WorldWideScience

Sample records for facility design alternatives

  1. Relative risk measure suitable for comparison of design alternatives of interim spent nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Ferjencik, M.

    1997-01-01

    Accessible reports on risk assessment of interim spent nuclear fuel storage facilities presume that only releases of radioactive substances represent undesired consequences. However, only certain part of the undesired consequences is represented by them. Many other events are connected with safety and are able to cause losses to the operating company. The following two presumptions are pronounced based on this. 1. Any event causing a disturbance of a safety function of the storage facility is an incident event. 2. Any disturbance of a safety function is an undesired consequence. If the facility safety functions are identified and if the severity of their disturbances is quantified, then it is possible to combine consequence severity quantifications and event frequencies into a risk measure. Construction and application of such a risk measure is described in this paper. The measure is shown to be a tool suitable for comparison of interim storage technology design alternatives. (author)

  2. A note on “An alternative multiple attribute decision making methodology for solving optimal facility layout design selection problems”

    OpenAIRE

    R. Venkata Rao

    2012-01-01

    A paper published by Maniya and Bhatt (2011) (An alternative multiple attribute decision making methodology for solving optimal facility layout design selection problems, Computers & Industrial Engineering, 61, 542-549) proposed an alternative multiple attribute decision making method named as “Preference Selection Index (PSI) method” for selection of an optimal facility layout design. The authors had claimed that the method was logical and more appropriate and the method gives directly the o...

  3. Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF

  4. Alternative cask maintenance facility concepts

    International Nuclear Information System (INIS)

    Attaway, C.R.; Pope, R.B.; Wiliamson, A.C.; Medley, L.G.; Shappert, L.B.

    1992-01-01

    In this paper, the results of three trade-off studies of alternative concepts for performing cask maintenance for Civilian Radioactive Waste Management System casks are presented. An earlier study resulted in a recommendation that a submerged pool concept for cask internal component removal be used in the design of a Cask Maintenance Facility. The first trade-off study resulted in confirming the previous recommendation that a submerged pool concept be used rather than an isolation cell; the basis for this continued recommendation is discussed. The second study provides an evaluation of the previously proposed facility for the capability of handling an increased quantity of OCRWM casks. The third study provides a preliminary concept for adding the capability to repaint the exterior cylindrical portions of casks

  5. Lawrence Livermore National Laboratory Decontamination and Waste Treatment Facility: Documentation of impact analysis for design alternatives presented in the Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1988-05-01

    Lawrence Livermore National Laboratory (LLNL) is proposing to construct and operate a new Decontamination and Waste Treatment Facility (DWTF). The proposed DWTF would replace the existing Hazardous Waste Management (HWM) facilities at LLNL. The US Department of Energy (DOE) is preparing a Draft Environmental Impact Statement (DEIS) to assess the environmental consequences of the proposed DWTF and its alternatives. This report presents the assumptions, methodologies, and analyses used to estimate the waste flows, air emissions, ambient air quality impacts, and public health risks that are presented in the DEIS. Two DWTF design alternatives (Level I and Level II) have been designated as reasonable design alternatives considering available technologies, environmental regulations, and current and future LLNL waste generation. Both design alternatives would include new, separate radioactive and nonradioactive liquid waste treatment systems, a solidification unit, a new decontamination facility, storage and treatment facilities for reactive materials, a radioactive waste storage area, receiving and classification areas, and a uranium burn pan. The Level I design alternative would include a controlled-air incinerator system, while the Level II design alternative would include a rotary kiln incinerator system. 43 refs., 4 figs., 24 tabs

  6. Facility design: introduction

    International Nuclear Information System (INIS)

    Unger, W.E.

    1980-01-01

    The design of shielded chemical processing facilities for handling plutonium is discussed. The TRU facility is considered in particular; its features for minimizing the escape of process materials are listed. 20 figures

  7. TWTF design alternates

    International Nuclear Information System (INIS)

    Ayers, A.L. Sr.

    1982-03-01

    The Transuranic Waste Treatment Facility (TWTF) will process transuranic (TRU) waste in retrievable storage at the Idaho National Engineering Laboratory (INEL). The costs for a TWTF concept using a slagging pyrolysis incinerator were excessive. Alternate concepts using a slow speed shredder, a rotary kiln incinerator, and concrete immobilization should result in significant cost reductions. These will be included in future TWTF considerations

  8. MRS Action Plan Task B report: Analyses of alternative designs and operating approaches for a Monitored Retrievable Storage Facility

    International Nuclear Information System (INIS)

    Woods, W.D.; Jowdy, A.K.; Keehn, C.H.; Gale, R.M.; Smith, R.I.

    1988-12-01

    The Nuclear Waste Policy Amendments Act (NWPAA) instituted a number of changes in the DOE commercial nuclear waste management system. After passage of the Act, the DOE initiated a number of systems studies to reevaluate the role of Monitored Retrievable Storage (MRS) within the federal waste management system. This report summarizes the results of a study to determine the schedules and costs of developing those MRS facilities needed under a number of scenarios, with differing functions allocated to the MRS and/or different spent fuel acceptance schedules. Nine cases were defined for the system study, seven of which included an MRS Facility. The study cases or scenarios evaluated varied relative to the specific functions to be performed at the MRS. The scenarios ranged in magnitude from storage and shipment of bare, intact spent fuel to consolidating the spent fuel into repository emplacement containers prior to storage and shipment. Each scenario required specific modifications to be made to the design developed for the MRS proposal to Congress (the Conceptual Design Report). 41 figs., 326 tabs

  9. Seal design alternatives study

    International Nuclear Information System (INIS)

    Van Sambeek, L.L.; Luo, D.D.; Lin, M.S.; Ostrowski, W.; Oyenuga, D.

    1993-06-01

    This report presents the results from a study of various sealing alternatives for the WIPP sealing system. Overall, the sealing system has the purpose of reducing to the extent possible the potential for fluids (either gas or liquid) from entering or leaving the repository. The sealing system is divided into three subsystems: drift and panel seals within the repository horizon, shaft seals in each of the four shafts, and borehole seals. Alternatives to the baseline configuration for the WIPP seal system design included evaluating different geometries and schedules for seal component installations and the use of different materials for seal components. Order-of-magnitude costs for the various alternatives were prepared as part of the study. Firm recommendations are not presented, but the advantages and disadvantages of the alternatives are discussed. Technical information deficiencies are identified and studies are outlined which can provide required information

  10. State alternative route designations

    International Nuclear Information System (INIS)

    1989-07-01

    Pursuant to the Hazardous Materials Transportation Act (HMTA), the Department of Transportation (DOT) has promulgated a comprehensive set of regulations regarding the highway transportation of high-level radioactive materials. These regulations, under HM-164 and HM-164A, establish interstate highways as the preferred routes for the transportation of radioactive materials within and through the states. The regulations also provide a methodology by which a state may select alternative routes. First,the state must establish a ''state routing agency,'' defined as an entity authorized to use the state legal process to impose routing requirements on carriers of radioactive material (49 CFR 171.8). Once identified, the state routing agency must select routes in accordance with Large Quantity Shipments of Radioactive Materials or an equivalent routing analysis. Adjoining states and localities should be consulted on the impact of proposed alternative routes as a prerequisite of final route selection. Lastly, the states must provide written notice of DOT of any alternative route designation before the routes are deemed effective

  11. Enhanced Design Alternative IV

    International Nuclear Information System (INIS)

    Kramer, N.E.

    1999-01-01

    This report evaluates Enhanced Design Alternative (EDA) IV as part of the second phase of the License Application Design Selection (LADS) effort. The EDA IV concept was compared to the VA reference design using criteria from the Design Input Request for LADS Phase II EDA Evaluations (CRWMS M and O 1999b) and (CRWMS M and O 1999f). Briefly, the EDA IV concept arranges the waste packages close together in an emplacement configuration known as line load. Continuous pre-closure ventilation keeps the waste packages from exceeding their 350 C cladding and 200 C (4.3.6) drift wall temperature limits. This EDA concept keeps relatively high, uniform emplacement drift temperatures (post-closure) to drive water away from the repository and thus dry out the pillars between emplacement drifts. The waste package is shielded to permit human access to emplacement drifts and includes an integral filler inside the package to reduce the amount of water that can contact the waste form. Closure of the repository is desired 50 years after first waste is emplaced. Both backfill and drip shields will be emplaced at closure to improve post-closure performance. The EDA IV concept includes more defense-in-depth layers than the VA reference design because of its backfill, drip shield, waste package shielding, and integral filler features. These features contribute to the low dose-rate to the public achieved during the first 10,000 years of repository life as shown in Figure 3. Investigation of the EDA IV concept has led to the following general conclusions: (1) The total life cycle cost for EDA IV is about $21.7 billion which equates to a $11.3 billion net present value (both figures rounded up). (2) The incidence of design basis events for EDA IV is similar to the VA reference design. (3) The emplacement of the waste packages in drifts will be similar to the VA reference design. However, heavier equipment may be required because the shielded waste package will be heavier. (4) The heavier

  12. Alternative cover design

    International Nuclear Information System (INIS)

    1988-11-01

    The special study on Alternative Cover Designs is one of several studies initiated by the US Department of Energy (DOE) in response to the proposed US Environmental Protection Agency (EPA) groundwater standards. The objective of this study is to investigate the possibility of minimizing the infiltration of precipitation through stabilized tailings piles by altering the standard design of covers currently used on the Uranium Mill Tailings Remedial Action (UMTRA) Project. Prior. to the issuance of the proposed standards, UMTRA Project piles had common design elements to meet the required criteria, the most important of which were for radon diffusion, long-term stability, erosion protection, and groundwater protection. The standard pile covers consisted of three distinct layers. From top to bottom they were: rock for erosion protection; a sand bedding layer; and the radon barrier, usually consisting of a clayey sand material, which also functioned to limit infiltration into the tailings. The piles generally had topslopes from 2 to 4 percent and sideslopes of 20 percent

  13. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Washington Division of URS

    2008-07-01

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  14. Design of the PRIDE Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, Won Myung; Lee, Eun Pyo; Cho, Il Je; Kwon, Kie Chan; Hong, Dong Hee; Lee, Won Kyung; Ku, Jeong Hoe

    2009-01-01

    From 2007, KAERI is developing a PyRoprocess Integrated inactive DEmonstration facility (the PRIDE facility). The maximum annual treatment capacity of this facility will be a 10 ton-HM. The process will use a natural uranium feed material or a natural uranium mixed with some surrogate material for a simulation of a spent fuel. KAERI has also another plan to construct a demonstration facility which can treat a real spent fuel by pyroprocessing. This facility is called by ESPF, Engineering Scale Pyroprocess Facility. The ESPF will have the same treatment capability of spent fuel with the PRIDE facility. The only difference between the PRIDE and the ESPF is a radiation shielding capability. From the PRIDE facility designing works and demonstration with a simulated spent fuel after construction, it will be able to obtain the basic facility requirements, remote operability, interrelation properties between process equipment for designing of the ESPF. The flow sheet of the PRIDE processes is composed of five main processes, such as a decladding and voloxidation, an electro-reduction, an electrorefining, an electro-winning, and a salt waste treatment. The final products from the PRIDE facility are a simulated TRU metal and U metal ingot

  15. Facility design, installation and operation

    International Nuclear Information System (INIS)

    Fleischmann, A.W.

    1985-01-01

    Problems that may arise when considering the design, construction and use of a facility that could contain up to tens of petabecquerel of either cobalt-60 or caesium-137 are examined. The safe operation of an irradiation facility depends on an appreciation of the in built safety systems, adequate training of personnel and the existence of an emergency system

  16. Production Facility SCADA Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baily, Scott A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wheat, Robert Mitchell Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  17. Design and Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides engineering design of aircraft components, subsystems and installations using Pro/E, Anvil 1000, CADKEY 97, AutoCAD 13. Engineering analysis tools include...

  18. Designing Facilities for Collaborative Operations

    Science.gov (United States)

    Norris, Jeffrey; Powell, Mark; Backes, Paul; Steinke, Robert; Tso, Kam; Wales, Roxana

    2003-01-01

    A methodology for designing operational facilities for collaboration by multiple experts has begun to take shape as an outgrowth of a project to design such facilities for scientific operations of the planned 2003 Mars Exploration Rover (MER) mission. The methodology could also be applicable to the design of military "situation rooms" and other facilities for terrestrial missions. It was recognized in this project that modern mission operations depend heavily upon the collaborative use of computers. It was further recognized that tests have shown that layout of a facility exerts a dramatic effect on the efficiency and endurance of the operations staff. The facility designs (for example, see figure) and the methodology developed during the project reflect this recognition. One element of the methodology is a metric, called effective capacity, that was created for use in evaluating proposed MER operational facilities and may also be useful for evaluating other collaboration spaces, including meeting rooms and military situation rooms. The effective capacity of a facility is defined as the number of people in the facility who can be meaningfully engaged in its operations. A person is considered to be meaningfully engaged if the person can (1) see, hear, and communicate with everyone else present; (2) see the material under discussion (typically data on a piece of paper, computer monitor, or projection screen); and (3) provide input to the product under development by the group. The effective capacity of a facility is less than the number of people that can physically fit in the facility. For example, a typical office that contains a desktop computer has an effective capacity of .4, while a small conference room that contains a projection screen has an effective capacity of around 10. Little or no benefit would be derived from allowing the number of persons in an operational facility to exceed its effective capacity: At best, the operations staff would be underutilized

  19. DESIGN ALTERNATIVES ON THE LAMINATES

    Directory of Open Access Journals (Sweden)

    Gökay Nemli

    2004-04-01

    Full Text Available Wood based panel manufacturers use increasing volumes of laminates. Laminates are resistant to the water, humidity, scratch, abrasion, burning and chemicals. These products consist of printed decor papers that have been saturated with thermosetting resin. In this study, laminate types, composition form and design alternatives were investigated.

  20. Engineering test facility design center

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This section describes the status of this design

  1. Enhanced Design Alternative I: Low Temperature Design

    International Nuclear Information System (INIS)

    MacNeil, K.

    1999-01-01

    The purpose of this document is to evaluate Enhanced Design Alternative (EDA) 1, the low temperature repository design concept (CRWMS M and O 1999a). This technical document will provide supporting information for Site Recommendation (SR) and License Application (LA). Preparation of this evaluation will be in accordance with the technical document preparation plan (TDPP), (CRWMS M and O 1999b). EDA 1, one of five EDAs, was evolved from evaluation of a series of design features and alternatives developed during the first phase of the License Application Design Selection (LADS) process. Low, medium, and high temperature concepts were developed from the design features and alternatives prepared during Phase 1 of the LADS effort (CRWMS M and O 1999a). EDA 1 will first be evaluated against a single Screening Criterion, outlined in CRWMS M and O 1999a, which addresses post-closure performance of the repository. The performance of the repository is defined quantitatively as the peak radiological dose rate to an average individual of a critical group at a distance of 20 km from the repository site within 10,000 years. To satisfy this criterion the peak dose rate must not exceed the anticipated regulatory level of 25 mrem/yr within 10,000 years. If the EDA meets the screening criterion, the EDA will be further evaluated against the LADS Phase 2 Evaluation Criteria contained in CRWMS M and O 1999a

  2. Conical scan impact study. Volume 2: Small local user data processing facility. [multispectral band scanner design alternatives for earth resources data

    Science.gov (United States)

    Ebert, D. H.; Chase, P. E.; Dye, J.; Fahline, W. C.; Johnson, R. H.

    1973-01-01

    The impact of a conical scan versus a linear scan multispectral scanner (MSS) instrument on a small local-user data processing facility was studied. User data requirements were examined to determine the unique system rquirements for a low cost ground system (LCGS) compatible with the Earth Observatory Satellite (EOS) system. Candidate concepts were defined for the LCGS and preliminary designs were developed for selected concepts. The impact of a conical scan MSS versus a linear scan MSS was evaluated for the selected concepts. It was concluded that there are valid user requirements for the LCGS and, as a result of these requirements, the impact of the conical scanner is minimal, although some new hardware development for the LCGS is necessary to handle conical scan data.

  3. Design of plutonium processing facilities

    International Nuclear Information System (INIS)

    Derbyshire, W.; Sills, R.J.

    1982-01-01

    Five considerations for the design of plutonium processing facilities are identified. These are: Toxicity, Radiation, Criticality, Containment and Remote Operation. They are examined with reference to reprocessing spent nuclear fuel and application is detailed both for liquid and dry processes. (author)

  4. Facilities design for TIBER II

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.

    1987-01-01

    This paper describes the conceptual design of the reactor building and reactor maintenance building for the TIBER II tokamak. These buildings are strongly influenced by the reactor configuration, and their characterization allows a better understanding of the economic and technical implications of the reactor design. Key features of TIBER II that affect the facilities design are the small size and compact arrangement, the use of an external vacuum vessel, and the complete reliance on remote maintenance. The building design incorporates requirements for equipment layout, maintenance operations and equipment, safety, and contamination control. 4 figs

  5. Facility design, construction, and operation

    International Nuclear Information System (INIS)

    1995-04-01

    France has been disposing of low-level radioactive waste (LLW) at the Centre de Stockage de la Manche (CSM) since 1969 and now at the Centre de Stockage de l'Aube (CSA) since 1992. In France, several agencies and companies are involved in the development and implementation of LLW technology. The Commissariat a l'Energie Atomic (CEA), is responsible for research and development of new technologies. The Agence National pour la Gestion des Dechets Radioactifs is the agency responsible for the construction and operation of disposal facilities and for wastes acceptance for these facilities. Compagnie Generale des Matieres Nucleaires provides fuel services, including uranium enrichment, fuel fabrication, and fuel reprocessing, and is thus one generator of LLW. Societe pour les Techniques Nouvelles is an engineering company responsible for commercializing CEA waste management technology and for engineering and design support for the facilities. Numatec, Inc. is a US company representing these French companies and agencies in the US. In Task 1.1 of Numatec's contract with Martin Marietta Energy Systems, Numatec provides details on the design, construction and operation of the LLW disposal facilities at CSM and CSA. Lessons learned from operation of CSM and incorporated into the design, construction and operating procedures at CSA are identified and discussed. The process used by the French for identification, selection, and evaluation of disposal technologies is provided. Specifically, the decisionmaking process resulting in the change in disposal facility design for the CSA versus the CSM is discussed. This report provides' all of the basic information in these areas and reflects actual experience to date

  6. Alternative Design of Boat Fenders

    DEFF Research Database (Denmark)

    Banke, Lars

    1996-01-01

    for the installation of the fender and perhaps for removing it if new oil-risers are to be initialled. The use of crane boats is expensive and weather-dependent.With these effect sin mind, a study of the energy absorption in the fender system, i.e. the fender itself and the frame, is needed for further development......On offshore platforms the purpose of fenders is to protect the oil-risers against minor accidental collisions with supply vessels. Normally, the fender is designed by use of thin-walled tubes. However, the tube itself is not capable of resisting the impact load of the boat. Therefore, alternative...... designs are searched for the fender.Today, an often used improvement of the fender is to fill it with grout or concrete. However, this improvement is not optimal since the fillings increase the weight of the fender beyond the crane capacity of the platform. Thus, crane boats are needed...

  7. Orientation to pollution prevention for facility design

    Energy Technology Data Exchange (ETDEWEB)

    Raney, E.A.; Whitehead, J.K.; Encke, D.B. [Westinghouse Hanford Co., Richland, WA (United States); Dorsey, J.A. [Kaiser Engineers Hanford Co., Richland, WA (United States)

    1994-01-01

    This material was developed to assist engineers in incorporating pollution prevention into the design of new or modified facilities within the U.S. Department of Energy (DOE). The material demonstrates how the design of a facility can affect the generation of waste throughout a facility`s entire life and it offers guidance on how to prevent the generation of waste during design. Contents include: Orientation to pollution prevention for facility design training course booklet; Pollution prevention design guideline; Orientation to pollution prevention for facility design lesson plan; Training participant survey and pretest; and Training facilitator`s guide and schedule.

  8. Construction alternatives for free-standing facilities.

    Science.gov (United States)

    Brown, G

    1990-01-01

    Many hospitals are exploring free-standing facilities as an option for providing more efficient imaging services. Mr. Brown discusses the pros and cons of an emerging building technology, manufactured construction, in which building and site preparation are done simultaneously. He presents the criteria managers should use to make a knowledgeable decision.

  9. Subsurface barrier design alternatives for confinement and controlled advection flow

    International Nuclear Information System (INIS)

    Phillips, S.J.; Stewart, W.E.; Alexander, R.G.; Cantrell, K.J.; McLaughlin, T.J.

    1994-02-01

    Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described

  10. Design Integration of Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2009-01-01

    One of the problems in the building industry is a limited degree of learning from experiences of use and operation of existing buildings. Development of professional facilities management (FM) can be seen as the missing link to bridge the gap between building operation and building design....... Strategies, methods and barriers for the transfer and integration of operational knowledge into the design process are discussed. Multiple strategies are needed to improve the integration of FM in design. Building clients must take on a leading role in defining and setting up requirements and procedures...... on literature studies and case studies from the Nordic countries in Europe, including research reflections on experiences from a main case study, where the author, before becoming a university researcher, was engaged in the client organization as deputy project director with responsibility for the integration...

  11. New facility shield design criteria

    International Nuclear Information System (INIS)

    Howell, W.P.

    1981-07-01

    The purpose of the criteria presented here is to provide standard guidance for the design of nuclear radiation shields thoughout new facilities. These criteria are required to assure a consistent and integrated design that can be operated safely and economically within the DOE standards. The scope of this report is confined to the consideration of radiation shielding for contained sources. The whole body dose limit established by the DOE applies to all doses which are generally distributed throughout the trunk of the body. Therefore, where the whole body is the critical organ for an internally deposited radionuclide, the whole body dose limit applies to the sum of doses received must assure control of the concentration of radionuclides in the building atmosphere and thereby limit the dose from internal sources

  12. Engineering test facility design definition

    Science.gov (United States)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  13. National Ignition Facility system design requirements conventional facilities SDR001

    International Nuclear Information System (INIS)

    Hands, J.

    1996-01-01

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions

  14. DESIGN OF ALTERNATIVE ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    Popa Stefania

    2013-11-01

    Full Text Available By energy sources we understand technologies and materials used to obtain various forms of energy necessary for the development of society. These sources must be in adequate quantities and be conveniently exploited in terms of technical, economic and sustainable perspective. Alternative energy uses the inherent power of natural sources like wind, tides, the sun. Alternative energy is a term used for some energy sources and energy storage technologies. Generally it indicates energies that are nontraditional and have low impact to the environment. The alternative energy term is used in contrast with the term fossil fuel according to some sources, while other sources use it with the meaning of renewable energy purposes.

  15. Design of the PISCES-Upgrade facility

    International Nuclear Information System (INIS)

    Waganer, L.M.; Doerner, R.

    1994-01-01

    The PISCES-Upgrade facility is currently in the design and fabrication phases for the University of California. McDonnell Douglas is under contract to develop this experimental facility in order to enhance the capability for investigation of fusion materials erosion-redeposition and edge plasma behaviors. The advance in facility capability requires innovative design approaches and application of sophisticated analysis techniques

  16. Ventilation design for new plutonium recovery facility

    International Nuclear Information System (INIS)

    Oliver, A.J.; Amos, C.L.

    1975-01-01

    In 1972 the Atomic Energy Commission (AEC) issued revised guidelines on ''Minimum Design Criteria for New Plutonium Facilities.'' With these criteria as guidelines, a new Plutonium Recovery Facility is being designed and constructed at the AEC Rocky Flats Plant. The methods by which the confinement of contamination and air treatment are being handled in this facility are described. (U.S.)

  17. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  18. Cold vacuum drying facility design requirements

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1997-01-01

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility

  19. Alternative Natural Energy Sources in Building Design.

    Science.gov (United States)

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  20. Review of the Tritium Extraction Facility design

    International Nuclear Information System (INIS)

    Barton, R.W.; Bamdad, F.; Blackman, J.

    2000-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) is an independent executive branch agency responsible for technical safety oversight of the US Department of Energy's (DOE's) defense nuclear facilities. One of DNFSB's responsibilities is the review of design and construction projects for DOE's defense nuclear facilities to ensure that adequate health and safety requirements are identified and implemented. These reviews are performed with the expectation that facility designs are being developed within the framework of a site's Integrated Safety Management (ISM) program. This paper describes the application of ISM principles in DNFSB's ongoing review of the Tritium Extraction Facility (TEF) design/construction project

  1. Review of the Tritium Extraction Facility Design

    International Nuclear Information System (INIS)

    Ronald W. Barton; Farid Bamdad; Joel Blackman

    2000-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) is an independent executive branch agency responsible for technical safety oversight of the U.S. Department of Energy's (DOE's) defense nuclear facilities. One of DNFSB's responsibilities is the review of design and construction projects for DOE's defense nuclear facilities to ensure that adequate health and safety requirements are identified and implemented. These reviews are performed with the expectation that facility designs are being developed within the framework of a site's Integrated Safety Management (ISM) program. This paper describes the application of ISM principles in DNFSB's ongoing review of the Tritium Extraction Facility (TEF) design/construction project

  2. Financing strategic healthcare facilities: the growing attraction of alternative capital.

    Science.gov (United States)

    Zismer, Daniel K; Fox, James; Torgerson, Paul

    2013-05-01

    Community health system leaders often dismiss use of alternative capital to finance strategic facilities as being too expensive and less strategically useful, preferring to follow historical precedent and use tax-exempt bonding to finance such facilities. Proposed changes in accounting rules should cause third-party-financed facility lease arrangements to be treated similarly to tax-exempt debt financings with respect to the income statement and balance sheet, increasing their appeal to community health systems. An in-depth comparison of the total costs associated with each financing approach can help inform the choice of financing approaches by illuminating their respective advantages and disadvantages.

  3. Alternative design concept for the second Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Rainisch, R.

    1992-10-01

    This document presents an alternative design concept for storing canisters filled with vitrified waste produced at the Defense Waste Processing Facility (DWPF). The existing Glass Waste Storage Building (GWSB1) has the capacity to store 2,262 canisters and is projected to be completely filled by the year 2000. Current plans for glass waste storage are based on constructing a second Glass Waste Storage Building (GWSB2) once the existing Glass Waste Storage Building (GWSB1) is filled to capacity. The GWSB2 project (Project S-2045) is to provide additional storage capacity for 2,262 canisters. This project was initiated with the issue of a basic data report on March 6, 1989. In response to the basic data report Bechtel National, Inc. (BNI) prepared a draft conceptual design report (CDR) for the GWSB2 project in April 1991. In May 1991 WSRC Systems Engineering issued a revised Functional Design Criteria (FDC), the Rev. I document has not yet been approved by DOE. This document proposes an alternative design for the conceptual design (CDR) completed in April 1991. In June 1992 Project Management Department authorized Systems Engineering to further develop the proposed alternative design. The proposed facility will have a storage capacity for 2,268 canisters and will meet DWPF interim storage requirements for a five-year period. This document contains: a description of the proposed facility; a cost estimate of the proposed design; a cost comparison between the proposed facility and the design outlined in the FDC/CDR; and an overall assessment of the alternative design as compared with the reference FDC/CDR design

  4. Cold vacuum drying facility design requirements

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified

  5. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  6. AERIAL DELIVERY DESIGN AND FABRICATION FACILITY

    Data.gov (United States)

    Federal Laboratory Consortium — Skilled personnel are equipped to design and develop various prototype airdrop items. This facility has all classes of sewing machines, ranging from lightweight to...

  7. Gas detection for alternate-fuel vehicle facilities.

    Science.gov (United States)

    Ferree, Steve

    2003-05-01

    Alternative fuel vehicles' safety is driven by local, state, and federal regulations in which fleet owners in key metropolitan [table: see text] areas convert much of their fleet to cleaner-burning fuels. Various alternative fuels are available to meet this requirement, each with its own advantages and requirements. This conversion to alternative fuels leads to special requirements for safety monitoring in the maintenance facilities and refueling stations. A comprehensive gas and flame monitoring system needs to meet the needs of both the user and the local fire marshal.

  8. Alternate technologies for MRS design

    International Nuclear Information System (INIS)

    Smith, R.I.; Triplett, M.B.; Ashton, W.B.; Kelly, W.S.

    1984-01-01

    This paper describes the process conducted by the Pacific Northwest Laboratory (PNL) to evaluate candidate MRS concepts and to recommend the two most preferred concepts. The eight concepts studied are: metal cask (stationary and transportable); concrete cask (silo); concrete cask-in-trench; field drywell; tunnel drywell; open cycle vault; closed cycle vault; and tunnel rack vault. To achieve a more equitable comparison of the concepts, conceptual design analyses were performed for the candidate concepts using a common set of specified design requirements selected with consideration of the MRS mission. Using this normalized conceptual design information, the MRS concepts were evaluated and compared on the basis of their relative performance on seven criteria: flexibility, concept maturity, cost, environmental impacts, safety and licensing, socioeconomic impacts, and siting requirements. These seven criteria were judged to form a reasonable and complete basis for the evaluation of MRS concepts' ability to satisfy the MRS mission requirements. 5 references, 8 figures, 1 table

  9. British Columbia : an alternative design

    International Nuclear Information System (INIS)

    Ostergaard, P.

    2003-01-01

    This PowerPoint presentation outlined the British Columbia Ministry of Energy and Mines' approach to the electricity market. A brief overview of the electric system in the province was provided, examining capacity (primarily hydro based) and the utility sector with its public ownership. In British Columbia, 80 per cent of the electricity is generated by British Columbia Hydro (BC Hydro). The rates are based on cost of service. British Columbia's market is western North America. A comparison of monthly bills for several large cities, both Canadian and American, was displayed. The market reviews conducted in 1995, 1998, and 2002 were reviewed and the major recommendations discussed. The author identified the opportunities in the province, discussing natural gas and coal for electricity production, resource potential, demand, and private sector capacity. The challenges facing the province are: cost effective development of resources to meet energy demand; aging infrastructure, high reliability requirements and economic growth; evolving electricity market structure in the United States; and, monopoly. The transmission system was reviewed with reference to trade with the Pacific Northwest, flexibility and storage. The energy plan objectives for the future were presented, including low rates and public ownership, secure and reliable supply, more private sector opportunities, and environmental responsibility. The alternative market structure includes regulated market characteristics, access to trade, and customer focus. figs

  10. The Mixed Waste Management Facility. Preliminary design review

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones

  11. Large laser system facility design

    International Nuclear Information System (INIS)

    Gilmartin, T.J.

    1983-01-01

    Optical stability of foundations and support structures, environmental control, close-in subsystem integration, spatial organization, materiel flow and access to remote subsystems is discussed and compared for four laser facilities: The Special Isotope Separation Laboratory, Argus, Shiva/Nova, and Firepond

  12. Design alternatives report for the cesium removal demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F. Jr.; Youngblood, E.L.

    1995-09-01

    The Cesium Removal Demonstration (CRD) project will use liquid low-level waste (LLLW) stored in the Oak Ridge National Laboratory Melton Valley Storage Tanks to demonstrate cesium removal from sodium nitrate-based supernates. This report presents the results of a conceptual design study to scope the alternatives for conducting the demonstration at ORNL. Factors considered included (1) sorbent alternatives, (2) facility alternatives, (3) process alternatives, (4) process disposal alternatives, and (5) relative cost comparisons. Recommendations included (1) that design of the CRD system move forward based on information obtained to date from tests with Savannah River Resin, (2) that the CRD system be designed so it could use crystalline silicotitanates (CST) if an engineered form of CST becomes available prior to the CRD, (3) that the system be designed without the capability for resin regeneration, (4) that the LLLW solidification facility be used for the demonstration (5) that vitrification of the loaded resins from the CRD be demonstrated at the Savannah River Site, and (6) that permanent disposal of the loaded and/or vitrified resin at the Nevada Test Site be pursued.

  13. Design alternatives report for the cesium removal demonstration

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Youngblood, E.L.

    1995-09-01

    The Cesium Removal Demonstration (CRD) project will use liquid low-level waste (LLLW) stored in the Oak Ridge National Laboratory Melton Valley Storage Tanks to demonstrate cesium removal from sodium nitrate-based supernates. This report presents the results of a conceptual design study to scope the alternatives for conducting the demonstration at ORNL. Factors considered included (1) sorbent alternatives, (2) facility alternatives, (3) process alternatives, (4) process disposal alternatives, and (5) relative cost comparisons. Recommendations included (1) that design of the CRD system move forward based on information obtained to date from tests with Savannah River Resin, (2) that the CRD system be designed so it could use crystalline silicotitanates (CST) if an engineered form of CST becomes available prior to the CRD, (3) that the system be designed without the capability for resin regeneration, (4) that the LLLW solidification facility be used for the demonstration (5) that vitrification of the loaded resins from the CRD be demonstrated at the Savannah River Site, and (6) that permanent disposal of the loaded and/or vitrified resin at the Nevada Test Site be pursued

  14. National Ignition Facility Title II Design Plan

    International Nuclear Information System (INIS)

    Kumpan, S

    1997-01-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed

  15. Conceptual design of repository facilities

    International Nuclear Information System (INIS)

    Beale, H.; Engelmann, H.J.; Souquet, G.; Mayence, M.; Hamstra, J.

