WorldWideScience

Sample records for facility distributed computer

  1. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  2. Integration of distributed plant process computer systems to nuclear power generation facilities

    International Nuclear Information System (INIS)

    Bogard, T.; Finlay, K.

    1996-01-01

    Many operating nuclear power generation facilities are replacing their plant process computer. Such replacement projects are driven by equipment obsolescence issues and associated objectives to improve plant operability, increase plant information access, improve man machine interface characteristics, and reduce operation and maintenance costs. This paper describes a few recently completed and on-going replacement projects with emphasis upon the application integrated distributed plant process computer systems. By presenting a few recent projects, the variations of distributed systems design show how various configurations can address needs for flexibility, open architecture, and integration of technological advancements in instrumentation and control technology. Architectural considerations for optimal integration of the plant process computer and plant process instrumentation ampersand control are evident from variations of design features

  3. Computing facility at SSC for detectors

    International Nuclear Information System (INIS)

    Leibold, P.; Scipiono, B.

    1990-01-01

    A description of the RISC-based distributed computing facility for detector simulaiton being developed at the SSC Laboratory is discussed. The first phase of this facility is scheduled for completion in early 1991. Included is the status of the project, overview of the concepts used to model and define system architecture, networking capabilities for user access, plans for support of physics codes and related topics concerning the implementation of this facility

  4. The Overview of the National Ignition Facility Distributed Computer Control System

    International Nuclear Information System (INIS)

    Lagin, L.J.; Bettenhausen, R.C.; Carey, R.A.; Estes, C.M.; Fisher, J.M.; Krammen, J.E.; Reed, R.K.; VanArsdall, P.J.; Woodruff, J.P.

    2001-01-01

    The Integrated Computer Control System (ICCS) for the National Ignition Facility (NIF) is a layered architecture of 300 front-end processors (FEP) coordinated by supervisor subsystems including automatic beam alignment and wavefront control, laser and target diagnostics, pulse power, and shot control timed to 30 ps. FEP computers incorporate either VxWorks on PowerPC or Solaris on UltraSPARC processors that interface to over 45,000 control points attached to VME-bus or PCI-bus crates respectively. Typical devices are stepping motors, transient digitizers, calorimeters, and photodiodes. The front-end layer is divided into another segment comprised of an additional 14,000 control points for industrial controls including vacuum, argon, synthetic air, and safety interlocks implemented with Allen-Bradley programmable logic controllers (PLCs). The computer network is augmented asynchronous transfer mode (ATM) that delivers video streams from 500 sensor cameras monitoring the 192 laser beams to operator workstations. Software is based on an object-oriented framework using CORBA distribution that incorporates services for archiving, machine configuration, graphical user interface, monitoring, event logging, scripting, alert management, and access control. Software coding using a mixed language environment of Ada95 and Java is one-third complete at over 300 thousand source lines. Control system installation is currently under way for the first 8 beams, with project completion scheduled for 2008

  5. Computer program for source distribution process in radiation facility

    International Nuclear Information System (INIS)

    Al-Kassiri, H.; Abdul Ghani, B.

    2007-08-01

    Computer simulation for dose distribution using Visual Basic has been done according to the arrangement and activities of Co-60 sources. This program provides dose distribution in treated products depending on the product density and desired dose. The program is useful for optimization of sources distribution during loading process. there is good agreement between calculated data for the program and experimental data.(Author)

  6. A distributed data base management facility for the CAD/CAM environment

    Science.gov (United States)

    Balza, R. M.; Beaudet, R. W.; Johnson, H. R.

    1984-01-01

    Current/PAD research in the area of distributed data base management considers facilities for supporting CAD/CAM data management in a heterogeneous network of computers encompassing multiple data base managers supporting a variety of data models. These facilities include coordinated execution of multiple DBMSs to provide for administration of and access to data distributed across them.

  7. Improving CMS data transfers among its distributed computing facilities

    CERN Document Server

    Flix, J; Sartirana, A

    2001-01-01

    CMS computing needs reliable, stable and fast connections among multi-tiered computing infrastructures. For data distribution, the CMS experiment relies on a data placement and transfer system, PhEDEx, managing replication operations at each site in the distribution network. PhEDEx uses the File Transfer Service (FTS), a low level data movement service responsible for moving sets of files from one site to another, while allowing participating sites to control the network resource usage. FTS servers are provided by Tier-0 and Tier-1 centres and are used by all computing sites in CMS, according to the established policy. FTS needs to be set up according to the Grid site's policies, and properly configured to satisfy the requirements of all Virtual Organizations making use of the Grid resources at the site. Managing the service efficiently requires good knowledge of the CMS needs for all kinds of transfer workflows. This contribution deals with a revision of FTS servers used by CMS, collecting statistics on thei...

  8. Improving CMS data transfers among its distributed computing facilities

    CERN Document Server

    Flix, Jose

    2010-01-01

    CMS computing needs reliable, stable and fast connections among multi-tiered computing infrastructures. For data distribution, the CMS experiment relies on a data placement and transfer system, PhEDEx, managing replication operations at each site in the distribution network. PhEDEx uses the File Transfer Service (FTS), a low level data movement service responsible for moving sets of files from one site to another, while allowing participating sites to control the network resource usage. FTS servers are provided by Tier-0 and Tier-1 centres and are used by all computing sites in CMS, according to the established policy. FTS needs to be set up according to the Grid site's policies, and properly configured to satisfy the requirements of all Virtual Organizations making use of the Grid resources at the site. Managing the service efficiently requires good knowledge of the CMS needs for all kinds of transfer workflows. This contribution deals with a revision of FTS servers used by CMS, collecting statistics on the...

  9. Distributed computing for macromolecular crystallography.

    Science.gov (United States)

    Krissinel, Evgeny; Uski, Ville; Lebedev, Andrey; Winn, Martyn; Ballard, Charles

    2018-02-01

    Modern crystallographic computing is characterized by the growing role of automated structure-solution pipelines, which represent complex expert systems utilizing a number of program components, decision makers and databases. They also require considerable computational resources and regular database maintenance, which is increasingly more difficult to provide at the level of individual desktop-based CCP4 setups. On the other hand, there is a significant growth in data processed in the field, which brings up the issue of centralized facilities for keeping both the data collected and structure-solution projects. The paradigm of distributed computing and data management offers a convenient approach to tackling these problems, which has become more attractive in recent years owing to the popularity of mobile devices such as tablets and ultra-portable laptops. In this article, an overview is given of developments by CCP4 aimed at bringing distributed crystallographic computations to a wide crystallographic community.

  10. Joint Computing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raised Floor Computer Space for High Performance ComputingThe ERDC Information Technology Laboratory (ITL) provides a robust system of IT facilities to develop and...

  11. Improving CMS data transfers among its distributed computing facilities

    International Nuclear Information System (INIS)

    Flix, J; Magini, N; Sartirana, A

    2011-01-01

    CMS computing needs reliable, stable and fast connections among multi-tiered computing infrastructures. For data distribution, the CMS experiment relies on a data placement and transfer system, PhEDEx, managing replication operations at each site in the distribution network. PhEDEx uses the File Transfer Service (FTS), a low level data movement service responsible for moving sets of files from one site to another, while allowing participating sites to control the network resource usage. FTS servers are provided by Tier-0 and Tier-1 centres and are used by all computing sites in CMS, according to the established policy. FTS needs to be set up according to the Grid site's policies, and properly configured to satisfy the requirements of all Virtual Organizations making use of the Grid resources at the site. Managing the service efficiently requires good knowledge of the CMS needs for all kinds of transfer workflows. This contribution deals with a revision of FTS servers used by CMS, collecting statistics on their usage, customizing the topologies and improving their setup in order to keep CMS transferring data at the desired levels in a reliable and robust way.

  12. Distributed computing testbed for a remote experimental environment

    International Nuclear Information System (INIS)

    Butner, D.N.; Casper, T.A.; Howard, B.C.; Henline, P.A.; Davis, S.L.; Barnes, D.

    1995-01-01

    Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ''Collaboratory.'' The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on the DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation's Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility

  13. Computer-Aided Facilities Management Systems (CAFM).

    Science.gov (United States)

    Cyros, Kreon L.

    Computer-aided facilities management (CAFM) refers to a collection of software used with increasing frequency by facilities managers. The six major CAFM components are discussed with respect to their usefulness and popularity in facilities management applications: (1) computer-aided design; (2) computer-aided engineering; (3) decision support…

  14. Monte Carlo in radiotherapy: experience in a distributed computational environment

    Science.gov (United States)

    Caccia, B.; Mattia, M.; Amati, G.; Andenna, C.; Benassi, M.; D'Angelo, A.; Frustagli, G.; Iaccarino, G.; Occhigrossi, A.; Valentini, S.

    2007-06-01

    New technologies in cancer radiotherapy need a more accurate computation of the dose delivered in the radiotherapeutical treatment plan, and it is important to integrate sophisticated mathematical models and advanced computing knowledge into the treatment planning (TP) process. We present some results about using Monte Carlo (MC) codes in dose calculation for treatment planning. A distributed computing resource located in the Technologies and Health Department of the Italian National Institute of Health (ISS) along with other computer facilities (CASPUR - Inter-University Consortium for the Application of Super-Computing for Universities and Research) has been used to perform a fully complete MC simulation to compute dose distribution on phantoms irradiated with a radiotherapy accelerator. Using BEAMnrc and GEANT4 MC based codes we calculated dose distributions on a plain water phantom and air/water phantom. Experimental and calculated dose values below ±2% (for depth between 5 mm and 130 mm) were in agreement both in PDD (Percentage Depth Dose) and transversal sections of the phantom. We consider these results a first step towards a system suitable for medical physics departments to simulate a complete treatment plan using remote computing facilities for MC simulations.

  15. Centralized computer-based controls of the Nova Laser Facility

    International Nuclear Information System (INIS)

    Krammen, J.

    1985-01-01

    This article introduces the overall architecture of the computer-based Nova Laser Control System and describes its basic components. Use of standard hardware and software components ensures that the system, while specialized and distributed throughout the facility, is adaptable. 9 references, 6 figures

  16. Lustre Distributed Name Space (DNE) Evaluation at the Oak Ridge Leadership Computing Facility (OLCF)

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, James S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Computational Sciences; Leverman, Dustin B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Computational Sciences; Hanley, Jesse A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Computational Sciences; Oral, Sarp [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Computational Sciences

    2016-08-22

    This document describes the Lustre Distributed Name Space (DNE) evaluation carried at the Oak Ridge Leadership Computing Facility (OLCF) between 2014 and 2015. DNE is a development project funded by the OpenSFS, to improve Lustre metadata performance and scalability. The development effort has been split into two parts, the first part (DNE P1) providing support for remote directories over remote Lustre Metadata Server (MDS) nodes and Metadata Target (MDT) devices, while the second phase (DNE P2) addressed split directories over multiple remote MDS nodes and MDT devices. The OLCF have been actively evaluating the performance, reliability, and the functionality of both DNE phases. For these tests, internal OLCF testbed were used. Results are promising and OLCF is planning on a full DNE deployment by mid-2016 timeframe on production systems.

  17. Distributed computer controls for accelerator systems

    Science.gov (United States)

    Moore, T. L.

    1989-04-01

    A distributed control system has been designed and installed at the Lawrence Livermore National Laboratory Multiuser Tandem Facility using an extremely modular approach in hardware and software. The two tiered, geographically organized design allowed total system implantation within four months with a computer and instrumentation cost of approximately $100k. Since the system structure is modular, application to a variety of facilities is possible. Such a system allows rethinking of operational style of the facilities, making possible highly reproducible and unattended operation. The impact of industry standards, i.e., UNIX, CAMAC, and IEEE-802.3, and the use of a graphics-oriented controls software suite allowed the effective implementation of the system. The definition, design, implementation, operation and total system performance will be discussed.

  18. Distributed computer controls for accelerator systems

    International Nuclear Information System (INIS)

    Moore, T.L.

    1989-01-01

    A distributed control system has been designed and installed at the Lawrence Livermore National Laboratory Multiuser Tandem Facility using an extremely modular approach in hardware and software. The two tiered, geographically organized design allowed total system implantation within four months with a computer and instrumentation cost of approximately $100k. Since the system structure is modular, application to a variety of facilities is possible. Such a system allows rethinking of operational style of the facilities, making possible highly reproducible and unattended operation. The impact of industry standards, i.e., UNIX, CAMAC, and IEEE-802.3, and the use of a graphics-oriented controls software suite allowed the effective implementation of the system. The definition, design, implementation, operation and total system performance will be discussed. (orig.)

  19. Distributed computer controls for accelerator systems

    International Nuclear Information System (INIS)

    Moore, T.L.

    1988-09-01

    A distributed control system has been designed and installed at the Lawrence Livermore National Laboratory Multi-user Tandem Facility using an extremely modular approach in hardware and software. The two tiered, geographically organized design allowed total system implementation with four months with a computer and instrumentation cost of approximately $100K. Since the system structure is modular, application to a variety of facilities is possible. Such a system allows rethinking and operational style of the facilities, making possible highly reproducible and unattended operation. The impact of industry standards, i.e., UNIX, CAMAC, and IEEE-802.3, and the use of a graphics-oriented controls software suite allowed the efficient implementation of the system. The definition, design, implementation, operation and total system performance will be discussed. 3 refs

  20. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  1. Procedures for economic distribution of radionuclides in research facilities

    International Nuclear Information System (INIS)

    Perry, N.A.

    1979-01-01

    A radionuclide accountability system for use in a research facility is described. It can be operated manually or adapted for computer use. All radionuclides are ordered, received, distributed and paid for by the Radiological Control Office who keep complete records of date of order, receipt, calibration use, transfer and/or disposal. Wipe leak tests, specific activity and lot number are also recorded. The procedure provides centralized total accountability records, including financial records, of all radionuclide orders, and the economic advantages of combined purchasing. The use of this system in two medical facilities has resulted in considerable financial savings in the first year of operation. (author)

  2. Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Jianhua Ni

    2016-08-01

    Full Text Available The spatial distribution of urban service facilities is largely constrained by the road network. In this study, network point pattern analysis and correlation analysis were used to analyze the relationship between road network and healthcare facility distribution. The weighted network kernel density estimation method proposed in this study identifies significant differences between the outside and inside areas of the Ming city wall. The results of network K-function analysis show that private hospitals are more evenly distributed than public hospitals, and pharmacy stores tend to cluster around hospitals along the road network. After computing the correlation analysis between different categorized hospitals and street centrality, we find that the distribution of these hospitals correlates highly with the street centralities, and that the correlations are higher with private and small hospitals than with public and large hospitals. The comprehensive analysis results could help examine the reasonability of existing urban healthcare facility distribution and optimize the location of new healthcare facilities.

  3. Distributed multiscale computing

    NARCIS (Netherlands)

    Borgdorff, J.

    2014-01-01

    Multiscale models combine knowledge, data, and hypotheses from different scales. Simulating a multiscale model often requires extensive computation. This thesis evaluates distributing these computations, an approach termed distributed multiscale computing (DMC). First, the process of multiscale

  4. Computational Science at the Argonne Leadership Computing Facility

    Science.gov (United States)

    Romero, Nichols

    2014-03-01

    The goal of the Argonne Leadership Computing Facility (ALCF) is to extend the frontiers of science by solving problems that require innovative approaches and the largest-scale computing systems. ALCF's most powerful computer - Mira, an IBM Blue Gene/Q system - has nearly one million cores. How does one program such systems? What software tools are available? Which scientific and engineering applications are able to utilize such levels of parallelism? This talk will address these questions and describe a sampling of projects that are using ALCF systems in their research, including ones in nanoscience, materials science, and chemistry. Finally, the ways to gain access to ALCF resources will be presented. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

  5. Conducting Computer Security Assessments at Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-06-01

    Computer security is increasingly recognized as a key component in nuclear security. As technology advances, it is anticipated that computer and computing systems will be used to an even greater degree in all aspects of plant operations including safety and security systems. A rigorous and comprehensive assessment process can assist in strengthening the effectiveness of the computer security programme. This publication outlines a methodology for conducting computer security assessments at nuclear facilities. The methodology can likewise be easily adapted to provide assessments at facilities with other radioactive materials

  6. The OSG Open Facility: an on-ramp for opportunistic scientific computing

    Science.gov (United States)

    Jayatilaka, B.; Levshina, T.; Sehgal, C.; Gardner, R.; Rynge, M.; Würthwein, F.

    2017-10-01

    The Open Science Grid (OSG) is a large, robust computing grid that started primarily as a collection of sites associated with large HEP experiments such as ATLAS, CDF, CMS, and DZero, but has evolved in recent years to a much larger user and resource platform. In addition to meeting the US LHC community’s computational needs, the OSG continues to be one of the largest providers of distributed high-throughput computing (DHTC) to researchers from a wide variety of disciplines via the OSG Open Facility. The Open Facility consists of OSG resources that are available opportunistically to users other than resource owners and their collaborators. In the past two years, the Open Facility has doubled its annual throughput to over 200 million wall hours. More than half of these resources are used by over 100 individual researchers from over 60 institutions in fields such as biology, medicine, math, economics, and many others. Over 10% of these individual users utilized in excess of 1 million computational hours each in the past year. The largest source of these cycles is temporary unused capacity at institutions affiliated with US LHC computational sites. An increasing fraction, however, comes from university HPC clusters and large national infrastructure supercomputers offering unused capacity. Such expansions have allowed the OSG to provide ample computational resources to both individual researchers and small groups as well as sizable international science collaborations such as LIGO, AMS, IceCube, and sPHENIX. Opening up access to the Fermilab FabrIc for Frontier Experiments (FIFE) project has also allowed experiments such as mu2e and NOvA to make substantial use of Open Facility resources, the former with over 40 million wall hours in a year. We present how this expansion was accomplished as well as future plans for keeping the OSG Open Facility at the forefront of enabling scientific research by way of DHTC.

  7. The OSG Open Facility: An On-Ramp for Opportunistic Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Jayatilaka, B. [Fermilab; Levshina, T. [Fermilab; Sehgal, C. [Fermilab; Gardner, R. [Chicago U.; Rynge, M. [USC - ISI, Marina del Rey; Würthwein, F. [UC, San Diego

    2017-11-22

    The Open Science Grid (OSG) is a large, robust computing grid that started primarily as a collection of sites associated with large HEP experiments such as ATLAS, CDF, CMS, and DZero, but has evolved in recent years to a much larger user and resource platform. In addition to meeting the US LHC community’s computational needs, the OSG continues to be one of the largest providers of distributed high-throughput computing (DHTC) to researchers from a wide variety of disciplines via the OSG Open Facility. The Open Facility consists of OSG resources that are available opportunistically to users other than resource owners and their collaborators. In the past two years, the Open Facility has doubled its annual throughput to over 200 million wall hours. More than half of these resources are used by over 100 individual researchers from over 60 institutions in fields such as biology, medicine, math, economics, and many others. Over 10% of these individual users utilized in excess of 1 million computational hours each in the past year. The largest source of these cycles is temporary unused capacity at institutions affiliated with US LHC computational sites. An increasing fraction, however, comes from university HPC clusters and large national infrastructure supercomputers offering unused capacity. Such expansions have allowed the OSG to provide ample computational resources to both individual researchers and small groups as well as sizable international science collaborations such as LIGO, AMS, IceCube, and sPHENIX. Opening up access to the Fermilab FabrIc for Frontier Experiments (FIFE) project has also allowed experiments such as mu2e and NOvA to make substantial use of Open Facility resources, the former with over 40 million wall hours in a year. We present how this expansion was accomplished as well as future plans for keeping the OSG Open Facility at the forefront of enabling scientific research by way of DHTC.

  8. Intelligent distributed computing

    CERN Document Server

    Thampi, Sabu

    2015-01-01

    This book contains a selection of refereed and revised papers of the Intelligent Distributed Computing Track originally presented at the third International Symposium on Intelligent Informatics (ISI-2014), September 24-27, 2014, Delhi, India.  The papers selected for this Track cover several Distributed Computing and related topics including Peer-to-Peer Networks, Cloud Computing, Mobile Clouds, Wireless Sensor Networks, and their applications.

  9. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  10. Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud

    Science.gov (United States)

    Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde

    2014-06-01

    The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.

  11. Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud

    International Nuclear Information System (INIS)

    Limosani, Antonio; Boland, Lucien; Crosby, Sean; Huang, Joanna; Sevior, Martin; Coddington, Paul; Zhang, Shunde; Wilson, Ross

    2014-01-01

    The Australian Government is making a $AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.

  12. Cloud Computing as Evolution of Distributed Computing – A Case Study for SlapOS Distributed Cloud Computing Platform

    Directory of Open Access Journals (Sweden)

    George SUCIU

    2013-01-01

    Full Text Available The cloud computing paradigm has been defined from several points of view, the main two directions being either as an evolution of the grid and distributed computing paradigm, or, on the contrary, as a disruptive revolution in the classical paradigms of operating systems, network layers and web applications. This paper presents a distributed cloud computing platform called SlapOS, which unifies technologies and communication protocols into a new technology model for offering any application as a service. Both cloud and distributed computing can be efficient methods for optimizing resources that are aggregated from a grid of standard PCs hosted in homes, offices and small data centers. The paper fills a gap in the existing distributed computing literature by providing a distributed cloud computing model which can be applied for deploying various applications.

  13. The Future of Distributed Computing Systems in ATLAS: Boldly Venturing Beyond Grids

    CERN Document Server

    Barreiro Megino, Fernando Harald; The ATLAS collaboration

    2018-01-01

    The Production and Distributed Analysis system (PanDA) for the ATLAS experiment at the Large Hadron Collider has seen big changes over the past couple of years to accommodate new types of distributed computing resources: clouds, HPCs, volunteer computers and other external resources. While PanDA was originally designed for fairly homogeneous resources available through the Worldwide LHC Computing Grid, the new resources are heterogeneous, at diverse scales and with diverse interfaces. Up to a fifth of the resources available to ATLAS are of such new types and require special techniques for integration into PanDA. In this talk, we present the nature and scale of these resources. We provide an overview of the various challenges faced, spanning infrastructure, software distribution, workload requirements, scaling requirements, workflow management, data management, network provisioning, and associated software and computing facilities. We describe the strategies for integrating these heterogeneous resources into ...

  14. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    International Nuclear Information System (INIS)

    Klimentov, A; Maeno, T; Nilsson, P; Panitkin, S; Wenaus, T; Buncic, P; De, K; Oleynik, D; Petrosyan, A; Jha, S; Mount, R; Porter, R J; Read, K F; Wells, J C; Vaniachine, A

    2015-01-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(10 2 ) sites, O(10 5 ) cores, O(10 8 ) jobs per year, O(10 3 ) users, and ATLAS data volume is O(10 17 ) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled ‘Next Generation Workload Management and Analysis System for Big Data’ (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center 'Kurchatov Institute' together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the

  15. ATLAS Distributed Computing

    CERN Document Server

    Schovancova, J; The ATLAS collaboration

    2011-01-01

    The poster details the different aspects of the ATLAS Distributed Computing experience after the first year of LHC data taking. We describe the performance of the ATLAS distributed computing system and the lessons learned during the 2010 run, pointing out parts of the system which were in a good shape, and also spotting areas which required improvements. Improvements ranged from hardware upgrade on the ATLAS Tier-0 computing pools to improve data distribution rates, tuning of FTS channels between CERN and Tier-1s, and studying data access patterns for Grid analysis to improve the global processing rate. We show recent software development driven by operational needs with emphasis on data management and job execution in the ATLAS production system.

  16. Using high performance interconnects in a distributed computing and mass storage environment

    International Nuclear Information System (INIS)

    Ernst, M.

    1994-01-01

    Detector Collaborations of the HERA Experiments typically involve more than 500 physicists from a few dozen institutes. These physicists require access to large amounts of data in a fully transparent manner. Important issues include Distributed Mass Storage Management Systems in a Distributed and Heterogeneous Computing Environment. At the very center of a distributed system, including tens of CPUs and network attached mass storage peripherals are the communication links. Today scientists are witnessing an integration of computing and communication technology with the open-quote network close-quote becoming the computer. This contribution reports on a centrally operated computing facility for the HERA Experiments at DESY, including Symmetric Multiprocessor Machines (84 Processors), presently more than 400 GByte of magnetic disk and 40 TB of automoted tape storage, tied together by a HIPPI open-quote network close-quote. Focussing on the High Performance Interconnect technology, details will be provided about the HIPPI based open-quote Backplane close-quote configured around a 20 Gigabit/s Multi Media Router and the performance and efficiency of the related computer interfaces

  17. A distributed process monitoring system for nuclear powered electrical generating facilities

    International Nuclear Information System (INIS)

    Sweney, A.D.

    1991-01-01

    Duke Power Company is one of the largest investor owned utilities in the United States, with a service area of 20,000 square miles extending across North and South Carolina. Oconee Nuclear Station, one of Duke Power's three nuclear generating facilities, is a three unit pressurized water reactor site and has, over the course of its 15-year operating lifetime, effectively run out of plant processing capability. From a severely overcrowded cable spread room to an aging overtaxed Operator Aid Computer, the problems with trying to add additional process variables to the present centralized Operator Aid Computer are almost insurmountable obstacles. This paper reports that for this reason, and to realize the inherent benefits of a distributed process monitoring and control system, Oconee has embarked on a project to demonstrate the ability of a distributed system to perform in the nuclear power plant environment

  18. A large-scale computer facility for computational aerodynamics

    International Nuclear Information System (INIS)

    Bailey, F.R.; Balhaus, W.F.

    1985-01-01

    The combination of computer system technology and numerical modeling have advanced to the point that computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. To provide for further advances in modeling of aerodynamic flow fields, NASA has initiated at the Ames Research Center the Numerical Aerodynamic Simulation (NAS) Program. The objective of the Program is to develop a leading-edge, large-scale computer facility, and make it available to NASA, DoD, other Government agencies, industry and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. The Program will establish an initial operational capability in 1986 and systematically enhance that capability by incorporating evolving improvements in state-of-the-art computer system technologies as required to maintain a leadership role. This paper briefly reviews the present and future requirements for computational aerodynamics and discusses the Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans

  19. Development of the computer code to monitor gamma radiation in the nuclear facility environment

    International Nuclear Information System (INIS)

    Akhmad, Y. R.; Pudjiyanto, M.S.

    1998-01-01

    Computer codes for gamma radiation monitoring in the vicinity of nuclear facility which have been developed could be introduced to the commercial potable gamma analyzer. The crucial stage of the first year activity was succeeded ; that is the codes have been tested to transfer data file (pulse high distribution) from Micro NOMAD gamma spectrometer (ORTEC product) and the convert them into dosimetry and physics quantities. Those computer codes are called as GABATAN (Gamma Analyzer of Batan) and NAGABAT (Natural Gamma Analyzer of Batan). GABATAN code can isable to used at various nuclear facilities for analyzing gamma field up to 9 MeV, while NAGABAT could be used for analyzing the contribution of natural gamma rays to the exposure rate in the certain location

  20. Intelligent Distributed Computing VI : Proceedings of the 6th International Symposium on Intelligent Distributed Computing

    CERN Document Server

    Badica, Costin; Malgeri, Michele; Unland, Rainer

    2013-01-01

    This book represents the combined peer-reviewed proceedings of the Sixth International Symposium on Intelligent Distributed Computing -- IDC~2012, of the International Workshop on Agents for Cloud -- A4C~2012 and of the Fourth International Workshop on Multi-Agent Systems Technology and Semantics -- MASTS~2012. All the events were held in Calabria, Italy during September 24-26, 2012. The 37 contributions published in this book address many topics related to theory and applications of intelligent distributed computing and multi-agent systems, including: adaptive and autonomous distributed systems, agent programming, ambient assisted living systems, business process modeling and verification, cloud computing, coalition formation, decision support systems, distributed optimization and constraint satisfaction, gesture recognition, intelligent energy management in WSNs, intelligent logistics, machine learning, mobile agents, parallel and distributed computational intelligence, parallel evolutionary computing, trus...

  1. Distributed computer control system for reactor optimization

    International Nuclear Information System (INIS)

    Williams, A.H.

    1983-01-01

    At the Oldbury power station a prototype distributed computer control system has been installed. This system is designed to support research and development into improved reactor temperature control methods. This work will lead to the development and demonstration of new optimal control systems for improvement of plant efficiency and increase of generated output. The system can collect plant data from special test instrumentation connected to dedicated scanners and from the station's existing data processing system. The system can also, via distributed microprocessor-based interface units, make adjustments to the desired reactor channel gas exit temperatures. The existing control equipment will then adjust the height of control rods to maintain operation at these temperatures. The design of the distributed system is based on extensive experience with distributed systems for direct digital control, operator display and plant monitoring. The paper describes various aspects of this system, with particular emphasis on: (1) the hierarchal system structure; (2) the modular construction of the system to facilitate installation, commissioning and testing, and to reduce maintenance to module replacement; (3) the integration of the system into the station's existing data processing system; (4) distributed microprocessor-based interfaces to the reactor controls, with extensive security facilities implemented by hardware and software; (5) data transfer using point-to-point and bussed data links; (6) man-machine communication based on VDUs with computer input push-buttons and touch-sensitive screens; and (7) the use of a software system supporting a high-level engineer-orientated programming language, at all levels in the system, together with comprehensive data link management

  2. ATLAS Distributed Computing Shift Operation in the first 2 full years of LHC data taking

    CERN Document Server

    Schovancová, J; The ATLAS collaboration; Elmsheuser, J; Jézéquel, S; Negri, G; Ozturk, N; Sakamoto, H; Slater, M; Smirnov, Y; Ueda, I; Van Der Ster, D C

    2012-01-01

    ATLAS Distributed Computing organized 3 teams to support data processing at Tier-0 facility at CERN, data reprocessing, data management operations, Monte Carlo simulation production, and physics analysis at the ATLAS computing centers located world-wide. In this paper we describe how these teams ensure that the ATLAS experiment data is delivered to the ATLAS physicists in a timely manner in the glamorous era of the LHC data taking. We describe experience with ways how to improve degraded service performance, we detail on the Distributed Analysis support over the exciting period of the computing model evolution.

  3. Oak Ridge Leadership Computing Facility (OLCF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Oak Ridge Leadership Computing Facility (OLCF) was established at Oak Ridge National Laboratory in 2004 with the mission of standing up a supercomputer 100 times...

  4. Distributed-memory matrix computations

    DEFF Research Database (Denmark)

    Balle, Susanne Mølleskov

    1995-01-01

    The main goal of this project is to investigate, develop, and implement algorithms for numerical linear algebra on parallel computers in order to acquire expertise in methods for parallel computations. An important motivation for analyzaing and investigating the potential for parallelism in these......The main goal of this project is to investigate, develop, and implement algorithms for numerical linear algebra on parallel computers in order to acquire expertise in methods for parallel computations. An important motivation for analyzaing and investigating the potential for parallelism...... in these algorithms is that many scientific applications rely heavily on the performance of the involved dense linear algebra building blocks. Even though we consider the distributed-memory as well as the shared-memory programming paradigm, the major part of the thesis is dedicated to distributed-memory architectures....... We emphasize distributed-memory massively parallel computers - such as the Connection Machines model CM-200 and model CM-5/CM-5E - available to us at UNI-C and at Thinking Machines Corporation. The CM-200 was at the time this project started one of the few existing massively parallel computers...

  5. ATLAS Distributed Computing Automation

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Borrego, C; Campana, S; Di Girolamo, A; Elmsheuser, J; Hejbal, J; Kouba, T; Legger, F; Magradze, E; Medrano Llamas, R; Negri, G; Rinaldi, L; Sciacca, G; Serfon, C; Van Der Ster, D C

    2012-01-01

    The ATLAS Experiment benefits from computing resources distributed worldwide at more than 100 WLCG sites. The ATLAS Grid sites provide over 100k CPU job slots, over 100 PB of storage space on disk or tape. Monitoring of status of such a complex infrastructure is essential. The ATLAS Grid infrastructure is monitored 24/7 by two teams of shifters distributed world-wide, by the ATLAS Distributed Computing experts, and by site administrators. In this paper we summarize automation efforts performed within the ATLAS Distributed Computing team in order to reduce manpower costs and improve the reliability of the system. Different aspects of the automation process are described: from the ATLAS Grid site topology provided by the ATLAS Grid Information System, via automatic site testing by the HammerCloud, to automatic exclusion from production or analysis activities.

  6. Computationally intensive econometrics using a distributed matrix-programming language.

    Science.gov (United States)

    Doornik, Jurgen A; Hendry, David F; Shephard, Neil

    2002-06-15

    This paper reviews the need for powerful computing facilities in econometrics, focusing on concrete problems which arise in financial economics and in macroeconomics. We argue that the profession is being held back by the lack of easy-to-use generic software which is able to exploit the availability of cheap clusters of distributed computers. Our response is to extend, in a number of directions, the well-known matrix-programming interpreted language Ox developed by the first author. We note three possible levels of extensions: (i) Ox with parallelization explicit in the Ox code; (ii) Ox with a parallelized run-time library; and (iii) Ox with a parallelized interpreter. This paper studies and implements the first case, emphasizing the need for deterministic computing in science. We give examples in the context of financial economics and time-series modelling.

  7. Distribution Pattern of Healthcare Facilities in Osun State, Nigeria ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    existing spatial pattern of distribution of healthcare facilities play very prominent role in gauging the level of efficiency or ... distribution pattern of healthcare facilities in the thirty local government areas in Osun State, Nigeria. Twelve indices ... (Federal, State and Local) always budget huge .... This, we believe, will help policy.

  8. 2016 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Jim [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The Argonne Leadership Computing Facility (ALCF) helps researchers solve some of the world’s largest and most complex problems, while also advancing the nation’s efforts to develop future exascale computing systems. This report presents some of the ALCF’s notable achievements in key strategic areas over the past year.

  9. Computer Security at Nuclear Facilities

    International Nuclear Information System (INIS)

    Cavina, A.

    2013-01-01

    This series of slides presents the IAEA policy concerning the development of recommendations and guidelines for computer security at nuclear facilities. A document of the Nuclear Security Series dedicated to this issue is on the final stage prior to publication. This document is the the first existing IAEA document specifically addressing computer security. This document was necessary for 3 mains reasons: first not all national infrastructures have recognized and standardized computer security, secondly existing international guidance is not industry specific and fails to capture some of the key issues, and thirdly the presence of more or less connected digital systems is increasing in the design of nuclear power plants. The security of computer system must be based on a graded approach: the assignment of computer system to different levels and zones should be based on their relevance to safety and security and the risk assessment process should be allowed to feed back into and influence the graded approach

  10. Academic Computing Facilities and Services in Higher Education--A Survey.

    Science.gov (United States)

    Warlick, Charles H.

    1986-01-01

    Presents statistics about academic computing facilities based on data collected over the past six years from 1,753 institutions in the United States, Canada, Mexico, and Puerto Rico for the "Directory of Computing Facilities in Higher Education." Organizational, functional, and financial characteristics are examined as well as types of…

  11. 2015 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  12. 2014 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  13. High Performance Computing Facility Operational Assessment 2015: Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ashley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bland, Arthur S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Gary, Jeff D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Hack, James J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; McNally, Stephen T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Rogers, James H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Smith, Brian E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Straatsma, T. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Sukumar, Sreenivas Rangan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Thach, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Tichenor, Suzy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Wells, Jack C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility

    2016-03-01

    Oak Ridge National Laboratory’s (ORNL’s) Leadership Computing Facility (OLCF) continues to surpass its operational target goals: supporting users; delivering fast, reliable systems; creating innovative solutions for high-performance computing (HPC) needs; and managing risks, safety, and security aspects associated with operating one of the most powerful computers in the world. The results can be seen in the cutting-edge science delivered by users and the praise from the research community. Calendar year (CY) 2015 was filled with outstanding operational results and accomplishments: a very high rating from users on overall satisfaction that ties the highest-ever mark set in CY 2014; the greatest number of core-hours delivered to research projects; the largest percentage of capability usage since the OLCF began tracking the metric in 2009; and success in delivering on the allocation of 60, 30, and 10% of core hours offered for the INCITE (Innovative and Novel Computational Impact on Theory and Experiment), ALCC (Advanced Scientific Computing Research Leadership Computing Challenge), and Director’s Discretionary programs, respectively. These accomplishments, coupled with the extremely high utilization rate, represent the fulfillment of the promise of Titan: maximum use by maximum-size simulations. The impact of all of these successes and more is reflected in the accomplishments of OLCF users, with publications this year in notable journals Nature, Nature Materials, Nature Chemistry, Nature Physics, Nature Climate Change, ACS Nano, Journal of the American Chemical Society, and Physical Review Letters, as well as many others. The achievements included in the 2015 OLCF Operational Assessment Report reflect first-ever or largest simulations in their communities; for example Titan enabled engineers in Los Angeles and the surrounding region to design and begin building improved critical infrastructure by enabling the highest-resolution Cybershake map for Southern

  14. Cost effective distributed computing for Monte Carlo radiation dosimetry

    International Nuclear Information System (INIS)

    Wise, K.N.; Webb, D.V.

    2000-01-01

    Full text: An inexpensive computing facility has been established for performing repetitive Monte Carlo simulations with the BEAM and EGS4/EGSnrc codes of linear accelerator beams, for calculating effective dose from diagnostic imaging procedures and of ion chambers and phantoms used for the Australian high energy absorbed dose standards. The facility currently consists of 3 dual-processor 450 MHz processor PCs linked by a high speed LAN. The 3 PCs can be accessed either locally from a single keyboard/monitor/mouse combination using a SwitchView controller or remotely via a computer network from PCs with suitable communications software (e.g. Telnet, Kermit etc). All 3 PCs are identically configured to have the Red Hat Linux 6.0 operating system. A Fortran compiler and the BEAM and EGS4/EGSnrc codes are available on the 3 PCs. The preparation of sequences of jobs utilising the Monte Carlo codes is simplified using load-distributing software (enFuzion 6.0 marketed by TurboLinux Inc, formerly Cluster from Active Tools) which efficiently distributes the computing load amongst all 6 processors. We describe 3 applications of the system - (a) energy spectra from radiotherapy sources, (b) mean mass-energy absorption coefficients and stopping powers for absolute absorbed dose standards and (c) dosimetry for diagnostic procedures; (a) and (b) are based on the transport codes BEAM and FLURZnrc while (c) is a Fortran/EGS code developed at ARPANSA. Efficiency gains ranged from 3 for (c) to close to the theoretical maximum of 6 for (a) and (b), with the gain depending on the amount of 'bookkeeping' to begin each task and the time taken to complete a single task. We have found the use of a load-balancing batch processing system with many PCs to be an economical way of achieving greater productivity for Monte Carlo calculations or of any computer intensive task requiring many runs with different parameters. Copyright (2000) Australasian College of Physical Scientists and

  15. Coping with distributed computing

    International Nuclear Information System (INIS)

    Cormell, L.

    1992-09-01

    The rapid increase in the availability of high performance, cost-effective RISC/UNIX workstations has been both a blessing and a curse. The blessing of having extremely powerful computing engines available on the desk top is well-known to many users. The user has tremendous freedom, flexibility, and control of his environment. That freedom can, however, become the curse of distributed computing. The user must become a system manager to some extent, he must worry about backups, maintenance, upgrades, etc. Traditionally these activities have been the responsibility of a central computing group. The central computing group, however, may find that it can no longer provide all of the traditional services. With the plethora of workstations now found on so many desktops throughout the entire campus or lab, the central computing group may be swamped by support requests. This talk will address several of these computer support and management issues by providing some examples of the approaches taken at various HEP institutions. In addition, a brief review of commercial directions or products for distributed computing and management will be given

  16. Distributed intelligent monitoring and reporting facilities

    Science.gov (United States)

    Pavlou, George; Mykoniatis, George; Sanchez-P, Jorge-A.

    1996-06-01

    Distributed intelligent monitoring and reporting facilities are of paramount importance in both service and network management as they provide the capability to monitor quality of service and utilization parameters and notify degradation so that corrective action can be taken. By intelligent, we refer to the capability of performing the monitoring tasks in a way that has the smallest possible impact on the managed network, facilitates the observation and summarization of information according to a number of criteria and in its most advanced form and permits the specification of these criteria dynamically to suit the particular policy in hand. In addition, intelligent monitoring facilities should minimize the design and implementation effort involved in such activities. The ISO/ITU Metric, Summarization and Performance management functions provide models that only partially satisfy the above requirements. This paper describes our extensions to the proposed models to support further capabilities, with the intention to eventually lead to fully dynamically defined monitoring policies. The concept of distributing intelligence is also discussed, including the consideration of security issues and the applicability of the model in ODP-based distributed processing environments.

  17. Operational Circular nr 5 - October 2000 USE OF CERN COMPUTING FACILITIES

    CERN Multimedia

    Division HR

    2000-01-01

    New rules covering the use of CERN Computing facilities have been drawn up. All users of CERN’s computing facilites are subject to these rules, as well as to the subsidiary rules of use. The Computing Rules explicitly address your responsibility for taking reasonable precautions to protect computing equipment and accounts. In particular, passwords must not be easily guessed or obtained by others. Given the difficulty to completely separate work and personal use of computing facilities, the rules define under which conditions limited personal use is tolerated. For example, limited personal use of e-mail, news groups or web browsing is tolerated in your private time, provided CERN resources and your official duties are not adversely affected. The full conditions governing use of CERN’s computing facilities are contained in Operational Circular N° 5, which you are requested to read. Full details are available at : http://www.cern.ch/ComputingRules Copies of the circular are also available in the Divis...

  18. Distributed GPU Computing in GIScience

    Science.gov (United States)

    Jiang, Y.; Yang, C.; Huang, Q.; Li, J.; Sun, M.

    2013-12-01

    Geoscientists strived to discover potential principles and patterns hidden inside ever-growing Big Data for scientific discoveries. To better achieve this objective, more capable computing resources are required to process, analyze and visualize Big Data (Ferreira et al., 2003; Li et al., 2013). Current CPU-based computing techniques cannot promptly meet the computing challenges caused by increasing amount of datasets from different domains, such as social media, earth observation, environmental sensing (Li et al., 2013). Meanwhile CPU-based computing resources structured as cluster or supercomputer is costly. In the past several years with GPU-based technology matured in both the capability and performance, GPU-based computing has emerged as a new computing paradigm. Compare to traditional computing microprocessor, the modern GPU, as a compelling alternative microprocessor, has outstanding high parallel processing capability with cost-effectiveness and efficiency(Owens et al., 2008), although it is initially designed for graphical rendering in visualization pipe. This presentation reports a distributed GPU computing framework for integrating GPU-based computing within distributed environment. Within this framework, 1) for each single computer, computing resources of both GPU-based and CPU-based can be fully utilized to improve the performance of visualizing and processing Big Data; 2) within a network environment, a variety of computers can be used to build up a virtual super computer to support CPU-based and GPU-based computing in distributed computing environment; 3) GPUs, as a specific graphic targeted device, are used to greatly improve the rendering efficiency in distributed geo-visualization, especially for 3D/4D visualization. Key words: Geovisualization, GIScience, Spatiotemporal Studies Reference : 1. Ferreira de Oliveira, M. C., & Levkowitz, H. (2003). From visual data exploration to visual data mining: A survey. Visualization and Computer Graphics, IEEE

  19. Distributed computing and nuclear reactor analysis

    International Nuclear Information System (INIS)

    Brown, F.B.; Derstine, K.L.; Blomquist, R.N.

    1994-01-01

    Large-scale scientific and engineering calculations for nuclear reactor analysis can now be carried out effectively in a distributed computing environment, at costs far lower than for traditional mainframes. The distributed computing environment must include support for traditional system services, such as a queuing system for batch work, reliable filesystem backups, and parallel processing capabilities for large jobs. All ANL computer codes for reactor analysis have been adapted successfully to a distributed system based on workstations and X-terminals. Distributed parallel processing has been demonstrated to be effective for long-running Monte Carlo calculations

  20. Getting the Most from Distributed Resources With an Analytics Platform for ATLAS Computing Services

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00225336; The ATLAS collaboration; Gardner, Robert; Bryant, Lincoln

    2016-01-01

    To meet a sharply increasing demand for computing resources for LHC Run 2, ATLAS distributed computing systems reach far and wide to gather CPU resources and storage capacity to execute an evolving ecosystem of production and analysis workflow tools. Indeed more than a hundred computing sites from the Worldwide LHC Computing Grid, plus many “opportunistic” facilities at HPC centers, universities, national laboratories, and public clouds, combine to meet these requirements. These resources have characteristics (such as local queuing availability, proximity to data sources and target destinations, network latency and bandwidth capacity, etc.) affecting the overall processing efficiency and throughput. To quantitatively understand and in some instances predict behavior, we have developed a platform to aggregate, index (for user queries), and analyze the more important information streams affecting performance. These data streams come from the ATLAS production system (PanDA), the distributed data management s...

  1. GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data

    Science.gov (United States)

    Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.

    2016-12-01

    Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We

  2. COMPUTER ORIENTED FACILITIES OF TEACHING AND INFORMATIVE COMPETENCE

    Directory of Open Access Journals (Sweden)

    Olga M. Naumenko

    2010-09-01

    Full Text Available In the article it is considered the history of views to the tasks of education, estimations of its effectiveness from the point of view of forming of basic vitally important competences. Opinions to the problem in different countries, international organizations, corresponding experience of the Ukrainian system of education are described. The necessity of forming of informative competence of future teacher is reasonable in the conditions of application of the computer oriented facilities of teaching at the study of naturally scientific cycle subjects in pedagogical colleges. Prognosis estimations concerning the development of methods of application of computer oriented facilities of teaching are presented.

  3. Support system for ATLAS distributed computing operations

    CERN Document Server

    Kishimoto, Tomoe; The ATLAS collaboration

    2018-01-01

    The ATLAS distributed computing system has allowed the experiment to successfully meet the challenges of LHC Run 2. In order for distributed computing to operate smoothly and efficiently, several support teams are organized in the ATLAS experiment. The ADCoS (ATLAS Distributed Computing Operation Shifts) is a dedicated group of shifters who follow and report failing jobs, failing data transfers between sites, degradation of ATLAS central computing services, and more. The DAST (Distributed Analysis Support Team) provides user support to resolve issues related to running distributed analysis on the grid. The CRC (Computing Run Coordinator) maintains a global view of the day-to-day operations. In this presentation, the status and operational experience of the support system for ATLAS distributed computing in LHC Run 2 will be reported. This report also includes operations experience from the grid site point of view, and an analysis of the errors that create the biggest waste of wallclock time. The report of oper...

  4. Energy efficient distributed computing systems

    CERN Document Server

    Lee, Young-Choon

    2012-01-01

    The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005.  From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems.  These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems.  This book brings together a group of outsta

  5. Distributed computing for global health

    CERN Multimedia

    CERN. Geneva; Schwede, Torsten; Moore, Celia; Smith, Thomas E; Williams, Brian; Grey, François

    2005-01-01

    Distributed computing harnesses the power of thousands of computers within organisations or over the Internet. In order to tackle global health problems, several groups of researchers have begun to use this approach to exceed by far the computing power of a single lab. This event illustrates how companies, research institutes and the general public are contributing their computing power to these efforts, and what impact this may have on a range of world health issues. Grids for neglected diseases Vincent Breton, CNRS/EGEE This talk introduces the topic of distributed computing, explaining the similarities and differences between Grid computing, volunteer computing and supercomputing, and outlines the potential of Grid computing for tackling neglected diseases where there is little economic incentive for private R&D efforts. Recent results on malaria drug design using the Grid infrastructure of the EU-funded EGEE project, which is coordinated by CERN and involves 70 partners in Europe, the US and Russi...

