode of the extraction system, connected to the beamline biased to the same -30 kV potential. In this way the kinetic energy of the beam is increased to 60 keV/q, decreasing to half the space charge effect on the beam emittance. Using a large gap analyzing magnet placed right after the ECRIS and no focusing element, the transmission is still close to 100%. The voltage on the beamline must be kept constant from the ECRIS till the image focal plane of the analyzing magnet where the full separation of the beam charge states is achieved. An insulator break separates the biased beamline from the downstream section, which is at zero potential. Passing through this section of the beamline, the ion beam is decelerated to 30 keV/q, the energy necessary for the injection in the cyclotron. In order to prevent the increase of the beam divergen...

  14. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    Science.gov (United States)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm-2s-1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  15. The multi-purpose hard X-ray beamline BL10 at the DELTA storage ring.

    Science.gov (United States)

    Lützenkirchen-Hecht, D; Wagner, R; Szillat, S; Hüsecken, A K; Istomin, K; Pietsch, U; Frahm, Ronald

    2014-07-01

    The layout and the characteristics of the hard X-ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel-cut monochromator and is dedicated to X-ray studies in the spectral range from ∼4 keV to ∼16 keV photon energy. There are two different endstations available. While X-ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six-axis kappa diffractometer is installed for X-ray scattering and reflectivity experiments. Different detector set-ups are integrated into the beamline control software, i.e. gas-filled ionization chambers, different photodiodes, as well as a Pilatus 2D-detector are permanently available. The performance of the beamline is illustrated by high-quality X-ray absorption spectra from several reference compounds. First applications include temperature-dependent EXAFS experiments from liquid-nitrogen temperature in a bath cryostat up to ∼660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface-sensitive reflection-mode experiments are presented.

  16. XAFS at the Pacific Northwest Consortium-Collaborative Access Team undulator beamline.

    Science.gov (United States)

    Heald, S; Stern, E; Brewe, D; Gordon, R; Crozier, D; Jiang, D; Cross, J

    2001-03-01

    The Pacific Northwest Consortium-Collaborative Access Team (PNC-CAT) has begun operating an insertion device beamline at the Advanced Photon Source. The beamline has been extensively used for XAFS studies. This paper summarizes its capabilities, and our initial operational experience. The beamline is based on APS undulator A, and incorporates full undulator scanning. The monochromator is liquid nitrogen cooled and has both Si(111) and Si(311) crystals in a side-by-side configuration. Crystal changes only take a few minutes. The crystals cover the energy range from 3-50 keV with fluxes as high as 2x10(13) ph/sec. Microbeams can be produced using Kirkpatrick-Baez mirrors (spot size 1-3 microm) or tapered capillaries (sub-microm spots). When these optics are combined with a 13-element Ge detector, the beamline provides powerful microbeam imaging and spectroscopy capabilities. Experimental examples from the environmental field and in-situ UHV film growth will be discussed.

  17. The variable polarization undulator beamline UE52 PGM nanocluster trap at BESSY II

    Directory of Open Access Journals (Sweden)

    Ruslan Ovsyannikov

    2017-02-01

    Full Text Available UE52 PGM nanocluster trap is a soft x-ray beamline at BESSY II that delivers an unfocussed low-divergence beam of variable polarization. Its characteristics are ideally suited for ion trap studies of magnetic properties.

  18. Front-end XY-slits assembly for the SPring-8 undulator beamlines.

    Science.gov (United States)

    Oura, M; Sakurai, Y; Kitamura, H

    1998-05-01

    A front-end XY-slits assembly has been designed for the SPring-8 undulator beamlines. This assembly can handle the high heat flux from the undulator, its grazing-incidence L-shaped configuration employing an enhanced heat-transfer technology.

  19. Investigation of collisional effects within the bending magnet region of a DIII-D neutral beamline

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, D.N.; Hong, R.; Kellman, D.H.

    1993-10-01

    The region between the pole faces of the DIII-D neutral beamline residual ion bending magnets is an area of transient high gas pressure which may cause beam defocusing and increased heating of beamline internal components due to collisional effects. An investigation of these effects helps in understanding residual ion trajectories and in providing information for studying in the beamline capability for operation with increased pulse duration. Examination of collisional effects, and of the possible existence of space charge blow-up, was carried out by injecting deuterium gas into the region between the magnet pole faces with rates varying from 0 to 18 torr-{ell}/sec. Thermocouple and waterflow calorimetry data were taken to measure the beamline component heating and beam powder deposition on the magnet pole shields, magnet louvers, ion dump, beam collimators, and calorimeter. Data was also taken at gas flow rates varying from 0 to 25 torr-{ell}/sec into the neutralizer cell and is compared with the magnet region gas injection data obtained. Results show that both collisional effects and space charge blow-up play a role in magnet region component heating and that neutralizer gas flow sufficiently reduces component heating without incurring unacceptable power losses through collisional effects.

  20. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  1. Radionuclides in the Cooling Water Systems for the NuMi Beamline and the Antiproton Production Target Station at Fermilab

    CERN Document Server

    Matsumura, Hiroshi; Bessho, Kotaro; Sekimoto, Shun; Yashima, Hiroshi; Kasugai, Yoshimi; Matsuda, Norihiro; Sakamoto, Yukio; Nakashima, Hiroshi; Oishi, Koji; Boehnlein, David; Lauten, Gary; Leveling, Anthony; Mokhov, Nikolai; Vaziri, Kamran

    2014-01-01

    At the 120-GeV proton accelerator facilities of Fermilab, USA, water samples were collected from the cooling water systems for the target, magnetic horn1, magnetic horn2, decay pipe, and hadron absorber at the NuMI beamline as well as from the cooling water systems for the collection lens, pulse magnet and collimator, and beam absorber at the antiproton production target station, just after the shutdown of the accelerators for a maintenance period. Specific activities of {\\gamma} -emitting radionuclides and 3H in these samples were determined using high-purity germanium detectors and a liquid scintillation counter. The cooling water contained various radionuclides depending on both major and minor materials in contact with the water. The activity of the radionuclides depended on the presence of a deionizer. Specific activities of 3H were used to estimate the residual rates of 7Be. The estimated residual rates of 7Be in the cooling water were approximately 5% for systems without deionizers and less than 0.1% f...

  2. Magnetic field calculation of variably polarizing undulator (APPLE-type) for SX beamline in the SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hideki; Sasaki, Shigemi; Shimada, Taihei; Takao, Masaru; Yokoya, Akinori; Miyahara, Yoshikazu [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1996-03-01

    This paper describes the design of a variably polarizing undulator (APPLE-type) to be installed in soft X-ray beamline in the SPring-8 facility. The magnetic field distribution and radiation spectrum expected from this undulator were calculated. The magnetic field strength is varied by changing the gap distance of upper and lower jaws, so it changes the photon energy in soft X-ray range. By moving the relative position of pairs of magnet rows (phase shift), the polarization of radiation is varied circularly, elliptically and linearly in the horizontal and vertical direction. We expect that right and left handed circular polarizations are obtained alternately at a rate of 1 Hz by high speed phase shifting. The repulsive and attractive magnetic force working on the magnet rows were calculated which interfere in phase shifting at high speed. The magnetic force changes with gap distance and phase shift position, and the magnetic force working on a row in the direction of phase shift becomes up to 500 kgf. The construction of this undulator is started in 1996, that will be inserted in the storage ring in 1997. (author).

  3. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  4. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Haris, K. [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Singh, Param Jeet [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Shastri, Aparna, E-mail: ashastri@barc.gov.in [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sunanda, K.; Babita, K.; Rao, S.V.N. Bhaskara [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ahmad, Shabbir; Tauheed, A. [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2014-12-11

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 m off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu{sup 2+} phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O{sub 2}, N{sub 2}O and SO{sub 2} are carried out to evaluate the performance of the IP detection system. An FWHM of ∼0.5 Å is achieved for the Xe atomic line at 1469.6 Å. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection system is expected to greatly enhance the utilization of the HRVUV beamline as a number of spectroscopic experiments which require fast recording times combined with a good signal to noise ratio are now feasible. - Highlights: • Incorporation of an image plate detection system on HRVUV beamline at Indus-1. • Design and fabrication of mounting mechanisms, performance evaluation of new system. • Photoabsorption spectra of Xe, O{sub 2}, SO{sub 2} and N{sub 2}O recorded in the region 1150–2300 Å. • Sensitivity, wavelength coverage, reproducibility and resolution of IP demonstrated. • First report of IP detector for VUV photoabsorption using synchrotron radiation.

  5. Focusing, collimation and flux throughput at the IMCA-CAT bending-magnet beamline at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, Irina; Huang, Rong; Graber, Timothy; Meron, Mati; Muir, J. Lewis; Lavender, William; Battaile, Kevin; Mulichak, Anne M.; Keefe, Lisa J.; (IIT); (UC)

    2009-09-02

    The IMCA-CAT bending-magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high-quality multi- and single-wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending-magnet beamline achieves a flux of 8 x 10{sup 11} photons s{sup -1} at 1 {angstrom} wavelength, at a beamline aperture of 1.5 mrad (horizontal) x 86 {mu}rad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) {delta}E/E = 1.5 x 10{sup -4} (at 10 kV). The beamline operates in a dynamic range of 7.5-17.5 keV and delivers to the sample focused beam of size (FWHM) 240 {micro}m (horizontally) x 160 {micro}m (vertically). The performance of the 17-BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.

  6. Focusing, collimation and flux throughput at the IMCA-CAT bending-magnet beamline at the Advanced Photon Source.

    Science.gov (United States)

    Koshelev, Irina; Huang, Rong; Graber, Timothy; Meron, Mati; Muir, J Lewis; Lavender, William; Battaile, Kevin; Mulichak, Anne M; Keefe, Lisa J

    2009-09-01

    The IMCA-CAT bending-magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high-quality multi- and single-wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending-magnet beamline achieves a flux of 8 x 10(11) photons s(-1) at 1 A wavelength, at a beamline aperture of 1.5 mrad (horizontal) x 86 microrad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) deltaE/E = 1.5 x 10(-4) (at 10 kV). The beamline operates in a dynamic range of 7.5-17.5 keV and delivers to the sample focused beam of size (FWHM) 240 microm (horizontally) x 160 microm (vertically). The performance of the 17-BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.

  7. Control system for the 2nd generation Berkeley AutoMounters (BAM2) at GM/CA CAT macromolecular crystallography beamlines.

    Science.gov (United States)

    Makarov, O; Hilgart, M; Ogata, C; Pothineni, S; Cork, C

    2011-09-01

    GM/CA CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction.A second generation Berkeley automounter is being integrated into the beamline control system at the 23-BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design.

  8. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Padmore, Howard A.; Ustundag, Ersan; Yashchuk, Valeriy V.

    2009-03-24

    A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend) This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 mu m spot of ~;;5x109 photons/ s (0.1percent bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored bytwo pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 um are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (~;;0.2 mu m) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10-5 strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si

  9. ANKA - Service-oriented synchrotron radiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Babayan, Ruben Albert; Birkel, Ingrid; Buth, Gernot [Forschungszentrum Karlsruhe, ANKA Project Group, Karlsruhe (DE)] [and others

    1999-06-01

    ANKA is a 2.5 GeV synchrotron radiation facility under construction at Forschungszentrum Karlsruhe. ANKA is based on a 2.5 GeV electron storage ring injected from a 500 MeV booster synchrotron and a 50 MeV racetrack microtron. Nominal circulating electron current will be 400 mA. The facility is scheduled to become operational in fall 2000. ANKA will deliver photons predominantly in the hard X-ray range but it will also feature both XUV and infrared beamlines. So far, all beamlines will use bending magnets as sources, while provision is made to install appropriate insertion devices later on. ANKA has a novel mission which is characterised by giving preference to providing service to customers while maintaining a significant fraction of research work. ANKA will offer full service in X-ray lithography, mainly for micro- and nanofabrication, and in analysing and investigating non-destructively various structural, mechanical, chemical, electronic, magnetic, and molecular properties of samples and components. (author)

  10. Beam line design using G4BeamLine

    CERN Document Server

    Dogan, Arda

    2014-01-01

    In Turkey in Ankara TAEK SANAEM Proton Accelerator Facility (PAF), there is a cyclotron which produces a focused intense 30 MeV proton beam and sends this beam to four different arms, three of which uses this beam to produce pharmaceutical medicine. The remaining one is spared for R&D purposes and the idea was to use these protons coming out from the fourth arm to use space radiation tests, which cannot be done in Turkey at the moment. However, according to SCC 25100 standards which is for 30 MeV protons, the beam coming out of cyclotron is too intense and focused to use for space radiation tests. Therefore, the main aim of my project is to design a beam line which will defocus the beam and reduce the flux so that the space radiation tests can be done according to the standards of SCC 25100.

  11. Overview of laser systems for the Orion facility at the AWE.

    Science.gov (United States)

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  12. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  13. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    Energy Technology Data Exchange (ETDEWEB)

    Gmuer, N.F. [ed.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  14. Ultra-high performance mirror systems for the imaging and coherence beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Alcock, S.; Ludbrook, G.; Wiatryzk, J.; Rau, C.

    2012-05-01

    I13L is a 250m long hard x-ray beamline (6 keV to 35 keV) currently under construction at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. To minimise the impact of thermal fluctuations and vibrations onto the beamline performance, we are developing a new generation of ultra-stable beamline instrumentation with highly repeatable adjustment mechanisms using low thermal expansion materials like granite and large piezo-driven flexure stages. For minimising the beam distortion we use very high quality optical components like large ion-beam polished mirrors. In this paper we present the first metrology results on a newly designed mirror system following this design philosophy.

  15. A new dynamic-XPS end-station for beamline P04 at PETRA III/DESY

    Energy Technology Data Exchange (ETDEWEB)

    Babenkov, Sergey V., E-mail: sergey.babenkov@desy.de [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); Aristov, Victor Y. [Institute of Solid State Physics of Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, D-20355 Hamburg (Germany); Molodtsova, Olga V. [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); Winkler, Konrad [Omicron NanoTechnology GmbH, Limburgerstr. 75, 65232 Taunusstein (Germany); Glaser, Leif; Shevchuk, Ivan; Scholz, Frank; Seltmann, Jörn; Viefhaus, Jens [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany)

    2015-03-21

    We report on a new dynamic-XPS end-station for real-time investigations of advanced materials. The end-station is based on a new Argus hemispherical electron spectrometer with high speed detection system. In combination with the high brilliance XUV beamline P04 at PETRA III it provides users at PETRA III a unique tool for fast (down to 0.1 s/spectrum) and detailed investigations compared to existing XPS devices at other beamlines.

  16. Initial performances of first undulator-based hard x-ray beamlines of NSLS-II compared to simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg, E-mail: chubar@bnl.gov; Chu, Yong S.; Huang, Xiaojing; Kalbfleisch, Sebastian; Yan, Hanfei; Shaftan, Timur; Wang, Guimei; Cai, Yong Q.; Suvorov, Alexey; Fluerasu, Andrei; Wiegart, Lutz; Chen-Wiegart, Yu-chen Karen; Thieme, Juergen; Williams, Garth; Idir, Mourad; Tanabe, Toshiya; Zschack, Paul; Shen, Qun [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-07-27

    Commissioning of the first X-ray beamlines of NSLS-II included detailed measurements of spectral and spatial distributions of the radiation at different locations of the beamlines, from front-ends to sample positions. Comparison of some of these measurement results with high-accuracy calculations of synchrotron (undulator) emission and wavefront propagation through X-ray transport optics, performed using SRW code, is presented.

  17. Jefferson Lab Hall A Beamline Instrumentation and Calibration for GMP experiment

    Science.gov (United States)

    Gautam, Thir Narayan

    2015-10-01

    The nucleon electromagnetic form factors characterize the distributions of electric charge and magnetization current inside the nucleon and thus reflect the internal structure determined by Quantum Chromodynamics. The GMp experiment is a first experiment run in Hall A at Jefferson Lab after the upgrade to double the beam energy with the goal to precisely measure electron-proton elastic cross section in the Q2 range of 7 to 17 GeV2 with an accuracy of better than 2%; several time better than existing data at the highest Q2. In order to achieve this accuracy, a determination of the accumulated beam charge of better than 0.5% is required. The new 12 GeV beamline was commissioned during the spring of 2015, with the main instrumentation consisting of beam charge and position monitors. In this talk, the procedures and the results of the calibrations of these beamline components will be presented.

  18. Vertical synchrotron radiation beamline for proximity X-ray lithography: Theoretical analysis

    Science.gov (United States)

    Bukreeva, Inna N.; Kozhevnikov, Igor V.

    1997-02-01

    The general physical principles of operation of the vertical beamline of synchrotron radiation (SR) intended for proximity X-ray lithography are considered. An optical system provides a deflection of the SR beam to the vertical plane, a cutoff of the hard X-rays, a uniform illumination of a wafer, a normal incidence of X-ray beam onto a mask, and a small enough divergency of the radiation. A vertical SR beamline makes it possible to circumvent the expensive development of vertical-plane displacement steppers and to use the conventional horizontal ones, to exclude the scanning of the SR beam across the mask and to reduce the requirements imposed on the accuracy of alignment of a gap between the mask and the wafer.

  19. UV-CD12: synchrotron radiation circular dichroism beamline at ANKA.

    Science.gov (United States)

    Bürck, Jochen; Roth, Siegmar; Windisch, Dirk; Wadhwani, Parvesh; Moss, David; Ulrich, Anne S

    2015-05-01

    Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality dichroism artifacts.

  20. Fast X-ray imaging at beamline I13L at Diamond Light Source

    Science.gov (United States)

    De Fanis, A.; Pešić, Z. D.; Wagner, U.; Rau, C.

    2013-03-01

    The imaging branch of the dual-branch beamline I13L at Diamond Light Source has been operational since April 2012. This branch is dedicated to hard X-ray imaging (in-line phase contrast radiography and tomography, and full-field microscopy), with energies in the ranges 6-30keV. At present we aim to achieve spatial resolution of the order of 1 μm over a field of view of l-20mm2. This branch aims to excel at imaging experiment of fast dynamic processes, where it is of interest to have short exposure times and high frame rates. To accommodate for this, we prepared for the beamline to operate with "pink" beam to provide higher flux, an efficient detection system, and rapid data acquisition, transfer, and saving to storage. This contributed paper describes the present situation and illustrate the author's goal for the mid-future.

  1. Design and analysis of a Be window for the APS diagnostics undulator beamline

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, I.C.; Yang, B.X.; Sharma, S. [Argonne National Lab., IL (United States). Advanced Photon Source

    1997-06-01

    The design of a beryllium (Be) window for use under the extremely high heat load of an undulator beam is one of the challenges for third-generation synchrotron radiation beamlines. A novel design of a Be window is presented for the Advanced Photon Source (APS) diagnostics undulator beamline, whose beam has a peak power density of 150 W/mm{sup 2} (7 GeV/100 mA stored beam). The window has a double concave profile with a thickness of 0.5 mm at the center and is brazed to a water-cooled oxygen-free, high-conductivity (OFHC) copper manifold. Finite-element thermal analysis of the Be window is also presented.

  2. PARALLEL MEASUREMENT AND MODELING OF TRANSPORT IN THE DARHT II BEAMLINE ON ETA II

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, F W; Raymond, B A; Falabella, S; Lee, B S; Richardson, R A; Weir, J T; Davis, H A; Schultze, M E

    2005-05-31

    To successfully tune the DARHT II transport beamline requires the close coupling of a model of the beam transport and the measurement of the beam observables as the beam conditions and magnet settings are varied. For the ETA II experiment using the DARHT II beamline components this was achieved using the SUICIDE (Simple User Interface Connecting to an Integrated Data Environment) data analysis environment and the FITS (Fully Integrated Transport Simulation) model. The SUICIDE environment has direct access to the experimental beam transport data at acquisition and the FITS predictions of the transport for immediate comparison. The FITS model is coupled into the control system where it can read magnet current settings for real time modeling. We find this integrated coupling is essential for model verification and the successful development of a tuning aid for the efficient convergence on a useable tune. We show the real time comparisons of simulation and experiment and explore the successes and limitations of this close coupled approach.

  3. The Heavy Photon Search beamline and its performance

    Science.gov (United States)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.; Field, C.; Freyberger, A.; Girod, F.-X.; Holtrop, M.; Jaros, J.; Kalicy, G.; Maruyama, T.; McKinnon, B.; Moffeit, K.; Nelson, T.; Odian, A.; Oriunno, M.; Paremuzyan, R.; Stepanyan, S.; Tiefenback, M.; Uemura, S.; Ungaro, M.; Vance, H.

    2017-07-01

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+e- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 μm above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking.

  4. The Heavy Photon Search beamline and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.; Field, C.; Freyberger, A.; Girod, F. -X.; Holtrop, M.; Jaros, J.; Kalicy, G.; Maruyama, T.; McKinnon, B.; Moffeit, K.; Nelson, T.; Odian, A.; Oriunno, M.; Paremuzyan, R.; Stepanyan, S.; Tiefenback, M.; Uemura, S.; Ungaro, M.; Vance, H.