    1980-01-01

    As part of the European Economic Communities programme of research into underground disposal of radioactive wastes repository design studies have been carried out for application in salt deposits, argillaceous formations and crystalline rocks. In this paper the design aspects of repositories are reviewed and conceptual designs are presented in relation to the geological formations under consideration. Emphasis has been placed on the disposal of vitrified high level radioactive wastes although consideration has been given to other categories of radioactive waste

  16. Design Standards for School Art Facilities

    Science.gov (United States)

    National Art Education Association, 2015

    2015-01-01

    "Design Standards for School Art Facilities" is an invaluable resource for any school or school district looking to build new facilities for the visual arts or renovate existing ones. Discover detailed information about spaces for the breadth of media used in the visual arts. Photographs illustrate all types of features including…

  17. Design of special facility for liquor irradiation

    International Nuclear Information System (INIS)

    Yao Shibin; Chen Zigen

    1989-01-01

    The design principle, physical scheme, technological process, construction and safety features of a special facility used for irradiating liquors is briefly described. 0.925 x 10 15 Bq cobalt source is used and the irradiation capacity for liquors approaches 10 t per day. The facility bears advantages of simple in construction, easy to operate, safe, reliable and efficient in source utilization

  18. Facility Description 2012. Summary report of the encapsulation plant and disposal facility designs

    International Nuclear Information System (INIS)

    Palomaeki, J.; Ristimaeki, L.

    2013-10-01

    license. Operating phase begins in the beginning of 2020s after obtaining an operating license. More deposition and central tunnels are excavated as the disposal proceeds. The spent nuclear fuel from interim storages is encapsulated into canisters in an encapsulation plant and then transferred into the underground disposal facility with a canister lift. According to the current design, the repository layout is based on one-storey layout alternative at the level of -400...-450m. The underground disposal facility is accessed by the access tunnel and a personnel shaft, which is located in a hoist building. Other alternatives for the design and operation of the nuclear facilities are described at the end of the report. (orig.)

  19. Exploratory Shaft Facility design basis study report

    International Nuclear Information System (INIS)

    Langstaff, A.L.

    1987-01-01

    The Design Basis Study is a scoping/sizing study that evaluated the items concerning the Exploratory Shaft Facility Design including design basis values for water and methane inflow; flexibility of the design to support potential changes in program direction; cost and schedule impacts that could result if the design were changed to comply with gassy mine regulations; and cost, schedule, advantages and disadvantages of a larger second shaft. Recommendations are proposed concerning water and methane inflow values, facility layout, second shaft size, ventilation, and gassy mine requirements. 75 refs., 3 figs., 7 tabs

  20. Design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes the general safety requirements applicable to the design of both wet and dry spent fuel storage facilities; Section 3 deals with the design requirements specific to either wet or dry storage. Recommendations for the auxiliary systems of any storage facility are contained in Section 4; these are necessary to ensure the safety of the system and its safe operation. Section 5 provides recommendations for establishing the quality assurance system for a storage facility. Section 6 discusses the requirements for inspection and maintenance that must be considered during the design. Finally, Section 7 provides guidance on design features to be considered to facilitate eventual decommissioning. 18 refs

  1. A Monte Carlo modeling alternative for the API Gamma Ray Calibration Facility

    International Nuclear Information System (INIS)

    Galford, J.E.

    2017-01-01

    The gamma ray pit at the API Calibration Facility, located on the University of Houston campus, defines the API unit for natural gamma ray logs used throughout the petroleum logging industry. Future use of the facility is uncertain. An alternative method is proposed to preserve the gamma ray API unit definition as an industry standard by using Monte Carlo modeling to obtain accurate counting rate-to-API unit conversion factors for gross-counting and spectral gamma ray tool designs. - Highlights: • A Monte Carlo alternative is proposed to replace empirical calibration procedures. • The proposed Monte Carlo alternative preserves the original API unit definition. • MCNP source and materials descriptions are provided for the API gamma ray pit. • Simulated results are presented for several wireline logging tool designs. • The proposed method can be adapted for use with logging-while-drilling tools.

  2. Exploratory shaft facility preliminary designs - Permian Basin

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Permian Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Permian Basin, Texas. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers are included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references, 13 tables

  3. Translating DWPF design criteria into an engineered facility design

    International Nuclear Information System (INIS)

    Kemp, J.B.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) takes radioactive defense waste sludge and the radioactive nuclides, cesium and strontium, from the salt solution, and incorporates them in borosilicate glass in stainless steel canisters, for subsequent disposal in a deep geologic repository. The facility was designed by Bechtel National, Inc. under a subcontract from E.I. DuPont de Nemurs and Co., the prime contractor for the Department of Energy, for the design, construction and commissioning of the plant. The design criteria were specified by the DuPont Company, based upon their extensive experience as designer, and operator since the early 1950's, of the existing Savannah River Plant facilities. Some of the design criteria imposed unusual or new requirements on the detailed design of the facilities. This paper describes some of these criteria, encompassing several engineering disciplines, and discusses the solutions and designs which were developed for the DWPF

  4. Implementation of safeguards and security for fissile materials disposition reactor alternative facilities

    International Nuclear Information System (INIS)

    Jaeger, C.D.; Duggan, R.A.; Tolk, K.M.

    1995-01-01

    A number of different disposition alternatives are being considered and include facilities which provide for long-ten-n and interim storage, convert and stabilize fissile materials for other disposition alternatives, immobilize fissile material in glass and/or ceramic material, fabricate fissile material into mixed oxide (MOX) fuel for reactors, use reactor based technologies to convert material into spent fuel, and dispose of fissile material using a number of geologic alternatives. Particular attention will be given to the reactor alternatives which include existing, partially completed, advanced or evolutionary LWRs and CANDU reactors. The various reactor alternatives are all very similar and include processing which converts Pu to a usable form for fuel fabrication, a MOX fuel fab facility located in either the US or in Europe, US LWRs or the CANDU reactors and ultimate disposal of spent fuel in a geologic repository. This paper focuses on how the objectives of reducing security risks and strengthening arms reduction and nonproliferation will be accomplished and the possible impacts of meeting these objectives on facility operations and design. Some of the areas in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threat, and (4) potential proliferation risks, the impacts on the facilities, and safeguards and security issues unique to the presence of Category 1 or strategic special nuclear material

  5. Institutionalizing Safeguards By Design for Nuclear Facilities

    International Nuclear Information System (INIS)

    Morgan, James B.; Kovacic, Donald N.; Whitaker, J. Michael

    2008-01-01

    Safeguards for nuclear facilities can be significantly improved by developing and implementing methodologies for integrating proliferation resistance into the design of new facilities. This paper proposes a method to systematically analyze a facility's processes, systems, equipment, structures and management controls to ensure that all relevant proliferation scenarios that could potentially result in unacceptable consequences have been identified, evaluated and mitigated. This approach could be institutionalized into a country's regulatory structure similar to the way facilities are licensed to operate safely and are monitored through inspections and incident reporting to ensure compliance with domestic and international safeguards. Furthermore, taking credit for existing systems and equipment that have been analyzed and approved to assure a facility's reliable and safe operations will reduce the overall cost of implementing intrinsic and extrinsic proliferation-resistant features. The ultimate goal is to integrate safety, reliability, security and safeguards operations into the design of new facilities to effectively and efficiently prevent diversion, theft and misuse of nuclear material and sensitive technologies at both the facility and state level. To facilitate this approach at the facility level, this paper discusses an integrated proliferation resistance analysis (IPRA) process. If effectively implemented, this integrated approach will also facilitate the application of International Atomic Energy Agency (IAEA) safeguards

  6. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Wodrich, D.; Ellingson, D.; Scott, M.; Schade, A.

    1991-01-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy orders and guidance. In particular, the Hanford Site approach to designating a suitable facility open-quotes Usage Category,close quotes is presented. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on the consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components

  7. Preconceptual design for a Monitored Retrievable Storage (MRS) transfer facility

    International Nuclear Information System (INIS)

    Woods, W.D.; Jowdy, A.K.; Smith, R.I.

    1990-09-01

    The contract between the DOE and the utilities specifies that the DOE will receive spent fuel from the nuclear utilities in 1998. This study investigates the feasibility of employing a simple Transfer Facility which can be constructed quickly, and operate while the full-scale MRS facilities are being constructed. The Transfer Facility is a hot cell designed only for the purpose of transferring spent fuel assemblies from the Office of Civilian Radioactive Waste Management (OCRWM) transport casks (shipped from the utility sites) into onsite concrete storage casks. No operational functions other than spent fuel assembly transfers and the associated cask handling, opening, and closing would be performed in this facility. Radioactive waste collected in the Transfer Facility during operations would be stored until the treatment facilities in the full-scale MRS facility became operational, approximately 2 years after the Transfer Facility started operation. An alternate wherein the Transfer Facility was the only waste handling building on the MRS site was also examined and evaluated. 6 figs., 26 tabs

  8. Interior Design Factors in Library Facilities.

    Science.gov (United States)

    Jackson, Patricia Ann

    When planning the interior of a library facility, the planning team of librarian, library consultant, architect, and interior design consultant must focus attention on the basic principles of interior design and the psychological needs of the user. Colors for an interior should be selected with careful regard to space, light, and emotional and…

  9. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  10. Enhanced Access Design Alternative I Study

    International Nuclear Information System (INIS)

    Eble, G.B.

    1999-01-01

    The purpose of this document is to evaluate Enhanced Design Alternative (EDA) 1, the low temperature repository design concept (CRWMS M and O 1999a). This technical document will provide supporting information for Site Recommendation (SR) and License Application (LA). Preparation of this evaluation will be in accordance with the technical document preparation plan (TDPP), (CRWMS M and O 1999b). EDA 1, one of five EDAs, was evolved from evaluation of a series of design features and alternatives developed during the first phase of the License Application Design Selection (LADS) process. Low, medium, and high temperature concepts were developed from the design features and alternatives prepared during Phase 1 of the LADS effort (CRWMS M and O 1999a). EDA 1 will first be evaluated against a single Screening Criterion, outlined in CRWMS M and O 1999a, which addresses post-closure performance of the repository. The performance of the repository is defined quantitatively as the peak radiological dose rate to an average individual of a critical group at a distance of 20 km from the repository site within 10,000 years. To satisfy this criterion the peak dose rate must not exceed the anticipated regulatory level of 25 mrem/yr within 10,000 years. If the EDA meets the screening criterion, the EDA will be further evaluated against the LADS Phase 2 Evaluation Criteria contained in CRWMS M and O 1999a

  11. UTN's gamma irradiation facility: design and concept

    International Nuclear Information System (INIS)

    Mohamad Noor Mohamad Yunus

    1986-01-01

    UTN is building a multipurpose gamma irradiation facility which compromises of research and pilot scale irradiation cells in The Fifth Malaysia Plan. The paper high-lights the basic futures of the facility in terms of its design and selection including layout sketches. Plant performances and limitations are discussed. Plants safety is briefly highlighted in block diagrams. Lastly, a typical specification brief is tabled in appendix for reference purposes. (author)

  12. Design of a hydrogen test facility

    International Nuclear Information System (INIS)

    Morgan, M.J.; Beam, J.E.; Sehmbey, M.S.; Pais, M.R.; Chow, L.C.; Hahn, O.J.

    1992-01-01

    The Air Force has sponsored a program at the University of Kentucky which will lead to a better understanding of the thermal and fluid instabilities during blowdown of supercritical fluids at cryogenic temperatures. An integral part of that program is the design and construction of that hydrogen test facility. This facility will be capable of providing supercritical hydrogen at 30 bars and 35 K at a maximum flow rate of 0.1 kg/s for 90 seconds. Also presented here is an extension of this facility to accommodate the use of supercritical helium

  13. Criticality safety and facility design considerations

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1991-06-01

    Operations with fissile material introduce the risk of a criticality accident that may be lethal to nearby personnel. In addition, concerns over criticality safety can result in substantial delays and shutdown of facility operations. For these reasons, it is clear that the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The emphasis of this report will be placed on engineering design considerations in the prevention of criticality. The discussion will not include other important aspects, such as the physics of calculating limits nor criticality alarm systems

  14. Practical design of gamma irradiation facility

    International Nuclear Information System (INIS)

    Sugimoto, Sen-ichi

    1976-01-01

    In this report, it is intended to describe mainly the multi-purpose irradiation facilities which carry out the consigned irradiation for the sterilization of medical apparatuses, which is most of the demand of gamma irradiation in Japan. Gamma irradiation criterion is summed up to that ''Apply the specified dose properly and uniformly to product cases and be economic.'' Though the establishment of the design standard for irradiation facilities is not easy and is not solve simply, the factors to be considered in the design are as follows: (1) mechanism safety, (2) multipurpose irradiation structure, (3) irradiation criteria and practice, (4) efficiency of radiation source utilization and related problems, and (5) economical merit. Irradiation facilities are generally itemized as follows: irradiation equipments, radiation source-storing facility, package carrier, radiation source-driving equipments, facilities for safety and operational management and others. Examples and their characteristics are reported for the facilities of Japan Radio-isotope Irradiation Cooperative Association and Radie Industries Ltd. Expenses for construction, processing and radiation sources are shown on the basis of a few references, and the cost trially calculated under a certain presumptive condition is given. (Wakatsuki, Y.)

  15. Gas Test Loop Facilities Alternatives Assessment Report Rev 1

    International Nuclear Information System (INIS)

    William J. Skerjanc; William F. Skerjanc

    2005-01-01

    An important task in the Gas Test Loop (GTL) conceptual design was to determine the best facility to serve as host for this apparatus, which will allow fast-flux neutron testing in an existing nuclear facility. A survey was undertaken of domestic and foreign nuclear reactors and accelerator facilities to arrive at that determination. Two major research reactors in the U.S. were considered in detail, the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), each with sufficient power to attain the required neutron fluxes. HFIR routinely operates near its design power limit of 100 MW. ATR has traditionally operated at less than half its design power limit of 250 MW. Both of these reactors should be available for at least the next 30 years. The other major U.S. research reactor, the Missouri University Research Reactor, does not have sufficient power to reach the required neutron flux nor do the smaller research reactors. Of the foreign reactors investigated, BOR-60 is perhaps the most attractive. Monju and BN 600 are power reactors for their respective electrical grids. Although the Joyo reactor is vigorously campaigning for customers, local laws regarding transport of radioactive material mean it would be very difficult to retrieve test articles from either Japanese reactor for post irradiation examination. PHENIX is scheduled to close in 2008 and is fully booked until then. FBTR is limited to domestic (Indian) users only. Data quality is often suspect in Russia. The only accelerator seriously considered was the Fuel and Material Test Station (FMTS) currently proposed for operation at Los Alamos National Laboratory. The neutron spectrum in FMTS is similar to that found in a fast reactor, but it has a pronounced high-energy tail that is atypical of fast fission reactor spectra. First irradiation in the FMTS is being contemplated for 2008. Detailed review of these facilities resulted in the recommendation that the ATR would be the best host for the GTL

  16. Proposed BISOL Facility - a Conceptual Design

    Science.gov (United States)

    Ye, Yanlin

    2018-05-01

    In China, a new large-scale nuclear-science research facility, namely the "Beijing Isotope-Separation-On-Line neutron-rich beam facility (BISOL)", has been proposed and reviewed by the governmental committees. This facility aims at both basic science and application goals, and is based on a double-driver concept. On the basic science side, the radioactive ion beams produced from the ISOL device, driven by a research reactor or by an intense deuteron-beam ac- celerator, will be used to study the new physics and technologies at the limit of the nuclear stability in the medium mass region. On the other side regarding to the applications, the facility will be devoted to the material research asso- ciated with the nuclear energy system, by using typically the intense neutron beams produced from the deuteron-accelerator driver. The initial design will be outlined in this report.

  17. Preliminary design for a maglev development facility

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. (Argonne National Lab., IL (United States)); Zhang, Z.Y. (Polytechnic Univ., Brooklyn, NY (United States)); Myers, G.; Cvercko, A. (Sterling Engineering, Westchester, IL (United States)); Williams, J.R. (Alfred Benesch and Co., Chicago, IL (United States))

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  18. A Monte Carlo modeling alternative for the API Gamma Ray Calibration Facility.

    Science.gov (United States)

    Galford, J E

    2017-04-01

    The gamma ray pit at the API Calibration Facility, located on the University of Houston campus, defines the API unit for natural gamma ray logs used throughout the petroleum logging industry. Future use of the facility is uncertain. An alternative method is proposed to preserve the gamma ray API unit definition as an industry standard by using Monte Carlo modeling to obtain accurate counting rate-to-API unit conversion factors for gross-counting and spectral gamma ray tool designs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Design of the disposal facility 2012

    International Nuclear Information System (INIS)

    Saanio, T.; Ikonen, A.; Keto, P.; Kirkkomaeki, T.; Kukkola, T.; Nieminen, J.; Raiko, H.

    2013-11-01

    The spent nuclear fuel accumulated from the nuclear power plants in Olkiluoto in Eurajoki and in Haestholmen in Loviisa will be disposed of in Olkiluoto. A facility complex will be constructed at Olkiluoto, and it will include two nuclear waste facilities according to Government Degree 736/2008. The nuclear waste facilities are an encapsulation plant, constructed to encapsulate spent nuclear fuel and a disposal facility consisting of an underground repository and other underground rooms and above ground service spaces. The repository is planned to be excavated to a depth of 400 - 450 meters. Access routes to the disposal facility are an inclined access tunnel and vertical shafts. The encapsulated fuel is transferred to the disposal facility in the canister lift. The canisters are transferred from the technical rooms to the disposal area via central tunnel and deposited in the deposition holes which are bored in the floors of the deposition tunnels and are lined beforehand with compacted bentonite blocks. Two parallel central tunnels connect all the deposition tunnels and these central tunnels are inter-connected at regular intervals. The solution improves the fire safety of the underground rooms and allows flexible backfilling and closing of the deposition tunnels in stages during the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level. ONKALO is designed and constructed so that it can later serve as part of the repository. The goal is that the first part of the disposal facility will be constructed under the building permit phase in the 2010's and operations will start in the 2020's. The fuel from 4 operating reactors as well the fuel from the fifth nuclear power plant under construction, has been taken into account in designing the disposal facility. According to the information from TVO and Fortum, the amount of the spent nuclear fuel is 5,440 tU. The disposal facility is being excavated

  20. An alternative format for Category I fuel cycle facility physical protection plans

    International Nuclear Information System (INIS)

    Dwyer, P.A.

    1992-06-01

    This document provides an alternative format for physical protection plans designed to meet the requirements of Title 10 of the Code of Federal Regulations, Sections 73.20, 73.45, and 73.46. These requirements apply to licensees who operate Category I fuel cycle facilities. Such licensees are authorized to use or possess a formula quantity of strategic special nuclear material. The format described is an alternative to that found under Regulatory Guide 5.52, Rev. 2 ''Standard Format and Content of a Licensee Physical Protection Plan for Strategic Special Nuclear Material at Fixed Sites (Other than Nuclear Power Plants).''

  1. Cold vacuum drying facility 90% design review

    International Nuclear Information System (INIS)

    O'Neill, C.T.

    1997-01-01

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage

  2. Cold vacuum drying facility 90% design review

    Energy Technology Data Exchange (ETDEWEB)

    O`Neill, C.T.

    1997-05-02

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

  3. Designing Animation Facilities for gCSP

    NARCIS (Netherlands)

    van der Steen, T.T.J.; Groothuis, M.A.; Broenink, Johannes F.

    To improve feedback on how concurrent CSP-based programs run, the graphical CSP design tool has been extended with animation facilities. The state of processes, constructs, and channel ends are indicated with colours both in the gCSP diagrams and in the composition tree (hierarchical tree showing

  4. Design and operation of radiation facilities

    International Nuclear Information System (INIS)

    Gay, H.G.

    1983-01-01

    The design, manufacture, and operation of Cobalt-60 Radiation Processing Facilities is a well established technology. However, the products requiring radiation processing are constantly increasing. Product and dose variations create different requirements in the irradiator design. Several basic design concepts which have been developed and installed by Atomic Energy of Canada Limited are discussed. Irradiators are most efficient when designed to handle a limited product density range at an established dose. Requirements for irradiators to process a multitude of different products at different doses leads to a reduction of irradiator efficiency with resultant increase in processing costs

  5. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Woodrich, D.D.; Ellingson, D.R.; Scott, M.A.; Schade, A.R.

    1991-10-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy Orders and guidance. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on teh consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components. 4 refs., 9 figs., 1 tab

  6. E-4 Test Facility Design Status

    Science.gov (United States)

    Ryan, Harry; Canady, Randy; Sewell, Dale; Rahman, Shamim; Gilbrech, Rick

    2001-01-01

    Combined-cycle propulsion technology is a strong candidate for meeting NASA space transportation goals. Extensive ground testing of integrated air-breathing/rocket system (e.g., components, subsystems and engine systems) across all propulsion operational modes (e.g., ramjet, scramjet) will be needed to demonstrate this propulsion technology. Ground testing will occur at various test centers based on each center's expertise. Testing at the NASA John C. Stennis Space Center will be primarily concentrated on combined-cycle power pack and engine systems at sea level conditions at a dedicated test facility, E-4. This paper highlights the status of the SSC E-4 test Facility design.

  7. Design, fabrication and installation of irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Bong Shick; Kim, Y. S.; Lee, C. Y. and others

    1999-03-01

    The principal contents of this project are to design, fabricate and install the steady-state fuel test loop in HANARO for nuclear technology development. Procurement and fabrication of main equipment, licensing and technical review for fuel test loop have been performed during 2 years(1997, 1998) for this project. Following contents are described in the report. - Procurement and fabrication of the equipment, piping for OPS - IPS manufacture - License - Technical review and evaluation of the FTL facility. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and review ofHANARO interface have been performed respectively. (author)

  8. Preliminary Design of the AEGIS Test Facility

    CERN Document Server

    Dassa, Luca; Cambiaghi, Danilo

    2010-01-01

    The AEGIS experiment is expected to be installed at the CERN Antiproton Decelerator in a very close future, since the main goal of the AEGIS experiment is the measurement of gravity impact on antihydrogen, which will be produced on the purpose. Antihydrogen production implies very challenging environmental conditions: at the heart of the AEGIS facility 50 mK temperature, 1e-12 mbar pressure and a 1 T magnetic field are required. Interfacing extreme cryogenics with ultra high vacuum will affect very strongly the design of the whole facility, requiring a very careful mechanical design. This paper presents an overview of the actual design of the AEGIS experimental facility, paying special care to mechanical aspects. Each subsystem of the facility – ranging from the positron source to the recombination region and the measurement region – will be shortly described. The ultra cold region, which is the most critical with respect to the antihydrogen formation, will be dealt in detail. The assembly procedures will...

  9. Shielding design for positron emission tomography facility

    International Nuclear Information System (INIS)

    Abdallah, I.I.

    2007-01-01

    With the recent advent of readily available tracer isotopes, there has been marked increase in the number of hospital-based and free-standing positron emission tomography (PET) clinics. PET facilities employ relatively large activities of high-energy photon emitting isotopes, which can be dangerous to the health of humans and animals. This coupled with the current dose limits for radiation worker and members of the public can result in shielding requirements. This research contributes to the calculation of the appropriate shielding to keep the level of radiation within an acceptable recommended limit. Two different methods were used including measurements made at selected points of an operating PET facility and computer simulations by using Monte Carlo Transport Code. The measurements mainly concerned the radiation exposure at different points around facility using the survey meter detectors and Thermoluminescent Dosimeters (TLD). Then the set of manual calculation procedures were used to estimate the shielding requirements for a newly built PEF facility. The results from the measurement and the computer simulation were compared to the results obtained from the set manual calculation procedure. In general, the estimated weekly dose at the points of interest is lower than the regulatory limits for the little company of Mary Hospital. Furthermore, the density and the HVL for normal strength concrete and clay bricks are almost similar. In conclusion, PET facilities present somewhat different design requirements and are more likely to require additional radiation shielding. Therefore, existing shields at the little Company of Mary Hospital are in general found to be adequate and satisfactory and additional shielding was found necessary at the new PET facility in the department of Nuclear Medicine of the Dr. George Mukhari Hospital. By use of appropriate design, by implying specific shielding requirements and by maintaining good operating practices, radiation doses to

  10. Conceptual design of the National Ignition Facility

    International Nuclear Information System (INIS)

    Paisner, J.A.; Kumpan, S.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.

    1995-01-01

    DOE commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KDO), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 μm) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program's site, and issued a 7,000-page, 27-volume CDR in May 1994.2 Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a Key Decision One (KD1) for the NIF, which approved the Project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. The Project will cost approximately $1.1 billion and will be completed at the end of FY 2002

  11. Conceptual design of tritium treatment facility

    International Nuclear Information System (INIS)

    Tachikawa, Katsuhiro

    1982-01-01

    In connection with the development of fusion reactors, the development of techniques concerning tritium fuel cycle, such as the refining and circulation of fuel, the recovery of tritium from blanket, waste treatment and safe handling, is necessary. In Japan Atomic Energy Research Institute, the design of the tritium process research laboratory has been performed since fiscal 1977, in which the following research is carried out: 1) development of hydrogen isotope separation techniques by deep cooling distillation method and thermal diffusion method, 2) development of the refining, collection and storage techniques for tritium using metallic getters and palladium-silver alloy films, and 3) development of the safe handling techniques for tritium. The design features of this facility are explained, and the design standard for radiation protection is shown. At present, in the detailed design stage, the containment of tritium and safety analysis are studied. The building is of reinforced concrete, and the size is 48 m x 26 m. Glove boxes and various tritium-removing facilities are installed in two operation rooms. Multiple wall containment system and tritium-removing facilities are explained. (Kako, I.)

  12. The Influence of Building Codes on Recreation Facility Design.

    Science.gov (United States)

    Morrison, Thomas A.

    1989-01-01

    Implications of building codes upon design and construction of recreation facilities are investigated (national building codes, recreation facility standards, and misperceptions of design requirements). Recreation professionals can influence architectural designers to correct past deficiencies, but they must understand architectural and…

  13. 75 FR 53371 - Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models

    Science.gov (United States)

    2010-08-31

    .... PHMSA-2010-0226] Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas... safety standards for siting liquefied natural gas (LNG) facilities. Those standards require that an..., and Handling of Liquefied Natural Gas. That consensus [[Page 53372

  14. Seismic design standardization of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.

    2011-01-01

    Full text: Structures, Systems and Components (SSCs) of Nuclear Facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Man made accidents such as aircraft impact, explosions etc., some times may be considered as design basis event and some times taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event. It is generally felt design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to be adopted for seismic design standardization of nuclear facilities

  15. Fermilab HEPCloud Facility Decision Engine Design

    Energy Technology Data Exchange (ETDEWEB)

    Tiradani, Tiradani,Anthony [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Altunay, Mine [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dagenhart, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kowalkowski, Jim [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Litvintsev, Dmitry [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lu, Qiming [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mhashilkar, Parag [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Moibenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Paterno, Marc [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Timm, Steven [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-05-23

    The Decision Engine is a critical component of the HEP Cloud Facility. It provides the functionality of resource scheduling for disparate resource providers, including those which may have a cost or a restricted allocation of cycles. Along with the architecture, design, and requirements for the Decision Engine, this document will provide the rationale and explanations for various design decisions. In some cases, requirements and interfaces for a limited subset of external services will be included in this document. This document is intended to be a high level design. The design represented in this document is not complete and does not break everything down in detail. The class structures and pseudo-code exist for example purposes to illustrate desired behaviors, and as such, should not be taken literally. The protocols and behaviors are the important items to take from this document. This project is still in prototyping mode so flaws and inconsistencies may exist and should be noted and treated as failures.

  16. Integrated safeguards and facility design and operations

    International Nuclear Information System (INIS)

    Tape, J.W.; Coulter, C.A.; Markin, J.T.; Thomas, K.E.

    1987-01-01

    The integration of safeguards functions to deter or detect unauthorized actions by an insider requires the careful communication and management of safeguards-relevant information on a timely basis. The traditional separation of safeguards functions into physical protection, materials control, and materials accounting often inhibits important information flows. Redefining the major safeguards functions as authorization, enforcement, and verification, and careful attention to management of information from acquisition to organization, to analysis, to decision making can result in effective safeguards integration. The careful inclusion of these ideas in facility designs and operations will lead to cost-effective safeguards systems. The safeguards authorization function defines, for example, personnel access requirements, processing activities, and materials movements/locations that are permitted to accomplish the mission of the facility. Minimizing the number of authorized personnel, limiting the processing flexibility, and maintaining up-to-date flow sheets will facilitate the detection of unauthorized activities. Enforcement of the authorized activities can be achieved in part through the use of barriers, access control systems, process sensors, and health and safety information. Consideration of safeguards requirements during facility design can improve the enforcement function. Verification includes the familiar materials accounting activities as well as auditing and testing of the other functions

  17. An alternative LEU design for the FRM-II

    International Nuclear Information System (INIS)

    Hanan, N.A.; Mo, S.C.; Smith, R.S.; Matos, J.E.

    1997-02-01

    The Alternative LEU Design for the FRM-II proposed by the RERTR Program at Argonne National Laboratory (ANL) has a compact core consisting of a single fuel element that uses LEU silicide fuel with a uranium density of 4.5 g/cm[sup 3] and has a power level of 32 MW. Both the HEU design by the Technical University of Munich (TUM) and the alternative LEU design by ANL have the same fuel lifetime (50 days) and the same neutron flux performance (8 x 10[sup 14] n/cm[sup 2]/s in the reflector). LEU silicide fuel with 4.5 g/cm[sup 3] has been thoroughly tested and is fully-qualified, licensable, and available now for use in a high flux reactor such as the FRM-II. Computer models for the HEU and LEU designs have been exchanged between TUM and ANL and discrepancies have been resolved. The following issues are addressed: qualification of HEU and LEU silicide fuels, stability of the fuel plates, gamma heating in the heavy water reflector, a hypothetical accident involving the configuration of the reflector, a loss of primary coolant flow transient due to an interrupted power supply, the radiological consequences of larger fission product and plutonium inventories in the LEU core, and cost and schedule. Calculations were also done to address the possibility that new high density LEU fuels could be developed that would allow conversion of the TUM HEU design to LEU fuel. Based on the excellent results for the Alternative LEU Design that were obtained in these analyses, the RERTR Program concludes that all of the major technical issues regarding use of LEU fuel instead of HEU fuel in the FRM-II have been successfully resolved and that it is definitely feasible to use LEU fuel in the FRM-II without compromising the safety or performance of the facility

  18. Evaluation of renewable energy alternatives for highway maintenance facilities.

    Science.gov (United States)

    2013-12-01

    A considerable annual energy budget is used for heating, lighting, cooling and operating ODOT : maintenance facilities. Such facilities contain vehicle repair and garage bays, which are large open : spaces with high heating demand in winter. The main...

  19. Disposal facility in Olkiluoto, description of above ground facilities in tunnel transport alternative

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-11-01

    The above ground facilities of the disposal plant on the Olkiluoto site are described in this report as they will be when the operation of the disposal facility starts in the year 2020. The disposal plant is visualised on the Olkiluoto site. Parallel construction of the deposition tunnels and disposal of the spent fuel canisters constitute the principal design basis of the disposal plant. The annual production of disposal canisters for spent fuel amounts to about 40. Production of 100 disposal canisters has been used as the capacity basis. Fuel from the Olkiluoto plant and from the Loviisa plant will be encapsulated in the same production line. The disposal plant will require an area of about 15 to 20 hectares above ground level. The total building volume of the above ground facilities is about 75000 m 3 . The purpose of the report is to provide the base for detailed design of the encapsulation plant and the repository spaces, as well as for coordination between the disposal plant and ONKALO. The dimensioning bases for the disposal plant are shown in the Tables at the end of the report. The report can also be used as a basis for comparison in deciding whether the fuel canisters are transported to the repository by a lift or a by vehicle along the access tunnel. (orig.)

  20. Disposal facility in olkiluoto, description of above ground facilities in lift transport alternative

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-11-01

    The above ground facilities of the disposal plant on the Olkiluoto site are described in this report as they will be when the operation of the disposal facility starts in the year 2020. The disposal plant is visualised on the Olkiluoto site. Parallel construction of the deposition tunnels and disposal of the spent fuel canisters constitute the principal design basis of the disposal plant. The annual production of disposal canisters for spent fuel amounts to about 40. Production of 100 disposal canisters has been used as the capacity basis. Fuel from the Olkiluoto plant and from the Loviisa plant will be encapsulated in the same production line. The disposal plant will require an area of about 15 to 20 hectares above ground level. The total building volume of the above ground facilities is about 75000 m 3 . The purpose of the report is to provide the base for detailed design of the encapsulation plant and the repository spaces, as well as for coordination between the disposal plant and ONKALO. The dimensioning bases for the disposal plant are shown in the Tables at the end of the report. The report can also be used as a basis for comparison in deciding whether the fuel canisters are transported to the repository by a lift or by a vehicle along the access tunnel. (orig.)

  1. 40 CFR 60.32b - Designated facilities.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Designated facilities. 60.32b Section... facilities. (a) The designated facility to which these guidelines apply is each municipal waste combustor... subpart are not considered in determining whether the unit is a modified or reconstructed facility under...

  2. An alternate end design for SSC dipoles

    International Nuclear Information System (INIS)

    Peters, C.; Caspi, S.; Taylor, C.