  6. Modern computer hardware and the role of central computing facilities in particle physics

    International Nuclear Information System (INIS)

    Zacharov, V.

    1981-01-01

    Important recent changes in the hardware technology of computer system components are reviewed, and the impact of these changes assessed on the present and future pattern of computing in particle physics. The place of central computing facilities is particularly examined, to answer the important question as to what, if anything, should be their future role. Parallelism in computing system components is considered to be an important property that can be exploited with advantage. The paper includes a short discussion of the position of communications and network technology in modern computer systems. (orig.)

  7. A Web-based Distributed Voluntary Computing Platform for Large Scale Hydrological Computations

    Science.gov (United States)

    Demir, I.; Agliamzanov, R.

    2014-12-01

    Distributed volunteer computing can enable researchers and scientist to form large parallel computing environments to utilize the computing power of the millions of computers on the Internet, and use them towards running large scale environmental simulations and models to serve the common good of local communities and the world. Recent developments in web technologies and standards allow client-side scripting languages to run at speeds close to native application, and utilize the power of Graphics Processing Units (GPU). Using a client-side scripting language like JavaScript, we have developed an open distributed computing framework that makes it easy for researchers to write their own hydrologic models, and run them on volunteer computers. Users will easily enable their websites for visitors to volunteer sharing their computer resources to contribute running advanced hydrological models and simulations. Using a web-based system allows users to start volunteering their computational resources within seconds without installing any software. The framework distributes the model simulation to thousands of nodes in small spatial and computational sizes. A relational database system is utilized for managing data connections and queue management for the distributed computing nodes. In this paper, we present a web-based distributed volunteer computing platform to enable large scale hydrological simulations and model runs in an open and integrated environment.

  8. An Applet-based Anonymous Distributed Computing System.

    Science.gov (United States)

    Finkel, David; Wills, Craig E.; Ciaraldi, Michael J.; Amorin, Kevin; Covati, Adam; Lee, Michael

    2001-01-01

    Defines anonymous distributed computing systems and focuses on the specifics of a Java, applet-based approach for large-scale, anonymous, distributed computing on the Internet. Explains the possibility of a large number of computers participating in a single computation and describes a test of the functionality of the system. (Author/LRW)

  9. The Fermilab central computing facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-01-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front-end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS cluster interactive front-end, an Amdahl VM Computing engine, ACP farms, and (primarily) VMS workstations. This paper will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. (orig.)

  10. The Fermilab Central Computing Facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-05-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS Cluster interactive front end, an Amdahl VM computing engine, ACP farms, and (primarily) VMS workstations. This presentation will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. 2 figs

  11. High Performance Computing Facility Operational Assessment, CY 2011 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Bland, Arthur S Buddy [ORNL; Boudwin, Kathlyn J. [ORNL; Hack, James J [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL; Hudson, Douglas L [ORNL

    2012-02-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Users reported more than 670 publications this year arising from their use of OLCF resources. Of these we report the 300 in this review that are consistent with guidance provided. Scientific achievements by OLCF users cut across all range scales from atomic to molecular to large-scale structures. At the atomic scale, researchers discovered that the anomalously long half-life of Carbon-14 can be explained by calculating, for the first time, the very complex three-body interactions between all the neutrons and protons in the nucleus. At the molecular scale, researchers combined experimental results from LBL's light source and simulations on Jaguar to discover how DNA replication continues past a damaged site so a mutation can be repaired later. Other researchers combined experimental results from ORNL's Spallation Neutron Source and simulations on Jaguar to reveal the molecular structure of ligno-cellulosic material used in bioethanol production. This year, Jaguar has been used to do billion-cell CFD calculations to develop shock wave compression turbo machinery as a means to meet DOE goals for reducing carbon sequestration costs. General Electric used Jaguar to calculate the unsteady flow through turbo machinery to learn what efficiencies the traditional steady flow assumption is hiding from designers. Even a 1% improvement in turbine design can save the nation

  12. Computer security at ukrainian nuclear facilities: interface between nuclear safety and security

    International Nuclear Information System (INIS)

    Chumak, D.; Klevtsov, O.

    2015-01-01

    Active introduction of information technology, computer instrumentation and control systems (I and C systems) in the nuclear field leads to a greater efficiency and management of technological processes at nuclear facilities. However, this trend brings a number of challenges related to cyber-attacks on the above elements, which violates computer security as well as nuclear safety and security of a nuclear facility. This paper considers regulatory support to computer security at the nuclear facilities in Ukraine. The issue of computer and information security considered in the context of physical protection, because it is an integral component. The paper focuses on the computer security of I and C systems important to nuclear safety. These systems are potentially vulnerable to cyber threats and, in case of cyber-attacks, the potential negative impact on the normal operational processes can lead to a breach of the nuclear facility security. While ensuring nuclear security of I and C systems, it interacts with nuclear safety, therefore, the paper considers an example of an integrated approach to the requirements of nuclear safety and security

  13. Survey of computer codes applicable to waste facility performance evaluations

    International Nuclear Information System (INIS)

    Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.

    1988-01-01

    This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs

  14. National facility for advanced computational science: A sustainable path to scientific discovery

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  15. Molecular Science Computing Facility Scientific Challenges: Linking Across Scales

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Windus, Theresa L.

    2005-07-01

    The purpose of this document is to define the evolving science drivers for performing environmental molecular research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and to provide guidance associated with the next-generation high-performance computing center that must be developed at EMSL's Molecular Science Computing Facility (MSCF) in order to address this critical research. The MSCF is the pre-eminent computing facility?supported by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research (BER)?tailored to provide the fastest time-to-solution for current computational challenges in chemistry and biology, as well as providing the means for broad research in the molecular and environmental sciences. The MSCF provides integral resources and expertise to emerging EMSL Scientific Grand Challenges and Collaborative Access Teams that are designed to leverage the multiple integrated research capabilities of EMSL, thereby creating a synergy between computation and experiment to address environmental molecular science challenges critical to DOE and the nation.

  16. Distributed computing at the SSCL

    International Nuclear Information System (INIS)

    Cormell, L.; White, R.

    1993-05-01

    The rapid increase in the availability of high performance, cost- effective RISC/UNIX workstations has been both a blessing and a curse. The blessing of having extremely powerful computing engines available on the desk top is well-known to many users. The user has tremendous freedom, flexibility, and control of his environment. That freedom can, however, become the curse of distributed computing. The user must become a system manager to some extent, he must worry about backups, maintenance, upgrades, etc. Traditionally these activities have been the responsibility of a central computing group. The central computing group, however, may find that it can no linger provide all of the traditional services. With the plethora of workstations now found on so many desktops throughout the entire campus or lab, the central computing group may be swamped by support requests. This talk will address several of these computer support and management issues by discussing the approach taken at the Superconducting Super Collider Laboratory. In addition, a brief review of the future directions of commercial products for distributed computing and management will be given

  17. Distributed computing at the SSCL

    International Nuclear Information System (INIS)

    Cormell, L.R.; White, R.C.

    1994-01-01

    The rapid increase in the availability of high performance, cost-effective RISC/UNIX workstations has been both a blessing and a curse. The blessing of having extremely powerful computing engines available on the desk top is well-known to many users. The user has tremendous freedom, flexibility, and control of his environment. That freedom can, however, become the curse of distributed computing. The user must become a system manager to some extent, he must worry about backups, maintenance, upgrades, etc. Traditionally these activities have been the responsibility of central computing group. The central computing group, however, may find that it can no longer provide all of the traditional services. With the plethora of workstations now found on so many desktops throughout the entire campus or lab, the central computing group may be swamped by support requests. This talk will address several of these computer support and management issues by discussing the approach taken at the Superconducting Super Collider Laboratory (SSCL). In addition, a brief review of the future directions of commercial products for distributed computing and management will be given

  18. Integration of small computers in the low budget facility

    International Nuclear Information System (INIS)

    Miller, G.E.; Crofoot, T.A.

    1988-01-01

    Inexpensive computers (PC's) are well within the reach of low budget reactor facilities. It is possible to envisage many uses that will both improve capabilities of existing instrumentation and also assist operators and staff with certain routine tasks. Both of these opportunities are important for survival at facilities with severe budget and staffing limitations. (author)

  19. Distribution and Utilization of Health Facilities in Calabar Metropolis ...

    African Journals Online (AJOL)

    The level of accessibility increases with increasing utilization. Distance was a barrier to the utilization of health facilities due to the uneven distribution of health facilities and the inability of patients to overcome economic distance. Greater investment by government in the health sector would guarantee more equitable access ...

  20. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction CMS distributed computing system performed well during the 2011 start-up. The events in 2011 have more pile-up and are more complex than last year; this results in longer reconstruction times and harder events to simulate. Significant increases in computing capacity were delivered in April for all computing tiers, and the utilisation and load is close to the planning predictions. All computing centre tiers performed their expected functionalities. Heavy-Ion Programme The CMS Heavy-Ion Programme had a very strong showing at the Quark Matter conference. A large number of analyses were shown. The dedicated heavy-ion reconstruction facility at the Vanderbilt Tier-2 is still involved in some commissioning activities, but is available for processing and analysis. Facilities and Infrastructure Operations Facility and Infrastructure operations have been active with operations and several important deployment tasks. Facilities participated in the testing and deployment of WMAgent and WorkQueue+Request...

  1. 10th International Symposium on Intelligent Distributed Computing

    CERN Document Server

    Seghrouchni, Amal; Beynier, Aurélie; Camacho, David; Herpson, Cédric; Hindriks, Koen; Novais, Paulo

    2017-01-01

    This book presents the combined peer-reviewed proceedings of the tenth International Symposium on Intelligent Distributed Computing (IDC’2016), which was held in Paris, France from October 10th to 12th, 2016. The 23 contributions address a range of topics related to theory and application of intelligent distributed computing, including: Intelligent Distributed Agent-Based Systems, Ambient Intelligence and Social Networks, Computational Sustainability, Intelligent Distributed Knowledge Representation and Processing, Smart Networks, Networked Intelligence and Intelligent Distributed Applications, amongst others.

  2. A guide for the selection of computer assisted mapping (CAM) and facilities informations systems

    Energy Technology Data Exchange (ETDEWEB)

    Haslin, S.; Baxter, P.; Jarvis, L.

    1980-12-01

    Many distribution engineers are now aware that computer assisted mapping (CAM) and facilities informations systems are probably the most significant breakthrough to date in computer applications for distribution engineering. The Canadian Electrical Asociation (CEA) recognized this and requested engineers of B.C. Hydro make a study of the state of the art in Canadian utilities and the progress of CAM systems on an international basis. The purpose was to provide a guide to assist Canadian utility distribution engineers faced with the problem of studying the application of CAM systems as an alternative to present methods, consideration being given to the long-term and other benefits that were perhaps not apparent for those approaching this field for the first time. It soon became apparent that technology was developing at a high rate and competition in the market was very strong. Also a number of publications were produced by other sources which adequately covered the scope of this study. This report is thus a collection of references to reports, manuals, and other documents with a few considerations provided for those companies interested in exploring further the use of interactive graphics. 24 refs.

  3. Computer calculation of dose distributions in radiotherapy. Report of a panel

    International Nuclear Information System (INIS)

    1966-01-01

    As in most areas of scientific endeavour, the advent of electronic computers has made a significant impact on the investigation of the physical aspects of radiotherapy. Since the first paper on the subject was published in 1955 the literature has rapidly expanded to include the application of computer techniques to problems of external beam, and intracavitary and interstitial dosimetry. By removing the tedium of lengthy repetitive calculations, the availability of automatic computers has encouraged physicists and radiotherapists to take a fresh look at many fundamental physical problems of radiotherapy. The most important result of the automation of dosage calculations is not simply an increase in the quantity of data but an improvement in the quality of data available as a treatment guide for the therapist. In October 1965 the International Atomic Energy Agency convened a panel in Vienna on the 'Use of Computers for Calculation of Dose Distributions in Radiotherapy' to assess the current status of work, provide guidelines for future research, explore the possibility of international cooperation and make recommendations to the Agency. The panel meeting was attended by 15 participants from seven countries, one observer, and two representatives of the World Health Organization. Participants contributed 20 working papers which served as the bases of discussion. By the nature of the work, computer techniques have been developed by a few advanced centres with access to large computer installations. However, several computer methods are now becoming 'routine' and can be used by institutions without facilities for research. It is hoped that the report of the Panel will provide a comprehensive view of the automatic computation of radiotherapeutic dose distributions and serve as a means of communication between present and potential users of computers

  4. DIRAC distributed computing services

    International Nuclear Information System (INIS)

    Tsaregorodtsev, A

    2014-01-01

    DIRAC Project provides a general-purpose framework for building distributed computing systems. It is used now in several HEP and astrophysics experiments as well as for user communities in other scientific domains. There is a large interest from smaller user communities to have a simple tool like DIRAC for accessing grid and other types of distributed computing resources. However, small experiments cannot afford to install and maintain dedicated services. Therefore, several grid infrastructure projects are providing DIRAC services for their respective user communities. These services are used for user tutorials as well as to help porting the applications to the grid for a practical day-to-day work. The services are giving access typically to several grid infrastructures as well as to standalone computing clusters accessible by the target user communities. In the paper we will present the experience of running DIRAC services provided by the France-Grilles NGI and other national grid infrastructure projects.

  5. Computer Graphics Simulations of Sampling Distributions.

    Science.gov (United States)

    Gordon, Florence S.; Gordon, Sheldon P.

    1989-01-01

    Describes the use of computer graphics simulations to enhance student understanding of sampling distributions that arise in introductory statistics. Highlights include the distribution of sample proportions, the distribution of the difference of sample means, the distribution of the difference of sample proportions, and the distribution of sample…

  6. High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; White, Julia C [ORNL

    2010-08-01

    Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools

  7. Distributed simulation of large computer systems

    International Nuclear Information System (INIS)

    Marzolla, M.

    2001-01-01

    Sequential simulation of large complex physical systems is often regarded as a computationally expensive task. In order to speed-up complex discrete-event simulations, the paradigm of Parallel and Distributed Discrete Event Simulation (PDES) has been introduced since the late 70s. The authors analyze the applicability of PDES to the modeling and analysis of large computer system; such systems are increasingly common in the area of High Energy and Nuclear Physics, because many modern experiments make use of large 'compute farms'. Some feasibility tests have been performed on a prototype distributed simulator

  8. Bayesian optimization for computationally extensive probability distributions.

    Science.gov (United States)

    Tamura, Ryo; Hukushima, Koji

    2018-01-01

    An efficient method for finding a better maximizer of computationally extensive probability distributions is proposed on the basis of a Bayesian optimization technique. A key idea of the proposed method is to use extreme values of acquisition functions by Gaussian processes for the next training phase, which should be located near a local maximum or a global maximum of the probability distribution. Our Bayesian optimization technique is applied to the posterior distribution in the effective physical model estimation, which is a computationally extensive probability distribution. Even when the number of sampling points on the posterior distributions is fixed to be small, the Bayesian optimization provides a better maximizer of the posterior distributions in comparison to those by the random search method, the steepest descent method, or the Monte Carlo method. Furthermore, the Bayesian optimization improves the results efficiently by combining the steepest descent method and thus it is a powerful tool to search for a better maximizer of computationally extensive probability distributions.

  9. Distributed computing environments for future space control systems

    Science.gov (United States)

    Viallefont, Pierre

    1993-01-01

    The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.

  10. A Distributed Computational Infrastructure for Science and Education

    Directory of Open Access Journals (Sweden)

    Rustam K. Bazarov

    2014-06-01

    Full Text Available Researchers have lately been paying increasingly more attention to parallel and distributed algorithms for solving high-dimensionality problems. In this regard, the issue of acquiring or renting computational resources becomes a topical one for employees of scientific and educational institutions. This article examines technology and methods for organizing a distributed computational infrastructure. The author addresses the experience of creating a high-performance system powered by existing clusterization and grid computing technology. The approach examined in the article helps minimize financial costs, aggregate territorially distributed computational resources and ensures a more rational use of available computer equipment, eliminating its downtimes.

  11. Computer-Assisted School Facility Planning with ONPASS.

    Science.gov (United States)

    Urban Decision Systems, Inc., Los Angeles, CA.

    The analytical capabilities of ONPASS, an on-line computer-aided school facility planning system, are described by its developers. This report describes how, using the Canoga Park-Winnetka-Woodland Hills Planning Area as a test case, the Department of City Planning of the city of Los Angeles employed ONPASS to demonstrate how an on-line system can…

  12. Organization of the secure distributed computing based on multi-agent system

    Science.gov (United States)

    Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera

    2018-04-01

    Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.

  13. Neutronic computational modeling of the ASTRA critical facility using MCNPX

    International Nuclear Information System (INIS)

    Rodriguez, L. P.; Garcia, C. R.; Milian, D.; Milian, E. E.; Brayner, C.

    2015-01-01

    The Pebble Bed Very High Temperature Reactor is considered as a prominent candidate among Generation IV nuclear energy systems. Nevertheless the Pebble Bed Very High Temperature Reactor faces an important challenge due to the insufficient validation of computer codes currently available for use in its design and safety analysis. In this paper a detailed IAEA computational benchmark announced by IAEA-TECDOC-1694 in the framework of the Coordinated Research Project 'Evaluation of High Temperature Gas Cooled Reactor (HTGR) Performance' was solved in support of the Generation IV computer codes validation effort using MCNPX ver. 2.6e computational code. In the IAEA-TECDOC-1694 were summarized a set of four calculational benchmark problems performed at the ASTRA critical facility. Benchmark problems include criticality experiments, control rod worth measurements and reactivity measurements. The ASTRA Critical Facility at the Kurchatov Institute in Moscow was used to simulate the neutronic behavior of nuclear pebble bed reactors. (Author)

  14. A distributed computing model for telemetry data processing

    Science.gov (United States)

    Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.

    1994-05-01

    We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.

  15. A distributed computing model for telemetry data processing

    Science.gov (United States)

    Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.

    1994-01-01

    We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.

  16. Development of computer model for radionuclide released from shallow-land disposal facility

    International Nuclear Information System (INIS)

    Suganda, D.; Sucipta; Sastrowardoyo, P.B.; Eriendi

    1998-01-01

    Development of 1-dimensional computer model for radionuclide release from shallow land disposal facility (SLDF) has been done. This computer model is used for the SLDF facility at PPTA Serpong. The SLDF facility is above 1.8 metres from groundwater and 150 metres from Cisalak river. Numerical method by implicit method of finite difference solution is chosen to predict the migration of radionuclide with any concentration.The migration starts vertically from the bottom of SLDF until the groundwater layer, then horizontally in the groundwater until the critical population group. Radionuclide Cs-137 is chosen as a sample to know its migration. The result of the assessment shows that the SLDF facility at PPTA Serpong has the high safety criteria. (author)

  17. LHCb Distributed Data Analysis on the Computing Grid

    CERN Document Server

    Paterson, S; Parkes, C

    2006-01-01

    LHCb is one of the four Large Hadron Collider (LHC) experiments based at CERN, the European Organisation for Nuclear Research. The LHC experiments will start taking an unprecedented amount of data when they come online in 2007. Since no single institute has the compute resources to handle this data, resources must be pooled to form the Grid. Where the Internet has made it possible to share information stored on computers across the world, Grid computing aims to provide access to computing power and storage capacity on geographically distributed systems. LHCb software applications must work seamlessly on the Grid allowing users to efficiently access distributed compute resources. It is essential to the success of the LHCb experiment that physicists can access data from the detector, stored in many heterogeneous systems, to perform distributed data analysis. This thesis describes the work performed to enable distributed data analysis for the LHCb experiment on the LHC Computing Grid.

  18. An Overview of Cloud Computing in Distributed Systems

    Science.gov (United States)

    Divakarla, Usha; Kumari, Geetha

    2010-11-01

    Cloud computing is the emerging trend in the field of distributed computing. Cloud computing evolved from grid computing and distributed computing. Cloud plays an important role in huge organizations in maintaining huge data with limited resources. Cloud also helps in resource sharing through some specific virtual machines provided by the cloud service provider. This paper gives an overview of the cloud organization and some of the basic security issues pertaining to the cloud.

  19. Distributed metadata in a high performance computing environment

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin; Zhang, Zhenhua; Liu, Xuezhao; Tang, Haiying

    2017-07-11

    A computer-executable method, system, and computer program product for managing meta-data in a distributed storage system, wherein the distributed storage system includes one or more burst buffers enabled to operate with a distributed key-value store, the co computer-executable method, system, and computer program product comprising receiving a request for meta-data associated with a block of data stored in a first burst buffer of the one or more burst buffers in the distributed storage system, wherein the meta data is associated with a key-value, determining which of the one or more burst buffers stores the requested metadata, and upon determination that a first burst buffer of the one or more burst buffers stores the requested metadata, locating the key-value in a portion of the distributed key-value store accessible from the first burst buffer.

  20. A Distributed Snapshot Protocol for Efficient Artificial Intelligence Computation in Cloud Computing Environments

    Directory of Open Access Journals (Sweden)

    JongBeom Lim

    2018-01-01

    Full Text Available Many artificial intelligence applications often require a huge amount of computing resources. As a result, cloud computing adoption rates are increasing in the artificial intelligence field. To support the demand for artificial intelligence applications and guarantee the service level agreement, cloud computing should provide not only computing resources but also fundamental mechanisms for efficient computing. In this regard, a snapshot protocol has been used to create a consistent snapshot of the global state in cloud computing environments. However, the existing snapshot protocols are not optimized in the context of artificial intelligence applications, where large-scale iterative computation is the norm. In this paper, we present a distributed snapshot protocol for efficient artificial intelligence computation in cloud computing environments. The proposed snapshot protocol is based on a distributed algorithm to run interconnected multiple nodes in a scalable fashion. Our snapshot protocol is able to deal with artificial intelligence applications, in which a large number of computing nodes are running. We reveal that our distributed snapshot protocol guarantees the correctness, safety, and liveness conditions.

  1. Proceedings of workshop on distributed computing and network

    International Nuclear Information System (INIS)

    Abe, F.; Yuasa, F.

    1993-02-01

    'Distributed Computing and Network' is one of hot topics in the field of computing. Recent progress in the computer technology is providing new paradigm for computing even in High Energy Physics. Particularly the workstation based computer system is opening new active field of computer application to sciences. The major topics discussed in this symposium are distributed computing and wide area research network for domestic and international link. The two days symposium provided so enough topics to foresee the next direction of our computing environment. 70 people have got together to discuss on these interesting thema as well as information exchange on the computer technologies. (J.P.N.)

  2. 9th International Symposium on Intelligent Distributed Computing

    CERN Document Server

    Camacho, David; Analide, Cesar; Seghrouchni, Amal; Badica, Costin

    2016-01-01

    This book represents the combined peer-reviewed proceedings of the ninth International Symposium on Intelligent Distributed Computing – IDC’2015, of the Workshop on Cyber Security and Resilience of Large-Scale Systems – WSRL’2015, and of the International Workshop on Future Internet and Smart Networks – FI&SN’2015. All the events were held in Guimarães, Portugal during October 7th-9th, 2015. The 46 contributions published in this book address many topics related to theory and applications of intelligent distributed computing, including: Intelligent Distributed Agent-Based Systems, Ambient Intelligence and Social Networks, Computational Sustainability, Intelligent Distributed Knowledge Representation and Processing, Smart Networks, Networked Intelligence and Intelligent Distributed Applications, amongst others.

  3. ATLAS Distributed Computing: Experience and Evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb-1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centers around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics program including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2014 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  4. ATLAS distributed computing: experience and evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25/fb of data. The total volume of beam and simulated data products exceeds 100~PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  5. Computational strategies for three-dimensional flow simulations on distributed computer systems

    Science.gov (United States)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-08-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  6. Computational strategies for three-dimensional flow simulations on distributed computer systems

    Science.gov (United States)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-01-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  7. Distributed computer systems theory and practice

    CERN Document Server

    Zedan, H S M

    2014-01-01

    Distributed Computer Systems: Theory and Practice is a collection of papers dealing with the design and implementation of operating systems, including distributed systems, such as the amoeba system, argus, Andrew, and grapevine. One paper discusses the concepts and notations for concurrent programming, particularly language notation used in computer programming, synchronization methods, and also compares three classes of languages. Another paper explains load balancing or load redistribution to improve system performance, namely, static balancing and adaptive load balancing. For program effici

  8. Distributed computing for real-time petroleum reservoir monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ayodele, O. R. [University of Alberta, Edmonton, AB (Canada)

    2004-05-01

    Computer software architecture is presented to illustrate how the concept of distributed computing can be applied to real-time reservoir monitoring processes, permitting the continuous monitoring of the dynamic behaviour of petroleum reservoirs at much shorter intervals. The paper describes the fundamental technologies driving distributed computing, namely Java 2 Platform Enterprise edition (J2EE) by Sun Microsystems, and the Microsoft Dot-Net (Microsoft.Net) initiative, and explains the challenges involved in distributed computing. These are: (1) availability of permanently placed downhole equipment to acquire and transmit seismic data; (2) availability of high bandwidth to transmit the data; (3) security considerations; (4) adaptation of existing legacy codes to run on networks as downloads on demand; and (5) credibility issues concerning data security over the Internet. Other applications of distributed computing in the petroleum industry are also considered, specifically MWD, LWD and SWD (measurement-while-drilling, logging-while-drilling, and simulation-while-drilling), and drill-string vibration monitoring. 23 refs., 1 fig.

  9. Shieldings for X-ray radiotherapy facilities calculated by computer

    International Nuclear Information System (INIS)

    Pedrosa, Paulo S.; Farias, Marcos S.; Gavazza, Sergio

    2005-01-01

    This work presents a methodology for calculation of X-ray shielding in facilities of radiotherapy with help of computer. Even today, in Brazil, the calculation of shielding for X-ray radiotherapy is done based on NCRP-49 recommendation establishing a methodology for calculating required to the elaboration of a project of shielding. With regard to high energies, where is necessary the construction of a labyrinth, the NCRP-49 is not very clear, so that in this field, studies were made resulting in an article that proposes a solution to the problem. It was developed a friendly program in Delphi programming language that, through the manual data entry of a basic design of architecture and some parameters, interprets the geometry and calculates the shields of the walls, ceiling and floor of on X-ray radiation therapy facility. As the final product, this program provides a graphical screen on the computer with all the input data and the calculation of shieldings and the calculation memory. The program can be applied in practical implementation of shielding projects for radiotherapy facilities and can be used in a didactic way compared to NCRP-49.

  10. Measurement of C-14 distribution in forest around nuclear facilities

    International Nuclear Information System (INIS)

    Atarashi-Andoh, Mariko; Amano, Hikaru; Arakhatoon, Jahan

    2003-01-01

    A simple analytical method of C-14 measurement using fast bomb combustion and liquid scintillation counting (LSC) has been developed for measuring C-14 distribution in the terrestrial environment. Specific activities of C-14 in cedar leaves and soils collected from an area around nuclear facilities and control areas were measured using this method. Depth distribution of Cs-137 in soils was also measured at the same sampling sites and compared with the depth distribution of C-14. C-14 specific activity in cedar leaves examined around nuclear facilities exceeded that in the control areas by 8 to 30 mBq (g carbon) -1 . The depth distribution of C-14 in forest soil shows that C-14 has peak values in the top 10 cm of the soil profiles ascribed to the highest bomb C-14 level in the 1960's. The data were made available to assess the behavior of fallout C-14 in the surface environment. (author)

  11. Towards distributed multiscale computing for the VPH

    NARCIS (Netherlands)

    Hoekstra, A.G.; Coveney, P.

    2010-01-01

    Multiscale modeling is fundamental to the Virtual Physiological Human (VPH) initiative. Most detailed three-dimensional multiscale models lead to prohibitive computational demands. As a possible solution we present MAPPER, a computational science infrastructure for Distributed Multiscale Computing

  12. Computer codes for ventilation in nuclear facilities

    International Nuclear Information System (INIS)

    Mulcey, P.

    1987-01-01

    In this paper the authors present some computer codes, developed in the last years, for ventilation and radioprotection. These codes are used for safety analysis in the conception, exploitation and dismantlement of nuclear facilities. The authors present particularly: DACC1 code used for aerosol deposit in sampling circuit of radiation monitors; PIAF code used for modelization of complex ventilation system; CLIMAT 6 code used for optimization of air conditioning system [fr

  13. Computation of the efficiency distribution of a multichannel focusing collimator

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Venkateswaran, T.V.

    1977-01-01

    This article describes two computer methods of calculating the point source efficiency distribution functions of a focusing collimator with round tapered holes. The first method which computes only the geometric efficiency distribution is adequate for low energy collimators while the second method which computes both geometric and penetration efficiencies can be made use of for medium and high energy collimators. The scatter contribution to the efficiency is not taken into account. In the first method the efficiency distribution of a single cone of the collimator is obtained and the data are used for computing the distribution of the whole collimator. For high energy collimator the entire detector region is imagined to be divided into elemental areas. Efficiency of the elemental area is computed after suitably weighting for the penetration within the collimator septa, which is determined by three dimensional geometric techniques. The method of computing the line source efficiency distribution from point source distribution is also explained. The formulations have been tested by computing the efficiency distribution of several commercial collimators and collimators fabricated by us. (Auth.)

  14. A Weibull distribution accrual failure detector for cloud computing.

    Science.gov (United States)

    Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.

  15. Computer control and data acquisition system for the R.F. Test Facility

    International Nuclear Information System (INIS)

    Stewart, K.A.; Burris, R.D.; Mankin, J.B.; Thompson, D.H.

    1986-01-01

    The Radio Frequency Test Facility (RFTF) at Oak Ridge National Laboratory, used to test and evaluate high-power ion cyclotron resonance heating (ICRH) systems and components, is monitored and controlled by a multicomponent computer system. This data acquisition and control system consists of three major hardware elements: (1) an Allen-Bradley PLC-3 programmable controller; (2) a VAX 11/780 computer; and (3) a CAMAC serial highway interface. Operating in LOCAL as well as REMOTE mode, the programmable logic controller (PLC) performs all the control functions of the test facility. The VAX computer acts as the operator's interface to the test facility by providing color mimic panel displays and allowing input via a trackball device. The VAX also provides archiving of trend data acquired by the PLC. Communications between the PLC and the VAX are via the CAMAC serial highway. Details of the hardware, software, and the operation of the system are presented in this paper

  16. The Principals and Practice of Distributed High Throughput Computing

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The potential of Distributed Processing Systems to deliver computing capabilities with qualities ranging from high availability and reliability to easy expansion in functionality and capacity were recognized and formalized in the 1970’s. For more three decade these principals Distributed Computing guided the development of the HTCondor resource and job management system. The widely adopted suite of software tools offered by HTCondor are based on novel distributed computing technologies and are driven by the evolving needs of High Throughput scientific applications. We will review the principals that underpin our work, the distributed computing frameworks and technologies we developed and the lessons we learned from delivering effective and dependable software tools in an ever changing landscape computing technologies and needs that range today from a desktop computer to tens of thousands of cores offered by commercial clouds. About the speaker Miron Livny received a B.Sc. degree in Physics and Mat...

  17. 7th International Symposium on Intelligent Distributed Computing

    CERN Document Server

    Jung, Jason; Badica, Costin

    2014-01-01

    This book represents the combined peer-reviewed proceedings of the Seventh International Symposium on Intelligent Distributed Computing - IDC-2013, of the Second Workshop on Agents for Clouds - A4C-2013, of the Fifth International Workshop on Multi-Agent Systems Technology and Semantics - MASTS-2013, and of the International Workshop on Intelligent Robots - iR-2013. All the events were held in Prague, Czech Republic during September 4-6, 2013. The 41 contributions published in this book address many topics related to theory and applications of intelligent distributed computing and multi-agent systems, including: agent-based data processing, ambient intelligence, bio-informatics, collaborative systems, cryptography and security, distributed algorithms, grid and cloud computing, information extraction, intelligent robotics, knowledge management, linked data, mobile agents, ontologies, pervasive computing, self-organizing systems, peer-to-peer computing, social networks and trust, and swarm intelligence.  .

  18. ATLAS distributed computing: experience and evolution

    International Nuclear Information System (INIS)

    Nairz, A

    2014-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb −1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, energies and event complexities. An essential requirement will be the efficient utilisation of current and future processor technologies as well as a broad range of computing platforms, including supercomputing and cloud resources. We will report on experience gained thus far and our progress in preparing ATLAS computing for the future

  19. Distributed computing by oblivious mobile robots

    CERN Document Server

    Flocchini, Paola; Santoro, Nicola

    2012-01-01

    The study of what can be computed by a team of autonomous mobile robots, originally started in robotics and AI, has become increasingly popular in theoretical computer science (especially in distributed computing), where it is now an integral part of the investigations on computability by mobile entities. The robots are identical computational entities located and able to move in a spatial universe; they operate without explicit communication and are usually unable to remember the past; they are extremely simple, with limited resources, and individually quite weak. However, collectively the ro

  20. Simulation model of load balancing in distributed computing systems

    Science.gov (United States)

    Botygin, I. A.; Popov, V. N.; Frolov, S. G.

    2017-02-01

    The availability of high-performance computing, high speed data transfer over the network and widespread of software for the design and pre-production in mechanical engineering have led to the fact that at the present time the large industrial enterprises and small engineering companies implement complex computer systems for efficient solutions of production and management tasks. Such computer systems are generally built on the basis of distributed heterogeneous computer systems. The analytical problems solved by such systems are the key models of research, but the system-wide problems of efficient distribution (balancing) of the computational load and accommodation input, intermediate and output databases are no less important. The main tasks of this balancing system are load and condition monitoring of compute nodes, and the selection of a node for transition of the user’s request in accordance with a predetermined algorithm. The load balancing is one of the most used methods of increasing productivity of distributed computing systems through the optimal allocation of tasks between the computer system nodes. Therefore, the development of methods and algorithms for computing optimal scheduling in a distributed system, dynamically changing its infrastructure, is an important task.

  1. A computational test facility for distributed analysis of gravitational wave signals

    International Nuclear Information System (INIS)

    Amico, P; Bosi, L; Cattuto, C; Gammaitoni, L; Punturo, M; Travasso, F; Vocca, H

    2004-01-01

    In the gravitational wave detector Virgo, the in-time detection of a gravitational wave signal from a coalescing binary stellar system is an intensive computational task. A parallel computing scheme using the message passing interface (MPI) is described. Performance results on a small-scale cluster are reported

  2. Modeling Workflow Management in a Distributed Computing System ...

    African Journals Online (AJOL)

    Distributed computing is becoming increasingly important in our daily life. This is because it enables the people who use it to share information more rapidly and increases their productivity. A major characteristic feature or distributed computing is the explicit representation of process logic within a communication system, ...

  3. mGrid: A load-balanced distributed computing environment for the remote execution of the user-defined Matlab code

    Directory of Open Access Journals (Sweden)

    Almeida Jonas S

    2006-03-01

    Full Text Available Abstract Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else. Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web

  4. mGrid: a load-balanced distributed computing environment for the remote execution of the user-defined Matlab code.

    Science.gov (United States)

    Karpievitch, Yuliya V; Almeida, Jonas S

    2006-03-15

    Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over

  5. Public Computer Assisted Learning Facilities for Children with Visual Impairment: Universal Design for Inclusive Learning

    Science.gov (United States)

    Siu, Kin Wai Michael; Lam, Mei Seung

    2012-01-01

    Although computer assisted learning (CAL) is becoming increasingly popular, people with visual impairment face greater difficulty in accessing computer-assisted learning facilities. This is primarily because most of the current CAL facilities are not visually impaired friendly. People with visual impairment also do not normally have access to…

  6. Distribution and Parameter's Calculations of Television Cameras Inside a Nuclear Facility

    International Nuclear Information System (INIS)

    El-kafas, A.A.

    2009-01-01

    In this work, a distribution of television cameras and parameter's calculation inside and outside a nuclear facility is presented. Each of exterior and interior camera systems will be described and explained. The work shows the overall closed circuit television system. Fixed and moving cameras with various lens format and different angles of view are used. The calculations of width of images sensitive area and Lens focal length for the cameras will be introduced. The work shows the camera locations and distributions inside and outside the nuclear facility. The technical specifications and parameters for cameras selection are tabulated

  7. AGIS: Integration of new technologies used in ATLAS Distributed Computing

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00291854; The ATLAS collaboration; Di Girolamo, Alessandro; Alandes Pradillo, Maria

    2017-01-01

    The variety of the ATLAS Distributed Computing infrastructure requires a central information system to define the topology of computing resources and to store different parameters and configuration data which are needed by various ATLAS software components. The ATLAS Grid Information System (AGIS) is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services. Being an intermediate middleware system between clients and external information sources (like central BDII, GOCDB, MyOSG), AGIS defines the relations between experiment specific used resources and physical distributed computing capabilities. Being in production during LHC Runl AGIS became the central information system for Distributed Computing in ATLAS and it is continuously evolving to fulfil new user requests, enable enhanced operations and follow the extension of the ATLAS Computing model. The ATLAS Computin...

  8. Conceptual design of an ALICE Tier-2 centre. Integrated into a multi-purpose computing facility

    Energy Technology Data Exchange (ETDEWEB)

    Zynovyev, Mykhaylo

    2012-06-29

    This thesis discusses the issues and challenges associated with the design and operation of a data analysis facility for a high-energy physics experiment at a multi-purpose computing centre. At the spotlight is a Tier-2 centre of the distributed computing model of the ALICE experiment at the Large Hadron Collider at CERN in Geneva, Switzerland. The design steps, examined in the thesis, include analysis and optimization of the I/O access patterns of the user workload, integration of the storage resources, and development of the techniques for effective system administration and operation of the facility in a shared computing environment. A number of I/O access performance issues on multiple levels of the I/O subsystem, introduced by utilization of hard disks for data storage, have been addressed by the means of exhaustive benchmarking and thorough analysis of the I/O of the user applications in the ALICE software framework. Defining the set of requirements to the storage system, describing the potential performance bottlenecks and single points of failure and examining possible ways to avoid them allows one to develop guidelines for selecting the way how to integrate the storage resources. The solution, how to preserve a specific software stack for the experiment in a shared environment, is presented along with its effects on the user workload performance. The proposal for a flexible model to deploy and operate the ALICE Tier-2 infrastructure and applications in a virtual environment through adoption of the cloud computing technology and the 'Infrastructure as Code' concept completes the thesis. Scientific software applications can be efficiently computed in a virtual environment, and there is an urgent need to adapt the infrastructure for effective usage of cloud resources.

  9. Conceptual design of an ALICE Tier-2 centre. Integrated into a multi-purpose computing facility

    International Nuclear Information System (INIS)

    Zynovyev, Mykhaylo

    2012-01-01

    This thesis discusses the issues and challenges associated with the design and operation of a data analysis facility for a high-energy physics experiment at a multi-purpose computing centre. At the spotlight is a Tier-2 centre of the distributed computing model of the ALICE experiment at the Large Hadron Collider at CERN in Geneva, Switzerland. The design steps, examined in the thesis, include analysis and optimization of the I/O access patterns of the user workload, integration of the storage resources, and development of the techniques for effective system administration and operation of the facility in a shared computing environment. A number of I/O access performance issues on multiple levels of the I/O subsystem, introduced by utilization of hard disks for data storage, have been addressed by the means of exhaustive benchmarking and thorough analysis of the I/O of the user applications in the ALICE software framework. Defining the set of requirements to the storage system, describing the potential performance bottlenecks and single points of failure and examining possible ways to avoid them allows one to develop guidelines for selecting the way how to integrate the storage resources. The solution, how to preserve a specific software stack for the experiment in a shared environment, is presented along with its effects on the user workload performance. The proposal for a flexible model to deploy and operate the ALICE Tier-2 infrastructure and applications in a virtual environment through adoption of the cloud computing technology and the 'Infrastructure as Code' concept completes the thesis. Scientific software applications can be efficiently computed in a virtual environment, and there is an urgent need to adapt the infrastructure for effective usage of cloud resources.

  10. Physics Detector Simulation Facility Phase II system software description

    International Nuclear Information System (INIS)

    Scipioni, B.; Allen, J.; Chang, C.; Huang, J.; Liu, J.; Mestad, S.; Pan, J.; Marquez, M.; Estep, P.

    1993-05-01

    This paper presents the Physics Detector Simulation Facility (PDSF) Phase II system software. A key element in the design of a distributed computing environment for the PDSF has been the separation and distribution of the major functions. The facility has been designed to support batch and interactive processing, and to incorporate the file and tape storage systems. By distributing these functions, it is often possible to provide higher throughput and resource availability. Similarly, the design is intended to exploit event-level parallelism in an open distributed environment

  11. AGIS: Integration of new technologies used in ATLAS Distributed Computing

    Science.gov (United States)

    Anisenkov, Alexey; Di Girolamo, Alessandro; Alandes Pradillo, Maria

    2017-10-01

    The variety of the ATLAS Distributed Computing infrastructure requires a central information system to define the topology of computing resources and to store different parameters and configuration data which are needed by various ATLAS software components. The ATLAS Grid Information System (AGIS) is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services. Being an intermediate middleware system between clients and external information sources (like central BDII, GOCDB, MyOSG), AGIS defines the relations between experiment specific used resources and physical distributed computing capabilities. Being in production during LHC Runl AGIS became the central information system for Distributed Computing in ATLAS and it is continuously evolving to fulfil new user requests, enable enhanced operations and follow the extension of the ATLAS Computing model. The ATLAS Computing model and data structures used by Distributed Computing applications and services are continuously evolving and trend to fit newer requirements from ADC community. In this note, we describe the evolution and the recent developments of AGIS functionalities, related to integration of new technologies recently become widely used in ATLAS Computing, like flexible computing utilization of opportunistic Cloud and HPC resources, ObjectStore services integration for Distributed Data Management (Rucio) and ATLAS workload management (PanDA) systems, unified storage protocols declaration required for PandDA Pilot site movers and others. The improvements of information model and general updates are also shown, in particular we explain how other collaborations outside ATLAS could benefit the system as a computing resources information catalogue. AGIS is evolving towards a common information system, not coupled to a specific experiment.

  12. A distributed computer system for digitising machines

    International Nuclear Information System (INIS)

    Bairstow, R.; Barlow, J.; Waters, M.; Watson, J.

    1977-07-01

    This paper describes a Distributed Computing System, based on micro computers, for the monitoring and control of digitising tables used by the Rutherford Laboratory Bubble Chamber Research Group in the measurement of bubble chamber photographs. (author)

  13. An optimization model for energy generation and distribution in a dynamic facility

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.

  14. On-line satellite/central computer facility of the Multiparticle Argo Spectrometer System

    International Nuclear Information System (INIS)

    Anderson, E.W.; Fisher, G.P.; Hien, N.C.; Larson, G.P.; Thorndike, A.M.; Turkot, F.; von Lindern, L.; Clifford, T.S.; Ficenec, J.R.; Trower, W.P.

    1974-09-01

    An on-line satellite/central computer facility has been developed at Brookhaven National Laboratory as part of the Multiparticle Argo Spectrometer System (MASS). This facility consisting of a PDP-9 and a CDC-6600, has been successfully used in study of proton-proton interactions at 28.5 GeV/c. (U.S.)

  15. Physics and detector simulation facility Type O workstation specifications

    International Nuclear Information System (INIS)

    Chartrand, G.; Cormell, L.R.; Hahn, R.; Jacobson, D.; Johnstad, H.; Leibold, P.; Marquez, M.; Ramsey, B.; Roberts, L.; Scipioni, B.; Yost, G.P.

    1990-11-01

    This document specifies the requirements for the front-end network of workstations of a distributed computing facility. This facility will be needed to perform the physics and detector simulations for the design of Superconducting Super Collider (SSC) detectors, and other computations in support of physics and detector needs. A detailed description of the computer simulation facility is given in the overall system specification document. This document provides revised subsystem specifications for the network of monitor-less Type 0 workstations. The requirements specified in this document supersede the requirements given. In Section 2 a brief functional description of the facility and its use are provided. The list of detailed specifications (vendor requirements) is given in Section 3 and the qualifying requirements (benchmarks) are described in Section 4

  16. Oak Ridge Leadership Computing Facility Position Paper

    Energy Technology Data Exchange (ETDEWEB)

    Oral, H Sarp [ORNL; Hill, Jason J [ORNL; Thach, Kevin G [ORNL; Podhorszki, Norbert [ORNL; Klasky, Scott A [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL

    2011-01-01

    This paper discusses the business, administration, reliability, and usability aspects of storage systems at the Oak Ridge Leadership Computing Facility (OLCF). The OLCF has developed key competencies in architecting and administration of large-scale Lustre deployments as well as HPSS archival systems. Additionally as these systems are architected, deployed, and expanded over time reliability and availability factors are a primary driver. This paper focuses on the implementation of the Spider parallel Lustre file system as well as the implementation of the HPSS archive at the OLCF.

  17. High Performance Computing Facility Operational Assessment, FY 2011 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Ann E [ORNL; Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL

    2011-08-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.5 billion core hours in calendar year (CY) 2010 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Scientific achievements by OLCF users range from collaboration with university experimentalists to produce a working supercapacitor that uses atom-thick sheets of carbon materials to finely determining the resolution requirements for simulations of coal gasifiers and their components, thus laying the foundation for development of commercial-scale gasifiers. OLCF users are pushing the boundaries with software applications sustaining more than one petaflop of performance in the quest to illuminate the fundamental nature of electronic devices. Other teams of researchers are working to resolve predictive capabilities of climate models, to refine and validate genome sequencing, and to explore the most fundamental materials in nature - quarks and gluons - and their unique properties. Details of these scientific endeavors - not possible without access to leadership-class computing resources - are detailed in Section 4 of this report and in the INCITE in Review. Effective operations of the OLCF play a key role in the scientific missions and accomplishments of its users. This Operational Assessment Report (OAR) will delineate the policies, procedures, and innovations implemented by the OLCF to continue delivering a petaflop-scale resource for cutting-edge research. The 2010 operational assessment of the OLCF yielded recommendations that have been addressed (Reference Section 1) and

  18. Computer modeling of commercial refrigerated warehouse facilities

    International Nuclear Information System (INIS)

    Nicoulin, C.V.; Jacobs, P.C.; Tory, S.

    1997-01-01

    The use of computer models to simulate the energy performance of large commercial refrigeration systems typically found in food processing facilities is an area of engineering practice that has seen little development to date. Current techniques employed in predicting energy consumption by such systems have focused on temperature bin methods of analysis. Existing simulation tools such as DOE2 are designed to model commercial buildings and grocery store refrigeration systems. The HVAC and Refrigeration system performance models in these simulations tools model equipment common to commercial buildings and groceries, and respond to energy-efficiency measures likely to be applied to these building types. The applicability of traditional building energy simulation tools to model refrigerated warehouse performance and analyze energy-saving options is limited. The paper will present the results of modeling work undertaken to evaluate energy savings resulting from incentives offered by a California utility to its Refrigerated Warehouse Program participants. The TRNSYS general-purpose transient simulation model was used to predict facility performance and estimate program savings. Custom TRNSYS components were developed to address modeling issues specific to refrigerated warehouse systems, including warehouse loading door infiltration calculations, an evaporator model, single-state and multi-stage compressor models, evaporative condenser models, and defrost energy requirements. The main focus of the paper will be on the modeling approach. The results from the computer simulations, along with overall program impact evaluation results, will also be presented

  19. Mobile Agents in Networking and Distributed Computing

    CERN Document Server

    Cao, Jiannong

    2012-01-01

    The book focuses on mobile agents, which are computer programs that can autonomously migrate between network sites. This text introduces the concepts and principles of mobile agents, provides an overview of mobile agent technology, and focuses on applications in networking and distributed computing.