    2017-04-04

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+e- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 μm above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking.

  5. Optimizing the Stark-decelerator beamline for the trapping of cold molecules using evolutionary strategies

    CERN Document Server

    Gilijamse, J J; Hoekstra, S; De van Meerakker, S Y T; Meijer, G; Gilijamse, Joop J.; K\\"upper, Jochen; Hoekstra, Steven; Meerakker, Sebastiaan Y. T. van de; Meijer, Gerard

    2006-01-01

    We demonstrate feedback control optimization for the Stark deceleration and trapping of neutral polar molecules using evolutionary strategies. In a Stark-decelerator beamline pulsed electric fields are used to decelerate OH radicals and subsequently store them in an electrostatic trap. The efficiency of the deceleration and trapping process is determined by the exact timings of the applied electric field pulses. Automated optimization of these timings yields an increase of 40 % of the number of trapped OH radicals.

  6. High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Frassetto, F.; Poletto, L., E-mail: poletto@dei.unipd.it [National Research Council, Institute of Photonics and Nanotechnologies, via Trasea 7, 35131 Padova (Italy); Trabattoni, A.; Anumula, S.; Sansone, G. [Department of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); Calegari, F. [National Research Council, Institute of Photonics and Nanotechnologies, Piazza L. da Vinci 32, 20133 Milano (Italy); Nisoli, M. [Department of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); National Research Council, Institute of Photonics and Nanotechnologies, Piazza L. da Vinci 32, 20133 Milano (Italy)

    2014-10-15

    We have developed a novel attosecond beamline designed for attosecond-pump/attosecond probe experiments. Microfocusing of the Extreme-ultraviolet (XUV) radiation is obtained by using a coma-compensated optical configuration based on the use of three toroidal mirrors controlled by a genetic algorithm. Trains of attosecond pulses are generated with a measured peak intensity of about 3 × 10{sup 11} W/cm{sup 2}.

  7. D3, the new diffractometer for the macromolecular crystallography beamlines of the Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Martin R., E-mail: mfuchs@bnl.gov [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Brookhaven National Laboratory, Mail Stop 745, Upton, NY 11973 (United States); Pradervand, Claude; Thominet, Vincent; Schneider, Roman; Panepucci, Ezequiel; Grunder, Marcel; Gabadinho, Jose; Dworkowski, Florian S. N.; Tomizaki, Takashi; Schneider, Jörg; Mayer, Aline; Curtin, Adrian; Olieric, Vincent; Frommherz, Uli; Kotrle, Goran; Welte, Jörg; Wang, Xinyu; Maag, Stephan [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Schulze-Briese, Clemens [DECTRIS Ltd, Neuenhoferstrasse 107, 5400 Baden (Switzerland); Wang, Meitian [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2014-02-04

    A new diffractometer for microcrystallography has been developed for the three macromolecular crystallography beamlines of the Swiss Light Source. A new diffractometer for microcrystallography has been developed for the three macromolecular crystallography beamlines of the Swiss Light Source. Building upon and critically extending previous developments realised for the high-resolution endstations of the two undulator beamlines X06SA and X10SA, as well as the super-bend dipole beamline X06DA, the new diffractometer was designed to the following core design goals. (i) Redesign of the goniometer to a sub-micrometer peak-to-peak cylinder of confusion for the horizontal single axis. Crystal sizes down to at least 5 µm and advanced sample-rastering and scanning modes are supported. In addition, it can accommodate the new multi-axis goniometer PRIGo (Parallel Robotics Inspired Goniometer). (ii) A rapid-change beam-shaping element system with aperture sizes down to a minimum of 10 µm for microcrystallography measurements. (iii) Integration of the on-axis microspectrophotometer MS3 for microscopic sample imaging with 1 µm image resolution. Its multi-mode optical spectroscopy module is always online and supports in situ UV/Vis absorption, fluorescence and Raman spectroscopy. (iv) High stability of the sample environment by a mineral cast support construction and by close containment of the cryo-stream. Further features are the support for in situ crystallization plate screening and a minimal achievable detector distance of 120 mm for the Pilatus 6M, 2M and the macromolecular crystallography group’s planned future area detector Eiger 16M.

  8. High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities.

    Science.gov (United States)

    Frassetto, F; Trabattoni, A; Anumula, S; Sansone, G; Calegari, F; Nisoli, M; Poletto, L

    2014-10-01

    We have developed a novel attosecond beamline designed for attosecond-pump/attosecond probe experiments. Microfocusing of the Extreme-ultraviolet (XUV) radiation is obtained by using a coma-compensated optical configuration based on the use of three toroidal mirrors controlled by a genetic algorithm. Trains of attosecond pulses are generated with a measured peak intensity of about 3 × 10(11) W/cm(2).

  9. Fast continuous energy scan with dynamic coupling of the monochromator and undulator at the DEIMOS beamline.

    Science.gov (United States)

    Joly, L; Otero, E; Choueikani, F; Marteau, F; Chapuis, L; Ohresser, P

    2014-05-01

    In order to improve the efficiency of X-ray absorption data recording, a fast scan method, the Turboscan, has been developed on the DEIMOS beamline at Synchrotron SOLEIL, consisting of a software-synchronized continuous motion of the monochromator and undulator motors. This process suppresses the time loss when waiting for the motors to reach their target positions, as well as software dead-time, while preserving excellent beam characteristics.

  10. Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline.

    Science.gov (United States)

    Hillier, David; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hopps, Nicholas; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-06-20

    This paper describes frequency-doubled operation of a high-energy chirped-pulse-amplification beamline. Efficient type-I second-harmonic generation was achieved using a 3 mm thick 320 mm aperture KDP crystal. Shots were fired at a range of energies achieving more than 100 J in a subpicosecond, 527 nm laser pulse with a power contrast of 10(14).

  11. Beamline X29: a novel undulator source for X-ray crystallography.

    Science.gov (United States)

    Shi, Wuxian; Robinson, Howard; Sullivan, Michael; Abel, Don; Toomey, John; Berman, Lonny E; Lynch, Don; Rosenbaum, Gerd; Rakowsky, George; Rock, Larry; Nolan, Bill; Shea-McCarthy, Grace; Schneider, Dieter; Johnson, Erik; Sweet, Robert M; Chance, Mark R

    2006-09-01

    A high-flux insertion device and beamline for macromolecular crystallography has been built at the National Synchrotron Light Source (NSLS) that employs a mini-gap undulator source developed by the NSLS. The mini-gap undulator at beamline X29 is a hybrid-magnet device of period 12.5 mm operating at proven gaps of 3.3-10 mm. The beamline provides hard X-rays for macromolecular crystallography experiments from the second and third harmonics over an energy range of 5-15 keV. The X-ray optics is designed to deliver intense and highly collimated X-rays. Horizontal focusing is achieved by a cryogenically cooled sagittally focusing double-crystal monochromator with approximately 4.1:1 demagnification. A vertical focusing mirror downstream of the monochromator is used for harmonic rejection and vertical focusing. The experimental station hosts an Area Detector Systems Quantum 315 CCD detector with 2.2 s readout time between exposures and Crystal Logic goniostat for crystal rotation and detector positioning. An auto-mounter crystal changer has been installed to facilitate the high-throughput data collection required by the major users, which includes structural genomics projects and the Macromolecular Crystallography Research Resource mail-in program. X29 is 10(3) times brighter than any existing bending-magnet beamline at NSLS with an actual flux of 2.5 x 10(11) photons s(-1) through a 0.12 mm square aperture at 11.271 keV.

  12. A microtomography beamline at the Louisiana State University Center for Advanced Microstructures and Devices synchrotron

    Science.gov (United States)

    Ham, Kyungmin; Jin, Hua; Butler, Leslie G.; Kurtz, Richard L.

    2002-03-01

    A microtomography beamline has been recently assembled and is currently operating at the Louisiana State University's Center for Advanced Microstructures and Devices synchrotron (CAMD). It has been installed on a bending magnet white-light beamline at port 7A. With the storage ring operating at 1.5 GeV, this beamline has a maximum usable x-ray energy of ˜15 keV. The instrumentation consists of computer-controlled positioning stages for alignment and rotation, a CsI(Tl) phosphor screen, a reflecting mirror, a microscope objective (1:1, 1:4), and Linux/LabVIEW-controlled charge coupled device. With the 1:4 objective, the maximum spatial resolution is 2.25 μm. The positioning and image acquisition computers communicate via transfer control protocol/internet protocol (TCP/IP). A small G4/Linux cluster has been installed for the purpose of on-site reconstruction. Instrument, alignment and reconstruction programs are written in MATLAB, IDL, and C. The applications to date are many and we present several examples. Several biological samples have been studied as part of an effort on biological visualization and computation. Future improvements to this microtomography station include the addition of a double-multilayer monochromator, allowing one to evaluate the three-dimensional elemental composition of materials. Plans also include eventual installation at the CAMD 7 T wiggler beamline, providing x rays in excess of 50 keV to provide better penetration of higher mass-density materials.

  13. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, Alastair A.; Celestre, Richard S.; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M.; Kelez, Nicholas; Plate, David W.; Cork, Carl W.; Earnest, Thomas N.; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M.; Alber, Thomas; Berger, James M.; Agard, David A.; Padmore, Howard A.

    2004-08-01

    At the Advanced Light Source (ALS), three protein crystallography (PX) beamlines have been built that use as a source one of the three 6 Tesla single pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single pole superconducting bend magnets enables the development of a hard x-ray program on a relatively low energy 1.9 GeV ring without taking up insertion device straight sections. The source is of relatively low power, but due to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.

  14. Commissioning of the off-axis neutral beamline on the DIII-D tokamak

    Science.gov (United States)

    Scoville, J. T.; Murphy, C. J.; Hong, R. M.

    2011-10-01

    One of the four neutral beam injection systems on DIII-D has recently been rebuilt to allow off-axis injection. A system of hydraulically operated pistons was fit to the beamline to allow tilting up to an angle of 16.5 deg, enabling injection of 5 MW of neutral beam power up to 40 cm below the plasma centroid. Off-axis injection required rebuilding the two ion sources to produce more strongly focused and narrower beams that can inject the power at an angle through the port box of the vacuum vessel. The internal beamline collimation system was replaced with a new system compatible with the stronger focused sources. An extensive alignment process was carried out for all beamline internal components and ion sources. Extensive analysis has been carried out using thermocouple and calorimetry data to document the performance of the collimation system, leading to an extension of the allowable pulse length. We present a description of the modifications that were made to the ion sources and collimation systems and the results of heating and performance studies for the off-axis beam injection system. Work supported by U.S. DOE under DE-FC02-04ER54698.

  15. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Parson, A.; Rau, C.

    2017-06-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector.

  16. Upgrades to the XRD1 beamline optics and endstation at the LNLS

    Science.gov (United States)

    Canova, H.; Fontoura, A.; Neuenschwander, R. T.; Diaz, B.; Rodella, C. B.

    2014-03-01

    XRD1 was the first X-ray diffraction beamline to be built at the LNLS and after approximately 12 years of operation it was substantially updated to improve beam stability, increase the reliability of the monochromator movement as well as provide an experimental hutch that would meet the demands of users. The improvements included the construction of an independent concrete slab below the mirror and monochromator to minimize the vibrations originating from the floor. In addition, the installation of new monochromator mechanisms as well as the replacement of the two Si(111) crystals were performed in order to attain higher precision, stability and reproducibility during operation. Moreover, the diffractometer was replaced by a 3-circle heavy duty diffractometer from Newport to collect XRD patterns primarily in capillary geometry. A robotic arm was installed for fast and automated replacement of samples as well as to secure a cryojet or a hot air blower in front of the sample during measurements. In addition, a housing equipped with 24 Mythen detectors was installed at the beamline allowing for extremely fast data acquisition. Another upgrade was the integration of motors and control systems from PXI National Instruments and Galil controllers with Phytron. These systems are crucial for the next upgrade that is underway at the beamline: enabling remote access for users to collect their measurements without the need to travel to the LNLS.

  17. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    CERN Document Server

    Haris, K; Shastri, Aparna; K., Sunanda; K., Babita; Rao, S V N Bhaskara; Ahmad, Shabbir; Tauheed, A

    2014-01-01

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~ 0.5 {\\AA} is achieved for the Xe atomic line at 1469.6 {\\AA}. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection sys...

  18. Design and performance of a new VIS–VUV photoluminescence beamline at UVSOR-III

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Kazutoshi, E-mail: fukui@fuee.u-fukui.ac.jp; Ikematsu, Ryu-ichi; Imoto, Yoshinori [University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Kitaura, Mamoru [Yamagata University, 1-4-12 Kojirakawamachi, Yamagata 990-8560 (Japan); Nakagawa, Kazumichi [Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo 657-8501 (Japan); Ejima, Takao [Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Nakamura, Eiken; Sakai, Masahiro; Hasumoto, Masami; Kimura, Shin-ichi [Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585 (Japan)

    2014-01-28

    A new bending-magnet beamline with a 2.5 m normal-incidence monochromator mainly dedicated to photoluminescence measurements of solids has been constructed at the UVSOR-III. A new bending-magnet beamline with a 2.5 m normal-incidence monochromator has been constructed to serve with a light source in the visible–vacuum-ultraviolet region for photoluminescence, transmission and reflection spectroscopies of solids at the UVSOR-III 750 MeV synchrotron radiation light source. The aim is to pave the way to establishing a beamline with high photon flux, high brilliance, high energy-resolution, high linear-polarization and low higher-order light. To obtain high photon flux and brilliance, the acceptance angle of the bending-magnet radiation was designed to be 40 mrad (H) × 14 mrad (V) and the post-mirror system employed Kirkpatrick–Baez optics. The incidence angle of the incoming light to the optical elements, except to the gratings, was set to a grazing angle in order to keep a degree of linear polarization. For achieving high energy-resolution, an off-plane Eagle-type monochromator was adopted. Higher-order unwanted light in the energy range below ∼11 eV was suppressed to be less than 0.1%.

  19. X-ray spectroscopy for chemistry in the 2-4 keV energy regime at the XMaS beamline: ionic liquids, Rh and Pd catalysts in gas and liquid environments, and Cl contamination in γ-Al2O3.

    Science.gov (United States)

    Thompson, Paul B J; Nguyen, Bao N; Nicholls, Rachel; Bourne, Richard A; Brazier, John B; Lovelock, Kevin R J; Brown, Simon D; Wermeille, Didier; Bikondoa, Oier; Lucas, Christopher A; Hase, Thomas P A; Newton, Mark A

    2015-11-01

    The 2-4 keV energy range provides a rich window into many facets of materials science and chemistry. Within this window, P, S, Cl, K and Ca K-edges may be found along with the L-edges of industrially important elements from Y through to Sn. Yet, compared with those that cater for energies above ca. 4-5 keV, there are relatively few resources available for X-ray spectroscopy below these energies. In addition, in situ or operando studies become to varying degrees more challenging than at higher X-ray energies due to restrictions imposed by the lower energies of the X-rays upon the design and construction of appropriate sample environments. The XMaS beamline at the ESRF has recently made efforts to extend its operational energy range to include this softer end of the X-ray spectrum. In this report the resulting performance of this resource for X-ray spectroscopy is detailed with specific attention drawn to: understanding electrostatic and charge transfer effects at the S K-edge in ionic liquids; quantification of dilution limits at the Cl K- and Rh L3-edges and structural equilibria in solution; in vacuum deposition and reduction of [Rh(I)(CO)2Cl]2 to γ-Al2O3; contamination of γ-Al2O3 by Cl and its potential role in determining the chemical character of supported Rh catalysts; and the development of chlorinated Pd catalysts in `green' solvent systems. Sample environments thus far developed are also presented, characterized and their overall performance evaluated.

  20. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  1. Facility Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  2. National Ignition Facility Comes to Life

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E

    2003-09-01

    First conceived of nearly 15 years ago, the National Ignition Facility (NIF) is up and running and successful beyond almost everyone's expectations. During commissioning of the first four laser beams, the laser system met design specifications for everything from beam quality to energy output. NIF will eventually have 192 laser beams. Yet with just 2% of its final beam configuration complete, NIF has already produced the highest energy laser shots in the world. In July, laser shots in the infrared wavelength using four beams produced a total of 26.5 kilojoules of energy per beam, not only meeting NIF's design energy requirement of 20 kilojoules per beam but also exceeding the energy of any other infrared laser beamline. In another campaign, NIF produced over 11.4 kilojoules of energy when the infrared light was converted to green light. An earlier performance campaign of laser light that had been frequency converted from infrared to ultraviolet really proved NIF's mettle. Over 10.4 kilojoules of ultraviolet energy were produced in about 4 billionths of a second. If all 192 beamlines were to operate at these levels, over 2 megajoules of energy would result. That much energy for the pulse duration of several nanoseconds is about 500 trillion watts of power, more than 500 times the US peak generating power.

  3. Improvement of the High Fluence Irradiation Facility at the University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kenta, E-mail: murakami@tokai.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki 319-1188 (Japan); Iwai, Takeo, E-mail: iwai@med.id.yamagata-u.ac.jp [Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata-shi 990-9585 (Japan); Abe, Hiroaki, E-mail: abe.hiroaki@n.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki 319-1188 (Japan); Sekimura, Naoto, E-mail: sekimura@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1, Tokyo, Hongo, Bunkyo, 113-8656 (Japan)

    2016-08-15

    This paper reports the modification of the High Fluence Irradiation Facility at the University of Tokyo (HIT). The HIT facility was severely damaged during the 2011 earthquake, which occurred off the Pacific coast of Tohoku. A damaged 1.0 MV tandem Cockcroft-Walton accelerator was replaced with a 1.7 MV accelerator, which was formerly used in another campus of the university. A decision was made to maintain dual-beam irradiation capability by repairing the 3.75 MV single-ended Van de Graaff accelerator and reconstructing the related beamlines. A new beamline was connected with a 200 kV transmission electron microscope (TEM) to perform in-situ TEM observation under ion irradiation.

  4. Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of Synchrotron Soleil.

    Science.gov (United States)

    Somogyi, Andrea; Medjoubi, Kadda; Baranton, Gil; Le Roux, Vincent; Ribbens, Marc; Polack, François; Philippot, Pascal; Samama, Jean Pierre

    2015-07-01

    The Nanoscopium 155 m-long beamline of Synchrotron Soleil is dedicated to scanning hard X-ray nanoprobe techniques. Nanoscopium aims to reach ≤100 nm resolution in the 5-20 keV energy range for routine user experiments. The beamline design tackles the tight stability requirements of such a scanning nanoprobe by creating an overfilled secondary source, implementing all horizontally reflecting main beamline optics, applying high mechanical stability equipment and constructing a dedicated high-stability building envelope. Multi-technique scanning imaging and tomography including X-ray fluorescence spectrometry and spectro-microscopy, absorption, differential phase and dark-field contrasts are implemented at the beamline in order to provide simultaneous information on the elemental distribution, speciation and sample morphology. This paper describes the optical concept and the first measured performance of the Nanoscopium beamline followed by the hierarchical length-scale multi-technique imaging experiments performed with dwell times down to 3 ms per pixel.

  5. The Extreme Conditions Beamline P02.2 and the Extreme Conditions Science Infrastructure at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Liermann, H.-P., E-mail: hanns-peter.liermann@desy.de; Konôpková, Z. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Morgenroth, W. [University of Frankfurt, Frankfurt (Germany); Glazyrin, K.; Bednarčik, J.; McBride, E. E. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Petitgirard, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); University of Bayreuth, Bayreuth (Germany); Delitz, J. T.; Wendt, M.; Bican, Y.; Ehnes, A.; Schwark, I.; Rothkirch, A.; Tischer, M.; Heuer, J.; Schulte-Schrepping, H.; Kracht, T.; Franz, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-06-19

    Performance description of the Extreme Conditions Beamline (ECB, P02.2) at PETRA III that is optimized for micro-diffraction at simultaneous high pressure and high and low temperatures created in different diamond anvil cells environments. Additional information of the capabilities of the Extreme Conditions Science Infrastructure for DAC work is provided. A detailed description is presented of the Extreme Conditions Beamline P02.2 for micro X-ray diffraction studies of matter at simultaneous high pressure and high/low temperatures at PETRA III, in Hamburg, Germany. This includes performance of the X-ray optics and instrumental resolution as well as an overview of the different sample environments available for high-pressure studies in the diamond anvil cell. Particularly emphasized are the high-brilliance and high-energy X-ray diffraction capabilities of the beamline in conjunction with the use of fast area detectors to conduct time-resolved compression studies in the millisecond time regime. Finally, the current capability of the Extreme Conditions Science Infrastructure to support high-pressure research at the Extreme Conditions Beamline and other PETRA III beamlines is described.