    1989-02-01

    Experience in the SSC dipole program has shown that fabrication of cylindrical coil ends is difficult. Cable stiffness requires large forces to maintain the proper position of the conductors in the end during winding. After winding, the coil ends remain distorted nd significant motion of the need conductors is required to force the coil end into the molding cavity. Local mechanical stresses are high during this process and extra pieces of insulation are required to prevent turn-to-turn shorts from developing during the winding and molding steps. Prior to assembly the coil end is compressed in a mold cavity and injected with a filler material to correct surface irregularities and fill voids in the end. LBL has developed an alternate design which permits the conductors to be wound over the end using minimal force and technician coerosion. The conductors are placed on a conical surface where the largest diameter over the outer layer conductors is 10 cm. No coil end spaces or insulation pieces between turns are required. The conductor geometry was analytically optimized to meet SSC multipole requirements for the ends. The first 1-m dipole utilizing this end geometry has been constructed and successfully tested. Design and construction data are presented. Also model test results, including training and multipole measurements of the end are given. 1 ref., 12 figs., 3 tabs

  3. Design of the MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Johnson, J.V.; Brabazon, E.J.

    2001-01-01

    A consortium of Duke Engineering and Services, Inc., COGEMA, Inc. and Stone and Webster (DCS) are designing a mixed oxide fuel fabrication facility (MFFF) for the U.S. Department of Energy (DOE) to convert surplus plutonium to mixed oxide (MOX) fuel to be irradiated in commercial nuclear power plants based on the proven European technology of COGEMA and BELGONUCLEAIRE. This paper describes the MFFF processes, and how the proven MOX fuel fabrication technology is being adapted as required to comply with U.S. requirements. (author)

  4. Design of the MOX fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.V. [MFFF Technical Manager, U.S. dept. of Energy, Washington, DC (United States); Brabazon, E.J. [MFFF Engineering Manager, Duke Cogema Stone and Webster, Charlotte, NC (United States)

    2001-07-01

    A consortium of Duke Engineering and Services, Inc., COGEMA, Inc. and Stone and Webster (DCS) are designing a mixed oxide fuel fabrication facility (MFFF) for the U.S. Department of Energy (DOE) to convert surplus plutonium to mixed oxide (MOX) fuel to be irradiated in commercial nuclear power plants based on the proven European technology of COGEMA and BELGONUCLEAIRE. This paper describes the MFFF processes, and how the proven MOX fuel fabrication technology is being adapted as required to comply with U.S. requirements. (author)

  5. Synchrotron radiation research facility conceptual design report

    International Nuclear Information System (INIS)

    1976-06-01

    A report is presented to define, in general outline, the extent and proportions, the type of construction, the schedule for accomplishment, and the estimated cost for a new Synchrotron Radiation Facility, as proposed to the Energy Research and Development Administration by the Brookhaven National Laboratory. The report is concerned only indirectly with the scientific and technological justification for undertaking this project; the latter is addressed explicitly in separate documents. The report does consider user requirements, however, in order to establish a basis for design development. Preliminary drawings, outline specifications, estimated cost data, and other descriptive material are included as supporting documentation on the current status of the project in this preconstruction phase

  6. Evaluation of alternatives for the future of facilities at the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    1978-08-01

    Regulatory considerations are discussed. Alternatives for the continued operation or decommissioning of the state-licensed burial area, the low-level waste treatment facilities, and the NRC licensed burial area are evaluated. Radiological impact analyses were also performed for alternatives on other facilities

  7. Design, fabrication and installation of irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sung; Lee, C. Y.; Kim, J. Y.; Chi, D. Y.; Kim, S. H.; Ahn, S. H.; Kim, S. J.; Kim, J. K.; Yang, S. H.; Yang, S. Y.; Kim, H. R.; Kim, H.; Lee, K. H.; Lee, B. C.; Park, C.; Lee, C. T.; Cho, S. W.; Kwak, K. K.; Suk, H. C. [and others

    1997-07-01

    The principle contents of this project are to design, fabricate and install the steady-state fuel test loop and non-instrumented capsule in HANARO for nuclear technology development. This project will be completed in 1999, the basic and detail design, safety analysis, and procurement of main equipment for fuel test loop have been performed and also the piping in gallery and the support for IPS piping in reactor pool have been installed in 1994. In the area of non-instrumented capsule for material irradiation test, the fabrication of capsule has been completed. Procurement, fabrication and installation of the fuel test loop will be implemented continuously till 1999. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and safety analysis report has been submitted to KINS to get a license and review of HANARO interface have been performed respectively. (author). 39 refs., 28 tabs., 21 figs.

  8. Design, fabrication and installation of irradiation facilities

    International Nuclear Information System (INIS)

    Kim, Yong Sung; Lee, C. Y.; Kim, J. Y.; Chi, D. Y.; Kim, S. H.; Ahn, S. H.; Kim, S. J.; Kim, J. K.; Yang, S. H.; Yang, S. Y.; Kim, H. R.; Kim, H.; Lee, K. H.; Lee, B. C.; Park, C.; Lee, C. T.; Cho, S. W.; Kwak, K. K.; Suk, H. C.

    1997-07-01

    The principle contents of this project are to design, fabricate and install the steady-state fuel test loop and non-instrumented capsule in HANARO for nuclear technology development. This project will be completed in 1999, the basic and detail design, safety analysis, and procurement of main equipment for fuel test loop have been performed and also the piping in gallery and the support for IPS piping in reactor pool have been installed in 1994. In the area of non-instrumented capsule for material irradiation test, the fabrication of capsule has been completed. Procurement, fabrication and installation of the fuel test loop will be implemented continuously till 1999. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and safety analysis report has been submitted to KINS to get a license and review of HANARO interface have been performed respectively. (author). 39 refs., 28 tabs., 21 figs

  9. An alternative LEU design for the FRM-II

    International Nuclear Information System (INIS)

    Hanan, N.A.; Mo, S.C.; Smith, R.S.; Matos, J.E.

    1996-01-01

    The Alternative LEU Design for the FRM-II proposed by the RERTR Program at Argonne National Laboratory (ANL) has a compact core consisting of a single fuel element that uses LEU silicide fuel with a uranium density of 4.5 g/cm 3 and has a power level of 32 MW. Both the HEU design by the Technical University of Munich (TUM) and the alternative LEU design by ANL have the same fuel lifetime (50 days) and the same neutron flux performance. LEU silicide fuel with 4.5 g/cm 3 has been thoroughly tested and is fully-qualified, licensable, and available now for use in a high flux reactor such as the FRM-II. The following issues raised by TUM were addressed in Ref. 1: qualification of HEU and LEU silicide fuels, gamma heating in the heavy water reflector, radiological consequences of larger fission product and plutonium inventories in the LEU core, and cost and schedule. The conclusions of these analyses are summarized below. This paper addresses three additional safety issues that were raised by TUM in Ref. 2: stability of the involute fuel plates, a hypothetical accident involving the configuration of the reflector, and a loss of primary coolant flow transient due to an interrupted power supply. Based on the excellent results for the Alternative LEU Design that were obtained in these analyses, the RERTR Program concludes that all of the major technical issues regarding use of LEU fuel instead of HEU fuel in the FRM-II have been successfully resolved and that it is definitely feasible to use LEU fuel in the FRM-II without compromising the safety or performance of the facility

  10. Design of a BNCT facility at HANARO

    International Nuclear Information System (INIS)

    Jun, Byung Jin; Lee, Byung Chul

    1998-01-01

    Based on the feasibility study of the BNCT at HANARO, it was confirmed that only thermal BNCT is possible at the IR beam tube if appropriate filtering system be installed. Medical doctors in Korea Cancer Center Hospital agreed that the thermal BNCT facility would be worthwhile for the BNCT technology development in Korea as well as superficial cancer treatment. For the thermal BNCT to be effective, the thermal neutron flux should be high enough for patient treatment during relatively short time and also the fast neutron and gamma-ray fluxes should be as low as possible. In this point of view, the following design requirements are set up: 1) thermal neutron flux at the irradiation position should be higher than 3x10 9 n/cm 2 -sec, 2) ratio of the fast neutrons and gamma-rays to the thermal neutrons should be minimized, and 3) patient treatment should be possible without interrupt to the reactor operation. To minimize the fast neutrons and gamma-rays with the required thermal neutrons at the irradiation position, a radiation filter consisting of single crystals of silicon and bismuth at liquid nitrogen temperature is designed. For the shielding purpose around the irradiation position, polyethylene, lead, LiF, etc., are appropriately arranged around the radiation filter. A water shutter in front of the radiation filter is adopted so as to avoid interrupt to the reactor operation. At present, detail design of the radiation filter is ongoing. Cooling capabilities of the filter will be tested through a mockup experiment. Dose rate distributions around the radiation filter and a prompt gamma-ray activation analysis system for the analyses of boron content in the biological samples are under design. The construction of this facility will be started from next year if it is permitted from the regulatory body this year. Some other future works exist and are described in the paper. (author)

  11. 40 CFR 60.32c - Designated facilities.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Designated facilities. 60.32c Section 60.32c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Solid Waste Landfills § 60.32c Designated facilities. (a) The designated facility to which the...

  12. CERN Heavy-Ion Facility design report

    International Nuclear Information System (INIS)

    Warner, D.; Angert, N.; Bourgarel, M.P.; Brouzet, E.; Cappi, R.; Dekkers, D.; Evans, J.; Gelato, G.; Haseroth, H.; Hill, C.E.; Hutter, G.; Knott, J.; Kugler, H.; Lombardi, A.; Lustig, H.; Malwitz, E.; Nitsch, F.; Parisi, G.; Pisent, A.; Raich, U.; Ratzinger, U.; Riccati, L.; Schempp, A.; Schindl, K.; Schoenauer, H.; Tetu, P.; Umstaetter, H.H.; Rooij, M. van; Weiss, M.

    1993-01-01

    The design of the CERN Heavy-Ion Facility is described. This facility will be based on a new ion linear accelerator (Linac 3), together with improvements to the other accelerators of the CERN complex to allow them to cope with heavy ions, i.e. to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS). For this reference design, the pure isotope of lead, 208 Pb, is considered. The bulk of the report describes Linac 3, a purpose-built heavy-ion linac mainly designed and constructed in collaboration with several CERN member state laboratories, but also with contributions from non-member states. Modifications and improvements to existing CERN accelerators essentially concern the RF acceleration, beam control and beam monitoring (all machines), beam kickers and septa at the input and output of the PSB, and major vacuum improvements, aiming to reduce the pressure by factors of at least seven and three in the PSB and PS respectively. After injection from the Electron Cyclotron Resonance source at 2.5 keV/u the partially stripped heavy-ion beam is accelerated successively by a Radio Frequency Quadrupole and an Interdigital-H linac to 4.2 MeV/u. After stripping to 208 Pb 53+ , the beam is again accelerated, firstly in the PSB (to 98.5 MeV/u), then in the PS (to 4.25 GeV/u). The final stage of acceleration in the SPS takes the fully stripped 208 Pb 82+ ions to 177 GeV/u, delivering a beam of 4.10 8 ions per SPS supercycle (15.2 s) to the experiments. The first physics run with lead ions is scheduled for the end of 1994. Finally, some requirements for carrying out heavy-ion physics at the Large Hadron Collider are mentioned. (orig.)

  13. Design of a fusion engineering test facility

    International Nuclear Information System (INIS)

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m 2 . In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V

  14. Sodium Fire Demonstration Facility Design and Operation

    International Nuclear Information System (INIS)

    Cho, Youngil; Kim, Jong-Man; Lee, Jewhan; Hong, Jonggan; Yeom, Sujin; Cho, Chungho; Jung, Min-Hwan; Gam, Da-Young; Jeong, Ji-Young

    2014-01-01

    Although sodium has good characteristics such as high heat transfer rate and stable nuclear property, it is difficult to manage because of high reactivity. Sodium is solid at the room temperature and it easily reacts with oxygen resulting in fire due to the reaction heat. Thus, sodium must be stored in a chemically stable place, i.e., an inert gas-sealed or oil filled vessel. When a sodium fire occurs, the Na 2 O of white fume is formed. It is mainly composed of Na 2 O 2 , NaOH, and Na 2 CO 3 , ranging from 0.1 to several tens of micrometers in size. It is known that the particle size increases by aggregation during floating in air. Thus, the protection method is important and should be considered in the design and operation of a sodium system. In this paper, sodium fire characteristics are described, and the demonstration utility of outbreak of sodium fire and its extinguishing is introduced. In this paper, sodium fire characteristics and a demonstration facility are described. The introduced sodium fire demonstration facility is the only training device used to observe a sodium fire and extinguish it domestically. Furthermore, the type of sodium fire will be diversified with the enhancement of the utility. It is expected that this utility will contribute to experience in the safe treatment of sodium by the handlers

  15. Ford motor company NDE facility shielding design

    International Nuclear Information System (INIS)

    Metzger, R. L.; Van Riper, K. A.; Jones, M. H.

    2005-01-01

    Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations. (authors)

  16. National Ignition Facility design focuses on optics

    International Nuclear Information System (INIS)

    Hogan, W.J.; Atherton, L.J.; Paisner, J.A.

    1996-01-01

    Sometime in the year 2002, scientists at the National Ignition Facility (NIF) will focus 192 separate high-power ultraviolet laser beams onto a tiny capsule of deuterium and tritium, heating and compressing the material until it ignites and burns with a burst of fusion energy. The mission of NIF, which will contain the largest laser in the world, is to obtain fusion ignition and gain and to use inertial confinement fusion capabilities in nuclear weapons science experiments. The physics data provided by NIF experiments will help scientists ensure nuclear weapons reliability without the need for actual weapons tests; basic sciences such as astrophysics will also benefit. The facility faces stringent weapons-physics user requirements demanding peak pulse powers greater than 750 TW at 0.35 microm (only 500 TW is required for target ignition), pulse durations of 0.1 to 20 ns, beam steering on the order of several degrees, and target isolation from residual 1- and 0.5-microm radiation. Additional requirements include 50% fractional encircled beam energy in a 100-microm-diameter spot, with 95% encircled in a 200-microm spot. The weapons-effects community requires 1- and 0.5-microm light on target, beam steering to widely spaced targets, a target chamber accommodating oversized objects, well-shielded diagnostic areas, and elimination of stray light in the target chamber. The beamline design, amplifier configuration and requirements for optics are discussed here

  17. Ford Motor Company NDE facility shielding design.

    Science.gov (United States)

    Metzger, Robert L; Van Riper, Kenneth A; Jones, Martin H

    2005-01-01

    Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations.

  18. Moderator Demonstration Facility Design and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    McClanahan, Tucker C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallmeier, Franz X. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producing target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world

  19. Ventilation system design for educational facilities

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F.; Abo Elazm, M.M. [Arab Academy for Science, Alexandria (Egypt). Technology and Maritime Transport; Safwan, M. [Arab Academy for Science, Cairo (Egypt). Technology and Maritime Transport

    2010-07-01

    In order to maintain acceptable indoor air quality levels in classrooms, high ventilation rates are needed to dilute the concentration of indoor contaminants, resulting in higher energy consumption for the operation of mechanical ventilation systems. Three factors are usually considered when determining the adequate ventilation rate for classrooms in educational facilities. These include the maximum population served in the classroom; carbon dioxide (CO{sub 2}) production rate by occupants; and outdoor air conditions. CO{sub 2} concentrations usually indicate the rate of ventilation required. This paper presented a newly developed computer software program for determining the ventilation rates needed to enhance indoor air quality and to maintain CO{sub 2} concentration within the recommended levels by ANSI/ASHRAE standards for best student performance. This paper also presented design curves for determining the ventilation rates and air changes per hour required for the ventilated educational zone. 15 refs., 2 tabs., 5 figs.

  20. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation

  1. Large coil test facility conceptual design report

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.; Mann, T.L.

    1978-02-01

    In the development of a superconducting toroidal field (TF) magnet for The Next Step (TNS) tokamak reactor, several different TF coils, about half TNS size, will be built and tested to permit selection of a design and fabrication procedure for full-scale TNS coils. A conceptual design has been completed for a facility to test D-shaped TF coils, 2.5 x 3.5-m bore, operating at 4-6 K, cooled either by boiling helium or by forced-flow supercritical helium. Up to six coils can be accommodated in a toroidal array housed in a single vacuum tank. The principal components and systems in the facility are an 11-m vacuum tank, a test stand providing structural support and service connections for the coils, a liquid nitrogen system, a system providing helium both as saturated liquid and at supercritical pressure, coils to produce a pulsed vertical field at any selected test coil position, coil power supplies, process instrumentation and control, coil diagnostics, and a data acquisition and handling system. The test stand structure is composed of a central bucking post, a base structure, and two horizontal torque rings. The coils are bolted to the bucking post, which transmits all gravity loads to the base structure. The torque ring structure, consisting of beams between adjacent coils, acts with the bucking structure to react all the magnetic loads that occur when the coils are energized. Liquid helium is used to cool the test stand structure to 5 K to minimize heat conduction to the coils. Liquid nitrogen is used to precool gaseous helium during system cooldown and to provide thermal radiation shielding

  2. Yucca Mountain Project Subsurface Facilities Design

    International Nuclear Information System (INIS)

    Linden, A.; Saunders, R.S.; Boutin, R.J.; Harrington, P.G.; Lachman, K.D.; Trautner, L.J.

    2002-01-01

    Four units of the Topopah Springs formation (volcanic tuff) are considered for the proposed repository: the upper lithophysal, the middle non-lithophysal, the lower lithophysal, and the lower non-lithophysal. Yucca Mountain was recently designated the site for a proposed repository to dispose of spent nuclear fuel and high-level radioactive waste. Work is proceeding to advance the design of subsurface facilities to accommodate emplacing waste packages in the proposed repository. This paper summarized recent progress in the design of subsurface layout of the proposed repository. The original Site Recommendation (SR) concept for the subsurface design located the repository largely within the lower lithophysal zone (approximately 73%) of the Topopah The Site Recommendation characterized area suitable for emplacement consisted of the primary upper block, the lower block and the southern upper block extension. The primary upper block accommodated the mandated 70,000 metric tons of heavy metal (MTHM) at a 1.45 kW/m hear heat load. Based on further study of the Site Recommendation concept, the proposed repository siting area footprint was modified to make maximum use of available site characterization data, and thus, reduce uncertainties associated with performance assessment. As a result of this study, a modified repository footprint has been proposed and is presently being review for acceptance by the DOE. A panel design concept was developed to reduce overall costs and reduce the overall emplacement schedule. This concept provides flexibility to adjust the proposed repository subsurface layout with time, as it makes it unnecessary to ''commit'' to development of a large single panel at the earliest stages of construction. A description of the underground layout configuration and influencing factors that affect the layout configuration are discussed in the report

  3. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    The Basis for Design established the functional requirements and design criteria for an Integral Monitored Retrievable Storage (MRS) facility. The MRS Facility design, described in this report, is based on those requirements and includes all infrastructure, facilities, and equipment required to routinely receive, unload, prepare for storage, and store spent fuel (SF), high-level waste (HLW), and transuranic waste (TRU), and to decontaminate and return shipping casks received by both rail and truck. The facility is complete with all supporting facilities to make the MRS Facility a self-sufficient installation

  4. Alternative pavement designs : Randolph park and ride.

    Science.gov (United States)

    2013-05-01

    Previous research on alternative pavement type bidding has proven that various treatments : are unique in terms of constructability, material characteristics, and associated performance. : While some treatments may have higher initial costs, it is im...

  5. Rapid Prototyping: An Alternative Instructional Design Strategy.

    Science.gov (United States)

    Tripp, Steven D.; Bichelmeyer, Barbara

    1990-01-01

    Discusses the nature of instructional design and describes rapid prototyping as a feasible model for instructional system design (ISD). The use of prototyping in software engineering is described, similarities between software design and instructional design are discussed, and an example is given which uses rapid prototyping in designing a…

  6. Design, Evaluation and Test Technology Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of this facility, which is composed of numerous specialized facilities, is to provide capabilities to simulate a wide range of environments for component...

  7. Plutonium--uranium partitioning; alternate flowsheet Plutonium Reclamation Facility. [SEPHIS

    Energy Technology Data Exchange (ETDEWEB)

    Fort, L.A.

    1975-12-01

    The SEPHIS computer program was used to predict the transient and steady-state concentrations in a stage-wise scheme for the Pu reclamation solvent extraction system. With the aid of the computer an alternative flowsheet for Pu--U partitioning was constructed. The goal of the alternative program is to reduce Pu losses from the initial stripping column and reduce the quantity of Pu-bearing wastes from the solvent extraction system. (JSR)

  8. Evaluating design alternatives using conjoint experiments in virual reality

    NARCIS (Netherlands)

    Dijkstra, J.; Leeuwen, van J.P.; Timmermans, H.J.P.

    2003-01-01

    In this paper the authors describe the design of an experiment based on conjoint measurement that explores the possibility of using the Internet to evaluate design alternatives. These design alternatives are presented as panoramic views, and preferences are measured by asking subjects which

  9. 40 CFR 60.4111 - Alternate Hg designated representative.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Alternate Hg designated representative... Times for Coal-Fired Electric Steam Generating Units Hg Designated Representative for Hg Budget Sources § 60.4111 Alternate Hg designated representative. (a) A certificate of representation under § 60.4113...

  10. Dry Well Storage Facility conceptual design study

    International Nuclear Information System (INIS)

    1979-02-01

    The Dry Well Storage Facility described is assumed to be located adjacent to or near a Spent Fuel Receiving and Packaging Facility and/or a Packaged Fuel Transfer Facility. Performance requirements, quality levels and codes and standards, schedule and methods of performance, special requirements, quality assurance program, and cost estimate are discussed. Appendices on major mechanical equipment and electric power requirements are included

  11. Dry Well Storage Facility conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The Dry Well Storage Facility described is assumed to be located adjacent to or near a Spent Fuel Receiving and Packaging Facility and/or a Packaged Fuel Transfer Facility. Performance requirements, quality levels and codes and standards, schedule and methods of performance, special requirements, quality assurance program, and cost estimate are discussed. Appendices on major mechanical equipment and electric power requirements are included.

  12. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  13. Implications of system usability on intermodal facility design.

    Science.gov (United States)

    2010-08-01

    Ensuring good design of intermodal transportation facilities is critical for effective and : satisfactory operation. Passenger use of the facilities is often hindered by inadequate space, a poor : layout, or lack of signage. This project aims to impr...

  14. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 1, contains cost estimate summaries for a monitored retrievable storage (MRS) facility. The cost estimate is based on the engineering performed during the conceptual design phase of the MRS Facility project

  15. Unified Facilities Criteria (UFC) Design Guide. Army Reserve Facilities

    Science.gov (United States)

    2010-02-01

    horticulturally appropriate to the site specific location in which they are planted. Consideration should be given to adjacent structures and improvements...impact FPI Federal Prison Industries FPM Feet per minute GFCI Government-furnished/contractor-installed or Ground-Fault Circuit Interrupter GFGI...Uniform Federal Accessibility Standards UFGs Unified Facility Guide Specifications UFGs Rst UFGS - Reserve Support Team UnICoR Federal Prison Industry

  16. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    International Nuclear Information System (INIS)

    Shank, D.R.

    1995-01-01

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  17. Project W-441 cold vacuum drying facility design requirements document

    International Nuclear Information System (INIS)

    O'Neill, C.T.

    1997-01-01

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage

  18. Modern tornado design of nuclear and other potentially hazardous facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.; Zhao, Y.

    1996-01-01

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs

  19. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  20. 40 CFR 60.30d - Designated facilities.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Designated facilities. 60.30d Section... Acid Production Units § 60.30d Designated facilities. Sulfuric acid production units. The designated facility to which §§ 60.31d and 60.32d apply is each existing “sulfuric acid production unit” as defined in...

  1. Waste Encapsulation and Storage Facility (WESF) Design Reconstitution Plan

    International Nuclear Information System (INIS)

    HERNANDEZ, R.

    1999-01-01

    The purpose of Design Reconstitution is to establish a Design Baseline appropriate to the current facility mission. The scope of this plan is to ensure that Systems, Structures and Components (SSC) identified in the WESF Basis for Interim Operation (HNF-SDWM-BIO-002) are adequately described and documented, in order to support facility operations. In addition the plan addresses the adequacy of selected Design Topics which are also crucial for support of the facility Basis for Interim Operation (BIO)

  2. Army Air and Missile Defense Network Design Facility (AAMDNDF)

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides JTIDS network designs and platform initialization load files for all Joint and Army-only tests, exercises, operations, and contingency events...

  3. Digital Hardware Design Teaching: An Alternative Approach

    Science.gov (United States)

    Benkrid, Khaled; Clayton, Thomas

    2012-01-01

    This article presents the design and implementation of a complete review of undergraduate digital hardware design teaching in the School of Engineering at the University of Edinburgh. Four guiding principles have been used in this exercise: learning-outcome driven teaching, deep learning, affordability, and flexibility. This has identified…

  4. Facility design consequences of different employees’ quality perceptions

    NARCIS (Netherlands)

    Kok, Herman; Mobach, Mark P.; Omta, Onno

    2015-01-01

    An important challenge for facility management is to integrate the complex and comprehensive construct of different service processes and physical elements of the service facility into a meaningful and functional facility design. The difficulty of this task is clearly indicated by the present study

  5. Shielding of Medical Facilities. Shielding Design Considerations for PET-CT Facilities

    International Nuclear Information System (INIS)

    Cruzate, J.A.; Discacciatti, A.P.

    2011-01-01

    The radiological evaluation of a Positron Emission Tomography (PET) facility consists of the assessment of the annual effective dose both to workers occupationally exposed, and to members of the public. This assessment takes into account the radionuclides involved, the facility features, the working procedures, the expected number of patients per year, and so on. The evaluation embraces the distributions of rooms, the thickness and physical material of walls, floors and ceilings. This work detail the methodology used for making the assessment of a PET facility design taking into account only radioprotection aspects. The assessment results must be compared to the design requirements established by national regulations in order to determine whether or not, the facility complies with those requirements, both for workers and for members of the public. The analysis presented is useful for both, facility designers and regulators. In addition, some guidelines for improving the shielding design and working procedures are presented in order to help facility designer's job. (authors)

  6. F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview

    Energy Technology Data Exchange (ETDEWEB)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-01-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

  7. F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview

    Energy Technology Data Exchange (ETDEWEB)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-07-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

  8. F/H effluent treatment facility filtration upgrade alternative evaluations overview

    International Nuclear Information System (INIS)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-01-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater. (author)

  9. Unified Facilities Criteria (UFC) Design: Fire Protection Engineering for Facilities

    Science.gov (United States)

    2003-08-20

    following provisions: • Ceiling sprinkler design area must be increased by 10 percent. ESFR sprinklers must increase the required number to be...Control System ESFR Early Suppression Fast-Response Sprinklers ETL Engineering Technical Letters FAAA Fire Administration Authorization Act FM

  10. Design, Fabrication, and Initial Operation of a Reusable Irradiation Facility

    International Nuclear Information System (INIS)

    Heatherly, D.W.; Thoms, K.R.; Siman-Tov, I.I.; Hurst, M.T.

    1999-01-01

    A Heavy-Section Steel Irradiation (HSSI) Program project, funded by the US Nuclear Regulatory Commission, was initiated at Oak Ridge National Laboratory to develop reusable materials irradiation facilities in which metallurgical specimens of reactor pressure vessel steels could be irradiated. As a consequence, two new, identical, reusable materials irradiation facilities have been designed, fabricated, installed, and are now operating at the Ford Nuclear Reactor at the University of Michigan. The facilities are referred to as the HSSI-IAR facilities with the individual facilities being designated as IAR-1 and IAR-2. This new and unique facility design requires no cutting or grinding operations to retrieve irradiated specimens, all capsule hardware is totally reusable, and materials transported from site to site are limited to specimens only. At the time of this letter report, the facilities have operated successfully for approximately 2500 effective full-power hours

  11. Design Alternative Evaluation No. 3: Post-Closure Ventilation

    International Nuclear Information System (INIS)

    Logan, R.C.

    1999-01-01

    The objective of this study is to provide input to the Enhanced Design Alternatives (EDA) for License Application Design Selection (LADS). Its purpose is to develop and evaluate conceptual designs for post-closure ventilation alternatives that enhance repository performance. Post-closure ventilation is expected to enhance repository performance by limiting the amount of water contacting the waste packages. Limiting the amount of water contacting the waste packages will reduce corrosion

  12. Alternative Work Schedules: Designing Compatible Work Systems

    Science.gov (United States)

    Steen, Pamela L.

    1977-01-01

    Attempts to improve the quality of working life through changes in environmental factors, such as flexible hours, are likely to bring limited and short-term advantages unless the work process itself is well-designed and compatible with the environmental changes. (Author/LBH)

  13. Construction of irradiated material examination facility-basic design

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Kim, Eun Ka; Hong, Gye Won; Herr, Young Hoi; Hong, Kwon Pyo; Lee, Myeong Han; Baik, Sang Youl; Choo, Yong Sun; Baik, Seung Je

    1989-02-01

    The basic design of the hot cell facility which has the main purpose of doing mechanical and physical property tests of irradiated materials, the examination process, and the annexed facility has been made. Also basic and detall designs for the underground excavation work have been performed. The project management and tasks required for the license application have been carried out in due course. The facility is expected to be completed by the end of 1992, if the budgetary support is sufficient. (Author)

  14. MEMS/Electronic Device Design and Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility allows DoD to design and characterize state-of-the-art microelectromechanical systems (MEMS) and electronic devices. Device designers develop their own...

  15. Early Site Permit Demonstration Program: Station design alternatives report

    International Nuclear Information System (INIS)

    1993-03-01

    This report provides the results of investigating the basis for including Station Design Alternatives (SDAs) in the regulatory guidance given for nuclear plant environmental reports (ERs), explains approaches or processes for evaluating SDAs at the early site permit (ESP) stage, and applies one of the processes to each of the ten systems or subsystems considered as SDAS. The key objective o this report s to demonstrate an adequate examination of alternatives can be performed without the extensive development f design data. The report discusses the Composite Suitability Approach and the Established Cutoff Approach in evaluating station design alternatives and selects one of these approaches to evaluate alternatives for each of the plant or station that were considered. Four types of ALWRs have been considered due to the availability of extensive plant data: System 80+, AP600, Advanced Boiling Reactor (ABWR), and Simplified Boiling Water Reactor (SBWR). This report demonstrates the feasibility of evaluating station design alternatives when reactor design detail has not been determined, quantitatively compares the potential ental impacts of alternatives, and focuses the ultimate selection of a alternative on cost and applicant-specific factors. The range of alternatives system is deliberately limited to a reasonable number to demonstrate the or to the three most commonly used at operating plants

  16. Design Guide for Category I reactors critical facilities

    International Nuclear Information System (INIS)

    Brynda, W.J.; Powell, R.W.

    1978-08-01

    The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned critical facilities be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission

  17. Alternate cap designs under RCRA regulations

    International Nuclear Information System (INIS)

    Manrod, W.E. III; Yager, R.E.; Craig, P.M.

    1988-01-01

    Low-level radioactive waste and mixed wastes have been disposed of in several sites in the vicinity of the Oak Ridge Y-12 Plant in Tennessee. Most of these materials have been placed in shallow land burial pits (SLB). Closure plans have been developed and approved by appropriate regulatory agencies for several of these sites. A variety of cap (final cover) designs for closure of these sites were investigated to determine their ability to inhibit infiltration of precipitation to the waste. The most effective designs are those that use synthetic materials as drainage layers and/or impermeable liners. The more complex, multi-layer systems perform no better than simpler covers and would complicate construction and increase costs. Despite the successful analytical results described in this paper, additional considerations must be factored into use of geosynthetic as well as natural materials

  18. Accelerator-driven subcritical facility:Conceptual design development

    Science.gov (United States)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  19. Robins Air Force Base Solar Cogeneration Facility design

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, B.L.; Bodenschatz, C.A.

    1982-06-01

    A conceptual design and a cost estimate have been developed for a Solar Cogeneration Facility at Robins Air Force Base. This demonstration solar facility was designed to generate and deliver electrical power and process steam to the existing base distribution systems. The facility was to have the potential for construction and operation by 1986 and make use of existing technology. Specific objectives during the DOE funded conceptual design program were to: prepare a Solar Cogeneration Facility (overall System) Specification, select a preferred configuration and develop a conceptual design, establish the performance and economic characteristics of the facility, and prepare a development plan for the demonstration program. The Westinghouse team, comprised of the Westinghouse Advanced Energy Systems Division, Heery and Heery, Inc., and Foster Wheeler Solar Development Corporation, in conjunction with the U.S. Air Force Logistics Command and Georgia Power Company, has selected a conceptual design for the facility that will utilize the latest DOE central receiver technology, effectively utilize the energy collected in the application, operate base-loaded every sunny day of the year, and be applicable to a large number of military and industrial facilities throughout the country. The design of the facility incorporates the use of a Collector System, a Receiver System, an Electrical Power Generating System, a Balance of Facility - Steam and Feedwater System, and a Master Control System.