  20. Distributed quantum computing with single photon sources

    International Nuclear Information System (INIS)

    Beige, A.; Kwek, L.C.

    2005-01-01

    Full text: Distributed quantum computing requires the ability to perform nonlocal gate operations between the distant nodes (stationary qubits) of a large network. To achieve this, it has been proposed to interconvert stationary qubits with flying qubits. In contrast to this, we show that distributed quantum computing only requires the ability to encode stationary qubits into flying qubits but not the conversion of flying qubits into stationary qubits. We describe a scheme for the realization of an eventually deterministic controlled phase gate by performing measurements on pairs of flying qubits. Our scheme could be implemented with a linear optics quantum computing setup including sources for the generation of single photons on demand, linear optics elements and photon detectors. In the presence of photon loss and finite detector efficiencies, the scheme could be used to build large cluster states for one way quantum computing with a high fidelity. (author)

  1. Development of a distributed control system for the JAERI tandem accelerator facility

    International Nuclear Information System (INIS)

    Hanashima, Susumu

    2005-01-01

    In the JAERI tandem accelerator facility, we are building accelerator complex aiming generation and acceleration of radio nuclear beam. Several accelerators, ion sources and a charge breeder are installed in the facility. We are developing a distributed control system enabling smooth operation of the facility. We report basic concepts of the control system in this article. We also describe about a control hardware using plastic optical fiber, which is developed for the control system. (author)

  2. ATLAS experience with HEP software at the Argonne leadership computing facility

    International Nuclear Information System (INIS)

    Uram, Thomas D; LeCompte, Thomas J; Benjamin, D

    2014-01-01

    A number of HEP software packages used by the ATLAS experiment, including GEANT4, ROOT and ALPGEN, have been adapted to run on the IBM Blue Gene supercomputers at the Argonne Leadership Computing Facility. These computers use a non-x86 architecture and have a considerably less rich operating environment than in common use in HEP, but also represent a computing capacity an order of magnitude beyond what ATLAS is presently using via the LCG. The status and potential for making use of leadership-class computing, including the status of integration with the ATLAS production system, is discussed.

  3. ATLAS Experience with HEP Software at the Argonne Leadership Computing Facility

    CERN Document Server

    LeCompte, T; The ATLAS collaboration; Benjamin, D

    2014-01-01

    A number of HEP software packages used by the ATLAS experiment, including GEANT4, ROOT and ALPGEN, have been adapted to run on the IBM Blue Gene supercomputers at the Argonne Leadership Computing Facility. These computers use a non-x86 architecture and have a considerably less rich operating environment than in common use in HEP, but also represent a computing capacity an order of magnitude beyond what ATLAS is presently using via the LCG. The status and potential for making use of leadership-class computing, including the status of integration with the ATLAS production system, is discussed.

  4. Los Alamos Plutonium Facility Waste Management System

    International Nuclear Information System (INIS)

    Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

    1997-01-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process

  5. An analytical model for computation of reliability of waste management facilities with intermediate storages

    International Nuclear Information System (INIS)

    Kallweit, A.; Schumacher, F.

    1977-01-01

    A high reliability is called for waste management facilities within the fuel cycle of nuclear power stations which can be fulfilled by providing intermediate storage facilities and reserve capacities. In this report a model based on the theory of Markov processes is described which allows computation of reliability characteristics of waste management facilities containing intermediate storage facilities. The application of the model is demonstrated by an example. (orig.) [de

  6. Distributed MRI reconstruction using Gadgetron-based cloud computing.

    Science.gov (United States)

    Xue, Hui; Inati, Souheil; Sørensen, Thomas Sangild; Kellman, Peter; Hansen, Michael S

    2015-03-01

    To expand the open source Gadgetron reconstruction framework to support distributed computing and to demonstrate that a multinode version of the Gadgetron can be used to provide nonlinear reconstruction with clinically acceptable latency. The Gadgetron framework was extended with new software components that enable an arbitrary number of Gadgetron instances to collaborate on a reconstruction task. This cloud-enabled version of the Gadgetron was deployed on three different distributed computing platforms ranging from a heterogeneous collection of commodity computers to the commercial Amazon Elastic Compute Cloud. The Gadgetron cloud was used to provide nonlinear, compressed sensing reconstruction on a clinical scanner with low reconstruction latency (eg, cardiac and neuroimaging applications). The proposed setup was able to handle acquisition and 11 -SPIRiT reconstruction of nine high temporal resolution real-time, cardiac short axis cine acquisitions, covering the ventricles for functional evaluation, in under 1 min. A three-dimensional high-resolution brain acquisition with 1 mm(3) isotropic pixel size was acquired and reconstructed with nonlinear reconstruction in less than 5 min. A distributed computing enabled Gadgetron provides a scalable way to improve reconstruction performance using commodity cluster computing. Nonlinear, compressed sensing reconstruction can be deployed clinically with low image reconstruction latency. © 2014 Wiley Periodicals, Inc.

  7. COMPUTER ORIENTED FACILITIES OF TEACHING AND INFORMATIVE COMPETENCE

    OpenAIRE

    Olga M. Naumenko

    2010-01-01

    In the article it is considered the history of views to the tasks of education, estimations of its effectiveness from the point of view of forming of basic vitally important competences. Opinions to the problem in different countries, international organizations, corresponding experience of the Ukrainian system of education are described. The necessity of forming of informative competence of future teacher is reasonable in the conditions of application of the computer oriented facilities of t...

  8. Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX

    International Nuclear Information System (INIS)

    Gohar, Y.; Zhong, Z.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is ∼375 kW including the fission power of ∼260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the electrons and the

  9. Maintenance of reactor safety and control computers at a large government facility

    International Nuclear Information System (INIS)

    Brady, H.G.

    1985-01-01

    In 1950 the US Government contracted the Du Pont Company to design, build, and operate the Savannah River Plant (SRP). At the time, it was the largest construction project ever undertaken by man. It is still the largest of the Department of Energy facilities. In the nearly 35 years that have elapsed, Du Pont has met its commitments to the US Government and set world safety records in the construction and operation of nuclear facilities. Contributing factors in achieving production goals and setting the safety records are a staff of highly qualified personnel, a well maintained plant, and sound maintenance programs. There have been many ''first ever'' achievements at SRP. These ''firsts'' include: (1) computer control of a nuclear rector, and (2) use of computer systems as safety circuits. This presentation discusses the maintenance program provided for these computer systems and all digital systems at SRP. An in-house computer maintenance program that was started in 1966 with five persons has grown to a staff of 40 with investments in computer hardware increasing from $4 million in 1970 to more than $60 million in this decade. 4 figs

  10. modeling workflow management in a distributed computing system

    African Journals Online (AJOL)

    Dr Obe

    communication system, which allows for computerized support. ... Keywords: Distributed computing system; Petri nets;Workflow management. 1. ... A distributed operating system usually .... the questionnaire is returned with invalid data,.

  11. Distribution Pattern of Healthcare Facilities in Osun State, Nigeria ...

    African Journals Online (AJOL)

    In this paper we employed the use of locational quotient, which is a measure of spatial pattern of services, to examine the distribution pattern of healthcare facilities in the thirty local government areas in Osun State, Nigeria. Twelve indices, representing the totality of healthcare delivery by State and local governments in the ...

  12. The Argonne Leadership Computing Facility 2010 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Drugan, C. (LCF)

    2011-05-09

    Researchers found more ways than ever to conduct transformative science at the Argonne Leadership Computing Facility (ALCF) in 2010. Both familiar initiatives and innovative new programs at the ALCF are now serving a growing, global user community with a wide range of computing needs. The Department of Energy's (DOE) INCITE Program remained vital in providing scientists with major allocations of leadership-class computing resources at the ALCF. For calendar year 2011, 35 projects were awarded 732 million supercomputer processor-hours for computationally intensive, large-scale research projects with the potential to significantly advance key areas in science and engineering. Argonne also continued to provide Director's Discretionary allocations - 'start up' awards - for potential future INCITE projects. And DOE's new ASCR Leadership Computing (ALCC) Program allocated resources to 10 ALCF projects, with an emphasis on high-risk, high-payoff simulations directly related to the Department's energy mission, national emergencies, or for broadening the research community capable of using leadership computing resources. While delivering more science today, we've also been laying a solid foundation for high performance computing in the future. After a successful DOE Lehman review, a contract was signed to deliver Mira, the next-generation Blue Gene/Q system, to the ALCF in 2012. The ALCF is working with the 16 projects that were selected for the Early Science Program (ESP) to enable them to be productive as soon as Mira is operational. Preproduction access to Mira will enable ESP projects to adapt their codes to its architecture and collaborate with ALCF staff in shaking down the new system. We expect the 10-petaflops system to stoke economic growth and improve U.S. competitiveness in key areas such as advancing clean energy and addressing global climate change. Ultimately, we envision Mira as a stepping-stone to exascale-class computers

  13. AGIS: Integration of new technologies used in ATLAS Distributed Computing

    OpenAIRE

    Anisenkov, Alexey; Di Girolamo, Alessandro; Alandes Pradillo, Maria

    2017-01-01

    The variety of the ATLAS Distributed Computing infrastructure requires a central information system to define the topology of computing resources and to store different parameters and configuration data which are needed by various ATLAS software components. The ATLAS Grid Information System (AGIS) is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and s...

  14. The Future of PanDA in ATLAS Distributed Computing

    CERN Document Server

    De, Kaushik; The ATLAS collaboration; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Petrosyan, Artem; Schovancova, Jaroslava; Vaniachine, Alexandre; Wenaus, Torre

    2015-01-01

    Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physicists analyze the data remotely, the volume of processed data is beyond the exabyte scale, while data processing requires more than a few billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of locally managed computing in HEP was discarded in favor of a far more automated, flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at more than a million computing jobs per day, and processing over an exabyte of data in 2013. There are many new challenges that PanDA will face in the near future, in addi...

  15. Prototyping and Simulating Parallel, Distributed Computations with VISA

    National Research Council Canada - National Science Library

    Demeure, Isabelle M; Nutt, Gary J

    1989-01-01

    ...] to support the design, prototyping, and simulation of parallel, distributed computations. In particular, VISA is meant to guide the choice of partitioning and communication strategies for such computations, based on their performance...

  16. File and metadata management for BESIII distributed computing

    International Nuclear Information System (INIS)

    Nicholson, C; Zheng, Y H; Lin, L; Deng, Z Y; Li, W D; Zhang, X M

    2012-01-01

    The BESIII experiment at the Institute of High Energy Physics (IHEP), Beijing, uses the high-luminosity BEPCII e + e − collider to study physics in the π-charm energy region around 3.7 GeV; BEPCII has produced the worlds largest samples of J/φ and φ’ events to date. An order of magnitude increase in the data sample size over the 2011-2012 data-taking period demanded a move from a very centralized to a distributed computing environment, as well as the development of an efficient file and metadata management system. While BESIII is on a smaller scale than some other HEP experiments, this poses particular challenges for its distributed computing and data management system. These constraints include limited resources and manpower, and low quality of network connections to IHEP. Drawing on the rich experience of the HEP community, a system has been developed which meets these constraints. The design and development of the BESIII distributed data management system, including its integration with other BESIII distributed computing components, such as job management, are presented here.

  17. A Software Rejuvenation Framework for Distributed Computing

    Science.gov (United States)

    Chau, Savio

    2009-01-01

    A performability-oriented conceptual framework for software rejuvenation has been constructed as a means of increasing levels of reliability and performance in distributed stateful computing. As used here, performability-oriented signifies that the construction of the framework is guided by the concept of analyzing the ability of a given computing system to deliver services with gracefully degradable performance. The framework is especially intended to support applications that involve stateful replicas of server computers.

  18. Distributed computing and artificial intelligence : 10th International Conference

    CERN Document Server

    Neves, José; Rodriguez, Juan; Santana, Juan; Gonzalez, Sara

    2013-01-01

    The International Symposium on Distributed Computing and Artificial Intelligence 2013 (DCAI 2013) is a forum in which applications of innovative techniques for solving complex problems are presented. Artificial intelligence is changing our society. Its application in distributed environments, such as the internet, electronic commerce, environment monitoring, mobile communications, wireless devices, distributed computing, to mention only a few, is continuously increasing, becoming an element of high added value with social and economic potential, in industry, quality of life, and research. This conference is a stimulating and productive forum where the scientific community can work towards future cooperation in Distributed Computing and Artificial Intelligence areas. These technologies are changing constantly as a result of the large research and technical effort being undertaken in both universities and businesses. The exchange of ideas between scientists and technicians from both the academic and industry se...

  19. Distributed control system for the FMIT

    International Nuclear Information System (INIS)

    Johnson, J.A.; Machen, D.R.; Suyama, R.M.

    1979-01-01

    The control system for the Fusion Materials Irradiation Test (FMIT) Facility will provide the primary data acquisition, control, and interface components that integrate all of the individual FMIT systems into a functional facility. The control system consists of a distributed computer network, control consoles and instrumentation subsystems. The FMIT Facility will be started, operated and secured from a Central Control Room. All FMIT systems and experimental functions will be monitored from the Central Control Room. The data acquisition and control signals will be handled by a data communications network, which connects dual computers in the Central Control Room to the microcomputers in CAMAC crates near the various subsystems of the facility

  20. Mapping the Characteristics of Critical Care Facilities: Assessment, Distribution, and Level of Critical Care Facilities from Central India.

    Science.gov (United States)

    Saigal, Saurabh; Sharma, Jai Prakash; Pakhare, Abhijit; Bhaskar, Santosh; Dhanuka, Sanjay; Kumar, Sanjay; Sabde, Yogesh; Bhattacharya, Pradip; Joshi, Rajnish

    2017-10-01

    In low- and middle-income countries such as India, where health systems are weak, the number of available Critical Care Unit (Intensive Care Unit [ICU]) beds is expected to be low. There is no study from the Indian subcontinent that has reported the characteristics and distribution of existing ICUs. We performed this study to understand the characteristics and distribution of ICUs in Madhya Pradesh (MP) state of Central India. We also aimed to develop a consensus scoring system and internally validate it to define levels of care and to improve health system planning and to strengthen referral networks in the state. We obtained a list of potential ICU facilities from various sources and then performed a cross-sectional survey by visiting each facility and determining characteristics for each facility. We collected variables with respect to infrastructure, human resources, equipment, support services, procedures performed, training courses conducted, and in-place policies or standard operating procedure documents. We identified a total of 123 ICUs in MP. Of 123 ICUs, 35 were level 1 facilities, 74 were level 2 facilities, and only 14 were level 3 facilities. Overall, there were 0.17 facilities per 100,000 population (95* confidence interval [CI] 0.14-0.20 per 100,000 populations). There were a total of 1816 ICU beds in the state, with an average of 2.5 beds per 100,000 population (95* CI 2.4-2.6 per 100,000 population). Of the total number of ICU beds, 250 are in level 1, 1141 are in level 2, and 425 are in level 3 facilities. This amounts to 0.34, 1.57, and 0.59 ICU beds per 100,000 population for levels 1, 2, and 3, respectively. This study could just be an eye opener for our healthcare authorities at both state and national levels to estimate the proportion of ICU beds per lac population. Similar mapping of intensive care services from other States will generate national data that is hitherto unknown.

  1. ATLAS Distributed Computing: Its Central Services core

    CERN Document Server

    Lee, Christopher Jon; The ATLAS collaboration

    2018-01-01

    The ATLAS Distributed Computing (ADC) Project is responsible for the off-line processing of data produced by the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. It facilitates data and workload management for ATLAS computing on the Worldwide LHC Computing Grid (WLCG). ADC Central Services operations (CSops)is a vital part of ADC, responsible for the deployment and configuration of services needed by ATLAS computing and operation of those services on CERN IT infrastructure, providing knowledge of CERN IT services to ATLAS service managers and developers, and supporting them in case of issues. Currently this entails the management of thirty seven different OpenStack projects, with more than five thousand cores allocated for these virtual machines, as well as overseeing the distribution of twenty nine petabytes of storage space in EOS for ATLAS. As the LHC begins to get ready for the next long shut-down, which will bring in many new upgrades to allow for more data to be captured by the on-line syste...

  2. Integration of Cloud resources in the LHCb Distributed Computing

    Science.gov (United States)

    Úbeda García, Mario; Méndez Muñoz, Víctor; Stagni, Federico; Cabarrou, Baptiste; Rauschmayr, Nathalie; Charpentier, Philippe; Closier, Joel

    2014-06-01

    This contribution describes how Cloud resources have been integrated in the LHCb Distributed Computing. LHCb is using its specific Dirac extension (LHCbDirac) as an interware for its Distributed Computing. So far, it was seamlessly integrating Grid resources and Computer clusters. The cloud extension of DIRAC (VMDIRAC) allows the integration of Cloud computing infrastructures. It is able to interact with multiple types of infrastructures in commercial and institutional clouds, supported by multiple interfaces (Amazon EC2, OpenNebula, OpenStack and CloudStack) - instantiates, monitors and manages Virtual Machines running on this aggregation of Cloud resources. Moreover, specifications for institutional Cloud resources proposed by Worldwide LHC Computing Grid (WLCG), mainly by the High Energy Physics Unix Information Exchange (HEPiX) group, have been taken into account. Several initiatives and computing resource providers in the eScience environment have already deployed IaaS in production during 2013. Keeping this on mind, pros and cons of a cloud based infrasctructure have been studied in contrast with the current setup. As a result, this work addresses four different use cases which represent a major improvement on several levels of our infrastructure. We describe the solution implemented by LHCb for the contextualisation of the VMs based on the idea of Cloud Site. We report on operational experience of using in production several institutional Cloud resources that are thus becoming integral part of the LHCb Distributed Computing resources. Furthermore, we describe as well the gradual migration of our Service Infrastructure towards a fully distributed architecture following the Service as a Service (SaaS) model.

  3. Integration of cloud resources in the LHCb distributed computing

    International Nuclear Information System (INIS)

    García, Mario Úbeda; Stagni, Federico; Cabarrou, Baptiste; Rauschmayr, Nathalie; Charpentier, Philippe; Closier, Joel; Muñoz, Víctor Méndez

    2014-01-01

    This contribution describes how Cloud resources have been integrated in the LHCb Distributed Computing. LHCb is using its specific Dirac extension (LHCbDirac) as an interware for its Distributed Computing. So far, it was seamlessly integrating Grid resources and Computer clusters. The cloud extension of DIRAC (VMDIRAC) allows the integration of Cloud computing infrastructures. It is able to interact with multiple types of infrastructures in commercial and institutional clouds, supported by multiple interfaces (Amazon EC2, OpenNebula, OpenStack and CloudStack) – instantiates, monitors and manages Virtual Machines running on this aggregation of Cloud resources. Moreover, specifications for institutional Cloud resources proposed by Worldwide LHC Computing Grid (WLCG), mainly by the High Energy Physics Unix Information Exchange (HEPiX) group, have been taken into account. Several initiatives and computing resource providers in the eScience environment have already deployed IaaS in production during 2013. Keeping this on mind, pros and cons of a cloud based infrasctructure have been studied in contrast with the current setup. As a result, this work addresses four different use cases which represent a major improvement on several levels of our infrastructure. We describe the solution implemented by LHCb for the contextualisation of the VMs based on the idea of Cloud Site. We report on operational experience of using in production several institutional Cloud resources that are thus becoming integral part of the LHCb Distributed Computing resources. Furthermore, we describe as well the gradual migration of our Service Infrastructure towards a fully distributed architecture following the Service as a Service (SaaS) model.

  4. The future of PanDA in ATLAS distributed computing

    Science.gov (United States)

    De, K.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, while data processing requires more than a few billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of locally managed computing in HEP was discarded in favour of a far more automated, flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at more than a million computing jobs per day, and processing over an exabyte of data in 2013. There are many new challenges that PanDA will face in the near future, in addition to new challenges of scale, heterogeneity and increasing user base. PanDA will need to handle rapidly changing computing infrastructure, will require factorization of code for easier deployment, will need to incorporate additional information sources including network metrics in decision making, be able to control network circuits, handle dynamically sized workload processing, provide improved visualization, and face many other challenges. In this talk we will focus on the new features, planned or recently implemented, that are relevant to the next decade of distributed computing workload management using PanDA.

  5. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Graf, F.A. Jr.

    1995-02-27

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System`s pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System.

  6. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    International Nuclear Information System (INIS)

    Graf, F.A. Jr.

    1995-01-01

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System's pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System

  7. Las Vegas is better than determinism in VLSI and distributed computing

    DEFF Research Database (Denmark)

    Mehlhorn, Kurt; Schmidt, Erik Meineche

    1982-01-01

    In this paper we describe a new method for proving lower bounds on the complexity of VLSI - computations and more generally distributed computations. Lipton and Sedgewick observed that the crossing sequence arguments used to prove lower bounds in VLSI (or TM or distributed computing) apply to (ac...

  8. Research computing in a distributed cloud environment

    International Nuclear Information System (INIS)

    Fransham, K; Agarwal, A; Armstrong, P; Bishop, A; Charbonneau, A; Desmarais, R; Hill, N; Gable, I; Gaudet, S; Goliath, S; Impey, R; Leavett-Brown, C; Ouellete, J; Paterson, M; Pritchet, C; Penfold-Brown, D; Podaima, W; Schade, D; Sobie, R J

    2010-01-01

    The recent increase in availability of Infrastructure-as-a-Service (IaaS) computing clouds provides a new way for researchers to run complex scientific applications. However, using cloud resources for a large number of research jobs requires significant effort and expertise. Furthermore, running jobs on many different clouds presents even more difficulty. In order to make it easy for researchers to deploy scientific applications across many cloud resources, we have developed a virtual machine resource manager (Cloud Scheduler) for distributed compute clouds. In response to a user's job submission to a batch system, the Cloud Scheduler manages the distribution and deployment of user-customized virtual machines across multiple clouds. We describe the motivation for and implementation of a distributed cloud using the Cloud Scheduler that is spread across both commercial and dedicated private sites, and present some early results of scientific data analysis using the system.

  9. The BaBar experiment's distributed computing model

    International Nuclear Information System (INIS)

    Boutigny, D.

    2001-01-01

    In order to face the expected increase in statistics between now and 2005, the BaBar experiment at SLAC is evolving its computing model toward a distributed multitier system. It is foreseen that data will be spread among Tier-A centers and deleted from the SLAC center. A uniform computing environment is being deployed in the centers, the network bandwidth is continuously increased and data distribution tools has been designed in order to reach a transfer rate of ∼100 TB of data per year. In parallel, smaller Tier-B and C sites receive subsets of data, presently in Kanga-ROOT format and later in Objectivity format. GRID tools will be used for remote job submission

  10. The BaBar Experiment's Distributed Computing Model

    International Nuclear Information System (INIS)

    Gowdy, Stephen J.

    2002-01-01

    In order to face the expected increase in statistics between now and 2005, the BaBar experiment at SLAC is evolving its computing model toward a distributed multi-tier system. It is foreseen that data will be spread among Tier-A centers and deleted from the SLAC center. A uniform computing environment is being deployed in the centers, the network bandwidth is continuously increased and data distribution tools has been designed in order to reach a transfer rate of ∼100 TB of data per year. In parallel, smaller Tier-B and C sites receive subsets of data, presently in Kanga-ROOT[1] format and later in Objectivity[2] format. GRID tools will be used for remote job submission

  11. An approach for heterogeneous and loosely coupled geospatial data distributed computing

    Science.gov (United States)

    Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui

    2010-07-01

    Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.

  12. Integration of Cloud resources in the LHCb Distributed Computing

    CERN Document Server

    Ubeda Garcia, Mario; Stagni, Federico; Cabarrou, Baptiste; Rauschmayr, Nathalie; Charpentier, Philippe; Closier, Joel

    2014-01-01

    This contribution describes how Cloud resources have been integrated in the LHCb Distributed Computing. LHCb is using its specific Dirac extension (LHCbDirac) as an interware for its Distributed Computing. So far, it was seamlessly integrating Grid resources and Computer clusters. The cloud extension of DIRAC (VMDIRAC) allows the integration of Cloud computing infrastructures. It is able to interact with multiple types of infrastructures in commercial and institutional clouds, supported by multiple interfaces (Amazon EC2, OpenNebula, OpenStack and CloudStack) – instantiates, monitors and manages Virtual Machines running on this aggregation of Cloud resources. Moreover, specifications for institutional Cloud resources proposed by Worldwide LHC Computing Grid (WLCG), mainly by the High Energy Physics Unix Information Exchange (HEPiX) group, have been taken into account. Several initiatives and computing resource providers in the eScience environment have already deployed IaaS in production during 2013. Keepin...

  13. Facility Location Modeling in Multi-Echelon Distribution System: A Case Study of Indonesian Liquefied Petroleum Gas Supply Chain

    Directory of Open Access Journals (Sweden)

    Ilyas Masudin

    2013-04-01

    Full Text Available This paper presents model of Indonesian LPG supply chain by opening new facilities (new echelon taking into account the current facilities. The objective is to investigate the relation between distribution costs such as transportation, inventory cost and facility location in Indonesian multi-echelon LPG supply chain. Fixed-charged capacitated facility location problem is used to determine the optimal solution of the proposed model. In the sensitivity analysis, it is reported that the trade-offs between facility locations and distribution costs are exist. Results report that as the number of facility increases, total transportation and inventory cost also increase.

  14. Distributed and cloud computing from parallel processing to the Internet of Things

    CERN Document Server

    Hwang, Kai; Fox, Geoffrey C

    2012-01-01

    Distributed and Cloud Computing, named a 2012 Outstanding Academic Title by the American Library Association's Choice publication, explains how to create high-performance, scalable, reliable systems, exposing the design principles, architecture, and innovative applications of parallel, distributed, and cloud computing systems. Starting with an overview of modern distributed models, the book provides comprehensive coverage of distributed and cloud computing, including: Facilitating management, debugging, migration, and disaster recovery through virtualization Clustered systems for resear

  15. Increasing efficiency of job execution with resource co-allocation in distributed computer systems

    OpenAIRE

    Cankar, Matija

    2014-01-01

    The field of distributed computer systems, while not new in computer science, is still the subject of a lot of interest in both industry and academia. More powerful computers, faster and more ubiquitous networks, and complex distributed applications are accelerating the growth of distributed computing. Large numbers of computers interconnected in a single network provide additional computing power to users whenever required. Such systems are, however, expensive and complex to manage, which ca...

  16. Applicability study of optical fiber distribution sensing to nuclear facilities

    International Nuclear Information System (INIS)

    Takada, Eiji; Kimura, Atsushi; Nakazawa, Masaharu; Kakuta, Tsunemi

    1999-01-01

    Optical fibers have advantages like flexible configuration, intrinsic immunity for electromagnetic fields etc., and they have been used for signal transmission and as optical fiber sensors (OFSs). By some of these sensor techniques, continuous or discrete distribution of physical parameters can be measured. Here, in order to discuss the applicability of these OFSs to nuclear facilities, irradiation experiments to optical fibers were carried out using the fast neutron source reactor 'YAYOI' and a 60 Co γ source. It has been shown that, under irradiation with fast neutrons, the radiation induced loss increase almost linearly with the neutron fluence. On the other hand, when irradiated with 60 Co γ rays, the loss shows a saturation tendency. As an example of the OFSs, applicability of the Raman distributed temperature sensor (RDTS) to the monitoring of nuclear facilities has been examined. Two correction techniques for radiation induced errors have been developed and for the demonstration of their feasibility, measurements were carried out along the primary piping system of the experimental fast reactor: JOYO. During the continuous measurements with the total dose of more than 10 7 [R], the radiation induced errors showed a saturating tendency and the feasibility of the loss correction technique was demonstrated. Although the time response of the system should be improved, the RDTS can be expected as a noble temperature monitor in nuclear facilities. (author)

  17. Actors: A Model of Concurrent Computation in Distributed Systems.

    Science.gov (United States)

    1985-06-01

    Artificial Intelligence Labora- tory of the Massachusetts Institute of Technology. Support for the labora- tory’s aritificial intelligence research is...RD-A157 917 ACTORS: A MODEL OF CONCURRENT COMPUTATION IN 1/3- DISTRIBUTED SY𔃿TEMS(U) MASSACHUSETTS INST OF TECH CRMBRIDGE ARTIFICIAL INTELLIGENCE ...Computation In Distributed Systems Gui A. Aghai MIT Artificial Intelligence Laboratory Thsdocument ha. been cipp-oved I= pblicrelease and sale; itsI

  18. Experience with a distributed computing system for magnetic field analysis

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-08-01

    The development of a general purpose computer system, THESEUS, is described the initial use for which has been magnetic field analysis. The system involves several computers connected by data links. Some are small computers with interactive graphics facilities and limited analysis capabilities, and others are large computers for batch execution of analysis programs with heavy processor demands. The system is highly modular for easy extension and highly portable for transfer to different computers. It can easily be adapted for a completely different application. It provides a highly efficient and flexible interface between magnet designers and specialised analysis programs. Both the advantages and problems experienced are highlighted, together with a mention of possible future developments. (U.K.)

  19. Distributed user interfaces for clinical ubiquitous computing applications.

    Science.gov (United States)

    Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik

    2005-08-01

    Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.

  20. ATLAS Distributed Computing in LHC Run2

    CERN Document Server

    Campana, Simone; The ATLAS collaboration

    2015-01-01

    The ATLAS Distributed Computing infrastructure has evolved after the first period of LHC data taking in order to cope with the challenges of the upcoming LHC Run2. An increased data rate and computing demands of the Monte-Carlo simulation, as well as new approaches to ATLAS analysis, dictated a more dynamic workload management system (ProdSys2) and data management system (Rucio), overcoming the boundaries imposed by the design of the old computing model. In particular, the commissioning of new central computing system components was the core part of the migration toward the flexible computing model. The flexible computing utilization exploring the opportunistic resources such as HPC, cloud, and volunteer computing is embedded in the new computing model, the data access mechanisms have been enhanced with the remote access, and the network topology and performance is deeply integrated into the core of the system. Moreover a new data management strategy, based on defined lifetime for each dataset, has been defin...

  1. Computer usage among nurses in rural health-care facilities in South Africa: obstacles and challenges.

    Science.gov (United States)

    Asah, Flora

    2013-04-01

    This study discusses factors inhibiting computer usage for work-related tasks among computer-literate professional nurses within rural healthcare facilities in South Africa. In the past two decades computer literacy courses have not been part of the nursing curricula. Computer courses are offered by the State Information Technology Agency. Despite this, there seems to be limited use of computers by professional nurses in the rural context. Focus group interviews held with 40 professional nurses from three government hospitals in northern KwaZulu-Natal. Contributing factors were found to be lack of information technology infrastructure, restricted access to computers and deficits in regard to the technical and nursing management support. The physical location of computers within the health-care facilities and lack of relevant software emerged as specific obstacles to usage. Provision of continuous and active support from nursing management could positively influence computer usage among professional nurses. A closer integration of information technology and computer literacy skills into existing nursing curricula would foster a positive attitude towards computer usage through early exposure. Responses indicated that change of mindset may be needed on the part of nursing management so that they begin to actively promote ready access to computers as a means of creating greater professionalism and collegiality. © 2011 Blackwell Publishing Ltd.

  2. The CMS Computing Model

    International Nuclear Information System (INIS)

    Bonacorsi, D.

    2007-01-01

    The CMS experiment at LHC has developed a baseline Computing Model addressing the needs of a computing system capable to operate in the first years of LHC running. It is focused on a data model with heavy streaming at the raw data level based on trigger, and on the achievement of the maximum flexibility in the use of distributed computing resources. The CMS distributed Computing Model includes a Tier-0 centre at CERN, a CMS Analysis Facility at CERN, several Tier-1 centres located at large regional computing centres, and many Tier-2 centres worldwide. The workflows have been identified, along with a baseline architecture for the data management infrastructure. This model is also being tested in Grid Service Challenges of increasing complexity, coordinated with the Worldwide LHC Computing Grid community

  3. Shielding Calculations for Positron Emission Tomography - Computed Tomography Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baasandorj, Khashbayar [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yang, Jeongseon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    Integrated PET-CT has been shown to be more accurate for lesion localization and characterization than PET or CT alone, and the results obtained from PET and CT separately and interpreted side by side or following software based fusion of the PET and CT datasets. At the same time, PET-CT scans can result in high patient and staff doses; therefore, careful site planning and shielding of this imaging modality have become challenging issues in the field. In Mongolia, the introduction of PET-CT facilities is currently being considered in many hospitals. Thus, additional regulatory legislation for nuclear and radiation applications is necessary, for example, in regulating licensee processes and ensuring radiation safety during the operations. This paper aims to determine appropriate PET-CT shielding designs using numerical formulas and computer code. Since presently there are no PET-CT facilities in Mongolia, contact was made with radiological staff at the Nuclear Medicine Center of the National Cancer Center of Mongolia (NCCM) to get information about facilities where the introduction of PET-CT is being considered. Well-designed facilities do not require additional shielding, which should help cut down overall costs related to PET-CT installation. According to the results of this study, building barrier thicknesses of the NCCM building is not sufficient to keep radiation dose within the limits.

  4. Distributed parallel computing in stochastic modeling of groundwater systems.

    Science.gov (United States)

    Dong, Yanhui; Li, Guomin; Xu, Haizhen

    2013-03-01

    Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  5. HEP@Home - A distributed computing system based on BOINC

    CERN Document Server

    Amorim, A; Andrade, P; Amorim, Antonio; Villate, Jaime; Andrade, Pedro

    2005-01-01

    Project SETI@HOME has proven to be one of the biggest successes of distributed computing during the last years. With a quite simple approach SETI manages to process large volumes of data using a vast amount of distributed computer power. To extend the generic usage of this kind of distributed computing tools, BOINC is being developed. In this paper we propose HEP@HOME, a BOINC version tailored to the specific requirements of the High Energy Physics (HEP) community. The HEP@HOME will be able to process large amounts of data using virtually unlimited computing power, as BOINC does, and it should be able to work according to HEP specifications. In HEP the amounts of data to be analyzed or reconstructed are of central importance. Therefore, one of the design principles of this tool is to avoid data transfer. This will allow scientists to run their analysis applications and taking advantage of a large number of CPUs. This tool also satisfies other important requirements in HEP, namely, security, fault-tolerance an...

  6. AGIS: Integration of new technologies used in ATLAS Distributed Computing

    CERN Document Server

    Anisenkov, Alexey; The ATLAS collaboration; Alandes Pradillo, Maria

    2016-01-01

    AGIS is the information system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing (ADC) applications and services. In this note, we describe the evolution and the recent developments of AGIS functionalities, related to integration of new technologies recently become widely used in ATLAS Computing like flexible computing utilization of opportunistic Cloud and HPC resources, ObjectStore services integration for Distributed Data Management (Rucio) and ATLAS workload management (PanDA) systems, unified storage protocols declaration required for PandDA Pilot site movers and others.

  7. A Distributed Tier-1

    DEFF Research Database (Denmark)

    Fischer, Lars; Grønager, Michael; Kleist, Josva

    2008-01-01

    The Tier-1 facility operated by the Nordic DataGrid Facility (NDGF) differs significantly from other Tier-1s in several aspects: firstly, it is not located at one or a few premises, but instead is distributed throughout the Nordic countries; secondly, it is not under the governance of a single...... organization but instead is a meta-center built of resources under the control of a number of different national organizations. We present some technical implications of these aspects as well as the high-level design of this distributed Tier-1. The focus will be on computing services, storage and monitoring....

  8. A distributed Tier-1

    Science.gov (United States)

    Fischer, L.; Grønager, M.; Kleist, J.; Smirnova, O.

    2008-07-01

    The Tier-1 facility operated by the Nordic DataGrid Facility (NDGF) differs significantly from other Tier-1s in several aspects: firstly, it is not located at one or a few premises, but instead is distributed throughout the Nordic countries; secondly, it is not under the governance of a single organization but instead is a meta-center built of resources under the control of a number of different national organizations. We present some technical implications of these aspects as well as the high-level design of this distributed Tier-1. The focus will be on computing services, storage and monitoring.

  9. Implementation of distributed computing system for emergency response and contaminant spill monitoring

    International Nuclear Information System (INIS)

    Ojo, T.O.; Sterling, M.C.Jr.; Bonner, J.S.; Fuller, C.B.; Kelly, F.; Page, C.A.

    2003-01-01

    The availability and use of real-time environmental data greatly enhances emergency response and spill monitoring in coastal and near shore environments. The data would include surface currents, wind speed, wind direction, and temperature. Model predictions (fate and transport) or forensics can also be included. In order to achieve an integrated system suitable for application in spill or emergency response situations, a link is required because this information exists on many different computing platforms. When real-time measurements are needed to monitor a spill, the use of a wide array of sensors and ship-based post-processing methods help reduce the latency in data transfer between field sampling stations and the Incident Command Centre. The common thread linking all these modules is the Transmission Control Protocol/Internet Protocol (TCP/IP), and the result is an integrated distributed computing system (DCS). The in-situ sensors are linked to an onboard computer through the use of a ship-based local area network (LAN) using a submersible device server. The onboard computer serves as both the data post-processor and communications server. It links the field sampling station with other modules, and is responsible for transferring data to the Incident Command Centre. This link is facilitated by a wide area network (WAN) based on wireless broadband communications facilities. This paper described the implementation of the DCS. The test results for the communications link and system readiness were also included. 6 refs., 2 tabs., 3 figs

  10. A Distributed Computing Network for Real-Time Systems.

    Science.gov (United States)

    1980-11-03

    7 ) AU2 o NAVA TUNDEWATER SY$TEMS CENTER NEWPORT RI F/G 9/2 UIS RIBUT E 0 COMPUTIN G N LTWORK FOR REAL - TIME SYSTEMS .(U) UASSIFIED NOV Al 6 1...MORAIS - UT 92 dLEVEL c A Distributed Computing Network for Real - Time Systems . 11 𔃺-1 Gordon E/Morson I7 y tm- ,r - t "en t As J 2 -p .. - 7 I’ cNaval...NUMBER TD 5932 / N 4. TITLE mand SubotI. S. TYPE OF REPORT & PERIOD COVERED A DISTRIBUTED COMPUTING NETWORK FOR REAL - TIME SYSTEMS 6. PERFORMING ORG

  11. Evolution of facility layout requirements and CAD [computer-aided design] system development

    International Nuclear Information System (INIS)

    Jones, M.

    1990-06-01

    The overall configuration of the Superconducting Super Collider (SSC) including the infrastructure and land boundary requirements were developed using a computer-aided design (CAD) system. The evolution of the facility layout requirements and the use of the CAD system are discussed. The emphasis has been on minimizing the amount of input required and maximizing the speed by which the output may be obtained. The computer system used to store the data is also described

  12. 9th International conference on distributed computing and artificial intelligence

    CERN Document Server

    Santana, Juan; González, Sara; Molina, Jose; Bernardos, Ana; Rodríguez, Juan; DCAI 2012; International Symposium on Distributed Computing and Artificial Intelligence 2012

    2012-01-01

    The International Symposium on Distributed Computing and Artificial Intelligence 2012 (DCAI 2012) is a stimulating and productive forum where the scientific community can work towards future cooperation in Distributed Computing and Artificial Intelligence areas. This conference is a forum in which  applications of innovative techniques for solving complex problems will be presented. Artificial intelligence is changing our society. Its application in distributed environments, such as the internet, electronic commerce, environment monitoring, mobile communications, wireless devices, distributed computing, to mention only a few, is continuously increasing, becoming an element of high added value with social and economic potential, in industry, quality of life, and research. These technologies are changing constantly as a result of the large research and technical effort being undertaken in both universities and businesses. The exchange of ideas between scientists and technicians from both the academic and indus...

  13. Use of critical pathway models and log-normal frequency distributions for siting nuclear facilities

    International Nuclear Information System (INIS)

    Waite, D.A.; Denham, D.H.

    1975-01-01

    The advantages and disadvantages of potential sites for nuclear facilities are evaluated through the use of environmental pathway and log-normal distribution analysis. Environmental considerations of nuclear facility siting are necessarily geared to the identification of media believed to be sifnificant in terms of dose to man or to be potential centres for long-term accumulation of contaminants. To aid in meeting the scope and purpose of this identification, an exposure pathway diagram must be developed. This type of diagram helps to locate pertinent environmental media, points of expected long-term contaminant accumulation, and points of population/contaminant interface for both radioactive and non-radioactive contaminants. Confirmation of facility siting conclusions drawn from pathway considerations must usually be derived from an investigatory environmental surveillance programme. Battelle's experience with environmental surveillance data interpretation using log-normal techniques indicates that this distribution has much to offer in the planning, execution and analysis phases of such a programme. How these basic principles apply to the actual siting of a nuclear facility is demonstrated for a centrifuge-type uranium enrichment facility as an example. A model facility is examined to the extent of available data in terms of potential contaminants and facility general environmental needs. A critical exposure pathway diagram is developed to the point of prescribing the characteristics of an optimum site for such a facility. Possible necessary deviations from climatic constraints are reviewed and reconciled with conclusions drawn from the exposure pathway analysis. Details of log-normal distribution analysis techniques are presented, with examples of environmental surveillance data to illustrate data manipulation techniques and interpretation procedures as they affect the investigatory environmental surveillance programme. Appropriate consideration is given these

  14. Experiment Dashboard for Monitoring of the LHC Distributed Computing Systems

    International Nuclear Information System (INIS)

    Andreeva, J; Campos, M Devesas; Cros, J Tarragon; Gaidioz, B; Karavakis, E; Kokoszkiewicz, L; Lanciotti, E; Maier, G; Ollivier, W; Nowotka, M; Rocha, R; Sadykov, T; Saiz, P; Sargsyan, L; Sidorova, I; Tuckett, D

    2011-01-01

    LHC experiments are currently taking collisions data. A distributed computing model chosen by the four main LHC experiments allows physicists to benefit from resources spread all over the world. The distributed model and the scale of LHC computing activities increase the level of complexity of middleware, and also the chances of possible failures or inefficiencies in involved components. In order to ensure the required performance and functionality of the LHC computing system, monitoring the status of the distributed sites and services as well as monitoring LHC computing activities are among the key factors. Over the last years, the Experiment Dashboard team has been working on a number of applications that facilitate the monitoring of different activities: including following up jobs, transfers, and also site and service availabilities. This presentation describes Experiment Dashboard applications used by the LHC experiments and experience gained during the first months of data taking.

  15. Computation of distribution of minimum resolution for log-normal distribution of chromatographic peak heights.

    Science.gov (United States)

    Davis, Joe M

    2011-10-28

    General equations are derived for the distribution of minimum resolution between two chromatographic peaks, when peak heights in a multi-component chromatogram follow a continuous statistical distribution. The derivation draws on published theory by relating the area under the distribution of minimum resolution to the area under the distribution of the ratio of peak heights, which in turn is derived from the peak-height distribution. Two procedures are proposed for the equations' numerical solution. The procedures are applied to the log-normal distribution, which recently was reported to describe the distribution of component concentrations in three complex natural mixtures. For published statistical parameters of these mixtures, the distribution of minimum resolution is similar to that for the commonly assumed exponential distribution of peak heights used in statistical-overlap theory. However, these two distributions of minimum resolution can differ markedly, depending on the scale parameter of the log-normal distribution. Theory for the computation of the distribution of minimum resolution is extended to other cases of interest. With the log-normal distribution of peak heights as an example, the distribution of minimum resolution is computed when small peaks are lost due to noise or detection limits, and when the height of at least one peak is less than an upper limit. The distribution of minimum resolution shifts slightly to lower resolution values in the first case and to markedly larger resolution values in the second one. The theory and numerical procedure are confirmed by Monte Carlo simulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Overview of the ATLAS distributed computing system

    CERN Document Server

    Elmsheuser, Johannes; The ATLAS collaboration

    2018-01-01

    The CERN ATLAS experiment successfully uses a worldwide computing infrastructure to support the physics program during LHC Run 2. The grid workflow system PanDA routinely manages 250 to 500 thousand concurrently running production and analysis jobs to process simulation and detector data. In total more than 300 PB of data is distributed over more than 150 sites in the WLCG and handled by the ATLAS data management system Rucio. To prepare for the ever growing LHC luminosity in future runs new developments are underway to even more efficiently use opportunistic resources such as HPCs and utilize new technologies. This presentation will review and explain the outline and the performance of the ATLAS distributed computing system and give an outlook to new workflow and data management ideas for the beginning of the LHC Run 3.

  17. Computer mapping and visualization of facilities for planning of D and D operations

    International Nuclear Information System (INIS)

    Wuller, C.E.; Gelb, G.H.; Cramond, R.; Cracraft, J.S.

    1995-01-01

    The lack of as-built drawings for many old nuclear facilities impedes planning for decontamination and decommissioning. Traditional manual walkdowns subject workers to lengthy exposure to radiological and other hazards. The authors have applied close-range photogrammetry, 3D solid modeling, computer graphics, database management, and virtual reality technologies to create geometrically accurate 3D computer models of the interiors of facilities. The required input to the process is a set of photographs that can be acquired in a brief time. They fit 3D primitive shapes to objects of interest in the photos and, at the same time, record attributes such as material type and link patches of texture from the source photos to facets of modeled objects. When they render the model as either static images or at video rates for a walk-through simulation, the phototextures are warped onto the objects, giving a photo-realistic impression. The authors have exported the data to commercial CAD, cost estimating, robotic simulation, and plant design applications. Results from several projects at old nuclear facilities are discussed

  18. AGIS: Evolution of Distributed Computing Information system for ATLAS

    CERN Document Server

    Anisenkov, Alexey; The ATLAS collaboration; Alandes Pradillo, Maria; Karavakis, Edward

    2015-01-01

    The variety of the ATLAS Computing Infrastructure requires a central information system to define the topology of computing resources and to store the different parameters and configuration data which are needed by the various ATLAS software components. The ATLAS Grid Information System is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services.

  19. Proceedings: Distributed digital systems, plant process computers, and networks

    International Nuclear Information System (INIS)

    1995-03-01

    These are the proceedings of a workshop on Distributed Digital Systems, Plant Process Computers, and Networks held in Charlotte, North Carolina on August 16--18, 1994. The purpose of the workshop was to provide a forum for technology transfer, technical information exchange, and education. The workshop was attended by more than 100 representatives of electric utilities, equipment manufacturers, engineering service organizations, and government agencies. The workshop consisted of three days of presentations, exhibitions, a panel discussion and attendee interactions. Original plant process computers at the nuclear power plants are becoming obsolete resulting in increasing difficulties in their effectiveness to support plant operations and maintenance. Some utilities have already replaced their plant process computers by more powerful modern computers while many other utilities intend to replace their aging plant process computers in the future. Information on recent and planned implementations are presented. Choosing an appropriate communications and computing network architecture facilitates integrating new systems and provides functional modularity for both hardware and software. Control room improvements such as CRT-based distributed monitoring and control, as well as digital decision and diagnostic aids, can improve plant operations. Commercially available digital products connected to the plant communications system are now readily available to provide distributed processing where needed. Plant operations, maintenance activities, and engineering analyses can be supported in a cost-effective manner. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  20. ATLAS Distributed Computing Experience and Performance During the LHC Run-2

    Science.gov (United States)

    Filipčič, A.; ATLAS Collaboration

    2017-10-01

    ATLAS sites are now able to store unique or primary copies of the datasets. ATLAS Distributed Computing is further evolving to speed up request processing by introducing network awareness, using machine learning and optimisation of the latencies during the execution of the full chain of tasks. The Event Service, a new workflow and job execution engine, is designed around check-pointing at the level of event processing to use opportunistic resources more efficiently. ATLAS has been extensively exploring possibilities of using computing resources extending beyond conventional grid sites in the WLCG fabric to deliver as many computing cycles as possible and thereby enhance the significance of the Monte-Carlo samples to deliver better physics results. The exploitation of opportunistic resources was at an early stage throughout 2015, at the level of 10% of the total ATLAS computing power, but in the next few years it is expected to deliver much more. In addition, demonstrating the ability to use an opportunistic resource can lead to securing ATLAS allocations on the facility, hence the importance of this work goes beyond merely the initial CPU cycles gained. In this paper, we give an overview and compare the performance, development effort, flexibility and robustness of the various approaches.