  6. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-12-12

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  7. Shielding and beam performance of the new epithermal neutron irradiation facility at the MITR-II

    Energy Technology Data Exchange (ETDEWEB)

    Riley, K.J.; Binns, P.J.; Ledesma, M.N.; Sutharshan, B.; Harling, O.K. [Nuclear Reactor Laboratory, MIT, Cambridge, MA (United States)

    2000-10-01

    A new epithermal neutron beam for NCT research has been constructed at the MIT Research Reactor. The computer code MCNP was used extensively in the neutronic design of the beamline and shielding for the treatment room. The calculated design parameters compare well with those obtained from a series of measurements performed to assess ambient radiation levels and in-beam performance at the facility. (author)

  8. SYNCH: A program for design and analysis of synchrotrons and beamlines -- user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Garren, A.A.; Kenney, A.S.; Courant, E.D.; Russell, A.D.; Syphers, M.J.

    1993-12-31

    SYNCH is a computer program for use in the design and analysis of synchrotrons, storage rings, and beamlines. It has a large repertoire of commands that can be accessed in a flexible way. The input statements and the results of the calculations they invoke are saved in an internal database so that this information may be shared by other statements. SYNCH is the first accelerator program to organize its input in the form of a language. The statements, which resemble sentences, provide a natural way of describing lattices and invoking relevant calculations. The organization of the program is modular, so that it has been possible to expand its capabilities progressively.

  9. Fast helicity switching of x-ray circular polarization at beamline P09 at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Strempfer, J., E-mail: Joerg.Strempfer@desy.de; Mardegan, J. R. L.; Francoual, S.; Veiga, L. S. I.; Spitzbart, T.; Zink, H. [Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22603 Hamburg (Germany); Bouchenoire, L. [XMaS, ESRF, 6 rue Jules Horowitz, BP220, Grenoble 38043 (France); Department of Physics, University of Liverpool, Liverpool, L69 7ZE (United Kingdom)

    2016-07-27

    At the resonant scattering and diffraction beamline P09 at PETRA III/DESY, polarization manipulation in the X-ray energy range 3-13 keV is possible using wave-plates. Recently, fast flipping of circular polarization helicity using the Raspberry Pi controlled FPGA (PiLC) device developed at DESY and dedicated piezo-electric flippers has been commissioned. Functionality of the PiLC for XMCD and first XMCD measurements at the Fe K-and Dy-L{sub 3} absorption edges are presented.

  10. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  11. CDApps: integrated software for experimental planning and data processing at beamline B23, Diamond Light Source.

    Science.gov (United States)

    Hussain, Rohanah; Benning, Kristian; Javorfi, Tamas; Longo, Edoardo; Rudd, Timothy R; Pulford, Bill; Siligardi, Giuliano

    2015-03-01

    The B23 Circular Dichroism beamline at Diamond Light Source has been operational since 2009 and has seen visits from more than 200 user groups, who have generated large amounts of data. Based on the experience of overseeing the users' progress at B23, four key areas requiring the most assistance are identified: planning of experiments and note-keeping; designing titration experiments; processing and analysis of the collected data; and production of experimental reports. To streamline these processes an integrated software package has been developed and made available for the users. The subsequent article summarizes the main features of the software.

  12. Beamline I11 at Diamond: a new instrument for high resolution powder diffraction.

    Science.gov (United States)

    Thompson, S P; Parker, J E; Potter, J; Hill, T P; Birt, A; Cobb, T M; Yuan, F; Tang, C C

    2009-07-01

    The performance characteristics of a new synchrotron x-ray powder diffraction beamline (I11) at the Diamond Light Source are presented. Using an in-vacuum undulator for photon production and deploying simple x-ray optics centered around a double-crystal monochromator and a pair of harmonic rejection mirrors, a high brightness and low bandpass x-ray beam is delivered at the sample. To provide fast data collection, 45 Si(111) analyzing crystals and detectors are installed onto a large and high precision diffractometer. High resolution powder diffraction data from standard reference materials of Si, alpha-quartz, and LaB6 are used to characterize instrumental performance.

  13. 100-J level amplifier concepts for HiLASE and ELI-Beamlines

    Science.gov (United States)

    Sikocinski, P.; Divoky, M.; Lucianetti, A.; Sawicka, M.; Novak, J.; Rus, B.; Mocek, T.

    2012-07-01

    We present comparison of two alternative layouts of a 100 J cryogenically cooled Yb:YAG multi-slab laser system operating at 10 Hz for HiLASE and ELI Beamlines projects. In the first approach, the 100 J slab amplifier consists of a preamplifier and power amplifier, while in the second approach it uses single power amplifier with two amplifier heads. These two concepts are compared, with respect to output power, B-integral, accumulated B-integral, and peak fluence. Results are obtained by simulating beam propagation in MIRÓ code and calculating stored energy in the amplifier by homemade ray-tracing MATLAB code for amplified spontaneous emission evaluation.

  14. SYNCH: A program for design and analysis of synchrotrons and beamlines -- user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Garren, A.A.; Kenney, A.S.; Courant, E.D.; Russell, A.D.; Syphers, M.J.

    1993-12-31

    SYNCH is a computer program for use in the design and analysis of synchrotrons, storage rings, and beamlines. It has a large repertoire of commands that can be accessed in a flexible way. The input statements and the results of the calculations they invoke are saved in an internal database so that this information may be shared by other statements. SYNCH is the first accelerator program to organize its input in the form of a language. The statements, which resemble sentences, provide a natural way of describing lattices and invoking relevant calculations. The organization of the program is modular, so that it has been possible to expand its capabilities progressively.

  15. A compact and versatile dynamic flow cryostat for photon science.

    Science.gov (United States)

    van der Linden, Peter J E M; Moretti Sala, Marco; Henriquet, Christian; Rossi, Matteo; Ohgushi, Kenya; Fauth, François; Simonelli, Laura; Marini, Carlo; Fraga, Edmundo; Murray, Claire; Potter, Jonathan; Krisch, Michael

    2016-11-01

    We have developed a helium gas flow cryostat for use on synchrotron tender to hard X-ray beamlines. Very efficient sample cooling is achieved because the sample is placed directly in the cooling helium flow on a removable sample holder. The cryostat is compact and easy to operate; samples can be changed in less than 5 min at any temperature. The cryostat has a temperature range of 2.5-325 K with temperature stability better than 0.1 K. The very wide optical angle and the ability to operate in any orientation mean that the cryostat can easily be adapted for different X-ray techniques. It is already in use on different beamlines at the European Synchrotron Radiation Facility (ESRF), ALBA Synchrotron Light Facility (ALBA), and Diamond Light Source (DLS) for inelastic X-ray scattering, powder diffraction, and X-ray absorption spectroscopy. Results obtained at these beamlines are presented here.

  16. A compact and versatile dynamic flow cryostat for photon science

    Science.gov (United States)

    van der Linden, Peter J. E. M.; Moretti Sala, Marco; Henriquet, Christian; Rossi, Matteo; Ohgushi, Kenya; Fauth, François; Simonelli, Laura; Marini, Carlo; Fraga, Edmundo; Murray, Claire; Potter, Jonathan; Krisch, Michael

    2016-11-01

    We have developed a helium gas flow cryostat for use on synchrotron tender to hard X-ray beamlines. Very efficient sample cooling is achieved because the sample is placed directly in the cooling helium flow on a removable sample holder. The cryostat is compact and easy to operate; samples can be changed in less than 5 min at any temperature. The cryostat has a temperature range of 2.5-325 K with temperature stability better than 0.1 K. The very wide optical angle and the ability to operate in any orientation mean that the cryostat can easily be adapted for different X-ray techniques. It is already in use on different beamlines at the European Synchrotron Radiation Facility (ESRF), ALBA Synchrotron Light Facility (ALBA), and Diamond Light Source (DLS) for inelastic X-ray scattering, powder diffraction, and X-ray absorption spectroscopy. Results obtained at these beamlines are presented here.

  17. Multimodal hard x-ray nanoprobe facility by nested Montel mirrors aimed for 40nm resolution at Taiwan Photon Source

    Science.gov (United States)

    Yin, Gung-Chian; Chang, Shi-Hung; Chen, Bo-Yi; Chen, Huang-Yeh; Lin, Bi-Hsuan; Tseng, Shao-Chin; Lee, Chian-Yao; Wu, Shao-Yun; Tang, Mau-Tsu

    2016-01-01

    The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides multimodal X-ray detections, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing nested Montel mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The mirrors are symmetrically placed with a 45 degrees cut. The beamline optics is thus designed to take the advantage of the symmetry of mirrors such that a round focal spot is accomplished. The size and the divergence of the focus spot are simulated around 40 nm and 6.29 mrad, respectively. The whole facility including the beamline and the stations will be operated under vacuum to preserve the photon coherence as well as to prevent the system from unnecessary environmental interference. A SEM in close cooperation with laser interferometers is equipped to precisely locate the position of the sample. This endstation is scheduled to be commissioned in the fall of 2016.

  18. Multimodal hard x-ray nanoprobe facility by nested Montel mirrors aimed for 40nm resolution at Taiwan Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Gung-Chian, E-mail: gcyin@nsrrc.org.tw; Chang, Shi-Hung; Chen, Bo-Yi; Chen, Huang-Yeh; Lin, Bi-Hsuan; Tseng, Shao-Chin; Lee, Chian-Yao; Tang, Mau-Tsu [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Wu, Shao-Yun [National Tsing-Hua University, Hsinchu 30076, Taiwan (China)

    2016-01-28

    The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides multimodal X-ray detections, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing nested Montel mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The mirrors are symmetrically placed with a 45 degrees cut. The beamline optics is thus designed to take the advantage of the symmetry of mirrors such that a round focal spot is accomplished. The size and the divergence of the focus spot are simulated around 40 nm and 6.29 mrad, respectively. The whole facility including the beamline and the stations will be operated under vacuum to preserve the photon coherence as well as to prevent the system from unnecessary environmental interference. A SEM in close cooperation with laser interferometers is equipped to precisely locate the position of the sample. This endstation is scheduled to be commissioned in the fall of 2016.

  19. DEIMOS: A beamline dedicated to dichroism measurements in the 350–2500 eV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Ohresser, P., E-mail: philippe.ohresser@synchrotron-soleil.fr; Otero, E.; Choueikani, F.; Chen, K.; Stanescu, S.; Deschamps, F.; Moreno, T.; Polack, F.; Lagarde, B.; Daguerre, J.-P.; Marteau, F. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette (France); Scheurer, F.; Joly, L.; Muller, B. [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 UdS-CNRS, 67034 Strasbourg Cedex 2 (France); Kappler, J.-P. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette (France); Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 UdS-CNRS, 67034 Strasbourg Cedex 2 (France); Bunau, O.; Sainctavit, Ph. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette (France); Institut de Minéralogie et de Physique des Milieux Condensés, CNRS UMR 7590, Université Pierre et Marie Curie, 75252 Paris Cedex 5 (France)

    2014-01-15

    The DEIMOS (Dichroism Experimental Installation for Magneto-Optical Spectroscopy) beamline was part of the second phase of the beamline development at French Synchrotron SOLEIL (Source Optimisée de Lumière à Energie Intermédiaire du LURE) and opened to users in March 2011. It delivers polarized soft x-rays to perform x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and x-ray linear dichroism in the energy range 350–2500 eV. The beamline has been optimized for stability and reproducibility in terms of photon flux and photon energy. The main end-station consists in a cryo-magnet with 2 split coils providing a 7 T magnetic field along the beam or 2 T perpendicular to the beam with a controllable temperature on the sample from 370 K down to 1.5 K.

  20. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    Science.gov (United States)

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  1. Collection of reciprocal space maps using imaging plates at the Australian National Beamline Facility at the Photon Factory.

    Science.gov (United States)

    Mudie, S T; Pavlov, K M; Morgan, M J; Hester, J R; Tabuchi, M; Takeda, Y

    2004-09-01

    Weissenberg screens and a translating cassette have been employed to allow an imaging plate to collect 30 scans per readout. In this configuration the imaging plate functions as a curved one-dimensional position-sensitive detector and, by changing the sample angle for each of the scans, two-dimensional images were produced in reciprocal space. This method of data collection leads to a reduction in scan time compared with methods based on a scintillation detector, particularly for asymmetric reflections. The data-collection method was tested using InGaN/GaN/AlN multilayers on sapphire substrates, since these exhibit broad features in reciprocal space. The geometry of the scans in reciprocal space required the data to be interpolated onto a Cartesian grid. Several interpolation schemes were investigated, with the results compared with the reciprocal space maps collected using a triple-axis scheme with a point detector. The quality of the interpolated reciprocal space maps depends upon the size and shape of the feature in reciprocal space, the interpolation method used, and the step size of the sample rotation. The method can be extended to three dimensions without an increase in data-collection time.

  2. Optical design and performance of the phase II inelastic scattering beamline at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Caliebe, W.A.; Kao, C.-C.; Oversluizen, T.; Montanez, P.; Hastings, J.B. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton New York, 11973 (United States); Caliebe, W.A. [Hamburger Synchrotronstrahlungslabor HASYLAB, Deutsches Elektronen-Synchrotron DESY, 22603Hamburg (Germany)] Krisch, M. [European Synchrotron Radiation Facility, F-38043Grenoble Cedex (France)

    1997-07-01

    We report the optical design and performance of the phase II inelastic scattering beamline at the National Synchrotron Light Source. The new beamline consists of a four-crystal Si(220) monochromator followed by a bent cylinder mirror. The monochromator is tunable from 5 to 10 keV with about 0.2 eV energy resolution throughout the tuning range. The size of the focused beam is about 0.5mm(H){times}0.3mm(V). {copyright} {ital 1997 American Institute of Physics.}

  3. Photoelectron spectroscopy study on Li substituted NiO using PES beamline installed on Indus-1

    CERN Document Server

    Banerjee, A; Phase, D M; Dasannacharya, B A

    2003-01-01

    Photoelectron spectroscopy beamline based on a toroidal grating monochromator (TGM) is recently commissioned on Indus-1 storage ring. It has been used to carry out valence band photoemission study of Li substituted NiO. In this paper initially a brief description of the beamline components and the experimental station for angle integrated photoemission experiment is presented. The later part of this paper is devoted to studies carried out on Li sub x Ni sub 1 sub - sub x O with x=0.0, 0.35 and 0.5 samples. Thin pellets of polycrystalline samples were used for the measurements reported here. Valence band spectra recorded on polycrystalline Li sub x Ni sub 1 sub - sub x O samples show drastic changes in various features as compared to that of pure NiO. The prominent changes are: (i) change in the relative contributions of Ni-3d and O-2p emissions, (ii) change in the peak position of Ni-3d from the top of the valance band of NiO and (iii) no noticeable change in the Ni satellite peak. These results are evaluated...

  4. Analysis of Power Distribution on Beamline Components at Different Neutralization Efficiencies on NBI Test Stand

    Science.gov (United States)

    Li, Xiang; Xu, Yongjian; Yu, Ling; Chen, Yu; Hu, Chundong; Tao, Ling

    2016-12-01

    Neutral beam injection is recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector (4-8 MW, 10-100 s) were built and operated in 2014. Neutralization efficiency is one of the important parameters for neutral beam. High neutralization efficiency can not only improve injection power at the same beam energy, but also decrease the power deposited on the heat-load components in the neutral beam injector (NBI). This research explores the power deposition distribution at different neutralization efficiencies on the beamline components of the NBI device. This work has great significance for guiding the operation of EAST-NBI, especially in long pulse and high power operation, which can reduce the risk of thermal damage of the beamline components and extend the working life of the NBI device. supported by the International Science and Technology Cooperation Program of China (No. 2014DFG61950), National Natural Science Foundation of China (No. 11405207) and the Foundation of ASIPP (No. DSJJ-15-GC03)

  5. Double-crystal monochromator as the first optical element in BESSRC-CAT beamlines (abstract)

    Science.gov (United States)

    Beno, Mark A.; Ramanathan, Mohan

    1996-09-01

    The first optical element in the BESSRC-CAT beamlines at the Advanced Photon Source will be a monochromator, so that a standard design for this critical component is advantageous. The monochromator we have designed is a double-crystal, fixed-exit scheme with a constant offset designed for UHV operation, thereby allowing windowless operation of the beamlines. The crystals are mounted on a turntable with the first crystal at the center of rotation. A mechanical linkage is used to correctly position the second crystal and maintain a constant offset. The main drive for the rotary motion is provided by a vacuum-compatible Huber goniometer isolated from the main vacuum chamber. Rotary motion of the primary monochromator stage is accomplished by using two adjacent vacuum chambers connected only by the small annular opening around a hollow stainless steel shaft, which connects the Huber goniometer to the turntable on which the crystals are mounted. The design of the monochromator is such that it can accommodate both water and liquid nitrogen cooling for the crystal optics. The basic design for the monochromator linkage mechanism will be presented along with details of the monochromator chamber. The results of initial optical tests of the monochromator system using tilt sensors and a precision autocollimator will also be given.

  6. Optimization of a dedicated bio-imaging beamline at the European X-ray FEL

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2012-01-01

    We recently proposed a basic concept for design and layout of the undulator source for a dedicated bio-imaging beamline at the European XFEL. The goal of the optimized scheme proposed here is to enable experimental simplification and performance improvement. The core of the scheme is composed by soft and hard X-ray self-seeding setups. Based on the use of an improved design for both monochromators it is possible to increase the design electron energy up to 17.5 GeV in photon energy range between 2 keV and 13 keV, which is the most preferable for life science experiments. An advantage of operating at such high electron energy is the increase of the X-ray output peak power. Another advantage is that 17.5 GeV is the preferred operation energy for SASE1 and SASE2 beamline users. Since it will be necessary to run all the XFEL lines at the same electron energy, this choice will reduce the interference with other undulator lines and increase the total amount of scheduled beam time. In this work we also propose a stu...

  7. First tests of the ion irradiation and implantation beamline at the CMAM

    Science.gov (United States)

    Jiménez-Rey, D.; Benedicto, M.; Muñoz-Martín, A.; Bachiller-Perea, D.; Olivares, J.; Climent-Font, A.; Gómez-Ferrer, B.; Rodríguez, A.; Narros, J.; Maira, A.; Álvarez, J.; Nakbi, A.; Zucchiatti, A.; de Aragón, F.; García, J. M.; Vila, R.

    2014-07-01

    The implantation and irradiation beamline of the Tandem ion accelerator of the Centro de Micro Análisis de Materiales (CMAM), in Madrid, has been recently completed with a beam sweep and monitoring system, and a cryostat/furnace. These new implementations convert the beamline into a versatile tool to implant ions, between H and Au2, in different materials with precise control of the sample temperature, which may be varied between -180 °C and 600 °C. The size of the swept area on target may be as large as 10 × 10 cm2. The implantation chamber also allows carrying out in situ or/and on line analyses during the irradiations by means of advanced optical measurements, as well as ion beam analyses (IBA). These advancements can be employed in novel applications such as the fabrication of optical waveguides and irradiation tests of structural and functional materials for future fusion reactors. The results of beam tests and first experiments are shown.

  8. Beamline and exposure station for deep x-ray lithography at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lai, B.; Mancini, D.C.; Yun, W.; Gluskin, E.

    1996-12-31

    APS is a third-generation synchrotron radiation source. With an x-ray energy of 19.5 keV and highly collimated beam (<0.1 mrad), APS is well suited for producing high-aspect-ratio microstructures in thick resist films (> 1 mm) using deep x-ray lithography (DXRL). The 2-BM beamline was constructed and will be used for DXRL at APS. Selection of appropriate x-ray energy range is done through a variable-angle mirror and various filters in the beamline. At the exposure station, the beam size will be 100(H) x 5(V) mm{sup 2}. Uniform exposure will be achieved by a high-speed (100 mm/sec) vertical scanner, which allows precise angular ({approximately}0.1 mrad) and positional (< 1 {mu}m) control of the sample, allowing full use of the highly collimated beam for lateral accuracy and control of sidewall slopes during exposure of thick resists, as well as generation of conicals and other profiles. For 1-mm-thick PMMA, a 100 x 25 mm{sup 2} area can be fully exposed in about 1/2 hr, while even 10-mm-thick PMMA will require only 2-3 hours.

  9. Commissioning of the soft x-ray undulator beamline at the Siam Photon Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Hideki, E-mail: hideki@slri.or.th; Chaichuay, Sarunyu; Sudmuang, Porntip; Rattanasuporn, Surachet; Jenpiyapong, Watcharapon; Supruangnet, Ratchadaporn; Chanlek, Narong [Synchrotron Light Research Institute, Muang, Nakhon Ratchasima 30000 (Thailand); Songsiriritthigul, Prayoon [School of Physics, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-07-27

    The synchrotron radiation from the first undulator at the Siam Photon Laboratory was characterized with the photon beam position monitors (BPMs) and grating monochromator. The soft x-ray undulator beamline employs a varied line-spacing plane grating monochromator with three interchangeable gratings. Since 2010, the beamline has delivered photons with energy of 40-160 and 220-1040 eV at the resolving power of 10,000 for user services at the two end- stations that utilize the photoemission electron spectroscopy and microscopy techniques. The undulator power-density distributions measured by the 0.05-mm wire-scan BPM were in good agreement with those in simulation. The flux-density distributions were evaluated in the red-shift measurements, which identify the central cone of radiation and its distribution. Since 2014, the operation of the other insertion devices in the storage ring has started, and consequently bought about the increases in the emittance from 41 to 61 nm·rad and the coupling constant from 4 to 11%. The local electron-orbit correction greatly improved the alignment of the electron beam in the undulator section resulting in the improvements of the photon flux and harmonics peaks of the undulator radiation.