  20. Design of radioisotope power systems facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.C.; Wiemers, M.J.

    1991-01-01

    Radioisotope power systems currently produced for the U.S. Department of Energy Office of Special Applications by the Mound Laboratory at Miamisburg, Ohio, have been used in a variety of configurations by the Department of Defense and the National Aeronautics and Space Administration. A forecast of fugure radioisotope power systems requirements showed a need for an increased production rate beyond the capability of the existing Mound Laboratory. Westinghouse Hanford Company is modifying the Fuels and Materials Examination Facility on the Hanford Site near Richland, Washington, to install the new Radioisotope Power Systems Facility for assembling future radioisotope power systems. The facility is currently being prepared to assemble the radioisotope thermoelectric generators required by the National Aeronautics and Space Administration missions for Comet Rendezvous Asteroid Flyby in 1995 and Cassini, an investigation of Saturn and its moons, in 1996

  1. Over facility design description for the CPDF [Centrifuge Plant Demonstration Facility]: SDD-1 [System Design Description

    International Nuclear Information System (INIS)

    1987-04-01

    The Centrifuge Plant Demonstration Facility (CPDF) is an essential part of the continuing development of first-production-plant centrifuge technology that will integrate centrifuge machines into a process and enrichment plant design. The CPDF will provide facilities for testing and continued development of a unit cascade in direct support of the commercial Gas Centrifuge Enrichment Plant (GCEP). The basic cascade-oriented equipment, feed, withdrawal, drive system, process piping, utility piping, and other auxiliary and support equipment will be tested in an operating configuration that represents, to the extent possible, GCEP arrangement and operating conditions. The objective will be to demonstrate procedures for production cascade installation, start-up, operation, and maintenance, and to provide proof of overall cascade and associated system design, construction, and operating and maintenance concepts. To the maximum possible extent, all equipment for the CPDF will be procured from commercial sources. Centrifuges will be procured from industry using government-supplied specifications and drawings. The existing Component Preparation Laboratory (CPL) located near the CPDF site will be used for centrifuge component receiving, inspection, assembly, and qualification testing of pre-production test machines. Later in the test program, samples of production machines planned for use in the GCEP will be tested in the CPDF

  2. Design alternatives, components key to optimum flares

    International Nuclear Information System (INIS)

    Cunha-Leite, O.

    1992-01-01

    A properly designed flare works as an emissions control system with greater than 98% combustion efficiency. The appropriate use of steam, natural gas, and air-assisted flare tips can result in smokeless combustion. Ground flare, otherwise the elevated flare is commonly chosen because it handles larger flow releases more economically. Flaring has become more complicated than just lighting up waste gas. Companies are increasingly concerned about efficiency. In addition, U.S. Occupational Safety and Health Administration (OSHA) and U.S. Environmental Protection Agency (EPA) have become more active, resulting in tighter regulations on both safety and emissions control. These regulations have resulted in higher levels of concern and involvement in safety and emissions matters, not to mention smoke, noise, glare, and odor. This first to two articles on flare design and components looks at elevated flares, flare tips, incinerator-type flares, flare pilots, and gas seals. Part 2 will examine knockout drums, liquid-seal drums, ignition systems, ground flares, vapor recovery systems, and flare noise

  3. Matter of transformation : designing an alternative tomorrow inspired by phenomenology

    NARCIS (Netherlands)

    Hummels, C.C.M.; Lévy, P.D.

    2013-01-01

    In this month’s cover story, Caroline Hummels and Pierre Lévy propose an alternative, value-based vision for design: Can we create alternative ways to engage with the world based on trusting our senses? Where intuition is as valuable as logic? Where commitment and engagement are valuable assets for

  4. Design Criteria: School Food Service Facilities.

    Science.gov (United States)

    Florida State Dept. of Education, Tallahassee.

    This guide is intended for architects, district superintendents, and food service directors whose responsibility it is to plan food service facilities. It first discusses the factors to be considered in food service planning, presents cost studies, and lists the responsibilities of those involved in the planning. Other sections concern selection,…

  5. Insights Gained from Testing Alternate Cell Designs

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; Housley, G.K.; Sohal, M.S.; Milobar, D.G.; Cable, Thomas

    2009-01-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, initially developed by the Forschungszentrum Juelich and now manufactured by the French ceramics firm St. Gobain. These cells have an active area of 16 cm2 per cell. They were initially developed as fuel cells, but are being tested as electrolytic cells in the INL test stands. The electrolysis cells are electrode-supported, with ∼10 (micro)m thick yttria-stabilized zirconia (YSZ) electrolytes, ∼1400 (micro)m thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900 C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed another fuel cell concept with the goals of reduced weight and high power density. The NASA cell is structurally symmetrical, with both electrodes supporting the thin electrolyte and containing micro-channels for gas diffusion. This configuration is

  6. 40 CFR 72.22 - Alternate designated representative.

    Science.gov (United States)

    2010-07-01

    ... designated representative is selected shall include a procedure for the owners and operators of the source and affected units at the source to authorize the alternate designated representative to act in lieu...) In the event of a conflict, any action taken by the designated representative shall take precedence...

  7. Letter Report. Defense Waste Processing Facility Pour Spout Heaters - Conceptual Designs and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    SK Sundaram; JM Perez, Jr.

    2000-09-06

    The Tanks Focus Area (TFA) identified a major task to address performance limitations and deficiencies of the Defense Waste Processing Facility (DWPF) now in its sixth year of operation. Design, installation, testing, monitoring, operability, and a number of other characteristics were studied by research personnel collaboratively at a number of facilities: Savannah River Technology Center (SRTC), Clemson Environmental Technologies Laboratory (CETL), Pacific Northwest National Laboratory (PNNL), and the Idaho National Engineering and Environmental Laboratory (INEEL). Because the potential limiting feature to the DWPF was identified as the pour spout/riser heater, researches on alternative design concepts originally proposed in the past were revisited. In the original works, finite element modeling was performed to evaluate temperature distribution and stress of the design currently used at the DWPF. Studies were also made to define the requirements of the design and to consider the approaches for remote removal/replacement. Their heater type/location, their remotely replaceable thermocouples, and their capabilities for remote handling characterized the five alternative designs proposed. Review comments on the alternative designs indicated a relatively wide range of advantages and disadvantages of the designs. The present report provides an overview of the design criteria, modeling results, and alternative designs. Based on a review of the past design optimization activities and an assessment of recent experience, recommendations are proposed for future consideration and improvement.

  8. Letter Report. Defense Waste Processing Facility Pour Spout Heaters - Conceptual Designs and Modeling

    International Nuclear Information System (INIS)

    Sundaram, S.K.; Perez, J.M. Jr.

    2000-01-01

    The Tanks Focus Area (TFA) identified a major task to address performance limitations and deficiencies of the Defense Waste Processing Facility (DWPF) now in its sixth year of operation. Design, installation, testing, monitoring, operability, and a number of other characteristics were studied by research personnel collaboratively at a number of facilities: Savannah River Technology Center (SRTC), Clemson Environmental Technologies Laboratory (CETL), Pacific Northwest National Laboratory (PNNL), and the Idaho National Engineering and Environmental Laboratory (INEEL). Because the potential limiting feature to the DWPF was identified as the pour spout/riser heater, researches on alternative design concepts originally proposed in the past were revisited. In the original works, finite element modeling was performed to evaluate temperature distribution and stress of the design currently used at the DWPF. Studies were also made to define the requirements of the design and to consider the approaches for remote removal/replacement. Their heater type/location, their remotely replaceable thermocouples, and their capabilities for remote handling characterized the five alternative designs proposed. Review comments on the alternative designs indicated a relatively wide range of advantages and disadvantages of the designs. The present report provides an overview of the design criteria, modeling results, and alternative designs. Based on a review of the past design optimization activities and an assessment of recent experience, recommendations are proposed for future consideration and improvement

  9. Design aspects of radiological safety in nuclear facilities

    International Nuclear Information System (INIS)

    Patkulkar, D.S.; Purohit, R.G.; Tripathi, R.M.

    2014-01-01

    In order to keep operational performance of a nuclear facility high and to keep occupational and public exposure ALARA, radiological safety provisions must be reviewed at the time of facility design. Deficiency in design culminates in deteriorated system performance and non adherence to safety standards and could sometimes result in radiological incident. Important radiological aspects relevant to safety were compiled based on operating experiences, design deficiencies brought out from past nuclear incidents, experience gained during maintenance, participation in design review of upcoming nuclear facilities and radiological emergency preparedness

  10. Comparison of different SFL design alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Ivars Neretnieks, Ivars [Chemima AB, Taeby (Sweden); Moreno, Luis [LMQuimica, Vaarby (Sweden)

    2013-04-15

    Four different design options for a repository for long-lived nuclear waste from the future dismantling of the nuclear power plants have been compared. The time scales considered range up to 100,000 years. The repository is to be located at about 500 m depth in granitic rock. The vault can be a tunnel about 200 m long and on the order of 15 X 15 meters, in which the waste is surrounded by either a hydraulic cage, a concrete buffer or a bentonite buffer about 2 m thick. A fourth option is to make a silo, called Supersilo, about as high as wide, surrounded by both concrete and bentonite. In order to compare potential release rates of radionuclides from the waste to the seeping water in the rock a number of simple models have been devised. Some of these models allow the water flow rates through vaults to be assessed under various conditions and configurations. Other models are used to calculate the uptake by molecular diffusion to the water in the rock that seeps past the vaults. Moreover other models are used to calculate the rate of transport of nuclides by diffusion and flow through the buffer and waste. The decay of the nuclides during their passage from the waste to the flowing water through and past the vaults is accounted for. Many nuclides of interest decay considerably in the buffer. The mathematical form of the models is made so simple that essentially hand calculations can be used to explore the strength of different barriers and design options. The simple models are validated against more complex coupled models accounting for simultaneously competing processes. The more complex models are solved by numerical methods. The toolbox of simple models is used to calculate the strength of the barriers in the different design options under various conditions. Examples of activity releases of three nuclides with different sorption characteristics and half-lives are presented. It is found that a hydraulic cage is not a good option as it promotes the release of

  11. Comparison of different SFL design alternatives

    International Nuclear Information System (INIS)

    Ivars Neretnieks, Ivars; Moreno, Luis

    2013-04-01

    Four different design options for a repository for long-lived nuclear waste from the future dismantling of the nuclear power plants have been compared. The time scales considered range up to 100,000 years. The repository is to be located at about 500 m depth in granitic rock. The vault can be a tunnel about 200 m long and on the order of 15 X 15 meters, in which the waste is surrounded by either a hydraulic cage, a concrete buffer or a bentonite buffer about 2 m thick. A fourth option is to make a silo, called Supersilo, about as high as wide, surrounded by both concrete and bentonite. In order to compare potential release rates of radionuclides from the waste to the seeping water in the rock a number of simple models have been devised. Some of these models allow the water flow rates through vaults to be assessed under various conditions and configurations. Other models are used to calculate the uptake by molecular diffusion to the water in the rock that seeps past the vaults. Moreover other models are used to calculate the rate of transport of nuclides by diffusion and flow through the buffer and waste. The decay of the nuclides during their passage from the waste to the flowing water through and past the vaults is accounted for. Many nuclides of interest decay considerably in the buffer. The mathematical form of the models is made so simple that essentially hand calculations can be used to explore the strength of different barriers and design options. The simple models are validated against more complex coupled models accounting for simultaneously competing processes. The more complex models are solved by numerical methods. The toolbox of simple models is used to calculate the strength of the barriers in the different design options under various conditions. Examples of activity releases of three nuclides with different sorption characteristics and half-lives are presented. It is found that a hydraulic cage is not a good option as it promotes the release of

  12. Design of GMP compliance radiopharmaceutical production facility in MINT

    International Nuclear Information System (INIS)

    Anwar Abd Rahman; Shaharum Ramli; M Rizal Mamat Ibrahim; Rosli Darmawan; Yusof Azuddin Ali; Jusnan Hashim

    2005-01-01

    In 1985, MINT built the only radiopharmaceutical production facility in Malaysia. The facility was designed based on IAEA (International Atomic Energy Agency) standard guidelines which provide radiation safety to the staff and the surrounding environment from radioactive contamination. Since 1999, BPFK (Biro Pengawalan Farmaseutikal Kebangsaan) has used the guidelines from Pharmaceutical Inspection Convention Scheme (PICS) to meet the requirements of the Good Manufacturing Practice (GMP) for Pharmaceutical Products. In the guidelines, the pharmaceutical production facility shall be designed based on clean room environment. In order to design a radiopharmaceutical production facility, it is important to combine the concept of radiation safety and clean room to ensure that both requirements from GMP and IAEA are met. The design requirement is necessary to set up a complete radiopharmaceutical production facility, which is safe, has high production quality and complies with the Malaysian and International standards. (Author)

  13. Integral Monitored Retrievable Storage (MRS) Facility conceptual basis for design

    International Nuclear Information System (INIS)

    1985-10-01

    The purpose of the Conceptual Basis for Design is to provide a control document that establishes the basis for executing the conceptual design of the Integral Monitored Retrievable Storage (MRS) Facility. This conceptual design shall provide the basis for preparation of a proposal to Congress by the Department of Energy (DOE) for construction of one or more MRS Facilities for storage of spent nuclear fuel, high-level radioactive waste, and transuranic (TRU) waste. 4 figs., 25 tabs

  14. Status and Prospect of Safeguards By Design for Pyroprocessing Facility

    International Nuclear Information System (INIS)

    Kim, Ho-Dong; Shin, H.S.; Ahn, S.K.

    2010-01-01

    The concept of Safeguards-By-Design (SBD), which is proposed and developed by the United States and the IAEA, is now widely acknowledged as a fundamental consideration for the effective and efficient implementation of safeguards. The application of a SBD concept is of importance especially for developmental nuclear facilities which have new technological features and relevant challenges to their safeguards approach. At this point of time, the examination of the applicability of SBD on a pyroprocessing facility, which has been being developed in the Republic of Korea (ROK), would be meaningful. The ROK developed a safeguards system with the concept of SBD for Advanced spent fuel Conditioning Process Facility (ACPF) and DUPIC Fuel Development Facility (DFDF) before the SBD concept was formally suggested. Currently. The PRIDE (PyRoprocess Integrated Inactive Demonstration) facility for the demonstration of pyroprocess using 10 ton of non-radioactive nuclear materials per year is being constructed in the ROK. The safeguards system for the facility has been designed in cooperation with a facility designer from the design phase, and the safeguards system would be established according to the future construction schedule. In preparing the design of Engineering Scale Pyroprocess Facility (ESPF), which will use spent fuels in an engineering scale and be constructed in 2016, a research on the safeguards system for this facility is also being conducted. In this connection, a project to support for development of safeguards approach for a reference pyroprocessing facility has been carried out by KAERI in cooperation with KINAC and the IAEA through an IAEA Member State Support Program (MSSP). When this MSSP project is finished in August, 2011, a safeguards system model and safeguards approach for a reference pyroprocessing facility would be established. Maximizing these early experiences and results, a safeguards system of ESPF based on the concept of SBD would be designed and

  15. Hanford Site waste tank farm facilities design reconstitution program plan

    International Nuclear Information System (INIS)

    Vollert, F.R.

    1994-01-01

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980's has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan

  16. 31 CFR 0.104 - Designated Agency Ethics Official and Alternate Designated Agency Ethics Official.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Designated Agency Ethics Official and Alternate Designated Agency Ethics Official. 0.104 Section 0.104 Money and Finance: Treasury Office of the... Responsibilities § 0.104 Designated Agency Ethics Official and Alternate Designated Agency Ethics Official. The...

  17. Design issues for a laboratory high gain fusion facility

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1987-01-01

    In an inertial fusion laboratory high gain facility, experiments will be carried out with up to 1000 MJ of thermonuclear yield. The experiment area of such a facility will include many systems and structures that will have to operate successfully in the difficult environment created by the sudden large energy release. This paper estimates many of the nuclear effects that will occur, discusses the implied design issues and suggests possible solutions so that a useful experimental facility can be built. 4 figs

  18. Design considerations for the Yucca Mountain project exploratory shaft facility

    International Nuclear Information System (INIS)

    Bullock, R.L. Sr.

    1990-01-01

    This paper reports on the regulatory/requirements challenges of this project which exist because this is the first facility of its kind to ever be planned, characterized, designed, and built under the purview of a U.S. Nuclear Regulatory Agency. The regulations and requirements that flow down to the Architect/Engineer (A/E) for development of the Exploratory Shaft Facility (ESF) design are voluminous and unique to this project. The subsurface design and construction of the ESF underground facility may eventually become a part of the future repository facility and, if so, will require licensing by the Nuclear Regulatory Commission (NRC). The Fenix and Scisson of Nevada-Yucca Mountain Project (FSN-YMP) group believes that all of the UMP design and construction related activities, with good design/construct control, can be performed to meet all engineering requirements, while following a strict quality assurance program that will also meet regulatory requirements

  19. Facility Safeguardability Analysis in Support of Safeguards by Design

    International Nuclear Information System (INIS)

    Wonder, E.F.

    2010-01-01

    The idea of 'Safeguards-by-Design' (SBD) means designing and incorporating safeguards features into new civil nuclear facilities at the earliest stages in the design process to ensure that the constructed facility is 'safeguardable,' i.e. will meet national and international nuclear safeguards requirements. Earlier consideration of safeguards features has the potential to reduce the need for costly retrofits of the facility and can result in a more efficient and effective safeguards design. A 'Facility Safeguardability Analysis' (FSA) would be a key step in Safeguards-by-Design that would link the safeguards requirements with the 'best practices', 'lessons learned', and design of the safeguards measures for implementing those requirements. The facility designer's nuclear safeguards experts would work closely with other elements of the project design team in performing FSA. The resultant analysis would support discussions and interactions with the national nuclear regulator (i.e. State System of Accounting for and Control of Nuclear Material - SSAC) and the IAEA for development and approval of the proposed safeguards system. FSA would also support the implementation of international safeguards by the IAEA, by providing them with a means to analyse and evaluate the safeguardability of facilities being designed and constructed - i.e. by independently reviewing and validating the FSA as performed by the design team. Development of an FSA methodology is part of a broader U.S. National Nuclear Security Administration program to develop international safeguards-by-design tools and guidance documents for use by facility designers. The NNSA NGSI -sponsored project team is looking, as one element of its work, at how elements of the methodology developed by the Generation IV International Forum's Working Group on Proliferation Resistance and Physical Protection can be adapted to supporting FSA. (author)

  20. Design and operations at the National Tritium Labelling Facility

    International Nuclear Information System (INIS)

    Morimoto, H.; Williams, P.G.

    1991-09-01

    The National Tritium Labelling Facility (NTLF) is a multipurpose facility engaged in tritium labeling research. It offers to the biomedical research community a fully equipped laboratory for the synthesis and analysis of tritium labeled compounds. The design of the tritiation system, its operations and some labeling techniques are presented

  1. Anatomy Education in Namibia: Balancing Facility Design and Curriculum Development

    Science.gov (United States)

    Wessels, Quenton; Vorster, Willie; Jacobson, Christian

    2012-01-01

    The anatomy curriculum at Namibia's first, and currently only, medical school is clinically oriented, outcome-based, and includes all of the components of modern anatomical sciences i.e., histology, embryology, neuroanatomy, gross, and clinical anatomy. The design of the facilities and the equipment incorporated into these facilities were directed…

  2. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 6 Book 1, contains information on design studies of a Monitored Retrievable Storage (MRS) facility. Topics include materials handling; processing; support systems; support utilities; spent fuel; high-level waste and alpha-bearing waste storage facilities; and field drywell storage

  3. Design of an integrated non-destructive plutonium assay facility

    International Nuclear Information System (INIS)

    Moore, C.B.

    1984-01-01

    The Department of Energy requires improved technology for nuclear materials accounting as an essential part of new plutonium processing facilities. New facilities are being constructed at the Savannah River Plant by the Du Pont Company, Operating Contractor, to recover plutonium from scrap and waste material generated at SRP and other DOE contract processing facilities. This paper covers design concepts and planning required to incorporate state-of-the-art plutonium assay instruments developed at several national laboratories into an integrated, at-line nuclear material accounting facility operating in the production area. 3 figures

  4. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  5. A Facilities Manager's Guide to Green Building Design.

    Science.gov (United States)

    Simpson, Walter

    2001-01-01

    Explains how the "green building" approach to educational facilities design creates healthy, naturally lit, attractive buildings with lower operating and life cycle costs. Tips on getting started on a green design and overcoming the barriers to the green design concept are discussed. (GR)

  6. RAMI strategies in the IFMIF Test Facilities design

    Energy Technology Data Exchange (ETDEWEB)

    Abal, Javier, E-mail: javier.abal@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Dies, Javier [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Arroyo, José Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Bargalló, Enric [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Casal, Natalia; García, Ángela [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Martínez, Gonzalo; Tapia, Carlos; De Blas, Alfredo [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain)

    2013-10-15

    Highlights: • We have implemented fault tolerant design strategies so that the strong availability requirements are met. • The evolution to the present design of the signal and cooling lines inside the TTC has also been compared. • The RAMI analyses have demonstrated a strong capability in being a complementary tool in the design of IFMIF Test Facilities. -- Abstract: In this paper, a RAMI analysis of the different stages in Test Facilities (TF) design is described. The comparison between the availability results has been a milestone not only to evaluate the major unavailability contributors in the updates but also to implement fault tolerant design strategies when possible. These strategies encompass a wide range of design activities: from the definition of degraded modes of operation in the Test Facilities to specific modifications in the test modules in order to guarantee their fail safe operation.

  7. RAMI strategies in the IFMIF Test Facilities design

    International Nuclear Information System (INIS)

    Abal, Javier; Dies, Javier; Arroyo, José Manuel; Bargalló, Enric; Casal, Natalia; García, Ángela; Martínez, Gonzalo; Tapia, Carlos; De Blas, Alfredo; Mollá, Joaquín; Ibarra, Ángel

    2013-01-01

    Highlights: • We have implemented fault tolerant design strategies so that the strong availability requirements are met. • The evolution to the present design of the signal and cooling lines inside the TTC has also been compared. • The RAMI analyses have demonstrated a strong capability in being a complementary tool in the design of IFMIF Test Facilities. -- Abstract: In this paper, a RAMI analysis of the different stages in Test Facilities (TF) design is described. The comparison between the availability results has been a milestone not only to evaluate the major unavailability contributors in the updates but also to implement fault tolerant design strategies when possible. These strategies encompass a wide range of design activities: from the definition of degraded modes of operation in the Test Facilities to specific modifications in the test modules in order to guarantee their fail safe operation

  8. 29 CFR 2703.2 - Designated agency ethics official and alternate designated agency ethics official.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Designated agency ethics official and alternate designated agency ethics official. 2703.2 Section 2703.2 Labor Regulations Relating to Labor (Continued) FEDERAL... agency ethics official and alternate designated agency ethics official. The Chairman shall appoint an...

  9. Design and construction of the Fuels and Materials Examination Facility

    International Nuclear Information System (INIS)

    Burgess, C.A.

    1979-01-01

    Final design is more than 85 percent complete on the Fuels and Materials Examination Facility, the facility for post-irradiation examination of the fuels and materials tests irradiated in the FFTF and for fuel process development, experimental test pin fabrication and supporting storage, assay, and analytical chemistry functions. The overall facility is generally described with specific information given on some of the design features. Construction has been initiated and more than 10% of the construction contracts have been awarded on a fixed price basis

  10. Partial gravity - Human impacts on facility design

    Science.gov (United States)

    Capps, Stephen; Moore, Nathan

    1990-01-01

    Partial gravity affects the body differently than earth gravity and microgravity environments. The main difference from earth gravity is human locomotion; while the main dfference from microgravity is the specific updown orientation and reach envelopes which increase volume requirements. Much data are available on earth gravity and microgravity design; however, very little information is available on human reactions to reduced gravity levels in IVA situations (without pressure suits). Therefore, if humans commit to permanent lunar habitation, much research should be conducted in the area of partial gravity effects on habitat design.

  11. Materials and degradation modes in an alternative LLW [low-level waste] disposal facility

    International Nuclear Information System (INIS)

    Cowgill, M.G.; MacKenzie, D.R.

    1989-01-01

    The materials used in the construction of alternative low-level waste disposal facilities will be subject to interaction with both the internal and the external environments associated with the facilities and unless precautions are taken, may degrade, leading to structural failure. This paper reviews the characteristics of both environments with respect to three alternative disposal concepts, then assesses how reaction with them might affect the properties of the materials, which include concrete, steel-reinforced concrete, structural steel, and various protective coatings and membranes. It identifies and evaluates the probability of reactions occurring which might lead to degradation of the materials and so compromise the structure. The probability of failure (interpreted relative to the ability of the structure to restrict ingress and egress of water) is assessed for each material and precautionary measures, intended to maximize the durability of the facility, are reviewed. 19 refs., 2 tabs

  12. Exploratory shaft facility preliminary designs - Gulf Interior Region salt domes

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Gulf Interior Region, is to provide a description of the preliminary design for an Exploratory Shaft Facility on the Richton Dome, Mississippi. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers are included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description and Construction Cost Estimate

  13. Exploratory shaft facility preliminary designs - Paradox Basin. Technical report

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Paradox Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Paradox Basin, Utah. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling Method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers is included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references

  14. ESO Catalogue Facility Design and Performance

    Science.gov (United States)

    Moins, C.; Retzlaff, J.; Arnaboldi, M.; Zampieri, S.; Delmotte, N.; Forchí, V.; Klein Gebbinck, M.; Lockhart, J.; Micol, A.; Vera Sequeiros, I.; Bierwirth, T.; Peron, M.; Romaniello, M.; Suchar, D.

    2013-10-01

    The ESO Phase 3 Catalogue Facility provides investigators with the possibility to ingest catalogues resulting from ESO public surveys and large programs and to query and download their content according to positional and non-positional criteria. It relies on a chain of tools that covers the complete workflow from submission to validation and ingestion into the ESO archive and catalogue repository and a web application to browse and query catalogues. This repository consists of two components. One is a Sybase ASE relational database where catalogue meta-data are stored. The second one is a Sybase IQ data warehouse where the content of each catalogue is ingested in a specific table that returns all records matching a user's query. Spatial indexing has been implemented in Sybase IQ to speed up positional queries and relies on the Spherical Geometry Toolkit from the Johns Hopkins University which implements the Hierarchical Triangular Mesh (HTM) algorithm. It is based on a recursive decomposition of the celestial sphere in spherical triangles and the assignment of an index to each of them. It has been complemented with the use of optimized indexes on the non-positional columns that are likely to be frequently used as query constraints. First tests performed on catalogues such as 2MASS have confirmed that this approach provides a very good level of performance and a smooth user experience that are likely to facilitate the scientific exploitation of catalogues.

  15. Conceptual capital-cost estimate and facility design of the Mirror-Fusion Technology Demonstration Facility

    International Nuclear Information System (INIS)

    1982-09-01

    This report contains contributions by Bechtel Group, Inc. to Lawrence Livermore National Laboratory (LLNL) for the final report on the conceptual design of the Mirror Fusion Technology Demonstration Facility (TDF). Included in this report are the following contributions: (1) conceptual capital cost estimate, (2) structural design, and (3) plot plan and plant arrangement drawings. The conceptual capital cost estimate is prepared in a format suitable for inclusion as a section in the TDF final report. The structural design and drawings are prepared as partial inputs to the TDF final report section on facilities design, which is being prepared by the FEDC

  16. Design and evaluation guidelines for Department of Energy facilities subjected to natural phenomena hazards

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Short, S.A.; McDonald, J.R.; McCann, M.W. Jr.; Murray, R.C.; Hill, J.R.

    1990-06-01

    The Department of Energy (DOE) and the DOE Natural Phenomena Hazards Panel have developed uniform design and evaluation guidelines for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of the guidelines is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. The guidelines apply to both new facilities (design) and existing facilities (evaluation, modification, and upgrading). The intended audience is primarily the civil/structural or mechanical engineers conducting the design or evaluation of DOE facilities. The likelihood of occurrence of natural phenomena hazards at each DOE site has been evaluated by the DOE Natural Phenomena Hazard Program. Probabilistic hazard models are available for earthquake, extreme wind/tornado, and flood. Alternatively, site organizations are encouraged to develop site-specific hazard models utilizing the most recent information and techniques available. In this document, performance goals and natural hazard levels are expressed in probabilistic terms, and design and evaluation procedures are presented in deterministic terms. Design/evaluation procedures conform closely to common standard practices so that the procedures will be easily understood by most engineers. Performance goals are expressed in terms of structure or equipment damage to the extent that: (1) the facility cannot function; (2) the facility would need to be replaced; or (3) personnel are endangered. 82 refs., 12 figs., 18 tabs

  17. Design and evaluation guidelines for Department of Energy facilities subjected to natural phenomena hazards

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P. (Structural Mechanics Consulting, Inc., Yorba Linda, CA (USA)); Short, S.A. (ABB Impell Corp., Mission Viejo, CA (USA)); McDonald, J.R. (Texas Tech Univ., Lubbock, TX (USA)); McCann, M.W. Jr. (Benjamin (J.R.) and Associates, Inc., Mountain View, CA (USA)); Murray, R.C. (Lawrence Livermore National Lab., CA (USA)); Hill, J.R. (USDOE Assistant Secretary for Environment, Safety, and He

    1990-06-01

    The Department of Energy (DOE) and the DOE Natural Phenomena Hazards Panel have developed uniform design and evaluation guidelines for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of the guidelines is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. The guidelines apply to both new facilities (design) and existing facilities (evaluation, modification, and upgrading). The intended audience is primarily the civil/structural or mechanical engineers conducting the design or evaluation of DOE facilities. The likelihood of occurrence of natural phenomena hazards at each DOE site has been evaluated by the DOE Natural Phenomena Hazard Program. Probabilistic hazard models are available for earthquake, extreme wind/tornado, and flood. Alternatively, site organizations are encouraged to develop site-specific hazard models utilizing the most recent information and techniques available. In this document, performance goals and natural hazard levels are expressed in probabilistic terms, and design and evaluation procedures are presented in deterministic terms. Design/evaluation procedures conform closely to common standard practices so that the procedures will be easily understood by most engineers. Performance goals are expressed in terms of structure or equipment damage to the extent that: (1) the facility cannot function; (2) the facility would need to be replaced; or (3) personnel are endangered. 82 refs., 12 figs., 18 tabs.

  18. SNL/CA Facilities Management Design Standards Manual

    Energy Technology Data Exchange (ETDEWEB)

    Rabb, David [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Clark, Eva [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-12-01

    At Sandia National Laboratories in California (SNL/CA), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/CA applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. The safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule.

  19. Design Criteria for Process Wastewater Pretreatment Facilities

    Science.gov (United States)

    1988-05-01

    Stripping Column H13 ’Re Purpose: The purpose of this report, is to provide design criteria for pretreatment needs for ’ I. INTRODUCTION ’". discharge of...which a portion of the vessel is filled with packing. Packing materials vary from corrugated steel to bundles of fibers (Langdon et al., 1972) to beds...concentration(s) using Table 20. Wastewater treatability studies should be considered as a process-screening tool for all wastewater streams for

  20. Preliminary seismic design cost-benefit assessment of the tuff repository waste-handling facilities

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Abrahamson, N.; Hadjian, A.H.

    1989-02-01

    This report presents a preliminary assessment of the costs and benefits associated with changes in the seismic design basis of waste-handling facilities. The objectives of the study are to understand the capability of the current seismic design of the waste-handling facilities to mitigate seismic hazards, evaluate how different design levels and design measures might be used toward mitigating seismic hazards, assess the costs and benefits of alternative seismic design levels, and develop recommendations for possible modifications to the seismic design basis. This preliminary assessment is based primarily on expert judgment solicited in an interdisciplinary workshop environment. The estimated costs for individual attributes and the assumptions underlying these cost estimates (seismic hazard levels, fragilities, radioactive-release scenarios, etc.) are subject to large uncertainties, which are generally identified but not treated explicitly in this preliminary analysis. The major conclusions of the report do not appear to be very sensitive to these uncertainties. 41 refs., 51 figs., 35 tabs

  1. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  2. Power supply design for Hadron Facility

    International Nuclear Information System (INIS)

    Karady, G.; Kansog, J.; Thiessen, H.A.; Schneider, E.

    1987-01-01

    Recently, a study investigated the feasibility of building a large 60 GeV, kaon factory accelerator. This paper presents the conceptual design of the magnet power supplies and energy storage system. In this study the following three systems were investigated: (a) power supply using storage generator; (b) power supply using inductive storage device; and (c) resonant power supplies. These systems were analyzed from both technical and economical points of view. It was found that all three systems are feasible and can be built using commercially available components. From a technical point of view, the system using inductive storage is the most advantageous. The resonant power supply is the most economical solution

  3. Structural design considerations for a radwaste processing facility

    International Nuclear Information System (INIS)

    Foelber, S.C.; Sabbe, M.A.

    1985-01-01

    The structural engineer needs to consider several criteria when designing a radioactive-waste processing facility in order to properly balance the requirements of safety and economy. This paper addresses the design criteria and structural design of a vitrification building and the special equipment and supports associated with remote process operations. In addition, approaches to construction, and the role of scale models to aid in engineering design and construction are discussed. 5 figures

  4. Ultraviolet Free Electron Laser Facility preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (ed.)

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  5. Ultraviolet Free Electron Laser Facility preliminary design report

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA)

  6. Capacitated set-covering model considering the distance objective and dependency of alternative facilities

    Science.gov (United States)

    Wayan Suletra, I.; Priyandari, Yusuf; Jauhari, Wakhid A.