  1. Physics detector simulation facility system software description

    International Nuclear Information System (INIS)

    Allen, J.; Chang, C.; Estep, P.; Huang, J.; Liu, J.; Marquez, M.; Mestad, S.; Pan, J.; Traversat, B.

    1991-12-01

    Large and costly detectors will be constructed during the next few years to study the interactions produced by the SSC. Efficient, cost-effective designs for these detectors will require careful thought and planning. Because it is not possible to test fully a proposed design in a scaled-down version, the adequacy of a proposed design will be determined by a detailed computer model of the detectors. Physics and detector simulations will be performed on the computer model using high-powered computing system at the Physics Detector Simulation Facility (PDSF). The SSCL has particular computing requirements for high-energy physics (HEP) Monte Carlo calculations for the simulation of SSCL physics and detectors. The numerical calculations to be performed in each simulation are lengthy and detailed; they could require many more months per run on a VAX 11/780 computer and may produce several gigabytes of data per run. Consequently, a distributed computing environment of several networked high-speed computing engines is envisioned to meet these needs. These networked computers will form the basis of a centralized facility for SSCL physics and detector simulation work. Our computer planning groups have determined that the most efficient, cost-effective way to provide these high-performance computing resources at this time is with RISC-based UNIX workstations. The modeling and simulation application software that will run on the computing system is usually written by physicists in FORTRAN language and may need thousands of hours of supercomputing time. The system software is the ''glue'' which integrates the distributed workstations and allows them to be managed as a single entity. This report will address the computing strategy for the SSC

  2. From parallel to distributed computing for reactive scattering calculations

    International Nuclear Information System (INIS)

    Lagana, A.; Gervasi, O.; Baraglia, R.

    1994-01-01

    Some reactive scattering codes have been ported on different innovative computer architectures ranging from massively parallel machines to clustered workstations. The porting has required a drastic restructuring of the codes to single out computationally decoupled cpu intensive subsections. The suitability of different theoretical approaches for parallel and distributed computing restructuring is discussed and the efficiency of related algorithms evaluated

  3. Vertical Load Distribution for Cloud Computing via Multiple Implementation Options

    Science.gov (United States)

    Phan, Thomas; Li, Wen-Syan

    Cloud computing looks to deliver software as a provisioned service to end users, but the underlying infrastructure must be sufficiently scalable and robust. In our work, we focus on large-scale enterprise cloud systems and examine how enterprises may use a service-oriented architecture (SOA) to provide a streamlined interface to their business processes. To scale up the business processes, each SOA tier usually deploys multiple servers for load distribution and fault tolerance, a scenario which we term horizontal load distribution. One limitation of this approach is that load cannot be distributed further when all servers in the same tier are loaded. In complex multi-tiered SOA systems, a single business process may actually be implemented by multiple different computation pathways among the tiers, each with different components, in order to provide resilience and scalability. Such multiple implementation options gives opportunities for vertical load distribution across tiers. In this chapter, we look at a novel request routing framework for SOA-based enterprise computing with multiple implementation options that takes into account the options of both horizontal and vertical load distribution.

  4. An assessment of equity in the distribution of non-financial health care inputs across public primary health care facilities in Tanzania.

    Science.gov (United States)

    Kuwawenaruwa, August; Borghi, Josephine; Remme, Michelle; Mtei, Gemini

    2017-07-11

    There is limited evidence on how health care inputs are distributed from the sub-national level down to health facilities and their potential influence on promoting health equity. To address this gap, this paper assesses equity in the distribution of health care inputs across public primary health facilities at the district level in Tanzania. This is a quantitative assessment of equity in the distribution of health care inputs (staff, drugs, medical supplies and equipment) from district to facility level. The study was carried out in three districts (Kinondoni, Singida Rural and Manyoni district) in Tanzania. These districts were selected because they were implementing primary care reforms. We administered 729 exit surveys with patients seeking out-patient care; and health facility surveys at 69 facilities in early 2014. A total of seventeen indices of input availability were constructed with the collected data. The distribution of inputs was considered in relation to (i) the wealth of patients accessing the facilities, which was taken as a proxy for the wealth of the population in the catchment area; and (ii) facility distance from the district headquarters. We assessed equity in the distribution of inputs through the use of equity ratios, concentration indices and curves. We found a significant pro-rich distribution of clinical staff and nurses per 1000 population. Facilities with the poorest patients (most remote facilities) have fewer staff per 1000 population than those with the least poor patients (least remote facilities): 0.6 staff per 1000 among the poorest, compared to 0.9 among the least poor; 0.7 staff per 1000 among the most remote facilities compared to 0.9 among the least remote. The negative concentration index for support staff suggests a pro-poor distribution of this cadre but the 45 degree dominated the concentration curve. The distribution of vaccines, antibiotics, anti-diarrhoeal, anti-malarials and medical supplies was approximately

  5. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  6. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    International Nuclear Information System (INIS)

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities

  7. Earth observation scientific workflows in a distributed computing environment

    CSIR Research Space (South Africa)

    Van Zyl, TL

    2011-09-01

    Full Text Available capabilities has focused on the web services approach as exemplified by the OGC's Web Processing Service and by GRID computing. The approach to leveraging distributed computing resources described in this paper uses instead remote objects via RPy...

  8. Detecting Development Pattern of Urban Business Facilities Using Reviews Data

    Directory of Open Access Journals (Sweden)

    JIANG Botao

    2015-09-01

    Full Text Available This paper reveals and utilizes the growing power of online customer reviews in the space and time context. The location of commercial facilities and online customer reviews offered by Dianping.com provide an important data source for the study of spatial and temporal dynamics of urban commercial facilities. The constraints of road network are taken into account towards computing the density of urban commercial facilities and associated online customer reviews, as well as their spatial distribution, temporal trend, and the coupling relationship between facility number and stratification level. This paper maps the spatial distribution of commercial facilities onto the nearby road network, reflecting the influences of the locations, number and satisfaction levels of other commercial facilities across various street types. Because more and more customers tend to make a final shopping decision by sorting through search results by ratings and feedback, the research conducted in this paper can provide the proof for quantitative evaluation of urban planning on commercial facility development.

  9. Computational Intelligence based techniques for islanding detection of distributed generation in distribution network: A review

    International Nuclear Information System (INIS)

    Laghari, J.A.; Mokhlis, H.; Karimi, M.; Bakar, A.H.A.; Mohamad, Hasmaini

    2014-01-01

    Highlights: • Unintentional and intentional islanding, their causes, and solutions are presented. • Remote, passive, active and hybrid islanding detection techniques are discussed. • The limitation of these techniques in accurately detect islanding are discussed. • Computational intelligence techniques ability in detecting islanding is discussed. • Review of ANN, fuzzy logic control, ANFIS, Decision tree techniques is provided. - Abstract: Accurate and fast islanding detection of distributed generation is highly important for its successful operation in distribution networks. Up to now, various islanding detection technique based on communication, passive, active and hybrid methods have been proposed. However, each technique suffers from certain demerits that cause inaccuracies in islanding detection. Computational intelligence based techniques, due to their robustness and flexibility in dealing with complex nonlinear systems, is an option that might solve this problem. This paper aims to provide a comprehensive review of computational intelligence based techniques applied for islanding detection of distributed generation. Moreover, the paper compares the accuracies of computational intelligence based techniques over existing techniques to provide a handful of information for industries and utility researchers to determine the best method for their respective system

  10. Distributed computing environment for Mine Warfare Command

    OpenAIRE

    Pritchard, Lane L.

    1993-01-01

    Approved for public release; distribution is unlimited. The Mine Warfare Command in Charleston, South Carolina has been converting its information systems architecture from a centralized mainframe based system to a decentralized network of personal computers over the past several years. This thesis analyzes the progress Of the evolution as of May of 1992. The building blocks of a distributed architecture are discussed in relation to the choices the Mine Warfare Command has made to date. Ar...

  11. Using distributed processing on a local area network to increase available computing power

    International Nuclear Information System (INIS)

    Capps, K.S.; Sherry, K.J.

    1996-01-01

    The migration from central computers to desktop computers distributed the total computing horsepower of a system over many different machines. A typical engineering office may have several networked desktop computers that are sometimes idle, especially after work hours and when people are absent. Users would benefit if applications were able to use these networked computers collectively. This paper describes a method of distributing the workload of an application on one desktop system to otherwise idle systems on the network. The authors present this discussion from a developer's viewpoint, because the developer must modify an application before the user can realize any benefit of distributed computing on available systems

  12. STADIC: a computer code for combining probability distributions

    International Nuclear Information System (INIS)

    Cairns, J.J.; Fleming, K.N.

    1977-03-01

    The STADIC computer code uses a Monte Carlo simulation technique for combining probability distributions. The specific function for combination of the input distribution is defined by the user by introducing the appropriate FORTRAN statements to the appropriate subroutine. The code generates a Monte Carlo sampling from each of the input distributions and combines these according to the user-supplied function to provide, in essence, a random sampling of the combined distribution. When the desired number of samples is obtained, the output routine calculates the mean, standard deviation, and confidence limits for the resultant distribution. This method of combining probability distributions is particularly useful in cases where analytical approaches are either too difficult or undefined

  13. Distributed Computations Environment Protection Using Artificial Immune Systems

    Directory of Open Access Journals (Sweden)

    A. V. Moiseev

    2011-12-01

    Full Text Available In this article the authors describe possibility of artificial immune systems applying for distributed computations environment protection from definite types of malicious impacts.

  14. Distributed Computing for the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Chudoba, J.

    2015-01-01

    Pierre Auger Observatory operates the largest system of detectors for ultra-high energy cosmic ray measurements. Comparison of theoretical models of interactions with recorded data requires thousands of computing cores for Monte Carlo simulations. Since 2007 distributed resources connected via EGI grid are successfully used. The first and the second versions of production system based on bash scripts and MySQL database were able to submit jobs to all reliable sites supporting Virtual Organization auger. For many years VO auger belongs to top ten of EGI users based on the total used computing time. Migration of the production system to DIRAC interware started in 2014. Pilot jobs improve efficiency of computing jobs and eliminate problems with small and less reliable sites used for the bulk production. The new system has also possibility to use available resources in clouds. Dirac File Catalog replaced LFC for new files, which are organized in datasets defined via metadata. CVMFS is used for software distribution since 2014. In the presentation we give a comparison of the old and the new production system and report the experience on migrating to the new system. (paper)

  15. Distributed Computing for the Pierre Auger Observatory

    Science.gov (United States)

    Chudoba, J.

    2015-12-01

    Pierre Auger Observatory operates the largest system of detectors for ultra-high energy cosmic ray measurements. Comparison of theoretical models of interactions with recorded data requires thousands of computing cores for Monte Carlo simulations. Since 2007 distributed resources connected via EGI grid are successfully used. The first and the second versions of production system based on bash scripts and MySQL database were able to submit jobs to all reliable sites supporting Virtual Organization auger. For many years VO auger belongs to top ten of EGI users based on the total used computing time. Migration of the production system to DIRAC interware started in 2014. Pilot jobs improve efficiency of computing jobs and eliminate problems with small and less reliable sites used for the bulk production. The new system has also possibility to use available resources in clouds. Dirac File Catalog replaced LFC for new files, which are organized in datasets defined via metadata. CVMFS is used for software distribution since 2014. In the presentation we give a comparison of the old and the new production system and report the experience on migrating to the new system.

  16. Operation of the ATLAS distributed computing

    CERN Document Server

    Barreiro Megino, Fernando Harald; The ATLAS collaboration

    2018-01-01

    We describe the central operation of the ATLAS distributed computing system. The majority of compute intensive activities within ATLAS are carried out on some 350,000 CPU cores on the Grid, augmented by opportunistic usage of significant HPC and volunteer resources. The increasing scale, and challenging new payloads, demand fine-tuning of operational procedures together with timely developments of the production system. We describe several such developments, motivated directly from operational experience. Optimization of inefficient task requests, from both official production and users, is made possible by automatic detection of payload properties. User education, job shaping or preventative throttling help to increase the overall throughput of the available resources.

  17. First Experiences with LHC Grid Computing and Distributed Analysis

    CERN Document Server

    Fisk, Ian

    2010-01-01

    In this presentation the experiences of the LHC experiments using grid computing were presented with a focus on experience with distributed analysis. After many years of development, preparation, exercises, and validation the LHC (Large Hadron Collider) experiments are in operations. The computing infrastructure has been heavily utilized in the first 6 months of data collection. The general experience of exploiting the grid infrastructure for organized processing and preparation is described, as well as the successes employing the infrastructure for distributed analysis. At the end the expected evolution and future plans are outlined.

  18. ATLAS Distributed Computing in LHC Run2

    International Nuclear Information System (INIS)

    Campana, Simone

    2015-01-01

    The ATLAS Distributed Computing infrastructure has evolved after the first period of LHC data taking in order to cope with the challenges of the upcoming LHC Run-2. An increase in both the data rate and the computing demands of the Monte-Carlo simulation, as well as new approaches to ATLAS analysis, dictated a more dynamic workload management system (Prodsys-2) and data management system (Rucio), overcoming the boundaries imposed by the design of the old computing model. In particular, the commissioning of new central computing system components was the core part of the migration toward a flexible computing model. A flexible computing utilization exploring the use of opportunistic resources such as HPC, cloud, and volunteer computing is embedded in the new computing model; the data access mechanisms have been enhanced with the remote access, and the network topology and performance is deeply integrated into the core of the system. Moreover, a new data management strategy, based on a defined lifetime for each dataset, has been defined to better manage the lifecycle of the data. In this note, an overview of an operational experience of the new system and its evolution is presented. (paper)

  19. Audit of availability and distribution of paediatric cardiology services and facilities in Nigeria.

    Science.gov (United States)

    Ekure, Ekanem N; Sadoh, Wilson E; Bode-Thomas, Fidelia; Orogade, Adeola A; Animasahun, Adeola B; Ogunkunle, Oluwatoyin O; Babaniyi, Iretiola; Anah, Maxwell U; Otaigbe, Barbara E; Olowu, Adebiyi; Okpokowuruk, Frances; Omokhodion, Samuel I; Maduka, Ogechi C; Onakpoya, Uvie U; Adiele, Daberechi K; Sani, Usman M; Asani, Mustapha; Yilgwan, Christopher S; Daniels, Queennette; Uzodimma, Chinyere C; Duru, Chika O; Abdulkadir, Mohammad B; Afolabi, Joseph K; Okeniyi, John A

    Paediatric cardiac services in Nigeria have been perceived to be inadequate but no formal documentation of availability and distribution of facilities and services has been done. To evaluate and document the currently available paediatric cardiac services in Nigeria. In this questionnaire-based, cross-sectional descriptive study, an audit was undertaken from January 2010 to December 2014, of the personnel and infrastructure, with their distributions according to geopolitical zones of Nigeria. Forty-eight centres participated in the study, with 33 paediatric cardiologists and 31 cardiac surgeons. Echocardiography, electrocardiography and pulse oximetry were available in 45 (93.8%) centres while paediatric intensive care units were in 23 (47.9%). Open-heart surgery was performed in six (12.5%) centres. South-West zone had the majority of centres (20; 41.7%). Available paediatric cardiac services in Nigeria are grossly inadequate and poorly distributed. Efforts should be intensified to upgrade existing facilities, establish new and functional centres, and train personnel.

  20. Developing a Distributed Computing Architecture at Arizona State University.

    Science.gov (United States)

    Armann, Neil; And Others

    1994-01-01

    Development of Arizona State University's computing architecture, designed to ensure that all new distributed computing pieces will work together, is described. Aspects discussed include the business rationale, the general architectural approach, characteristics and objectives of the architecture, specific services, and impact on the university…

  1. The CT Scanner Facility at Stellenbosch University: An open access X-ray computed tomography laboratory

    Science.gov (United States)

    du Plessis, Anton; le Roux, Stephan Gerhard; Guelpa, Anina

    2016-10-01

    The Stellenbosch University CT Scanner Facility is an open access laboratory providing non-destructive X-ray computed tomography (CT) and a high performance image analysis services as part of the Central Analytical Facilities (CAF) of the university. Based in Stellenbosch, South Africa, this facility offers open access to the general user community, including local researchers, companies and also remote users (both local and international, via sample shipment and data transfer). The laboratory hosts two CT instruments, i.e. a micro-CT system, as well as a nano-CT system. A workstation-based Image Analysis Centre is equipped with numerous computers with data analysis software packages, which are to the disposal of the facility users, along with expert supervision, if required. All research disciplines are accommodated at the X-ray CT laboratory, provided that non-destructive analysis will be beneficial. During its first four years, the facility has accommodated more than 400 unique users (33 in 2012; 86 in 2013; 154 in 2014; 140 in 2015; 75 in first half of 2016), with diverse industrial and research applications using X-ray CT as means. This paper summarises the existence of the laboratory's first four years by way of selected examples, both from published and unpublished projects. In the process a detailed description of the capabilities and facilities available to users is presented.

  2. The CT Scanner Facility at Stellenbosch University: An open access X-ray computed tomography laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Plessis, Anton du, E-mail: anton2@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa); Physics Department, Stellenbosch University, Stellenbosch (South Africa); Roux, Stephan Gerhard le, E-mail: lerouxsg@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa); Guelpa, Anina, E-mail: aninag@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa)

    2016-10-01

    The Stellenbosch University CT Scanner Facility is an open access laboratory providing non-destructive X-ray computed tomography (CT) and a high performance image analysis services as part of the Central Analytical Facilities (CAF) of the university. Based in Stellenbosch, South Africa, this facility offers open access to the general user community, including local researchers, companies and also remote users (both local and international, via sample shipment and data transfer). The laboratory hosts two CT instruments, i.e. a micro-CT system, as well as a nano-CT system. A workstation-based Image Analysis Centre is equipped with numerous computers with data analysis software packages, which are to the disposal of the facility users, along with expert supervision, if required. All research disciplines are accommodated at the X-ray CT laboratory, provided that non-destructive analysis will be beneficial. During its first four years, the facility has accommodated more than 400 unique users (33 in 2012; 86 in 2013; 154 in 2014; 140 in 2015; 75 in first half of 2016), with diverse industrial and research applications using X-ray CT as means. This paper summarises the existence of the laboratory’s first four years by way of selected examples, both from published and unpublished projects. In the process a detailed description of the capabilities and facilities available to users is presented.

  3. Automation of a cryogenic facility by commercial process-control computer

    International Nuclear Information System (INIS)

    Sondericker, J.H.; Campbell, D.; Zantopp, D.

    1983-01-01

    To insure that Brookhaven's superconducting magnets are reliable and their field quality meets accelerator requirements, each magnet is pre-tested at operating conditions after construction. MAGCOOL, the production magnet test facility, was designed to perform these tests, having the capacity to test ten magnets per five day week. This paper describes the control aspects of MAGCOOL and the advantages afforded the designers by the implementation of a commercial process control computer system

  4. Overlapping clusters for distributed computation.

    Energy Technology Data Exchange (ETDEWEB)

    Mirrokni, Vahab (Google Research, New York, NY); Andersen, Reid (Microsoft Corporation, Redmond, WA); Gleich, David F.

    2010-11-01

    Scalable, distributed algorithms must address communication problems. We investigate overlapping clusters, or vertex partitions that intersect, for graph computations. This setup stores more of the graph than required but then affords the ease of implementation of vertex partitioned algorithms. Our hope is that this technique allows us to reduce communication in a computation on a distributed graph. The motivation above draws on recent work in communication avoiding algorithms. Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an overlapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for a Schwarz method. Both techniques extend an initial partitioning with overlap. Our procedure generates overlap directly. Indeed, Schwarz methods are commonly used to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature 2009; Mishra et al. WAW2007) are now a popular model of structure in social networks. These have long been studied in statistics (Cole and Wishart, CompJ 1970). We present two types of results: (i) an estimated swapping probability {rho}{infinity}; and (ii) the communication volume of a parallel PageRank solution (link-following {alpha} = 0.85) using an additive Schwarz method. The volume ratio is the amount of extra storage for the overlap (2 means we store the graph twice). Below, as the ratio increases, the swapping probability and PageRank communication volume decreases.

  5. Distributed analysis with PROOF in ATLAS collaboration

    International Nuclear Information System (INIS)

    Panitkin, S Y; Ernst, M; Ito, H; Maeno, T; Majewski, S; Rind, O; Tarrade, F; Wenaus, T; Ye, S; Benjamin, D; Montoya, G Carillo; Guan, W; Mellado, B; Xu, N; Cranmer, K; Shibata, A

    2010-01-01

    The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF can be configured to work with centralized storage systems, but it is especially effective together with distributed local storage systems - like Xrootd, when data are distributed over computing nodes. It works efficiently on different types of hardware and scales well from a multi-core laptop to large computing farms. From that point of view it is well suited for both large central analysis facilities and Tier 3 type analysis farms. PROOF can be used in interactive or batch like regimes. The interactive regime allows the user to work with typically distributed data from the ROOT command prompt and get a real time feedback on analysis progress and intermediate results. We will discuss our experience with PROOF in the context of ATLAS Collaboration distributed analysis. In particular we will discuss PROOF performance in various analysis scenarios and in multi-user, multi-session environments. We will also describe PROOF integration with the ATLAS distributed data management system and prospects of running PROOF on geographically distributed analysis farms.

  6. Distributed analysis with PROOF in ATLAS collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Panitkin, S Y; Ernst, M; Ito, H; Maeno, T; Majewski, S; Rind, O; Tarrade, F; Wenaus, T; Ye, S [Brookhaven National Laboratory, Upton, NY 11973 (United States); Benjamin, D [Duke University, Durham, NC 27708 (United States); Montoya, G Carillo; Guan, W; Mellado, B; Xu, N [University of Wisconsin-Madison, Madison, WI 53706 (United States); Cranmer, K; Shibata, A [New York University, New York, NY 10003 (United States)

    2010-04-01

    The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF can be configured to work with centralized storage systems, but it is especially effective together with distributed local storage systems - like Xrootd, when data are distributed over computing nodes. It works efficiently on different types of hardware and scales well from a multi-core laptop to large computing farms. From that point of view it is well suited for both large central analysis facilities and Tier 3 type analysis farms. PROOF can be used in interactive or batch like regimes. The interactive regime allows the user to work with typically distributed data from the ROOT command prompt and get a real time feedback on analysis progress and intermediate results. We will discuss our experience with PROOF in the context of ATLAS Collaboration distributed analysis. In particular we will discuss PROOF performance in various analysis scenarios and in multi-user, multi-session environments. We will also describe PROOF integration with the ATLAS distributed data management system and prospects of running PROOF on geographically distributed analysis farms.

  7. Distributed interactive graphics applications in computational fluid dynamics

    International Nuclear Information System (INIS)

    Rogers, S.E.; Buning, P.G.; Merritt, F.J.

    1987-01-01

    Implementation of two distributed graphics programs used in computational fluid dynamics is discussed. Both programs are interactive in nature. They run on a CRAY-2 supercomputer and use a Silicon Graphics Iris workstation as the front-end machine. The hardware and supporting software are from the Numerical Aerodynamic Simulation project. The supercomputer does all numerically intensive work and the workstation, as the front-end machine, allows the user to perform real-time interactive transformations on the displayed data. The first program was written as a distributed program that computes particle traces for fluid flow solutions existing on the supercomputer. The second is an older post-processing and plotting program modified to run in a distributed mode. Both programs have realized a large increase in speed over that obtained using a single machine. By using these programs, one can learn quickly about complex features of a three-dimensional flow field. Some color results are presented

  8. CMS on the GRID: Toward a fully distributed computing architecture

    International Nuclear Information System (INIS)

    Innocente, Vincenzo

    2003-01-01

    The computing systems required to collect, analyse and store the physics data at LHC would need to be distributed and global in scope. CMS is actively involved in several grid-related projects to develop and deploy a fully distributed computing architecture. We present here recent developments of tools for automating job submission and for serving data to remote analysis stations. Plans for further test and deployment of a production grid are also described

  9. Monte Carlo simulations and dosimetric studies of an irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Belchior, A. [Instituto Tecnologico e Nuclear, Estrada nacional no. 10, Apartado 21, 2686-953 Sacavem (Portugal)], E-mail: anabelchior@itn.pt; Botelho, M.L; Vaz, P. [Instituto Tecnologico e Nuclear, Estrada nacional no. 10, Apartado 21, 2686-953 Sacavem (Portugal)

    2007-09-21

    There is an increasing utilization of ionizing radiation for industrial applications. Additionally, the radiation technology offers a variety of advantages in areas, such as sterilization and food preservation. For these applications, dosimetric tests are of crucial importance in order to assess the dose distribution throughout the sample being irradiated. The use of Monte Carlo methods and computational tools in support of the assessment of the dose distributions in irradiation facilities can prove to be economically effective, representing savings in the utilization of dosemeters, among other benefits. One of the purposes of this study is the development of a Monte Carlo simulation, using a state-of-the-art computational tool-MCNPX-in order to determine the dose distribution inside an irradiation facility of Cobalt 60. This irradiation facility is currently in operation at the ITN campus and will feature an automation and robotics component, which will allow its remote utilization by an external user, under REEQ/996/BIO/2005 project. The detailed geometrical description of the irradiation facility has been implemented in MCNPX, which features an accurate and full simulation of the electron-photon processes involved. The validation of the simulation results obtained was performed by chemical dosimetry methods, namely a Fricke solution. The Fricke dosimeter is a standard dosimeter and is widely used in radiation processing for calibration purposes.

  10. Distributed Problem Solving: Adaptive Networks with a Computer Intermediary Resource. Intelligent Executive Computer Communication

    Science.gov (United States)

    1991-06-01

    Proceedings of The National Conference on Artificial Intelligence , pages 181-184, The American Association for Aritificial Intelligence , Pittsburgh...Intermediary Resource: Intelligent Executive Computer Communication John Lyman and Carla J. Conaway University of California at Los Angeles for Contracting...Include Security Classification) Interim Report: Distributed Problem Solving: Adaptive Networks With a Computer Intermediary Resource: Intelligent

  11. The design development and commissioning of two distributed computer based boiler control systems

    International Nuclear Information System (INIS)

    Collier, D.; Johnstone, L.R.; Pringle, S.T.; Walker, R.W.

    1980-01-01

    The CEBG N.E. Region has recently commissioned two major boiler control schemes using distributed computer control system. Both systems have considerable development potential to allow modifications to meet changing operational requirements. The distributed approach to control was chosen in both instances so as to achieve high control system availability and as a method of easing the commissioning programs. The experience gained with these two projects has reinforced the view that distributed computer systems show advantages over centralised single computers especially if software is designed for the distributed system. (auth)

  12. Workflow management in large distributed systems

    International Nuclear Information System (INIS)

    Legrand, I; Newman, H; Voicu, R; Dobre, C; Grigoras, C

    2011-01-01

    The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.

  13. Workflow management in large distributed systems

    Science.gov (United States)

    Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.

    2011-12-01

    The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.

  14. Distribution of Trauma Care Facilities in Oman in Relation to High-Incidence Road Traffic Injury Sites: Pilot study.

    Science.gov (United States)

    Al-Kindi, Sara M; Naiem, Ahmed A; Taqi, Kadhim M; Al-Gheiti, Najla M; Al-Toobi, Ikhtiyar S; Al-Busaidi, Nasra Q; Al-Harthy, Ahmed Z; Taqi, Alaa M; Ba-Alawi, Sharif A; Al-Qadhi, Hani A

    2017-11-01

    Road traffic injuries (RTIs) are considered a major public health problem worldwide. In Oman, high numbers of RTIs and RTI-related deaths are frequently registered. This study aimed to evaluate the distribution of trauma care facilities in Oman with regards to their proximity to RTI-prevalent areas. This descriptive pilot study analysed RTI data recorded in the national Royal Oman Police registry from January to December 2014. The distribution of trauma care facilities was analysed by calculating distances between areas of peak RTI incidence and the closest trauma centre using Google Earth and Google Maps software (Google Inc., Googleplex, Mountain View, California, USA). A total of 32 trauma care facilities were identified. Four facilities (12.5%) were categorised as class V trauma centres. Of the facilities in Muscat, 42.9% were ranked as class IV or V. There were no class IV or V facilities in Musandam, Al-Wusta or Al-Buraimi. General surgery, orthopaedic surgery and neurosurgery services were available in 68.8%, 59.3% and 12.5% of the centres, respectively. Emergency services were available in 75.0% of the facilities. Intensive care units were available in 11 facilities, with four located in Muscat. The mean distance between a RTI hotspot and the nearest trauma care facility was 34.7 km; however, the mean distance to the nearest class IV or V facility was 83.3 km. The distribution and quality of trauma care facilities in Oman needs modification. It is recommended that certain centres upgrade their levels of trauma care in order to reduce RTI-associated morbidity and mortality in Oman.

  15. Plancton: an opportunistic distributed computing project based on Docker containers

    Science.gov (United States)

    Concas, Matteo; Berzano, Dario; Bagnasco, Stefano; Lusso, Stefano; Masera, Massimo; Puccio, Maximiliano; Vallero, Sara

    2017-10-01

    The computing power of most modern commodity computers is far from being fully exploited by standard usage patterns. In this work we describe the development and setup of a virtual computing cluster based on Docker containers used as worker nodes. The facility is based on Plancton: a lightweight fire-and-forget background service. Plancton spawns and controls a local pool of Docker containers on a host with free resources, by constantly monitoring its CPU utilisation. It is designed to release the resources allocated opportunistically, whenever another demanding task is run by the host user, according to configurable policies. This is attained by killing a number of running containers. One of the advantages of a thin virtualization layer such as Linux containers is that they can be started almost instantly upon request. We will show how fast the start-up and disposal of containers eventually enables us to implement an opportunistic cluster based on Plancton daemons without a central control node, where the spawned Docker containers behave as job pilots. Finally, we will show how Plancton was configured to run up to 10 000 concurrent opportunistic jobs on the ALICE High-Level Trigger facility, by giving a considerable advantage in terms of management compared to virtual machines.

  16. Towards higher reliability of CMS computing facilities

    International Nuclear Information System (INIS)

    Bagliesi, G; Bloom, K; Brew, C; Flix, J; Kreuzer, P; Sciabà, A

    2012-01-01

    The CMS experiment has adopted a computing system where resources are distributed worldwide in more than 50 sites. The operation of the system requires a stable and reliable behaviour of the underlying infrastructure. CMS has established procedures to extensively test all relevant aspects of a site and their capability to sustain the various CMS computing workflows at the required scale. The Site Readiness monitoring infrastructure has been instrumental in understanding how the system as a whole was improving towards LHC operations, measuring the reliability of sites when running CMS activities, and providing sites with the information they need to troubleshoot any problem. This contribution reviews the complete automation of the Site Readiness program, with the description of monitoring tools and their inclusion into the Site Status Board (SSB), the performance checks, the use of tools like HammerCloud, and the impact in improving the overall reliability of the Grid from the point of view of the CMS computing system. These results are used by CMS to select good sites to conduct workflows, in order to maximize workflows efficiencies. The performance against these tests seen at the sites during the first years of LHC running is as well reviewed.

  17. A multipurpose computing center with distributed resources

    Science.gov (United States)

    Chudoba, J.; Adam, M.; Adamová, D.; Kouba, T.; Mikula, A.; Říkal, V.; Švec, J.; Uhlířová, J.; Vokáč, P.; Svatoš, M.

    2017-10-01

    The Computing Center of the Institute of Physics (CC IoP) of the Czech Academy of Sciences serves a broad spectrum of users with various computing needs. It runs WLCG Tier-2 center for the ALICE and the ATLAS experiments; the same group of services is used by astroparticle physics projects the Pierre Auger Observatory (PAO) and the Cherenkov Telescope Array (CTA). OSG stack is installed for the NOvA experiment. Other groups of users use directly local batch system. Storage capacity is distributed to several locations. DPM servers used by the ATLAS and the PAO are all in the same server room, but several xrootd servers for the ALICE experiment are operated in the Nuclear Physics Institute in Řež, about 10 km away. The storage capacity for the ATLAS and the PAO is extended by resources of the CESNET - the Czech National Grid Initiative representative. Those resources are in Plzen and Jihlava, more than 100 km away from the CC IoP. Both distant sites use a hierarchical storage solution based on disks and tapes. They installed one common dCache instance, which is published in the CC IoP BDII. ATLAS users can use these resources using the standard ATLAS tools in the same way as the local storage without noticing this geographical distribution. Computing clusters LUNA and EXMAG dedicated to users mostly from the Solid State Physics departments offer resources for parallel computing. They are part of the Czech NGI infrastructure MetaCentrum with distributed batch system based on torque with a custom scheduler. Clusters are installed remotely by the MetaCentrum team and a local contact helps only when needed. Users from IoP have exclusive access only to a part of these two clusters and take advantage of higher priorities on the rest (1500 cores in total), which can also be used by any user of the MetaCentrum. IoP researchers can also use distant resources located in several towns of the Czech Republic with a capacity of more than 12000 cores in total.

  18. Distributed storage and cloud computing: a test case

    International Nuclear Information System (INIS)

    Piano, S; Ricca, G Delia

    2014-01-01

    Since 2003 the computing farm hosted by the INFN Tier3 facility in Trieste supports the activities of many scientific communities. Hundreds of jobs from 45 different VOs, including those of the LHC experiments, are processed simultaneously. Given that normally the requirements of the different computational communities are not synchronized, the probability that at any given time the resources owned by one of the participants are not fully utilized is quite high. A balanced compensation should in principle allocate the free resources to other users, but there are limits to this mechanism. In fact, the Trieste site may not hold the amount of data needed to attract enough analysis jobs, and even in that case there could be a lack of bandwidth for their access. The Trieste ALICE and CMS computing groups, in collaboration with other Italian groups, aim to overcome the limitations of existing solutions using two approaches: sharing the data among all the participants taking full advantage of GARR-X wide area networks (10 GB/s) and integrating the resources dedicated to batch analysis with the ones reserved for dynamic interactive analysis, through modern solutions as cloud computing.

  19. Current personnel dosimetry practices at DOE facilities

    International Nuclear Information System (INIS)

    Fix, J.J.

    1981-05-01

    Only three parameters were included in the personnel occupational exposure records by all facilities. These are employee name, social security number, and whole body dose. Approximate percentages of some other parameters included in the record systems are sex (50%), birthdate (90%), occupation (26%), previous employer radiation exposure (74%), etc. Statistical analysis of the data for such parameters as sex versus dose distribution, age versus dose distribution, cumulative lifetime dose, etc. was apparently seldom done. Less than 50% of the facilities reported having formal documentation for either the dosimeter, records system, or reader. Slightly greater than 50% of facilities reported having routine procedures in place. These are considered maximum percentages because some respondents considered computer codes as formal documentation. The repository receives data from DOE facilities regarding the (a) distribution of annual whole body doses, (b) significant internal depositions, and (c) individual doses upon termination. It is expected that numerous differences exist in the dose data submitted by the different facilities. Areas of significant differences would likely include the determination of non-measurable doses, the methods used to determine previous employer radiation dose, the methods of determining cumulative radiation dose, and assessment of internal doses. Undoubtedly, the accuracy of the different dosimetry systems, especially at low doses, is very important to the credibility of data summaries (e.g., man-rem) provided by the repository

  20. Dose equivalent distributions in the AAEC total body nitrogen facility

    International Nuclear Information System (INIS)

    Allen, B.J.; Bailey, G.M.; McGregor, B.J.

    1985-01-01

    The incident neutron dose equivalent in the AAEC total body nitrogen facility is measured by a calibrated remmeter. Dose equivalent rates and distributions are calculated by Monte Carlo techniques which take account of the secondary neutron flux from the collimator. Experiment and calculation are found to be in satisfactory agreement. The effective dose equivalent per exposure is determined by weighting organ doses, and the potential detriment per exposure is calculated from ICRP risk factors

  1. Cryptographically Secure Multiparty Computation and Distributed Auctions Using Homomorphic Encryption

    Directory of Open Access Journals (Sweden)

    Anunay Kulshrestha

    2017-12-01

    Full Text Available We introduce a robust framework that allows for cryptographically secure multiparty computations, such as distributed private value auctions. The security is guaranteed by two-sided authentication of all network connections, homomorphically encrypted bids, and the publication of zero-knowledge proofs of every computation. This also allows a non-participant verifier to verify the result of any such computation using only the information broadcasted on the network by each individual bidder. Building on previous work on such systems, we design and implement an extensible framework that puts the described ideas to practice. Apart from the actual implementation of the framework, our biggest contribution is the level of protection we are able to guarantee from attacks described in previous work. In order to provide guidance to users of the library, we analyze the use of zero knowledge proofs in ensuring the correct behavior of each node in a computation. We also describe the usage of the library to perform a private-value distributed auction, as well as the other challenges in implementing the protocol, such as auction registration and certificate distribution. Finally, we provide performance statistics on our implementation of the auction.

  2. Guide to cloud computing for business and technology managers from distributed computing to cloudware applications

    CERN Document Server

    Kale, Vivek

    2014-01-01

    Guide to Cloud Computing for Business and Technology Managers: From Distributed Computing to Cloudware Applications unravels the mystery of cloud computing and explains how it can transform the operating contexts of business enterprises. It provides a clear understanding of what cloud computing really means, what it can do, and when it is practical to use. Addressing the primary management and operation concerns of cloudware, including performance, measurement, monitoring, and security, this pragmatic book:Introduces the enterprise applications integration (EAI) solutions that were a first ste

  3. An environmental testing facility for Space Station Freedom power management and distribution hardware

    Science.gov (United States)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  4. Distributed Computing and Artificial Intelligence, 12th International Conference

    CERN Document Server

    Malluhi, Qutaibah; Gonzalez, Sara; Bocewicz, Grzegorz; Bucciarelli, Edgardo; Giulioni, Gianfranco; Iqba, Farkhund

    2015-01-01

    The 12th International Symposium on Distributed Computing and Artificial Intelligence 2015 (DCAI 2015) is a forum to present applications of innovative techniques for studying and solving complex problems. The exchange of ideas between scientists and technicians from both the academic and industrial sector is essential to facilitate the development of systems that can meet the ever-increasing demands of today’s society. The present edition brings together past experience, current work and promising future trends associated with distributed computing, artificial intelligence and their application in order to provide efficient solutions to real problems. This symposium is organized by the Osaka Institute of Technology, Qatar University and the University of Salamanca.

  5. Impact of Nitrification on the Formation of N-Nitrosamines and Halogenated Disinfection Byproducts within Distribution System Storage Facilities.

    Science.gov (United States)

    Zeng, Teng; Mitch, William A

    2016-03-15

    Distribution system storage facilities are a critical, yet often overlooked, component of the urban water infrastructure. This study showed elevated concentrations of N-nitrosodimethylamine (NDMA), total N-nitrosamines (TONO), regulated trihalomethanes (THMs) and haloacetic acids (HAAs), 1,1-dichloropropanone (1,1-DCP), trichloroacetaldehyde (TCAL), haloacetonitriles (HANs), and haloacetamides (HAMs) in waters with ongoing nitrification as compared to non-nitrifying waters in storage facilities within five different chloraminated drinking water distribution systems. The concentrations of NDMA, TONO, HANs, and HAMs in the nitrifying waters further increased upon application of simulated distribution system chloramination. The addition of a nitrifying biofilm sample collected from a nitrifying facility to its non-nitrifying influent water led to increases in N-nitrosamine and halogenated DBP formation, suggesting the release of precursors from nitrifying biofilms. Periodic treatment of two nitrifying facilities with breakpoint chlorination (BPC) temporarily suppressed nitrification and reduced precursor levels for N-nitrosamines, HANs, and HAMs, as reflected by lower concentrations of these DBPs measured after re-establishment of a chloramine residual within the facilities than prior to the BPC treatment. However, BPC promoted the formation of halogenated DBPs while a free chlorine residual was maintained. Strategies that minimize application of free chlorine while preventing nitrification are needed to control DBP precursor release in storage facilities.

  6. Computer-based data acquisition system in the Large Coil Test Facility

    International Nuclear Information System (INIS)

    Gould, S.S.; Layman, L.R.; Million, D.L.

    1983-01-01

    The utilization of computers for data acquisition and control is of paramount importance on large-scale fusion experiments because they feature the ability to acquire data from a large number of sensors at various sample rates and provide for flexible data interpretation, presentation, reduction, and analysis. In the Large Coil Test Facility (LCTF) a Digital Equipment Corporation (DEC) PDP-11/60 host computer with the DEC RSX-11M operating system coordinates the activities of five DEC LSI-11/23 front-end processors (FEPs) via direct memory access (DMA) communication links. This provides host control of scheduled data acquisition and FEP event-triggered data collection tasks. Four of the five FEPs have no operating system

  7. Computing shifts to monitor ATLAS distributed computing infrastructure and operations

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00068610; The ATLAS collaboration; Barberis, Dario; Crepe-Renaudin, Sabine Chrystel; De, Kaushik; Fassi, Farida; Stradling, Alden; Svatos, Michal; Vartapetian, Armen; Wolters, Helmut

    2017-01-01

    The ATLAS Distributed Computing (ADC) group established a new Computing Run Coordinator (CRC) shift at the start of LHC Run 2 in 2015. The main goal was to rely on a person with a good overview of the ADC activities to ease the ADC experts’ workload. The CRC shifter keeps track of ADC tasks related to their fields of expertise and responsibility. At the same time, the shifter maintains a global view of the day-to-day operations of the ADC system. During Run 1, this task was accomplished by a person of the expert team called the ADC Manager on Duty (AMOD), a position that was removed during the shutdown period due to the reduced number and availability of ADC experts foreseen for Run 2. The CRC position was proposed to cover some of the AMODs former functions, while allowing more people involved in computing to participate. In this way, CRC shifters help with the training of future ADC experts. The CRC shifters coordinate daily ADC shift operations, including tracking open issues, reporting, and representing...

  8. Computing shifts to monitor ATLAS distributed computing infrastructure and operations

    CERN Document Server

    Adam Bourdarios, Claire; The ATLAS collaboration

    2016-01-01

    The ATLAS Distributed Computing (ADC) group established a new Computing Run Coordinator (CRC) shift at the start of LHC Run2 in 2015. The main goal was to rely on a person with a good overview of the ADC activities to ease the ADC experts' workload. The CRC shifter keeps track of ADC tasks related to their fields of expertise and responsibility. At the same time, the shifter maintains a global view of the day-to-day operations of the ADC system. During Run1, this task was accomplished by the ADC Manager on Duty (AMOD), a position that was removed during the shutdown period due to the reduced number and availability of ADC experts foreseen for Run2. The CRC position was proposed to cover some of the AMOD’s former functions, while allowing more people involved in computing to participate. In this way, CRC shifters help train future ADC experts. The CRC shifters coordinate daily ADC shift operations, including tracking open issues, reporting, and representing ADC in relevant meetings. The CRC also facilitates ...

  9. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    Energy Technology Data Exchange (ETDEWEB)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  10. Cloud manufacturing distributed computing technologies for global and sustainable manufacturing

    CERN Document Server

    Mehnen, Jörn

    2013-01-01

    Global networks, which are the primary pillars of the modern manufacturing industry and supply chains, can only cope with the new challenges, requirements and demands when supported by new computing and Internet-based technologies. Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing introduces a new paradigm for scalable service-oriented sustainable and globally distributed manufacturing systems.   The eleven chapters in this book provide an updated overview of the latest technological development and applications in relevant research areas.  Following an introduction to the essential features of Cloud Computing, chapters cover a range of methods and applications such as the factors that actually affect adoption of the Cloud Computing technology in manufacturing companies and new geometrical simplification method to stream 3-Dimensional design and manufacturing data via the Internet. This is further supported case studies and real life data for Waste Electrical ...

  11. Understanding and Improving the Performance Consistency of Distributed Computing Systems

    NARCIS (Netherlands)

    Yigitbasi, M.N.

    2012-01-01

    With the increasing adoption of distributed systems in both academia and industry, and with the increasing computational and storage requirements of distributed applications, users inevitably demand more from these systems. Moreover, users also depend on these systems for latency and throughput

  12. Radiation dose distribution monitoring at neutron radiography facility area, Nuclear Energy Unit, Malaysia

    International Nuclear Information System (INIS)

    Abdul Razak Daud

    1995-01-01

    One experiment was carried out to get the distribution of radiation doses at the neutron radiography facilities, Nuclear Energy Unit, Malaysia. The analysis was done to evaluate the safety level of the area. The analysis was used in neutron radiography work

  13. Arcade: A Web-Java Based Framework for Distributed Computing

    Science.gov (United States)

    Chen, Zhikai; Maly, Kurt; Mehrotra, Piyush; Zubair, Mohammad; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    Distributed heterogeneous environments are being increasingly used to execute a variety of large size simulations and computational problems. We are developing Arcade, a web-based environment to design, execute, monitor, and control distributed applications. These targeted applications consist of independent heterogeneous modules which can be executed on a distributed heterogeneous environment. In this paper we describe the overall design of the system and discuss the prototype implementation of the core functionalities required to support such a framework.

  14. National Ignition Facility integrated computer control system

    International Nuclear Information System (INIS)

    Van Arsdall, P.J. LLNL

    1998-01-01

    The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control systems. The framework provides an open, extensible architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. The ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensors to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance

  15. Distributed Information and Control system reliability enhancement by fog-computing concept application

    Science.gov (United States)

    Melnik, E. V.; Klimenko, A. B.; Ivanov, D. Ya

    2018-03-01

    The paper focuses on the information and control system reliability issue. Authors of the current paper propose a new complex approach of information and control system reliability enhancement by application of the computing concept elements. The approach proposed consists of a complex of optimization problems to be solved. These problems are: estimation of computational complexity, which can be shifted to the edge of the network and fog-layer, distribution of computations among the data processing elements and distribution of computations among the sensors. The problems as well as some simulated results and discussion are formulated and presented within this paper.

  16. Cloud@Home: A New Enhanced Computing Paradigm

    Science.gov (United States)

    Distefano, Salvatore; Cunsolo, Vincenzo D.; Puliafito, Antonio; Scarpa, Marco

    Cloud computing is a distributed computing paradigm that mixes aspects of Grid computing, ("… hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities" (Foster, 2002)) Internet Computing ("…a computing platform geographically distributed across the Internet" (Milenkovic et al., 2003)), Utility computing ("a collection of technologies and business practices that enables computing to be delivered seamlessly and reliably across multiple computers, ... available as needed and billed according to usage, much like water and electricity are today" (Ross & Westerman, 2004)) Autonomic computing ("computing systems that can manage themselves given high-level objectives from administrators" (Kephart & Chess, 2003)), Edge computing ("… provides a generic template facility for any type of application to spread its execution across a dedicated grid, balancing the load …" Davis, Parikh, & Weihl, 2004) and Green computing (a new frontier of Ethical computing1 starting from the assumption that in next future energy costs will be related to the environment pollution).