  10. First tests of the ion irradiation and implantation beamline at the CMAM

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Rey, D. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, Madrid 28049 (Spain); Laboratorio Nacional de Fusión, EURATOM/CIEMAT, CIEMAT, Avda. Complutense 40, Madrid 28040 (Spain); Benedicto, M.; Muñoz-Martín, A. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, Madrid 28049 (Spain); Bachiller-Perea, D. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, Madrid 28049 (Spain); Dpto. de Física Aplicada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid 28049 (Spain); Olivares, J. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, Madrid 28049 (Spain); Dpto. de Física Aplicada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid 28049 (Spain); Laboratorio Nacional de Fusión, EURATOM/CIEMAT, CIEMAT, Avda. Complutense 40, Madrid 28040 (Spain); Instituto de Óptica, CSIC, Calle Serrano 121, Madrid 28006 (Spain); Climent-Font, A. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, Madrid 28049 (Spain); Dpto. de Física Aplicada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid 28049 (Spain); and others

    2014-07-15

    The implantation and irradiation beamline of the Tandem ion accelerator of the Centro de Micro Análisis de Materiales (CMAM), in Madrid, has been recently completed with a beam sweep and monitoring system, and a cryostat/furnace. These new implementations convert the beamline into a versatile tool to implant ions, between H and Au{sub 2}, in different materials with precise control of the sample temperature, which may be varied between −180 °C and 600 °C. The size of the swept area on target may be as large as 10 × 10 cm{sup 2}. The implantation chamber also allows carrying out in situ or/and on line analyses during the irradiations by means of advanced optical measurements, as well as ion beam analyses (IBA). These advancements can be employed in novel applications such as the fabrication of optical waveguides and irradiation tests of structural and functional materials for future fusion reactors. The results of beam tests and first experiments are shown.

  11. XAS at the materials science X-ray beamline BL8 at the DELTA storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Frahm, R; Wagner, R; Luetzenkirchen-Hecht, D [Fachbereich C - Physik, Bergische Universitaet Wuppertal, Gaussstrasse 20, 42097 Wuppertal (Germany); Herdt, A, E-mail: frahm@uni-wuppertal.d [Fachbereich Physik/DELTA, Technische Universitaet Dortmund, Maria-Goeppert-Mayer-Strasse 2, 44221 Dortmund (Germany)

    2009-11-15

    The hard X-ray beamline BL 8 at the 1.5 GeV electron storage ring DELTA is described, and experimental data of different fields of research are presented. Making use of the intense X-ray beam emitted by a superconducting wiggler, the beamline is dedicated to X-ray absorption experiments. Three different monochromator crystal pairs are permanently available for experiments in the spectral range from about 1 keV to ca. 25 keV photon energy. Results of reference materials show that high quality EXAFS data can be obtained using Si(111) and Si(311) monochromators. First measurements in the energy range between 1.2 and 5 keV have been accomplished using YB{sub 66}(400) monochromator crystals. The experimental hutch accommodates a unique 6-axis diffractometer which is well suited for all kinds of diffraction and absorption experiments, including the grazing incidence geometry. The diffractometer can carry heavy loads related to non-ambient sample environments such as e.g. ultrahigh vacuum sample stages or cryostats. Here we present typical results obtained at BL8 in different areas of materials science including investigations of dilute alloys by fluorescence mode EXAFS and the study of the structural changes associated with temperature induced spin transitions of metallo-supramolecular polyelectrolyte-amphiphile-complexes.

  12. Micro- and nano-imaging at the diamond beamline I13L-imaging and coherence

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C., E-mail: Christoph.rau@diamond.ac.uk [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); University of Manchester, School of Materials Grosvenor St., Manchester, M1 7HS (United Kingdom); Northwestern University School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611-3008 (United States); Wagner, U. H.; Vila-Comamala, J.; Bodey, A.; Parson, A.; García-Fernández, M.; Pešić, Z.; Zanette, I. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); De Fanis, A. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); European XFEL GmbH, Notkestraße 85, 22607 Hamburg (Germany); Zdora, M. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); Department of Physics and Astronomy, University College London, London, WC1E 6BT (United Kingdom)

    2016-07-27

    The Diamond Beamline I13L is dedicated to imaging on the micron- and nano-lengthscale, operating in the energy range between 6 and 30 keV. For this purpose two independent stations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometer resolution. Currently a full-field microscope providing 50nm spatial resolution over a field of view of 100 µm is being tested. On the coherence branch, coherent diffraction imaging techniques such as ptychography and coherent X-ray Bragg diffraction are currently developed. The beamline contains a number of unique features. The machine layout has been modified to the so-called mini-beta scheme, providing significantly increased flux from the two canted undulators. New instrumental designs such as a robot arm for the detector in diffraction experiments have been employed. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline.

  13. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2

    KAUST Repository

    Grass, Michael E.

    2010-01-01

    During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 μm spatial resolution in one dimension and angle-resolved modes with simulated 0.5° angular resolution at 24° acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar. © 2010 American Institute of Physics.

  14. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Drakopoulos, Michael, E-mail: michael.drakopoulos@diamond.ac.uk; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-04-08

    JEEP is a high-energy (50–150 keV) multi-purpose beamline offering polychromatic and monochromatic modes. It can accommodate large samples and experimental rigs, enabling in situ studies using radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50–150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.

  15. Design and performance of a new VIS-VUV photoluminescence beamline at UVSOR-III.

    Science.gov (United States)

    Fukui, Kazutoshi; Ikematsu, Ryu-ichi; Imoto, Yoshinori; Kitaura, Mamoru; Nakagawa, Kazumichi; Ejima, Takao; Nakamura, Eiken; Sakai, Masahiro; Hasumoto, Masami; Kimura, Shin-ichi

    2014-03-01

    A new bending-magnet beamline with a 2.5 m normal-incidence monochromator has been constructed to serve with a light source in the visible-vacuum-ultraviolet region for photoluminescence, transmission and reflection spectroscopies of solids at the UVSOR-III 750 MeV synchrotron radiation light source. The aim is to pave the way to establishing a beamline with high photon flux, high brilliance, high energy-resolution, high linear-polarization and low higher-order light. To obtain high photon flux and brilliance, the acceptance angle of the bending-magnet radiation was designed to be 40 mrad (H) × 14 mrad (V) and the post-mirror system employed Kirkpatrick-Baez optics. The incidence angle of the incoming light to the optical elements, except to the gratings, was set to a grazing angle in order to keep a degree of linear polarization. For achieving high energy-resolution, an off-plane Eagle-type monochromator was adopted. Higher-order unwanted light in the energy range below ∼11 eV was suppressed to be less than 0.1%.

  16. Design and performance of a new VIS–VUV photoluminescence beamline at UVSOR-III

    Science.gov (United States)

    Fukui, Kazutoshi; Ikematsu, Ryu-ichi; Imoto, Yoshinori; Kitaura, Mamoru; Nakagawa, Kazumichi; Ejima, Takao; Nakamura, Eiken; Sakai, Masahiro; Hasumoto, Masami; Kimura, Shin-ichi

    2014-01-01

    A new bending-magnet beamline with a 2.5 m normal-incidence monochromator has been constructed to serve with a light source in the visible–vacuum-ultraviolet region for photoluminescence, transmission and reflection spectroscopies of solids at the UVSOR-III 750 MeV synchrotron radiation light source. The aim is to pave the way to establishing a beamline with high photon flux, high brilliance, high energy-resolution, high linear-polarization and low higher-order light. To obtain high photon flux and brilliance, the acceptance angle of the bending-magnet radiation was designed to be 40 mrad (H) × 14 mrad (V) and the post-mirror system employed Kirkpatrick–Baez optics. The incidence angle of the incoming light to the optical elements, except to the gratings, was set to a grazing angle in order to keep a degree of linear polarization. For achieving high energy-resolution, an off-plane Eagle-type monochromator was adopted. Higher-order unwanted light in the energy range below ∼11 eV was suppressed to be less than 0.1%. PMID:24562569

  17. A small and robust active beamstop for scattering experiments on high-brilliance undulator beamlines.

    Science.gov (United States)

    Blanchet, Clement E; Hermes, Christoph; Svergun, Dmitri I; Fiedler, Stefan

    2015-03-01

    A small active in-vacuum beamstop has been developed to monitor the flux of intense third-generation synchrotron X-ray beams protecting the downstream detector from the direct beam. Standard active beamstops, where a built-in diode directly absorbs the beam, have limitations in size and lifetime. In the present design, a silicon PIN diode detects the photons back-scattered from a cavity in the beamstop. This approach drastically reduces the radiation dose on the diode and thus increases its lifetime. The beamstop with a diameter of 2 mm has been fabricated to meet the requirements for the P12 bioSAXS beamline of EMBL Hamburg at PETRA III (DESY). The beamstop is in regular user operation at the beamline and displays a good response over the range of energies tested (6-20 keV). Further miniaturization of the diode is easily possible as its size is not limited by the PIN diode used.

  18. Initial Emittance Measurements of the Fermilab Linac Beam Using the MTA Beamline

    CERN Document Server

    Johnstone, C

    2012-01-01

    The MTA beam line has been specifically designed to facilitate measurements of the Fermilab Linac beam emittance and properties utilizing a long, 10m, element-free straight. Linac beam is extracted downstream of the 400-MeV electrostatic chopper located in the Booster injection line. This chopper cannot be utilized for MTA beam, and therefore the entire Linac beam pulse is directed into the MTA beamline. Pulse length manipulation is provided by the 750-keV electrostatic chopper at the upstream end of the Linac and, using this device, beam can be delivered from 8 {\\mu}sec up to the full 50 {\\mu}sec Linac pulse length. The 10 m emittance measurement straight exploits and begins at the 12' shield wall that separates the MTA Experimental Hall and beamline stub from the Linac enclosure. A quadrupole triplet has been installed upstream of the shield wall in order to focus a large, 1.5-2" (~95% width) beam through the shield wall and onto a profile monitor located at the exit of the shielding. Another profile monito...

  19. Recent progress on the National Ignition Facility advanced radiographic capability

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, P.; Bowers, M.; Chen, H.; Heebner, J.; Hermann, M.; Kalantar, D.; Martinez, D.

    2016-01-08

    The National Ignition Facility (NIF) is a megajoule (million-joule)-class laser and experimental facility built for Stockpile Stewardship and High Energy Density (HED) science research [1]. Up to several times a day, 192 laser pulses from NIF's 192 laser beamlines converge on a millimeter-scale target located at the center of the facility's 10-meter diameter target chamber. The carefully synchronized pulses, typically a few nanoseconds (billionths of a second) in duration and co-times to better than 20 picoseconds (trillionths of a second), a deliver a combined energy of up to 1.8 megajoules and a peak power of 500 terawatts (trillion watts). Furthermore, this drives temperatures inside the target to tens of millions of degrees and pressures to many billion times greater than Earth's atmosphere.

  20. Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility.

    Science.gov (United States)

    Chen, Guang; Chu, Shengqi; Sun, Tianxi; Sun, Xuepeng; Zheng, Lirong; An, Pengfei; Zhu, Jian; Wu, Shurong; Du, Yonghua; Zhang, Jing

    2017-09-01

    A confocal fluorescence endstation for depth-resolved micro-X-ray absorption spectroscopy is described. A polycapillary half-lens defines the incident beam path and a second polycapillary half-lens at 90° defines the probe sample volume. An automatic alignment program based on an evolutionary algorithm is employed to make the alignment procedure efficient. This depth-resolved system was examined on a general X-ray absorption spectroscopy (XAS) beamline at the Beijing Synchrotron Radiation Facility. Sacrificial red glaze (AD 1368-1644) china was studied to show the capability of the instrument. As a mobile endstation to be applied on multiple beamlines, the confocal system can improve the function and flexibility of general XAS beamlines, and extend their capabilities to a wider user community.

  1. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  2. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  3. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  4. Evaluation of SNS Beamline Shielding Configurations using MCNPX Accelerated by ADVANTG

    Energy Technology Data Exchange (ETDEWEB)

    Risner, Joel M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Seth R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Remec, Igor [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bekar, Kursat B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Shielding analyses for the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory pose significant computational challenges, including highly anisotropic high-energy sources, a combination of deep penetration shielding and an unshielded beamline, and a desire to obtain well-converged nearly global solutions for mapping of predicted radiation fields. The majority of these analyses have been performed using MCNPX with manually generated variance reduction parameters (source biasing and cell-based splitting and Russian roulette) that were largely based on the analyst's insight into the problem specifics. Development of the variance reduction parameters required extensive analyst time, and was often tailored to specific portions of the model phase space. We previously applied a developmental version of the ADVANTG code to an SNS beamline study to perform a hybrid deterministic/Monte Carlo analysis and showed that we could obtain nearly global Monte Carlo solutions with essentially uniform relative errors for mesh tallies that cover extensive portions of the model with typical voxel spacing of a few centimeters. The use of weight window maps and consistent biased sources produced using the FW-CADIS methodology in ADVANTG allowed us to obtain these solutions using substantially less computer time than the previous cell-based splitting approach. While those results were promising, the process of using the developmental version of ADVANTG was somewhat laborious, requiring user-developed Python scripts to drive much of the analysis sequence. In addition, limitations imposed by the size of weight-window files in MCNPX necessitated the use of relatively coarse spatial and energy discretization for the deterministic Denovo calculations that we used to generate the variance reduction parameters. We recently applied the production version of ADVANTG to this beamline analysis, which substantially streamlined the analysis process. We also tested importance function

  5. Research at and Operation of the Materials Science Beamline (X-11) at the National Synchrotron Light Source. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, Dale E.

    2003-10-15

    This is the final report for DOE DE-FG02-89ER45384. An overview of the operational history and status of beamline X-11A at the end of the contract period, and a brief review of the core science program at NCSU and the scientific results of X-11A since the last progress report is also presented.

  6. Comparison of Design and Practices for Radiation Safety among Five Synchrotron Radiation Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Asano, Yoshihiro; /JAERI-RIKEN, Hyogo; Casey, William R.; /Brookhaven; Donahue, Richard J.; /LBL, Berkeley

    2005-06-29

    There are more and more third-generation synchrotron radiation (SR) facilities in the world that utilize low emittance electron (or positron) beam circulating in a storage ring to generate synchrotron light for various types of experiments. A storage ring based SR facility consists of an injector, a storage ring, and many SR beamlines. When compared to other types of accelerator facilities, the design and practices for radiation safety of storage ring and SR beamlines are unique to SR facilities. Unlike many other accelerator facilities, the storage ring and beamlines of a SR facility are generally above ground with users and workers occupying the experimental floor frequently. The users are generally non-radiation workers and do not wear dosimeters, though basic facility safety training is required. Thus, the shielding design typically aims for an annual dose limit of 100 mrem over 2000 h without the need for administrative control for radiation hazards. On the other hand, for operational and cost considerations, the concrete ring wall (both lateral and ratchet walls) is often desired to be no more than a few feet thick (with an even thinner roof). Most SR facilities have similar operation modes and beam parameters (both injection and stored) for storage ring and SR beamlines. The facility typically operates almost full year with one-month start-up period, 10-month science program for experiments (with short accelerator physics studies and routine maintenance during the period of science program), and a month-long shutdown period. A typical operational mode for science program consists of long periods of circulating stored beam (which decays with a lifetime in tens of hours), interposed with short injection events (in minutes) to fill the stored current. The stored beam energy ranges from a few hundreds MeV to 10 GeV with a low injection beam power (generally less than 10 watts). The injection beam energy can be the same as, or lower than, the stored beam energy

  7. X-ray micro-diffraction studies on biological samples at the BioCAT Beamline 18-ID at the Advanced Photon Source.

    Science.gov (United States)

    Barrea, R A; Antipova, O; Gore, D; Heurich, R; Vukonich, M; Kujala, N G; Irving, T C; Orgel, J P R O

    2014-09-01

    The small source sizes of third-generation synchrotron sources are ideal for the production of microbeams for diffraction studies of crystalline and non-crystalline materials. While several such facilities have been available around the world for some time now, few have been optimized for the handling of delicate soft-tissue specimens under cryogenic conditions. Here the development of a new X-ray micro-diffraction instrument at the Biophysics Collaborative Access Team beamline 18-ID at the Advanced Photon Source, and its use with newly developed cryo-diffraction techniques for soft-tissue studies, are described. The combination of the small beam sizes delivered by this instrument, the high delivered flux and successful cryo-freezing of rat-tail tendon has enabled us to record data to better than 4 Å resolution. The ability to quickly raster scan samples in the beam allows selection of ordered regions in fibrous samples for markedly improved data quality. Examples of results of experiments obtainable using this instrument are presented.

  8. Flux and instrumentation upgrade for the epithermal neutron beam facility at Washington State University.

    Science.gov (United States)

    Nigg, D W; Venhuizen, J R; Wemple, C A; Tripard, G E; Sharp, S; Fox, K

    2004-11-01

    An epithermal neutron beam facility for preclinical neutron capture therapy research has been constructed at the Washington State University TRIGA research reactor installation. Subsequent to a recent upgrade, this new facility offers a high-purity epithermal beam with intensity on the order of 1.2x10(9)n/cm(2)s. Key features include a fluoride-based design for the neutron filtering and moderating components as well as a novel collimator design that allows ease of assembly and disassembly of the beamline components.

  9. Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Simos, N.

    2010-08-30

    The Hard X-ray Nanoprobe (HXN) Beamline of National Synchrotron Light Source II (NSLS-lI) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic and NSLS II operating systems have been studied using state of the art simulations and an array of field data. Further, final stage vibration isolation principles have been explored in order to be utilized in supporting endstation instruments. This paper presents results of the various study aspects and their influence on the HXN design optimization.

  10. An in-situ heater for the XAS beamline (12-ID) in Australia

    Science.gov (United States)

    Johannessen, B.; Hussain, Z. S.; East, D. R.; Gibson, M. A.

    2013-04-01

    To accommodate for a growing number of requests by our user community an in-situ heater has been commissioned for the X-ray absorption spectroscopy (XAS) beamline 12-ID at the Australian Synchrotron. Here, we present an in-situ method for calibrating the temperature of the heating stage based on an anharmonic, correlated Einstein model. Specifically, we show that a temperature-dependant study of a bulk metallic foil (7.5 μm Cu) can be used to accurately calibrate the temperature of the heater. We also present the temperature-dependant coordination number, bond length, Debye-Waller factor, and third order cumulant to the bond length distribution function of the material from 18K to 1074K. At the higher temperatures we find that the atomic structure is comparable to that of an amorphous or liquid material indicating a gradual transition from crystalline to disordered atomic structure.

  11. The sapphire backscattering monochromator at the Dynamics beamline P01 of PETRA III

    Science.gov (United States)

    Alexeev, P.; Asadchikov, V.; Bessas, D.; Butashin, A.; Deryabin, A.; Dill, F.-U.; Ehnes, A.; Herlitschke, M.; Hermann, R. P.; Jafari, A.; Prokhorov, I.; Roshchin, B.; Röhlsberger, R.; Schlage, K.; Sergueev, I.; Siemens, A.; Wille, H.-C.

    2016-12-01

    We report on a high resolution sapphire backscattering monochromator installed at the Dynamics beamline P01 of PETRA III. The device enables nuclear resonance scattering experiments on Mössbauer isotopes with transition energies between 20 and 60 keV with sub-meV to meV resolution. In a first performance test with 119Sn nuclear resonance at a X-ray energy of 23.88 keV an energy resolution of 1.34 meV was achieved. The device extends the field of nuclear resonance scattering at the PETRA III synchrotron light source to many further isotopes like 151Eu, 149Sm, 161Dy, 125Te and 121Sb.

  12. A high-precision cryogenically-cooled crystal monochromator for the APS diagnostics beamline

    Energy Technology Data Exchange (ETDEWEB)

    Rotela, E.; Yang, B.; Sharma, s.; Barcikowski, A.

    2000-07-24

    A high-precision cryogenically-cooled crystal monochromator has been developed for the APS diagnostics beamline. The design permits simultaneous measurements of the particle beam size and divergence. It provides for a large rotation angle, {minus}15{degree} to 180{degree}, with a resolution of 0.0005{degree}. The roll angle of the crystal can be adjusted by up to {+-}3{degree} with a resolution of 0.0001{degree}. A vertical translational stage, with a stroke of {+-}25 mm and resolution of 8 {micro}m, is provided to enable using different parts of the same crystal or to retract the crystal from the beam path. The modular design will allow optimization of cooling schemes to minimize thermal distortions of the crystal under high heat loads.