    2018-03-01

    We propose a new model of facility location to solve a kind of problem that belong to a class of set-covering problem using an integer programming formulation. Our model contains a single objective function, but it represents two goals. The first is to minimize the number of facilities, and the other is to minimize the total distance of customers to facilities. The first goal is a mandatory goal, and the second is an improvement goal that is very useful when alternate optimum solutions for the first goal exist. We use a big number as a weight on the first goal to force the solution algorithm to give first priority to the first goal. Besides considering capacity constraints, our model accommodates a kind of either-or constraints representing facilities dependency. The either-or constraints will prevent the solution algorithm to select two or more facilities from the same set of facility with mutually exclusive properties. A real location selection problem to locate a set of wastewater treatment facility (IPAL) in Surakarta city, Indonesia, will describe the implementation of our model. A numerical example is given using the data of that real problem.

  7. High level radioactive waste management facility design criteria

    International Nuclear Information System (INIS)

    Sheikh, N.A.; Salaymeh, S.R.

    1993-01-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding

  8. CIF---Design basis for an integrated incineration facility

    International Nuclear Information System (INIS)

    Bennett, G.F.

    1991-01-01

    This paper discusses the evolution of chosen technologies that occurred during the design process of the US Department of Energy (DOE) incineration system designated the Consolidated Incineration Facility (CIF) as the Savannah River Plant, Aiken, South Carolina. The Plant is operated for DOE by the Westinghouse Savannah River Company. The purpose of the incineration system is to treat low level radioactive and/or hazardous liquid and solid wastes by combustion. The objective for the facility is to thermally destroy toxic constituents and volume reduce waste material. Design criteria requires operation be controlled within the limits of RCRA's permit envelope

  9. Demonstration of risk-based decision analysis in remedial alternative selection and design

    International Nuclear Information System (INIS)

    Evans, E.K.; Duffield, G.M.; Massmann, J.W.; Freeze, R.A.; Stephenson, D.E.

    1993-01-01

    This study demonstrates the use of risk-based decision analysis (Massmann and Freeze 1987a, 1987b) in the selection and design of an engineering alternative for groundwater remediation at a waste site at the Savannah River Site, a US Department of Energy facility in South Carolina. The investigation focuses on the remediation and closure of the H-Area Seepage Basins, an inactive disposal site that formerly received effluent water from a nearby production facility. A previous study by Duffield et al. (1992), which used risk-based decision analysis to screen a number of ground-water remediation alternatives under consideration for this site, indicated that the most attractive remedial option is ground-water extraction by wells coupled with surface water discharge of treated effluent. The aim of the present study is to demonstrate the iterative use of risk-based decision analysis throughout the design of a particular remedial alternative. In this study, we consider the interaction between two episodes of aquifer testing over a 6-year period and the refinement of a remedial extraction well system design. Using a three-dimensional ground-water flow model, this study employs (1) geostatistics and Monte Carlo techniques to simulate hydraulic conductivity as a stochastic process and (2) Bayesian updating and conditional simulation to investigate multiple phases of aquifer testing. In our evaluation of a remedial alternative, we compute probabilistic costs associated with the failure of an alternative to completely capture a simulated contaminant plume. The results of this study demonstrate the utility of risk-based decision analysis as a tool for improving the design of a remedial alternative through the course of phased data collection at a remedial site

  10. Safety Research Experiment Facility Project. Conceptual design report. Volume II. Building and facilities

    International Nuclear Information System (INIS)

    1975-12-01

    The conceptual design of Safety Research Experiment Facility (SAREF) site system includes a review and evaluation of previous geotechnical reports for the area where SAREF will be constructed and the conceptual design of access and in-plant roads, parking, experiment-transport-vehicle maneuvering areas, security fencing, drainage, borrow area development and restoration, and landscaping

  11. Alternative energy facility siting policies for urban coastal areas: executive summary of findings and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Morell, D; Singer, G

    1980-11-01

    An analysis was made of siting issues in the coastal zone, one of the nation's most critical natural resource areas and one which is often the target for energy development proposals. The analysis addressed the changing perceptions of citizens toward energy development in the coastal zone, emphasizing urban communities where access to the waterfront and revitalization of waterfront property are of interest to the citizen. The findings of this analysis are based on an examination of energy development along New Jersey's urban waterfront and along the Texas-Louisiana Gulf Coast, and on redevelopment efforts in Seattle, San Francisco, Boston, and elsewhere. The case studies demonstrate the significance of local attitudes and regional cooperation in the siting process. In highly urbanized areas, air quality has become a predominant concern among citizen groups and an influential factor in development of alternative energy facility siting strategies, such as consideration of inland siting connected by pipeline to a smaller coastal facility. The study addresses the economic impact of the permitting process on the desirability of energy facility investments, and the possible effects of the location selected for the facility on the permitting process and investment economics. The economic analysis demonstrates the importance of viewing energy facility investments in a broad perspective that includes the positive or negative impacts of various alternative siting patterns on the permitting process. Conclusions drawn from the studies regarding Federal, state, local, and corporate politics; regulatory, permitting, licensing, environmental assessment, and site selection are summarized. (MCW)

  12. Design requirements for new nuclear reactor facilities in Canada

    International Nuclear Information System (INIS)

    Shim, S.; Ohn, M.; Harwood, C.

    2012-01-01

    The Canadian Nuclear Safety Commission (CNSC) has been establishing the regulatory framework for the efficient and effective licensing of new nuclear reactor facilities. This regulatory framework includes the documentation of the requirements for the design and safety analysis of new nuclear reactor facilities, regardless of size. For this purpose, the CNSC has published the design and safety analysis requirements in the following two sets of regulatory documents: 1. RD-337, Design of New Nuclear Power Plants and RD-310, Safety Analysis for Nuclear Power Plants; and 2. RD-367, Design of Small Reactor Facilities and RD-308, Deterministic Safety Analysis for Small Reactor Facilities. These regulatory documents have been modernized to document past practices and experience and to be consistent with national and international standards. These regulatory documents provide the requirements for the design and safety analysis at a high level presented in a hierarchical structure. These documents were developed in a technology neutral approach so that they can be applicable for a wide variety of water cooled reactor facilities. This paper highlights two particular aspects of these regulatory documents: The use of a graded approach to make the documents applicable for a wide variety of nuclear reactor facilities including nuclear power plants (NPPs) and small reactor facilities; and, Design requirements that are new and different from past Canadian practices. Finally, this paper presents some of the proposed changes in RD-337 to implement specific details of the recommendations of the CNSC Fukushima Task Force Report. Major changes were not needed as the 2008 version of RD-337 already contained requirements to address most of the lessons learned from the Fukushima event of March 2011. (author)

  13. Treatability studies of alternative wastewaters for Metal Finishing Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Wittry, D.M.; Martin, H.L.

    1994-01-01

    The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility that uses precipitation and filtration, which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. Upon the completion of stored waste treatment, the LETF will be shut down, because production of nuclear materials for reactors stopped at the end of the Cold War. The economic use of the LETF for the treatment of alternative wastewater streams is being evaluated through laboratory bench-scale treatability studies

  14. Seismic design considerations for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2001-01-01

    During the last few decades, there have been considerable advances in the field of a seismic design of nuclear structures and components housed inside a Nuclear power Plant (NPP). The seismic design and qualification of theses systems and components are carried out through the use of well proven and established theoretical as well as experimental means. Many of the related research works pertaining to these methods are available in the published literature, codes, guides etc. Contrary to this, there is very little information available with regards to the seismic design aspects of the nuclear fuel cycle facilities. This is probably on account of the little importance attached to these facilities from the point of view of seismic loading. In reality, some of these facilities handle a large inventory of radioactive materials and, therefore, these facilities must survive during a seismic event without giving rise to any sort of undue radiological risk to the plant personnel and the public at large. Presented herein in this paper are the seismic design considerations which are adopted for the design of nuclear fuel cycle facilities in India. (author)

  15. Conceptual design report for Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    1984-01-01

    The permanent facilities are defined, and cost estimates are provided for the disposal of Low-Level Radioactive Wastes (LLW) at the Central Waste Disposal Facility (CWDF). The waste designated for the Central Waste Disposal Facility will be generated by the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant, and the Oak Ridge National Laboratory. The facility will be operated by ORNL for the Office of Defense Waste and By-Products Management of the Deparment of Energy. The CWDF will be located on the Department of Energy's Oak Ridge Reservation, west of Highway 95 and south of Bear Creek Road. The body of this Conceptual Design Report (CDR) describes the permanent facilities required for the operation of the CWDF. Initial facilities, trenches, and minimal operating equipment will be provided in earlier projects. The disposal of LLW will be by shallow land burial in engineered trenches. DOE Order 5820 was used as the performance standard for the proper disposal of radioactive waste. The permanent facilities are intended for beneficial occupancy during the first quarter of fiscal year 1989. 3 references, 9 figures, 7 tables

  16. Expert System Approach For Generating And Evaluating Engine Design Alternatives

    Science.gov (United States)

    Shen, Stewart N. T.; Chew, Meng-Sang; Issa, Ghassan F.

    1989-03-01

    Artificial intelligence is becoming an increasingly important subject of study for computer scientists, engineering designers, as well as professionals in other fields. Even though AI technology is a relatively new discipline, many of its concepts have already found practical applications. Expert systems, in particular, have made significant contributions to technologies in such fields as business, medicine, engineering design, chemistry, and particle physics. This paper describes an expert system developed to aid the mechanical designer with the preliminary design of variable-stroke internal-combustion engines. The expert system accomplished its task by generating and evaluating a large number of design alternatives represented in the form of graphs. Through the application of structural and design rules directly to the graphs, optimal and near optimal preliminary design configurations of engines are deduced.

  17. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS. ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    International Nuclear Information System (INIS)

    Rutherford, W.W.; Geuther, W.J.; Strankman, M.R.; Conrad, E.A.; Rhoadarmer, D.D.; Black, D.M.; Pottmeyer, J.A.

    2009-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  18. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  19. IsoDAR@KamLAND: A Conceptual Design Report for the Technical Facility

    CERN Document Server

    Abs, M; Alonso, J R; Axani, S; Barletta, W A; Barlow, R; Bartoszek, L; Bungau, A; Calabretta, L; Calanna, A; Campo, D; Castro, G; Celona, L; Collin, G H; Conrad, J M; Gammino, S; Johnson, R; Karagiorgi, G; Kayser, S; Kleeven, W; Kolano, A; Labrecque, F; Loinaz, W A; Minervini, J; Moulai, M H; Okuno, H; Owen, H; Papavassiliou, V; Shaevitz, M H; Shimizu, I; Shokair, T M; Sorensen, K F; Spitz, J; Toups, M; Vagins, M; Van Bibber, K; Wascko, M O; Winklehner, D; Winslow, L A; Yang, J J

    2015-01-01

    This conceptual design report describes the technical facility for the IsoDAR electron-antineutrino source at KamLAND. The IsoDAR source will allow an impressive program of neutrino oscillation and electroweak physics to be performed at KamLAND. This report provides information on the physics case, the conceptual design for the subsystems, alternative designs considered, specifics of installation at KamLAND, and identified needs for future development. We discuss the risks we have identified and our approach to mitigating those risks with this design. A substantial portion of the conceptual design is based on three years of experimental efforts and on industry experience. This report also includes information on the conventional facilities.

  20. Development of cloud-operating platform for detention facility design

    Science.gov (United States)

    Tun Lee, Kwan; Hung, Meng-Chiu; Tseng, Wei-Fan; Chan, Yi-Ping

    2017-04-01

    In the past 20 years, the population of Taiwan has accumulated in urban areas. The land development has changed the hydrological environment and resulted in the increase of surface runoff and shortened the time to peak discharge. The change of runoff characteristics increases the flood risk and reduces resilient ability of the city during flood. Considering that engineering measures may not be easy to implement in populated cities, detention facilities set on building basements have been proposed to compromise the increase of surface runoff resulting from development activities. In this study, a web-based operational platform has been developed to integrate the GIS technologies, hydrological analyses, as well as relevant regulations for the design of detention facilities. The design procedure embedded in the system includes a prior selection of type and size of the detention facility, integrated hydrological analysis for the developing site, and inspection of relevant regulations. After login the platform, designers can access the system database to retrieve road maps, land use coverages, and storm sewer information. Once the type, size, inlet, and outlet of the detention facility are assigned, the system can acquire the rainfall intensity-duration-frequency information from adjacent rain gauges to perform hydrological analyses for the developing site. The increase of the runoff volume due to the development and the reduction of the outflow peak through the construction of the detention facility can be estimated. The outflow peak at the target site is then checked with relevant regulations to confirm the suitability of the detention facility design. The proposed web-based platform can provide a concise layout of the detention facility and the drainageway of the developing site on a graphical interface. The design information can also be delivered directly through a web link to authorities for inspecting to simplify the complex administrative procedures.

  1. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This report presents a summary design description of the Conceptual Design for an Integral Monitored Retrievable Storage (MRS) Facility, as prepared by The Ralph M. Parsons Company under an A-E services contract with the Richland Operations Office of the Department of Energy. More detailed design requirements and design data are set forth in the Basis for Design and Design Report, bound under separate cover and available for reference by those desiring such information. The design data provided in this Design Report Executive Summary, the Basis for Design, and the Design Report include contributions by the Waste Technology Services Division of Westinghouse Electric Corporation (WEC), which was responsible for the development of the waste receiving, packaging, and storage systems, and Golder Associates Incorporated (GAI), which supported the design development with program studies. The MRS Facility design requirements, which formed the basis for the design effort, were prepared by Pacific Northwest Laboratory for the US Department of Energy, Richland Operations Office, in the form of a Functional Design Criteria (FDC) document, Rev. 4, August 1985. 9 figs., 6 tabs

  2. Alternate design of ITER cryostat skirt support system

    International Nuclear Information System (INIS)

    Pandey, Manish Kumar; Gupta, Girish Kumar; Bhardwaj, Anil Kumar; Jha, Saroj Kumar

    2015-01-01

    The skirt support of ITER cryostat is a support system which takes all the load of cryostat cylinder and dome during normal and operational condition. The present design of skirt support has full penetration weld joints at the bottom (shell to horizontal plate joint). To fulfill the requirements of tolerances and control the welding distortions, we have proposed to change the full penetration weld into fillet weld. A detail calculation is done to check the feasibility and structural impact due to proposed design. The calculations provide the size requirements of fillet weld. To verify the structural integrity during most severe load case, finite element analysis (FEA) has been done in line with ASME section VIII division 2. By FEA 'Plastic Collapse' and 'Local Failure' modes has been assessed. 5° sector of skirt clamp has been modeled in CATIA V5 R21 and used in FEA. Fillet weld at shell to horizontal plate joint has been modeled and symmetry boundary condition at ± 2.5° applied. 'Elastic Plastic Analysis' has been performed for the most severe loading case i.e. Category IV loading. The alternate design of Cryostat Skirt support system has been found safe by analysis against Plastic collapse and Local Failure Modes with load proportionality factor 2.3. Alternate design of Cryostat skirt support system has been done and validated by FEA. As per alternate design, the proposal of fillet weld has been implemented in manufacturing. (author)

  3. WAG (water-alternating-gas) process design: an update review

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, M.K. [University of Engineering and Technology, Lahore (Pakistan). Dept. of Petroleum and Gas Engineering], e-mail: mkzahoor@uet.edu.pk; Derahman, M.N.; Yunan, M.H. [Universiti Teknologi Malaysia, Johor (Malaysia). Dept. of Petroleum Engineering

    2011-04-15

    The design and implementation of water-alternating-gas (WAG) process in an improved and cost-effective way are still under process. Due to the complexities involved in implementing the process and the lack of information regarding fluid and reservoir properties, the water-alternating-gas process has not yet been as successful as initially expected. This situation can be overcome by better understanding the fluid distribution and flow behavior within the reservoir. The ultimate purpose can be achieved with improved knowledge on wettability and its influence on fluid distribution, capillary pressure, relative permeability, and other design parameters. This paper gives an insight on the WAG process design and the recently developed correlations which are helpful in incorporating the effects of wettability variations on fluid dynamics within the reservoir. (author)

  4. Evaluation of seismic criteria used in design of INEL facilities

    International Nuclear Information System (INIS)

    Young, G.A.

    1977-01-01

    This report provides the results of an independent evaluation of seismic studies that were made to establish the seismic acceleration levels and the response spectra used in the design of vital facilities at Idaho National Engineering Laboratory. A comparison of the procedures used to define the seismic acceleration values and response spectra at INEL with the requirements of the Nuclear Regulatory Commission showed that additional geologic studies would probably be required in order to fulfill NRC regulations. Recommendations are made on justifiable changes in the acceleration values and response spectra used at INEL. The geologic, geophysical, and seismological studies needed to provide a better understanding of the tectonic processes in the Snake River plains and the surrounding region are identified. Both potential and historical acceleration values are evaluated on a probability basis to permit a risk assessment approach to the design of new facilities and facility modifications. Studies conducted to develop seismic criteria for the design of the Loss of Fluid Test reactor and the New Waste Calcining Facility were selected as typical examples of criteria development previously used in the design of INEL facilities

  5. Conceptual layout design of CFETR Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Zheng, E-mail: gongz@mail.ustc.edu.cn [University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Qi, Minzhong, E-mail: qiminzhong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Cheng, Yong, E-mail: chengyong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • This article proposed a conceptual layout design for CFETR. • The design principles are to support efficient maintenance to ensure the realization of high duty time. • The preliminary maintenance process and logistics are described in detail. • Life cycle management, maneuverability, risk and safety are in the consideration of design. - Abstract: CFETR (China Fusion Engineering Test Reactor) is new generation of Tokomak device beyond EAST in China. An overview of hot cell layout design for CFETR has been proposed by ASIPP&USTC. Hot Cell, as major auxiliary facility, not only plays a pivotal role in supporting maintenance to meet the requirements of high duty time 0.3–0.5 but also supports installation and decommissioning. Almost all of the Tokomak devices are lateral handling internal components like ITER and JET, but CFETR maintain the blanket module from 4 vertical ports, which is quite a big challenge for the hot cell layout design. The activated in-vessel components and several diagnosis instruments will be repaired and refurbished in the Hot Cell Facility, so the appropriate layout is very important to the Hot Cell Facility to ensure the high duty time, it is divided into different parts equipped with a variety of RH equipment and diagnosis devices based on the functional requirements. The layout of the Hot Cell Facility should make maintenance process more efficient and reliable, and easy to service and rescue when a sudden events taking place, that is the capital importance issue considered in design.

  6. Environmental comparison of a railway bridge with alternative designs

    DEFF Research Database (Denmark)

    Du, Guangli; Karoumi, Raid

    2012-01-01

    Railway bridges are complex structures that remain for a long life span and consume large amount of material and energy throughout the life span. All of those lead to considerable resource depletion and environmental burdens. Life Cycle Assessment (LCA) has proved to be a comprehensive tool...... for quantifying and assessing the environmental impacts of the products through its whole life cycle. This paper presents a comparative case study between two alternative designs of Banafjäl Bridge: ballast track design and fixed slab track design. The methodology of LCA is utilized as a supporting tool...

  7. Spent unreprocessed fuel (SURF) facility evaluation plan of the alternative storage concepts

    International Nuclear Information System (INIS)

    Berry, S.M.

    1978-01-01

    Concepts were evaluated for the storage of unreprocessed spent fuel in a retrievable surface storage facility. This document provides a systematic format for making a concept selection from the seven alternative concepts presented in RHO-LD-2. Results of the evaluation was that the Drywell concept was rated highest with the Water Basin Concept and the Sealed Storage Cask concept with multiple canisters of SURF coming in a close second and third

  8. 40 CFR 60.4112 - Changing Hg designated representative and alternate Hg designated representative; changes in...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Changing Hg designated representative and alternate Hg designated representative; changes in owners and operators. 60.4112 Section 60.4112... Generating Units Hg Designated Representative for Hg Budget Sources § 60.4112 Changing Hg designated...

  9. Design of the target area for the National Ignition Facility

    International Nuclear Information System (INIS)

    Foley, R.J.; Karpenko, V.P.; Adams, C.H.

    1997-01-01

    The preliminary design of the target area for the National Ignition Facility has been completed. The target area is required to meet a challenging set of engineering system design requirements and user needs. The target area must provide the appropriate conditions before, during, and after each shot. The repeated introduction of large amounts of laser energy into the chamber and subsequent target emissions represent new design challenges for ICF facility design. Prior to each shot, the target area must provide the required target illumination, target chamber vacuum, diagnostics, and optically stable structures. During the shot, the impact of the target emissions on the target chamber, diagnostics, and optical elements is minimized and the workers and public are protected from excessive prompt radiation doses. After the shot, residual radioactivation is managed to allow the required accessibility. Diagnostic data is retrieved, operations and maintenance activities are conducted, and the facility is ready for the next shot. The target area subsystems include the target chamber, target positioner, structural systems, target diagnostics, environmental systems, and the final optics assembly. The engineering design of the major elements of the target area requires a unique combination of precision engineering, structural analysis, opto-mechanical design, random vibration suppression, thermal stability, materials engineering, robotics, and optical cleanliness. The facility has been designed to conduct both x- ray driven targets and to be converted at a later date for direct drive experiments. The NIF has been configured to provide a wide range of experimental environments for the anticipated user groups of the facility. The design status of the major elements of the target area is described

  10. Design of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dae Yong; Lee, Byung Doo; Kwack, Eun Ho; Choi, Young Myong

    2001-05-01

    We are developing Safeguards Information Treatment System at the facility level(SITS) to manage synthetically safeguards information and to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, we described the contents of the detailed design of SITS such as database, I/O layout and program. In the present, we are implementing the SITS based on the contents of the design of SITS, and then we plan to provide the system for the facilities after we finish implementing and testing the system.

  11. Design of safeguards information treatment system at the facility level

    International Nuclear Information System (INIS)

    Song, Dae Yong; Lee, Byung Doo; Kwack, Eun Ho; Choi, Young Myong

    2001-05-01

    We are developing Safeguards Information Treatment System at the facility level(SITS) to manage synthetically safeguards information and to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, we described the contents of the detailed design of SITS such as database, I/O layout and program. In the present, we are implementing the SITS based on the contents of the design of SITS, and then we plan to provide the system for the facilities after we finish implementing and testing the system

  12. ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

    2003-01-01

    The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy

  13. Adaptation of the ITER facility design to a Canadian site

    International Nuclear Information System (INIS)

    Smith, S.

    2001-01-01

    This paper presents the status of Canadian efforts to adapt the newly revised ITER facility design to suit the specific characteristics of the proposed Canadian site located in Clarington, west of Toronto, Ontario. ITER Canada formed a site-specific design team in 1999, comprising participants from three Canadian consulting companies to undertake this work. The technical aspects of this design activity includes: construction planning, geotechnical investigations, plant layout, heat sink design, electrical system interface, site-specific modifications and tie-ins, seismic design, and radwaste management. These areas are each addressed in this paper. (author)

  14. Proton-beam window design for a transmutation facility operating with a liquid lead target

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, C.; Lypsch, F.; Lizana, P. [Institute for Safety Research and Reactor Technology, Juelich (Germany)] [and others

    1995-10-01

    The proton beam target of an accelerator-driven transmutation facility can be designed as a vertical liquid lead column. To prevent lead vapor from entering the accelerator vacuum, a proton-beam window has to separate the area above the lead surface from the accelerator tube. Two radiation-cooled design alternatives have been investigated which should withstand a proton beam of 1.6 GeV and 25 mA. Temperature calculations based on energy deposition calculations with the Monte Carlo code HETC, stability analysis and spallation-induced damage calculations have been performed showing the applicability of both designs.

  15. Earthquake resistant design of nuclear facilities with limited radioactive inventory

    International Nuclear Information System (INIS)

    1985-10-01

    This document comprises the essential elements of an earthquake resistant design code for nuclear facilities with limited radioactive inventory. The purpose of the document is the enhancement of seismic safety for such facilities without the necessity to resort to complicated and sophisticated methodologies which are often associated with and borrowed from nuclear power plant analysis and design. The first two sections are concerned with the type of facility for which the document is applicable and the radiological consideration for accident conditions. The principles of facility classification and item categorization as a function of the potential radiological consequences of failure are given in section 3. The design basis ground motion is evaluated in sections 4-6 using a simplified but conservative approach which also includes considerations for the underlying soil characteristics. Sections 7 and 8 specify the principles of seismic design of building structures and equipment using two methods, called the equivalent static and simplified dynamic approach. Considerations for the detailing of equipment and piping and those other than for lateral load calculations, such as sloshing effects, are given in the subsequent sections. Several appendices are given for illustration of the principles presented in the text. Finally, a design tree diagram is included to facilitate the user's task of making the appropriate selections. (author)

  16. Incorporating design for decommissioning into the layout of nuclear facilities

    International Nuclear Information System (INIS)

    Collum, B.; Druart, A.

    2008-01-01

    Design for Decommissioning (DfD) is the design of nuclear facilities in a manner that facilitates ultimate decommissioning in as safe, technically efficient and cost effective way as possible. Strictly speaking, (DfD) should need minimal introduction and this paper should ideally be aimed at discussing the finer points of some improvement to a practice that is already widely embedded throughout the nuclear industry. The reality though is quite different. As an industry, we all know what DfD is and indeed we do incorporate it into our designs. However, application is at best patchy and there is little evidence of applying it to the level that will be advocated here. When applied at its highest level, DfD is all about truly designing nuclear facilities with their whole life cycle in mind, such that the decommissioning phase is an integral part of the design of a facility from the very first day. In this way, when a facility comes to the end of its operational life, it can move smoothly to Post Operational Clean Out (POCO) and then through the various phases of decommissioning. Demonstrating from the start that the nuclear industry addresses the challenges posed by decommissioning will help it to gain support from the regulators and the general public for proposals to build new nuclear generating capacity. (author)

  17. The Alternative Design Features for Safety Enhancement in Shutdown Operation

    International Nuclear Information System (INIS)

    Oh, Hae Cheol; Kim, Myung Ki; Chung, Bag Soon; Seo, Mi Ro

    2009-01-01

    PSA can be used to confirm that the new plant design is complied with the applicable safety goals, and to select among the alternate design options. A shutdown PSA provides insight for outage planning schedule, outage management practices, and design modifications. Considering the results of both LPSD PSA studies and operating experiences for low power and shutdown, the improvements can be proposed to reduce the high risk contribution. The improvements/enhancements during shutdown operation may be divided into categories such as hardware, administrative management, and operational procedure. This paper presents on an example how the risk related to an accidental situation can be reduced, focusing the hardware design changes for the newly designed NPPs

  18. Design ampersand construction innovations of the defense waste processing facility

    International Nuclear Information System (INIS)

    McKibben, J.M.; Pair, C.R.; Bethmann, H.K.

    1990-01-01

    Construction of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is essentially complete. The facility is designed to convert high-level radioactive waste, now contained in large steel tanks as aqueous salts and sludge, into solid borosilicate glass in stainless steel canisters. All processing of the radioactive material and operations in a radioactive environment will be done remotely. The stringent requirements dictated by remote operation and new approaches to the glassification process led to the development of a number of first-of-a-kind pieces of equipment, new construction fabrication and erection techniques, and new applications of old techniques. The design features and construction methods used in the vitrification building and its equipment were to accomplish the objective of providing a state-of-the-art vitrification facility. 3 refs., 10 figs

  19. Proceedings of the Advanced Hadron Facility accelerator design workshop

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1989-01-01

    The International Workshop on Hadron Facility Technology was held February 22-27, 1988, at the Study Center at Los Alamos National Laboratory. The program included papers on facility plans, beam dynamics, and accelerator hardware. The parallel sessions were particularly lively with discussions of all facets of kaon factory design. The workshop provided an opportunity for communication among the staff involved in hadron facility planning from all the study groups presently active. The recommendations of the workshop include: the need to use h=1 RF in the compressor ring; the need to minimize foil hits in painting schemes for all rings; the need to consider single Coulomb scattering in injection beam los calculations; the need to study the effect of field inhomogeneity in the magnets on slow extraction for the 2.2 Tesla main ring of AHF; and agreement in principle with the design proposed for a joint Los Alamos/TRIUMF prototype main ring RF cavity

  20. Design and construction of a fast critical facility

    International Nuclear Information System (INIS)

    Kato, W.Y.; Dates, L.R.

    1962-01-01

    Design and construction of a fast critical facility. In a fast-power-reactor development programme, a critical facility is found to be a highly useful tool to ascertain calculational techniques, to verify neutron cross-section sets, and to obtain integral reactor-physics parameters necessary for the nuclear design of a power system. Since it is primarily a physics instrument, the design of a fast critical facility itself poses a number of different problems not found in the design of a power reactor. In addition to usual questions of site, containment, core design and instrumentation , there arise such problems as: how to obtain a large degree of flexibility consistent with safety, the determination of the size and type of facility to meet the experimental physics requirements, the determination of the number and location of control and safety rods minimizing perturbation effects and the specification of the reproducibility of control rods and other movable components to obtain the accuracy required in reactivity measurements. These are some of the problems which are discussed in this paper based on recent experience at the Argonne National Laboratory which has under construction a fast critical facility, ZPR-VI at its Lemont, Illinois site for fast-reactor-physics studies. The ZPR-VI is a movable half- or split-table-type machine similar to ZPR-III. It has a matrix about two and a half times the volume of the earlier machine and will be used to investigate the physics of large, highly dilute, metal and cermet, unmoderated and partially moderated systems having core volumes up to about 1500 l. A detailed description of the ZPR-VI with a discussion on the criteria used in the design of its various components from the point of view of reactor physics is presented. In addition, such topics as management and operating procedures, potential hazards during operation, experimental techniques to be used and construction costs are also included. (author) [fr

  1. Study of surface potential contamination in radioisotope and radiopharmaceutical production facilities and alternative solutions

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Farida Tusafariah; Djarwanti Rahayu Pipin Soedjarwo

    2013-01-01

    Radioisotope and radiopharmaceutical production facilities that exist in their operations around the world in the form of radiological impacts of radiation exposure, contamination of surface and air contamination. Given the number of existing open source in radioisotope and radiopharmaceutical production facility, then the possibility of surface contamination in the work area is quite high. For that to protect the safety and health of both workers, the public and the environment, then the licensee must conduct an inventory of some of the potential that could result in contamination of surfaces in radioisotope and radiopharmaceutical production facilities. Several potential to cause surface contamination in radioisotope and radiopharmaceutical production facilities consist of loss of resources, the VAC system disorders, impaired production facilities, limited resources and lack of work discipline and radioactive waste handling activities. From the study of some potential, there are several alternative solutions that can be implemented by the licensee to address the contamination of the surface so as not to cause adverse radiological impacts for both radiation workers, the public or the environment. (author)

  2. Design and Construction of a Hydroturbine Test Facility

    Science.gov (United States)

    Ayli, Ece; Kavurmaci, Berat; Cetinturk, Huseyin; Kaplan, Alper; Celebioglu, Kutay; Aradag, Selin; Tascioglu, Yigit; ETU Hydro Research Center Team

    2014-11-01

    Hydropower is one of the clean, renewable, flexible and efficient energy resources. Most of the developing countries invest on this cost-effective energy source. Hydroturbines for hydroelectric power plants are tailor-made. Each turbine is designed and constructed according to the properties, namely the head and flow rate values of the specific water source. Therefore, a center (ETU Hydro-Center for Hydro Energy Research) for the design, manufacturing and performance tests of hydraulic turbines is established at TOBB University of Economics and Technology to promote research in this area. CFD aided hydraulic and structural design, geometry optimization, manufacturing and performance tests of hydraulic turbines are the areas of expertise of this center. In this paper, technical details of the design and construction of this one of a kind test facility in Turkey, is explained. All the necessary standards of IEC (International Electrotechnical Commission) are met since the test facility will act as a certificated test center for hydraulic turbines.

  3. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  4. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  5. Neutron streaming analysis for shield design of FMIT Facility

    International Nuclear Information System (INIS)

    Carter, L.L.

    1980-12-01

    Applications of the Monte Carlo method have been summarized relevant to neutron streaming problems of interest in the shield design for the FMIT Facility. An improved angular biasing method has been implemented to further optimize the calculation of streaming and this method has been applied to calculate streaming within a double bend pipe

  6. Cold Vacuum Drying Facility Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    PIEPHO, M.G.

    1999-01-01

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR

  7. The design of diagnostic medical facilities using ionizing radiation

    International Nuclear Information System (INIS)

    1988-03-01

    This Code, setting out the general principles of radiological protection as applied to diagnostic radiation facilities in hospitals and clinics, is intended as a guide to architects and to works departments concerned with their design and construction, and with the modification of existing units

  8. Lessons learned by southern states in designating alternative routes

    International Nuclear Information System (INIS)

    1989-08-01

    The purpose of this report is to discuss the ''lessons learned'' by the five states within the southem region that have designated alternative or preferred routes under the regulations of the Department of Transportation (DOT) established for the transportation of radioactive materials. The document was prepared by reviewing applicable federal laws and regulations, examining state reports and documents and contacting state officials and routing agencies involved in making routing decisions. In undertaking this project, the Southern States Energy Board hopes to reveal the process used by states that have designated alternative routes and thereby share their experiences (i.e., lessons learned) with other southern states that have yet to make designations. Under DOT regulations (49 CFR 177.826), carriers of highway route controlled quantities of radioactive materials (which include spent nuclear fuel and high-level waste) must use preferred routes selected to reduce time in transit. Such preferred routes consist of (1) an interstate system highway with use of an interstate system bypass or beltway around cities when available, and (2) alternate routes selected by a ''state routing agency.''

  9. Design guides for radioactive-material-handling facilities and equipment

    International Nuclear Information System (INIS)

    Doman, D.R.; Barker, R.E.