  17. The HEPCloud Facility: elastic computing for High Energy Physics - The NOvA Use Case

    Science.gov (United States)

    Fuess, S.; Garzoglio, G.; Holzman, B.; Kennedy, R.; Norman, A.; Timm, S.; Tiradani, A.

    2017-10-01

    The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a common interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 38 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper

  18. Computer programs supporting instruction in acoustics

    OpenAIRE

    Melody, Kevin Andrew

    1998-01-01

    Approved for public release, distribution is unlimited Traditionally, the study of mechanical vibration and sound wave propagation has been presented through textbooks, classroom discussion and laboratory experiments. However, in today's academic environment, students have access to high performance computing facilities which can greatly augment the learning process. This thesis provides computer algorithms for examining selected topics drawn from the text, Fundamentals of Acoustics, Third...

  19. Error-resistant distributed quantum computation in a trapped ion chain

    International Nuclear Information System (INIS)

    Braungardt, Sibylle; Sen, Aditi; Sen, Ujjwal; Lewenstein, Maciej

    2007-01-01

    We consider experimentally feasible chains of trapped ions with pseudospin 1/2 and find models that can potentially be used to implement error-resistant quantum computation. Similar in spirit to classical neural networks, the error resistance of the system is achieved by encoding the qubits distributed over the whole system. We therefore call our system a quantum neural network and present a quantum neural network model of quantum computation. Qubits are encoded in a few quasi degenerated low-energy levels of the whole system, separated by a large gap from the excited states and large energy barriers between themselves. We investigate protocols for implementing a universal set of quantum logic gates in the system by adiabatic passage of a few low-lying energy levels of the whole system. Naturally appearing and potentially dangerous distributed noise in the system leaves the fidelity of the computation virtually unchanged, if it is not too strong. The computation is also naturally resilient to local perturbations of the spins

  20. CMS Distributed Computing Integration in the LHC sustained operations era

    International Nuclear Information System (INIS)

    Grandi, C; Bonacorsi, D; Bockelman, B; Fisk, I

    2011-01-01

    After many years of preparation the CMS computing system has reached a situation where stability in operations limits the possibility to introduce innovative features. Nevertheless it is the same need of stability and smooth operations that requires the introduction of features that were considered not strategic in the previous phases. Examples are: adequate authorization to control and prioritize the access to storage and computing resources; improved monitoring to investigate problems and identify bottlenecks on the infrastructure; increased automation to reduce the manpower needed for operations; effective process to deploy in production new releases of the software tools. We present the work of the CMS Distributed Computing Integration Activity that is responsible for providing a liaison between the CMS distributed computing infrastructure and the software providers, both internal and external to CMS. In particular we describe the introduction of new middleware features during the last 18 months as well as the requirements to Grid and Cloud software developers for the future.

  1. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the Path to Ignition

    International Nuclear Information System (INIS)

    Lagin, L J; Bettenhauasen, R C; Bowers, G A; Carey, R W; Edwards, O D; Estes, C M; Demaret, R D; Ferguson, S W; Fisher, J M; Ho, J C; Ludwigsen, A P; Mathisen, D G; Marshall, C D; Matone, J M; McGuigan, D L; Sanchez, R J; Shelton, R T; Stout, E A; Tekle, E; Townsend, S L; Van Arsdall, P J; Wilson, E F

    2007-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of 8 beams each using laser hardware that is modularized into more than 6,000 line replaceable units such as optical assemblies, laser amplifiers, and multifunction sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-Megajoule capability of infrared light. During the next two years, the control system will be expanded to include automation of target area systems including final optics, target positioners and

  2. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the path to ignition

    International Nuclear Information System (INIS)

    Lagin, L.J.; Bettenhausen, R.C.; Bowers, G.A.; Carey, R.W.; Edwards, O.D.; Estes, C.M.; Demaret, R.D.; Ferguson, S.W.; Fisher, J.M.; Ho, J.C.; Ludwigsen, A.P.; Mathisen, D.G.; Marshall, C.D.; Matone, J.T.; McGuigan, D.L.; Sanchez, R.J.; Stout, E.A.; Tekle, E.A.; Townsend, S.L.; Van Arsdall, P.J.

    2008-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-MJ, 500-TW, ultraviolet laser system together with a 10-m diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of eight beams each using laser hardware that is modularized into more than 6000 line replaceable units such as optical assemblies, laser amplifiers, and multi-function sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-MJ capability of infrared light. During the next 2 years, the control system will be expanded in preparation for project completion in 2009 to include automation of target area systems including final optics

  3. Specialized computer architectures for computational aerodynamics

    Science.gov (United States)

    Stevenson, D. K.

    1978-01-01

    In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

  4. Impact of Distributed Energy Resources on the Reliability of a Critical Telecommunications Facility

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D.; Atcitty, C.; Zuffranieri, J.; Arent, D.

    2006-03-01

    Telecommunications has been identified by the Department of Homeland Security as a critical infrastructure to the United States. Failures in the power systems supporting major telecommunications service nodes are a main contributor to major telecommunications outages, as documented by analyses of Federal Communications Commission (FCC) outage reports by the National Reliability Steering Committee (under auspices of the Alliance for Telecommunications Industry Solutions). There are two major issues that are having increasing impact on the sensitivity of the power distribution to telecommunication facilities: deregulation of the power industry, and changing weather patterns. A logical approach to improve the robustness of telecommunication facilities would be to increase the depth and breadth of technologies available to restore power in the face of power outages. Distributed energy resources such as fuel cells and gas turbines could provide one more onsite electric power source to provide backup power, if batteries and diesel generators fail. But does the diversity in power sources actually increase the reliability of offered power to the office equipment, or does the complexity of installing and managing the extended power system induce more potential faults and higher failure rates? This report analyzes a system involving a telecommunications facility consisting of two switch-bays and a satellite reception system.

  5. Tools for remote collaboration on the DIII-D national fusion facility

    International Nuclear Information System (INIS)

    McHarg, B.B. Jr.; Greenwood, D.

    1999-01-01

    The DIII-D national fusion facility, a tokamak experiment funded by the US Department of Energy and operated by General Atomics (GA), is an international resource for plasma physics and fusion energy science research. This facility has a long history of collaborations with scientists from a wide variety of laboratories and universities from around the world. That collaboration has mostly been conducted by travel to and participation at the DIII-D site. Many new developments in the computing and technology fields are now facilitating collaboration from remote sites, thus reducing some of the needs to travel to the experiment. Some of these developments include higher speed wide area networks, powerful workstations connected within a distributed computing environment, network based audio/video capabilities, and the use of the world wide web. As the number of collaborators increases, the need for remote tools become important options to efficiently utilize the DIII-D facility. In the last two years a joint study by GA, Princeton Plasma Physics Laboratory (PPPL), Lawrence Livermore National Laboratory (LLNL), and Oak Ridge National Laboratory (ORNL) has introduced remote collaboration tools into the DIII-D environment and studied their effectiveness. These tools have included the use of audio/video for communication from the DIII-D control room, the broadcast of meetings, use of inter-process communication software to post events to the network during a tokamak shot, the creation of a DCE (distributed computing environment) cell for creating a common collaboratory environment, distributed use of computer cycles, remote data access, and remote display of results. This study also included sociological studies of how scientists in this environment work together as well as apart. (orig.)

  6. Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context

    Directory of Open Access Journals (Sweden)

    Francisco Javier Ferrández-Pastor

    2018-05-01

    Full Text Available The Internet of Things (IoT has opened productive ways to cultivate soil with the use of low-cost hardware (sensors/actuators and communication (Internet technologies. Remote equipment and crop monitoring, predictive analytic, weather forecasting for crops or smart logistics and warehousing are some examples of these new opportunities. Nevertheless, farmers are agriculture experts but, usually, do not have experience in IoT applications. Users who use IoT applications must participate in its design, improving the integration and use. In this work, different industrial agricultural facilities are analysed with farmers and growers to design new functionalities based on IoT paradigms deployment. User-centred design model is used to obtain knowledge and experience in the process of introducing technology in agricultural applications. Internet of things paradigms are used as resources to facilitate the decision making. IoT architecture, operating rules and smart processes are implemented using a distributed model based on edge and fog computing paradigms. A communication architecture is proposed using these technologies. The aim is to help farmers to develop smart systems both, in current and new facilities. Different decision trees to automate the installation, designed by the farmer, can be easily deployed using the method proposed in this document.

  7. Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context.

    Science.gov (United States)

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Martínez, José

    2018-05-28

    The Internet of Things (IoT) has opened productive ways to cultivate soil with the use of low-cost hardware (sensors/actuators) and communication (Internet) technologies. Remote equipment and crop monitoring, predictive analytic, weather forecasting for crops or smart logistics and warehousing are some examples of these new opportunities. Nevertheless, farmers are agriculture experts but, usually, do not have experience in IoT applications. Users who use IoT applications must participate in its design, improving the integration and use. In this work, different industrial agricultural facilities are analysed with farmers and growers to design new functionalities based on IoT paradigms deployment. User-centred design model is used to obtain knowledge and experience in the process of introducing technology in agricultural applications. Internet of things paradigms are used as resources to facilitate the decision making. IoT architecture, operating rules and smart processes are implemented using a distributed model based on edge and fog computing paradigms. A communication architecture is proposed using these technologies. The aim is to help farmers to develop smart systems both, in current and new facilities. Different decision trees to automate the installation, designed by the farmer, can be easily deployed using the method proposed in this document.

  8. An ATLAS distributed computing architecture for HL-LHC

    CERN Document Server

    Campana, Simone; The ATLAS collaboration

    2017-01-01

    The ATLAS collaboration started a process to understand the computing needs for the High Luminosity LHC era. Based on our best understanding of the computing model input parameters for the HL-LHC data taking conditions, results indicate the need for a larger amount of computational and storage resources with respect of the projection of constant yearly budget for computing in 2026. Filling the gap between the projection and the needs will be one of the challenges in preparation for LHC Run-4. While the gains from improvements in offline software will play a crucial role in this process, a different model for data processing, management, access and bookkeeping should also be envisaged to optimise resource usage. In this contribution we will describe a straw man of this model, founded on basic principles such as single event level granularity for data processing and virtual data. We will explain how the current architecture will evolve adiabatically into the future distributed computing system, through the prot...

  9. Computer program for storage of historical and routine safety data related to radiologically controlled facilities

    International Nuclear Information System (INIS)

    Marsh, D.A.; Hall, C.J.

    1984-01-01

    A method for tracking and quick retrieval of radiological status of radiation and industrial safety systems in an active or inactive facility has been developed. The system uses a mini computer, a graphics plotter, and mass storage devices. Software has been developed which allows input and storage of architectural details, radiological conditions such as exposure rates, current location of safety systems, and routine and historical information on exposure and contamination levels. A blue print size digitizer is used for input. The computer program retains facility floor plans in three dimensional arrays. The software accesses an eight pen color plotter for output. The plotter generates color plots of the floor plans and safety systems on 8 1/2 x 11 or 20 x 30 paper or on overhead transparencies for reports and presentations

  10. A remote tracing facility for distributed systems

    International Nuclear Information System (INIS)

    Ehm, F.; Dworak, A.

    2012-01-01

    Today, CERN's control system is built upon a large number of C++ and Java services producing log events. In such a largely distributed environment these log messages are essential for problem recognition and tracing. Tracing is therefore vital for operation as understanding an issue in a subsystem means analysing log events in an efficient and fast manner. At present 3150 device servers are deployed on 1600 disk-less front-ends and they send their log messages via the network to an in-house developed central server which, in turn, saves them to files. However, this solution is not able to provide several highly desired features and has performance limitations which led to the development of a new solution. The new distributed tracing facility fulfills these requirements by taking advantage of the Streaming Text Oriented Messaging Protocol (STOMP) and ActiveMQ as the transport layer. The system not only allows storing critical log events centrally in files or in a database but also allows other clients (e.g. graphical interfaces) to read the same events concurrently by using the provided Java API. Thanks to the ActiveMQ broker technology the system can easily be extended to clients implemented in other languages and it is highly scalable in terms of performance. Long running tests have shown that the system can handle up to 10.000 messages/second. (authors)

  11. Parallel computation for distributed parameter system-from vector processors to Adena computer

    Energy Technology Data Exchange (ETDEWEB)

    Nogi, T

    1983-04-01

    Research on advanced parallel hardware and software architectures for very high-speed computation deserves and needs more support and attention to fulfil its promise. Novel architectures for parallel processing are being made ready. Architectures for parallel processing can be roughly divided into two groups. One is a vector processor in which a single central processing unit involves multiple vector-arithmetic registers. The other is a processor array in which slave processors are connected to a host processor to perform parallel computation. In this review, the concept and data structure of the Adena (alternating-direction edition nexus array) architecture, which is conformable to distributed-parameter simulation algorithms, are described. 5 references.

  12. Atmospheric dispersion calculation for posturated accident of nuclear facilities and the computer code: PANDA

    International Nuclear Information System (INIS)

    Kitahara, Yoshihisa; Kishimoto, Yoichiro; Narita, Osamu; Shinohara, Kunihiko

    1979-01-01

    Several Calculation methods for relative concentration (X/Q) and relative cloud-gamma dose (D/Q) of the radioactive materials released from nuclear facilities by posturated accident are presented. The procedure has been formulated as a Computer program PANDA and the usage is explained. (author)

  13. Software for Distributed Computation on Medical Databases: A Demonstration Project

    Directory of Open Access Journals (Sweden)

    Balasubramanian Narasimhan

    2017-05-01

    Full Text Available Bringing together the information latent in distributed medical databases promises to personalize medical care by enabling reliable, stable modeling of outcomes with rich feature sets (including patient characteristics and treatments received. However, there are barriers to aggregation of medical data, due to lack of standardization of ontologies, privacy concerns, proprietary attitudes toward data, and a reluctance to give up control over end use. Aggregation of data is not always necessary for model fitting. In models based on maximizing a likelihood, the computations can be distributed, with aggregation limited to the intermediate results of calculations on local data, rather than raw data. Distributed fitting is also possible for singular value decomposition. There has been work on the technical aspects of shared computation for particular applications, but little has been published on the software needed to support the "social networking" aspect of shared computing, to reduce the barriers to collaboration. We describe a set of software tools that allow the rapid assembly of a collaborative computational project, based on the flexible and extensible R statistical software and other open source packages, that can work across a heterogeneous collection of database environments, with full transparency to allow local officials concerned with privacy protections to validate the safety of the method. We describe the principles, architecture, and successful test results for the site-stratified Cox model and rank-k singular value decomposition.

  14. EBR-II Cover Gas Cleanup System upgrade distributed control and front end computer systems

    International Nuclear Information System (INIS)

    Carlson, R.B.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; gives reasons behind the computer system structure; and then gives a detailed description of the distributed control computer, the front end computer, and how these computers interact with the main control computer. The descriptions cover both hardware and software

  15. A compositional reservoir simulator on distributed memory parallel computers

    International Nuclear Information System (INIS)

    Rame, M.; Delshad, M.

    1995-01-01

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. A portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented

  16. Lightning and surge protection of large ground facilities

    Science.gov (United States)

    Stringfellow, Michael F.

    1988-04-01

    The vulnerability of large ground facilities to direct lightning strikes and to lightning-induced overvoltages on the power distribution, telephone and data communication lines are discussed. Advanced electrogeometric modeling is used for the calculation of direct strikes to overhead power lines, buildings, vehicles and objects within the facility. Possible modes of damage, injury and loss are discussed. Some appropriate protection methods for overhead power lines, structures, vehicles and aircraft are suggested. Methods to mitigate the effects of transients on overhead and underground power systems as well as within buildings and other structures are recommended. The specification and location of low-voltage surge suppressors for the protection of vulnerable hardware such as computers, telecommunication equipment and radar installations are considered. The advantages and disadvantages of commonly used grounding techniques, such as single point, multiple and isolated grounds are compared. An example is given of the expected distribution of lightning flashes to a large airport, its buildings, structures and facilities, as well as to vehicles on the ground.

  17. HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Holzman, Burt [Fermilab; Bauerdick, Lothar A.T. [Fermilab; Bockelman, Brian [Nebraska U.; Dykstra, Dave [Fermilab; Fisk, Ian [New York U.; Fuess, Stuart [Fermilab; Garzoglio, Gabriele [Fermilab; Girone, Maria [CERN; Gutsche, Oliver [Fermilab; Hufnagel, Dirk [Fermilab; Kim, Hyunwoo [Fermilab; Kennedy, Robert [Fermilab; Magini, Nicolo [Fermilab; Mason, David [Fermilab; Spentzouris, Panagiotis [Fermilab; Tiradani, Anthony [Fermilab; Timm, Steve [Fermilab; Vaandering, Eric W. [Fermilab

    2017-09-29

    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing nterest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized both local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. In addition, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.

  18. Distributed computing methodology for training neural networks in an image-guided diagnostic application.

    Science.gov (United States)

    Plagianakos, V P; Magoulas, G D; Vrahatis, M N

    2006-03-01

    Distributed computing is a process through which a set of computers connected by a network is used collectively to solve a single problem. In this paper, we propose a distributed computing methodology for training neural networks for the detection of lesions in colonoscopy. Our approach is based on partitioning the training set across multiple processors using a parallel virtual machine. In this way, interconnected computers of varied architectures can be used for the distributed evaluation of the error function and gradient values, and, thus, training neural networks utilizing various learning methods. The proposed methodology has large granularity and low synchronization, and has been implemented and tested. Our results indicate that the parallel virtual machine implementation of the training algorithms developed leads to considerable speedup, especially when large network architectures and training sets are used.

  19. LXtoo: an integrated live Linux distribution for the bioinformatics community.

    Science.gov (United States)

    Yu, Guangchuang; Wang, Li-Gen; Meng, Xiao-Hua; He, Qing-Yu

    2012-07-19

    Recent advances in high-throughput technologies dramatically increase biological data generation. However, many research groups lack computing facilities and specialists. This is an obstacle that remains to be addressed. Here, we present a Linux distribution, LXtoo, to provide a flexible computing platform for bioinformatics analysis. Unlike most of the existing live Linux distributions for bioinformatics limiting their usage to sequence analysis and protein structure prediction, LXtoo incorporates a comprehensive collection of bioinformatics software, including data mining tools for microarray and proteomics, protein-protein interaction analysis, and computationally complex tasks like molecular dynamics. Moreover, most of the programs have been configured and optimized for high performance computing. LXtoo aims to provide well-supported computing environment tailored for bioinformatics research, reducing duplication of efforts in building computing infrastructure. LXtoo is distributed as a Live DVD and freely available at http://bioinformatics.jnu.edu.cn/LXtoo.

  20. Taking the classical large audience university lecture online using tablet computer and webconferencing facilities

    DEFF Research Database (Denmark)

    Brockhoff, Per B.

    2011-01-01

    During four offerings (September 2008 – May 2011) of the course 02402 Introduction to Statistics for Engineering students at DTU, with an average of 256 students, the lecturing was carried out 100% through a tablet computer combined with the web conferencing facility Adobe Connect (version 7...

  1. Benchmark experiments of dose distributions in phantom placed behind iron and concrete shields at the TIARA facility

    International Nuclear Information System (INIS)

    Nakane, Yoshihiro; Sakamoto, Yukio; Tsuda, Shuichi

    2004-01-01

    To verify the calculation methods used for the evaluations of neutron dose at the radiation shielding design of the high-intensity proton accelerator facility (J-PARC), dose distributions in a plastic phantom of 30x30x30 cm 3 slab placed behind iron and concrete test shields were measured by using a tissue equivalent proportional counter for 65-MeV quasi-monoenergetic neutrons generated from the 7 Li(p,n) reactions with 68-MeV protons at the TIARA facility. Dose distributions in the phantom were calculated by using the MCNPX and the NMTC/JAM-MCNP codes with the flux-to-dose conversion coefficients prepared for the shielding design of the facility. The comparison results show the calculated results were in good agreement with the measured ones within 20%. (author)

  2. Distributed computing feasibility in a non-dedicated homogeneous distributed system

    Science.gov (United States)

    Leutenegger, Scott T.; Sun, Xian-He

    1993-01-01

    The low cost and availability of clusters of workstations have lead researchers to re-explore distributed computing using independent workstations. This approach may provide better cost/performance than tightly coupled multiprocessors. In practice, this approach often utilizes wasted cycles to run parallel jobs. The feasibility of such a non-dedicated parallel processing environment assuming workstation processes have preemptive priority over parallel tasks is addressed. An analytical model is developed to predict parallel job response times. Our model provides insight into how significantly workstation owner interference degrades parallel program performance. A new term task ratio, which relates the parallel task demand to the mean service demand of nonparallel workstation processes, is introduced. It was proposed that task ratio is a useful metric for determining how large the demand of a parallel applications must be in order to make efficient use of a non-dedicated distributed system.

  3. Animal facilities

    International Nuclear Information System (INIS)

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  4. Decentralized Resource Management in Distributed Computer Systems.

    Science.gov (United States)

    1982-02-01

    directly exchanging user state information. Eventcounts and sequencers correspond to semaphores in the sense that synchronization primitives are used to...and techniques are required to achieve synchronization in distributed computers without reliance on any centralized entity such as a semaphore ...known solutions to the access synchronization problem was Dijkstra’s semaphore [12]. The importance of the semaphore is that it correctly addresses the

  5. Teaching ergonomics to nursing facility managers using computer-based instruction.

    Science.gov (United States)

    Harrington, Susan S; Walker, Bonnie L

    2006-01-01

    This study offers evidence that computer-based training is an effective tool for teaching nursing facility managers about ergonomics and increasing their awareness of potential problems. Study participants (N = 45) were randomly assigned into a treatment or control group. The treatment group completed the ergonomics training and a pre- and posttest. The control group completed the pre- and posttests without training. Treatment group participants improved significantly from 67% on the pretest to 91% on the posttest, a gain of 24%. Differences between mean scores for the control group were not significant for the total score or for any of the subtests.

  6. TME (Task Mapping Editor): tool for executing distributed parallel computing. TME user's manual

    International Nuclear Information System (INIS)

    Takemiya, Hiroshi; Yamagishi, Nobuhiro; Imamura, Toshiyuki

    2000-03-01

    At the Center for Promotion of Computational Science and Engineering, a software environment PPExe has been developed to support scientific computing on a parallel computer cluster (distributed parallel scientific computing). TME (Task Mapping Editor) is one of components of the PPExe and provides a visual programming environment for distributed parallel scientific computing. Users can specify data dependence among tasks (programs) visually as a data flow diagram and map these tasks onto computers interactively through GUI of TME. The specified tasks are processed by other components of PPExe such as Meta-scheduler, RIM (Resource Information Monitor), and EMS (Execution Management System) according to the execution order of these tasks determined by TME. In this report, we describe the usage of TME. (author)

  7. Accelerator based research facility as an inter university centre

    International Nuclear Information System (INIS)

    Mehta, G.K.

    1995-01-01

    15 UD pelletron has been operating as a user facility from July 1991. It is being utilised by a large number of universities and other institutions for research in basic Nuclear Physics, Materials Science, Atomic Physics, Radiobiology and Radiation Chemistry. There is an on-going programme for augmenting the accelerator facilities by injecting Pelletron beams into superconducting linear accelerator modules. Superconducting niobium resonator is being developed in Argonne National Laboratory as a joint collaborative effort. All other things such as cryostats, rf instrumentation, cryogenic distribution system, computer control etc are being done indigenously. Research facilities, augmentation plans and the research being conducted by the universities in various disciplines are described. (author)

  8. Computational Science Facility (CSF)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL Institutional Computing (PIC) is focused on meeting DOE's mission needs and is part of PNNL's overarching research computing strategy. PIC supports large-scale...

  9. Massive calculations of electrostatic potentials and structure maps of biopolymers in a distributed computing environment

    International Nuclear Information System (INIS)

    Akishina, T.P.; Ivanov, V.V.; Stepanenko, V.A.

    2013-01-01

    Among the key factors determining the processes of transcription and translation are the distributions of the electrostatic potentials of DNA, RNA and proteins. Calculations of electrostatic distributions and structure maps of biopolymers on computers are time consuming and require large computational resources. We developed the procedures for organization of massive calculations of electrostatic potentials and structure maps for biopolymers in a distributed computing environment (several thousands of cores).

  10. Use of the Web by a Distributed Research group Performing Distributed Computing

    Science.gov (United States)

    Burke, David A.; Peterkin, Robert E.

    2001-06-01

    A distributed research group that uses distributed computers faces a spectrum of challenges--some of which can be met by using various electronic means of communication. The particular challenge of our group involves three physically separated research entities. We have had to link two collaborating groups at AFRL and NRL together for software development, and the same AFRL group with a LANL group for software applications. We are developing and using a pair of general-purpose, portable, parallel, unsteady, plasma physics simulation codes. The first collaboration is centered around a formal weekly video teleconference on relatively inexpensive equipment that we have set up in convenient locations in our respective laboratories. The formal virtual meetings are augmented with informal virtual meetings as the need arises. Both collaborations share research data in a variety of forms on a secure URL that is set up behind the firewall at the AFRL. Of course, a computer-generated animation is a particularly efficient way of displaying results from time-dependent numerical simulations, so we generally like to post such animations (along with proper documentation) on our web page. In this presentation, we will discuss some of our accomplishments and disappointments.

  11. open-quotes Shift-Betelclose quotes: A (very) distributed mainframe

    International Nuclear Information System (INIS)

    Segal, B.; Martin, O.; Hassine, F.; Hemmer, F.; Jouanigot, J.M.

    1994-01-01

    Over the last four years, CERN has progressively converted its central batch production facilities from classic mainframe platforms (Cray XMP, IBM, ESA, Vax 9000) to distributed RISC based facilities, which have now attained a very large size. Both a CPU-intensive system (open-quotes CSFclose quotes, the Central Simulation Facility) and an I/O-intensive system (open-quotes SHIFTclose quotes, the Scaleable Heterogeneous Integrated Facility) have been developed, plus a distributed data management subsystem allowing seamless access to CERN'S central tape store and to large amounts of economical disk space. The full system is known as open-quotes COREclose quotes, the Centrally Operated Risc Environment; at the time of writing CORE comprises around 2000 CERN Units of Computing (about 8000 MIPs) and over a TeraByte of online disk space. This distributed system is connected using standard networking technologies (IP protocols over Ethernet, FDDI and UltraNet), but which until quite recently were only implemented at sufficiently high speed in the Local Area

  12. Distributed computing system with dual independent communications paths between computers and employing split tokens

    Science.gov (United States)

    Rasmussen, Robert D. (Inventor); Manning, Robert M. (Inventor); Lewis, Blair F. (Inventor); Bolotin, Gary S. (Inventor); Ward, Richard S. (Inventor)

    1990-01-01

    This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided.

  13. Neutron Flux Distribution on Neutron Radiography Facility After Fixing the Collimator

    International Nuclear Information System (INIS)

    Supandi; Parikin; Mohtar; Sunardi; Roestam, S

    1996-01-01

    The Radiography Neutron Facility consists of an inner collimator, outer collimator, main shutter, second shutter and the sample chamber with 300 mm in diameter. Neutron beam quality depends on the neutron flux intensities distribution, L/D ratio Cd ratio, neutron/gamma ratio. The results show that the neutron flux intensity was 2.83 x 107 n cm-2.s-1, with deviation of + 7.8 % and it was distributed homogeneously at the sample position of 200 mm diameter. The beam characteristics were L/D ratio 98 and Rod 8, and neutron gamma ratio 3.08 x 105n.cm-2.mR-1 and Reactor Power was 20 MW. This technique can be used to examine sample with diameter of < 200 mm

  14. Distribution of physical activity facilities in Scotland by small area measures of deprivation and urbanicity

    Directory of Open Access Journals (Sweden)

    Ogilvie David

    2010-10-01

    Full Text Available Abstract Background The aim of this study was to examine the distribution of physical activity facilities by area-level deprivation in Scotland, adjusting for differences in urbanicity, and exploring differences between and within the four largest Scottish cities. Methods We obtained a list of all recreational physical activity facilities in Scotland. These were mapped and assigned to datazones. Poisson and negative binomial regression models were used to investigate associations between the number of physical activity facilities relative to population size and quintile of area-level deprivation. Results The results showed that prior to adjustment for urbanicity, the density of all facilities lessened with increasing deprivation from quintiles 2 to 5. After adjustment for urbanicity and local authority, the effect of deprivation remained significant but the pattern altered, with datazones in quintile 3 having the highest estimated mean density of facilities. Within-city associations were identified between the number of physical activity facilities and area-level deprivation in Aberdeen and Dundee, but not in Edinburgh or Glasgow. Conclusions In conclusion, area-level deprivation appears to have a significant association with the density of physical activity facilities and although overall no clear pattern was observed, affluent areas had fewer publicly owned facilities than more deprived areas but a greater number of privately owned facilities.

  15. Investigation of Storage Options for Scientific Computing on Grid and Cloud Facilities

    International Nuclear Information System (INIS)

    Garzoglio, Gabriele

    2012-01-01

    In recent years, several new storage technologies, such as Lustre, Hadoop, OrangeFS, and BlueArc, have emerged. While several groups have run benchmarks to characterize them under a variety of configurations, more work is needed to evaluate these technologies for the use cases of scientific computing on Grid clusters and Cloud facilities. This paper discusses our evaluation of the technologies as deployed on a test bed at FermiCloud, one of the Fermilab infrastructure-as-a-service Cloud facilities. The test bed consists of 4 server-class nodes with 40 TB of disk space and up to 50 virtual machine clients, some running on the storage server nodes themselves. With this configuration, the evaluation compares the performance of some of these technologies when deployed on virtual machines and on “bare metal” nodes. In addition to running standard benchmarks such as IOZone to check the sanity of our installation, we have run I/O intensive tests using physics-analysis applications. This paper presents how the storage solutions perform in a variety of realistic use cases of scientific computing. One interesting difference among the storage systems tested is found in a decrease in total read throughput with increasing number of client processes, which occurs in some implementations but not others.

  16. Secure Computation, I/O-Efficient Algorithms and Distributed Signatures

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Kölker, Jonas; Toft, Tomas

    2012-01-01

    values of form r, gr for random secret-shared r ∈ ℤq and gr in a group of order q. This costs a constant number of exponentiation per player per value generated, even if less than n/3 players are malicious. This can be used for efficient distributed computing of Schnorr signatures. We further develop...... the technique so we can sign secret data in a distributed fashion at essentially the same cost....

  17. The HEPCloud Facility: elastic computing for High Energy Physics – The NOvA Use Case

    Energy Technology Data Exchange (ETDEWEB)

    Fuess, S. [Fermilab; Garzoglio, G. [Fermilab; Holzman, B. [Fermilab; Kennedy, R. [Fermilab; Norman, A. [Fermilab; Timm, S. [Fermilab; Tiradani, A. [Fermilab

    2017-03-15

    The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a common interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 25 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper

  18. Pseudo-interactive monitoring in distributed computing

    International Nuclear Information System (INIS)

    Sfiligoi, I.; Bradley, D.; Livny, M.

    2009-01-01

    Distributed computing, and in particular Grid computing, enables physicists to use thousands of CPU days worth of computing every day, by submitting thousands of compute jobs. Unfortunately, a small fraction of such jobs regularly fail; the reasons vary from disk and network problems to bugs in the user code. A subset of these failures result in jobs being stuck for long periods of time. In order to debug such failures, interactive monitoring is highly desirable; users need to browse through the job log files and check the status of the running processes. Batch systems typically don't provide such services; at best, users get job logs at job termination, and even this may not be possible if the job is stuck in an infinite loop. In this paper we present a novel approach of using regular batch system capabilities of Condor to enable users to access the logs and processes of any running job. This does not provide true interactive access, so commands like vi are not viable, but it does allow operations like ls, cat, top, ps, lsof, netstat and dumping the stack of any process owned by the user; we call this pseudo-interactive monitoring. It is worth noting that the same method can be used to monitor Grid jobs in a glidein-based environment. We further believe that the same mechanism could be applied to many other batch systems.

  19. Pseudo-interactive monitoring in distributed computing

    International Nuclear Information System (INIS)

    Sfiligoi, I; Bradley, D; Livny, M

    2010-01-01

    Distributed computing, and in particular Grid computing, enables physicists to use thousands of CPU days worth of computing every day, by submitting thousands of compute jobs. Unfortunately, a small fraction of such jobs regularly fail; the reasons vary from disk and network problems to bugs in the user code. A subset of these failures result in jobs being stuck for long periods of time. In order to debug such failures, interactive monitoring is highly desirable; users need to browse through the job log files and check the status of the running processes. Batch systems typically don't provide such services; at best, users get job logs at job termination, and even this may not be possible if the job is stuck in an infinite loop. In this paper we present a novel approach of using regular batch system capabilities of Condor to enable users to access the logs and processes of any running job. This does not provide true interactive access, so commands like vi are not viable, but it does allow operations like ls, cat, top, ps, lsof, netstat and dumping the stack of any process owned by the user; we call this pseudo-interactive monitoring. It is worth noting that the same method can be used to monitor Grid jobs in a glidein-based environment. We further believe that the same mechanism could be applied to many other batch systems.

  20. Pseudo-interactive monitoring in distributed computing

    Energy Technology Data Exchange (ETDEWEB)

    Sfiligoi, I.; /Fermilab; Bradley, D.; Livny, M.; /Wisconsin U., Madison

    2009-05-01

    Distributed computing, and in particular Grid computing, enables physicists to use thousands of CPU days worth of computing every day, by submitting thousands of compute jobs. Unfortunately, a small fraction of such jobs regularly fail; the reasons vary from disk and network problems to bugs in the user code. A subset of these failures result in jobs being stuck for long periods of time. In order to debug such failures, interactive monitoring is highly desirable; users need to browse through the job log files and check the status of the running processes. Batch systems typically don't provide such services; at best, users get job logs at job termination, and even this may not be possible if the job is stuck in an infinite loop. In this paper we present a novel approach of using regular batch system capabilities of Condor to enable users to access the logs and processes of any running job. This does not provide true interactive access, so commands like vi are not viable, but it does allow operations like ls, cat, top, ps, lsof, netstat and dumping the stack of any process owned by the user; we call this pseudo-interactive monitoring. It is worth noting that the same method can be used to monitor Grid jobs in a glidein-based environment. We further believe that the same mechanism could be applied to many other batch systems.

  1. Data analytics in the ATLAS Distributed Computing

    CERN Document Server

    Vukotic, Ilija; The ATLAS collaboration; Bryant, Lincoln

    2015-01-01

    The ATLAS Data analytics effort is focused on creating systems which provide the ATLAS ADC with new capabilities for understanding distributed systems and overall operational performance. These capabilities include: warehousing information from multiple systems (the production and distributed analysis system - PanDA, the distributed data management system - Rucio, the file transfer system, various monitoring services etc. ); providing a platform to execute arbitrary data mining and machine learning algorithms over aggregated data; satisfy a variety of use cases for different user roles; host new third party analytics services on a scalable compute platform. We describe the implemented system where: data sources are existing RDBMS (Oracle) and Flume collectors; a Hadoop cluster is used to store the data; native Hadoop and Apache Pig scripts are used for data aggregation; and R for in-depth analytics. Part of the data is indexed in ElasticSearch so both simpler investigations and complex dashboards can be made ...

  2. DISTRIBUTED COMPUTING SUPPORT CONTRACT USER SURVEY

    CERN Multimedia

    2001-01-01

    IT Division operates a Distributed Computing Support Service, which offers support to owners and users of all variety of desktops throughout CERN as well as more dedicated services for certain groups, divisions and experiments. It also provides the staff who operate the central and satellite Computing Helpdesks, it supports printers throughout the site and it provides the installation activities of the IT Division PC Service. We have published a questionnaire which seeks to gather your feedback on how the services are seen, how they are progressing and how they can be improved. Please take a few minutes to fill in this questionnaire. Replies will be treated in confidence if desired although you may also request an opportunity to be contacted by CERN's service management directly. Please tell us if you met problems but also if you had a successful conclusion to your request for assistance. You will find the questionnaire at the web site http://wwwinfo/support/survey/desktop-contract There will also be a link ...

  3. DISTRIBUTED COMPUTING SUPPORT SERVICE USER SURVEY

    CERN Multimedia

    2001-01-01

    IT Division operates a Distributed Computing Support Service, which offers support to owners and users of all variety of desktops throughout CERN as well as more dedicated services for certain groups, divisions and experiments. It also provides the staff who operate the central and satellite Computing Helpdesks, it supports printers throughout the site and it provides the installation activities of the IT Division PC Service. We have published a questionnaire, which seeks to gather your feedback on how the services are seen, how they are progressing and how they can be improved. Please take a few minutes to fill in this questionnaire. Replies will be treated in confidence if desired although you may also request an opportunity to be contacted by CERN's service management directly. Please tell us if you met problems but also if you had a successful conclusion to your request for assistance. You will find the questionnaire at the web site http://wwwinfo/support/survey/desktop-contract There will also be a link...

  4. Challenges in reducing the computational time of QSTS simulations for distribution system analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Deboever, Jeremiah [Georgia Inst. of Technology, Atlanta, GA (United States); Zhang, Xiaochen [Georgia Inst. of Technology, Atlanta, GA (United States); Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grijalva, Santiago [Georgia Inst. of Technology, Atlanta, GA (United States); Therrien, Francis [CME International T& D, St. Bruno, QC (Canada)

    2017-06-01

    The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modelling and impact analysis. Unlike conventional scenario - based studies , quasi - static time - series (QSTS) simulation s can realistically model time - dependent voltage controllers and the diversity of potential impacts that can occur at different times of year . However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1 - second resolution is often required , which could take conventional computers a computational time of 10 to 120 hours when an actual unbalanced distribution feeder is modeled . This computational burden is a clear l imitation to the adoption of QSTS simulation s in interconnection studies and for determining optimal control solutions for utility operations . Our ongoing research to improve the speed of QSTS simulation has revealed many unique aspects of distribution system modelling and sequential power flow analysis that make fast QSTS a very difficult problem to solve. In this report , the most relevant challenges in reducing the computational time of QSTS simulations are presented: number of power flows to solve, circuit complexity, time dependence between time steps, multiple valid power flow solutions, controllable element interactions, and extensive accurate simulation analysis.

  5. Large Distributed Data Acquisition System at the Z Facility

    International Nuclear Information System (INIS)

    Mills, Jerry A.; Potter, James E.

    1999-01-01

    Experiments at the Z machine generate over four hundred channels of waveform data on each accelerator shot. Most experiments require timing accuracy to better than one nanosecond between multiple distributed recording locations throughout the facility. Experimental diagnostics and high speed data recording equipment are typically located within a few meters of the 200 to 300 terawatt X- ray source produced during Z-pinch experiments. This paper will discuss techniques used to resolve the timing of the several hundred data channels acquired on each shot event and system features which allow viewing of waveforms within a few minutes after a shot. Methods for acquiring high bandwidth signals in a severe noise environment will also be discussed

  6. ATLAS Distributed Computing experience and performance during the LHC Run-2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00081160; The ATLAS collaboration

    2017-01-01

    ATLAS Distributed Computing during LHC Run-1 was challenged by steadily increasing computing, storage and network requirements. In addition, the complexity of processing task workflows and their associated data management requirements led to a new paradigm in the ATLAS computing model for Run-2, accompanied by extensive evolution and redesign of the workflow and data management systems. The new systems were put into production at the end of 2014, and gained robustness and maturity during 2015 data taking. ProdSys2, the new request and task interface; JEDI, the dynamic job execution engine developed as an extension to PanDA; and Rucio, the new data management system, form the core of Run-2 ATLAS distributed computing engine. One of the big changes for Run-2 was the adoption of the Derivation Framework, which moves the chaotic CPU and data intensive part of the user analysis into the centrally organized train production, delivering derived AOD datasets to user groups for final analysis. The effectiveness of the...

  7. ATLAS Distributed Computing experience and performance during the LHC Run-2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00081160; The ATLAS collaboration

    2016-01-01

    ATLAS Distributed Computing during LHC Run-1 was challenged by steadily increasing computing, storage and network requirements. In addition, the complexity of processing task workflows and their associated data management requirements led to a new paradigm in the ATLAS computing model for Run-2, accompanied by extensive evolution and redesign of the workflow and data management systems. The new systems were put into production at the end of 2014, and gained robustness and maturity during 2015 data taking. ProdSys2, the new request and task interface; JEDI, the dynamic job execution engine developed as an extension to PanDA; and Rucio, the new data management system, form the core of the Run-2 ATLAS distributed computing engine. One of the big changes for Run-2 was the adoption of the Derivation Framework, which moves the chaotic CPU and data intensive part of the user analysis into the centrally organized train production, delivering derived AOD datasets to user groups for final analysis. The effectiveness of...

  8. Distributional and Knowledge-Based Approaches for Computing Portuguese Word Similarity

    Directory of Open Access Journals (Sweden)

    Hugo Gonçalo Oliveira

    2018-02-01

    Full Text Available Identifying similar and related words is not only key in natural language understanding but also a suitable task for assessing the quality of computational resources that organise words and meanings of a language, compiled by different means. This paper, which aims to be a reference for those interested in computing word similarity in Portuguese, presents several approaches for this task and is motivated by the recent availability of state-of-the-art distributional models of Portuguese words, which add to several lexical knowledge bases (LKBs for this language, available for a longer time. The previous resources were exploited to answer word similarity tests, which also became recently available for Portuguese. We conclude that there are several valid approaches for this task, but not one that outperforms all the others in every single test. Distributional models seem to capture relatedness better, while LKBs are better suited for computing genuine similarity, but, in general, better results are obtained when knowledge from different sources is combined.

  9. ATLAS Distributed Computing Monitoring tools during the LHC Run I

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Di Girolamo, A; Jezequel, S; Ueda, I; Wenaus, T

    2013-01-01

    This contribution summarizes evolution of the ATLAS Distributed Computing (ADC) Monitoring project during the LHC Run I. The ADC Monitoring targets at the three groups of customers: ADC Operations team to early identify malfunctions and escalate issues to an activity or a service expert, ATLAS national contacts and sites for the real-time monitoring and long-term measurement of the performance of the provided computing resources, and the ATLAS Management for long-term trends and accounting information about the ATLAS Distributed Computing resources.\\\\ During the LHC Run I a significant development effort has been invested in standardization of the monitoring and accounting applications in order to provide extensive monitoring and accounting suite. ADC Monitoring applications separate the data layer and the visualization layer. The data layer exposes data in a predefined format. The visualization layer is designed bearing in mind visual identity of the provided graphical elements, and re-usability of the visua...

  10. ATLAS Distributed Computing Monitoring tools during the LHC Run I

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Di Girolamo, A; Jezequel, S; Ueda, I; Wenaus, T

    2014-01-01

    This contribution summarizes evolution of the ATLAS Distributed Computing (ADC) Monitoring project during the LHC Run I. The ADC Monitoring targets at the three groups of customers: ADC Operations team to early identify malfunctions and escalate issues to an activity or a service expert, ATLAS national contacts and sites for the real-time monitoring and long-term measurement of the performance of the provided computing resources, and the ATLAS Management for long-term trends and accounting information about the ATLAS Distributed Computing resources.\\\\ During the LHC Run I a significant development effort has been invested in standardization of the monitoring and accounting applications in order to provide extensive monitoring and accounting suite. ADC Monitoring applications separate the data layer and the visualization layer. The data layer exposes data in a predefined format. The visualization layer is designed bearing in mind visual identity of the provided graphical elements, and re-usability of the visua...

  11. Multi-VO support in IHEP's distributed computing environment

    International Nuclear Information System (INIS)

    Yan, T; Suo, B; Zhao, X H; Zhang, X M; Ma, Z T; Yan, X F; Lin, T; Deng, Z Y; Li, W D; Belov, S; Pelevanyuk, I; Zhemchugov, A; Cai, H

    2015-01-01

    Inspired by the success of BESDIRAC, the distributed computing environment based on DIRAC for BESIII experiment, several other experiments operated by Institute of High Energy Physics (IHEP), such as Circular Electron Positron Collider (CEPC), Jiangmen Underground Neutrino Observatory (JUNO), Large High Altitude Air Shower Observatory (LHAASO) and Hard X-ray Modulation Telescope (HXMT) etc, are willing to use DIRAC to integrate the geographically distributed computing resources available by their collaborations. In order to minimize manpower and hardware cost, we extended the BESDIRAC platform to support multi-VO scenario, instead of setting up a self-contained distributed computing environment for each VO. This makes DIRAC as a service for the community of those experiments. To support multi-VO, the system architecture of BESDIRAC is adjusted for scalability. The VOMS and DIRAC servers are reconfigured to manage users and groups belong to several VOs. A lightweight storage resource manager StoRM is employed as the central SE to integrate local and grid data. A frontend system is designed for user's massive job splitting, submission and management, with plugins to support new VOs. A monitoring and accounting system is also considered to easy the system administration and VO related resources usage accounting. (paper)

  12. Specialized, multi-user computer facility for the high-speed, interactive processing of experimental data

    International Nuclear Information System (INIS)

    Maples, C.C.

    1979-05-01

    A proposal has been made at LBL to develop a specialized computer facility specifically designed to deal with the problems associated with the reduction and analysis of experimental data. Such a facility would provide a highly interactive, graphics-oriented, multi-user environment capable of handling relatively large data bases for each user. By conceptually separating the general problem of data analysis into two parts, cyclic batch calculations and real-time interaction, a multilevel, parallel processing framework may be used to achieve high-speed data processing. In principle such a system should be able to process a mag tape equivalent of data through typical transformations and correlations in under 30 s. The throughput for such a facility, for five users simultaneously reducing data, is estimated to be 2 to 3 times greater than is possible, for example, on a CDC7600. 3 figures

  13. Specialized, multi-user computer facility for the high-speed, interactive processing of experimental data

    International Nuclear Information System (INIS)

    Maples, C.C.

    1979-01-01

    A proposal has been made to develop a specialized computer facility specifically designed to deal with the problems associated with the reduction and analysis of experimental data. Such a facility would provide a highly interactive, graphics-oriented, multi-user environment capable of handling relatively large data bases for each user. By conceptually separating the general problem of data analysis into two parts, cyclic batch calculations and real-time interaction, a multi-level, parallel processing framework may be used to achieve high-speed data processing. In principle such a system should be able to process a mag tape equivalent of data, through typical transformations and correlations, in under 30 sec. The throughput for such a facility, assuming five users simultaneously reducing data, is estimated to be 2 to 3 times greater than is possible, for example, on a CDC7600

  14. Evolution of the ATLAS distributed computing system during the LHC long shutdown

    Science.gov (United States)

    Campana, S.; Atlas Collaboration

    2014-06-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the Worldwide LHC Computing Grid (WLCG) distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1 PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileup. We will describe the evolution of the ADC software foreseen during this period. This includes consolidating the existing Production and Distributed Analysis framework (PanDA) and ATLAS Grid Information System (AGIS), together with the development and commissioning of next generation systems for distributed data management (DDM/Rucio) and production (Prodsys-2). We will explain how new technologies such as Cloud Computing and NoSQL databases, which ATLAS investigated as R&D projects in past years, will be integrated in production. Finally, we will describe more fundamental developments such as breaking job-to-data locality by exploiting storage federations and caches, and event level (rather than file or dataset level) workload engines.