  13. Commissioning of a UV/time-resolved-FTIR beamline at the Duke FEL laboratory

    CERN Document Server

    Hutson, M S; Chang, M S; Gillikin, A; Litvinenko, V N; Edwards, G

    2002-01-01

    We describe the commissioning of a novel two-color beamline at the Duke Free Electron Laser Laboratory, designed to perform time-resolved FTIR spectroscopy in a pump-probe scheme with sub-nanosecond resolution to measure dynamical processes with durations as long as 10 ns. The UV pump pulses are produced by the tunable (193-700 nm) output of the OK-4 Storage-Ring FEL. The broadband, infrared probe pulses are generated as synchrotron radiation in a bending magnet downstream of the OK-4 wiggler. The repetition rate of the light source (2.79 MHz) is ideal for operating the interferometer in the rapid-scan, asynchronous sampling mode. An investigation of DNA photolyase is proposed.

  14. Upgrading of the PETRA-2 beamline at HASYLAB for materials science analyses

    CERN Document Server

    Kampmann, R; Burmester, J; Santos, J F D; Franz, H; Haese-Seiller, M; Marmotti, M

    2001-01-01

    The high energy synchrotron radiation beamline PETRA-2 at HASYLAB has been extended by two 2D-position sensitive multi-wire Xe/CO sub 2 detectors with an active area of (300 mm) sup 2 and a detection probability of approx 10% for 100 keV photons. The detectors may be placed at distances between approx 1 m and 8 m from the sample in order to cover large space angles or to measure with high resolution, respectively. Fast 3D-data acquisition systems allow for analyses of continuous processes with excellent time resolution and sample movements during measurements with continuously operating detectors. The experimental set up will be especially used for analyses of residual stresses, local textures and kinetics of phase transformations.

  15. Stress mitigation of x-ray beamline monochromators using topography test unit.

    Energy Technology Data Exchange (ETDEWEB)

    Maj, J.; Waldschmidt, G.; Baldo, P.; Macrander, A.; Koshelev, I.; Huang, R.; Maj, L.; Maj, A.; Univ. of Chicago; Northeastern Ohio Univ. Coll. of Medicine; Rosalind Franklin Univ. of Medicine and Science

    2007-01-01

    Silicon and diamond monochromators (crystals), often used in the Advanced Photon Source X-ray beamlines, require a good quality surface finish and stress-free installation to ensure optimal performance. The device used to mount the crystal has been shown to be ajor contributing source of stress. In this case, an adjustable mounting device is an effective method of reducing stresses and improve the rocking curve to levels much closer to ideal. Analysis by a topography test unit has been used to determine the distribution of stresses and to measure the rocking curve, as well as create CCD images of the crystal. This paper describes the process of measuring these stresses and manipulating the mounting device and crystal to create a substantially improved monochromator.

  16. A new diffractometer for materials science and imaging at HASYLAB beamline G3

    CERN Document Server

    Wróblewski, T; Crostack, H A; Ertel, A; Fandrich, F; Genzel, C; Hradil, K; Ternes, W; Woldt, E

    1999-01-01

    A 4-circle diffractometer equipped with a novel imaging system has been installed at HASYLAB beamline G3. The imaging system comprising a microchannel plate (MCP) in front of a CCD detector allows position-resolved X-ray diffraction investigations of polycrystalline materials. Alternatively, a scintillation counter behind a Soller collimator can be used. Material properties like strain and/or texture can thus be determined either position resolved using the MCP/CCD system or in an averaging mode using the Soller/scintillator combination. The field of view of the MCP/CCD system is larger than 1 cm sup 2 with a spatial resolution down to 12 mu m. Both detection systems applied are aberration free. The spatial information can be directly extracted from pictures taken by the imaging system. Together with the wide field of view this method is especially suited for the investigation of dynamical processes in polycrystalline materials.

  17. Preliminary measurements on the new TOF system installed at the AMS beamline of INFN-LABEC

    Energy Technology Data Exchange (ETDEWEB)

    Palla, L., E-mail: palla@fi.infn.it [Dipartimento di Fisica, Università di Pisa, e INFN Sezione di Pisa (Italy); Castelli, L. [INFN Sezione di Firenze (Italy); Czelusniak, C. [INFN Sezione di Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze (Italy); Fedi, M.E. [INFN Sezione di Firenze (Italy); Giuntini, L. [INFN Sezione di Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze (Italy); Liccioli, L. [INFN Sezione di Firenze (Italy); Dipartimento di Chimica Ugo Schiff, Università di Firenze (Italy); Mandò, P.A. [INFN Sezione di Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze (Italy); Martini, M. [Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, e INFN Sezione di Milano Bicocca, Milano (Italy); Mazzinghi, A. [INFN Sezione di Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze (Italy); Ruberto, C. [INFN Sezione di Firenze (Italy); Dipartimento di Chimica Ugo Schiff, Università di Firenze (Italy); Schiavulli, L. [Dipartimento di Fisica, Università di Bari, e INFN Sezione di Bari (Italy); Sibilia, E. [Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, e INFN Sezione di Milano Bicocca, Milano (Italy); Taccetti, F. [INFN Sezione di Firenze (Italy)

    2015-10-15

    A high resolution time of flight (TOF) system has been developed at LABEC, the 3 MV Tandem accelerator laboratory in Florence, in order to improve the sensitivity of AMS measurements on carbon samples with ultra-low concentration and also to measure other isotopes, such as {sup 129}I. The system can be employed to detect and identify residual interfering particles originated from the break-up of molecular isobars. The set-up has been specifically designed for low energy heavy ions: it consists of two identical time pick-off stations, each made up of a thin conductive foil and a Micro-Channel Plate (MCP) multiplier. The beamline is also equipped with a silicon detector, installed downstream the stop TOF station. In this paper the design of the new system and the implemented readout electronics are presented. The tests performed on the single time pick-off station are reported: they show that the maximum contribution to the timing resolution given by both the intrinsic MCP resolution and the electronics is ⩽500 ps (FWHM). For these tests, single particle pulsed beams of 2–5 MeV protons and 10 MeV {sup 12}C{sup 3+} ions, to simulate typical AMS conditions, were used. The preliminary TOF and TOF-E (TOF-energy) measurements performed with carbon beams after the installation of the new system on the AMS beam line are also discussed. These measurements were performed using the foil–MCP as the start stage and a silicon detector as the stop stage. The spectra acquired with carbon ions suggest the presence of a small residual background from neighboring masses reaching the end of the beamline with the same energy as the rare isotope.

  18. Development of nano structured diamond windows for application in synchrotron beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Campos, R.A.; Trava-Airoldi, V.J.; Corat, E.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Bagnato, O.R. [Laboratorio Nacional de Luz Sincroton (LNLS), Campinas, SP (Brazil); Moro, J.R. [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), SP (Brazil)

    2011-07-01

    Full text. Synchrotron light sources are important tools in the scientific field. In essence, they are rather like enormous super-microscopes capable of studying biological, chemical and material samples at very high resolution, down to the atomic and molecular level, by using synchrotron light. The intense synchrotron light is electromagnetic radiation produced by high-energy electrons in a particle accelerator. The configuration of the beamlines uses windows of material transparent to radiation. Beryllium (Be) is the standard material. In general, these windows serve both, as filters to absorb the photons of low energy and, as insulating barrier between the storage ring and the environment. The justification for the use of beryllium windows at synchrotron beamlines is that elements with low atomic number - (4) transmit more electromagnetic radiation. Besides all the qualities, beryllium has some drawbacks such as deterioration of spatial coherence due to surface roughness and defects. Another problem observed is the appearance of Fresnel diffraction due to manufacturing defects of the windows. In this paper, we propose the use of windows made of nano structured diamond with average roughness of 20nm, without the need to polish, with maximum thickness of around 3 {mu}m. Diamond also has a low atomic number - (6). Another quality of nano structured diamond films is its mechanical properties. It needs only 5-6% of the thickness of beryllium to withstand the same pressure gradient. The film morphology was characterized with the help of Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM-FEG). Diamond's quality was determined by Raman Spectroscopy

  19. Universal imaging: Dissociative ionization of polyatomic molecules, chemical dynamics beamline 9.0.2

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.; Chen, D.; Suits, A.G. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    A third endstation was recently added to the Chemical Dynamics beamline, designed to exploit the high flux broadband undulator light for a range of studies of reactive scattering, photochemistry and photoionization processes using time-of-flight mass spectroscopy coupled with position-sensitive detection. Two molecular beam sources are fixed at right angles, with the undulator light, or laser beams, intersecting the molecular beams at 45{degrees}. To date, beamline experiments have included a study of dissociative photoionization of a variety of molecules including N{sub 2}O and SF{sub 6}. In this mode, a single molecular beam source is used, with the tunable undulator light inducing, in SF{sub 6} for example, the process SF{sub 6} {r_arrow} SF{sub 6}{sup +} + e{sup {minus}} {r_arrow} SF{sub 5}{sup +} + F + e{sup {minus}}. The SF{sub 5}{sup +} ions are accelerated up the flight tube, mass selected and detected as a function of position on a phosphor screen viewed by a CCD camera. The position directly reveals the recoil speed (or translational energy release) and angular distribution for the dissociative ionization process. Furthermore, this measurement is obtained for all recoil speeds and angles simultaneously. Such detailed angular information has not previously been obtained for dissociative ionization processes; typically ion time-of-flight profiles are deconvoluted to yield rough insight into the angular distributions. The recorded image is actually a 2-dimensional projection of the nascent 3-dimensional velocity distribution, but established tomographic techniques enable the authors to reconstruct the 3-D distribution.

  20. Optimized beamline design for macromolecular crystallography at the Cornell High Energy Synchrotron Source (CHESS) (abstract)

    Science.gov (United States)

    Schildkamp, Wilfried; Bilderback, Donald; Moffat, Keith

    1989-07-01

    The A1 station on the CHESS wiggler beamline has been the workhorse for most macromolecular crystallographic experiments. This station is equipped with a fixed energy focusing germanium (111) monochromator and a focusing total reflection mirror. Our macromolecular crystallographers made full use of the high flux of more than 1012 photons/s/mm2 and the stable beam conditions, both in position and energy resolution. As a result, the A1 station was heavily oversubscribed. CHESS is presently expanding its capabilities and a new diffraction station for macromolecular crystallography is under construction. This beamline will be powered by a 24-pole hybrid permanent magnet wiggler with a critical energy of 25 keV. A focusing monochromator, which handles a specific heat load of 10 W/mm2, will have a range of tunability which covers all relevant absorption edges from 7 to 15 keV using a Ge(111) crystal. The energy resolution and the focusing properties remain constant within a factor of 2 over the entire tunability range. We expect a brilliance of about 1013 photons/s/mm2/mrad2/0.1% bandpass. The diffraction station will be equipped with an oscillation camera which can be used with x-ray film of 5×5 or 8×10 in. size or alternatively with Kodak storage phosphors. A wide variety of clamp-on accessories, like crystal coolers, fast shutters, helium pathways, polarimeter, etc. are available. The station will contain a beampipe system, which can also be used for small angle scattering experiments with sample-to-detector distances of up to 3000 mm. The entire diffraction station, its control area, a biological preparation area, and a darkroom are to be embedded in a biological safety containment of the level BL3. This will allow diffraction studies of virulent strains of viruses and other biohazards, which could not previously be studied at synchrotron radiation sources before without causing major disruption to the normal laboratory procedure.

  1. Innovations in the design of mechanical components for a beamline -- The SRl`95 Workshop 2 summary

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M. [Argonne National Lab., IL (United States); Warwick, T. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    The Synchrotron Radiation Instrumentation 1995 Conference (SRI`95) was hosted by the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Of the many workshops within the conference, the SRI`95 Workshop 2 was ``Innovations in the Design of Mechanical Components of a Beamline``. The workshop was attended well with over 140 registrants. The following topics were discussed. Industry`s perspective on the status and future was provided by Huber Diffrationtechnik, Oxford Instruments, and Kohzu Seiko Ltd. on goniometers/diffractometers, advanced manufacturing technique of high heat load components, such as the APS photon shutter, and the specialties of monochromators provided to the third-generation synchrotrons, respectively. This was followed by a description of the engineering of a dual function monochromator design for water-cooled diamond or cryogenically cooled silicon monochromators by CMC CAT/APS. Another category was the nagging problem of sensitivity of the photon beam position monitors (XBPM) to bending magnet radiation (``BM contamination``) and the undulator magnet gap changes. Problem descriptions and suggested solutions were provided by both the Advanced Light Source (ALS) and the APS. Other innovative ideas were the cooling schemes (enhanced cooling of beamline components using metallic porous meshes including cryo-cooled applications); Glidcop photon shutter design using microchannels at the ALS; and window/filter design, manufacture and operational experiences at CHESS and PETRA/HASYLAB. Additional discussions were held on designing for micromotions and precision in the optical support systems and smart user filter schemes. This is a summary of the presentations at the Workshop. 5 refs., 5 figs.

  2. Study of the production yields of {sup 18}F, {sup 11}C, {sup 13}N and {sup 15}O positron emitters from plasma-laser proton sources at ELI-Beamlines for labeling of PET radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto [Section of Radiological Sciences, Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging, University of Messina (Italy); Italiano, Antonio, E-mail: italianoa@unime.it [Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Margarone, Daniele [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague (Czech Republic); Pagano, Benedetta [Nuclear Medicine Unit, University Hospital “G. Martino”, Messina (Italy); Baldari, Sergio [Section of Radiological Sciences, Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging, University of Messina (Italy); Nuclear Medicine Unit, University Hospital “G. Martino”, Messina (Italy); Korn, Georg [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague (Czech Republic)

    2016-03-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of microfluidics labeling approaches. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources such that expected at the ELI-Beamlines facility. {sup 18}F, {sup 11}C, {sup 13}N and {sup 15}O production yields were calculated through the TALYS software, by taking into account the broad proton spectra expected. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of {sup 18}F-, {sup 11}C- and {sup 13}N-labeled radiopharmaceuticals exploiting fast and efficient microfluidic labeling systems.

  3. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  4. Asian Facilities

    Science.gov (United States)

    Nakahata, M.

    2011-04-01

    Asian underground facilities are reviewed. The YangYang underground Laboratory in Korea and the Kamioka observatory in Japan are operational and several astrophysical experiments are running. Indian Neutrino Observatory(INO) and China JinPing Underground Laboratory (CJPL) are under construction and underground experiments are being prepared. Current activities and future prospects at those underground sites are described.

  5. Poster — Thur Eve — 24: Commissioning and preliminary measurements using an Attix-style free air ionization chamber for air kerma measurements on the BioMedical Imaging and Therapy beamlines at the Canadian Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D [Department of Oncology, University of Alberta, Edmonton, AB (Canada); McEwen, M; Shen, H [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, ON (Canada); Siegbahn, EA [Department of Medical Physics, Stockholm University, Stockholm (Sweden); Fallone, BG; Warkentin, B [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada)

    2014-08-15

    Synchrotron facilities, including the Canadian Light Source (CLS), provide opportunities for the development of novel imaging and therapy applications. A vital step progressing these applications toward clinical trials is the availability of accurate dosimetry. In this study, a refurbished Attix-style (cylindrical) free air chamber (FAC) is tested and used for preliminary air kerma measurements on the two BioMedical Imaging and Therapy (BMIT) beamlines at the CLS. The FAC consists of a telescoping chamber that relies on a difference measurement of collected charge in expanded and collapsed configurations. At the National Research Council's X-ray facility, a Victoreen Model 480 FAC was benchmarked against two primary standard FACs. The results indicated an absolute accuracy at the 0.5% level for energies between 60 and 150 kVp. A series of measurements were conducted on the small, non-uniform X-ray beams of the 05B1-1 (∼8 – 100 keV) and 05ID-2 (∼20 – 200 keV) beamlines for a variety of energies, filtrations and beam sizes. For the 05B1-1 beam with 1.1 mm of Cu filtration, recombination corrections of less than 5 % could only be achieved for field sizes no greater than 0.5 mm × 0.6 mm (corresponding to an air kerma rate of ∼ 57 Gy/min). Ionic recombination thus presents a significant challenge to obtaining accurate air kerma rate measurements using this FAC in these high intensity beams. Future work includes measurements using a smaller aperture to sample a smaller and thus more uniform beam area, as well as experimental and Monte Carlo-based investigation of correction factors.

  6. Simulation of temperature distribution by finite element analysis on different components of the EXAFS beamline at INDUS-II synchrotron source

    Indian Academy of Sciences (India)

    D Bhattacharyya; S N Jha; N C Das; Vishnu Verma; S G Markandeya; A K Ghosh

    2005-12-01

    An extended X-ray absorption fine structure (EXAFS) beamline is being developed for the INDUS-II synchrotron source. Several optical and mechanical components of the beamline are exposed to high intensity synchrotron radiation while in operation. The temperature rise on different components of the beamline on exposure to the synchrotron beam has been simulated by finite element analysis. Design of the cooling mechanism for each of these components has been carried out and estimation of the temperature rise has also been done incorporating the cooling mechanism.

  7. Aspects of Cooling at the TRI$\\mu$P Facility

    CERN Document Server

    Willmann, L; Dammalapati, U; De, S; Dendooven, P; Dermois, O; Jungmann, Klaus; Mol, A; Onderwater, Gerco; Rogachevskiy, A; Sohani, M; Traykov, E; Wilschut, H W

    2006-01-01

    The Tri$\\mu$P facility at KVI is dedicated to provide short lived radioactive isotopes at low kinetic energies to users. It comprised different cooling schemes for a variety of energy ranges, from GeV down to the neV scale. The isotopes are produced using beam of the AGOR cyclotron at KVI. They are separated from the primary beam by a magnetic separator. A crucial part of such a facility is the ability to stop and extract isotopes into a low energy beamline which guides them to the experiment. In particular we are investigating stopping in matter and buffer gases. After the extraction the isotopes can be stored in neutral atoms or ion traps for experiments. Our research includes precision studies of nuclear $\\beta$-decay through $\\beta$-$\

  8. The Ultra-Cold Neutron Facility at TRIUMF

    Science.gov (United States)

    Lee, Lawrence; Japan-Canada UCN Collaboration

    2016-09-01

    Construction of an Ultra-Cold Neutron (UCN) facility is nearing completion in the TRIUMF Meson Hall. The new 500 MeV proton beamline (BL1U) and neutron spallation target, which feeds the superthermal UCN source, was completed in Spring 2016 and is presently transitioning over to the commissioning phase. As well, the front end of the UCN source was installed and will also be undergoing commissioning tests. Installation of the full UCN source is scheduled for completion in late 2016 or early 2017, with UCN production planned for Spring 2017. A first experiment searching for the neutron electric dipole moment (nEDM) is also currently under development. The design and construction highlights, as well future plans for the UCN facility, will be presented. Supported in part by CFI, NSERC, JSPS.

  9. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, T.; Sano-Furukawa, A. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Arima, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Komatsu, K. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Yamada, A. [University of Shiga Prefecture, Shiga 522-8533 (Japan); Inamura, Y.; Nakatani, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Seto, Y. [Graduate School of Science, Kobe University, Kobe 657-8501 (Japan); Nagai, T. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Utsumi, W. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Iitaka, T. [Computational Astrophysics Laboratory, RIKEN, Saitama 351-0198 (Japan); Kagi, H. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Katayama, Y. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Inoue, T. [Geodynamic Research Center, Ehime University, Matsuyama 790-8577 (Japan); Otomo, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 205-001 (Japan); Suzuya, K. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Kamiyama, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 205-001 (Japan); Arai, M. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Yagi, T. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2015-04-21

    PLANET is a time-of-flight (ToF) neutron beamline dedicated to high-pressure and high-temperature experiments. The large six-axis multi-anvil high-pressure press designed for ToF neutron diffraction experiments enables routine data collection at high pressures and high temperatures up to 10 GPa and 2000 K, respectively. To obtain clean data, the beamline is equipped with the incident slits and receiving collimators to eliminate parasitic scattering from the high-pressure cell assembly. The high performance of the diffractometer for the resolution (Δd/d~0.6%) and the accessible d-spacing range (0.2–8.4 Å) together with low-parasitic scattering characteristics enables precise structure determination of crystals and liquids under high pressure and temperature conditions.