    1980-01-01

    Fourteen key areas relating to facilities and equipment for handling radioactive materials involved in examination, reprocessing, fusion fuel handling and remote maintenance have been defined and writing groups established to prepare design guides for each areas. The guides will give guidance applicable to design, construction, operation, maintenance and safety, together with examples and checklists. Each guide will be reviewed by an independent review group. The guides are expected to be compiled and published as a single document

  10. THE ALTERNATIVE CORELDRAWINGS AN IDEAL SOLUTION FOR DESIGNERS, IN EMBROIDERY

    Directory of Open Access Journals (Sweden)

    Marin Florea

    2013-01-01

    Full Text Available The machine beaded appearance coincides with the first sewing machine mechanical America sold out in the best-known company of sewing machines in the world: The singer Company in the year 1863. The first machine beaded computer-assisted has been constructed by Wilcom in 1980. After 1990, developments in microprocessors allowed that all types of mechanical machines beaded to turn to digital machines beaded. These machines use digital designs. Developments in digital beaded machines allowed customization industrial products made in series. The raw material that is most important is a digital drawing. List of most important brands is high. Taking into account the number of large editors for embroidery it is almost impossible for a designer to know CAD design for all text editors. This is a problem both for designers but also for producers. A practical solution for designers is CorelDrawings what offers the convenience of design specific vector graphic-designers. Automatic conversion of the vector, the library with textures, simulate embroideries and save specific formats great brands make CorelDrawings a practical alternative. Designer can focus on specific problems without using a large number of editors for each brand. We approached a drawing of the logo to demonstrate practical capabilities. Drawing digital was saved in a format and open industrial professional editor Wilcom Designer. Export to grid format may allow analysis and discussions with the customer before it has been transposed into production.

  11. Final design of ITER port plug test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerisier, Thierry, E-mail: thierry.cerisier@yahoo.fr [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Levesy, Bruno [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Romannikov, Alexander [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation); Rumyantsev, Yuri [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Cordier, Jean-Jacques; Dammann, Alexis [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Minakov, Victor; Rosales, Natalya; Mitrofanova, Elena [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Portone, Sergey; Mironova, Ekaterina [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation)

    2016-11-01

    Highlights: • We introduce the port plug test facility (purpose and status of the design). • We present the PPTF sub-systems. • We present the environmental and functional tests. • We present the occupational and nuclear safety functions. • We conclude on the achievements and next steps. - Abstract: To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill this requirement, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment. The ITER port plug test facility (PPTF) is composed of several test stands that can be used to test the port plugs whereas at the end of manufacturing (in a non-nuclear environment), or after refurbishment in the ITER hot cell facility. The PPTF provides the possibility to perform environmental (leak tightness, vacuum and thermo-hydraulic performances) and functional tests (radio frequency acceptance tests, behavior of the plugs’ steering mechanism and calibration of diagnostics) on upper and equatorial port plugs. The final design of the port plug test facility is described. The configuration of the standalone test stands and the integration in the hot cell facility are presented.

  12. Requirements and design concept for a facility mapping system

    International Nuclear Information System (INIS)

    Barry, R.E.; Burks, B.L.; Little, C.Q.

    1995-01-01

    The Department of Energy (DOE) has for some time been considering the Decontamination and Dismantlement (D ampersand D) of facilities which are no longer in use, but which are highly contaminated with radioactive wastes. One of the holdups in performing the D ampersand D task is the accumulation of accurate facility characterizations that can enable a safe and orderly cleanup process. According to the Technical Strategic Plan for the Decontamination and Decommissioning Integrated Demonstration, open-quotes the cost of characterization using current baseline technologies for approximately 100 acres of gaseous diffusion plant at Oak Ridge alone is, for the most part incalculableclose quotes. Automated, robotic techniques will be necessary for initial characterization and continued surveillance of these types of sites. Robotic systems are being designed and constructed to accomplish these tasks. This paper describes requirements and design concepts for a system to accurately map a facility contaminated with hazardous wastes. Some of the technologies involved in the Facility Mapping System are: remote characterization with teleoperated, sensor-based systems, fusion of data sets from multiple characterization systems, and object recognition from 3D data models. This Facility Mapping System is being assembled by Oak Ridge National Laboratory for the DOE Office of Technology Development Robotics Technology Development Program

  13. Design of good manufacturing facility for sterile radioactive pharmaceuticals

    International Nuclear Information System (INIS)

    Shin, B.C.; Choung, W.M.; Park, S.H.; Lee, K.I.; Park, J.H.; Park, K.B.

    2002-01-01

    Based on the GMP codes for radiopharmaceuticals in U.K. and some advanced countries, suitable guidelines for the production facility have been established and followed them up. The facility designs were fairly modified to maintain cleanliness criteria for installation in the existing radioisotope production facilities which are installed only in radiation safety points of view. Detailed design brief was drawn up by the Hyundai Engineering staffs, on the basis of initial planning and conceptual design was carried out by authors. Hot cells were installed in preparation room for radioactive handling. As hot cells under negative air pressure are not properly airtight, the surrounding environment was designed to keep less than class 10,000. Hot cells were designed to maintain less than class 1 0,000 and partially less than class 1 00 for production of sterile products. Final products will be autoclaved for sterilization after filling. To avoid contamination by microorganisms and particles of surrounding area, air curtain with vertical laminar flow will be installed between anteroom and corridor. In a pharmaceutical environment, the main consideration is the protection of the product. Thus, work station is held above ambient pressure. However, when handling radioactive materials, air pressure for work station should be lower than in surrounding areas to protect the operators and the remainder of the facility from airborne radioactive contamination. As Radiopharmaceuticals are radioactive materials for medical use, changing room could be held higher pressure than any other zones. It is expected that the facility will be effectively used for both routine preparation and research for sterile radiopharmaceuticals. (Author)

  14. An ARM Mobile Facility Designed for Marine Deployments

    Science.gov (United States)

    Wiscombe, W. J.

    2007-05-01

    The U.S. Dept. of Energy's ARM (Atmospheric Radiation Measurements) Program is designing a Mobile Facility exclusively for marine deployments. This marine facility is patterned after ARM's land Mobile Facility, which had its inaugural deployment at Point Reyes, California, in 2005, followed by deployments to Niger in 2006 and Germany in 2007 (ongoing), and a planned deployment to China in 2008. These facilities are primarily intended for the study of clouds, radiation, aerosols, and surface processes with a goal to include these processes accurately in climate models. They are preferably embedded within larger field campaigns which provide context. They carry extensive instrumentation (in several large containers) including: cloud radar, lidar, microwave radiometers, infrared spectrometers, broadband and narrowband radiometers, sonde-launching facilities, extensive surface aerosol measurements, sky imagers, and surface latent and sensible heat flux devices. ARM's Mobile Facilities are designed for 6-10 month deployments in order to capture climatically-relevant datasets. They are available to any scientist, U.S. or international, who wishes to submit a proposal during the annual Spring call. The marine facility will be adapted to, and ruggedized for, the harsh marine environment and will add a scanning two-frequency radar, a boundary-layer wind profiler, a shortwave spectrometer, and aerosol instrumentation adapted to typical marine aerosols like sea salt. Plans also include the use of roving small UAVs, automated small boats, and undersea autonomous vehicles in order to address the point-to-area-average problem which is so crucial for informing climate models. Initial deployments are planned for small islands in climatically- interesting cloud regimes, followed by deployments on oceanic platforms (like decommissioned oil rigs and the quasi-permanent platform of this session's title) and eventually on large ships like car carriers plying routine routes.

  15. Design strategies for the International Space University's variable gravity research facility

    Science.gov (United States)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1990-01-01

    A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.

  16. Key points for the design of Mox facilities

    International Nuclear Information System (INIS)

    Ducroux, R.; Gaiffe, L.; Dumond, S.; Cret, L.

    1998-01-01

    The design of a MOX fuel fabrication facility involves specific technical difficulties: - Process aspects: for example, its is necessary to meet the stringent requirements on the end products, while handling large quantities of powders and pellets; - Safety aspects: for example, containment of radioactive materials requires to use gloveboxes, to design process equipment so as to limit dispersion to the gloveboxes and to use systems for dust collection. - Technological aspects: for example, it is necessary to take into account maintenance early in the design, in order to lower the operation costs and lower the dose to the personnel. - Quality control and information systems: for example, it is necessary to be able to trace all the different products (powder lots, pellets, rods, assemblies). The design methods and organization set-up by COGEMA enables to master these technical difficulties during the different design steps and to obtain a MOX fabrication facility at the best performance versus cost compromise. These design methods rely mainly on: - taking into account all the different above mentioned constraints from the very beginning of the design process (by using the know-how resulting from experience feed-back, and also specific design tools developed by COGEMA and SGN); - launching a technical development and testing program at the beginning of the project and incorporating its results in the course of the design. (author)

  17. Waste receiving and processing facility module 1, detailed design report

    International Nuclear Information System (INIS)

    1993-10-01

    WRAP 1 baseline documents which guided the technical development of the Title design included: (a) A/E Statement of Work (SOW) Revision 4C: This DOE-RL contractual document specified the workscope, deliverables, schedule, method of performance and reference criteria for the Title design preparation. (b) Functional Design Criteria (FDC) Revision 1: This DOE-RL technical criteria document specified the overall operational criteria for the facility. The document was a Revision 0 at the beginning of the design and advanced to Revision 1 during the tenure of the Title design. (c) Supplemental Design Requirements Document (SDRD) Revision 3: This baseline criteria document prepared by WHC for DOE-RL augments the FDC by providing further definition of the process, operational safety, and facility requirements to the A/E for guidance in preparing the design. The document was at a very preliminary stage at the onset of Title design and was revised in concert with the results of the engineering studies that were performed to resolve the numerous technical issues that the project faced when Title I was initiated, as well as, by requirements established during the course of the Title II design

  18. Safety design of the international fusion materials irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yamaki, Daiju; Katsuta, Hiroji; Moeslang, Anton; Jameson, R.A.; Martone, Marcello; Shannon, T.E.

    1997-11-01

    In the Conceptual Design Activity of the IFMIF, major subsystems, as well as the entire facility is carefully designed to satisfy the safety requirements for any possible construction sites. Each subsystem is qualitatively analyzed to identify possible hazards to the workers, public and environments using Failure Mode and Effect Analysis (FMEA). The results are reflected in the design and operation procedure. Shielding of radiation, particularly neutron around the test cell is one of the most important issue in normal operation. Radiation due to beam halo and activation is a hazard for operation personnel in the accelerator system. For the maintenance, remote handling technology is designed to be applied in various facilities of the IFMIF. Lithium loop and target system hold the majority of the radioactive material in the facility. Tritium and beryllium-7 are generated by the nuclear reaction during operation and thus needed to be removed continuously. They are also the potential hazards of airborne source in off-normal events. Minimization of inventory, separation and immobilization, and multiple confinement are considered in the design. Generation of radioactive waste is anticipated to be minor, but waste treatment systems for gas, liquid and solid wastes are designed to minimize the environmental impact. Lithium leak followed by a fire is a major concern, and extensive prevention plan is made in the target design. One of the design option considered is composed of; primary enclosure of the lithium loop, secondary containment filled with positive pressure argon, and an air tight lithium cell made of concrete with a steel lining. This study will report some technical issues considered in the design of IFMIF. It was concluded that the IFMIF can be designed and constructed to meet or exceed current safely standards for workers, public and the environment with existing technology and reasonable construction cost. (J.P.N.)

  19. LSST summit facility construction progress report: reacting to design refinements and field conditions

    Science.gov (United States)

    Barr, Jeffrey D.; Gressler, William; Sebag, Jacques; Seriche, Jaime; Serrano, Eduardo

    2016-07-01

    The civil work, site infrastructure and buildings for the summit facility of the Large Synoptic Survey Telescope (LSST) are among the first major elements that need to be designed, bid and constructed to support the subsequent integration of the dome, telescope, optics, camera and supporting systems. As the contracts for those other major subsystems now move forward under the management of the LSST Telescope and Site (T and S) team, there has been inevitable and beneficial evolution in their designs, which has resulted in significant modifications to the facility and infrastructure. The earliest design requirements for the LSST summit facility were first documented in 2005, its contracted full design was initiated in 2010, and construction began in January, 2015. During that entire development period, and extending now roughly halfway through construction, there continue to be necessary modifications to the facility design resulting from the refinement of interfaces to other major elements of the LSST project and now, during construction, due to unanticipated field conditions. Changes from evolving interfaces have principally involved the telescope mount, the dome and mirror handling/coating facilities which have included significant variations in mass, dimensions, heat loads and anchorage conditions. Modifications related to field conditions have included specifying and testing alternative methods of excavation and contending with the lack of competent rock substrate where it was predicted to be. While these and other necessary changes are somewhat specific to the LSST project and site, they also exemplify inherent challenges related to the typical timeline for the design and construction of astronomical observatory support facilities relative to the overall development of the project.

  20. Radiation shielding design for a hot repair facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Dwight, C.C.

    1991-01-01

    A new repair and decontamination area is being built to support operations at the demonstration fuel cycle facility for the Integral Fast Reactor program at Argonne National Laboratory's site at the Idaho National Engineering Laboratory. Provisions are made for remote, glove wall, and contact maintenance on equipment removed from hot cells where spent fuel will be electrochemically processed and recycled to the Experimental Breeder Reactor-II. The source for the shielding design is contamination from a mix of fission and activation products present on items removed from the hot cells. The repair facility also serves as a transfer path for radioactive waste produced by processing operations. Radiation shields are designed to limit dose rates to no more than 5 microSv h-1 (0.5 mrem h-1) in normally occupied areas. Point kernel calculations with buildup factors have been used to design the shielding and to position radiation monitors within the area

  1. Proposed design criteria for a fusion facility electrical ground system

    International Nuclear Information System (INIS)

    Armellino, C.A.

    1983-01-01

    Ground grid design considerations for a nuclear fusion reactor facility are no different than any other facility in that the basis for design must be safety first and foremost. Unlike a conventional industrial facility the available fault energy comes not only from the utility source and in-house rotating machinery, but also from energy storage capacitor banks, collapsing magnetic fields and D.C. transmission lines. It is not inconceivable for a fault condition occurrence where all available energy can be discharged. The ground grid must adequately shunt this sudden energy discharge in a way that personnel will not be exposed by step and/or touch to hazardous energy levels that are in excess of maximum tolerable levels for humans. Fault energy discharge rate is a function of the ground grid surge impedance characteristic. Closed loop paths must be avoided in the ground grid design so that during energy discharge no stray magnetic fields or large voltage potentials between remote points can be created by circulating currents. Single point connection of equipment to the ground grid will afford protection to personnel and sensitive equipment by reducing the probability of circulating currents. The overall ground grid system design is best illustrated as a wagon wheel concept with the fusion machine at the center. Radial branches or spokes reach out to the perimeter limits designated by step-and-touch high risk areas based on soil resistivity criteria considerations. Conventional methods for the design of a ground grid with all of its radial branches are still pertinent. The center of the grid could include a deep well single ground rod element the length of which is at least equivalent to the radius of an imaginary sphere that enshrouds the immediate machine area. Special facilities such as screen rooms or other shielded areas are part of the ground grid system by way of connection to radial branches

  2. IAEA Guidance for Safeguards Implementation in Facility Design and Construction

    International Nuclear Information System (INIS)

    Sprinkle, J.; Hamilton, A.; Poirier, S.; Catton, A.; Ciuculescu, C.; Ingegneri, M.; Plenteda, R.

    2015-01-01

    One of the IAEA's statutory objectives is to seek to accelerate and enlarge the contribution of nuclear energy to peace, health and prosperity throughout the world. One way the IAEA works to achieve this objective is through the publication of technical series that can provide guidance to Member States. These series include the IAEA Services Series, the IAEA Safety Standard Series, the IAEA Nuclear Security Series and the IAEA Nuclear Energy Series. The Nuclear Energy Series is comprised of publications designed to encourage and assist research and development on, and practical application of, nuclear energy for peaceful purposes. This includes guidance to be used by owners and operators of utilities, academia, vendors and government officials. The IAEA has chosen the Nuclear Energy Series to publish guidance for States regarding the consideration of safeguards in nuclear facility design and construction. Historically, safeguards were often applied after a facility was designed or maybe even after it was built. However, many in the design and construction community would prefer to include consideration of these requirements from the conceptual design phase in order to reduce the need for retro-fits and modifications. One can then also take advantage of possible synergies between safeguards, security, safety and environmental protection and reduce the project risk against cost increments and schedule slippage. The IAEA is responding to this interest with a suite of publications in the IAEA Nuclear Energy Series, developed with the assistance of a number of Member State Support Programmes through a joint support programme task: · International Safeguards in Nuclear Facility Design and Construction (NP-T-2.8, 2013), · International Safeguards in the Design of Nuclear Reactors (NP-T-2.9, 2014), · International Safeguards in the Design of Spent Fuel Management (NF-T-3.1, tbd), · International Safeguards in the Design of Fuel Fabrication Plants (NF-T-4.7, tbd

  3. Radiological design criteria for fusion power test facilities

    International Nuclear Information System (INIS)

    Singh, M.S.; Campbell, G.W.

    1982-01-01

    The quest for fusion power and understanding of plasma physics has resulted in planning, design, and construction of several major fusion power test facilities, based largely on magnetic and inertial confinement concepts. We have considered radiological design aspects of the Joint European Torus (JET), Livermore Mirror and Inertial Fusion projects, and Princeton Tokamak. Our analyses on radiological design criteria cover acceptable exposure levels at the site boundary, man-rem doses for plant personnel and population at large, based upon experience gained for the fission reactors, and on considerations of cost-benefit analyses

  4. Methods and techniques for decontamination design and construction of facilities

    International Nuclear Information System (INIS)

    Augustin, X.; Cohen, S.

    1986-01-01

    TECHNICATOME and STMI have jointly solved a wide range of problems specific to decontamination from the very design studies up to operation. TECHNICATOME has brought its expertise in the design and construction of nuclear facilities concerned in particular with decontamination and radwaste management. STMI is an experienced operator with expertise in designing tools and developing advanced techniques in the same fields. The expertise of both companies in this field cumulated for many years has resulted in developing techniques and tools adapted to most of the decontamination problems including specific cases [fr

  5. Urbanonymic Design: On the Naming of City Facilities

    Directory of Open Access Journals (Sweden)

    Marina V. Golomidova

    2015-06-01

    Full Text Available The paper focuses on the problems of naming and renaming of municipal facilities: streets, squares, parks, public gardens, etc. The author’s reflections rest upon her personal experience as a member of the Facilities Naming Committee of the city of Ekaterinburg. The article seeks to suggest a new approach to the solution of controversial issues of naming city facilities based on territory branding and city image design and promotion concepts. Place names are thus considered as an important informational and communicational resource of creation of a city’s image which means that the naming of concrete city facilities should rely on a holistic urbanonymic conception defining basic features of the city’s identity and ordering themes to be reflected in names. The author argues that the rational long-term urbanonymic policy implies the existence of a consistent image-making strategy. In this case the process of naming and its results could be characterized in terms of ‘urbanonymic design’ considering the naming of city facilities as a part of the construction of the city’s identity. The policy of official naming of city-owned assets must then meet the following requirements: proportionality, functionality, orientation capacity, semantic transparency, harmonicity, which constitute the most significant principles of construction of an urbanonymic system.

  6. Design for the second phase Rokkasho LLW burial facility

    International Nuclear Information System (INIS)

    Kumata, Tadamasa

    1997-01-01

    Rokkasho Low Level radioactive Waste management center of Japan Nuclear Fuel Limited (hereafter called JNFL) has been operating for five years and about 90,000 (200 liter) drums have already been buried. Currently, JNFL is planning the 2nd phase of the burial program. The basic design of the new facility has been completed and applied for license additionally. Wastes buried in the 2nd phase facility are mainly dry active wastes from nuclear power plants. Inflammable wastes except for plastics are incinerated before they are disposed, because organic materials can generate gas and their degraded materials affect the distribution coefficients of the radionuclides. Most of the aluminum wastes which can generate hydrogen gas by corrosion are also removed from the waste. The 2nd phase facility accepts metal, plastics and non-flammable wastes. These are solidified with mortar in the 200 liter drums at the power plants. The radioactive inventory of the 2nd phase facility is considered to be as much as that of the 1st phase facility. (author)

  7. Assessment of processes, facilities, and costs for alternative solid forms for immobilization of SRP defense waste

    International Nuclear Information System (INIS)

    Dunson, J.B. Jr.; Eisenberg, A.M.; Schuyler, R.L. III; Haight, H.G. Jr.; Mello, V.E.; Gould, T.H. Jr.; Butler, J.L.; Pickett, J.B.

    1982-03-01

    A quantitative merit evaluation which assesses the relative difficulty of remote processing of Savannah River Plant high-level wastes for seven alternative waste forms is presented. The reference borosilicate glass process is rated as the simplest, followed by FUETAP concrete. The other processes evaluated in order of increasing complexity were: glass marbles in a lead matrix, high-silica glass, crystalline ceramic (Synroc-D and tailored ceramic), and coated ceramic particles. Cost appraisals are summarized for the borosilicate glass, high-silica glass, and ceramic waste form processing facilities

  8. Sound & Vibration 20 Design Guidelines for Health Care Facilities

    CERN Document Server

    Tocci, Gregory; Cavanaugh, William

    2013-01-01

    Sound, vibration, noise and privacy have significant impacts on health and performance. As a result, they are recognized as essential components of effective health care environments. However, acoustics has only recently become a prominent consideration in the design, construction, and operation of healthcare facilities owing to the absence, prior to 2010, of clear and objective guidance based on research and best practices. Sound & Vibration 2.0 is the first publication to comprehensively address this need. Sound & Vibration 2.0 is the sole reference standard for acoustics in health care facilities and is recognized by: the 2010 FGI Guidelines for the Design and Construction of Health Care Facilities (used in 60 countries); the US Green Building Council’s LEED for Health Care (used in 87 countries); The Green Guide for Health Care V2.2; and the International Code Council (2011). Sound & Vibration 2.0 was commissioned by the Facility Guidelines Institute in 2005, written by the Health Care Acous...

  9. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  10. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  11. Human factors in design modifications: panel alternative stop in Almaraz

    International Nuclear Information System (INIS)

    Roman, Y.; Bote, J.

    2015-01-01

    Human Factors Engineering has acquired a crucial role in the development of any design modification (DM), where every aspect relative to any interaction with the human user has to be taken into account at any stage thereof. Considering this, during the last years, Almaraz Nuclear Powe Plants has developed a program of Human Factors Engineering in order to reach the internationally recognized standards or systematic collected on NUREG 0711 Human Factors Engineering Program Review Model (NRC). One of the most important projects of this program at Almaraz Nuclear Power Plant has been the implementation of the Alternative Stop Panel and their corresponding Transfer Panels. (Author)

  12. An Evaluation of Alternative Designs for a Grid Information Service

    Science.gov (United States)

    Smith, Warren; Waheed, Abdul; Meyers, David; Yan, Jerry; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The Globus information service wasn't working well. There were many updates of data from Globus daemons which saturated the single server and users couldn't retrieve information. We created a second server for NASA and Alliance. Things were great on that server, but a bit slow on the other server. We needed to know exactly how the information service was being used. What were the best servers and configurations? This viewgraph presentation gives an overview of the evaluation of alternative designs for a Grid Information Service. Details are given on the workload characterization, methodology used, and the performance evaluation.

  13. Design Optimisation of a High Intensity Beam Facility and Feasibility Experiment of a Solid Fragmented Target

    CERN Document Server

    Charitonidis, Nikolaos; Rivkin, Leonid

    2014-06-13

    The present PhD thesis describes the design, execution and results of the HRMT-10 experiment performed at the HiRadMat facility of the CERN/SPS complex. The first part of the thesis covers the design optimization studies of the HiRadMat facility, focusing in particular on the radiation protection issues. A detailed Monte-Carlo model of the facility has been developed and validated through comparison with measurements. A very satisfactory agreement between the simulation and the experimental data is observed. In the second part of this thesis, a novel feasibility experiment of a fragmented solid target for a future Neutrino Factory or a Super Beam facility, able to support high beam powers ( 1 MW) is presented in detail. A solid granular target has been proposed as an interesting alternative to an open Hg jet target, presently considered as the baseline for such facilities, but posing considerable technical challenges. The HRMT-10 experiment seeks to address the lack of experimental data of the feasibility of...

  14. Codes, standards, and requirements for DOE facilities: natural phenomena design

    International Nuclear Information System (INIS)

    Webb, A.B.

    1985-01-01

    The basic requirements for codes, standards, and requirements are found in DOE Orders 5480.1A, 5480.4, and 6430.1. The type of DOE facility to be built and the hazards which it presents will determine the criteria to be applied for natural phenomena design. Mandatory criteria are established in the DOE orders for certain designs but more often recommended guidance is given. National codes and standards form a great body of experience from which the project engineer may draw. Examples of three kinds of facilities and the applicable codes and standards are discussed. The safety program planning approach to project management used at Westinghouse Hanford is outlined. 5 figures, 2 tables

  15. Radiotherapy facilities: Master planning and concept design considerations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    This publication provides guidelines on how to plan a radiotherapy facility in terms of the strategic master planning process including the legal, technical and infrastructure requirements. It outlines a risk assessment methodology, a typical project work plan and describes the professional expertise required for the implementation of such a project. Generic templates for a block design are suggested, which include possibilities for future expansion. These templates can be overlaid onto the designated site such that the most efficient workflow between the main functional areas can be ensured. A sample checklist is attached to act as a guideline for project management and to indicate the critical stages in the process where technical expert assistance may be needed. The publication is aimed at professionals and administrators involved in infrastructure development, planning and facility management, as well as engineers, building contractors and radiotherapy professionals.

  16. Large scale sodium interactions. Part 1. Test facility design

    International Nuclear Information System (INIS)

    King, D.L.; Smaardyk, J.E.; Sallach, R.A.

    1977-01-01

    During the design of the test facility for large scale sodium interaction testing, an attempt was made to keep the system as simple and yet versatile as possible; therefore, a once through design was employed as opposed to any type of conventional sodium ''loop.'' The initial series of tests conducted at the facility call for rapidly dropping from 20 kg to 225 kg of sodium at temperatures from 825 0 K to 1125 0 K into concrete crucibles. The basic system layout is described. A commercial drum heater is used to melt the sodium which is in 55 gallon drums and then a slight argon pressurization is used to force the liquid sodium through a metallic filter and into a dump tank. Then the sodium dump tank is heated to the desired temperature. A diaphragm is mechanically ruptured and the sodium is dumped into a crucible that is housed inside a large steel test chamber

  17. Radiotherapy Facilities: Master Planning and Concept Design Considerations (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidelines on how to plan a radiotherapy facility in terms of the strategic master planning process including the legal, technical and infrastructure requirements. It outlines a risk assessment methodology and a typical project work plan, and describes the professional expertise required for the implementation of such a project. Generic templates for a block design are suggested, which include possibilities for future expansion. These templates can be overlaid onto the designated site such that the most efficient workflow between the main functional areas can be ensured. A sample checklist is attached to act as a guideline for project management and to indicate the critical stages in the process where technical expert assistance may be needed. The publication is aimed at professionals and administrators involved in infrastructure development, planning and facility management, as well as engineers, building contractors and radiotherapy professionals

  18. Radiotherapy facilities: Master planning and concept design considerations

    International Nuclear Information System (INIS)

    2014-01-01

    This publication provides guidelines on how to plan a radiotherapy facility in terms of the strategic master planning process including the legal, technical and infrastructure requirements. It outlines a risk assessment methodology, a typical project work plan and describes the professional expertise required for the implementation of such a project. Generic templates for a block design are suggested, which include possibilities for future expansion. These templates can be overlaid onto the designated site such that the most efficient workflow between the main functional areas can be ensured. A sample checklist is attached to act as a guideline for project management and to indicate the critical stages in the process where technical expert assistance may be needed. The publication is aimed at professionals and administrators involved in infrastructure development, planning and facility management, as well as engineers, building contractors and radiotherapy professionals

  19. Shielding Design and Radiation Shielding Evaluation for LSDS System Facility

    International Nuclear Information System (INIS)

    Kim, Younggook; Kim, Jeongdong; Lee, Yongdeok

    2015-01-01

    As the system characteristics, the target in the spectrometer emits approximately 1012 neutrons/s. To efficiently shield the neutron, the shielding door designs are proposed for the LSDS system through a comparison of the direct shield and maze designs. Hence, to guarantee the radiation safety for the facility, the door design is a compulsory course of the development of the LSDS system. To improve the shielding rates, 250x250 covering structure was added as a subsidiary around the spectrometer. In this study, the evaluations of the suggested shielding designs were conducted using MCNP code. The suggested door design and covering structures can shield the neutron efficiently, thus all evaluations of all conditions are satisfied within the public dose limits. From the Monte Carlo code simulation, Resin(Indoor type) and Tungsten(Outdoor type) were selected as the shielding door materials. From a comparative evaluation of the door thickness, In and Out door thickness was selected 50 cm

  20. Alternative bipolar plates design and manufacturing for PEM fuel cell

    International Nuclear Information System (INIS)

    Lee Chang Chuan; Norhamidi Muhamad; Jaafar Sahari

    2006-01-01

    Bipolar plates is one of the important components in fuel cell stack, it comprise up to 80% of the stack volume. Traditionally, these plates have been fabricated from graphite, owing to its chemical nobility, and high electrical and thermal conductivity; but these plates are brittle and relatively thick. Therefore increasing the stack volume and size. Alternatives to graphite are carbon-carbon composite, carbon-polymer composite and metal (aluminum, stainless steel, titanium and nickel based alloy). The use of coated and uncoated metal bipolar plates has received attention recently due to the simplicity of plate manufacturing. The thin nature of the metal substrate allows for smaller stack design with reduced weight. Lightweight coated metals as alternative to graphite plate is being developed. Beside the traditional method of machining and slurry molding, metal foam for bipolar plates fabrication seems to be a good alternative. The plates will be produced with titanium powder by Powder Metallurgy method using space holders technique to produce the meal foam flow-field. This work intends to facilitate the materials and manufacturing process requirements to produce cost effective foamed bipolar plates for fuel cell

  1. Basic Design of the Cold Neutron Research Facility in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K.

    2005-09-01

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments

  2. Basic Design of the Cold Neutron Research Facility in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K. (and others)

    2005-09-15

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments.

  3. Mortality monitoring design for utility-scale solar power facilities

    Science.gov (United States)

    Huso, Manuela; Dietsch, Thomas; Nicolai, Chris

    2016-05-27

    IntroductionSolar power represents an important and rapidly expanding component of the renewable energy portfolio of the United States (Lovich and Ennen, 2011; Hernandez and others, 2014). Understanding the impacts of renewable energy development on wildlife is a priority for the U.S. Fish and Wildlife Service (FWS) in compliance with Department of Interior Order No. 3285 (U.S. Department of the Interior, 2009) to “develop best management practices for renewable energy and transmission projects on the public lands to ensure the most environmentally responsible development and delivery of renewable energy.” Recent studies examining effects of renewable energy development on mortality of migratory birds have primarily focused on wind energy (California Energy Commission and California Department of Fish and Game, 2007), and in 2012 the FWS published guidance for addressing wildlife conservation concerns at all stages of land-based wind energy development (U.S. Fish and Wildlife Service, 2012). As yet, no similar guidelines exist for solar development, and no published studies have directly addressed the methodology needed to accurately estimate mortality of birds and bats at solar facilities. In the absence of such guidelines, ad hoc methodologies applied to solar energy projects may lead to estimates of wildlife mortality rates that are insufficiently accurate and precise to meaningfully inform conversations regarding unintended consequences of this energy source and management decisions to mitigate impacts. Although significant advances in monitoring protocols for wind facilities have been made in recent years, there remains a need to provide consistent guidance and study design to quantify mortality of bats, and resident and migrating birds at solar power facilities (Walston and others, 2015).In this document, we suggest methods for mortality monitoring at solar facilities that are based on current methods used at wind power facilities but adapted for the

  4. Design and shielding calculation for a PET/CT facility

    International Nuclear Information System (INIS)

    Martin Escuela, J. M.; Palau San Pedro, A.; Lopez Diaz, A.

    2013-01-01

    Following the AAPM Task Group Report No. 108, the NCRP Report No. 147 recommendations and the Cuban's local regulations for nuclear medicine practice were carried out the safety planning and design of a new PET/CT facility for the Nuclear Medicine Department of 'Hermanos Ameijeiras' Hospital. It should be installed in the top floor of the NM building (3th floor), occupied by offices, classrooms and ancillaries areas, meanwhile in the second floor is working the conventional nuclear medicine department. The radiation doses were evaluated in areas of the second, third and quarter floor taking into account the pet isotope, the workload, the occupancy factors of each place, the use factors of different sources and the dose reduction factors, warranty the accomplish of the Cuban dose restrictions associated to the nuclear medicine practice. In each point of calculation was considered the contribution from each source to the total dose, as well as the contribution of the CT in the adjacent room to the imaging room. For the proper facility design was considered the transmission factors of the existing barriers, and calculated the new ones to be added between each source and the estimation point, keeping in mind the space limitations. The PET/CT design plan meet all the needs, the development of the project is consistent with the mission of the facility and the radiation protection regulations of nuclear medicine. (Author)

  5. Present status of the conceptual design of IFMIF target facility

    International Nuclear Information System (INIS)

    Katsuta, H.; Kato, Y.; Konishi, S.; Miyauchi, Y.; Smith, D.; Hua, T.; Green, L.; Benamati, G.; Cevolani, S.; Roehrig, H.; Schutz, W.