  15. Evolution of the ATLAS distributed computing system during the LHC long shutdown

    International Nuclear Information System (INIS)

    Campana, S

    2014-01-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the Worldwide LHC Computing Grid (WLCG) distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1 PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileup. We will describe the evolution of the ADC software foreseen during this period. This includes consolidating the existing Production and Distributed Analysis framework (PanDA) and ATLAS Grid Information System (AGIS), together with the development and commissioning of next generation systems for distributed data management (DDM/Rucio) and production (Prodsys-2). We will explain how new technologies such as Cloud Computing and NoSQL databases, which ATLAS investigated as R and D projects in past years, will be integrated in production. Finally, we will describe more fundamental developments such as breaking job-to-data locality by exploiting storage federations and caches, and event level (rather than file or dataset level) workload engines.

  16. Software Quality Measurement for Distributed Systems. Volume 3. Distributed Computing Systems: Impact on Software Quality.

    Science.gov (United States)

    1983-07-01

    Distributed Computing Systems impact DrnwrR - aehR on Sotwar Quaity. PERFORMING 010. REPORT NUMBER 7. AUTNOW) S. CONTRACT OR GRANT "UMBER(*)IS ThomasY...C31 Application", "Space Systems Network", "Need for Distributed Database Management", and "Adaptive Routing". This is discussed in the last para ...data reduction, buffering, encryption, and error detection and correction functions. Examples of such data streams include imagery data, video

  17. AGIS: Evolution of Distributed Computing information system for ATLAS

    Science.gov (United States)

    Anisenkov, A.; Di Girolamo, A.; Alandes, M.; Karavakis, E.

    2015-12-01

    ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produces petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization of computing resources in order to meet the ATLAS requirements of petabytes scale data operations. It has been evolved after the first period of LHC data taking (Run-1) in order to cope with new challenges of the upcoming Run- 2. In this paper we describe the evolution and recent developments of the ATLAS Grid Information System (AGIS), developed in order to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.

  18. Application of personal computer to development of entrance management system for radiating facilities

    International Nuclear Information System (INIS)

    Suzuki, Shogo; Hirai, Shouji

    1989-01-01

    The report describes a system for managing the entrance and exit of personnel to radiating facilities. A personal computer is applied to its development. Major features of the system is outlined first. The computer is connected to the gate and two magnetic card readers provided at the gate. The gate, which is installed at the entrance to a room under control, opens only for those who have a valid card. The entrance-exit management program developed is described next. The following three files are used: ID master file (random file of the magnetic card number, name, qualification, etc., of each card carrier), entrance-exit management file (random file of time of entrance/exit, etc., updated everyday), and entrance-exit record file (sequential file of card number, name, date, etc.), which are stored on floppy disks. A display is provided to show various lists including a list of workers currently in the room and a list of workers who left the room at earlier times of the day. This system is useful for entrance management of a relatively small facility. Though small in required cost, it requires only a few operators to perform effective personnel management. (N.K.)

  19. Advanced accounting techniques in automated fuel fabrication facilities

    International Nuclear Information System (INIS)

    Carlson, R.L.; DeMerschman, A.W.; Engel, D.W.

    1977-01-01

    The accountability system being designed for automated fuel fabrication facilities will provide real-time information on all Special Nuclear Material (SNM) located in the facility. It will utilize a distributed network of microprocessors and minicomputers to monitor material movement and obtain nuclear materials measurements directly from remote, in-line Nondestructive Assay instrumentation. As SNM crosses an accounting boundary, the accountability computer will update the master files and generate audit trail records. Mass balance accounting techniques will be used around each unit process step, while item control will be used to account for encapsulated material, and SNM in transit

  20. Protect Heterogeneous Environment Distributed Computing from Malicious Code Assignment

    Directory of Open Access Journals (Sweden)

    V. S. Gorbatov

    2011-09-01

    Full Text Available The paper describes the practical implementation of the protection system of heterogeneous environment distributed computing from malicious code for the assignment. A choice of technologies, development of data structures, performance evaluation of the implemented system security are conducted.

  1. KeyWare: an open wireless distributed computing environment

    Science.gov (United States)

    Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir

    1995-12-01

    Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.

  2. Design a Fault Tolerance for Real Time Distributed System

    OpenAIRE

    Ban M. Khammas

    2012-01-01

    This paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagno...

  3. Pulmonary blood flow distribution measured by radionuclide computed tomography

    International Nuclear Information System (INIS)

    Maeda, H.; Itoh, H.; Ishii, Y.

    1982-01-01

    Distributions of pulmonary blood flow per unit lung volume were measured in sitting patients with a radionuclide computed tomography (RCT) by intravenously administered Tc-99m macroaggregates of human serum albumin (MAA). Four different types of distribution were distinguished, among which a group referred as type 2 had a three zonal blood flow distribution as previously reported (West and co-workers, 1964). The pulmonary arterial pressure (Pa) and the venous pressure (Pv) were determined in this group of distribution. These values showed satifactory agreements with the pulmonary artery pressure (Par) and the capillary wedged pressure (Pcw) measured by Swan-Ganz catheter in eighteen supine patients. Those good correlations enable to establish a noninvasive methodology for measurement of pulmonary vascular pressures

  4. Higher order correlations in computed particle distributions

    International Nuclear Information System (INIS)

    Hanerfeld, H.; Herrmannsfeldt, W.; Miller, R.H.

    1989-03-01

    The rms emittances calculated for beam distributions using computer simulations are frequently dominated by higher order aberrations. Thus there are substantial open areas in the phase space plots. It has long been observed that the rms emittance is not an invariant to beam manipulations. The usual emittance calculation removes the correlation between transverse displacement and transverse momentum. In this paper, we explore the possibility of defining higher order correlations that can be removed from the distribution to result in a lower limit to the realizable emittance. The intent is that by inserting the correct combinations of linear lenses at the proper position, the beam may recombine in a way that cancels the effects of some higher order forces. An example might be the non-linear transverse space charge forces which cause a beam to spread. If the beam is then refocused so that the same non-linear forces reverse the inward velocities, the resulting phase space distribution may reasonably approximate the original distribution. The approach to finding the location and strength of the proper lens to optimize the transported beam is based on work by Bruce Carlsten of Los Alamos National Laboratory. 11 refs., 4 figs

  5. Computer programs for capital cost estimation, lifetime economic performance simulation, and computation of cost indexes for laser fusion and other advanced technology facilities

    International Nuclear Information System (INIS)

    Pendergrass, J.H.

    1978-01-01

    Three FORTRAN programs, CAPITAL, VENTURE, and INDEXER, have been developed to automate computations used in assessing the economic viability of proposed or conceptual laser fusion and other advanced-technology facilities, as well as conventional projects. The types of calculations performed by these programs are, respectively, capital cost estimation, lifetime economic performance simulation, and computation of cost indexes. The codes permit these three topics to be addressed with considerable sophistication commensurate with user requirements and available data

  6. Evolution of the ATLAS Distributed Computing during the LHC long shutdown

    CERN Document Server

    Campana, S; The ATLAS collaboration

    2013-01-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the WLCG distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileu...

  7. Digi-Clima Grid: image processing and distributed computing for recovering historical climate data

    Directory of Open Access Journals (Sweden)

    Sergio Nesmachnow

    2015-12-01

    Full Text Available This article describes the Digi-Clima Grid project, whose main goals are to design and implement semi-automatic techniques for digitalizing and recovering historical climate records applying parallel computing techniques over distributed computing infrastructures. The specific tool developed for image processing is described, and the implementation over grid and cloud infrastructures is reported. A experimental analysis over institutional and volunteer-based grid/cloud distributed systems demonstrate that the proposed approach is an efficient tool for recovering historical climate data. The parallel implementations allow to distribute the processing load, achieving accurate speedup values.

  8. Computer Security at Nuclear Facilities (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    category of the IAEA Nuclear Security Series, and deals with computer security at nuclear facilities. It is based on national experience and practices as well as publications in the fields of computer security and nuclear security. The guidance is provided for consideration by States, competent authorities and operators. The preparation of this publication in the IAEA Nuclear Security Series has been made possible by the contributions of a large number of experts from Member States. An extensive consultation process with all Member States included consultants meetings and open-ended technical meetings. The draft was then circulated to all Member States for 120 days to solicit further comments and suggestions. The comments received from Member States were reviewed and considered in the final version of the publication.

  9. Dedicated Programming Language for Small Distributed Control Divices

    DEFF Research Database (Denmark)

    Madsen, Per Printz; Borch, Ole

    2007-01-01

    . This paper describes a new, flexible and simple language for programming distributed control tasks. The compiler for this language generates a target code that is very easy to interpret. A interpreter, that can be easy ported to different hardwares, is described. The new language is simple and easy to learn...... become a reality if each of these controlling computers can be configured to perform a cooperative task. This again requires the necessary communicating facilities. In other words this requires that all these simple and distributed computers can be programmed in a simple and hardware independent way...

  10. FIRAC - a computer code to predict fire accident effects in nuclear facilities

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    FIRAC is a medium-sized computer code designed to predict fire-induced flows, temperatures, and material transport within the ventilating systems and other airflow pathways in nuclear-related facilities. The code is designed to analyze the behavior of interconnected networks of rooms and typical ventilation system components. This code is one in a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. The structure of this code closely follows that of the previously developed TVENT and EVENT codes. Because a lumped-parameter formulation is used, this code is particularly suitable for calculating the effects of fires in the far field (that is, in regions removed from the fire compartment), where the fire may be represented parametrically. However, a fire compartment model to simulate conditions in the enclosure is included. This model provides transport source terms to the ventilation system that can affect its operation and in turn affect the fire. A basic material transport capability that features the effects of convection, deposition, entrainment, and filtration of material is included. The interrelated effects of filter plugging, heat transfer, gas dynamics, and material transport are taken into account. In this paper the authors summarize the physical models used to describe the gas dynamics, material transport, and heat transfer processes. They also illustrate how a typical facility is modeled using the code

  11. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab

  12. Computer program determines exact two-sided tolerance limits for normal distributions

    Science.gov (United States)

    Friedman, H. A.; Webb, S. R.

    1968-01-01

    Computer program determines by numerical integration the exact statistical two-sided tolerance limits, when the proportion between the limits is at least a specified number. The program is limited to situations in which the underlying probability distribution for the population sampled is the normal distribution with unknown mean and variance.

  13. Fast Neutron Dose Distribution in a Linac Radiotherapy Facility

    International Nuclear Information System (INIS)

    Al-Othmany, D.Sh.; Abdul-Majid, S.; Kadi, M.W.

    2011-01-01

    CR-39 plastic detectors were used for fast neutron dose mapping in the radiotherapy facility at King AbdulAziz University Hospital (KAUH). Detectors were calibrated using a 252 Cf neutron source and a neutron dosimeter. After exposure chemical etching was performed using 6N NaOH solution at 70 degree C. Tracks were counted using an optical microscope and the number of tracks/cm 2 was converted to a neutron dose. 15 track detectors were distributed inside and outside the therapy room and were left for 32 days. The average neutron doses were 142.3 mSv on the accelerator head, 28.5 mSv on inside walls, 1.4 mSv beyond the beam shield, and 1 mSv in the control room

  14. Radar data processing using a distributed computational system

    Science.gov (United States)

    Mota, Gilberto F.

    1992-06-01

    This research specifies and validates a new concurrent decomposition scheme, called Confined Space Search Decomposition (CSSD), to exploit parallelism of Radar Data Processing algorithms using a Distributed Computational System. To formalize the specification, we propose and apply an object-oriented methodology called Decomposition Cost Evaluation Model (DCEM). To reduce the penalties of load imbalance, we propose a distributed dynamic load balance heuristic called Object Reincarnation (OR). To validate the research, we first compare our decomposition with an identified alternative using the proposed DCEM model and then develop a theoretical prediction of selected parameters. We also develop a simulation to check the Object Reincarnation Concept.

  15. A uniform approach for programming distributed heterogeneous computing systems.

    Science.gov (United States)

    Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas

    2014-12-01

    Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater's performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations.

  16. Distributed computing grid experiences in CMS

    CERN Document Server

    Andreeva, Julia; Barrass, T; Bonacorsi, D; Bunn, Julian; Capiluppi, P; Corvo, M; Darmenov, N; De Filippis, N; Donno, F; Donvito, G; Eulisse, G; Fanfani, A; Fanzago, F; Filine, A; Grandi, C; Hernández, J M; Innocente, V; Jan, A; Lacaprara, S; Legrand, I; Metson, S; Newbold, D; Newman, H; Pierro, A; Silvestris, L; Steenberg, C; Stockinger, H; Taylor, Lucas; Thomas, M; Tuura, L; Van Lingen, F; Wildish, Tony

    2005-01-01

    The CMS experiment is currently developing a computing system capable of serving, processing and archiving the large number of events that will be generated when the CMS detector starts taking data. During 2004 CMS undertook a large scale data challenge to demonstrate the ability of the CMS computing system to cope with a sustained data- taking rate equivalent to 25% of startup rate. Its goals were: to run CMS event reconstruction at CERN for a sustained period at 25 Hz input rate; to distribute the data to several regional centers; and enable data access at those centers for analysis. Grid middleware was utilized to help complete all aspects of the challenge. To continue to provide scalable access from anywhere in the world to the data, CMS is developing a layer of software that uses Grid tools to gain access to data and resources, and that aims to provide physicists with a user friendly interface for submitting their analysis jobs. This paper describes the data challenge experience with Grid infrastructure ...

  17. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  18. Sustaining and Extending the Open Science Grid: Science Innovation on a PetaScale Nationwide Facility (DE-FC02-06ER41436) SciDAC-2 Closeout Report

    Energy Technology Data Exchange (ETDEWEB)

    Livny, Miron [Univ. of Wisconsin, Madison, WI (United States); Shank, James [Boston Univ., MA (United States); Ernst, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Blackburn, Kent [California Inst. of Technology (CalTech), Pasadena, CA (United States); Goasguen, Sebastien [Clemson Univ., SC (United States); Tuts, Michael [Columbia Univ., New York, NY (United States); Gibbons, Lawrence [Cornell Univ., Ithaca, NY (United States); Pordes, Ruth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sliz, Piotr [Harvard Medical School, Boston, MA (United States); Deelman, Ewa [Univ. of Southern California, Los Angeles, CA (United States). Information Sciences Inst.; Barnett, William [Indiana Univ., Bloomington, IN (United States); Olson, Doug [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McGee, John [Univ. of North Carolina, Chapel Hill, NC (United States). Renaissance Computing Inst.; Cowles, Robert [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wuerthwein, Frank [Univ. of California, San Diego, CA (United States); Gardner, Robert [Univ. of Chicago, IL (United States); Avery, Paul [Univ. of Florida, Gainesville, FL (United States); Wang, Shaowen [Univ. of Illinois, Champaign, IL (United States); Univ. of Iowa, Iowa City, IA (United States); Lincoln, David Swanson [Univ. of Nebraska, Lincoln, NE (United States)

    2015-02-11

    Under this SciDAC-2 grant the project’s goal w a s t o stimulate new discoveries by providing scientists with effective and dependable access to an unprecedented national distributed computational facility: the Open Science Grid (OSG). We proposed to achieve this through the work of the Open Science Grid Consortium: a unique hands-on multi-disciplinary collaboration of scientists, software developers and providers of computing resources. Together the stakeholders in this consortium sustain and use a shared distributed computing environment that transforms simulation and experimental science in the US. The OSG consortium is an open collaboration that actively engages new research communities. We operate an open facility that brings together a broad spectrum of compute, storage, and networking resources and interfaces to other cyberinfrastructures, including the US XSEDE (previously TeraGrid), the European Grids for ESciencE (EGEE), as well as campus and regional grids. We leverage middleware provided by computer science groups, facility IT support organizations, and computing programs of application communities for the benefit of consortium members and the US national CI.

  19. NASA's Information Power Grid: Large Scale Distributed Computing and Data Management

    Science.gov (United States)

    Johnston, William E.; Vaziri, Arsi; Hinke, Tom; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Tang, Harry (Technical Monitor)

    2001-01-01

    Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed. The overall motivation for Grids is to facilitate the routine interactions of these resources in order to support large-scale science and engineering. Multi-disciplinary simulations provide a good example of a class of applications that are very likely to require aggregation of widely distributed computing, data, and intellectual resources. Such simulations - e.g. whole system aircraft simulation and whole system living cell simulation - require integrating applications and data that are developed by different teams of researchers frequently in different locations. The research team's are the only ones that have the expertise to maintain and improve the simulation code and/or the body of experimental data that drives the simulations. This results in an inherently distributed computing and data management environment.

  20. Computed tomography of surface related radionuclide distributions ('BONN'-tomography)

    International Nuclear Information System (INIS)

    Bockisch, A.; Koenig, R.

    1989-01-01

    A method called the 'BONN' tomography is described to produce planar projections of circular activity distributions using standard single photon emission computed tomography. The clinical value of the method is demonstrated for bone scans of the jaw, thorax, and pelvis. Numerical or projection-related problems are discussed. (orig.) [de

  1. IKONET: distributed accelerator and experiment control

    International Nuclear Information System (INIS)

    Koldewijn, P.

    1986-01-01

    IKONET is a network consisting of some 35 computers used to control the 500 MeV Medium Energy Amsterdam electron accelerator (MEA) and its various experiments. The control system is distributed over a whole variety of machines, which are combined in a transparent central-oriented network. The local hardware is switched and tuned via Camac by a series of mini-computers with a real-time multitask operating system. Larger systems provide central intelligence for the higher-level control layers. An image of the complete accelerator settings is maintained by central database administrators. Different operator facilities handle touchpanels, multi-purpose knobs and graphical displays. The network provides remote login facilities and file servers. On basis of the present layout, an overview is given of future developments for subsystems of the network. (Auth.)

  2. A personal computer code for seismic evaluations of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.

    1991-01-01

    In the process of review and evaluation of licensing issues related to nuclear power plants, it is essential to understand the behavior of seismic loading, foundation and structural properties and their impact on the overall structural response. In most cases, such knowledge could be obtained by using simplified engineering models which, when properly implemented, can capture the essential parameters describing the physics of the problem. Such models do not require execution on large computer systems and could be implemented through a personal computer (PC) based capability. Recognizing the need for a PC software package that can perform structural response computations required for typical licensing reviews, the US Nuclear Regulatory Commission sponsored the development of a PC operated computer software package CARES (Computer Analysis for Rapid Evaluation of Structures) system. This development was undertaken by Brookhaven National Laboratory (BNL) during FY's 1988 and 1989. A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to operate on a PC, have user friendly input/output interface, and have quick turnaround. This paper describes the various features which have been implemented into the seismic module of CARES version 1.0

  3. A personal computer code for seismic evaluations of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.

    1990-01-01

    A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to: operate on a PC, have user friendly input/output interface, and have quick turnaround. The CARES program is structured in a modular format. Each module performs a specific type of analysis. The basic modules of the system are associated with capabilities for static, seismic and nonlinear analyses. This paper describes the various features which have been implemented into the Seismic Module of CARES version 1.0. In Section 2 a description of the Seismic Module is provided. The methodologies and computational procedures thus far implemented into the Seismic Module are described in Section 3. Finally, a complete demonstration of the computational capability of CARES in a typical soil-structure interaction analysis is given in Section 4 and conclusions are presented in Section 5. 5 refs., 4 figs

  4. Real time computer system with distributed microprocessors

    International Nuclear Information System (INIS)

    Heger, D.; Steusloff, H.; Syrbe, M.

    1979-01-01

    The usual centralized structure of computer systems, especially of process computer systems, cannot sufficiently use the progress of very large-scale integrated semiconductor technology with respect to increasing the reliability and performance and to decreasing the expenses especially of the external periphery. This and the increasing demands on process control systems has led the authors to generally examine the structure of such systems and to adapt it to the new surroundings. Computer systems with distributed, optical fibre-coupled microprocessors allow a very favourable problem-solving with decentralized controlled buslines and functional redundancy with automatic fault diagnosis and reconfiguration. A fit programming system supports these hardware properties: PEARL for multicomputer systems, dynamic loader, processor and network operating system. The necessary design principles for this are proved mainly theoretically and by value analysis. An optimal overall system of this new generation of process control systems was established, supported by results of 2 PDV projects (modular operating systems, input/output colour screen system as control panel), for the purpose of testing by apllying the system for the control of 28 pit furnaces of a steel work. (orig.) [de

  5. IPNS distributed-processing data-acquisition system

    International Nuclear Information System (INIS)

    Haumann, J.R.; Daly, R.T.; Worlton, T.G.; Crawford, R.K.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which has come on line for basic research in neutron scattering and neutron radiation damage. This paper describes the distributed-processing data-acquisition system which handles data collection and instrument control for the time-of-flight neutron-scattering instruments. The topics covered include the overall system configuration, each of the computer subsystems, communication protocols linking each computer subsystem, and an overview of the software which has been developed

  6. Experience of BESIII data production with local cluster and distributed computing model

    International Nuclear Information System (INIS)

    Deng, Z Y; Li, W D; Liu, H M; Sun, Y Z; Zhang, X M; Lin, L; Nicholson, C; Zhemchugov, A

    2012-01-01

    The BES III detector is a new spectrometer which works on the upgraded high-luminosity collider, BEPCII. The BES III experiment studies physics in the tau-charm energy region from 2 GeV to 4.6 GeV . From 2009 to 2011, BEPCII has produced 106M ψ(2S) events, 225M J/ψ events, 2.8 fb −1 ψ(3770) data, and 500 pb −1 data at 4.01 GeV. All the data samples were processed successfully and many important physics results have been achieved based on these samples. Doing data production correctly and efficiently with limited CPU and storage resources is a big challenge. This paper will describe the implementation of the experiment-specific data production for BESIII in detail, including data calibration with event-level parallel computing model, data reconstruction, inclusive Monte Carlo generation, random trigger background mixing and multi-stream data skimming. Now, with the data sample increasing rapidly, there is a growing demand to move from solely using a local cluster to a more distributed computing model. A distributed computing environment is being set up and expected to go into production use in 2012. The experience of BESIII data production, both with a local cluster and with a distributed computing model, is presented here.

  7. ATLAS Distributed Computing Operations: Experience and improvements after 2 full years of data-taking

    International Nuclear Information System (INIS)

    Jézéquel, S; Stewart, G

    2012-01-01

    This paper summarizes operational experience and improvements in ATLAS computing infrastructure in 2010 and 2011. ATLAS has had 2 periods of data taking, with many more events recorded in 2011 than in 2010. It ran 3 major reprocessing campaigns. The activity in 2011 was similar to 2010, but scalability issues had to be addressed due to the increase in luminosity and trigger rate. Based on improved monitoring of ATLAS Grid computing, the evolution of computing activities (data/group production, their distribution and grid analysis) over time is presented. The main changes in the implementation of the computing model that will be shown are: the optimization of data distribution over the Grid, according to effective transfer rate and site readiness for analysis; the progressive dismantling of the cloud model, for data distribution and data processing; software installation migration to cvmfs; changing database access to a Frontier/squid infrastructure.

  8. Calculating computer-generated optical elements to produce arbitrary intensity distributions

    International Nuclear Information System (INIS)

    Findlay, S.; Nugent, K.A.; Scholten, R.E.

    2000-01-01

    Full text: We describe preliminary investigation into using a computer to generate optical elements (CGOEs) with phase-only variation, that will produce an arbitrary intensity distribution in a given image plane. An iterative calculation cycles between the CGOE and the image plane and modifies each according to the appropriate constraints. We extend this to the calculation of defined intensity distributions in two separated planes by modifying both phase and intensity at the CGOE

  9. PanDA for ATLAS distributed computing in the next decade

    Science.gov (United States)

    Barreiro Megino, F. H.; De, K.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Padolski, S.; Panitkin, S.; Wenaus, T.; ATLAS Collaboration

    2017-10-01

    The Production and Distributed Analysis (PanDA) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at the Large Hadron Collider (LHC) data processing scale. Heterogeneous resources used by the ATLAS experiment are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, dozens of scientific applications are supported, while data processing requires more than a few billion hours of computing usage per year. PanDA performed very well over the last decade including the LHC Run 1 data taking period. However, it was decided to upgrade the whole system concurrently with the LHC’s first long shutdown in order to cope with rapidly changing computing infrastructure. After two years of reengineering efforts, PanDA has embedded capabilities for fully dynamic and flexible workload management. The static batch job paradigm was discarded in favor of a more automated and scalable model. Workloads are dynamically tailored for optimal usage of resources, with the brokerage taking network traffic and forecasts into account. Computing resources are partitioned based on dynamic knowledge of their status and characteristics. The pilot has been re-factored around a plugin structure for easier development and deployment. Bookkeeping is handled with both coarse and fine granularities for efficient utilization of pledged or opportunistic resources. An in-house security mechanism authenticates the pilot and data management services in off-grid environments such as volunteer computing and private local clusters. The PanDA monitor has been extensively optimized for performance and extended with analytics to provide aggregated summaries of the system as well as drill-down to operational details. There are as well many other challenges planned or recently implemented, and adoption by non-LHC experiments such

  10. Distributed Computing with Centralized Support Works at Brigham Young.

    Science.gov (United States)

    McDonald, Kelly; Stone, Brad

    1992-01-01

    Brigham Young University (Utah) has addressed the need for maintenance and support of distributed computing systems on campus by implementing a program patterned after a national business franchise, providing the support and training of a centralized administration but allowing each unit to operate much as an independent small business.…

  11. Research Facilities | Wind | NREL

    Science.gov (United States)

    Research Facilities Research Facilities NREL's state-of-the-art wind research facilities at the Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being tested. Structural Research Facilities A photo of two people silhouetted against a computer simulation of

  12. 13th International Symposium on Distributed Computing and Artificial Intelligence 2016

    CERN Document Server

    Semalat, Ali; Bocewicz, Grzegorz; Sitek, Paweł; Nielsen, Izabela; García, Julián; Bajo, Javier

    2016-01-01

    The 13th International Symposium on Distributed Computing and Artificial Intelligence 2016 (DCAI 2016) is a forum to present applications of innovative techniques for studying and solving complex problems. The exchange of ideas between scientists and technicians from both the academic and industrial sector is essential to facilitate the development of systems that can meet the ever-increasing demands of today’s society. The present edition brings together past experience, current work and promising future trends associated with distributed computing, artificial intelligence and their application in order to provide efficient solutions to real problems. This symposium is organized by the University of Sevilla (Spain), Osaka Institute of Technology (Japan), and the Universiti Teknologi Malaysia (Malaysia).

  13. Trajectory Based Optimal Segment Computation in Road Network Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    2013-01-01

    Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions...... that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... traversal is assigned a score that is distributed among the road segments covered by the route according to a score distribution model. The query returns the road segment(s) with the highest score. To achieve low latency, it is essential to prune the very large search space. We propose two algorithms...

  14. Trajectory Based Optimal Segment Computation in Road Network Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions...... that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... traversal is assigned a score that is distributed among the road segments covered by the route according to a score distribution model. The query returns the road segment(s) with the highest score. To achieve low latency, it is essential to prune the very large search space. We propose two algorithms...

  15. On the relevancy of efficient, integrated computer and network monitoring in HEP distributed online environment

    International Nuclear Information System (INIS)

    Carvalho, D.; Gavillet, Ph.; Delgado, V.; Javello, J.; Miere, Y.; Ruffinoni, D.; Albert, J.N.; Bellas, N.; Smith, G.

    1996-01-01

    Large Scientific Equipment are controlled by Computer Systems whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, the sophistication of its treatment and, on the other hand by the fast evolution of the computer and network market. Some people call them generically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this framework the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is proposed to integrate the various functions of DCCS monitoring into one general purpose Multi-layer System. (author)

  16. On the relevance of efficient, integrated computer and network monitoring in HEP distributed online environment

    CERN Document Server

    Carvalho, D F; Delgado, V; Albert, J N; Bellas, N; Javello, J; Miere, Y; Ruffinoni, D; Smith, G

    1996-01-01

    Large Scientific Equipments are controlled by Computer System whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, thhe sophistication of its trearment and, on the over hand by the fast evolution of the computer and network market. Some people call them generically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this frame- work the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is to integrate the various functions of DCCS monitoring into one general purpose Multi-layer ...

  17. On the Relevancy of Efficient, Integrated Computer and Network Monitoring in HEP Distributed Online Environment

    Science.gov (United States)

    Carvalho, D.; Gavillet, Ph.; Delgado, V.; Albert, J. N.; Bellas, N.; Javello, J.; Miere, Y.; Ruffinoni, D.; Smith, G.

    Large Scientific Equipments are controlled by Computer Systems whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, the sophistication of its treatment and, on the other hand by the fast evolution of the computer and network market. Some people call them genetically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this framework the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is proposed to integrate the various functions of DCCS monitoring into one general purpose Multi-layer System.

  18. 11th International Conference on Distributed Computing and Artificial Intelligence

    CERN Document Server

    Bersini, Hugues; Corchado, Juan; Rodríguez, Sara; Pawlewski, Paweł; Bucciarelli, Edgardo

    2014-01-01

    The 11th International Symposium on Distributed Computing and Artificial Intelligence 2014 (DCAI 2014) is a forum to present applications of innovative techniques for studying and solving complex problems. The exchange of ideas between scientists and technicians from both the academic and industrial sector is essential to facilitate the development of systems that can meet the ever-increasing demands of today’s society. The present edition brings together past experience, current work and promising future trends associated with distributed computing, artificial intelligence and their application in order to provide efficient solutions to real problems. This year’s technical program presents both high quality and diversity, with contributions in well-established and evolving areas of research (Algeria, Brazil, China, Croatia, Czech Republic, Denmark, France, Germany, Ireland, Italy, Japan, Malaysia, Mexico, Poland, Portugal, Republic of Korea, Spain, Taiwan, Tunisia, Ukraine, United Kingdom), representing ...

  19. Methods and apparatuses for information analysis on shared and distributed computing systems

    Science.gov (United States)

    Bohn, Shawn J [Richland, WA; Krishnan, Manoj Kumar [Richland, WA; Cowley, Wendy E [Richland, WA; Nieplocha, Jarek [Richland, WA

    2011-02-22

    Apparatuses and computer-implemented methods for analyzing, on shared and distributed computing systems, information comprising one or more documents are disclosed according to some aspects. In one embodiment, information analysis can comprise distributing one or more distinct sets of documents among each of a plurality of processes, wherein each process performs operations on a distinct set of documents substantially in parallel with other processes. Operations by each process can further comprise computing term statistics for terms contained in each distinct set of documents, thereby generating a local set of term statistics for each distinct set of documents. Still further, operations by each process can comprise contributing the local sets of term statistics to a global set of term statistics, and participating in generating a major term set from an assigned portion of a global vocabulary.

  20. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    Science.gov (United States)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  1. Probability Distributome: A Web Computational Infrastructure for Exploring the Properties, Interrelations, and Applications of Probability Distributions.

    Science.gov (United States)

    Dinov, Ivo D; Siegrist, Kyle; Pearl, Dennis K; Kalinin, Alexandr; Christou, Nicolas

    2016-06-01

    Probability distributions are useful for modeling, simulation, analysis, and inference on varieties of natural processes and physical phenomena. There are uncountably many probability distributions. However, a few dozen families of distributions are commonly defined and are frequently used in practice for problem solving, experimental applications, and theoretical studies. In this paper, we present a new computational and graphical infrastructure, the Distributome , which facilitates the discovery, exploration and application of diverse spectra of probability distributions. The extensible Distributome infrastructure provides interfaces for (human and machine) traversal, search, and navigation of all common probability distributions. It also enables distribution modeling, applications, investigation of inter-distribution relations, as well as their analytical representations and computational utilization. The entire Distributome framework is designed and implemented as an open-source, community-built, and Internet-accessible infrastructure. It is portable, extensible and compatible with HTML5 and Web2.0 standards (http://Distributome.org). We demonstrate two types of applications of the probability Distributome resources: computational research and science education. The Distributome tools may be employed to address five complementary computational modeling applications (simulation, data-analysis and inference, model-fitting, examination of the analytical, mathematical and computational properties of specific probability distributions, and exploration of the inter-distributional relations). Many high school and college science, technology, engineering and mathematics (STEM) courses may be enriched by the use of modern pedagogical approaches and technology-enhanced methods. The Distributome resources provide enhancements for blended STEM education by improving student motivation, augmenting the classical curriculum with interactive webapps, and overhauling the

  2. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    Science.gov (United States)

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  3. Efficient implementation of multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    Science.gov (United States)

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2012-01-10

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  4. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    Science.gov (United States)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  5. Autonomic computing meets SCADA security

    OpenAIRE

    Nazir, S; Patel, S; Patel, D

    2017-01-01

    © 2017 IEEE. National assets such as transportation networks, large manufacturing, business and health facilities, power generation, and distribution networks are critical infrastructures. The cyber threats to these infrastructures have increasingly become more sophisticated, extensive and numerous. Cyber security conventional measures have proved useful in the past but increasing sophistication of attacks dictates the need for newer measures. The autonomic computing paradigm mimics the auton...

  6. Evolution of the ATLAS Distributed Computing system during the LHC Long shutdown

    CERN Document Server

    Campana, S; The ATLAS collaboration

    2014-01-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the WLCG distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileu...

  7. TUNL computer facilities

    International Nuclear Information System (INIS)

    Boyd, M.; Edwards, S.E.; Gould, C.R.; Roberson, N.R.; Westerfeldt, C.R.

    1985-01-01

    The XSYS system has been relatively stable during the last year, and most of our efforts have involved routine software maintenance and enhancement of existing XSYS capabilities. Modifications were made in the MBD program GDAP to increase the execution speed in key GDAP routines. A package of routines has been developed to allow communication between the XSYS and the new Wien filter microprocessor. Recently the authors have upgraded their operating system from VSM V3.7 to V4.1. This required numerous modifications to XSYS, mostly in the command procedures. A new reorganized edition of the XSYS manual will be issued shortly. The TUNL High Resolution Laboratory's VAX 11/750 computer has been in operation for its first full year as a replacement for the PRIME 300 computer which was purchased in 1974 and retired nine months ago. The data acquisition system on the VAX has been in use for the past twelve months performing a number of experiments

  8. Fast Performance Computing Model for Smart Distributed Power Systems

    Directory of Open Access Journals (Sweden)

    Umair Younas

    2017-06-01

    Full Text Available Plug-in Electric Vehicles (PEVs are becoming the more prominent solution compared to fossil fuels cars technology due to its significant role in Greenhouse Gas (GHG reduction, flexible storage, and ancillary service provision as a Distributed Generation (DG resource in Vehicle to Grid (V2G regulation mode. However, large-scale penetration of PEVs and growing demand of energy intensive Data Centers (DCs brings undesirable higher load peaks in electricity demand hence, impose supply-demand imbalance and threaten the reliability of wholesale and retail power market. In order to overcome the aforementioned challenges, the proposed research considers smart Distributed Power System (DPS comprising conventional sources, renewable energy, V2G regulation, and flexible storage energy resources. Moreover, price and incentive based Demand Response (DR programs are implemented to sustain the balance between net demand and available generating resources in the DPS. In addition, we adapted a novel strategy to implement the computational intensive jobs of the proposed DPS model including incoming load profiles, V2G regulation, battery State of Charge (SOC indication, and fast computation in decision based automated DR algorithm using Fast Performance Computing resources of DCs. In response, DPS provide economical and stable power to DCs under strict power quality constraints. Finally, the improved results are verified using case study of ISO California integrated with hybrid generation.

  9. Sociospatial distribution of access to facilities for moderate and vigorous intensity physical activity in Scotland by different modes of transport

    Directory of Open Access Journals (Sweden)

    Lamb Karen E

    2012-07-01

    Full Text Available Abstract Background People living in neighbourhoods of lower socioeconomic status have been shown to have higher rates of obesity and a lower likelihood of meeting physical activity recommendations than their more affluent counterparts. This study examines the sociospatial distribution of access to facilities for moderate or vigorous intensity physical activity in Scotland and whether such access differs by the mode of transport available and by Urban Rural Classification. Methods A database of all fixed physical activity facilities was obtained from the national agency for sport in Scotland. Facilities were categorised into light, moderate and vigorous intensity activity groupings before being mapped. Transport networks were created to assess the number of each type of facility accessible from the population weighted centroid of each small area in Scotland on foot, by bicycle, by car and by bus. Multilevel modelling was used to investigate the distribution of the number of accessible facilities by small area deprivation within urban, small town and rural areas separately, adjusting for population size and local authority. Results Prior to adjustment for Urban Rural Classification and local authority, the median number of accessible facilities for moderate or vigorous intensity activity increased with increasing deprivation from the most affluent or second most affluent quintile to the most deprived for all modes of transport. However, after adjustment, the modelling results suggest that those in more affluent areas have significantly higher access to moderate and vigorous intensity facilities by car than those living in more deprived areas. Conclusions The sociospatial distributions of access to facilities for both moderate intensity and vigorous intensity physical activity were similar. However, the results suggest that those living in the most affluent neighbourhoods have poorer access to facilities of either type that can be reached on foot

  10. The Role of Distributed Computing in Big Data Science: Case Studies in Forensics and Bioinformatics

    OpenAIRE

    Roscigno, Gianluca

    2016-01-01

    2014 - 2015 The era of Big Data is leading the generation of large amounts of data, which require storage and analysis capabilities that can be only ad- dressed by distributed computing systems. To facilitate large-scale distributed computing, many programming paradigms and frame- works have been proposed, such as MapReduce and Apache Hadoop, which transparently address some issues of distributed systems and hide most of their technical details. Hadoop is curren...

  11. GASFLOW: A computational model to analyze accidents in nuclear containment and facility buildings

    International Nuclear Information System (INIS)

    Travis, J.R.; Nichols, B.D.; Wilson, T.L.; Lam, K.L.; Spore, J.W.; Niederauer, G.F.

    1993-01-01

    GASFLOW is a finite-volume computer code that solves the time-dependent, compressible Navier-Stokes equations for multiple gas species. The fluid-dynamics algorithm is coupled to the chemical kinetics of combusting liquids or gases to simulate diffusion or propagating flames in complex geometries of nuclear containment or confinement and facilities' buildings. Fluid turbulence is calculated to enhance the transport and mixing of gases in rooms and volumes that may be connected by a ventilation system. The ventilation system may consist of extensive ductwork, filters, dampers or valves, and fans. Condensation and heat transfer to walls, floors, ceilings, and internal structures are calculated to model the appropriate energy sinks. Solid and liquid aerosol behavior is simulated to give the time and space inventory of radionuclides. The solution procedure of the governing equations is a modified Los Alamos ICE'd-ALE methodology. Complex facilities can be represented by separate computational domains (multiblocks) that communicate through overlapping boundary conditions. The ventilation system is superimposed throughout the multiblock mesh. Gas mixtures and aerosols are transported through the free three-dimensional volumes and the restricted one-dimensional ventilation components as the accident and fluid flow fields evolve. Combustion may occur if sufficient fuel and reactant or oxidizer are present and have an ignition source. Pressure and thermal loads on the building, structural components, and safety-related equipment can be determined for specific accident scenarios. GASFLOW calculations have been compared with large oil-pool fire tests in the 1986 HDR containment test T52.14, which is a 3000-kW fire experiment. The computed results are in good agreement with the observed data

  12. Stampi: a message passing library for distributed parallel computing. User's guide

    International Nuclear Information System (INIS)

    Imamura, Toshiyuki; Koide, Hiroshi; Takemiya, Hiroshi

    1998-11-01

    A new message passing library, Stampi, has been developed to realize a computation with different kind of parallel computers arbitrarily and making MPI (Message Passing Interface) as an unique interface for communication. Stampi is based on MPI2 specification. It realizes dynamic process creation to different machines and communication between spawned one within the scope of MPI semantics. Vender implemented MPI as a closed system in one parallel machine and did not support both functions; process creation and communication to external machines. Stampi supports both functions and enables us distributed parallel computing. Currently Stampi has been implemented on COMPACS (COMplex PArallel Computer System) introduced in CCSE, five parallel computers and one graphic workstation, and any communication on them can be processed on. (author)

  13. A Computer Simulation to Assess the Nuclear Material Accountancy System of a MOX Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Portaix, C.G.; Binner, R.; John, H.

    2015-01-01

    SimMOX is a computer programme that simulates container histories as they pass through a MOX facility. It performs two parallel calculations: · the first quantifies the actual movements of material that might be expected to occur, given certain assumptions about, for instance, the accumulation of material and waste, and of their subsequent treatment; · the second quantifies the same movements on the basis of the operator's perception of the quantities involved; that is, they are based on assumptions about quantities contained in the containers. Separate skeletal Excel computer programmes are provided, which can be configured to generate further accountancy results based on these two parallel calculations. SimMOX is flexible in that it makes few assumptions about the order and operational performance of individual activities that might take place at each stage of the process. It is able to do this because its focus is on material flows, and not on the performance of individual processes. Similarly there are no pre-conceptions about the different types of containers that might be involved. At the macroscopic level, the simulation takes steady operation as its base case, i.e., the same quantity of material is deemed to enter and leave the simulated area, over any given period. Transient situations can then be superimposed onto this base scene, by simulating them as operational incidents. A general facility has been incorporated into SimMOX to enable the user to create an ''act of a play'' based on a number of operational incidents that have been built into the programme. By doing this a simulation can be constructed that predicts the way the facility would respond to any number of transient activities. This computer programme can help assess the nuclear material accountancy system of a MOX fuel fabrication facility; for instance the implications of applying NRTA (near real time accountancy). (author)

  14. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    Science.gov (United States)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits

  15. Development of the test facilities for the measurement of core flow and pressure distribution of SMART reactor

    International Nuclear Information System (INIS)

    Ko, Y.J.; Euh, D.J.; Youn, Y.J.; Chu, I.C.; Kwon, T.S.

    2011-01-01

    A design of SMART reactor has been developed, of which the primary system is composed of four internal circulation pumps, a core of 57 fuel assemblies, eight cassettes of steam generators, flow mixing head assemblies, and other internal structures. Since primary design features are very different from conventional reactors, the characteristics of flow and pressure distribution are expected to be different accordingly. In order to analyze the thermal margin and hydraulic design characteristics of SMART reactor, design quantification tests for flow and pressure distribution with a preservation of flow geometry are necessary. In the present study, the design feature of the test facility in order to investigate flow and pressure distribution, named “SCOP” is described. In order to preserve the flow distribution characteristics, the SCOP is linearly reduced with a scaling ratio of 1/5. The core flow rate of each fuel assembly is measured by a venturi meter attached in the lower part of the core simulator having a similarity of pressure drop for nominally scaled flow conditions. All the 57 core simulators and 8 S/G simulators are precisely calibrated in advance of assembling in test facilities. The major parameters in tests are pressures, differential pressures, and core flow distribution. (author)

  16. Health workers' knowledge of and attitudes towards computer applications in rural African health facilities.

    Science.gov (United States)

    Sukums, Felix; Mensah, Nathan; Mpembeni, Rose; Kaltschmidt, Jens; Haefeli, Walter E; Blank, Antje

    2014-01-01

    The QUALMAT (Quality of Maternal and Prenatal Care: Bridging the Know-do Gap) project has introduced an electronic clinical decision support system (CDSS) for pre-natal and maternal care services in rural primary health facilities in Burkina Faso, Ghana, and Tanzania. To report an assessment of health providers' computer knowledge, experience, and attitudes prior to the implementation of the QUALMAT electronic CDSS. A cross-sectional study was conducted with providers in 24 QUALMAT project sites. Information was collected using structured questionnaires. Chi-squared tests and one-way ANOVA describe the association between computer knowledge, attitudes, and other factors. Semi-structured interviews and focus groups were conducted to gain further insights. A total of 108 providers responded, 63% were from Tanzania and 37% from Ghana. The mean age was 37.6 years, and 79% were female. Only 40% had ever used computers, and 29% had prior computer training. About 80% were computer illiterate or beginners. Educational level, age, and years of work experience were significantly associated with computer knowledge (pworkplace. Given the low levels of computer knowledge among rural health workers in Africa, it is important to provide adequate training and support to ensure the successful uptake of electronic CDSSs in these settings. The positive attitudes to computers found in this study underscore that also rural care providers are ready to use such technology.

  17. Distributed computing for FTU data handling

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A. E-mail: bertocchi@frascati.enea.it; Bracco, G.; Buceti, G.; Centioli, C.; Giovannozzi, E.; Iannone, F.; Panella, M.; Vitale, V

    2002-06-01

    The growth of data warehouse in tokamak experiment is leading fusion laboratories to provide new IT solutions in data handling. In the last three years, the Frascati Tokamak Upgrade (FTU) experimental database was migrated from IBM-mainframe to Unix distributed computing environment. The migration efforts have taken into account the following items: (1) a new data storage solution based on storage area network over fibre channel; (2) andrew file system (AFS) for wide area network file sharing; (3) 'one measure/one file' philosophy replacing 'one shot/one file' to provide a faster read/write data access; (4) more powerful services, such as AFS, CORBA and MDSplus to allow users to access FTU database from different clients, regardless their O.S.; (5) large availability of data analysis tools, from the locally developed utility SHOW to the multi-platform Matlab, interactive data language and jScope (all these tools are now able to access also the Joint European Torus data, in the framework of the remote data access activity); (6) a batch-computing cluster of Alpha/CompaqTru64 CPU based on CODINE/GRD to optimize utilization of software and hardware resources.

  18. The ATLAS Distributed Computing project for LHC Run-2 and beyond.

    CERN Document Server

    Di Girolamo, Alessandro; The ATLAS collaboration

    2015-01-01

    The ATLAS Distributed Computing infrastructure has evolved after the first period of LHC data taking in order to cope with the challenges of the upcoming LHC Run2. An increased data rate and computing demands of the Monte-Carlo simulation, as well as new approaches to ATLAS analysis, dictated a more dynamic workload management system (ProdSys2) and data management system (Rucio), overcoming the boundaries imposed by the design of the old computing model. In particular, the commissioning of new central computing system components was the core part of the migration toward the flexible computing model. The flexible computing utilization exploring the opportunistic resources such as HPC, cloud, and volunteer computing is embedded in the new computing model, the data access mechanisms have been enhanced with the remote access, and the network topology and performance is deeply integrated into the core of the system. Moreover a new data management strategy, based on defined lifetime for each dataset, has been defin...

  19. Emergence, evolution, intelligence; hydroinformatics : a study of distributed and decentralised computing using intelligent agents

    NARCIS (Netherlands)

    Babovic, V.

    1996-01-01

    The computer-controlled operating environments of such facilities as automated factories, nuclear power plants, telecommunication centres and space stations are continually becoming more complex.The situation is similar, if not even more apparent and urgent, in the case of water. Water is not only

  20. Exact distributions of two-sample rank statistics and block rank statistics using computer algebra

    NARCIS (Netherlands)

    Wiel, van de M.A.

    1998-01-01

    We derive generating functions for various rank statistics and we use computer algebra to compute the exact null distribution of these statistics. We present various techniques for reducing time and memory space used by the computations. We use the results to write Mathematica notebooks for

  1. Computer Profile of School Facilities Energy Consumption.

    Science.gov (United States)

    Oswalt, Felix E.