  10. Development and tests of a new prototype detector for the XAFS beamline at Elettra Synchrotron in Trieste

    CERN Document Server

    Fabiani, S; Baldazzi, G; Bellutti, P; Bertuccio, G; Bruschi, M; Bufon, J; Carrato, S; Castoldi, A; Cautero, G; Ciano, S; Cicuttin, A; Crespo, M L; Santos, M Dos; Gandola, M; Giacomini, G; Giuressi, D; Guazzoni, C; Menk, R H; Niemela, J; Olivi, L; Picciotto, A; Piemonte, C; Rashevskaya, I; Rachevski, A; Rignanese, L P; Sbrizzi, A; Schillani, S; Vacchi, A; Garcia, V Villaverde; Zampa, G; Zampa, N; Zorzi, N

    2016-01-01

    The XAFS beamline at Elettra Synchrotron in Trieste combines X-ray absorption spectroscopy and X-ray diffraction to provide chemically specific structural information of materials. It operates in the energy range 2.4-27 keV by using a silicon double reflection Bragg monochromator. The fluorescence measurement is performed in place of the absorption spectroscopy when the sample transparency is too low for transmission measurements or the element to study is too diluted in the sample. We report on the development and on the preliminary tests of a new prototype detector based on Silicon Drift Detectors technology and the SIRIO ultra low noise front-end ASIC. The new system will be able to reduce drastically the time needed to perform fluorescence measurements, while keeping a short dead time and maintaining an adequate energy resolution to perform spectroscopy. The custom-made silicon sensor and the electronics are designed specifically for the beamline requirements.

  11. Grazing incidence X-ray absorption spectroscopy under non-ambient conditions: Investigations of liquid surfaces at DELTA beamline 8

    Science.gov (United States)

    Lützenkirchen-Hecht, D.; Wagner, R.; Bieder, S.; Frahm, R.

    2013-03-01

    A setup for the investigation of liquid surfaces using grazing incidence X-ray absorption spectroscopy has been installed at the hard X-ray beamline BL 8 at the 1.5 GeV electron storage ring DELTA. While the 6-axis diffractometer endstation of the beamline accommodates a Langmuir trough, the double mirror device which is originally used for the harmonic rejection of low energy beams was used to deflect the beam downwards, defining thereby the incidence angle for the reflection and fluorescence mode EXAFS experiments in a Θ-Θ-geometry. Results obtained during the biomineralization of iron oxides on a Langmuir film of stearic acid show the feasibility of grazing incidence EXAFS measurements that may provide valuable information about the molecular structure of the formed iron oxide phases.

  12. Development of sample exchange robot PAM-HC for beamline BL-1A at the photon factory

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Masahiko, E-mail: masahiko.hiraki@kek.jp [Mechanical Engineering Center, Applied Research Laboratory, KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba, Ibaraki 305-0801 Japan (Japan); Department of Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801 Japan (Japan); Matsugaki, Naohiro; Yamada, Yusuke; Senda, Toshiya [Structural Biology research Center, Institute of Materials Structure Science, KEK (Japan); Department of Materials Structure Science, SOKENDAI (Japan)

    2016-07-27

    A macromolecular crystallography beamline, BL-1A, has been built at the Photon Factory (PF) for low energy experiments and has been operational since 2010. We have installed a sample exchange robot, PAM (PF Automated Mounting system), similar to other macromolecular crystallography beamlines. However, following the installation of a helium chamber to reduce the absorption of the diffraction signal by air, we developed a new sample exchange robot to replace PAM. The new robot, named PAM-HC (Helium Chamber), is designed with the goal of minimizing leakage of helium gas from the chamber. Here, the PAM-HC hardware and the flow of its movement are described. Furthermore, measurements of temperature changes during sample exchange are presented in this paper.

  13. Design, Build & Test of a Double Crystal Monochromator for Beamlines I09 & I23 at the Diamond Light Source

    Science.gov (United States)

    Kelly, J.; Lee, T.; Alcock, S.; Patel, H.

    2013-03-01

    A high stability Double Crystal Monochromator has been developed at The Diamond Light Source for beamlines I09 and I23. The design specification was a cryogenic, fixed exit, energy scanning monochromator, operating over an energy range of 2.1 - 25 keV using a Si(111) crystal set. The novel design concepts are the direct drive, air bearing Bragg axis, low strain crystal mounts and the cooling scheme. The instrument exhibited superb stability and repeatability on the B16 Test Beamline. A 20 keV Si(555), 1.4 μrad rocking curve was demonstrated. The DCM showed good stability without any evidence of vibration or Bragg angle nonlinearity.

  14. Recent progress in vacuum-ultraviolet polarization modulation spectroscopy using polarizing undulator at the TERAS BL5 beamline.

    Science.gov (United States)

    Yagi-Watanabe, Kazutoshi; Tanaka, Masahito; Kaneko, Fusae; Nakagawa, Kazumichi

    2007-12-01

    Polarization modulation spectroscopy using an Onuki-type undulator is a useful technique for circular dichroism study in the vacuum-ultraviolet region. We have been developing the vacuum-ultraviolet circular dichroism (vuv-CD) spectroscopy in TERAS BL5 beamline at AIST. This paper describes recent improvements in our instrumentation and methods of analysis to achieve precise and absolute measurements. The CD signal is usually accompanied by experimental artifacts, and elimination of all possible artifacts is the key issue for making reliable measurements. After improving beamline optical system, light flux monitor, and undulator operation method, the base line shift of the CD spectrum is suppressed less than 3x10(-4). Sample manipulation and data processing procedures are also described and absolute CD spectrum can be obtained even for linear anisotropic sample. These progresses lead to more quantitative comparison of experimental with calculation on vuv-CD spectrum.

  15. Present status of vacuum ultraviolet natural circular dichroism measurement system using polarizing undulator at TERAS BL5 beamline

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masahito, E-mail: masahito-tanaka@aist.go.j [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Yagi-Watanabe, Kazutoshi; Kaneko, Fusae [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Nakagawa, Kazumichi [Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada-ku, Kobe 657-8501 (Japan)

    2010-08-15

    The study of natural circular dichroism (CD) in the vacuum and extreme ultraviolet (VUV and EUV) regions has been providing us with chirality and structural information on biomolecules. We have developed the beamline BL5 at TERAS, Tsukuba, which is equipped with a compact Onuki-type polarizing undulator. This beamline is dedicated to measuring the CD spectra in the VUV and EUV regions for the photon energy region of 5-40 eV. The use of a polarization modulation technique with a polarizing undulator is essential for detecting a weak CD signal. Using this CD system, the natural CD spectrum has been measured in the EUV region up to 40 eV for the first time. In addition, the differences and the similarities between the CD spectra of four amino acid films (alanine, valine, leucine, and phenylalanine) in the VUV region up to 9.5 eV are determined.

  16. New Developments at the ALS High-Pressure Beamline 12.2.2

    Science.gov (United States)

    Kunz, M.; MacDowell, A. A.; Yan, J.; Beavers, C. C. G.; Doran, A.; Williams, Q. C.

    2015-12-01

    ALS-beamline 12.2.2 celebrated its 10-year anniversary as a beamline collaboratively operated by the ALS and COMPRES. The anniversary coincided with a major rebuild and expansion of its capabilities for in-situ high-pressure and high-temperature X-ray diffraction. A rebuild of the 12.2.2 laser heating table was completed and commissioned in the past year. The new design relies on a vertically positioned small (~1m x 1m) breadboard that is placed perpendicularly to the incident X-ray beam next to the sample stage. Upstream and downstream viewing-, IR-laser and pyrometry-optics are mounted on opposite surfaces of the breadboard. On-line ruby fluorescence optics including a blue diode laser are also mounted on the upstream surface. The much reduced dimensions of the design lead to smaller mechanical lever arms and thus to a significant suppression of vibrations. This was confirmed in the commissioning phase with high-quality optical images (~ 2 μm resolution) as well as a very stable hotspot in DAC samples. A further optimized pyrometry code was cross-calibrated against thermal expansions of Pt and Ta, and was found to agree with those values within experimental uncertainties. Pyrometry relies on imaging the full hot-spot onto a spectrometer and combining the thus obtained average temperature with an intensity map collected at 700 nm to produce a temperature contour map of the entire sample chamber. Besides axial laser heating, double-sided radial laser heating is also being developed and commissioned. The X-ray source of 12.2.2 makes it an ideal station to focus on high-pressure single crystal diffraction. The present set-up operates parasitically with a single rotation axis on the in-situ laser heating powder diffraction sample stage in concert with a fast (15 fps) amorphous silicon/diode array detector. Although this set-up poses limitations with respect to accessible reciprocal space, high pressure single crystal structure solution and refinements of organic

  17. The sub-micron resolution X-ray spectroscopy beamline at NSLS-II

    Science.gov (United States)

    De Andrade, V.; Thieme, J.; Northrup, P.; Yao, Y.; Lanzirotti, A.; Eng, P.; Shen, Q.

    2011-09-01

    For many research areas such as life, environmental, earth or material sciences, novel analytical resources have to be developed for an advance understanding of complex natural and engineered systems that are heterogeneous on the micron to the tenths of microns scale. NSLS-II at BNL will be a synchrotron radiation source with an ultra-high brilliance delivering a high current (500 mA). One of the 1st six NSLS-II beamlines will be the Sub-micron Resolution X-ray spectroscopy beamline (SRX), dedicated as an analytical tool to study complex systems on a sub-micron length scale. SRX will comprise two branches thanks to a canted setup with two undulators: the first branch using Kirkpatrick-Baez mirrors as focusing optics will cover the energy range of 4.65-23 keV, allowing for XANES experiments from the Ti to the Rh K-edge. Thanks to a horizontally deflecting double crystal monochromator with maximum stability, a set of slits located on the secondary source, and two sets of complementary and quickly interchangeable KB mirrors, spectroscopy with very high spectral and spatial resolution will be achieved. The spot size will almost fully cover a range from 60×60 to 1300×500 nm 2, providing an attractive adaptability of the observation scale. A 1.5 m long IVU21 will serve as a light source. The expected high flux in a sub-micron-spot (5×10 12 and 7×10 13 ph s -1 at maximum and lowest resolutions) will open new possibilities for spectromicroscopy of trace elements. The 2nd canted undulator will serve as an independent light source for the second branch designed for experiments with X-ray energies in the range of 2-15 keV. Using Fresnel zone plates, the spatial resolution aimed for is around 30 nm with up to 7×10 9 ph s -1 in the spot. This branch would be attractive for many biological applications from life and environmental science due to low-Z elements of interest within that energy range. In both experimental stations, X-ray fluorescence will be used for imaging

  18. Design and R&D for manufacturing the beamline components of MITICA and ITER HNBs

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it [Consorzio RFX, Padova (Italy); Sartori, E. [Consorzio RFX, Padova (Italy); Blatchford, P.; Chuilon, B. [CCFE, Culham Science Centre, Oxfordshire (United Kingdom); Graceffa, J. [ITER Organization, St Paul Lez Durance (France); Hanke, S. [KIT, Institute for Technical Physics, Eggenstein-Leopoldshafen (Germany); Hardie, C. [CCFE, Culham Science Centre, Oxfordshire (United Kingdom); Masiello, A. [F4E, Barcelona (Spain); Muraro, A. [Consorzio RFX, Padova (Italy); Ochoa, S. [KIT, Institute for Technical Physics, Eggenstein-Leopoldshafen (Germany); Shah, D. [ITER Organization, St Paul Lez Durance (France); Veltri, P.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Padova (Italy)

    2015-10-15

    Highlights: • Particle beam-component interaction was analysed developing and applying numerical codes. • Gas density distribution was calculated with AVOCADO code and applied for electrical analyses. • High heat flux components were designed, analysed with subcooled boiling, verified for fatigue. • Fracture behaviour of ceramics was analysed by finite element modelling and was verified. • R&D supports the design of the beamline components, especially for water-vacuum barriers. - Abstract: The design of the beamline components of MITICA, the full prototype of the ITER heating neutral beam injectors, is almost finalised and technical specifications for the procurement are under preparation. These components are the gas neutraliser, the electrostatic residual ion dump, and the calorimeter. Electron dump panels are foreseen each side of the upstream end of the neutraliser to protect the cryo-panels from electrons, created by stripping and other processes, that exit the 1 MeV accelerator. As the design of the components must fulfil requirements on the beam physics, insight on physical processes is required to identify performance trade-offs and constraints. The spatial gas distribution was simulated to verify the pumping requirements with electron dump panels and local conditions for breakdown voltage. Electrostatic analyses were carried out for the insulating elements of the RID to verify the limits of the electric field intensity. Different criteria were approached to investigate the fracture behaviour of ceramics considering the manufacturing implications and extrapolating the conditions for proof testing. Severe heating conditions will be applied steadily, as the maximum pulse duration is 1 h, and cyclically so requiring to fulfil fatigue and ratcheting verifications. High heat fluxes, up to 13 MW/m{sup 2} on the calorimeter, with enhanced heat transfer in subcooled boiling conditions will occur in the actively cooled CuCr1Zr panel elements provided with

  19. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  20. Multi-objective Optimizations of a Novel Cryo-cooled DC Gun Based Ultra Fast Electron Diffraction Beamline

    OpenAIRE

    Gulliford, C.; Bartnik, A.; Bazarov, I.

    2015-01-01

    We present the results of multi-objective genetic algorithm optimizations of a potential single shot ultra fast electron diffraction beamline utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final r...

  1. Design, fabrication and testing of elliptical crystal bender for the EXAFS beam-line at INDUS-II synchrotron source

    Indian Academy of Sciences (India)

    N C Das; S N Jha; D Bhattacharyya; A K Poswal; A K Sinha; V K Mishra

    2004-10-01

    An extended X-ray absorption fine structure (EXAFS) beam-line for X-ray absorption studies using energy dispersive geometry and position sensitive detector is being developed for the INDUS-II synchrotron source. The optical design of the beam-line has been completed based on the working principle that a single crystal bent in the shape of an ellipse by a crystal bender would act as a dispersing as well as focusing element. The heart of the beam-line is the crystal bender which has been designed on the basis of the principle of four-point bending and has been fabricated indigenously. The crystal bender is capable of producing pre-defined elliptical curvature on a crystal surface by applying different couples at the two-ends of the crystal which has variable width along its length. The focusing property of the crystal bender has been tested using a laser source and has been compared with the theoretically simulated results.

  2. Opportunities of research in multiferroic materials using Angle Dispersive X-ray Diffraction (ADXRD) beamline on Indus-2 synchrotron source

    Science.gov (United States)

    Sinha, A. K.; Singh, M. N.; Upadhyay, A.; Sagdeo, A.

    2016-10-01

    Synchrotron beamlines have advantages of higher flux and wide tunability of photon beam compared to laboratory based equipment for performing x-ray diffraction and x- ray absorption spectroscopy (XAS). In this paper we report capabilities of angle dispersive x- ray diffraction beamline (BL-12) on Indus-2 synchrotron source for structural and spectroscopic characterisation of multiferroic materials. Brief description of the beamline along with the photon beam specifications at the experimental station is given. Results on low temperature XRD measurements on mixed spinel system (Fe1.5Co1.5O4) between 30K and 300K and subsequent Reitveld refinement reveal that there are no phase changes but the lattice parameter show anomalous changes between 100 and 150K. It has been explained how XANES spectra on a type II multiferroic, Co3TeO6, and Fe1.5Co1.5O4 can be used for the determination of charge and spin states of transition metal ions.

  3. JBluIce-EPICS: a fast and flexible open-source beamline control system for macromolecular crystallography

    Science.gov (United States)

    Stepanov, S.; Hilgart, M.; Makarov, O.; Pothineni, S. B.; Yoder, D.; Ogata, C.; Sanishvili, R.; Venugopalan, N.; Becker, M.; Clift, M.; Smith, J. L.; Fischetti, R. F.

    2013-03-01

    This paper overviews recent advances in the JBluIce-EPICS open-source control system designed at the macromolecular crystallography beamlines of the National Institute of General Medical Sciences and National Cancer Institute at the Advanced Photon Source (GM/CA@APS). We discuss some technical highlights of this system distinguishing it from the competition, such as reduction of software layers to only two, possibility to operate JBluIce in parallel with other beamline controls, plugin-enabled architecture where the plugins can be written in any programming language, and utilization of the whole power of the Java integrated development environment in the Graphical User Interface. Then, we demonstrate how these highlights help to make JBluIce fast, easily adaptable to new beamline developments, and intuitive for users. In particular, we discuss several recent additions to the system including a bridge between crystal rastering and data collection, automatic detection of raster polygons from optical crystal centering, background data processing, and a pathway to a fully automated pipeline from crystal screening to solving crystal structure.

  4. High-throughput operation of sample-exchange robots with double tongs at the Photon Factory beamlines

    Science.gov (United States)

    Hiraki, Masahiko; Watanabe, Shokei; pHonda, Nobuo; Yamada, Yusuke; Matsugaki, Naohiro; Igarashi, Noriyuki; Gaponov, Yurii; Wakatsuki, Soichi

    2008-01-01

    Sample-exchange robots that can exchange cryo-pins bearing protein crystals out of experimental hutches according to user instructions have been developed. The robots were designed based on the SAM (Stanford Synchrotron Research Laboratory automated mounting) system. In order to reduce the time required for the sample exchange, the single tongs of the SAM system were modified and a double-tongs system that can hold two cryo-pins at the same time was developed. Robots with double tongs can move to the goniometer head holding the next cryo-pin with one set of tongs, dismount the experimented cryo-pin with the other set, and then mount the next pin onto the goniometer head without leaving the diffractometer area. Two different types of tongs have been installed: single tongs at beamlines BL-5A and AR-NW12A, and a double-tongs system at beamline BL-17A of the Photon Factory. The same graphical user interface software for operation of the sample-exchange robots is used at all beamlines, however, so that users do not need to consider differences between the systems. In a trial, the robot with double tongs could exchange samples within 10 s. PMID:18421164

  5. SAMRAI: a novel variably polarized angle-resolved photoemission beamline in the VUV region at UVSOR-II.

    Science.gov (United States)

    Kimura, Shin-Ichi; Ito, Takahiro; Sakai, Masahiro; Nakamura, Eiken; Kondo, Naonori; Horigome, Toshio; Hayashi, Kenji; Hosaka, Masahito; Katoh, Masahiro; Goto, Tomohiro; Ejima, Takeo; Soda, Kazuo

    2010-05-01

    A novel variably polarized angle-resolved photoemission spectroscopy beamline in the vacuum-ultraviolet (VUV) region has been installed at the UVSOR-II 750 MeV synchrotron light source. The beamline is equipped with a 3 m long APPLE-II type undulator with horizontally/vertically linear and right/left circular polarizations, a 10 m Wadsworth type monochromator covering a photon energy range of 6-43 eV, and a 200 mm radius hemispherical photoelectron analyzer with an electron lens of a +/-18 degrees acceptance angle. Due to the low emittance of the UVSOR-II storage ring, the light source is regarded as an entrance slit, and the undulator light is directly led to a grating by two plane mirrors in the monochromator while maintaining a balance between high-energy resolution and high photon flux. The energy resolving power (hnu/Deltahnu) and photon flux of the monochromator are typically 1 x 10(4) and 10(12) photons/s, respectively, with a 100 microm exit slit. The beamline is used for angle-resolved photoemission spectroscopy with an energy resolution of a few meV covering the UV-to-VUV energy range.

  6. The ITER neutral beam test facility: Designs of the general infrastructure, cryosystem and cooling plant

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, J.J. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France)]. E-mail: jean-jacques.cordier@cea.fr; Hemsworth, R. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Chantant, M. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Gravil, B. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Henry, D. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Sabathier, F. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Doceul, L. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Thomas, E. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Houtte, D. van [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Zaccaria, P. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy); Antoni, V. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy); Bello, S. Dal; Marcuzzi, D. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy); Antipenkov, A.; Day, C.; Dremel, M. [FZK, Institut fuer Technische Physik, Karlsruhe 76021 (Germany); Mondino, P.L. [EFDA CSU, Max-Planck-Institut fuer Plasma Physik Boltzmannstr. 2, D-85748 Garching (Germany)

    2005-11-15

    The CEA Association is involved, in close collaboration with ENEA, FZK, IPP and UKAEA European Associations, in the first ITER neutral beam (NB) injector and the ITER neutral beam test facility design (EFDA task ref. TW3-THHN-IITF1). A total power of about 50 MW will have to be removed in steady state on the neutral beam test facility (NBTF). The main purpose of this task is to make progress with the detailed design of the first ITER NB injector and to start the conceptual design of the ITER NBTF. The general infrastructure layout of a generic site for the NBTF includes the test facility itself equipped with a dedicated beamline vessel [P.L. Zaccaria, et al., Maintenance schemes for the ITER neutral beam test facility, this conference] and integration studies of associated auxiliaries such as cooling plant, cryoplant and forepumping system.

  7. Fiber diffraction using the BioCAT undulator beamline at the Advanced Photon Source

    Science.gov (United States)

    Irving, T. C.; Fischetti, R.; Rosenbaum, G.; Bunker, G. B.; Biophysics Collaborative Access Team (BioCAT)

    2000-06-01

    The BioCAT undulator-based beamline at the Advanced Photon Source, Argonne IL, USA is designed to be a state-of-the-art instrument for biological non-crystalline diffraction and X-ray absorption spectroscopy. The optics consist of double crystal monochromators with sagitally focussing second crystals followed by a vertically focussing mirror which allow independent focussing of the beam in the vertical and horizontal directions virtually anywhere along the length of the 12 m experimental enclosure. When configured for a 2 m fiber diffraction camera, a focal spot of less than 40×200 μm (FWHM) has been observed which contained essentially all of the 1.5-2.5×10 13 ph/s delivered by the cryogenically-cooled Si(1 1 1) double crystal monochromator. This combination of highly demagnifying optics and the very low divergence of the very small source have yielded excellent quality patterns from various muscle specimens and collagen-containing tissues. Detectors available include a Fuji BAS2500 image plate scanner and a 1 k×1 k CCD detector optimized for small-angle applications. Future developments will include, in vacuum beam monitoring, longer camera lengths (6-8 m), and optimizations to improve first-order resolution in small-angle applications.