    1998-01-01

    The conceptual design activity (CDA) for the international fusion materials irradiation facility (IFMIF) has been conducted. For the IFMIF target facility, the conceptual designs of the following two main components have been performed. The design concept of IFMIF utilizes a high energy deuteron beam of 30-40 MeV and total current of 250 mA, impinging on a flowing lithium jet to produce high energy neutrons for irradiation of candidate fusion materials. (1) The target assembly: The kinetic energy of the deuteron beam is deposited on a Li-jet target and neutrons are produced through the d-Li stripping reaction in this target. The assembly is designed to get a stable lithium jet and to prevent the onset of lithium boiling. For 40-MeV deuteron beam (total current of 250 mA) and a beam footprint of 5 x 20 cm 2 lithium jet dimensions are designed to be 2.5 cm thick and 26 cm wide. The lithium jet parameters are given. (2) Lithium loop: The loop circulates the lithium to and from the target assembly and removes the heat deposited by the deuteron beam containing systems for maintaining the-high purity of the lithium required for radiological safety and to minimize corrosion. The maximum lithium flow rate is 130 l/s and the total lithium inventory is about 21 m 3 . The IFMIF policy requires that the lithium loop system be designed to guarantee no combustion of lithium in the event of a lithium leak. This can be achieved by use of multiple confinement of the lithium carrying components. The radioactive waste generated by the target facilities is estimated. (orig.)

  6. Decommissioning Work Modeling System for Nuclear Facility Decommissioning Design

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, W. H.; Choi, Y. D.; Moon, J. K.

    2012-01-01

    During the decommissioning activities of the KRR-1 and 2 (Korea Research Reactor 1 and 2) and UCP (Uranium Conversion Plant), all information and data, which generated from the decommissioning project, were record, input and managed at the DECOMMIS (DECOMMissioning Information management System). This system was developed for the inputting and management of the data and information of the man-power consumption, operation time of the dismantling equipment, the activities of the radiation control, dismantled waste management and Q/A activities. When a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste volume and estimating the cost of the decommissioning project. That is why, the DEFACS (DEcommissioning FAcility Characterization DB System) was established for the management of the facility characterization data. The DEWOCS (DEcommissioning WOrk-unit productivity Calculation System) was developed for the calculation of the workability on the decommissioning activities. The work-unit productivities are calculated through this system using the data from the two systems, DECOMMIS and DEFACS. This result, the factors of the decommissioning work-unit productivities, will be useful for the other nuclear facility decommissioning planning and engineering. For this, to set up the items and plan for the decommissioning of the new objective facility, the DEMOS (DEcommissioning work Modeling System) was developed. This system is for the evaluation the cost, man-power consumption of workers and project staffs and technology application time. The factor of the work-unit productivities from the DEWOCS and governmental labor cost DB and equipment rental fee DB were used for the calculation the result of the DEMOS. And also, for the total system, DES (Decommissioning Engineering System), which is now

  7. Creating An Alternative Design for Asita Corporate Identity

    Directory of Open Access Journals (Sweden)

    Michelle Elise

    2015-10-01

    Full Text Available The objective of the study is to find the solution to the problem outlined, which is to create an alternative design for corporate identity of ASITA. ASITA is a non-profit organization to foster tours and travel agencies in Indonesia. The writer conducted interview to the ASITA Jakarta Chapter, which was appointed to represent ASITA in providing the data needed by the writer. The writer interviewed the advisor of the organization, which had once served as chairperson of ASITA. The result of the research is new corporate identity system of ASITA based on a concept that ASITA as an organization, serves as a compass that guides and assists in every direction. The writer found that corporate identity is an important element to define an organization as well as giving impact on its first impression. To create good corporate identity, several things such as elements of design, color, typography, etc need to be put into attention. 

  8. Sandia National Laboratories Facilities Management and Operations Center Design Standards Manual

    Energy Technology Data Exchange (ETDEWEB)

    Fattor, Steven [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The manual contains general requirements that apply to nonnuclear and nonexplosive facilities. For design and construction requirements for modifications to nuclear or explosive facilities, see the project-specific design requirements noted in the Design Criteria.

  9. Design considerations for a large anti s FRC facility

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Crawford, E.A.; Milroy, R.D.; Slough, J.T.; Steinhauer, L.C.

    1986-01-01

    The number of internal gyroradii between the field null and the separatrix of field-reversed-configurations (FRC), has been identified as a key parameter governing both stability and transport. Present experiments have anti s in the range of 2, while values of about 30 are thought to be necessary in a reactor. It is thus desirable to conduct experiments in some intermediate range. A value of 10 has been chosen as a reasonable goal for a next experiment. In this paper some of the design considerations and cost optimization procedures used to pick a point design for an anti s = 10 facility are discussed

  10. Design of concrete structures important to safety of nuclear facilities

    International Nuclear Information System (INIS)

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety standard for civil engineering structures important to safety of nuclear facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design of concrete structures important to safety

  11. Safeguards-by-Design: Early Integration of Physical Protection and Safeguardability into Design of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    T. Bjornard; R. Bean; S. DeMuth; P. Durst; M. Ehinger; M. Golay; D. Hebditch; J. Hockert; J. Morgan

    2009-09-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to minimize proliferation and security risks as the use of nuclear energy expands worldwide. This paper defines a generic SBD process and its incorporation from early design phases into existing design / construction processes and develops a framework that can guide its institutionalization. SBD could be a basis for a new international norm and standard process for nuclear facility design. This work is part of the U.S. DOE’s Next Generation Safeguards Initiative (NGSI), and is jointly sponsored by the Offices of Non-proliferation and Nuclear Energy.

  12. Design and evaluation of physical protection systems of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    An, Jin Soo; Lee, Hyun Chul; Hwang, In Koo; Kwack, Eun Ho; Choi, Yung Myung

    2001-06-01

    Nuclear material and safety equipment of nuclear facilities are required to be protected against any kind of theft or sabotage. Physical protection is one of the measures to prevent such illegally potential threats for public security. It should cover all the cases of use, storage, and transportation of nuclear material. A physical protection system of a facility consists of exterior intrusion sensors, interior intrusion sensors, an alarm assessment and communication system, entry control systems, access delay equipment, etc. The design of an effective physical protection system requires a comprehensive approach in which the designers define the objective of the system, establish an initial design, and evaluate the proposed design. The evaluation results are used to determine whether or not the initial design should be modified and improved. Some modelling techniques are commonly used to analyse and evaluate the performance of a physical protection system. Korea Atomic Energy Research Institute(KAERI) has developed a prototype of software as a part of a full computer model for effectiveness evaluation for physical protection systems. The input data elements for the prototype, contain the type of adversary, tactics, protection equipment, and the attributes of each protection component. This report contains the functional and structural requirements defined in the development of the evaluation computer model.

  13. An Experience of Thermowell Design in RCP Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Kim, B. D.; Youn, Y. J.; Jeon, W. J.; Kim, S.; Bae, B. U.; Cho, Y. J.; Choi, H. S.; Park, J. K; Cho, S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Flow rates for the test should vary in the range of 90% to 130% of rated flowrate under prototypic operational conditions, as shown in Table 1. Generally for the flow control, a combination of a control valve and an orifice was used in previous RCP test facilities. From the commissioning startup of the RCP test facility, it was found the combination of valve and orifice induced quite a large vibration for the RCP. As a solution to minimize the vibration and to facilitate the flowrate control, one of KAERI's staff suggested a variable restriction orifice (VRO), which controls most of the required flowrates except highest flowrates, as shown in Fig. 2. For the highest flowrates, e.g., around run-out flowrate (130%), control valves in bypass lines were also used to achieve required flowrates. From a performance test, it was found the VRO is very effective measures to control flowrates in the RCP test facility. During the commissioning startup operation, one of thermowells located at the upstream of the RCP was cracked due to high speed coolant velocity, which was - fortunately - found under a leakage test before running the RCP test loop. The cracked thermowell, whose tapered-shank was detached from the weld collar after uninstalling, is shown in Fig. 3. As can be seen the figure, most of the cross-section at the root of the thermowell shank was cracked. In this paper, an investigation of the integrity of thermowells in the RCP test facility was performed according to the current code and overall aspects on the thermowell designs were also discussed. An RCP test facility has been constructed in KAERI. During the commissioning startup operation, one of thermowells was cracked due to high speed coolant velocity. To complete the startup operation, a modified design of thermowells was proposed and all the original thermowells were replaced by the modified ones. From evaluation of the original and modified designs of thermowells according to the recent PTC code, the

  14. Design of an error-free nondestructive plutonium assay facility

    International Nuclear Information System (INIS)

    Moore, C.B.; Steward, W.E.

    1987-01-01

    An automated, at-line nondestructive assay (NDA) laboratory is installed in facilities recently constructed at the Savannah River Plant. The laboratory will enhance nuclear materials accounting in new plutonium scrap and waste recovery facilities. The advantages of at-line NDA operations will not be realized if results are clouded by errors in analytical procedures, sample identification, record keeping, or techniques for extracting samples from process streams. Minimization of such errors has been a primary design objective for the new facility. Concepts for achieving that objective include mechanizing the administrative tasks of scheduling activities in the laboratory, identifying samples, recording and storing assay data, and transmitting results information to process control and materials accounting functions. These concepts have been implemented in an analytical computer system that is programmed to avoid the obvious sources of error encountered in laboratory operations. The laboratory computer exchanges information with process control and materials accounting computers, transmitting results information and obtaining process data and accounting information as required to guide process operations and maintain current records of materials flow through the new facility

  15. A stochastic discrete optimization model for designing container terminal facilities

    Science.gov (United States)

    Zukhruf, Febri; Frazila, Russ Bona; Burhani, Jzolanda Tsavalista

    2017-11-01

    As uncertainty essentially affect the total transportation cost, it remains important in the container terminal that incorporates several modes and transshipments process. This paper then presents a stochastic discrete optimization model for designing the container terminal, which involves the decision of facilities improvement action. The container terminal operation model is constructed by accounting the variation of demand and facilities performance. In addition, for illustrating the conflicting issue that practically raises in the terminal operation, the model also takes into account the possible increment delay of facilities due to the increasing number of equipment, especially the container truck. Those variations expectantly reflect the uncertainty issue in the container terminal operation. A Monte Carlo simulation is invoked to propagate the variations by following the observed distribution. The problem is constructed within the framework of the combinatorial optimization problem for investigating the optimal decision of facilities improvement. A new variant of glow-worm swarm optimization (GSO) is thus proposed for solving the optimization, which is rarely explored in the transportation field. The model applicability is tested by considering the actual characteristics of the container terminal.

  16. Seismic design considerations of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2001-10-01

    An Advisory Group Meeting (AGM) on Seismic Technologies of Nuclear Fuel Cycle Facilities was convened in Vienna from 12 to 14 November 1997. The main objective of the meeting was the investigation of the present status of seismic technologies in nuclear fuel cycle facilities in Member States as a starting point for understanding of the most important directions and trends of national initiatives, including research and development, in the area of seismic safety. The AGM gave priority to the establishment of a consistent programme for seismic assessment of nuclear fuel cycle facilities worldwide. A consultants meeting subsequently met in Vienna from 16 to 19 March 1999. At this meeting the necessity of a dedicated programme was further supported and a technical background to the initiative was provided. This publication provides recommendations both for the seismic design of new plants and for re-evaluation projects of nuclear fuel cycle facilities. After a short introduction of the general IAEA approach, some key contributions from Member State participants are presented. Each of them was indexed separately

  17. Towards a design theory for reducing aggression in psychiatric facilities

    DEFF Research Database (Denmark)

    Ulrich, Roger S; Bogren, Lennart; Lundin, Stefan

    2012-01-01

    The paper proposes a tentative theory for designing psychiatric environments to foster reduced aggression and violence. A basic premise underlying the design theory is that environmental and psycho-social stressors mediate and trigger aggression. The theory posits that aggression will be reduced...... buildings with design guided by the best available evidence and theory can play an important role in reducing the serious patient and staff safety problem of aggressive behavior....... if the facility has been designed with an evidence-based bundle of stress-reducing environmental characteristics that are identified and discussed. To make possible a tentative empirical evaluation of the theory, findings are described from a study that compared aggressive incidents in three Swedish psychiatric...

  18. Total System Performance Assessment: Enhanced Design Alternative V

    International Nuclear Information System (INIS)

    N. Erb; S. Miller; V. Vallikat

    1999-01-01

    This calculation documents the total system performance assessment modeling of Enhanced Design Analysis (EDA) V. EDA V is based on the TSPA-VA base design which has been modified with higher thermal loading, a quartz sand invert, and line loading with 21 PWR waste packages that have 2-cm thick titanium grade 7 corrosion resistance material (CRM) drip shields placed over dual-layer waste packages composed of 'inside out' VA reference material (CRWMS M and O 1999a). This document details the changes and assumptions made to the VA reference Performance Assessment Model (CRWMS M and O 1998a) to incorporate the design changes detailed for EDA V. The performance measure for this evaluation is expected value dose-rate history. Time histories of dose rate are presented for EDA V and a Defense in Depth (DID) analysis base on EDA V. Additional details concerning the Enhanced Design Alternative II are provided in the 'LADS 3-12 Requests' interoffice correspondence (CRWMS M and O 1999a)

  19. Fluxes at experiment facilities in HEU and LEU designs for the FRM-II

    International Nuclear Information System (INIS)

    Hanan, N. A.

    1998-01-01

    An Alternative LEU Design for the FRM-II proposed by the RERTR Program at Argonne National Laboratory (ANL) has a compact core consisting of a single fuel element that uses LEU silicide fuel with a uranium density of 4.5 g/cm 3 and has a power level of 32 MW. Both the HEU design by the Technical University of Munich (TUM) and the alternative LEU design by ANL have the same fuel lifetime(50 days) and the same neutron flux performance (8 x 10 14 n/cm 2 -s in the reflector). LEU silicide fuel with 4.5 g/cm 3 has been thoroughly tested and is fully-qualified, licensable, and available now for use in a high flux reactor such as the FRM-II. Several issues that were raised by TUM have been addressed in Refs. 1-3. The conclusions of these analyses are summarized below. This paper addresses four additional issues that have been raised in several forums, including Ref 4: heat generation in the cold neutron source (CNS), the gamma and fast neutron fluxes which are components of the reactor noise in neutron scattering experiments in the experiment hall of the reactor, a fuel cycle length difference, and the reactivity worth of the beam tubes and other experiment facilities. The results show that: (a) for the same thermal neutron flux, the neutron and gamma heating in the CNS is smaller in the LEU design than in the HEU design, and cold neutron fluxes as good or better than those of the HEU design can be obtained with the LEU design; (b) the gamma and fast neutron components of the reactor noise in the experiment hall are about the same in both designs; (c) the fuel cycle length is 50 days for both designs; and (d) the absolute value of the reactivity worth of the beam tubes and other experiment facilities is smaller in the LEU design, allowing its fuel cycle length to be increased to 53 or 54 days. Based on the excellent results for the Alternative LEU Design that were obtained in all analyses, the RERTR Program reiterates its conclusion that there are no major technical

  20. Preliminary design of a Tandem-Mirror-Next-Step facility

    International Nuclear Information System (INIS)

    Damm, C.C.; Doggett, J.N.; Bulmer, R.H.

    1980-01-01

    The Tandem-Mirror-Next-Step (TMNS) facility is designed to demonstrate the engineering feasibility of a tandem-mirror reactor. The facility is based on a deuterium-tritium (D-T) burning, tandem-mirror device with a fusion power output of 245 MW. The fusion power density in the central cell is 2.1 MW/m 3 , with a resultant neutron wall loading of 0.5 MW/m 2 . Overall machine length is 116 m, and the effective central-cell length is 50.9 m. The magnet system includes end cells with yin-yang magnets to provide magnetohydrodynamic (MHD) stability and thermal-barrier cells to help achieve a plasma Q of 4.7 (where Q = fusion power/injected power). Neutral beams at energies up to 200 keV are used for plasma heating, fueling, and barrier pumping. Electron cyclotron resonant heating at 50 and 100 GHz is used to control the electron temperature in the barriers. Based on the resulting engineering design, the overall cost of the facility is estimated to be just under $1 billion. Unresolved physics issues include central-cell β-limits against MHD ballooning modes (the assumed reference value of β exceeds the current theory-derived limit), and the removal of thermalized α-particles from the plasma

  1. A Supply Chain Design Problem Integrated Facility Unavailabilities Management

    Directory of Open Access Journals (Sweden)

    Fouad Maliki

    2016-08-01

    Full Text Available A supply chain is a set of facilities connected together in order to provide products to customers. The supply chain is subject to random failures caused by different factors which cause the unavailability of some sites. Given the current economic context, the management of these unavailabilities is becoming a strategic choice to ensure the desired reliability and availability levels of the different supply chain facilities. In this work, we treat two problems related to the field of supply chain, namely the design and unavailabilities management of logistics facilities. Specifically, we consider a stochastic distribution network with consideration of suppliers' selection, distribution centres location (DCs decisions and DCs’ unavailabilities management. Two resolution approaches are proposed. The first approach called non-integrated consists on define the optimal supply chain structure using an optimization approach based on genetic algorithms (GA, then to simulate the supply chain performance with the presence of DCs failures. The second approach called integrated approach is to consider the design of the supply chain problem and unavailabilities management of DCs in the same model. Note that, we replace each unavailable DC by performing a reallocation using GA in the two approaches. The obtained results of the two approaches are detailed and compared showing their effectiveness.

  2. Design and operation of the Surry Radwaste Facility

    International Nuclear Information System (INIS)

    Morris, L.L.; Halverson, W.C.

    1993-01-01

    In September 1991, Virginia Power started processing radioactive waste with a new Radwaste Facility at the Surry Power Station near Norfolk, Virginia. The Surry Radwaste Facility (SRF) was designed to process and store liquid waste, laundry waste, dry active waste, radioactive filters and spent ion-exchange resin. It also provides on-site decontamination services and a fully equipped hot machine shop. The NRC has recognized that the amount of planning and design, and the attention to detail, that was expended on the SRF Project in order to minimize personnel exposure and ensure efficient operation, is a licensee strength. Through its first year of operation, the facility has proven very successful. Using evaporation and demineralization, over 30 million liters of liquid have been released with no chemical impurities or detectable radioactivity (excluding tritium). Over 623,000 liters of concentrated boric acid waste liquid have been processed with the Bitumen Solidification System yielding 139,880 liters (660 drums) of low level Class A-Stable waste. Additional economic benefits will be realized as the effectiveness of the processing systems continues to improve due to increased operational experience and ergonomics

  3. Cold Vacuum Drying facility design basis accident analysis documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.

    2000-01-01

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls

  4. Design study of an ERL Test Facility at CERN

    CERN Document Server

    Jensen, E; Brüning, O; Calaga, R; Catalan-Lasheras, N; Goddard, B; Klein, M; Torres-Sanchez, R; Valloni, A

    2014-01-01

    The modern concept of an Energy Recovery Linac allows providing large electron currents at large beam energy with low power consumption. This concept is used in FEL’s, electron-ion colliders and electron coolers. CERN has started a Design Study of an ERL Test Facility with the purpose of 1) studying the ERL principle, its specific beam dynamics and operational issues, as relevant for LHeC, 2) providing a test bed for superconducting cavity modules, cryogenics and integration, 3) studying beam induced quenches in superconducting magnets and protection methods, 4) providing test beams for detector R&D and other applications. It will be complementary to existing or planned facilities and is fostering international collaboration. The operating frequency of 802 MHz was chosen for performance and for optimum synergy with SPS and LHC; the design of the cryomodule has started. The ERL Test Facility can be constructed in stages from initially 150 MeV to ultimately 1 GeV in 3 passes, with beam currents of up to 8...

  5. Cold Vacuum Drying facility design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    2000-08-08

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls.

  6. Design for the National RF Test Facility at ORNL

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; Becraft, W.R.

    1983-01-01

    Conceptual and preliminary engineering design for the National RF Test Facility at Oak Ridge National Laboratory (ORNL) has been completed. The facility will comprise a single mirror configuration embodying two superconducting development coils from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program on either side of a cavity designed for full-scale antenna testing. The coils are capable of generating a 1.2-T field at the axial midpoint between the coils separated by 1.0 m. The vacuum vessel will be a stainless steel, water-cooled structure having an 85-cm-radius central cavity. The facility will have the use of a number of continuous wave (cw), radio-frequency (rf) sources at levels including 600 kW at 80 MHz and 100 kW at 28 GHz. Several plasma sources will provide a wide range of plasma environments, including densities as high as approx. 5 x 10 13 cm -3 and temperatures on the order of approx. 10 eV. Furthermore, a wide range of diagnostics will be available to the experimenter for accurate appraisal of rf testing

  7. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  8. Neutron shield analysis and design for the PDX fusion facility

    International Nuclear Information System (INIS)

    Grimesey, R.A.; Nigg, D.W.; Scott, A.J.; Wheeler, F.J.; Jassby, D.L.; Perry, E.D.

    1979-01-01

    The basic component of the biological shield for PDX is an existing 81 cm thick high-density concrete shielding wall surrounding the machine. The principal additional shielding requirement is a roof shield over the machine to reduce air-scattered skyshine dose into the PDX control room and to the site boundary. The roof shield is designed in removable sections on a steel support structure permitting overhead crane access to major PDX components. After analysis of a number of alternate concepts, a roof shield consisting of 50 cm of water in polyethylene tanks was selected to meet design objectives of effectiveness, weight, removability, and cost

  9. Database design for Physical Access Control System for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, T., E-mail: satishkumart@igcar.gov.in; Rao, G. Prabhakara, E-mail: prg@igcar.gov.in; Arumugam, P., E-mail: aarmu@igcar.gov.in

    2016-08-15

    Highlights: • Database design needs to be optimized and highly efficient for real time operation. • It requires a many-to-many mapping between Employee table and Doors table. • This mapping typically contain thousands of records and redundant data. • Proposed novel database design reduces the redundancy and provides abstraction. • This design is incorporated with the access control system developed in-house. - Abstract: A (Radio Frequency IDentification) RFID cum Biometric based two level Access Control System (ACS) was designed and developed for providing access to vital areas of nuclear facilities. The system has got both hardware [Access controller] and software components [server application, the database and the web client software]. The database design proposed, enables grouping of the employees based on the hierarchy of the organization and the grouping of the doors based on Access Zones (AZ). This design also illustrates the mapping between the Employee Groups (EG) and AZ. By following this approach in database design, a higher level view can be presented to the system administrator abstracting the inner details of the individual entities and doors. This paper describes the novel approach carried out in designing the database of the ACS.

  10. Civil design aspects for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Bhalerao, Sandip; Subramanyam, P.; Sharma, Sudin; Bhargava, Kapilesh; Agarwal, Kailash; Rao, D.A.S.; Roy, Amitava; Basu, S.

    2015-01-01

    The civil design requirements of safety related nuclear structures are much more stringent and conservative as compared to that for conventional and industrial structures. Due to the importance of safety and desired reliability in the civil design of nuclear structures, International Atomic Energy Agency (IAEA) and Atomic Energy Regulatory Board (AERB) have provided various safety guides for their safe design. There has been advancement in theoretical and experimental knowledge pertaining to the design, construction, installation, maintenance, testing and inspection of structures, systems, and components (SSCs) of nuclear power plants (NPPs), such that, their quality and reliability is commensurate with safety functions. The well established procedures are available in the form of different codes, standards, guidelines and well proven research work for NPPs. However, such procedures are somewhat limited in nature for design of civil structures in nuclear fuel cycle facilities (NFCF), and till date no separate codes or standards have been published by regulatory authorities in India that cover civil design aspects for NFCF. Hence, design of civil structures of NFCF in India is performed by using different national and international standards, and the recommendations provided by BARC Safety Council (BSC). Present paper focuses civil design aspects for NFCF in India. (author)

  11. Database design for Physical Access Control System for nuclear facilities

    International Nuclear Information System (INIS)

    Sathishkumar, T.; Rao, G. Prabhakara; Arumugam, P.

    2016-01-01

    Highlights: • Database design needs to be optimized and highly efficient for real time operation. • It requires a many-to-many mapping between Employee table and Doors table. • This mapping typically contain thousands of records and redundant data. • Proposed novel database design reduces the redundancy and provides abstraction. • This design is incorporated with the access control system developed in-house. - Abstract: A (Radio Frequency IDentification) RFID cum Biometric based two level Access Control System (ACS) was designed and developed for providing access to vital areas of nuclear facilities. The system has got both hardware [Access controller] and software components [server application, the database and the web client software]. The database design proposed, enables grouping of the employees based on the hierarchy of the organization and the grouping of the doors based on Access Zones (AZ). This design also illustrates the mapping between the Employee Groups (EG) and AZ. By following this approach in database design, a higher level view can be presented to the system administrator abstracting the inner details of the individual entities and doors. This paper describes the novel approach carried out in designing the database of the ACS.

  12. BEAM LINE DESIGN FOR THE CERN HIRADMAT TEST FACILITY

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2009-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×1013 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  13. Beam Line Design for the CERN Hiradmat Test Facility

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2010-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×10**13 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  14. Oak Ridge low-level waste disposal facility designs

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Jones, L.S.

    1991-01-01

    The strategic planning process that culuminates in the identification, selection, construction, and ultimate operation of treatment, storage, and disposal facilities for all types of low-level waste (LLW) generated on the Oak Ridge Reservation (ORR) was conducted under the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program. This program considered management of various concentrations of short half-life radionuclides generated principally at Oak Ridge National Laboratory (ORNL) and long half-life radionuclides (principally uranium) generated at the Oak Ridge Y-12 Plant and the Oak Ridge K-25 Plant. The LLWDDD Program is still ongoing and involves four phases: (1) alternative identification and evaluation, (2) technology demonstration, (3) limited operational implementation, and (4) full operational implementation. This document provides a discussion of these phases

  15. Final Design Report for the RH LLW Disposal Facility (RDF) Project, Revision 3

    International Nuclear Information System (INIS)

    Austad, Stephanie Lee

    2015-01-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  16. Conceptual design of initial opacity experiments on the national ignition facility

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, R.  F.; Bailey, J.  E.; Craxton, R.  S.; DeVolder, B.  G.; Dodd, E.  S.; Garcia, E.  M.; Huffman, E.  J.; Iglesias, C.  A.; King, J.  A.; Kline, J.  L.; Liedahl, D.  A.; McKenty, P.  W.; Opachich, Y.  P.; Rochau, G.  A.; Ross, P.  W.; Schneider, M.  B.; Sherrill, M.  E.; Wilson, B.  G.; Zhang, R.; Perry, T.  S.

    2017-01-09

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative–convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures<alternatives>${\\geqslant}150$alternatives> eV and electron densities<alternatives>${\\geqslant}7\\times 10^{21}~\\text{cm}^{-3}$alternatives>. The iron will be probed using continuum X-rays emitted in a<alternatives>${\\sim}200$alternatives> ps,>${\\sim}200~\\unicode[STIX]{x03BC}\\text{m}$alternatives>diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design,

  17. Optimization of the National Ignition Facility primary shield design

    International Nuclear Information System (INIS)

    Annese, C.E.; Watkins, E.F.; Greenspan, E.; Miller, W.F.

    1993-10-01

    Minimum cost design concepts of the primary shield for the National Ignition laser fusion experimental Facility (NIF) are searched with the help of the optimization code SWAN. The computational method developed for this search involves incorporating the time dependence of the delayed photon field within effective delayed photon production cross sections. This method enables one to address the time-dependent problem using relatively simple, time-independent transport calculations, thus significantly simplifying the design process. A novel approach was used for the identification of the optimal combination of constituents that will minimize the shield cost; it involves the generation, with SWAN, of effectiveness functions for replacing materials on an equal cost basis. The minimum cost shield design concept was found to consist of a mixture of polyethylene and low cost, low activation materials such as SiC, with boron added near the shield boundaries

  18. Calculation of drift seepage for alternative emplacement designs

    International Nuclear Information System (INIS)

    Li, Guomin; Tsang, Chin-Fu; Birkholzer, Jens

    1999-01-01

    The calculations presented in this report are performed to obtain seepage rates into drift and boreholes for two alternative designs of drift and waste emplacement at Yucca Mountain. The two designs are defined according to the Scope of Work 14012021M1, activity 399621, drafted October 6, 1998, and further refined in a conference telephone call on October 13, 1998, between Mark Balady, Jim Blink, Rob Howard and Chin-Fu Tsang. The 2 designs considered are: (1) Design A--Horizontal boreholes 1.0 m in diameter on both sides of the drift, with each borehole 8 m long and inclined to the drift axis by 30 degrees. The pillar between boreholes, measured parallel to the drift axis, is 3.3 m. In the current calculations, a simplified model of an isolated horizontal borehole 8 m long will be simulated. The horizontal borehole will be located in a heterogeneous fracture continuum representing the repository layer. Three different realizations will be taken from the heterogeneous field, representing three different locations in the rock. Seepage for each realization is calculated as a function of the percolation flux. Design B--Vertical boreholes, 1.0 m in diameter and 8.0 m deep, drilled from the bottom of an excavated 8.0 m diameter drift. Again, the drift with the vertical borehole will be assumed to be located in a heterogeneous fracture continuum, representing the rock at the repository horizon. Two realizations are considered, and seepage is calculated for the 8-m drift with and without the vertical 1-m borehole at its bottom

  19. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  20. The AGP-Project conceptual design for a Spanish HLW final disposal facility

    International Nuclear Information System (INIS)

    Biurrun, E.; Engelmann, H.-J.; Huertas, F.; Ulibarri, A.

    1992-01-01

    Within the framework of the AGP Project a Conceptual Design for a HLW Final Disposal Facility to be eventually built in an underground salt formation in Spain has been developed. The AGP Project has the character of a system analysis. In the current project phase I several alternatives has been considered for different subsystems and/or components of the repository. The system variants, developed to such extent as to allow a comparison of their advantages and disadvantages, will allow the selection of a reference concept, which will be further developed to technical maturity in subsequent project phases. (author)

  1. National Ignition Facility (NIF) Control Network Design and Analysis

    International Nuclear Information System (INIS)

    Bryant, R M; Carey, R W; Claybourn, R V; Pavel, G; Schaefer, W J

    2001-01-01

    The control network for the National Ignition Facility (NIF) is designed to meet the needs for common object request broker architecture (CORBA) inter-process communication, multicast video transport, device triggering, and general TCP/IP communication within the NIF facility. The network will interconnect approximately 650 systems, including the embedded controllers, front-end processors (FEPs), supervisory systems, and centralized servers involved in operation of the NIF. All systems are networked with Ethernet to serve the majority of communication needs, and asynchronous transfer mode (ATM) is used to transport multicast video and synchronization triggers. CORBA software infra-structure provides location-independent communication services over TCP/IP between the application processes in the 15 supervisory and 300 FEP systems. Video images sampled from 500 video cameras at a 10-Hz frame rate will be multicast using direct ATM Application Programming Interface (API) communication from video FEPs to any selected operator console. The Ethernet and ATM control networks are used to broadcast two types of device triggers for last-second functions in a large number of FEPs, thus eliminating the need for a separate infrastructure for these functions. Analysis, design, modeling, and testing of the NIF network has been performed to provide confidence that the network design will meet NIF control requirements

  2. A Design for an Orbital Assembly Facility for Complex Missions

    Science.gov (United States)

    Feast, S.; Bond, A.

    A design is presented for an Operations Base Station (OBS) in low earth orbit that will function as an integral part of a space transportation system, enabling assembly and maintenance of a Cis-Lunar transportation infrastructure and integration of vehicles for other high energy space missions to be carried out. Construction of the OBS assumes the use of the SKYLON Single-Stage-to-Orbit (SSTO) spaceplane, which imposes design and assembly constraints due to its payload mass limits and payload bay dimensions. It is assumed that the space transport infrastructure and high mission energy vehicles would also make use of SKYLON to deploy standard transport equipment and stages bound by these same constraints. The OBS is therefore a highly modular arrangement, incorporating some of these other vehicle system elements in its layout design. Architecturally, the facilities of the OBS are centred around the Assembly Dock which is in the form of a large cylindrical spaceframe structure with two large doors on either end incorporating a skin of aluminised Mylar to enclose the dock. Longitudinal rails provide internal tether attachments to anchor vehicles and components while manipulators are used for the handling and assembling of vehicle structures. The exterior of the OBS houses the habitation modules for workforce and vehicle crews along with propellant farms and other operational facilities.

  3. Design and study of Engineering Test Facility - Helium Circulator

    International Nuclear Information System (INIS)

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  4. Design Lessons Drawn from the Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    2011-05-01

    This report provides an updated compilation incorporating the most recent lessons learned from decommissioning and remediation projects. It is intended as a 'road map' to those seeking to apply these lessons. The report presents the issues in a concise and systematic manner, along with practical, thought-provoking examples. The most important lessons learned in recent years are organized and examined to enable the intended audience to gauge the importance of this aspect of the planning for new nuclear facilities. These will be of special interest to those seeking to construct nuclear facilities for the first time. In Sections 1 and 2, the current situation in the field of decommissioning is reviewed and the relevance and importance of beneficial design features is introduced. A more detailed review of previous and current lessons learned from decommissioning is given in Section 3 where different aspects of the decommissioning process are analysed. From this analysis beneficial design features have been extracted and identified in Section 4 which includes two comprehensive tables where brief descriptions of the features are summarized and responsibilities are identified. Conclusions and key design features and key recommendations are given in Section 5. Two Annexes are included to provide lessons from past projects and past experience and to record notes and extracts taken from a comprehensive list of publications listed in the References on page 47.