    This document outlines a computerized management tool designed to enable building managers to identify energy consumption as related to types and uses of school facilities for the purpose of evaluating and managing the operation, maintenance, modification, and planning of new facilities. Specifically, it is expected that the statistics generated…

  2. Common accounting system for monitoring the ATLAS distributed computing resources

    International Nuclear Information System (INIS)

    Karavakis, E; Andreeva, J; Campana, S; Saiz, P; Gayazov, S; Jezequel, S; Sargsyan, L; Schovancova, J; Ueda, I

    2014-01-01

    This paper covers in detail a variety of accounting tools used to monitor the utilisation of the available computational and storage resources within the ATLAS Distributed Computing during the first three years of Large Hadron Collider data taking. The Experiment Dashboard provides a set of common accounting tools that combine monitoring information originating from many different information sources; either generic or ATLAS specific. This set of tools provides quality and scalable solutions that are flexible enough to support the constantly evolving requirements of the ATLAS user community.

  3. Successful initiation of and management through a distributed computer upgrade

    International Nuclear Information System (INIS)

    Barich, F.T.; Crawford, T.H.

    1995-01-01

    Processing capacity, the lack of data analysis tools, obsolescence, and spare parts issues are forcing utilities to upgrade or replace their plant computer systems with newer, larger systems. As a result, the utility faces an increasing number of new technologies, such as fiber optics and communication standards (FDDI, ATM, etc.), Graphic User Interface using X-Windows, and distributed architectures that eliminate the host based computer. Technologies such as these, if properly applied, can greatly enhance the capabilities and functions of the existing system. Besides this, the utility also faces funtionality previously not available through the plant computer, such as integrated plant monitoring and digital controls, voice, imaging, etc. With computing technology vastly changing from traditional host systems, the utility confronts the question, open-quotes what are my needs (now and for the future), and what new system can meet those needs most effectively?close quotes. This paper describes the management process necessary to define the needs and then carry out a successful computer replacement project

  4. Research on Key Technologies of Cloud Computing

    Science.gov (United States)

    Zhang, Shufen; Yan, Hongcan; Chen, Xuebin

    With the development of multi-core processors, virtualization, distributed storage, broadband Internet and automatic management, a new type of computing mode named cloud computing is produced. It distributes computation task on the resource pool which consists of massive computers, so the application systems can obtain the computing power, the storage space and software service according to its demand. It can concentrate all the computing resources and manage them automatically by the software without intervene. This makes application offers not to annoy for tedious details and more absorbed in his business. It will be advantageous to innovation and reduce cost. It's the ultimate goal of cloud computing to provide calculation, services and applications as a public facility for the public, So that people can use the computer resources just like using water, electricity, gas and telephone. Currently, the understanding of cloud computing is developing and changing constantly, cloud computing still has no unanimous definition. This paper describes three main service forms of cloud computing: SAAS, PAAS, IAAS, compared the definition of cloud computing which is given by Google, Amazon, IBM and other companies, summarized the basic characteristics of cloud computing, and emphasized on the key technologies such as data storage, data management, virtualization and programming model.

  5. Integrating Xgrid into the HENP distributed computing model

    International Nuclear Information System (INIS)

    Hajdu, L; Lauret, J; Kocoloski, A; Miller, M

    2008-01-01

    Modern Macintosh computers feature Xgrid, a distributed computing architecture built directly into Apple's OS X operating system. While the approach is radically different from those generally expected by the Unix based Grid infrastructures (Open Science Grid, TeraGrid, EGEE), opportunistic computing on Xgrid is nonetheless a tempting and novel way to assemble a computing cluster with a minimum of additional configuration. In fact, it requires only the default operating system and authentication to a central controller from each node. OS X also implements arbitrarily extensible metadata, allowing an instantly updated file catalog to be stored as part of the filesystem itself. The low barrier to entry allows an Xgrid cluster to grow quickly and organically. This paper and presentation will detail the steps that can be taken to make such a cluster a viable resource for HENP research computing. We will further show how to provide to users a unified job submission framework by integrating Xgrid through the STAR Unified Meta-Scheduler (SUMS), making tasks and jobs submission effortlessly at reach for those users already using the tool for traditional Grid or local cluster job submission. We will discuss additional steps that can be taken to make an Xgrid cluster a full partner in grid computing initiatives, focusing on Open Science Grid integration. MIT's Xgrid system currently supports the work of multiple research groups in the Laboratory for Nuclear Science, and has become an important tool for generating simulations and conducting data analyses at the Massachusetts Institute of Technology

  6. Integrating Xgrid into the HENP distributed computing model

    Science.gov (United States)

    Hajdu, L.; Kocoloski, A.; Lauret, J.; Miller, M.

    2008-07-01

    Modern Macintosh computers feature Xgrid, a distributed computing architecture built directly into Apple's OS X operating system. While the approach is radically different from those generally expected by the Unix based Grid infrastructures (Open Science Grid, TeraGrid, EGEE), opportunistic computing on Xgrid is nonetheless a tempting and novel way to assemble a computing cluster with a minimum of additional configuration. In fact, it requires only the default operating system and authentication to a central controller from each node. OS X also implements arbitrarily extensible metadata, allowing an instantly updated file catalog to be stored as part of the filesystem itself. The low barrier to entry allows an Xgrid cluster to grow quickly and organically. This paper and presentation will detail the steps that can be taken to make such a cluster a viable resource for HENP research computing. We will further show how to provide to users a unified job submission framework by integrating Xgrid through the STAR Unified Meta-Scheduler (SUMS), making tasks and jobs submission effortlessly at reach for those users already using the tool for traditional Grid or local cluster job submission. We will discuss additional steps that can be taken to make an Xgrid cluster a full partner in grid computing initiatives, focusing on Open Science Grid integration. MIT's Xgrid system currently supports the work of multiple research groups in the Laboratory for Nuclear Science, and has become an important tool for generating simulations and conducting data analyses at the Massachusetts Institute of Technology.

  7. Integrating Xgrid into the HENP distributed computing model

    Energy Technology Data Exchange (ETDEWEB)

    Hajdu, L; Lauret, J [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kocoloski, A; Miller, M [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: kocolosk@mit.edu

    2008-07-15

    Modern Macintosh computers feature Xgrid, a distributed computing architecture built directly into Apple's OS X operating system. While the approach is radically different from those generally expected by the Unix based Grid infrastructures (Open Science Grid, TeraGrid, EGEE), opportunistic computing on Xgrid is nonetheless a tempting and novel way to assemble a computing cluster with a minimum of additional configuration. In fact, it requires only the default operating system and authentication to a central controller from each node. OS X also implements arbitrarily extensible metadata, allowing an instantly updated file catalog to be stored as part of the filesystem itself. The low barrier to entry allows an Xgrid cluster to grow quickly and organically. This paper and presentation will detail the steps that can be taken to make such a cluster a viable resource for HENP research computing. We will further show how to provide to users a unified job submission framework by integrating Xgrid through the STAR Unified Meta-Scheduler (SUMS), making tasks and jobs submission effortlessly at reach for those users already using the tool for traditional Grid or local cluster job submission. We will discuss additional steps that can be taken to make an Xgrid cluster a full partner in grid computing initiatives, focusing on Open Science Grid integration. MIT's Xgrid system currently supports the work of multiple research groups in the Laboratory for Nuclear Science, and has become an important tool for generating simulations and conducting data analyses at the Massachusetts Institute of Technology.

  8. Flux and energy deposition distribution studies inside the irradiation room of the portuguese 60Co irradiation facility

    International Nuclear Information System (INIS)

    Portugal, Luis; Oliveira, Carlos

    2008-01-01

    Full text: In December 2003 the irradiator of the Portuguese 60 Co irradiation facility, UTR, was replenished. Eighteen new sources were loaded and the older ones (156) were rearranged. The result was an irradiator with about 10.2 P Bq of total activity. The active area of the irradiator has also increased. Now it uses twenty five of the thirty tubes of the source rack, nine more than in the previous geometry. This facility was designed mainly for sterilisation of medical devices. However it is also used for the irradiation of other products such as cork stoppers, plastics and a limited number of food and feed. The purpose of this work is to perform dosimetric studies inside the irradiation room of a 60 Co irradiation facility, particularly, the flux and energy deposition distributions. The MCNPX code was used for the simulation of the facility. The track average mesh tally capabilities of MCNPX were used to plot the photon flux and energy deposition distributions. This tool provides a fast way for flux and energy deposition mapping. The absorbed dose distribution near the walls of the irradiation room was also calculated. Instead of using meshtallys as before, the average absorbed dose inside boxes lined with the walls was determined and afterwards a plot of its distribution was made. The absorbed dose rates obtained ranged from 5 to 500 Gy.h -1 depending on material being irradiated in process and the location on the wall. These positions can be useful for fixed irradiation purposes. Both dosimetric studies were done considering two different materials being irradiated in the process: cork stoppers and water, materials with quite different densities (0.102 and 1 g.cm-3, respectively). These studies showed some important characteristics of the radiation fields inside the irradiation room, namely its spatial heterogeneity. Tunnelling and shadow effects were enhanced when the product boxes increases its density. Besides a deeper dosimetric understanding of the

  9. Distributed control system for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Batchelor, K.; Culwick, B.B.; Goldstick, J.; Sheehan, J.; Smith, J.

    1979-01-01

    Until recently, accelerator and similar control systems have used modular interface hardware such as CAMAC or DATACON which translated digital computer commands transmitted over some data link into hardware device status and monitoring variables. Such modules possessed little more than local buffering capability in the processing of commands and data. The advent of the micro-processor has made available low cost small computers of significant computational capability. This paper describes how micro-computers including such micro-processors and associated memory, input/output devices and interrupt facilities have been incorporated into a distributed system for the control of the NSLS

  10. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

  11. A hybrid algorithm for stochastic single-source capacitated facility location problem with service level requirements

    Directory of Open Access Journals (Sweden)

    Hosseinali Salemi

    2016-04-01

    Full Text Available Facility location models are observed in many diverse areas such as communication networks, transportation, and distribution systems planning. They play significant role in supply chain and operations management and are one of the main well-known topics in strategic agenda of contemporary manufacturing and service companies accompanied by long-lasting effects. We define a new approach for solving stochastic single source capacitated facility location problem (SSSCFLP. Customers with stochastic demand are assigned to set of capacitated facilities that are selected to serve them. It is demonstrated that problem can be transformed to deterministic Single Source Capacitated Facility Location Problem (SSCFLP for Poisson demand distribution. A hybrid algorithm which combines Lagrangian heuristic with adjusted mixture of Ant colony and Genetic optimization is proposed to find lower and upper bounds for this problem. Computational results of various instances with distinct properties indicate that proposed solving approach is efficient.

  12. Future Computer Requirements for Computational Aerodynamics

    Science.gov (United States)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  13. Probing the structure of complex solids using a distributed computing approach-Applications in zeolite science

    International Nuclear Information System (INIS)

    French, Samuel A.; Coates, Rosie; Lewis, Dewi W.; Catlow, C. Richard A.

    2011-01-01

    We demonstrate the viability of distributed computing techniques employing idle desktop computers in investigating complex structural problems in solids. Through the use of a combined Monte Carlo and energy minimisation method, we show how a large parameter space can be effectively scanned. By controlling the generation and running of different configurations through a database engine, we are able to not only analyse the data 'on the fly' but also direct the running of jobs and the algorithms for generating further structures. As an exemplar case, we probe the distribution of Al and extra-framework cations in the structure of the zeolite Mordenite. We compare our computed unit cells with experiment and find that whilst there is excellent correlation between computed and experimentally derived unit cell volumes, cation positioning and short-range Al ordering (i.e. near neighbour environment), there remains some discrepancy in the distribution of Al throughout the framework. We also show that stability-structure correlations only become apparent once a sufficiently large sample is used. - Graphical Abstract: Aluminium distributions in zeolites are determined using e-science methods. Highlights: → Use of e-science methods to search configurationally space. → Automated control of space searching. → Identify key structural features conveying stability. → Improved correlation of computed structures with experimental data.

  14. Surface Water Modeling Using an EPA Computer Code for Tritiated Waste Water Discharge from the heavy Water Facility

    International Nuclear Information System (INIS)

    Chen, K.F.

    1998-06-01

    Tritium releases from the D-Area Heavy Water Facilities to the Savannah River have been analyzed. The U.S. EPA WASP5 computer code was used to simulate surface water transport for tritium releases from the D-Area Drum Wash, Rework, and DW facilities. The WASP5 model was qualified with the 1993 tritium measurements at U.S. Highway 301. At the maximum tritiated waste water concentrations, the calculated tritium concentration in the Savannah River at U.S. Highway 301 due to concurrent releases from D-Area Heavy Water Facilities varies from 5.9 to 18.0 pCi/ml as a function of the operation conditions of these facilities. The calculated concentration becomes the lowest when the batch releases method for the Drum Wash Waste Tanks is adopted

  15. Distributed and grid computing projects with research focus in human health.

    Science.gov (United States)

    Diomidous, Marianna; Zikos, Dimitrios

    2012-01-01

    Distributed systems and grid computing systems are used to connect several computers to obtain a higher level of performance, in order to solve a problem. During the last decade, projects use the World Wide Web to aggregate individuals' CPU power for research purposes. This paper presents the existing active large scale distributed and grid computing projects with research focus in human health. There have been found and presented 11 active projects with more than 2000 Processing Units (PUs) each. The research focus for most of them is molecular biology and, specifically on understanding or predicting protein structure through simulation, comparing proteins, genomic analysis for disease provoking genes and drug design. Though not in all cases explicitly stated, common target diseases include research to find cure against HIV, dengue, Duchene dystrophy, Parkinson's disease, various types of cancer and influenza. Other diseases include malaria, anthrax, Alzheimer's disease. The need for national initiatives and European Collaboration for larger scale projects is stressed, to raise the awareness of citizens to participate in order to create a culture of internet volunteering altruism.

  16. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Mikhail [Michigan State Univ., East Lansing, MI (United States); Mokhov, Nikolai [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Niita, Koji [Research Organization for Information Science and Technology, Ibaraki-ken (Japan)

    2013-09-25

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  17. Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility

    Science.gov (United States)

    Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.

    2017-01-01

    The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.

  18. Further improvement in ABWR (part-4) open distributed plant process computer system

    International Nuclear Information System (INIS)

    Makino, Shigenori; Hatori, Yoshinori

    1999-01-01

    In the nuclear industry of Japan, the electric power companies have promoted the plant process computer (PPC) technology of nuclear power plant (NPP). When PPC was introduced to NPP for the first time, because of very tight requirement such as high reliability, high speed processing, the large-scale customized computer was applied. As for recent computer field, the large market of computer contributes to the remarkable progress of engineering work station (EWS) and personal computer (PC) technology. Moreover because the data transmission technology has been progressing at the same time, world wide computer network has been established. Thanks to progress of both technologies, the distributed computer system has been established at reasonable price. So Tokyo Electric Power Company (TEPCO) is trying to apply it for PPC of NPP. (author)

  19. PanDA for ATLAS Distributed Computing in the Next Decade

    CERN Document Server

    Barreiro Megino, Fernando Harald; The ATLAS collaboration

    2016-01-01

    The Production and Distributed Analysis (PanDA) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at the Large Hadron Collider (LHC) data processing scale. Heterogeneous resources used by the ATLAS experiment are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, dozens of scientific applications are supported, while data processing requires more than a few billion hours of computing usage per year. PanDA performed very well over the last decade including the LHC Run 1 data taking period. However, it was decided to upgrade the whole system concurrently with the LHC’s first long shutdown in order to cope with rapidly changing computing infrastructure. After two years of reengineering efforts, PanDA has embedded capabilities for fully dynamic and flexible workload management. The static batch job paradigm was discarde...

  20. PanDA for ATLAS distributed computing in the next decade

    CERN Document Server

    AUTHOR|(SzGeCERN)643806; The ATLAS collaboration; De, Kaushik; Klimentov, Alexei; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Wenaus, Torre

    2017-01-01

    The Production and Distributed Analysis (PanDA) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at the Large Hadron Collider (LHC) data processing scale. Heterogeneous resources used by the ATLAS experiment are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, dozens of scientific applications are supported, while data processing requires more than a few billion hours of computing usage per year. PanDA performed very well over the last decade including the LHC Run 1 data taking period. However, it was decided to upgrade the whole system concurrently with the LHC’s first long shutdown in order to cope with rapidly changing computing infrastructure. After two years of reengineering efforts, PanDA has embedded capabilities for fully dynamic and flexible workload management. The static batch job paradigm was discarde...

  1. The specification of Stampi, a message passing library for distributed parallel computing

    International Nuclear Information System (INIS)

    Imamura, Toshiyuki; Takemiya, Hiroshi; Koide, Hiroshi

    2000-03-01

    At CCSE, Center for Promotion of Computational Science and Engineering, a new message passing library for heterogeneous and distributed parallel computing has been developed, and it is called as Stampi. Stampi enables us to communicate between any combination of parallel computers as well as workstations. Currently, a Stampi system is constructed from Stampi library and Stampi/Java. It provides functions to connect a Stampi application with not only those on COMPACS, COMplex Parallel Computer System, but also applets which work on WWW browsers. This report summarizes the specifications of Stampi and details the development of its system. (author)

  2. FIRAC: a computer code to predict fire-accident effects in nuclear facilities

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Krause, F.R.; Tang, P.K.; Andrae, R.W.; Martin, R.A.; Gregory, W.S.

    1983-01-01

    FIRAC is a medium-sized computer code designed to predict fire-induced flows, temperatures, and material transport within the ventilating systems and other airflow pathways in nuclear-related facilities. The code is designed to analyze the behavior of interconnected networks of rooms and typical ventilation system components. This code is one in a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. The structure of this code closely follows that of the previously developed TVENT and EVENT codes. Because a lumped-parameter formulation is used, this code is particularly suitable for calculating the effects of fires in the far field (that is, in regions removed from the fire compartment), where the fire may be represented parametrically. However, a fire compartment model to simulate conditions in the enclosure is included. This model provides transport source terms to the ventilation system that can affect its operation and in turn affect the fire

  3. Designing a model to minimize inequities in hemodialysis facilities distribution

    Directory of Open Access Journals (Sweden)

    Teresa M. Salgado

    2011-11-01

    Full Text Available Portugal has an uneven, city-centered bias in the distribution of hemodialysis centers found to contribute to health care inequities. A model has been developed with the aim of minimizing access inequity through the identification of the best possible localization of new hemodialysis facilities. The model was designed under the assumption that individuals from different geographic areas, ceteris paribus, present the same likelihood of requiring hemodialysis in the future. Distances to reach the closest hemodialysis facility were calculated for every municipality lacking one. Regions were scored by aggregating weights of the “individual burden”, defined as the burden for an individual living in a region lacking a hemodialysis center to reach one as often as needed, and the “population burden”, defined as the burden for the total population living in such a region. The model revealed that the average travelling distance for inhabitants in municipalities without a hemodialysis center is 32 km and that 145,551 inhabitants (1.5% live more than 60 min away from a hemodialysis center, while 1,393,770 (13.8% live 30-60 min away. Multivariate analysis showed that the current localization of hemodialysis facilities is associated with major urban areas. The model developed recommends 12 locations for establishing hemodialysis centers that would result in drastically reduced travel for 34 other municipalities, leaving only six (34,800 people with over 60 min of travel. The application of this model should facilitate the planning of future hemodialysis services as it takes into consideration the potential impact of travel time for individuals in need of dialysis, as well as the logistic arrangements required to transport all patients with end-stage renal disease. The model is applicable in any country and health care planners can opt to weigh these two elements differently in the model according to their priorities.

  4. Pervasive Computing, Privacy and Distribution of the Self

    Directory of Open Access Journals (Sweden)

    Soraj Hongladarom

    2011-05-01

    Full Text Available The emergence of what is commonly known as “ambient intelligence” or “ubiquitous computing” means that our conception of privacy and trust needs to be reconsidered. Many have voiced their concerns about the threat to privacy and the more prominent role of trust that have been brought about by emerging technologies. In this paper, I will present an investigation of what this means for the self and identity in our ambient intelligence environment. Since information about oneself can be actively distributed and processed, it is proposed that in a significant sense it is the self itself that is distributed throughout a pervasive or ubiquitous computing network when information pertaining to the self of the individual travels through the network. Hence privacy protection needs to be extended to all types of information distributed. It is also recommended that appropriately strong legislation on privacy and data protection regarding this pervasive network is necessary, but at present not sufficient, to ensure public trust. What is needed is a campaign on public awareness and positive perception of the technology.

  5. On the computation of momentum distributions within wavepacket propagation calculations

    International Nuclear Information System (INIS)

    Feuerstein, Bernold; Thumm, Uwe

    2003-01-01

    We present a new method to extract momentum distributions from time-dependent wavepacket calculations. In contrast to established Fourier transformation of the spatial wavepacket at a fixed time, the proposed 'virtual detector' method examines the time dependence of the wavepacket at a fixed position. In first applications to the ionization of model atoms and the dissociation of H 2 + , we find a significant reduction of computing time and are able to extract reliable fragment momentum distributions by using a comparatively small spatial numerical grid for the time-dependent wavefunction

  6. Efficient implementation of a multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    Science.gov (United States)

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2008-01-01

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  7. FPGA-based distributed computing microarchitecture for complex physical dynamics investigation.

    Science.gov (United States)

    Borgese, Gianluca; Pace, Calogero; Pantano, Pietro; Bilotta, Eleonora

    2013-09-01

    In this paper, we present a distributed computing system, called DCMARK, aimed at solving partial differential equations at the basis of many investigation fields, such as solid state physics, nuclear physics, and plasma physics. This distributed architecture is based on the cellular neural network paradigm, which allows us to divide the differential equation system solving into many parallel integration operations to be executed by a custom multiprocessor system. We push the number of processors to the limit of one processor for each equation. In order to test the present idea, we choose to implement DCMARK on a single FPGA, designing the single processor in order to minimize its hardware requirements and to obtain a large number of easily interconnected processors. This approach is particularly suited to study the properties of 1-, 2- and 3-D locally interconnected dynamical systems. In order to test the computing platform, we implement a 200 cells, Korteweg-de Vries (KdV) equation solver and perform a comparison between simulations conducted on a high performance PC and on our system. Since our distributed architecture takes a constant computing time to solve the equation system, independently of the number of dynamical elements (cells) of the CNN array, it allows us to reduce the elaboration time more than other similar systems in the literature. To ensure a high level of reconfigurability, we design a compact system on programmable chip managed by a softcore processor, which controls the fast data/control communication between our system and a PC Host. An intuitively graphical user interface allows us to change the calculation parameters and plot the results.

  8. Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shoman, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generate performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.

  9. Accelerator-based research facility of UGC as an inter-university centre

    International Nuclear Information System (INIS)

    Mehta, G.K.

    1994-01-01

    A 15-UD Pelletron has been operating as a users facility from July 1991. It is being utilised by a large number of universities and other institutions for research in basic nuclear physics, materials science, atomic physics, radiobiology and radiation chemistry. There is an on-going programme for augmenting the accelerator facilities by injecting Pelletron beams into superconducting linear accelerator modules. Superconducting niobium resonators are being developed at Argonne National Laboratory as a joint collaborative effort. All other things such as cryostat, rf-instrumentation, cryogene distribution system, computer control etc. are being done indigenously. Research possibilities are described. (author). 6 refs., 4 figs

  10. Computer software design description for the Treated Effluent Disposal Facility (TEDF), Project L-045H, Operator Training Station (OTS)

    International Nuclear Information System (INIS)

    Carter, R.L. Jr.

    1994-01-01

    The Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) is a computer-based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS)

  11. CSNI Integral Test Facility Matrices for Validation of Best-Estimate Thermal-Hydraulic Computer Codes

    International Nuclear Information System (INIS)

    Glaeser, H.

    2008-01-01

    Internationally agreed Integral Test Facility (ITF) matrices for validation of realistic thermal hydraulic system computer codes were established. ITF development is mainly for Pressurised Water Reactors (PWRs) and Boiling Water Reactors (BWRs). A separate activity was for Russian Pressurised Water-cooled and Water-moderated Energy Reactors (WWER). Firstly, the main physical phenomena that occur during considered accidents are identified, test types are specified, and test facilities suitable for reproducing these aspects are selected. Secondly, a list of selected experiments carried out in these facilities has been set down. The criteria to achieve the objectives are outlined. In this paper some specific examples from the ITF matrices will also be provided. The matrices will be a guide for code validation, will be a basis for comparisons of code predictions performed with different system codes, and will contribute to the quantification of the uncertainty range of code model predictions. In addition to this objective, the construction of such a matrix is an attempt to record information which has been generated around the world over the last years, so that it is more accessible to present and future workers in that field than would otherwise be the case.

  12. Improving flow distribution in influent channels using computational fluid dynamics.

    Science.gov (United States)

    Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae

    2016-10-01

    Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.

  13. ATLAS Distributed Computing Monitoring tools during the LHC Run I

    Science.gov (United States)

    Schovancová, J.; Campana, S.; Di Girolamo, A.; Jézéquel, S.; Ueda, I.; Wenaus, T.; Atlas Collaboration

    2014-06-01

    This contribution summarizes evolution of the ATLAS Distributed Computing (ADC) Monitoring project during the LHC Run I. The ADC Monitoring targets at the three groups of customers: ADC Operations team to early identify malfunctions and escalate issues to an activity or a service expert, ATLAS national contacts and sites for the real-time monitoring and long-term measurement of the performance of the provided computing resources, and the ATLAS Management for long-term trends and accounting information about the ATLAS Distributed Computing resources. During the LHC Run I a significant development effort has been invested in standardization of the monitoring and accounting applications in order to provide extensive monitoring and accounting suite. ADC Monitoring applications separate the data layer and the visualization layer. The data layer exposes data in a predefined format. The visualization layer is designed bearing in mind visual identity of the provided graphical elements, and re-usability of the visualization bits across the different tools. A rich family of various filtering and searching options enhancing available user interfaces comes naturally with the data and visualization layer separation. With a variety of reliable monitoring data accessible through standardized interfaces, the possibility of automating actions under well defined conditions correlating multiple data sources has become feasible. In this contribution we discuss also about the automated exclusion of degraded resources and their automated recovery in various activities.

  14. Computer facilities for ISABELLE data handling

    International Nuclear Information System (INIS)

    Kramer, M.A.; Love, W.A.; Miller, R.J.; Zeller, M.

    1977-01-01

    The analysis of data produced by ISABELLE experiments will need a large system of computers. An official group of prospective users and operators of that system should begin planning now. Included in the array will be a substantial computer system at each ISABELLE intersection in use. These systems must include enough computer power to keep experimenters aware of the health of the experiment. This will require at least one very fast sophisticated processor in the system, the size depending on the experiment. Other features of the intersection systems must be a good, high speed graphic display, ability to record data on magnetic tape at 500 to 1000 KB, and a high speed link to a central computer. The operating system software must support multiple interactive users. A substantially larger capacity computer system, shared by the six intersection region experiments, must be available with good turnaround for experimenters while ISABELLE is running. A computer support group will be required to maintain the computer system and to provide and maintain software common to all experiments. Special superfast computing hardware or special function processors constructed with microprocessor circuitry may be necessary both in the data gathering and data processing work. Thus both the local and central processors should be chosen with the possibility of interfacing such devices in mind

  15. Distributed Database Access in the LHC Computing Grid with CORAL

    CERN Document Server

    Molnár, Z; Düllmann, D; Giacomo, G; Kalkhof, A; Valassi, A; CERN. Geneva. IT Department

    2009-01-01

    The CORAL package is the LCG Persistency Framework foundation for accessing relational databases. From the start CORAL has been designed to facilitate the deployment of the LHC experiment database applications in a distributed computing environment. In particular we cover - improvements to database service scalability by client connection management - platform-independent, multi-tier scalable database access by connection multiplexing, caching - a secure authentication and authorisation scheme integrated with existing grid services. We will summarize the deployment experience from several experiment productions using the distributed database infrastructure, which is now available in LCG. Finally, we present perspectives for future developments in this area.

  16. Integrated Electrical and Thermal Grid Facility - Testing of Future Microgrid Technologies

    Directory of Open Access Journals (Sweden)

    Sundar Raj Thangavelu

    2015-09-01

    Full Text Available This paper describes the Experimental Power Grid Centre (EPGC microgrid test facility, which was developed to enable research, development and testing for a wide range of distributed generation and microgrid technologies. The EPGC microgrid facility comprises a integrated electrical and thermal grid with a flexible and configurable architecture, and includes various distributed energy resources and emulators, such as generators, renewable, energy storage technologies and programmable load banks. The integrated thermal grid provides an opportunity to harness waste heat produced by the generators for combined heat, power and cooling applications, and support research in optimization of combined electrical-thermal systems. Several case studies are presented to demonstrate the testing of different control and operation strategies for storage systems in grid-connected and islanded microgrids. One of the case studies also demonstrates an integrated thermal grid to convert waste heat to useful energy, which thus far resulted in a higher combined energy efficiency. Experiment results confirm that the facility enables testing and evaluation of grid technologies and practical problems that may not be apparent in a computer simulated environment.

  17. Benchmark experiments at ASTRA facility on definition of space distribution of 235U fission reaction rate

    International Nuclear Information System (INIS)

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.; Glushkov, E. S.; Kompaniets, G. V.; Moroz, N. P.; Nevinitsa, V. A.; Nosov, V. I.; Smirnov, O. N.; Fomichenko, P. A.; Zimin, A. A.

    2012-01-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of 235 U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of 235 U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  18. Impact of Distributed Energy Resources on the Reliability of Critical Telecommunications Facilities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D. G.; Arent, D. J.; Johnson, L.

    2006-06-01

    This paper documents a probabilistic risk assessment of existing and alternative power supply systems at a large telecommunications office. The analysis characterizes the increase in the reliability of power supply through the use of two alternative power configurations. Failures in the power systems supporting major telecommunications service nodes are a main contributor to significant telecommunications outages. A logical approach to improving the robustness of telecommunication facilities is to increase the depth and breadth of technologies available to restore power during power outages. Distributed energy resources such as fuel cells and gas turbines could provide additional on-site electric power sources to provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.

  19. Storm blueprints patterns for distributed real-time computation

    CERN Document Server

    Goetz, P Taylor

    2014-01-01

    A blueprints book with 10 different projects built in 10 different chapters which demonstrate the various use cases of storm for both beginner and intermediate users, grounded in real-world example applications.Although the book focuses primarily on Java development with Storm, the patterns are more broadly applicable and the tips, techniques, and approaches described in the book apply to architects, developers, and operations.Additionally, the book should provoke and inspire applications of distributed computing to other industries and domains. Hadoop enthusiasts will also find this book a go

  20. Communication Facilities for Distributed Systems

    Directory of Open Access Journals (Sweden)

    V. Barladeanu

    1997-01-01

    Full Text Available The design of physical networks and communication protocols in Distributed Systems can have a direct impact on system efficiency and reliability. This paper tries to identify efficient mechanisms and paradigms for communication in distributed systems.

  1. Visual Cluster Analysis for Computing Tasks at Workflow Management System of the ATLAS Experiment

    CERN Document Server

    Grigoryeva, Maria; The ATLAS collaboration

    2018-01-01

    Hundreds of petabytes of experimental data in high energy and nuclear physics (HENP) have already been obtained by unique scientific facilities such as LHC, RHIC, KEK. As the accelerators are being modernized (energy and luminosity were increased), data volumes are rapidly growing and have reached the exabyte scale, that also affects the increasing the number of analysis and data processing tasks, that are competing continuously for computational resources. The increase of processing tasks causes an increase in the performance of the computing environment by the involvement of high-performance computing resources, and forming a heterogeneous distributed computing environment (hundreds of distributed computing centers). In addition, errors happen to occur while executing tasks for data analysis and processing, which are caused by software and hardware failures. With a distributed model of data processing and analysis, the optimization of data management and workload systems becomes a fundamental task, and the ...

  2. Integrating Computing Resources: A Shared Distributed Architecture for Academics and Administrators.

    Science.gov (United States)

    Beltrametti, Monica; English, Will

    1994-01-01

    Development and implementation of a shared distributed computing architecture at the University of Alberta (Canada) are described. Aspects discussed include design of the architecture, users' views of the electronic environment, technical and managerial challenges, and the campuswide human infrastructures needed to manage such an integrated…

  3. On a new method to compute photon skyshine doses around radiotherapy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, R.; Facure, A. [Comissao Nacional de Eenrgia Nuclear, Rio de Janeiro (Brazil); Xavier, A. [PEN/Coppe -UFRJ, Rio de Janeiro (Brazil)

    2006-07-01

    Full text of publication follows: Nowadays, in a great number of situations constructions are raised around radiotherapy facilities. In cases where the constructions would not be in the primary x-ray beam, 'skyshine' radiation is normally accounted for. The skyshine method is commonly used to to calculate the dose contribution from scattered radiation in such circumstances, when the roof shielding is projected considering there will be no occupancy upstairs. In these cases, there will be no need to have the usual 1,5-2,0 m thick ceiling, and the construction costs can be considerably reduced. The existing expression to compute these doses do not accomplish to explain mathematically the existence of a shadow area just around the outer room walls, and its growth, as we get away from these walls. In this paper we propose a new method to compute photon skyshine doses, using geometrical considerations to find the maximum dose point. An empirical equation is derived, and its validity is tested using M.C.N.P. 5 Monte Carlo calculation to simulate radiotherapy rooms configurations. (authors)

  4. Operating procedures: Fusion Experiments Analysis Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, R.A.; Carey, R.W.

    1984-03-20

    The Fusion Experiments Analysis Facility (FEAF) is a computer facility based on a DEC VAX 11/780 computer. It became operational in late 1982. At that time two manuals were written to aid users and staff in their interactions with the facility. This manual is designed as a reference to assist the FEAF staff in carrying out their responsibilities. It is meant to supplement equipment and software manuals supplied by the vendors. Also this manual provides the FEAF staff with a set of consistent, written guidelines for the daily operation of the facility.

  5. Operating procedures: Fusion Experiments Analysis Facility

    International Nuclear Information System (INIS)

    Lerche, R.A.; Carey, R.W.

    1984-01-01

    The Fusion Experiments Analysis Facility (FEAF) is a computer facility based on a DEC VAX 11/780 computer. It became operational in late 1982. At that time two manuals were written to aid users and staff in their interactions with the facility. This manual is designed as a reference to assist the FEAF staff in carrying out their responsibilities. It is meant to supplement equipment and software manuals supplied by the vendors. Also this manual provides the FEAF staff with a set of consistent, written guidelines for the daily operation of the facility

  6. Recommended practice for the design of a computer driven Alarm Display Facility for central control rooms of nuclear power generating stations

    International Nuclear Information System (INIS)

    Ben-Yaacov, G.

    1984-01-01

    This paper's objective is to explain the process by which design can prevent human errors in nuclear plant operation. Human factor engineering principles, data, and methods used in the design of computer driven alarm display facilities are discussed. A ''generic'', advanced Alarm Display Facility is described. It considers operator capabilities and limitations in decision-making processes, response dynamics, and human memory limitations. Highlighted are considerations of human factor criteria in the designing and layout of alarm displays. Alarm data sources are described, and their use within the Alarm Display Facility are illustrated

  7. Fog-computing concept usage as means to enhance information and control system reliability

    Science.gov (United States)

    Melnik, E. V.; Klimenko, A. B.; Ivanov, D. Ya

    2018-05-01

    This paper focuses on the reliability issue of information and control systems (ICS). The authors propose using the elements of the fog-computing concept to enhance the reliability function. The key idea of fog-computing is to shift computations to the fog-layer of the network, and thus to decrease the workload of the communication environment and data processing components. As for ICS, workload also can be distributed among sensors, actuators and network infrastructure facilities near the sources of data. The authors simulated typical workload distribution situations for the “traditional” ICS architecture and for the one with fogcomputing concept elements usage. The paper contains some models, selected simulation results and conclusion about the prospects of the fog-computing as a means to enhance ICS reliability.

  8. Thermal and flow analysis of the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% effort of Title 1)

    International Nuclear Information System (INIS)

    Steinke, R.G.; Mueller, C.; Knight, T.D.

    1998-03-01

    The computational fluid dynamics code CFX4.2 was used to evaluate steady-state thermal-hydraulic conditions in the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% of Title 1). Thirteen facility cases were evaluated with varying temperature dependence, drywell-array heat-source magnitude and distribution, location of the inlet tower, and no-flow curtains in the drywell-array vault. Four cases of a detailed model of the inlet-tower top fixture were evaluated to show the effect of the canopy-cruciform fixture design on the air pressure and flow distributions

  9. The grand challenge of managing the petascale facility.

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, R. J.; Mathematics and Computer Science

    2007-02-28

    This report is the result of a study of networks and how they may need to evolve to support petascale leadership computing and science. As Dr. Ray Orbach, director of the Department of Energy's Office of Science, says in the spring 2006 issue of SciDAC Review, 'One remarkable example of growth in unexpected directions has been in high-end computation'. In the same article Dr. Michael Strayer states, 'Moore's law suggests that before the end of the next cycle of SciDAC, we shall see petaflop computers'. Given the Office of Science's strong leadership and support for petascale computing and facilities, we should expect to see petaflop computers in operation in support of science before the end of the decade, and DOE/SC Advanced Scientific Computing Research programs are focused on making this a reality. This study took its lead from this strong focus on petascale computing and the networks required to support such facilities, but it grew to include almost all aspects of the DOE/SC petascale computational and experimental science facilities, all of which will face daunting challenges in managing and analyzing the voluminous amounts of data expected. In addition, trends indicate the increased coupling of unique experimental facilities with computational facilities, along with the integration of multidisciplinary datasets and high-end computing with data-intensive computing; and we can expect these trends to continue at the petascale level and beyond. Coupled with recent technology trends, they clearly indicate the need for including capability petascale storage, networks, and experiments, as well as collaboration tools and programming environments, as integral components of the Office of Science's petascale capability metafacility. The objective of this report is to recommend a new cross-cutting program to support the management of petascale science and infrastructure. The appendices of the report document current and projected

  10. Assessing Tax Form Distribution Costs: A Proposed Method for Computing the Dollar Value of Tax Form Distribution in a Public Library.

    Science.gov (United States)

    Casey, James B.

    1998-01-01

    Explains how a public library can compute the actual cost of distributing tax forms to the public by listing all direct and indirect costs and demonstrating the formulae and necessary computations. Supplies directions for calculating costs involved for all levels of staff as well as associated public relations efforts, space, and utility costs.…

  11. Microscale air quality impacts of distributed power generation facilities.

    Science.gov (United States)

    Olaguer, Eduardo P; Knipping, Eladio; Shaw, Stephanie; Ravindran, Satish

    2016-08-01

    The electric system is experiencing rapid growth in the adoption of a mix of distributed renewable and fossil fuel sources, along with increasing amounts of off-grid generation. New operational regimes may have unforeseen consequences for air quality. A three-dimensional microscale chemical transport model (CTM) driven by an urban wind model was used to assess gaseous air pollutant and particulate matter (PM) impacts within ~10 km of fossil-fueled distributed power generation (DG) facilities during the early afternoon of a typical summer day in Houston, TX. Three types of DG scenarios were considered in the presence of motor vehicle emissions and a realistic urban canopy: (1) a 25-MW natural gas turbine operating at steady state in either simple cycle or combined heating and power (CHP) mode; (2) a 25-MW simple cycle gas turbine undergoing a cold startup with either moderate or enhanced formaldehyde emissions; and (3) a data center generating 10 MW of emergency power with either diesel or natural gas-fired backup generators (BUGs) without pollution controls. Simulations of criteria pollutants (NO2, CO, O3, PM) and the toxic pollutant, formaldehyde (HCHO), were conducted assuming a 2-hr operational time period. In all cases, NOx titration dominated ozone production near the source. The turbine scenarios did not result in ambient concentration enhancements significantly exceeding 1 ppbv for gaseous pollutants or over 1 µg/m(3) for PM after 2 hr of emission, assuming realistic plume rise. In the case of the datacenter with diesel BUGs, ambient NO2 concentrations were enhanced by 10-50 ppbv within 2 km downwind of the source, while maximum PM impacts in the immediate vicinity of the datacenter were less than 5 µg/m(3). Plausible scenarios of distributed fossil generation consistent with the electricity grid's transformation to a more flexible and modernized system suggest that a substantial amount of deployment would be required to significantly affect air quality on

  12. A strategy for improved computational efficiency of the method of anchored distributions

    Science.gov (United States)

    Over, Matthew William; Yang, Yarong; Chen, Xingyuan; Rubin, Yoram

    2013-06-01

    This paper proposes a strategy for improving the computational efficiency of model inversion using the method of anchored distributions (MAD) by "bundling" similar model parametrizations in the likelihood function. Inferring the likelihood function typically requires a large number of forward model (FM) simulations for each possible model parametrization; as a result, the process is quite expensive. To ease this prohibitive cost, we present an approximation for the likelihood function called bundling that relaxes the requirement for high quantities of FM simulations. This approximation redefines the conditional statement of the likelihood function as the probability of a set of similar model parametrizations "bundle" replicating field measurements, which we show is neither a model reduction nor a sampling approach to improving the computational efficiency of model inversion. To evaluate the effectiveness of these modifications, we compare the quality of predictions and computational cost of bundling relative to a baseline MAD inversion of 3-D flow and transport model parameters. Additionally, to aid understanding of the implementation we provide a tutorial for bundling in the form of a sample data set and script for the R statistical computing language. For our synthetic experiment, bundling achieved a 35% reduction in overall computational cost and had a limited negative impact on predicted probability distributions of the model parameters. Strategies for minimizing error in the bundling approximation, for enforcing similarity among the sets of model parametrizations, and for identifying convergence of the likelihood function are also presented.

  13. CLINICAL SURFACES - Activity-Based Computing for Distributed Multi-Display Environments in Hospitals

    Science.gov (United States)

    Bardram, Jakob E.; Bunde-Pedersen, Jonathan; Doryab, Afsaneh; Sørensen, Steffen

    A multi-display environment (MDE) is made up of co-located and networked personal and public devices that form an integrated workspace enabling co-located group work. Traditionally, MDEs have, however, mainly been designed to support a single “smart room”, and have had little sense of the tasks and activities that the MDE is being used for. This paper presents a novel approach to support activity-based computing in distributed MDEs, where displays are physically distributed across a large building. CLINICAL SURFACES was designed for clinical work in hospitals, and enables context-sensitive retrieval and browsing of patient data on public displays. We present the design and implementation of CLINICAL SURFACES, and report from an evaluation of the system at a large hospital. The evaluation shows that using distributed public displays to support activity-based computing inside a hospital is very useful for clinical work, and that the apparent contradiction between maintaining privacy of medical data in a public display environment can be mitigated by the use of CLINICAL SURFACES.

  14. Computational cost of isogeometric multi-frontal solvers on parallel distributed memory machines

    KAUST Repository

    Woźniak, Maciej; Paszyński, Maciej R.; Pardo, D.; Dalcin, Lisandro; Calo, Victor M.

    2015-01-01

    This paper derives theoretical estimates of the computational cost for isogeometric multi-frontal direct solver executed on parallel distributed memory machines. We show theoretically that for the Cp-1 global continuity of the isogeometric solution

  15. Computer surety: computer system inspection guidance. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    This document discusses computer surety in NRC-licensed nuclear facilities from the perspective of physical protection inspectors. It gives background information and a glossary of computer terms, along with threats and computer vulnerabilities, methods used to harden computer elements, and computer audit controls.

  16. Processing Optimization of Typed Resources with Synchronized Storage and Computation Adaptation in Fog Computing

    Directory of Open Access Journals (Sweden)

    Zhengyang Song

    2018-01-01

    Full Text Available Wide application of the Internet of Things (IoT system has been increasingly demanding more hardware facilities for processing various resources including data, information, and knowledge. With the rapid growth of generated resource quantity, it is difficult to adapt to this situation by using traditional cloud computing models. Fog computing enables storage and computing services to perform at the edge of the network to extend cloud computing. However, there are some problems such as restricted computation, limited storage, and expensive network bandwidth in Fog computing applications. It is a challenge to balance the distribution of network resources. We propose a processing optimization mechanism of typed resources with synchronized storage and computation adaptation in Fog computing. In this mechanism, we process typed resources in a wireless-network-based three-tier architecture consisting of Data Graph, Information Graph, and Knowledge Graph. The proposed mechanism aims to minimize processing cost over network, computation, and storage while maximizing the performance of processing in a business value driven manner. Simulation results show that the proposed approach improves the ratio of performance over user investment. Meanwhile, conversions between resource types deliver support for dynamically allocating network resources.

  17. Automating usability of ATLAS distributed computing resources

    International Nuclear Information System (INIS)

    Tupputi, S A; Girolamo, A Di; Kouba, T; Schovancová, J

    2014-01-01

    The automation of ATLAS Distributed Computing (ADC) operations is essential to reduce manpower costs and allow performance-enhancing actions, which improve the reliability of the system. In this perspective a crucial case is the automatic handling of outages of ATLAS computing sites storage resources, which are continuously exploited at the edge of their capabilities. It is challenging to adopt unambiguous decision criteria for storage resources of non-homogeneous types, sizes and roles. The recently developed Storage Area Automatic Blacklisting (SAAB) tool has provided a suitable solution, by employing an inference algorithm which processes history of storage monitoring tests outcome. SAAB accomplishes both the tasks of providing global monitoring as well as automatic operations on single sites. The implementation of the SAAB tool has been the first step in a comprehensive review of the storage areas monitoring and central management at all levels. Such review has involved the reordering and optimization of SAM tests deployment and the inclusion of SAAB results in the ATLAS Site Status Board with both dedicated metrics and views. The resulting structure allows monitoring the storage resources status with fine time-granularity and automatic actions to be taken in foreseen cases, like automatic outage handling and notifications to sites. Hence, the human actions are restricted to reporting and following up problems, where and when needed. In this work we show SAAB working principles and features. We present also the decrease of human interactions achieved within the ATLAS Computing Operation team. The automation results in a prompt reaction to failures, which leads to the optimization of resource exploitation.

  18. Designing Facilities for Collaborative Operations

    Science.gov (United States)

    Norris, Jeffrey; Powell, Mark; Backes, Paul; Steinke, Robert; Tso, Kam; Wales, Roxana

    2003-01-01

    A methodology for designing operational facilities for collaboration by multiple experts has begun to take shape as an outgrowth of a project to design such facilities for scientific operations of the planned 2003 Mars Exploration Rover (MER) mission. The methodology could also be applicable to the design of military "situation rooms" and other facilities for terrestrial missions. It was recognized in this project that modern mission operations depend heavily upon the collaborative use of computers. It was further recognized that tests have shown that layout of a facility exerts a dramatic effect on the efficiency and endurance of the operations staff. The facility designs (for example, see figure) and the methodology developed during the project reflect this recognition. One element of the methodology is a metric, called effective capacity, that was created for use in evaluating proposed MER operational facilities and may also be useful for evaluating other collaboration spaces, including meeting rooms and military situation rooms. The effective capacity of a facility is defined as the number of people in the facility who can be meaningfully engaged in its operations. A person is considered to be meaningfully engaged if the person can (1) see, hear, and communicate with everyone else present; (2) see the material under discussion (typically data on a piece of paper, computer monitor, or projection screen); and (3) provide input to the product under development by the group. The effective capacity of a facility is less than the number of people that can physically fit in the facility. For example, a typical office that contains a desktop computer has an effective capacity of .4, while a small conference room that contains a projection screen has an effective capacity of around 10. Little or no benefit would be derived from allowing the number of persons in an operational facility to exceed its effective capacity: At best, the operations staff would be underutilized

  19. PanDA: A New Paradigm for Distributed Computing in HEP Through the Lens of ATLAS and other Experiments

    CERN Document Server

    De, K; The ATLAS collaboration; Maeno, T; Nilsson, P; Wenaus, T

    2014-01-01

    Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide, thousands of physicists analyzing the data need remote access to hundreds of computing sites, the volume of processed data is beyond the exabyte scale, and data processing requires more than a billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of computing in HEP was discarded in favor of a far more flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at a million computing jobs per day, and processing over an exabyte of data in 2013. We will describe the design and implementation of PanDA, present data on the performance of PanDA a...