  8. Fiber diffraction using the BioCAT undulator beamline at the Advanced Photon Source

    CERN Document Server

    Irving, T C; Rosenbaum, G; Bunker, G B

    2000-01-01

    The BioCAT undulator-based beamline at the Advanced Photon Source, Argonne IL, USA is designed to be a state-of-the-art instrument for biological non-crystalline diffraction and X-ray absorption spectroscopy. The optics consist of double crystal monochromators with sagitally focussing second crystals followed by a vertically focussing mirror which allow independent focussing of the beam in the vertical and horizontal directions virtually anywhere along the length of the 12 m experimental enclosure. When configured for a 2 m fiber diffraction camera, a focal spot of less than 40x200 mu m (FWHM) has been observed which contained essentially all of the 1.5-2.5x10 sup 1 sup 3 ph/s delivered by the cryogenically-cooled Si(1 1 1) double crystal monochromator. This combination of highly demagnifying optics and the very low divergence of the very small source have yielded excellent quality patterns from various muscle specimens and collagen-containing tissues. Detectors available include a Fuji BAS2500 image plate sc...

  9. Direct detection of antiprotons with the Timepix3 in a new electrostatic selection beamline

    Energy Technology Data Exchange (ETDEWEB)

    Pacifico, N., E-mail: nicola.pacifico@cern.ch [Institute of Physics and Technology, University of Bergen, Allgaten 55, 5007 Bergen (Norway); Aghion, S. [Politecnico of Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); INFN Milano, via Celoria 16, 20133 Milano (Italy); Alozy, J. [Physics Department, CERN, 1211 Geneva 23 (Switzerland); Amsler, C.; Ariga, A.; Ariga, T. [Laboratory for High Energy Physics, Albert Einstein Center for Fundamental Physics, University of Bern, 3012 Bern (Switzerland); Bonomi, G. [Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia (Italy); INFN Pavia, via Bassi 6, 27100 Pavia (Italy); Bräunig, P. [Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Bremer, J. [Physics Department, CERN, 1211 Geneva 23 (Switzerland); Brusa, R.S. [Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento (Italy); TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento (Italy); Cabaret, L. [Laboratory Aimé Cotton, University of Paris-Sud, ENS Cachan, CNRS, University Paris-Saclay, 91405 Orsay Cedex (France); Caccia, M. [INFN Milano, via Celoria 16, 20133 Milano (Italy); Department of Science, University of Insubria, Via Valleggio 11, 22100 Como (Italy); Campbell, M. [Physics Department, CERN, 1211 Geneva 23 (Switzerland); Caravita, R. [Department of Physics, University of Genova, via Dodecaneso 33, 16146 Genova (Italy); INFN Genova, via Dodecaneso 33, 16146 Genova (Italy); Castelli, F. [INFN Milano, via Celoria 16, 20133 Milano (Italy); Department of Physics, University of Milano, via Celoria 16, 20133 Milano (Italy); Cerchiari, G. [Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg (Germany); Chlouba, K. [Czech Technical University, Prague, Brehov 7, 11519 Prague 1 (Czech Republic); and others

    2016-09-21

    We present here the first results obtained employing the Timepix3 for the detection and tagging of annihilations of low energy antiprotons. The Timepix3 is a recently developed hybrid pixel detector with advanced Time-of-Arrival and Time-over-Threshold capabilities and has the potential of allowing precise kinetic energy measurements of low energy charged particles from their time of flight. The tagging of the characteristic antiproton annihilation signature, already studied by our group, is enabled by the high spatial and energy resolution of this detector. In this study we have used a new, dedicated, energy selection beamline (GRACE). The line is symbiotic to the AEgIS experiment at the CERN Antiproton Decelerator and is dedicated to detector tests and possibly antiproton physics experiments. We show how the high resolution of the Timepix3 on the Time-of-Arrival and Time-over-Threshold information allows for a precise 3D reconstruction of the annihilation prongs. The presented results point at the potential use of the Timepix3 in antimatter-research experiments where a precise and unambiguous tagging of antiproton annihilations is required.

  10. Multi-objective Optimizations of a Normal Conducting RF Gun Based Ultra Fast Electron Diffraction Beamline

    CERN Document Server

    Gulliford, C; Maxson, J; Bazarov, I

    2016-01-01

    We present the results of multi-objective genetic algorithm optimizations of a potential single shot ultra fast electron diffraction beamline utilizing a 100 MV/m 1.6 cell normal conducting rf (NCRF) gun, as well as a 9 cell 2pi/3 bunching cavity placed between two solenoids. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for a charge of 1e6 electrons. Analysis of the solutions is discussed, as are the effects of disorder induced heating. In particular, for a charge of $10^6$ electrons and final beam size greater than or equal to 25 microns, we found a relative coherence length of 0.07, 0.1, and 0.2 nm/micron for a final bunch length of approximately 5, 30, and 100 fs, respectively. These results demonstrate the viability of using geneti...

  11. Direct detection of antiprotons with the Timepix3 in a new electrostatic selection beamline

    Science.gov (United States)

    Pacifico, N.; Aghion, S.; Alozy, J.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Campbell, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jordan, E.; Kellerbauer, A.; Kimura, M.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lawler, G.; Lebrun, P.; Llopart, X.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Smestad, L.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Tlustos, L.; Widmann, E.; Yzombard, P.; Zavatarelli, S.; Zmeskal, J.; Zurlo, N.

    2016-09-01

    We present here the first results obtained employing the Timepix3 for the detection and tagging of annihilations of low energy antiprotons. The Timepix3 is a recently developed hybrid pixel detector with advanced Time-of-Arrival and Time-over-Threshold capabilities and has the potential of allowing precise kinetic energy measurements of low energy charged particles from their time of flight. The tagging of the characteristic antiproton annihilation signature, already studied by our group, is enabled by the high spatial and energy resolution of this detector. In this study we have used a new, dedicated, energy selection beamline (GRACE). The line is symbiotic to the AEgIS experiment at the CERN Antiproton Decelerator and is dedicated to detector tests and possibly antiproton physics experiments. We show how the high resolution of the Timepix3 on the Time-of-Arrival and Time-over-Threshold information allows for a precise 3D reconstruction of the annihilation prongs. The presented results point at the potential use of the Timepix3 in antimatter-research experiments where a precise and unambiguous tagging of antiproton annihilations is required.

  12. Two high-order polynomial bendable mirrors in the TLS infrared beamline

    Science.gov (United States)

    Chen, Shean-Jen; Kuan, Chien-Kuang; Perng, Shen-Yaw; Wang, Duan-Jen; Ho, H. C.; Tseng, T. C.; Chen, Chien-Te; Lo, Yi-Chung

    1999-10-01

    This study presents a Kirkpatrick-Baez mirror system which includes two high-order polynomial bendable mirrors in a Taiwan Light Source (TLS) infrared beamline to create and adjust more accurately collimating images on a focusing point. The source of infrared rays is synchrotron radiation from a TLS bending magnet, so the surface of a vertical focusing mirror (VFM) is designed on an elliptical shape. The Runge-Kutta numerical method is used to compute the optimal high-order polynomial shape of the horizontal focusing mirror (HFM), to focus the horizontal arc source on the point image. The HFM and VFM using 17-4 PH stainless steel substrate without an electroless nickel plate are mechanically bent from planar to the desired fifth-order polynomial shapes with central radii of 3.74 m and 5.43 m by the application of equal couples, respectively. The mirror fabrication process, mechanical design, and the method of adjusting the mirror shape using the Long Trace Profiler measurement system are described. Finally, the roughness of mirrors is 3 angstrom RMS. After the mirrors have been bent, the slope error over 2/3 of clear aperture length (170 mm) was reduced to less than 6.3 (mu) rad RMS.

  13. Heat transfer studies for a crystal in a synchrotron radiation beamline

    Indian Academy of Sciences (India)

    A K Sinha

    2009-04-01

    Heat load studies have been performed for the first crystal of a double crystal monochromator to be installed in a beamline of the 2·5 GeV synchrotron radiation source Indus-2. Finite element analysis (FEA) has been used to calculate the temperature distribution and the mechanical distortions on these crystals. Several cases of cooling schemes and heat loads have been studied. Based on these FEA results, the analytical relationships available in the literature have been modified. It is shown that modified analytical results compare well with the empirical results obtained from FEA. The optimisation of the cooling conditions can be achieved by doing FEA calculations for only one case. All other cases can then be calculated by using analytical relations proposed here. The proposed analytical equations are generic in nature and can be applied for any source—crystal combination and therefore would be useful for performance prediction of any new monochromator on a new synchrotron source without taking recourse to time consuming, computation-intensive FEA.

  14. Residual stress analysis of aluminium welds with high energy synchrotron radiation at the HARWI II beamline

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Torben; Martins, Rene V.; Schreyer, Andreas [GKSS Research Centre, Geesthacht (Germany)

    2008-07-01

    In civil aircraft production advanced welding techniques, like laser beam welding or friction stir welding, are used to reduce weight and production costs. By the welding process residual stresses are introduced in the weld zone and the surrounding area. These stresses may depend on diverse factors and can have disadvantageous influence on the service performance of the weld. For strain scanning GKSS research centre built up the high energy materials science beamline HARWI II at HASYLAB. The use of high energetic photons from about 80 keV-120 keV enables diffraction experiments in transmission geometry, which provides the information about the macroscopic stresses. A large sample-detector-distance ensures a high angular resolution for the peak position determination. The heavy load diffractometer allows making use of massive sample environments. For example laser beam welded t- and butt-joints were investigated with high spatial resolution. The large grain size of the specimen makes the measurements with high spatial resolution more difficult due to the poor grain statistics. The influences of the gauge volume size and grain statistics on the strain measurements were systematically investigated. For the t-joint configuration two dimensional stress maps were calculated from the data. For the near future an in-situ FSW experiment is planed to investigate the metallophysical processes during the welding.

  15. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.

    Science.gov (United States)

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-05-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.

  16. BEER - The Beamline for European Materials Engineering Research at the ESS

    Science.gov (United States)

    Fenske, J.; Rouijaa, M.; Šaroun, J.; Kampmann, R.; Staron, P.; Nowak, G.; Pilch, J.; Beran, P.; Šittner, P.; Strunz, P.; Brokmeier, H.-G.; Ryukhtin, V.; Kadeřávek, L.; Strobl, M.; Müller, M.; Lukáš, P.; Schreyer, A.

    2016-09-01

    The Beamline for European Materials Engineering Research (BEER) will be built at the European Spallation Source (ESS). The diffractometer utilizes the high brilliance of the long-pulse neutron source and offers high instrument flexibility. It includes a novel chopper technique that extracts several short pulses out of the long pulse, leading to substantial intensity gain of up to an order of magnitude compared to pulse shaping methods for materials with high crystal symmetry. This intensity gain is achieved without compromising resolution. Materials of lower crystal symmetry or multi-phase materials will be investigated by additional pulse shaping methods. The different chopper set-ups and advanced beam extracting techniques offer an extremely broad intensity/resolution range. Furthermore, BEER offers an option of simultaneous SANS or imaging measurements without compromising diffraction investigations. This flexibility opens up new possibilities for in-situ experiments studying materials processing and performance under operation conditions. To fulfil this task, advanced sample environments, dedicated to thermo-mechanical processing, are foreseen.

  17. Kinematics analysis of six-bar parallel mechanism and its applications in synchrotron radiation beamline

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qipeng [State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033 (China); Li, Yongjun, E-mail: littoywolf@163.com [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Peng, Zhongqi [State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033 (China)

    2012-05-11

    Six-bar parallel mechanism is now widely applied in synchrotron radiation beamline, while the six-dimensional adjustment is difficult and inefficient for lack of theoretical direction. This paper introduces a special six-bar parallel mechanism. By means of coordinate transformations, the inverse kinematics of six-bar parallel mechanism is studied, and the precise equations for six bars' lengths are obtained. Based on the inverse kinematics, forward kinematics of six-bar parallel mechanism is obtained with trust region method working for nonlinear optimization. The corresponding MATLAB program is also designed. The results show that trust region method is an effective way to solve forward kinematics, and the program is stable, reliable and rapid. This method has small errors with linear precision of 10{sup -12} mm and rotational precision of 10{sup -15} deg. Using differential snail adjustment, monochromator chamber's attitude can reach a linear resolution of 5 {mu}m and a rotational resolution of 3 Double-Prime , which entirely satisfies the practical requirements.

  18. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  19. Theme: Laboratory Facilities Improvement.

    Science.gov (United States)

    Miller, Glen M.; And Others

    1993-01-01

    Includes "Laboratory Facilities Improvement" (Miller); "Remodeling Laboratories for Agriscience Instruction" (Newman, Johnson); "Planning for Change" (Mulcahy); "Laboratory Facilities Improvement for Technology Transfer" (Harper); "Facilities for Agriscience Instruction" (Agnew et al.); "Laboratory Facility Improvement" (Boren, Dwyer); and…

  20. Applications of micro-SAXS/WAXS to study polymer fibers

    Energy Technology Data Exchange (ETDEWEB)

    Riekel, C. E-mail: riekel@esrf.fr

    2003-01-01

    Instrumentation and selected applications for X-ray microdiffraction experiments on polymer and biopolymer fibers at the European Synchrotron Radiation Facility (ESRF) microfocus beamline are reviewed. Combined SAXS/WAXS experiments can be performed on single fibers with a beam size down to about 5 {mu}m. WAXS experiments can be performed down to about 2 {mu}m and in exceptional cases down to 0.1 {mu}m beam size. The instrumental possibilities are demonstrated for the production line of spider silk.

  1. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Spata, Michael F. [JLAB

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  2. GeoSoilEnviroCARS: A National User Facility for Synchrotron Radiation Research in GeoScience

    Science.gov (United States)

    Rivers, M. L.; Sutton, S. R.; Prakapenka, V.; Wang, Y.; Newville, M.; Eng, P.; Dera, P. K.

    2009-12-01

    GeoSoilEnviroCARS (GSECARS) is a national user facility for geoscience research at Sector 13 of the Advanced Photon Source, Argonne National Laboratory. GSECARS provides the scientific community with access to high-brightness x-rays and supports a wide range of experimental techniques. The operation of the facility is funded by the NSF Earth Sciences Facilities and Instrumentation Program, and by the Department of Energy Geosciences Program. GSECARS is managed by the Consortium for Advanced Radiation Sources (CARS) at the University of Chicago, and provides access to resources for earth science research which no single university or other institution could provide. By operating beamlines that are specialized for earth science research, we are able to provide staff who understand and participate in the research being conducted, which is critical for productivity. GSECARS began operations in 1996, and currently operates 4 experimental stations, two on the bending magnet beamline and two on the undulator beamline. The two bending magnet stations operate independently and simultaneously, while the two undulator stations currently share the beam time. (An upgrade proposal has recently been funded by NSF, DOE and NASA to allow the undulator stations to also operate independently and simultaneously). The experimental techniques provided at the facility include: - Diamond Anvil Cell: Monochromatic diffraction and spectroscopy. Online laser heating is available on the undulator beamline, and external heating is available on the bending magnet beamline. - Multi-anvil Press: energy-dispersive and monochromatic diffraction and imaging. There is a 250 ton press on the bending magnet beamline, and a 1000 ton press on the undulator beamline; deformation experiments, acoustic velocity measurements, and computed tomography can all be performed in the press. - Microprobe: micro-XRF, micro-XAFS, fluorescence microCMT, micro-XRD - Microtomography: absorption and differential

  3. Clinical and Research Activities at the CATANA Facility of INFN-LNS: From the Conventional Hadrontherapy to the Laser-Driven Approach

    Directory of Open Access Journals (Sweden)

    Giuseppe A. P. Cirrone

    2017-09-01

    Full Text Available The CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results. The last part of the paper is dedicated to the description of the INFN-LNS ongoing activities on the realization of a beamline for the transport of laser-accelerated ion beams for future applications. The ELIMED (ELI-Beamlines MEDical and multidisciplinary applications project is introduced and the main scientific aspects will be described.

  4. New x-ray parallel beam facility XPBF 2.0 for the characterization of silicon pore optics

    Science.gov (United States)

    Krumrey, Michael; Müller, Peter; Cibik, Levent; Collon, Max; Barrière, Nicolas; Vacanti, Giuseppe; Bavdaz, Marcos; Wille, Eric

    2016-07-01

    A new X-ray parallel beam facility (XPBF 2.0) has been installed in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II in Berlin to characterize silicon pore optics (SPOs) for the future X-ray observatory ATHENA. As the existing XPBF which is operated since 2005, the new beamline provides a pencil beam of very low divergence, a vacuum chamber with a hexapod system for accurate positioning of the SPO to be investigated, and a vertically movable CCD-based camera system to register the direct and the reflected beam. In contrast to the existing beamline, a multilayer-coated toroidal mirror is used for beam monochromatization at 1.6 keV and collimation, enabling the use of beam sizes between about 100 μm and at least 5 mm. Thus the quality of individual pores as well as the focusing properties of large groups of pores can be investigated. The new beamline also features increased travel ranges for the hexapod to cope with larger SPOs and a sample to detector distance of 12 m corresponding to the envisaged focal length of ATHENA.

  5. Internal elemental imaging by scanning X-ray fluorescence microtomography at the hard X-ray microprobe beamline of the SSRF: Preliminary experimental results

    Science.gov (United States)

    Qiu, Jingke; Deng, Biao; Yang, Qun; Yan, Fen; Li, Aiguo; Yu, Xiaohan

    2011-11-01

    Synchrotron-based X-ray micro-fluorescence (μ-SXRF) is a non-destructive analytical technique and has been widely used to detect and quantify the elemental composition of samples in their natural state. To determine the internal elemental distributions within samples, X-ray fluorescence microtomography has been developed based on the hard X-ray microprobe at beamline BL15U1 of the Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. This technique was applied to image the cross-sectional distributions of multiple elements within a single human hair, and its validity was evaluated by comparing the results with the elemental maps of a thin hair section obtained using the well-established μ-SXRF mapping method. Elemental images of S, Ca, Mn, Fe, Cu, and Zn within a virtual slice of the hair were reconstructed after the tomographic measurements. The tomographic images of heavy elements like Fe, Cu, and Zn were found to be in good agreement with the corresponding μ-SXRF maps. Light elements, such as S, however, represented different patterns due to non-negligible self-absorption in the sample, and sophisticated correction algorithms accounting for such effects are required for obtaining qualitatively and quantitatively more accurate images. Compared to μ-SXRF mapping, X-ray fluorescence microtomography reduces the sample preparation requirements and has been demonstrated in this work as being a more ideal and effective imaging modality to non-destructively mapping out the internal distribution of heavy elements within samples at the micrometer scale at the SSRF.

  6. Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline.

    Science.gov (United States)

    Shimizu, Nobutaka; Shimizu, Tetsuya; Baba, Seiki; Hasegawa, Kazuya; Yamamoto, Masaki; Kumasaka, Takashi

    2013-11-01

    Measurement of the UV-visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV-visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury-xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.

  7. Dose calculations using MARS for Bremsstrahlung beam stops and collimators in APS beamline stations.

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J.; Accelerator Systems Division (APS)

    2010-11-01

    The Monte Carlo radiation transport code MARS is used to model the generation of gas bremsstrahlung (GB) radiation from 7-GeV electrons which scatter from residual gas atoms in undulator straight sections within the Advanced Photon Source (APS) storage ring. Additionally, MARS is employed to model the interactions of the GB radiation with components along the x-ray beamlines and then determine the expected radiation dose-rates that result. In this manner, MARS can be used to assess the adequacy of existing shielding or the specifications for new shielding when required. The GB radiation generated in the 'thin-target' of an ID straight section will consist only of photons in a 1/E-distribution up to the full energy of the stored electron beam. Using this analytical model, the predicted GB power for a typical APS 15.38-m insertion device (ID) straight section is 4.59 x 10{sup -7} W/nTorr/mA, assuming a background gas composed of air (Z{sub eff} = 7.31) at room temperature (293K). The total GB power provides a useful benchmark for comparisons between analytical and numerical approaches. We find good agreement between MARS and analytical estimates for total GB power. The extended straight section 'target' creates a radial profile of GB, which is highly peaked centered on the electron beam. The GB distribution reflects the size of the electron beam that creates the radiation. Optimizing the performance of MARS in terms of CPU time per incident trajectory requires the use of a relatively short, high-density gas target (air); in this report, the target density is {rho}L = 2.89 x 10{sup -2} g/cm{sup 2} over a length of 24 cm. MARS results are compared with the contact dose levels reported in TB-20, which used EGS4 for radiation transport simulations. Maximum dose-rates in 1 cc of tissue phantom form the initial basis for comparison. MARS and EGS4 results are approximately the same for maximum 1-cc dose-rates and attenuation in the photon

  8. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Paul

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

  9. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  10. The present status of high-pressure research at Beijing Synchrotron Radiation Facility

    CERN Document Server

    Liu, J; Li, Y C

    2002-01-01

    The present status of high-pressure research at Beijing Synchrotron Radiation Facility is reported. A ten-poles wiggler beamline provides a white beam for investigating samples using a diamond anvil cell. In situ energy-dispersive diffraction is used to determine the pressure-induced phase transitions and equations of state. High pressure can be stably applied by a stepper-motorized loading system with a strain sensor. Some megabar experiments have been carried out without damage on diamonds. Improved beam collimation reduces the background and eliminates gasket scatter. Some research and future developments are also presented.