  20. Computer Security at Nuclear Facilities. Reference Manual (Arabic Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    category of the IAEA Nuclear Security Series, and deals with computer security at nuclear facilities. It is based on national experience and practices as well as publications in the fields of computer security and nuclear security. The guidance is provided for consideration by States, competent authorities and operators. The preparation of this publication in the IAEA Nuclear Security Series has been made possible by the contributions of a large number of experts from Member States. An extensive consultation process with all Member States included consultants meetings and open-ended technical meetings. The draft was then circulated to all Member States for 120 days to solicit further comments and suggestions. The comments received from Member States were reviewed and considered in the final version of the publication.

  1. Computer Security at Nuclear Facilities. Reference Manual (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    category of the IAEA Nuclear Security Series, and deals with computer security at nuclear facilities. It is based on national experience and practices as well as publications in the fields of computer security and nuclear security. The guidance is provided for consideration by States, competent authorities and operators. The preparation of this publication in the IAEA Nuclear Security Series has been made possible by the contributions of a large number of experts from Member States. An extensive consultation process with all Member States included consultants meetings and open-ended technical meetings. The draft was then circulated to all Member States for 120 days to solicit further comments and suggestions. The comments received from Member States were reviewed and considered in the final version of the publication.

  2. Computer Security at Nuclear Facilities. Reference Manual (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    category of the IAEA Nuclear Security Series, and deals with computer security at nuclear facilities. It is based on national experience and practices as well as publications in the fields of computer security and nuclear security. The guidance is provided for consideration by States, competent authorities and operators. The preparation of this publication in the IAEA Nuclear Security Series has been made possible by the contributions of a large number of experts from Member States. An extensive consultation process with all Member States included consultants meetings and open-ended technical meetings. The draft was then circulated to all Member States for 120 days to solicit further comments and suggestions. The comments received from Member States were reviewed and considered in the final version of the publication.

  3. Current internal-dosimetry practices at US Department of Energy facilities

    International Nuclear Information System (INIS)

    Traub, R.J.; Murphy, B.L.; Selby, J.M.; Vallario, E.J.

    1985-04-01

    The internal dosimetry practice at DOE facilities were characterized. The purpose was to determine the size of the facilities' internal dosimetry programs, the uniformity of the programs among the facilities, and the areas of greatest concern to health physicists in providing and reporting accurate estimates of internal radiation dose and in meeting proposed changes in internal dosimetry. The differences among the internal-dosimetry programs are related to the radioelements in use at each facility and, to some extent, the number of workers at each facility. The differences include different frequencies in the use of quality control samples, different minimum detection levels, different methods of recording radionuclides, different amounts of data recorded in the permanent record, and apparent differences in modeling the metabolism of radionuclides within the body. Recommendations for improving internal-dosimetry practices include studying the relationship between air-monitoring/survey readings and bioassay data, establishing uniform methods for recording bioassay results, developing more sensitive direct-bioassay procedures, establishing a mechanism for sharing information on internal-dosimetry procedures among DOE facilities, and developing mathematical models and interactive computer codes that can help quantify the uptake of radioactive materials and predict their distribution in the body. 19 refs., 8 tabs

  4. Exploring similarities among many species distributions

    Science.gov (United States)

    Simmerman, Scott; Wang, Jingyuan; Osborne, James; Shook, Kimberly; Huang, Jian; Godsoe, William; Simons, Theodore R.

    2012-01-01

    Collecting species presence data and then building models to predict species distribution has been long practiced in the field of ecology for the purpose of improving our understanding of species relationships with each other and with the environment. Due to limitations of computing power as well as limited means of using modeling software on HPC facilities, past species distribution studies have been unable to fully explore diverse data sets. We build a system that can, for the first time to our knowledge, leverage HPC to support effective exploration of species similarities in distribution as well as their dependencies on common environmental conditions. Our system can also compute and reveal uncertainties in the modeling results enabling domain experts to make informed judgments about the data. Our work was motivated by and centered around data collection efforts within the Great Smoky Mountains National Park that date back to the 1940s. Our findings present new research opportunities in ecology and produce actionable field-work items for biodiversity management personnel to include in their planning of daily management activities.

  5. Scalable error correction in distributed ion trap computers

    International Nuclear Information System (INIS)

    Oi, Daniel K. L.; Devitt, Simon J.; Hollenberg, Lloyd C. L.

    2006-01-01

    A major challenge for quantum computation in ion trap systems is scalable integration of error correction and fault tolerance. We analyze a distributed architecture with rapid high-fidelity local control within nodes and entangled links between nodes alleviating long-distance transport. We demonstrate fault-tolerant operator measurements which are used for error correction and nonlocal gates. This scheme is readily applied to linear ion traps which cannot be scaled up beyond a few ions per individual trap but which have access to a probabilistic entanglement mechanism. A proof-of-concept system is presented which is within the reach of current experiment

  6. Microdot - A Four-Bit Microcontroller Designed for Distributed Low-End Computing in Satellites

    National Research Council Canada - National Science Library

    2002-01-01

    .... An alternative design approach is a distributed network of small and low power microcontrollers designed for space that handle the computing requirements of each individual sensor and actuator...

  7. Library of subroutines to produce one- and two-dimensional statistical distributions on the ES-1010 computer

    International Nuclear Information System (INIS)

    Vzorov, I.K.; Ivanov, V.V.

    1978-01-01

    A library of subroutines to produce 1- and 2-dimensional distribution on the ES-1010 computer is described. 1-dimensional distribution is represented as the histogram, 2-dimensional one is represented as the table. The library provides such opportunities as booking and deleting, filling and clearing histograms (tables), arithmetic operations with them, and printing histograms (tables) on the computer printer with variable printer line. All subroutines are written in FORTRAN-4 language and can be called from the program written in FORTRAN or in ASSEMBLER. This library can be implemented on all computer systems that offer a FORTRAN-4 compiler

  8. 75 FR 8920 - Grant of Authority for Subzone Status; IKEA Distribution Services (Distribution of Home...

    Science.gov (United States)

    2010-02-26

    ... Status; IKEA Distribution Services (Distribution of Home Furnishings and Accessories); Baltimore, MD... subzone at the warehouse and distribution facility of IKEA Distribution Services, located in Perryville... and distribution at the facility of IKEA Distribution Services, located in Perryville, Maryland...

  9. Computing, Environment and Life Sciences | Argonne National Laboratory

    Science.gov (United States)

    Computing, Environment and Life Sciences Research Divisions BIOBiosciences CPSComputational Science DSLData Argonne Leadership Computing Facility Biosciences Division Environmental Science Division Mathematics and Computer Science Division Facilities and Institutes Argonne Leadership Computing Facility News Events About

  10. The DIII-D Computing Environment: Characteristics and Recent Changes

    International Nuclear Information System (INIS)

    McHarg, B.B. Jr.

    1999-01-01

    The DIII-D tokamak national fusion research facility along with its predecessor Doublet III has been operating for over 21 years. The DIII-D computing environment consists of real-time systems controlling the tokamak, heating systems, and diagnostics, and systems acquiring experimental data from instrumentation; major data analysis server nodes performing short term and long term data access and data analysis; and systems providing mechanisms for remote collaboration and the dissemination of information over the world wide web. Computer systems for the facility have undergone incredible changes over the course of time as the computer industry has changed dramatically. Yet there are certain valuable characteristics of the DIII-D computing environment that have been developed over time and have been maintained to this day. Some of these characteristics include: continuous computer infrastructure improvements, distributed data and data access, computing platform integration, and remote collaborations. These characteristics are being carried forward as well as new characteristics resulting from recent changes which have included: a dedicated storage system and a hierarchical storage management system for raw shot data, various further infrastructure improvements including deployment of Fast Ethernet, the introduction of MDSplus, LSF and common IDL based tools, and improvements to remote collaboration capabilities. This paper will describe this computing environment, important characteristics that over the years have contributed to the success of DIII-D computing systems, and recent changes to computer systems

  11. Xcache in the ATLAS Distributed Computing Environment

    CERN Document Server

    Hanushevsky, Andrew; The ATLAS collaboration

    2018-01-01

    Built upon the Xrootd Proxy Cache (Xcache), we developed additional features to adapt the ATLAS distributed computing and data environment, especially its data management system RUCIO, to help improve the cache hit rate, as well as features that make the Xcache easy to use, similar to the way the Squid cache is used by the HTTP protocol. We are optimizing Xcache for the HPC environments, and adapting the HL-LHC Data Lakes design as its component for data delivery. We packaged the software in CVMFS, in Docker and Singularity containers in order to standardize the deployment and reduce the cost to resolve issues at remote sites. We are also integrating it into RUCIO as a volatile storage systems, and into various ATLAS workflow such as user analysis,

  12. Experience with a high order programming language on the development of the Nova distributed control system

    International Nuclear Information System (INIS)

    Suski, G.J.; Holloway, F.W.; Duffy, J.M.

    1983-01-01

    This paper explores the impact of an HOL on the development of the distributed computer control system for Nova laser fusion facility. As the world's most powerful glass laser, Nova will generate 150 trillion watt pulses of infrared light focused onto fusion targets a few millimeters in diameter. It will perform experiments designed to explore the feasibility of fusion as an energy source of the future. Nova will utilize fifty microcomputers and four VAX-11/780's in a distributed process control computer system architecture

  13. Enhanced computational infrastructure for data analysis at the DIII-D National Fusion Facility

    International Nuclear Information System (INIS)

    Schissel, D.P.; Peng, Q.; Schachter, J.; Terpstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; McHarg, B.B.; Meyer, W.H.; Parker, C.T.

    2000-01-01

    Recently a number of enhancements to the computer hardware infrastructure have been implemented at the DIII-D National Fusion Facility. Utilizing these improvements to the hardware infrastructure, software enhancements are focusing on streamlined analysis, automation, and graphical user interface (GUI) systems to enlarge the user base. The adoption of the load balancing software package LSF Suite by Platform Computing has dramatically increased the availability of CPU cycles and the efficiency of their use. Streamlined analysis has been aided by the adoption of the MDSplus system to provide a unified interface to analyzed DIII-D data. The majority of MDSplus data is made available in between pulses giving the researcher critical information before setting up the next pulse. Work on data viewing and analysis tools focuses on efficient GUI design with object-oriented programming (OOP) for maximum code flexibility. Work to enhance the computational infrastructure at DIII-D has included a significant effort to aid the remote collaborator since the DIII-D National Team consists of scientists from nine national laboratories, 19 foreign laboratories, 16 universities, and five industrial partnerships. As a result of this work, DIII-D data is available on a 24x7 basis from a set of viewing and analysis tools that can be run on either the collaborators' or DIII-D's computer systems. Additionally, a web based data and code documentation system has been created to aid the novice and expert user alike

  14. Enhanced Computational Infrastructure for Data Analysis at the DIII-D National Fusion Facility

    International Nuclear Information System (INIS)

    Schissel, D.P.; Peng, Q.; Schachter, J.; Terpstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; Meyer, W.H.; Parker, C.T.; McCharg, B.B.

    1999-01-01

    Recently a number of enhancements to the computer hardware infrastructure have been implemented at the DIII-D National Fusion Facility. Utilizing these improvements to the hardware infrastructure, software enhancements are focusing on streamlined analysis, automation, and graphical user interface (GUI) systems to enlarge the user base. The adoption of the load balancing software package LSF Suite by Platform Computing has dramatically increased the availability of CPU cycles and the efficiency of their use. Streamlined analysis has been aided by the adoption of the MDSplus system to provide a unified interface to analyzed DIII-D data. The majority of MDSplus data is made available in between pulses giving the researcher critical information before setting up the next pulse. Work on data viewing and analysis tools focuses on efficient GUI design with object-oriented programming (OOP) for maximum code flexibility. Work to enhance the computational infrastructure at DIII-D has included a significant effort to aid the remote collaborator since the DIII-D National Team consists of scientists from 9 national laboratories, 19 foreign laboratories, 16 universities, and 5 industrial partnerships. As a result of this work, DIII-D data is available on a 24 x 7 basis from a set of viewing and analysis tools that can be run either on the collaborators' or DIII-Ds computer systems. Additionally, a Web based data and code documentation system has been created to aid the novice and expert user alike

  15. A Parallel and Distributed Surrogate Model Implementation for Computational Steering

    KAUST Repository

    Butnaru, Daniel

    2012-06-01

    Understanding the influence of multiple parameters in a complex simulation setting is a difficult task. In the ideal case, the scientist can freely steer such a simulation and is immediately presented with the results for a certain configuration of the input parameters. Such an exploration process is however not possible if the simulation is computationally too expensive. For these cases we present in this paper a scalable computational steering approach utilizing a fast surrogate model as substitute for the time-consuming simulation. The surrogate model we propose is based on the sparse grid technique, and we identify the main computational tasks associated with its evaluation and its extension. We further show how distributed data management combined with the specific use of accelerators allows us to approximate and deliver simulation results to a high-resolution visualization system in real-time. This significantly enhances the steering workflow and facilitates the interactive exploration of large datasets. © 2012 IEEE.

  16. Impact of distributed energy resources on the reliability of a critical telecommunications facility.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David; Zuffranieri, Jason V.; Atcitty, Christopher B.; Arent, Douglas (National Renewable Energy Laboratory, Golden, CO)

    2006-03-01

    This report documents a probabilistic risk assessment of an existing power supply system at a large telecommunications office. The focus is on characterizing the increase in the reliability of power supply through the use of two alternative power configurations. Telecommunications has been identified by the Department of Homeland Security as a critical infrastructure to the United States. Failures in the power systems supporting major telecommunications service nodes are a main contributor to major telecommunications outages. A logical approach to improve the robustness of telecommunication facilities would be to increase the depth and breadth of technologies available to restore power in the face of power outages. Distributed energy resources such as fuel cells and gas turbines could provide one more onsite electric power source to provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.

  17. Navier-Stokes Simulation of Airconditioning Facility of a Large Modem Computer Room

    Science.gov (United States)

    2005-01-01

    NASA recently assembled one of the world's fastest operational supercomputers to meet the agency's new high performance computing needs. This large-scale system, named Columbia, consists of 20 interconnected SGI Altix 512-processor systems, for a total of 10,240 Intel Itanium-2 processors. High-fidelity CFD simulations were performed for the NASA Advanced Supercomputing (NAS) computer room at Ames Research Center. The purpose of the simulations was to assess the adequacy of the existing air handling and conditioning system and make recommendations for changes in the design of the system if needed. The simulations were performed with NASA's OVERFLOW-2 CFD code which utilizes overset structured grids. A new set of boundary conditions were developed and added to the flow solver for modeling the roomls air-conditioning and proper cooling of the equipment. Boundary condition parameters for the flow solver are based on cooler CFM (flow rate) ratings and some reasonable assumptions of flow and heat transfer data for the floor and central processing units (CPU) . The geometry modeling from blue prints and grid generation were handled by the NASA Ames software package Chimera Grid Tools (CGT). This geometric model was developed as a CGT-scripted template, which can be easily modified to accommodate any changes in shape and size of the room, locations and dimensions of the CPU racks, disk racks, coolers, power distribution units, and mass-storage system. The compute nodes are grouped in pairs of racks with an aisle in the middle. High-speed connection cables connect the racks with overhead cable trays. The cool air from the cooling units is pumped into the computer room from a sub-floor through perforated floor tiles. The CPU cooling fans draw cool air from the floor tiles, which run along the outside length of each rack, and eject warm air into the center isle between the racks. This warm air is eventually drawn into the cooling units located near the walls of the room. One

  18. Green facility location

    NARCIS (Netherlands)

    Velázquez Martínez, J.C.; Fransoo, J.C.; Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.

    2017-01-01

    Transportation is one of the main contributing factors of global carbon emissions, and thus, when dealing with facility location models in a distribution context, transportation emissions may be substantially higher than the emissions due to production or storage. Because facility location models

  19. New challenges for HEP computing: RHIC [Relativistic Heavy Ion Collider] and CEBAF [Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    LeVine, M.J.

    1990-01-01

    We will look at two facilities; RHIC and CEBF. CEBF is in the construction phase, RHIC is about to begin construction. For each of them, we examine the kinds of physics measurements that motivated their construction, and the implications of these experiments for computing. Emphasis will be on on-line requirements, driven by the data rates produced by these experiments

  20. Software quality assurance plan for the National Ignition Facility integrated computer control system

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, J.

    1996-11-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project`s controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy`s (DOE`s) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project.

  1. Software quality assurance plan for the National Ignition Facility integrated computer control system

    International Nuclear Information System (INIS)

    Woodruff, J.

    1996-11-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project's controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy's (DOE's) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project

  2. A resource facility for kinetic analysis: modeling using the SAAM computer programs.

    Science.gov (United States)

    Foster, D M; Boston, R C; Jacquez, J A; Zech, L

    1989-01-01

    Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.

  3. Perspectives on distributed computing : thirty people, four user types, and the distributed computing user experience.

    Energy Technology Data Exchange (ETDEWEB)

    Childers, L.; Liming, L.; Foster, I.; Mathematics and Computer Science; Univ. of Chicago

    2008-10-15

    This report summarizes the methodology and results of a user perspectives study conducted by the Community Driven Improvement of Globus Software (CDIGS) project. The purpose of the study was to document the work-related goals and challenges facing today's scientific technology users, to record their perspectives on Globus software and the distributed-computing ecosystem, and to provide recommendations to the Globus community based on the observations. Globus is a set of open source software components intended to provide a framework for collaborative computational science activities. Rather than attempting to characterize all users or potential users of Globus software, our strategy has been to speak in detail with a small group of individuals in the scientific community whose work appears to be the kind that could benefit from Globus software, learn as much as possible about their work goals and the challenges they face, and describe what we found. The result is a set of statements about specific individuals experiences. We do not claim that these are representative of a potential user community, but we do claim to have found commonalities and differences among the interviewees that may be reflected in the user community as a whole. We present these as a series of hypotheses that can be tested by subsequent studies, and we offer recommendations to Globus developers based on the assumption that these hypotheses are representative. Specifically, we conducted interviews with thirty technology users in the scientific community. We included both people who have used Globus software and those who have not. We made a point of including individuals who represent a variety of roles in scientific projects, for example, scientists, software developers, engineers, and infrastructure providers. The following material is included in this report: (1) A summary of the reported work-related goals, significant issues, and points of satisfaction with the use of Globus software

  4. Supervisory control and diagnostics system for the mirror fusion test facility: overview and status 1980

    International Nuclear Information System (INIS)

    McGoldrick, P.R.

    1981-01-01

    The Mirror Fusion Test Facility (MFTF) is a complex facility requiring a highly-computerized Supervisory Control and Diagnostics System (SCDS) to monitor and provide control over ten subsystems; three of which require true process control. SCDS will provide physicists with a method of studying machine and plasma behavior by acquiring and processing up to four megabytes of plasma diagnostic information every five minutes. A high degree of availability and throughput is provided by a distributed computer system (nine 32-bit minicomputers on shared memory). Data, distributed across SCDS, is managed by a high-bandwidth Distributed Database Management System. The MFTF operators' control room consoles use color television monitors with touch sensitive screens; this is a totally new approach. The method of handling deviations to normal machine operation and how the operator should be notified and assisted in the resolution of problems has been studied and a system designed

  5. Metaheuristic Based Scheduling Meta-Tasks in Distributed Heterogeneous Computing Systems

    Directory of Open Access Journals (Sweden)

    Hesam Izakian

    2009-07-01

    Full Text Available Scheduling is a key problem in distributed heterogeneous computing systems in order to benefit from the large computing capacity of such systems and is an NP-complete problem. In this paper, we present a metaheuristic technique, namely the Particle Swarm Optimization (PSO algorithm, for this problem. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. The scheduler aims at minimizing makespan, which is the time when finishes the latest task. Experimental studies show that the proposed method is more efficient and surpasses those of reported PSO and GA approaches for this problem.

  6. Spatial Distribution and Accessibility of Health Facilities in Akwa ...

    African Journals Online (AJOL)

    This paper therefore analyzed the spatial patterns of healthcare facilities in Akwa ... Data on six health indicator variables were obtained and analyzed to assess ... of healthcare facilities and thus hinders good access to high quality healthcare ...

  7. Prediction of the filtrate particle size distribution from the pore size distribution in membrane filtration: Numerical correlations from computer simulations

    Science.gov (United States)

    Marrufo-Hernández, Norma Alejandra; Hernández-Guerrero, Maribel; Nápoles-Duarte, José Manuel; Palomares-Báez, Juan Pedro; Chávez-Rojo, Marco Antonio

    2018-03-01

    We present a computational model that describes the diffusion of a hard spheres colloidal fluid through a membrane. The membrane matrix is modeled as a series of flat parallel planes with circular pores of different sizes and random spatial distribution. This model was employed to determine how the size distribution of the colloidal filtrate depends on the size distributions of both, the particles in the feed and the pores of the membrane, as well as to describe the filtration kinetics. A Brownian dynamics simulation study considering normal distributions was developed in order to determine empirical correlations between the parameters that characterize these distributions. The model can also be extended to other distributions such as log-normal. This study could, therefore, facilitate the selection of membranes for industrial or scientific filtration processes once the size distribution of the feed is known and the expected characteristics in the filtrate have been defined.

  8. Distributed Factorization Computation on Multiple Volunteered Mobile Resource to Break RSA Key

    Science.gov (United States)

    Jaya, I.; Hardi, S. M.; Tarigan, J. T.; Zamzami, E. M.; Sihombing, P.

    2017-01-01

    Similar to common asymmeric encryption, RSA can be cracked by usmg a series mathematical calculation. The private key used to decrypt the massage can be computed using the public key. However, finding the private key may require a massive amount of calculation. In this paper, we propose a method to perform a distributed computing to calculate RSA’s private key. The proposed method uses multiple volunteered mobile devices to contribute during the calculation process. Our objective is to demonstrate how the use of volunteered computing on mobile devices may be a feasible option to reduce the time required to break a weak RSA encryption and observe the behavior and running time of the application on mobile devices.

  9. Studies of electron collisions with polyatomic molecules using distributed-memory parallel computers

    International Nuclear Information System (INIS)

    Winstead, C.; Hipes, P.G.; Lima, M.A.P.; McKoy, V.

    1991-01-01

    Elastic electron scattering cross sections from 5--30 eV are reported for the molecules C 2 H 4 , C 2 H 6 , C 3 H 8 , Si 2 H 6 , and GeH 4 , obtained using an implementation of the Schwinger multichannel method for distributed-memory parallel computer architectures. These results, obtained within the static-exchange approximation, are in generally good agreement with the available experimental data. These calculations demonstrate the potential of highly parallel computation in the study of collisions between low-energy electrons and polyatomic gases. The computational methodology discussed is also directly applicable to the calculation of elastic cross sections at higher levels of approximation (target polarization) and of electronic excitation cross sections

  10. A survey of process control computers at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Dahl, C.A.

    1989-01-01

    The Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory is charged with the safe processing of spent nuclear fuel elements for the United States Department of Energy. The ICPP was originally constructed in the late 1950s and used state-of-the-art technology for process control at that time. The state of process control instrumentation at the ICPP has steadily improved to keep pace with emerging technology. Today, the ICPP is a college of emerging computer technology in process control with some systems as simple as standalone measurement computers while others are state-of-the-art distributed control systems controlling the operations in an entire facility within the plant. The ICPP has made maximal use of process computer technology aimed at increasing surety, safety, and efficiency of the process operations. Many benefits have been derived from the use of the computers for minimal costs, including decreased misoperations in the facility, and more benefits are expected in the future

  11. SU-E-T-531: Performance Evaluation of Multithreaded Geant4 for Proton Therapy Dose Calculations in a High Performance Computing Facility

    International Nuclear Information System (INIS)

    Shin, J; Coss, D; McMurry, J; Farr, J; Faddegon, B

    2014-01-01

    Purpose: To evaluate the efficiency of multithreaded Geant4 (Geant4-MT, version 10.0) for proton Monte Carlo dose calculations using a high performance computing facility. Methods: Geant4-MT was used to calculate 3D dose distributions in 1×1×1 mm3 voxels in a water phantom and patient's head with a 150 MeV proton beam covering approximately 5×5 cm2 in the water phantom. Three timestamps were measured on the fly to separately analyze the required time for initialization (which cannot be parallelized), processing time of individual threads, and completion time. Scalability of averaged processing time per thread was calculated as a function of thread number (1, 100, 150, and 200) for both 1M and 50 M histories. The total memory usage was recorded. Results: Simulations with 50 M histories were fastest with 100 threads, taking approximately 1.3 hours and 6 hours for the water phantom and the CT data, respectively with better than 1.0 % statistical uncertainty. The calculations show 1/N scalability in the event loops for both cases. The gains from parallel calculations started to decrease with 150 threads. The memory usage increases linearly with number of threads. No critical failures were observed during the simulations. Conclusion: Multithreading in Geant4-MT decreased simulation time in proton dose distribution calculations by a factor of 64 and 54 at a near optimal 100 threads for water phantom and patient's data respectively. Further simulations will be done to determine the efficiency at the optimal thread number. Considering the trend of computer architecture development, utilizing Geant4-MT for radiotherapy simulations is an excellent cost-effective alternative for a distributed batch queuing system. However, because the scalability depends highly on simulation details, i.e., the ratio of the processing time of one event versus waiting time to access for the shared event queue, a performance evaluation as described is recommended

  12. AIRDOS-II computer code for estimating radiation dose to man from airborne radionuclides in areas surrouding nuclear facilities

    International Nuclear Information System (INIS)

    Moore, R.E.

    1977-04-01

    The AIRDOS-II computer code estimates individual and population doses resulting from the simultaneous atmospheric release of as many as 36 radionuclides from a nuclear facility. This report describes the meteorological and environmental models used is the code, their computer implementation, and the applicability of the code to assessments of radiological impact. Atmospheric dispersion and surface deposition of released radionuclides are estimated as a function of direction and distance from a nuclear power plant or fuel-cycle facility, and doses to man through inhalation, air immersion, exposure to contaminated ground, food ingestion, and water immersion are estimated in the surrounding area. Annual doses are estimated for total body, GI tract, bone, thyroid, lungs, muscle, kidneys, liver, spleen, testes, and ovaries. Either the annual population doses (man-rems/year) or the highest annual individual doses in the assessment area (rems/year), whichever are applicable, are summarized in output tables in several ways--by nuclides, modes of exposure, and organs. The location of the highest individual doses for each reference organ estimated for the area is specified in the output data

  13. A Bioinformatics Facility for NASA

    Science.gov (United States)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  14. Experience with a high order programming language on the development of the Nova distributed control system

    Energy Technology Data Exchange (ETDEWEB)

    Suski, G.J.; Holloway, F.W.; Duffy, J.M.

    1983-05-10

    This paper explores the impact of an HOL on the development of the distributed computer control system for Nova laser fusion facility. As the world's most powerful glass laser, Nova will generate 150 trillion watt pulses of infrared light focused onto fusion targets a few millimeters in diameter. It will perform experiments designed to explore the feasibility of fusion as an energy source of the future. Nova will utilize fifty microcomputers and four VAX-11/780's in a distributed process control computer system architecture.

  15. VLab: A Science Gateway for Distributed First Principles Calculations in Heterogeneous High Performance Computing Systems

    Science.gov (United States)

    da Silveira, Pedro Rodrigo Castro

    2014-01-01

    This thesis describes the development and deployment of a cyberinfrastructure for distributed high-throughput computations of materials properties at high pressures and/or temperatures--the Virtual Laboratory for Earth and Planetary Materials--VLab. VLab was developed to leverage the aggregated computational power of grid systems to solve…

  16. Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment

    NARCIS (Netherlands)

    Borgdorff, J.; Mamonski, M.; Bosak, B.; Kurowski, K.; Ben Belgacem, M.; Chopard, B.; Groen, D.; Coveney, P.V.; Hoekstra, A.G.

    2014-01-01

    We present the Multiscale Coupling Library and Environment: MUSCLE 2. This multiscale component-based execution environment has a simple to use Java, C++, C, Python and Fortran API, compatible with MPI, OpenMP and threading codes. We demonstrate its local and distributed computing capabilities and

  17. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  18. Comparison of High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.

    2017-01-01

    A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.

  19. Enabling Extreme Scale Earth Science Applications at the Oak Ridge Leadership Computing Facility

    Science.gov (United States)

    Anantharaj, V. G.; Mozdzynski, G.; Hamrud, M.; Deconinck, W.; Smith, L.; Hack, J.

    2014-12-01

    The Oak Ridge Leadership Facility (OLCF), established at the Oak Ridge National Laboratory (ORNL) under the auspices of the U.S. Department of Energy (DOE), welcomes investigators from universities, government agencies, national laboratories and industry who are prepared to perform breakthrough research across a broad domain of scientific disciplines, including earth and space sciences. Titan, the OLCF flagship system, is currently listed as #2 in the Top500 list of supercomputers in the world, and the largest available for open science. The computational resources are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, sponsored by the U.S. DOE Office of Science. In 2014, over 2.25 billion core hours on Titan were awarded via INCITE projects., including 14% of the allocation toward earth sciences. The INCITE competition is also open to research scientists based outside the USA. In fact, international research projects account for 12% of the INCITE awards in 2014. The INCITE scientific review panel also includes 20% participation from international experts. Recent accomplishments in earth sciences at OLCF include the world's first continuous simulation of 21,000 years of earth's climate history (2009); and an unprecedented simulation of a magnitude 8 earthquake over 125 sq. miles. One of the ongoing international projects involves scaling the ECMWF Integrated Forecasting System (IFS) model to over 200K cores of Titan. ECMWF is a partner in the EU funded Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) project. The significance of the research carried out within this project is the demonstration of techniques required to scale current generation Petascale capable simulation codes towards the performance levels required for running on future Exascale systems. One of the techniques pursued by ECMWF is to use Fortran2008 coarrays to overlap computations and communications and

  20. Specific features of organizng the computer-aided design of radio-electronic equipment for electrophysical facilities

    International Nuclear Information System (INIS)

    Mozin, I.V.; Vasil'ev, M.P.

    1985-01-01

    Problems of developing systems for computer-aided design (CAD) of radioelectronic equipment for large electrophysical facilities such as charged particle accelerators of new generation are discussed. The PLATA subsystem representing a part of CAD and used for printed circuit design is described. The subsystem PLATA is utilized to design, on the average, up to 150 types of circuits a year, 100-120 of which belong to circuits of increased complexity. In this case labour productivity of a designer at documentation increases almost two times

  1. Thermal studies of the canister staging pit in a hypothetical Yucca Mountain canister handling facility using computational fluid dynamics

    International Nuclear Information System (INIS)

    Soltani, Mehdi; Barringer, Chris; Bues, Timothy T. de

    2007-01-01

    The proposed Yucca Mountain nuclear waste storage site will contain facilities for preparing the radioactive waste canisters for burial. A previous facility design considered was the Canister Handling Facility Staging Pit. This design is no longer used, but its thermal evaluation is typical of such facilities. Structural concrete can be adversely affected by the heat from radioactive decay. Consequently, facilities must have heating ventilation and air conditioning (HVAC) systems for cooling. Concrete temperatures are a function of conductive, convective and radiative heat transfer. The prediction of concrete temperatures under such complex conditions can only be adequately handled by computational fluid dynamics (CFD). The objective of the CFD analysis was to predict concrete temperatures under normal and off-normal conditions. Normal operation assumed steady state conditions with constant HVAC flow and temperatures. However, off-normal operation was an unsteady scenario which assumed a total HVAC failure for a period of 30 days. This scenario was particularly complex in that the concrete temperatures would gradually rise, and air flows would be buoyancy driven. The CFD analysis concluded that concrete wall temperatures would be at or below the maximum temperature limits in both the normal and off-normal scenarios. While this analysis was specific to a facility design that is no longer used, it demonstrates that such facilities are reasonably expected to have satisfactory thermal performance. (author)

  2. REDNET: a distributed data acquisition system for a nuclear research reactor

    International Nuclear Information System (INIS)

    Shah, R.R.; Pensom, C.F.

    1984-05-01

    Experimental facilities such as those in the NRU nuclear research reactor at the Chalk River Nuclear Laboratories (CRNL) need a data acquisition system that combines high performance with flexibility. The REactor Data NETwork (REDNET) is a system being developed at CRNL that used distributed computer technology to meet demanding requirements. This paper describes the distributed architecture of REDNET, comprising 7 minicomputers, and presents an overview of the software configuration and data structures which have been designed to produce a versatile and interactive system that must gather and store data at rates ranging from 20 times a second to once every 30 minutes. Each experimenter is provided with a unique set of points that are referred to collectively, and manipulated together as a group. Facilities are provided to modify operating parameters for and view data values in a group without affecting other groups. Facilities incorporated for graceful degradation of REDNET and automatic recovery from failures are also described

  3. The derivative based variance sensitivity analysis for the distribution parameters and its computation

    International Nuclear Information System (INIS)

    Wang, Pan; Lu, Zhenzhou; Ren, Bo; Cheng, Lei

    2013-01-01

    The output variance is an important measure for the performance of a structural system, and it is always influenced by the distribution parameters of inputs. In order to identify the influential distribution parameters and make it clear that how those distribution parameters influence the output variance, this work presents the derivative based variance sensitivity decomposition according to Sobol′s variance decomposition, and proposes the derivative based main and total sensitivity indices. By transforming the derivatives of various orders variance contributions into the form of expectation via kernel function, the proposed main and total sensitivity indices can be seen as the “by-product” of Sobol′s variance based sensitivity analysis without any additional output evaluation. Since Sobol′s variance based sensitivity indices have been computed efficiently by the sparse grid integration method, this work also employs the sparse grid integration method to compute the derivative based main and total sensitivity indices. Several examples are used to demonstrate the rationality of the proposed sensitivity indices and the accuracy of the applied method

  4. Data management problems with a distributed computer network on nuclear power stations

    International Nuclear Information System (INIS)

    Davis, I.

    1980-01-01

    It is generally accepted within the Central Electricity Generating Board that the centralized process computers at some nuclear power plants are going to be replaced with distributed systems. Work on the theoretical considerations involved in such a replacement, including the allocation of data within the system, is going on with the goal of developing a simple, pragmatic approach to the determination of the required system resilience. A flexible network architecture which can accomodate expansions in the future and can be understood by non-computer specialists can thus be built up. (LL)

  5. Beam Diagnostics Systems for the National Ignition Facility

    International Nuclear Information System (INIS)

    Demaret, R D; Boyd, R D; Bliss, E S; Gates, A J; Severyn, J R

    2001-01-01

    The National Ignition Facility (NIF) laser focuses 1.8 megajoules of ultraviolet light (wavelength 351 nanometers) from 192 beams into a 600-micrometer-diameter volume. Effective use of this output in target experiments requires that the power output from all of the beams match within 8% over their entire 20-nanosecond waveform. The scope of NIF beam diagnostics systems necessary to accomplish this task is unprecedented for laser facilities. Each beamline contains 110 major optical components distributed over a 510-meter path, and diagnostic tolerances for beam measurement are demanding. Total laser pulse energy is measured with 2.8% precision, and the interbeam temporal variation of pulse power is measured with 4% precision. These measurement goals are achieved through use of approximately 160 sensor packages that measure the energy at five locations and power at three locations along each beamline using 335 photodiodes, 215 calorimeters, and 36 digitizers. Successful operation of such a system requires a high level of automation of the widely distributed sensors. Computer control systems provide the basis for operating the shot diagnostics with repeatable accuracy, assisted by operators who oversee system activities and setup, respond to performance exceptions, and complete calibration and maintenance tasks

  6. Job monitoring on DIRAC for Belle II distributed computing

    Science.gov (United States)

    Kato, Yuji; Hayasaka, Kiyoshi; Hara, Takanori; Miyake, Hideki; Ueda, Ikuo

    2015-12-01

    We developed a monitoring system for Belle II distributed computing, which consists of active and passive methods. In this paper we describe the passive monitoring system, where information stored in the DIRAC database is processed and visualized. We divide the DIRAC workload management flow into steps and store characteristic variables which indicate issues. These variables are chosen carefully based on our experiences, then visualized. As a result, we are able to effectively detect issues. Finally, we discuss the future development for automating log analysis, notification of issues, and disabling problematic sites.

  7. Radiation safety training for accelerator facilities

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1997-02-01

    In November 1992, a working group was formed within the U.S. Department of Energy's (DOE's) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise

  8. Computer-guided facility for the study of single crystals at the gamma diffractometer GADI

    International Nuclear Information System (INIS)

    Heer, H.; Bleichert, H.; Gruhn, W.; Moeller, R.

    1984-10-01

    In the study of solid-state properties it is in many cases necessary to work with single crystals. The increased requirement in the industry and research as well as the desire for better characterization by means of γ-diffractometry made it necessary to improve and to modernize the existing instrument. The advantages of a computer-guided facility against the conventional, semiautomatic operation are manifold. Not only the process guidance, but also the data acquisition and evaluation are performed by the computer. By a remote control the operator is able to find quickly a reflex and to drive the crystal in every desired measuring position. The complete protocollation of all important measuring parameters, the convenient data storage, as well as the automatic evaluation are much useful for the user. Finally the measuring time can be increased to practically 24 hours per day. By this the versed characterization by means of γ-diffractometry is put on a completely new level. (orig.) [de

  9. Computer modelling of statistical properties of SASE FEL radiation

    International Nuclear Information System (INIS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-01-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY

  10. Computer network data communication controller for the Plutonium Protection System (PPS)

    International Nuclear Information System (INIS)

    Rogers, M.S.

    1978-10-01

    Systems which employ several computers for distributed processing must provide communication links between the computers to effectively utilize their capacity. The technique of using a central network controller to supervise and route messages on a multicomputer digital communications net has certain economic and performance advantages over alternative implementations. Conceptually, the number of stations (computers) which can be accommodated by such a controller is unlimited, but practical considerations dictate a maximum of about 12 to 15. A Data Network Controller (DNC) has been designed around a M6800 microprocessor for use in the Plutonium Protection System (PPS) demonstration facilities

  11. COMPUTING

    CERN Multimedia

    2010-01-01

    Introduction Just two months after the “LHC First Physics” event of 30th March, the analysis of the O(200) million 7 TeV collision events in CMS accumulated during the first 60 days is well under way. The consistency of the CMS computing model has been confirmed during these first weeks of data taking. This model is based on a hierarchy of use-cases deployed between the different tiers and, in particular, the distribution of RECO data to T1s, who then serve data on request to T2s, along a topology known as “fat tree”. Indeed, during this period this model was further extended by almost full “mesh” commissioning, meaning that RECO data were shipped to T2s whenever possible, enabling additional physics analyses compared with the “fat tree” model. Computing activities at the CMS Analysis Facility (CAF) have been marked by a good time response for a load almost evenly shared between ALCA (Alignment and Calibration tasks - highest p...

  12. Decommissioning Facility Characterization DB System

    International Nuclear Information System (INIS)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S.

    2010-01-01

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  13. Decommissioning Facility Characterization DB System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  14. Information Power Grid: Distributed High-Performance Computing and Large-Scale Data Management for Science and Engineering

    Science.gov (United States)

    Johnston, William E.; Gannon, Dennis; Nitzberg, Bill

    2000-01-01

    We use the term "Grid" to refer to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. This infrastructure includes: (1) Tools for constructing collaborative, application oriented Problem Solving Environments / Frameworks (the primary user interfaces for Grids); (2) Programming environments, tools, and services providing various approaches for building applications that use aggregated computing and storage resources, and federated data sources; (3) Comprehensive and consistent set of location independent tools and services for accessing and managing dynamic collections of widely distributed resources: heterogeneous computing systems, storage systems, real-time data sources and instruments, human collaborators, and communications systems; (4) Operational infrastructure including management tools for distributed systems and distributed resources, user services, accounting and auditing, strong and location independent user authentication and authorization, and overall system security services The vision for NASA's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks. Such Grids will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. Examples of these problems include: (1) Coupled, multidisciplinary simulations too large for single systems (e.g., multi-component NPSS turbomachine simulation); (2) Use of widely distributed, federated data archives (e.g., simultaneous access to metrological, topological, aircraft performance, and flight path scheduling databases supporting a National Air Space Simulation systems}; (3

  15. Facility model for the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Thomas, K.E.; Sohn, C.L.; Yarbro, T.F.; Hench, K.W.

    1986-01-01

    The Los Alamos Plutonium Facility contains more than sixty unit processes and handles a large variety of nuclear materials, including many forms of plutonium-bearing scrap. The management of the Plutonium Facility is supporting the development of a computer model of the facility as a means of effectively integrating the large amount of information required for material control, process planning, and facility development. The model is designed to provide a flexible, easily maintainable facility description that allows the faciltiy to be represented at any desired level of detail within a single modeling framework, and to do this using a model program and data files that can be read and understood by a technically qualified person without modeling experience. These characteristics were achieved by structuring the model so that all facility data is contained in data files, formulating the model in a simulation language that provides a flexible set of data structures and permits a near-English-language syntax, and using a description for unit processes that can represent either a true unit process or a major subsection of the facility. Use of the model is illustrated by applying it to two configurations of a fictitious nuclear material processing line

  16. Facility optimization to improve activation rate distributions during IVNAA

    International Nuclear Information System (INIS)

    Ebrahimi Khankook, Atiyeh; Rafat Motavalli, Laleh; Miri Hakimabad, Hashem

    2013-01-01

    Currently, determination of body composition is the most useful method for distinguishing between certain diseases. The prompt-gamma in vivo neutron activation analysis (IVNAA) facility for non-destructive elemental analysis of the human body is the gold standard method for this type of analysis. In order to obtain accurate measurements using the IVNAA system, the activation probability in the body must be uniform. This can be difficult to achieve, as body shape and body composition affect the rate of activation. The aim of this study was to determine the optimum pre-moderator, in terms of material for attaining uniform activation probability with a CV value of about 10% and changing the collimator role to increase activation rate within the body. Such uniformity was obtained with a high thickness of paraffin pre-moderator, however, because of increasing secondary photon flux received by the detectors it was not an appropriate choice. Our final calculations indicated that using two paraffin slabs with a thickness of 3 cm as a pre-moderator, in the presence of 2 cm Bi on the collimator, achieves a satisfactory distribution of activation rate in the body. (author)

  17. The FOSS GIS Workbench on the GFZ Load Sharing Facility compute cluster

    Science.gov (United States)

    Löwe, P.; Klump, J.; Thaler, J.

    2012-04-01

    Compute clusters can be used as GIS workbenches, their wealth of resources allow us to take on geocomputation tasks which exceed the limitations of smaller systems. To harness these capabilities requires a Geographic Information System (GIS), able to utilize the available cluster configuration/architecture and a sufficient degree of user friendliness to allow for wide application. In this paper we report on the first successful porting of GRASS GIS, the oldest and largest Free Open Source (FOSS) GIS project, onto a compute cluster using Platform Computing's Load Sharing Facility (LSF). In 2008, GRASS6.3 was installed on the GFZ compute cluster, which at that time comprised 32 nodes. The interaction with the GIS was limited to the command line interface, which required further development to encapsulate the GRASS GIS business layer to facilitate its use by users not familiar with GRASS GIS. During the summer of 2011, multiple versions of GRASS GIS (v 6.4, 6.5 and 7.0) were installed on the upgraded GFZ compute cluster, now consisting of 234 nodes with 480 CPUs providing 3084 cores. The GFZ compute cluster currently offers 19 different processing queues with varying hardware capabilities and priorities, allowing for fine-grained scheduling and load balancing. After successful testing of core GIS functionalities, including the graphical user interface, mechanisms were developed to deploy scripted geocomputation tasks onto dedicated processing queues. The mechanisms are based on earlier work by NETELER et al. (2008). A first application of the new GIS functionality was the generation of maps of simulated tsunamis in the Mediterranean Sea for the Tsunami Atlas of the FP-7 TRIDEC Project (www.tridec-online.eu). For this, up to 500 processing nodes were used in parallel. Further trials included the processing of geometrically complex problems, requiring significant amounts of processing time. The GIS cluster successfully completed all these tasks, with processing times

  18. Context-aware distributed cloud computing using CloudScheduler

    Science.gov (United States)

    Seuster, R.; Leavett-Brown, CR; Casteels, K.; Driemel, C.; Paterson, M.; Ring, D.; Sobie, RJ; Taylor, RP; Weldon, J.

    2017-10-01

    The distributed cloud using the CloudScheduler VM provisioning service is one of the longest running systems for HEP workloads. It has run millions of jobs for ATLAS and Belle II over the past few years using private and commercial clouds around the world. Our goal is to scale the distributed cloud to the 10,000-core level, with the ability to run any type of application (low I/O, high I/O and high memory) on any cloud. To achieve this goal, we have been implementing changes that utilize context-aware computing designs that are currently employed in the mobile communication industry. Context-awareness makes use of real-time and archived data to respond to user or system requirements. In our distributed cloud, we have many opportunistic clouds with no local HEP services, software or storage repositories. A context-aware design significantly improves the reliability and performance of our system by locating the nearest location of the required services. We describe how we are collecting and managing contextual information from our workload management systems, the clouds, the virtual machines and our services. This information is used not only to monitor the system but also to carry out automated corrective actions. We are incrementally adding new alerting and response services to our distributed cloud. This will enable us to scale the number of clouds and virtual machines. Further, a context-aware design will enable us to run analysis or high I/O application on opportunistic clouds. We envisage an open-source HTTP data federation (for example, the DynaFed system at CERN) as a service that would provide us access to existing storage elements used by the HEP experiments.

  19. Log-normal spray drop distribution...analyzed by two new computer programs

    Science.gov (United States)

    Gerald S. Walton

    1968-01-01

    Results of U.S. Forest Service research on chemical insecticides suggest that large drops are not as effective as small drops in carrying insecticides to target insects. Two new computer programs have been written to analyze size distribution properties of drops from spray nozzles. Coded in Fortran IV, the programs have been tested on both the CDC 6400 and the IBM 7094...

  20. CMS software and computing for LHC Run 2

    CERN Document Server

    INSPIRE-00067576

    2016-11-09

    The CMS offline software and computing system has successfully met the challenge of LHC Run 2. In this presentation, we will discuss how the entire system was improved in anticipation of increased trigger output rate, increased rate of pileup interactions and the evolution of computing technology. The primary goals behind these changes was to increase the flexibility of computing facilities where ever possible, as to increase our operational efficiency, and to decrease the computing resources needed to accomplish the primary offline computing workflows. These changes have resulted in a new approach to distributed computing in CMS for Run 2 and for the future as the LHC luminosity should continue to increase. We will discuss changes and plans to our data federation, which was one of the key changes towards a more flexible computing model for Run 2. Our software framework and algorithms also underwent significant changes. We will summarize the our experience with a new multi-threaded framework as deployed on ou...