  11. A spherical grating monochromator and beamline optimised for the provision of polarised synchrotron radiation in the photon energy range 20-200 eV

    Energy Technology Data Exchange (ETDEWEB)

    Finetti, P.; Holland, D.M.P. E-mail: d.m.p.holland@dl.ac.uk; Latimer, C.J.; Binns, C.; Quinn, F.M.; Bowler, M.A.; Grant, A.F.; Mythen, C.S

    2001-12-01

    The design and performance of a spherical grating monochromator and beamline optimised for experiments requiring polarised radiation are described. The beamline is mounted on a bending magnet source at the Synchrotron Radiation Source at Daresbury Laboratory, and the monochromator incorporates three gratings to cover the photon energy range 20-200 eV. The relative first- and higher-order grating efficiencies have been measured by means of photoelectron spectroscopy and have been compared to theoretical predictions. A movable aperture, placed in the optical path between the source and the first mirror, defines the photon emission directions of the beam entering the beamline. The polarisation of the radiation leaving the beamline is determined both by the vertical position of this aperture and by the modifications introduced by the beamline geometry and the optical components. The modification to the polarisation is difficult to calculate analytically, and a satisfactory quantitative assessment can only be accomplished through a combination of reflectivity and ray-tracing analysis. A reflection polarimeter has been used to obtain a full characterisation of the polarisation in the energy range 20-40 eV. These measurements have enabled the Stokes parameters to be deduced. The degree of linear polarisation has also been investigated through angle resolved photoelectron spectroscopy measurements.

  12. Final Technical Report on STTR Project DE-FG02-06ER86281 Particle Tracking in Matter-Dominated Beam Lines (G4beamline)

    Energy Technology Data Exchange (ETDEWEB)

    Muons, Inc.

    2011-05-19

    This project has been for software development of the G4beamline [1] program, which is a particle-tracking simulation program based on the Geant4 toolkit [2], optimized for beam lines. This program can perform more realistic simulations than most alternatives, while being significantly easier to use by physicists. This project has fostered the general acceptance of G4beamline within the muon community, and has assisted in expanding its role outside that community. During this project, the G4beamline user community has grown from about a half-dozen users to more than 200 users around the world. This project also validated our business decision to keep G4beamline an open-source program, judging that an STTR project would provide more development resources than would marketing and selling the program. G4beamline is freely available to the physics community, and has been well validated against experiments and other codes within its domain. Muons, Inc. continues to support and develop the program, and a major part of the company's continued success and growth is directly related to our expertise in applying this program to interesting applications.

  13. Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

    2011-08-21

    The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

  14. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  15. New synchrotron powder diffraction facility for long-duration experiments

    Science.gov (United States)

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  16. Construction and Commissioning of PAL-XFEL Facility

    Directory of Open Access Journals (Sweden)

    In Soo Ko

    2017-05-01

    Full Text Available The construction of Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL, a 0.1-nm hard X-ray free-electron laser (FEL facility based on a 10-GeV S-band linear accelerator (LINAC, is achieved in Pohang, Korea by the end of 2016. The construction of the 1.11 km-long building was completed by the end of 2014, and the installation of the 10-GeV LINAC and undulators started in January 2015. The installation of the 10-GeV LINAC, together with the undulators and beamlines, was completed by the end of 2015. The commissioning began in April 2016, and the first lasing of the hard X-ray FEL line was achieved on 14 June 2016. The progress of the PAL-XFEL construction and its commission are reported here.

  17. New synchrotron powder diffraction facility for long-duration experiments.

    Science.gov (United States)

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  18. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  19. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  20. The National Ignition Facility Performance Status

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C; Auerbach, J; Nicola, J D; Dixit, S; Heestand, G; Henesian, M; Jancaitis, K; Manes, K; Marshall, C; Mehta, N; Nostrand, M; Orth, C; Sacks, R; Shaw, M; Sutton, S; Wegner, P; Williams, W; Widmayer, C; White, R; Yang, S; Van Wonterghem, B

    2005-08-30

    The National Ignition Facility (NIF) laser has been designed to support high energy density science (HEDS), including the demonstration of fusion ignition through Inertial Confinement. NIF operated a single ''quad'' of 4 beams from December 2002 through October 2004 in order to gain laser operations experience, support target experiments, and demonstrate laser performance consistent with NIF's design requirement. During this two-year period, over 400 Main Laser shots were delivered at 1{omega} to calorimeters for diagnostic calibration purposes, at 3{omega} to the Target Chamber, and at 1{omega}, 2{omega}, and 3{omega} to the Precision Diagnostics System (PDS). The PDS includes its own independent single beam transport system, NIF design frequency conversion hardware and optics, and laser sampling optics that deliver light to a broad range of laser diagnostics. Highlights of NIF laser performance will be discussed including the results of high energy 2{omega} and 3{omega} experiments, the use of multiple focal spot beam conditioning techniques, the reproducibility of laser performance on multiple shots, the generation on a single beam of a 3{omega} temporally shaped ignition pulse at full energy and power, and recent results on full bundle (8 beamline) performance. NIF's first quad laser performance meets or exceeds NIF's design requirements.

  1. The national ignition facility performance status

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C.; Auerbach, J.; Bowers, M.; Di-Nicola, J.M.; Dixit, S.; Erbert, G.; Heestand, G.; Henesian, M.; Jancaitis, K.; Manes, K.; Marshall, C.; Mehta, N.; Nostrand, M.; Orth, C.; Sacks, R.; Shaw, M.; Sutton, S.; Wegner, P.; Williams, W.; Widmayer, C.; White, R.; Yang, S.; Van Wonterghem, B. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2006-06-15

    The National Ignition Facility (NIF) laser has been designed to support high energy density science, including the demonstration of fusion ignition through Inertial Confinement. NIF operated a single 'quad' of 4 beams from December 2002 through October 2004 in order to gain laser operations experience, support target experiments, and demonstrate laser performance consistent with NIF's design requirement. During this two-year period, over 400 Main Laser shots were delivered at 1{omega} to calorimeters for diagnostic calibration purposes, at 3{omega} to the Target Chamber, and at 1{omega}, 2{omega}, and 3{omega} to the precision diagnostic system (PDS). The PDS includes its own independent single beam transport system, NIF design frequency conversion hardware and optics, and laser sampling optics that deliver light to a broad range of laser diagnostics. Highlights of NIF laser performance will be discussed including the results of high energy 2{omega} and 3{omega} experiments, the use of multiple focal spot beam conditioning techniques, the reproducibility of laser performance on multiple shots, the generation on a single beam of a 3{omega} temporally shaped ignition pulse at full energy and power, and recent results on full bundle (8 beamline) performance. NIF's first quad laser performance meets or exceeds NIF's design requirements. (authors)

  2. Facility Registry Service (FRS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Facility Registry Service (FRS) provides an integrated source of comprehensive (air, water, and waste) environmental information about facilities across EPA,...

  3. Licensed Healthcare Facilities

    Data.gov (United States)

    California Department of Resources — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  4. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  5. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  6. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology research The Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  7. Licensed Healthcare Facilities

    Data.gov (United States)

    California Department of Resources — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  8. Angle-resolved electron and ion spectroscopy apparatus on the soft X-ray photochemistry beamline BL27SU at SPring-8

    CERN Document Server

    Ueda, K; Senba, Y; Okada, K; Shimizu, Y; Chiba, H; Ohashi, H; Tamenori, Y; Okumura, H; Saitô, N; Nagaoka, S; Hiraya, A; Ishiguro, E; Ibuki, T; Suzuki, I H; Koyano, I

    2001-01-01

    We have designed and constructed the apparatus for the angular distribution measurements of photoejected electrons and ions from free molecules, as a part of the endstation of the c-branch of the beamline BL27SU, a soft X-ray photochemistry beamline at SPring-8. The experimental procedures are described in combination with the use of a capability to switch the horizontal and vertical directions of the linear polarization of the light produced by the figure-8 undulator. As a typical example of the experimental results, we present angle-resolved energetic ion yield spectra in the O 1s excitation region of CO sub 2.

  9. Upgrade of IMCA-CAT Bending Magnet Beamline 17-BM for Macromolecular Crystallography at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, I.; Huang, R.; Graber, T.; Meron, M.; Muir, J.L.; Lavender, W.; Battaile, K.; Mulichak, A.M.; Keefe, L.J. (UC)

    2007-05-15

    Pharmaceutical research depends on macromolecular crystallography as a tool in drug design and development. To solve the de novo three-dimensional atomic structure of a protein, it is essential to know the phases of the X-rays scattered by a protein crystal. Experimental phases can be obtained from multiwavelength anomalous dispersion (MAD) experiments. Dedicated to macromolecular crystallography, the IMCA-CAT bending magnet beamline at sector 17 of the Advanced Photon Source (APS) was upgraded to provide the energy resolution required to successfully perform synchrotron radiation-based MAD phasing of protein crystal structures. A collimating mirror was inserted into the beam path upstream of a double-crystal monochromator, thus increasing the monochromatic beam throughput in a particular bandwidth without sacrificing the energy resolution of the system. The beam is focused horizontally by a sagittally bent crystal and vertically by a cylindrically bent mirror, delivering a beam at the sample of 130 {micro}m (vertically) x 250 {micro}m (horizontally) FWHM. As a result of the upgrade, the beamline now operates with an energy range of 7.5 x 17.5 keV, delivers 8 x 10{sup +11} photons/sec at 12.398 keV at the sample, and has an energy resolution of {delta}E/E = 1.45 x 10{sup -4} at 10 keV, which is suitable for MAD experiments.

  10. Measurement of X-ray beam emittance using crystal optics at an X-ray undulator beamline

    CERN Document Server

    Kohmura, Y; Awaji, M; Tanaka, T; Hara, T; Goto, S; Ishikawa, T

    2000-01-01

    We present a method of using crystal optics to measure the emittance of the X-ray source. Two perfect crystals set in (++) configuration work as a high-resolution collimator. The phase-space diagram (i.e. beam cross-section and angular distribution) could be determined without any assumptions on the light source. When the measurement is done at short wavelength radiation from undulator, the electron beam emittance is larger than the diffraction limit of the X-rays. Therefore, the electron beam emittance could be estimated. The measurement was done with the hard X-rays of 18.5 and 55 keV from an undulator beamline, BL 47XU, of SPring-8. The horizontal emittance of the X-ray beam was estimated to be about 7.6 nmrad, close to the designed electron beam emittance of the storage ring (7 nmrad). Some portions of the instrumental functions, such as the scattering by filters and windows along the beamline and the slight bent of the crystal planes of the monochromator, could not be precisely evaluated, but an upper li...

  11. Designing an elliptical supermirror guide for the high-pressure material science beamline of J-PARC

    Science.gov (United States)

    Arima, Hiroshi; Komatsu, Kazuki; Ikeda, Kazuaki; Hirota, Katsuya; Kagi, Hiroyuki

    2009-02-01

    The design of an elliptical neutron guide for the time-of-flight (TOF) powder diffractometer of the high-pressure material science beamline at J-PARC was optimized using the McStas Monte Carlo simulation program to increase neutron flux for a small sample size. We investigated the analytical design in accordance with some requirements such as the gain factor at the small sample size and sufficient resolution at shorter wavelength of incident neutrons. The intensity and divergence with respect to energy dependence for elliptical guide designs were compared with those for the linearly tapered and straight guides. Optimizing the design of the elliptical guide results in the largest gain below 0.70 Å wavelength and gives constant instrumental resolution greater than 1 Å. The guide can support a flux gain of about 2.2 (high-intensity mode, Δ d/ d of ca. 0.6%) and 1.2 (high-resolution mode; Δ d/ d of ca. 0.5%) greater than 1 Å compared to the beamline of the natural flight path with resolution similar to that provided by the optimized elliptical guide.

  12. Designing an elliptical supermirror guide for the high-pressure material science beamline of J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Arima, Hiroshi [Geochemical Laboratory, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033 (Japan)], E-mail: arima.hiroshi@jaea.go.jp; Komatsu, Kazuki [Geochemical Laboratory, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033 (Japan); Ikeda, Kazuaki; Hirota, Katsuya [RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kagi, Hiroyuki [Geochemical Laboratory, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033 (Japan)

    2009-02-21

    The design of an elliptical neutron guide for the time-of-flight (TOF) powder diffractometer of the high-pressure material science beamline at J-PARC was optimized using the McStas Monte Carlo simulation program to increase neutron flux for a small sample size. We investigated the analytical design in accordance with some requirements such as the gain factor at the small sample size and sufficient resolution at shorter wavelength of incident neutrons. The intensity and divergence with respect to energy dependence for elliptical guide designs were compared with those for the linearly tapered and straight guides. Optimizing the design of the elliptical guide results in the largest gain below 0.70 A wavelength and gives constant instrumental resolution greater than 1 A. The guide can support a flux gain of about 2.2 (high-intensity mode, {delta}d/d of ca. 0.6%) and 1.2 (high-resolution mode; {delta}d/d of ca. 0.5%) greater than 1 A compared to the beamline of the natural flight path with resolution similar to that provided by the optimized elliptical guide.

  13. A new technique to measure the neutralizer cell gas line density applied to a DIII-D neutral beamline

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, D.N.; Hong, R.M.; Riggs, S.P.

    1995-10-01

    The DIII-D tokamak employs eight ion sources for plasma heating. In order to obtain the maximum neutralization of energetic ions (providing maximum neutral beam power) and reduce the heat load on beamline internal components caused by residual energetic ions, sufficient neutral gas must be injected into the beamline neutralizer cell. The neutral gas flow rate must be optimized, however, since excessive gas will increase power losses due to neutral beam scattering and reionization. It is important, therefore, to be able to determine the neutralizer cell gas line density. A new technique which uses the ion source suppressor grid current to obtain the neutralizer cell gas line density has been developed. The technique uses the fact that slow ions produced by beam-gas interactions in the neutralizer cell during beam extraction are attracted to the negative potential applied to the suppressor grid, inducing current flow in the grid. By removing the dependence on beam energy and beam current a normalized suppressor grid current function can be formed which is dependent only on the gas line density. With this technique it is possible to infer the gas line density on a shot by shot basis.

  14. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  15. 1-40-keV fixed-exit monochromator for a wafer mapping TXRF facility

    Science.gov (United States)

    Comin, Fabio; Apostolo, G.; Freund, Andreas K.; Mangiagalli, P.; Navizet, M.; Troxel, C. L.

    1998-12-01

    An industrial facility for the mapping of trace impurities on the surface of 300 mm Silicon wafers will be commissioned at the end of 1998. The elements to be detected range from Na to Hg with a target routine detection limit of 108 atoms/cm2. The monochromator of the facility plays a central role and fulfills the following requirements: ease of operations and fast tuning (one single motor); extended energy range (1 - 40 KeV covered by a fixed exit Si(111) channel cut and multilayer pair); smooth and reliable running (water cooling even in the powerful ESRF undulator beams at high energies). The mechanical structure of the monochromator is based on well-established concepts: an external goniometer transfers the main rotation to the in-vacuum plateau via a hollow differentially pumped feed-through. The optical arrangement shows some novelties: the plateau can be cooled either by water or liquid nitrogen and it holds the convex- concave machined Si(111) channel-cut for fixed exit performances. The shape of the machined surfaces of the crystal helps also on to spread the power density of the beam on the silicon surface. A set of two identical multilayers are also mounted on the plateau and the transition from the Si(111) crystal to the multilayer operation is performed by rotating the wafer main axis by about 180 degrees. The whole facility is centered around the three main components: the monochromator, the wafer handling robots and the two linear arrays of solid state fluorescence detectors.

  16. Analysis of induced radionuclides in low-activation concrete (limestone concrete) using the 12 GeV proton synchrotron accelerator facility at KEK.

    Science.gov (United States)

    Saito, K; Tanosaki, T; Fujii, H; Miura, T

    2005-01-01

    22Na is one of the long-lived radionuclides induced in shielding concrete of a beam-line tunnel of a high-energy particle accelerator facility and poses a problem of radiation wastes at the decommissioning of the facility. In order to estimate the 22Na concentration induced in shielding concrete, chemical reagents such as NaHCO3, MgO, Al203, SiO2 and CaCO3 were irradiated at several locations in the beam-line tunnel of the 12 GeV proton synchrotron accelerator at KEK, and the 22Na concentrations induced in those chemical reagents were measured. Low-activation concrete made up of limestone aggregates was also irradiated by secondary particles in the beam-line tunnel and the long-lived radionuclide, such as 22Na, concentrations induced in the concrete were measured. It was confirmed that 22Na concentrations induced in Mg, Al, Si and Ca were lower than that in Na, and that 22Na concentrations induced in the low-activation concrete was lower than those induced in ordinary concrete made up of sandstone aggregates.

  17. Reliable Facility Location Problem with Facility Protection.

    Science.gov (United States)

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed.

  18. A national facility for biological cryo-electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Saibil, Helen R., E-mail: h.saibil@mail.cryst.bbk.ac.uk [Birkbeck College, Malet Street, London WC1E 7HX (United Kingdom); Grünewald, Kay [University of Oxford, Oxford OX3 7BN (United Kingdom); Stuart, David I. [University of Oxford, Oxford OX3 7BN (United Kingdom); Diamond Light Source, Didcot OX11 0DE (United Kingdom); Birkbeck College, Malet Street, London WC1E 7HX (United Kingdom)

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  19. The at-wavelength metrology facility for UV- and XUV-reflection and diffraction optics at BESSY-II.

    Science.gov (United States)

    Schäfers, F; Bischoff, P; Eggenstein, F; Erko, A; Gaupp, A; Künstner, S; Mast, M; Schmidt, J-S; Senf, F; Siewert, F; Sokolov, A; Zeschke, Th

    2016-01-01

    A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200 lines mm(-1)) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here.

  20. The new confocal heavy ion microprobe beamline at ANSTO: The first microprobe resolution tests and applications for elemental imaging and analysis

    Science.gov (United States)

    Pastuovic, Z.; Siegele, R.; Cohen, D. D.; Mann, M.; Ionescu, M.; Button, D.; Long, S.

    2017-08-01

    The Centre for Accelerator Science facility at ANSTO has been expanded with the new NEC 6 MV ;SIRIUS; accelerator system in 2015. In this paper we present a detailed description of the new nuclear microprobe-Confocal Heavy Ion Micro-Probe (CHIMP) together with results of the microprobe resolution testing and the elemental analysis performed on typical samples of mineral ore deposits and hyper-accumulating plants regularly measured at ANSTO. The CHIMP focusing and scanning systems are based on the OM-150 Oxford quadrupole triplet and the OM-26 separated scan-coil doublet configurations. A maximum ion rigidity of 38.9 amu-MeV was determined for the following nuclear microprobe configuration: the distance from object aperture to collimating slits of 5890 mm, the working distance of 165 mm and the lens bore diameter of 11 mm. The overall distance from the object to the image plane is 7138 mm. The CHIMP beamline has been tested with the 3 MeV H+ and 6 MeV He2+ ion beams. The settings of the object and collimating apertures have been optimized using the WinTRAX simulation code for calculation of the optimum acceptance settings in order to obtain the highest possible ion current for beam spot sizes of 1 μm and 5 μm. For optimized aperture settings of the CHIMP the beam brightness was measured to be ∼0.9 pA μm-2 mrad-2 for 3 MeV H+ ions, while the brightness of ∼0.4 pA μm-2 mrad-2 was measured for 6 MeV He2+ ions. The smallest beam sizes were achieved using a microbeam with reduced particle rate of 1000 Hz passing through the object slit apertures several micrometers wide. Under these conditions a spatial resolution of ∼0.6 μm × 1.5 μm for 3 MeV H+ and ∼1.8 μm × 1.8 μm for 6 MeV He2+ microbeams in horizontal (and vertical) dimension has been achieved. The beam sizes were verified using STIM imaging on 2000 and 1000 mesh Cu electron microscope grids.