  5. Design of facilities for processing pyrophoric radioactive material

    International Nuclear Information System (INIS)

    Bristow, H.A.S.; Hunter, S.D.

    1976-01-01

    The safe processing of large quantities of plutonium-bearing material poses difficult problems the solution of which sometimes involves conflicting requirements. The difficulties are increased when plutonium of a high burnup is used and the position becomes considerably more complicated when the chemical nature of the material being handled is such that it is pyrophoric. This paper describes the design principles and methods used to establish a facility capable of manufacturing large quantities of mixed plutonium/uranium carbide. The facility which included process stages such as milling, granulation, pellet pressing, furnacing and pin filling, was largely a conversion of an existing processing line. The paper treats the major plant hazards individually and indicates the methods used to counter them, outlining the main design principles employed and describing their application to selected items of equipment. Examples of the problems encountered with typical items of equipment are discussed. Some guide-lines are listed which should be of general value to designers and developers working on equipment for processing plutonium-bearing solids. The methods described have been successfully employed to provide a plant for the manufacture of mixed plutonium/uranium carbide on a scale of many hundreds of kilograms with no serious incident.(author)

  6. Incorporating alternative design clinical trials in network meta-analyses

    Directory of Open Access Journals (Sweden)

    Thorlund K

    2014-12-01

    Full Text Available Kristian Thorlund,1–3 Eric Druyts,1,4 Kabirraaj Toor,1,5 Jeroen P Jansen,1,6 Edward J Mills1,3 1Redwood Outcomes, Vancouver, BC, 2Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada; 3Stanford Prevention Research Center, Stanford University, Stanford, CA, USA; 4Department of Medicine, Faculty of Medicine, 5School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; 6Department of Public Health and Community Medicine, Tufts University, Boston, MA, USA Introduction: Network meta-analysis (NMA is an extension of conventional pairwise meta-analysis that allows for simultaneous comparison of multiple interventions. Well-established drug class efficacies have become commonplace in many disease areas. Thus, for reasons of ethics and equipoise, it is not practical to randomize patients to placebo or older drug classes. Unique randomized clinical trial designs are an attempt to navigate these obstacles. These alternative designs, however, pose challenges when attempting to incorporate data into NMAs. Using ulcerative colitis as an example, we illustrate an example of a method where data provided by these trials are used to populate treatment networks. Methods: We present the methods used to convert data from the PURSUIT trial into a typical parallel design for inclusion in our NMA. Data were required for three arms: golimumab 100 mg; golimumab 50 mg; and placebo. Golimumab 100 mg induction data were available; however, data regarding those individuals who were nonresponders at induction and those who were responders at maintenance were not reported, and as such, had to be imputed using data from the rerandomization phase. Golimumab 50 mg data regarding responses at week 6 were not available. Existing relationships between the available components were used to impute the expected proportions in this missing subpopulation. Data for placebo maintenance

  7. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    In April 1985, the Department of Energy (DOE) selected the Clinch River site as its preferred site for the construction and operation of the monitored retrievable storage (MRS) facility (USDOE, 1985). In support of the DOE MRS conceptual design activity, available data describing the site have been gathered and analyzed. A composite geotechnical description of the Clinch River site has been developed and is presented herein. This report presents Clinch River site description data in the following sections: general site description, surface hydrologic characteristics, groundwater characteristics, geologic characteristics, vibratory ground motion, surface faulting, stability of subsurface materials, slope stability, and references. 48 refs., 35 figs., 6 tabs

  8. Participation of civil engineers in designing facilities in rock salt

    International Nuclear Information System (INIS)

    Duddeck, H.; Westhaus, T.

    1990-01-01

    For the design of underground facilities in rock salt layers or domes, as caverns for repositories, the civil engineering approach may be useful. The underground openings are analysed by determining the displacements and the stresses for actual states and hypothetical situations. The paper reports on the state of art in the development of suited time dependent material laws for rock salt, on time integration methods for the analysis, and on a possible procedure for a consistent safety analysis. The examples given include caverns filled by oil, analysis of a mine with vertical excavation chambers, and dams closing mine galleries. (orig.) [de

  9. Seismic design criteria of fire protection systems for DOE facilities

    International Nuclear Information System (INIS)

    Hardy, G.; Cushing, R.; Driesen, G.

    1991-01-01

    Fire protection systems are critical to the safety of personnel and to the protection of inventory during any kind of emergency situation that involves a fire. The importance of these fire protection systems is hightened for DOE facilities which often house nuclear, chemical or scientific processes. Current research into the topic of open-quotes fires following earthquakesclose quotes has demonstrated that the risks of a fire starting as a result of a major earthquake can be significant. Thus, fire protection systems need to be designed to withstand the anticipated seismic event for the site in question

  10. Shield design for the Fusion Materials Irradiation Test facility

    International Nuclear Information System (INIS)

    Carter, L.L.; Mann, F.M.; Morford, R.J.; Wilcox, A.D.; Johnson, D.L.; Huang, S.T.

    1983-03-01

    The shield design for the Fusion Materials Irradiation Test facility is based upon one-, two- and three-dimensional transport calculations with experimental measurements utilized to refine the nuclear data including the neutron cross sections from 20 to 50 MeV and the gamma ray and neutron source terms. The high energy neutrons and deuterons produce activation products from the numerous reactions that are kinematically allowed. The analyses for both beam-on and beam-off (from the activation products) conditions have required extensive nuclear data libraries and the utilization of Monte Carlo, discrete ordinates, point kernel and auxiliary computer codes

  11. Assessment of alternative vessel and blanket design on ITER operation

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, M., E-mail: mario.cavinato@f4e.europa.e [FUSION FOR ENERGY Joint Undertaking, 08019 Barcelona (Spain); Portone, A.; Saibene, G.; Sartori, R. [FUSION FOR ENERGY Joint Undertaking, 08019 Barcelona (Spain); Albanese, R.; Ambrosino, G.; Ariola, M. [Associazione Euratom-ENEA-CREATE, DIMET, Universita degli Studi di Napoli (Italy); Artaserse, G. [Associazione Euratom-ENEA-CREATE, DIMET, Universita degli Studi di Reggio Calabria (Italy); Mattei, M. [Associazione Euratom-ENEA-CREATE, DIAM, Seconda Universita di Napoli, Via Roma 29, Aversa, CE 81031 Italy (Italy); Pironti, A. [Associazione Euratom-ENEA-CREATE, DIMET, Universita degli Studi di Napoli (Italy); Villone, F. [Associazione Euratom-ENEA-CREATE, DIMET, Universita degli Studi di Cassino (Italy)

    2010-12-15

    In the framework of the ITER project, an investigation has been conducted on an alternative vessel and blanket design, aimed at reducing cost and production risk. The modifications proposed have a strong impact on plasma control since they affect the main conducting structures surrounding the plasma column, providing passive stabilization but at the same time shielding the field generated by the active coils to control the plasma motion and shape. An extensive analysis was performed to assess the plasma vertical controllability and the modified requirements to the in-vessel vertical stability coils system as well as to the external Poloidal Field coils system. A similar analysis was aimed at assessing the performance of the shape control system in presence of the modified structures. The effect on plasma breakdown was also evaluated in terms of maximum initial loop voltage, quality of magnetic null and the flux loss related to the breakdown delay that was quantified under the same hypothesis employed by ITER for the baseline design. Furthermore, the modified design presents issues for the magnetic diagnostic system, related to the shielding of the probes by the eddy currents, which were analysed with a 3D model. The results of the analyses performed have some general interest in particular regarding the influence on plasma stability of 3D structures with close proximity to the plasma. The present paper aims at giving an overview of the analyses that have been carried out and a summary of the results in terms of impact of the modified design on plasma control and scenario, and in general an evaluation of the role of passive structure in plasma vertical stability and shape control.

  12. Final report for fuel acquisition and design of a fast subcritical blanket facility

    International Nuclear Information System (INIS)

    Clikeman, F.M.; Ott, K.O.

    1976-01-01

    A summary is presented of work leading to the design of a subcritical facility for the study of fast reactor blankets. Included are activities related to fuel acquisition, design of the facility, and experiment planning

  13. Needs of Advanced Safeguards Technologies for Future Nuclear Fuel Cycle (FNFC) Facilities and a Trial Application of SBD Concept to Facility Design of a Hypothetical FNFC Facility

    International Nuclear Information System (INIS)

    Seya, M.; Hajima, R.; Nishimori, N.; Hayakawa, T.; Kikuzawa, N.; Shizuma, T.; Fujiwara, M.

    2010-01-01

    Some of future nuclear fuel cycle (FNFC) facilities are supposed to have the characteristic features of very large throughput of plutonium, low decontamination reprocessing (no purification process; existence of certain amount of fission products (FP) in all process material), full minor actinides (MA) recycle, and treatment of MOX with FP and MA in fuel fabrication. In addition, the following international safeguards requirements have to be taken into account for safeguards approaches of the FNFC facilities. -Application of integrated safeguards (IS) approach; -Remote (unattended) verification; - 'Safeguards by Design' (SBD) concept. These features and requirements compel us to develop advanced technologies, which are not emerged yet. In order to realize the SBD, facility designers have to know important parts of design information on advanced safeguards systems before starting the facility design. The SBD concept requires not only early start of R and D of advanced safeguards technologies (before starting preliminary design of the facility) but also interaction steps between researchers working on safeguards systems and nuclear facility designers. The interaction steps are follows. Step-1; researchers show images of advanced safeguards systems to facility designers based on their research. Step-2; facility designers take important design information on safeguards systems into process systems of demonstration (or test) facility. Step-3; demonstration and improvement of both systems based on the conceptual design. Step-4; Construction of a FNFC facility with the advanced safeguards systems We present a trial application of the SBD concept to a hypothetical FNFC facility with an advanced hybrid K-edge densitometer and a Pu NDA system for spent nuclear fuel assembly using laser Compton scattering (LCS) X-rays and γ-rays and other advanced safeguards systems. (author)

  14. Comparison of the FRM-II HEU design with an alternative LEU design. Attachment

    International Nuclear Information System (INIS)

    Hanan, N.A.; Mo, S.C.; Smith, R.S.; Matos, J.E.

    2004-01-01

    After presentation of the foregoing paper by Dr. Nelson Hanan of Argonne National Laboratory (ANL) proposing an alternative LEU core with one fuel ring and a power level of 33 MW, a presentation was made by Dr. Klaus Boning of the Technical University of Munich comparing the FRM-II HEU design with an LEU design by Tlm that had two fuel rings and a power level of 40 MW. Dr. Boning raised the following issues concerning the use of LEU fuel in FRM-H reactor designs: (1) qualification of HEU and LEU silicide fuels, (2) gamma heating in the heavy water reflector, (3) the radiological consequences of hypothetical accidents, and (4) cost and schedule. These issues are addressed in this Attachment. In his presentation, Dr. Hanan mentioned that ANL was also investigating other LEU designs. This work led to a second alternative LEU design that has the same neutron flux performance (8 x 10 14 n/cm 2 /s peak neutron flux in the reflector) and the same fuel lifetime (50 full power days) as the HEU design, but uses LEU silicide fuel with a uranium density of only 4.5 g/cm 3 . This design was achieved by using a fuel plate that has a fuel meat thickness of 0.76 mm, a cladding thickness of 0.38 mm, and a water channel gap of 2.2 mm. A comparison is shown of the main characteristics of this second alternative LEU design with those of the FRM-II HEU design. The ANL core again has one fuel ring with the same dimensions. With this LEU design, a two stage process is no longer necessary because LEU silicide fuel with a uranium density of 4.5 g/cm 3 is fully qualified, licensable, and available now for use in a high flux reactor such as the FRM-II

  15. Design of ignition targets for the National Ignition Facility

    International Nuclear Information System (INIS)

    Haan, S.W.; Dittrich, T.R.; Marinak, M.M.; Hinkel, D.E.

    1999-01-01

    This is a brief update on the work being done to design ignition targets for the National Ignition Facility. Updates are presented on three areas of current activity : improvements in modeling, work on a variety of targets spanning the parameter space of possible ignition targets ; and the setting of specifications for target fabrication and diagnostics. Highlights of recent activity include : a simulation of the Rayleigh-Taylor instability growth on an imploding capsule, done in 3D on a 72degree by 72degree wedge, with enough zones to resolve modes out to 100 ; and designs of targets at 250eV and 350eV, as well as the baseline 300 eV ; and variation of the central DT gas density, which influences both the Rayleigh-Taylor growth and the smoothness of the DT ice layer

  16. Retrievable surface storage facility conceptual system design description

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts.

  17. CEBAF [Continuous Electron Beam Accelerator Facility] design report

    International Nuclear Information System (INIS)

    1986-05-01

    This book describes the conceptual design of, and the planning for, the Continuous Electron Beam Accelerator Facility (CEBAF), which will be a high-intensity, continuous-wave electron linear accelerator (linac) for nuclear physics. Its principal scientific goal is to understand the quark structure, behavior, and clustering of individual nucleons in the nuclear medium, and simultaneously to understand the forces governing this behavior. The linac will consist of 1 GeV of accelerating structure, split into two antiparallel 0.5-GeV segments. The segments will be connected by a beam transport system to circulate the electron beams from one segment to the other for up to four complete passes of acceleration. The maximum beam energy will be 4 GeV at a design current of 200 microamperes. The accelerator complex will also include systems to extract three continuous beams from the linac and to deliver them to three experimental halls equipped with detectors and instrumentation for nuclear physics research. The accelerating structure will be kept superconducting within insulated cryostats filled with liquid helium produced at a central helium refrigerator and distributed to the cryostats via insulated transfer lines. An injector, instrumentation and controls for the accelerator, radio-frequency power systems, and several support facilities will also be provided. A cost estimate based on the Work Breakdown Structure has been completed. Assuming a five-year construction schedule starting early in FY 1987, the total estimated cost is $236 million (actual year dollars), including contingency

  18. Retrievable surface storage facility conceptual system design description

    International Nuclear Information System (INIS)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts

  19. Designing a suitable alternative to oil-based mud

    International Nuclear Information System (INIS)

    Holgate, M.; Irwin, G.; Cousins, L.

    1991-01-01

    This paper reports on wireline logging problems which have plagued the reservoir section of development wells in Welton oil field in the East Midlands area of England. And resulting incomplete or poor-quality logging data spurred a look at ways of improving hole conditions. Oil-based muds often are seen as the ideal solution, but they are expensive. Their use also commits the operator to additional costs from safeguarding personnel and limiting environmental impact. Such expense was initiated to develop a cheaper, more environmentally friendly, water-based alternative. A wide-ranging review was carried out to determine the most cost-effective options to obtain reservoir information. This included an examination of lithology, casing design, bit selection, hydraulics, logging requirements and techniques, and development of a suitable water-based mud. This holistic approach was seen as the most effective method of avoiding use of oil-based mud. After successful experimentation, a water-based mud was used in subsequent wells at Welton. A high-salt mud system and the drilling principles discussed here produced significant improvement in hole conditions. Application of a holistic approach led to many operational improvements. For instance, the casing shoe was deepened to case off the most troublesome zone in the local Edlington formation. There also was a better awareness of alternative logging techniques, the commercial factors that influenced their use and their operational and technical limitations. Logging problems were reduced but not eliminated. Where there were problems, application of improved techniques minimized their impact. Last, but not least, there was an unexpected spin-off in that the bit chosen to reduce hole erosion also reduced the time taken to drill the section

  20. NASA Alternative Orion Small Cell Battery Design Support

    Science.gov (United States)

    Haynes, Chuck

    2016-01-01

    and analysis were completed and reviewed for endorsement by NASA Engineering and Safety Center team members. All Key Test Objectives were met and the small cell design alternative was demonstrated and selected to be a feasible drop in replacement for the MPCV Orion CM Battery for EM2 mission.

  1. Conceptual design of an in-space cryogenic fluid management facility, executive summary

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.

  2. Sustainable covers for uranium mill tailings, USA: alternative design, performance, and renovation - 16369

    International Nuclear Information System (INIS)

    Waugh, William J.; Benson, Craig H.; Albright, William H.

    2009-01-01

    The U.S. Department of Energy Office of Legacy Management is investigating alternatives to conventional cover designs for uranium mill tailings. A cover constructed in 2000 near Monticello, Utah, USA, was a redundant design with a conventional low-conductivity composite cover overlain with an alternative cover designed to mimic the natural soil water balance as measured in nearby undisturbed native soils and vegetation. To limit percolation, the alternative cover design relies on a 160-cm layer of sandy clay loam soil overlying a 40- cm sand capillary barrier for water storage, and a planting of native sagebrush steppe vegetation to seasonally release soil water through evapotranspiration (ET). Water balance monitoring within a 3.0-ha drainage lysimeter, embedded in the cover during construction, provided convincing evidence that the cover has performed well over a 9-year period (2000- 2009). The total cumulative percolation, 4.8 mm (approximately 0.5 mm yr -1 ), satisfied a regulatory goal of -1 . Most percolation can be attributed to the very wet winter and spring of 2004-2005, when soil water content exceeded the storage capacity of the cover. Diversity, percent cover, and leaf area of vegetation increased over the monitoring period. Field and laboratory evaluations several years after construction show that soil structural development, changes in soil hydraulic properties, and development of vegetation patterns have not adversely impacted cover performance. A new test facility was constructed in 2008 near Grand Junction, Colorado, USA, to evaluate low-cost methods for renovating or transforming conventional covers into more sustainable ET covers. (authors)

  3. Fire protection considerations in the design of plutonium handling and storage facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    Unwanted fire in a facility that handles plutonium must be addressed early in the facility design. Such fires have the potential for transporting radioactive contamination throughout the building and widespread downwind dispersal. Features that mitigate such events can be severely challenged during the fire. High temperatures can cause storage containers to burst; a very efficient dispersal mechanism for radioactive contamination. The fire will also establish ventilation patterns that cause the migration of smoke and radioactive contamination throughout the facility. The smoke and soot generated by the fire will enter the exhaust system and travel to the filtration system where it will deposit on the filters. The quantity of smoke generated during a typical multi-room fire is expected to blind most High Efficiency Particulate Airfilter (HEPA) media. The blinding can have two possible outcomes. (1) The air movement though the facility is reduced, compromising the negative pressure containment and allowing contamination to leave the building though doors and other openings; or (2) the filters collapse allowing the contamination to bypass the filtration media and exit the building through the filter plenum. HEPA filter blinding during severe fires can be prevented or mitigated. Increasing the face surface area of HEPA filters will increase the smoke filtration capacity of the system, thus preventing blinding. As an alternative sandfilters can be provided to mitigate the effects of the HEPA filter bypass. Both concepts have distinct advantages. This paper will explore these two design concepts and two others; it will describe the design requirements necessary for each concept to prevent unacceptable contamination spread. The intent is to allow the filter media selection to be based on a comprehensive understanding of the four different design concepts

  4. Design Report for Hotcell Crane of ACP Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ku, J. H.; You, G. S.; Choung, W. M.; Kwon, K. C.; Cho, I. J.; Kook, D. H.; Lee, W. K.; Lee, E. P.; Park, S. W

    2005-12-15

    For the handling of the process material, equipment, and radioactive material transport cask, hot-cell crane, crane gate and jib crane are designed and constructed in the advanced spent fuel conditioning process (ACP) demonstration facility. The in-cell crane and the crane gate were installed in the hot-cell, and the jib crane was installed in isolation room. The in-cell crane mainly consists of hoist, driving unit for travelling motion, operation and control equipment and other mechanical equipment. The in-cell crane is specially design to maximize its access area since the inside hot-cell is not accessed by workers. And the manual lifting and travelling devices are attached in the in-cell crane for the electric power failure accident as a fail safe design. The crane gate, which is used for closing the open space above the inter-cell wall, was designed to sufficiently guarantee radiation shielding safety. To investigate the structural safety of the in-cell crane and the crane gate, seismic analysis, structural analysis, modal analysis and stress analysis were performed. The results showed that a structural safety is sufficiently assured under various loading conditions. After installation was completed, the in-cell crane and the jib crane were inspected and tested by Korea Occupational Safety and Health Agency (KOSHA), and received the approval certificates of these cranes from KOSHA.

  5. Design and operation of radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this guide is to provide safety guidance for the design and operation of radioactive waste incineration facilities. The guide emphasizes the design objectives and system requirements to be met and provides recommendations for the procedure of process selection and equipment design and operation. It is recognized that some incinerators may handle only very low or 'insignificant' levels of radioactivity, and in such cases some requirements or recommendations of this guide may not fully apply. Nevertheless, it is expected that any non-compliance with the guide will be addressed and justified in the licensing process. It is also recognized that the regulatory body may place a limit on the level of the radioactivity of the waste to be incinerated at a specific installation. For the purpose of this guide an insignificant level of release of radioactivity may typically be defined as either the continuous or single event release of the design basis radionuclide inventory that represents a negligible risk to the population, the operating personnel, and/or the environment. The guidance on what constitutes a negligible risk and how to translate negligible risk or dose into level of activity can be found in Safety Series No. 89, IAEA, Vienna. 20 refs, 1 fig

  6. RF structure design of the China Material Irradiation Facility RFQ

    Science.gov (United States)

    Li, Chenxing; He, Yuan; Xu, Xianbo; Zhang, Zhouli; Wang, Fengfeng; Dou, Weiping; Wang, Zhijun; Wang, Tieshan

    2017-10-01

    The radio frequency structure design of the radio frequency quadrupole (RFQ) for the front end of China Material Irradiation Facility (CMIF), which is an accelerator based neutron irradiation facility for fusion reactor material qualification, has been completed. The RFQ is specified to accelerate 10 mA continuous deuteron beams from the energies of 20 keV/u to 1.5 MeV/u within the vane length of 5250 mm. The working frequency of the RFQ is selected to 162.5 MHz and the inter-vane voltage is set to 65 kV. Four-vane cavity type is selected and the cavity structure is designed drawing on the experience of China Initiative Accelerator Driven System (CIADS) Injector II RFQ. In order to reduce the azimuthal asymmetry of the field caused from errors in fabrication and assembly, a frequency separation between the working mode and its nearest dipole mode is reached to 17.66 MHz by utilizing 20 pairs of π-mode stabilizing loops (PISLs) distributed along the longitudinal direction with equal intervals. For the purpose of tuning, 100 slug tuners were introduced to compensate the errors caused by machining and assembly. In order to obtain a homogeneous electrical field distribution along cavity, vane cutbacks are introduced and output endplate is modified. Multi-physics study of the cavity with radio frequency power and water cooling is performed to obtain the water temperature tuning coefficients. Through comparing to the worldwide CW RFQs, it is indicated that the power density of the designed structure is moderate for operation under continuous wave (CW) mode.

  7. Identification of potential recovery facilities for designing a reverse supply chain network using physical programming

    Science.gov (United States)

    Pochampally, Kishore K.; Gupta, Surendra M.; Kamarthi, Sagar V.

    2004-02-01

    Although there are many quantitative models in the literature to design a reverse supply chain, every model assumes that all the recovery facilities that are engaged in the supply chain have enough potential to efficiently re-process the incoming used products. Motivated by the risk of re-processing used products in facilities of insufficient potentiality, this paper proposes a method to identify potential facilities in a set of candidate recovery facilities operating in a region where a reverse supply chain is to be established. In this paper, the problem is solved using a newly developed method called physical programming. The most significant advantage of using physical programming is that it allows a decision maker to express his preferences for values of criteria (for comparing the alternatives), not in the traditional form of weights but in terms of ranges of different degrees of desirability, such as ideal range, desirable range, highly desirable range, undesirable range, and unacceptable range. A numerical example is considered to illustrate the proposed method.

  8. Comparison of the FRM-II HEU design with an alternative LEU design

    International Nuclear Information System (INIS)

    Mo, S.C.; Hanan, N.A.; Matos, J.E.

    2004-01-01

    The FRM-II reactor design of the Technical University of Munich has a compact core that utilizes fuel plates containing highly-enriched uranium (HEU, 93%). This paper presents an alternative core design utilizing low-enriched uranium (LEU, 3 that provides nearly the same neutron flux for experiments as the HEU design, but has a less favourable fuel cycle economy. If an LEU fuel with a uranium density of 6.0 - 6.5 g/cm 3 . were developed, the alternative design would provide the same neutron flux and use the same number of cores per year as the HEU design. The results of this study show that there are attractive possibilities for using LEU fuel instead of HEU fuel in the FRM-II. Further optimization of the LEU design and near-term availability of LEU fuel with a uranium density greater than 4.8 g/cm 3 would enhance the performance of the LEU core. The REKIR Program is ready to exchange information with the Technical University of Munich to resolve any differences that may exist and to identify design modifications that would optimize reactor performance utilizing LEU fuel. (author)

  9. Alternative designs for petroleum product storage tanks for groundwater protection.

    Science.gov (United States)

    Oke Adeleke, Samson

    In developing countries, there are numerous occurrences of petroleum product spillage in groundwater. The current practice of burying storage tanks beneath the surface without adequate safety devices facilitates this phenomenon. Underground tanks rust and leak, and spilled petroleum products migrate downward. The movement of the oil in the soil depends on its viscosity and quantity, the permeability of the soil/rock, and the presence of fractures within the rock. The oil spreads laterally in the form of a thin pancake due to its lower specific gravity, and soluble components dissolve in water. The pollution plume of petroleum products and dissolved phases moves in the direction of groundwater flow in the aquifer within the pores of soil and sediments or along fractures in basement complex areas. Most communities reply heavily on groundwater for potable and industrial supplies. However, the sustainability of this resource is under threat in areas where there are filling stations as a result of significant groundwater contamination from petroleum product spillage. Drinking water becomes unpalatable when it contains petroleum products in low concentrations, and small quantities may contaminate large volumes of water. Considering the losses incurred from spillage, the cost of cleaning the aquifer, and the fact that total cleansing and attenuation is impossible, the need to prevent spillage and if it happens to prevent it from getting into the groundwater system is of paramount importance. This paper proposes alternative design procedures with a view to achieving these objectives.

  10. Criteria for designing an interim waste storage facility

    International Nuclear Information System (INIS)

    Vicente, Roberto

    2011-01-01

    The long-lived radioactive wastes with activity above clearance levels generated by radioisotope users in Brazil are collected into centralized waste storage facilities under overview of the National Commission on Nuclear Energy (CNEN). One of these centers is the Radioactive Waste Management Department (GRR) at the Nuclear and Energy Research Institute (IPEN), in Sao Paulo, which since 1978 also manages the wastes generated by IPEN itself. Present inventory of stored wastes includes about 160 tons of treated wastes, distributed in 1290 steel, 200-liters drums, and 52 steel, 1.6 m 3 -boxes, with an estimated total activity of 0.8 TBq. Radionuclides present in these wastes are fission and activation products, transuranium elements, and isotopes from the uranium and thorium decay series. The capacity and quality of the storage rooms at GRR evolved along the last decades to meet the requirements set forth by the Brazilian regulatory authorities.From a mere outdoor concrete platform over which drums were simply stacked and covered with canvas to the present day building, a great progress was made in the storage method. In this paper we present the results of a study in the criteria that were meant to guide the design of the storage building, many of which were eventually adopted in the final concept, and are now built-in features of the facility. We also present some landmarks in the GRR's activities related to waste management in general and waste storage in particular, until the treated wastes of IPEN found their way into the recently licensed new storage facility. (author)

  11. Designing a model to minimize inequities in hemodialysis facilities distribution

    Directory of Open Access Journals (Sweden)

    Teresa M. Salgado

    2011-11-01

    Full Text Available Portugal has an uneven, city-centered bias in the distribution of hemodialysis centers found to contribute to health care inequities. A model has been developed with the aim of minimizing access inequity through the identification of the best possible localization of new hemodialysis facilities. The model was designed under the assumption that individuals from different geographic areas, ceteris paribus, present the same likelihood of requiring hemodialysis in the future. Distances to reach the closest hemodialysis facility were calculated for every municipality lacking one. Regions were scored by aggregating weights of the “individual burden”, defined as the burden for an individual living in a region lacking a hemodialysis center to reach one as often as needed, and the “population burden”, defined as the burden for the total population living in such a region. The model revealed that the average travelling distance for inhabitants in municipalities without a hemodialysis center is 32 km and that 145,551 inhabitants (1.5% live more than 60 min away from a hemodialysis center, while 1,393,770 (13.8% live 30-60 min away. Multivariate analysis showed that the current localization of hemodialysis facilities is associated with major urban areas. The model developed recommends 12 locations for establishing hemodialysis centers that would result in drastically reduced travel for 34 other municipalities, leaving only six (34,800 people with over 60 min of travel. The application of this model should facilitate the planning of future hemodialysis services as it takes into consideration the potential impact of travel time for individuals in need of dialysis, as well as the logistic arrangements required to transport all patients with end-stage renal disease. The model is applicable in any country and health care planners can opt to weigh these two elements differently in the model according to their priorities.

  12. The study, design and simulation of a free piston Stirling engine linear alternatorThe study, design and simulation of a free piston Stirling engine linear alternator

    Directory of Open Access Journals (Sweden)

    Teodora Susana Oros

    2014-12-01

    Full Text Available This paper presents a study, design and simulation of a Free Piston Stirling Engine Linear Alternator. There are presented the main steps of the magnetic and electric calculations for a permanent magnet linear alternator of fixed coil and moving magnets type. Finally, a detailed thermal, mechanical and electrical model for a Stirling engine linear alternator have been made in SIMULINK simulation program. The linear alternator simulation model uses a controllable DC voltage which simulates the linear alternator combined with a rectifier, a variable load and a DC-DC converter, which compensates for the variable nature of Stirling engine operation, and ensures a constant voltage output regardless of the load.

  13. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  14. Preliminary assessment of radiological doses in alternative waste management systems without an MRS facility

    International Nuclear Information System (INIS)

    Schneider, K.J.; Pelto, P.J.; Daling, P.M.; Lavender, J.C.; Fecht, B.A.

    1986-06-01

    This report presents generic analyses of radiological dose impacts of nine hypothetical changes in the operation of a waste management system without a monitored retrievable storage (MRS) facility. The waste management activities examined in this study include those for handling commercial spent fuel at nuclear power reactors and at the surface facilities of a deep geologic repository, and the transportation of spent fuel by rail and truck between the reactors and the repository. In the reference study system, the radiological doses to the public and to the occupational workers are low, about 170 person-rem/1000 metric ton of uranium (MTU) handled with 70% of the fuel transported by rail and 30% by truck. The radiological doses to the public are almost entirely from transportation, whereas the doses to the occupational workers are highest at the reactors and the repository. Operating alternatives examined included using larger transportation casks, marshaling rail cars into multicar dedicated trains, consolidating spent fuel at the reactors, and wet or dry transfer options of spent fuel from dry storage casks. The largest contribution to radiological doses per unit of spent fuel for both the public and occupational workers would result from use of truck transportation casks, which are smaller than rail casks. Thus, reducing the number of shipments by increasing cask sizes and capacities (which also would reduce the number of casks to be handled at the terminals) would reduce the radiological doses in all cases. Consolidating spent fuel at the reactors would reduce the radiological doses to the public but would increase the doses to the occupational workers at the reactors

  15. Accelerator shield design of KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.

    2013-01-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total

  16. Safety issues relating to the design of fusion power facilities

    International Nuclear Information System (INIS)

    Stasko, R.R.; Wong, K.Y.; Russell, S.B.

    1986-06-01

    In order to make fusion power a viable future source of energy, it will be necessary to ensure that the cost of power for fusion electric generation is competitive with advanced fission concepts. In addition, fusion power will have to live up to its original promise of being a more radiologically benign technology than fission, and be able to demonstrate excellent operational safety performance. These two requirements are interrelated, since the selection of an appropriate safety philosophy early in the design phase could greatly reduce or eliminate the capital costs of elaborate safety related and protective sytems. This paper will briefly overview a few of the key safety issues presently recognized as critical to the ultimate achievement of licensable, environmentally safe and socially acceptable fusion power facilities. 12 refs

  17. Accelerator conceptual design of the international fusion materials irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M.; Kinsho, M. [Japan Atomic Energy Res. Inst., Tokai, Ibaraki (Japan). Intense Neutron Source Lab.; Jameson, R.A.; Blind, B. [Los Alamos National Lab., NM (United States); Teplyakov, V. [Institute for High Energy Physics, Moscow (Russian Federation); Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J. [Northrop Grumman Corp., Bethpage, NY (United States); Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K. [Johann Wolfgang Goethe Univ., Frankfurt (Germany). Inst. fur Angewandte Phys.; Ferdinand, R.; Lagniel, J.-M. [CEA Saclay LNS, Gif-sur-Yvette (France); Miyahara, A. [Teikyo Univ., Tokyo (Japan); Olivier, M. [CEA DSM, Saclay, Gif-sur-Yvette (France); Piechowiak, E. [Northrop Grumman Corp., Baltimore, MD (United States); Tanabe, Y. [Toshiba Corp., Tsurumi-ku, Yokohama (Japan)

    1998-10-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.) 8 refs.

  18. Accelerator conceptual design of the international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Sugimoto, M.; Kinsho, M.; Teplyakov, V.; Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J.; Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K.; Miyahara, A.; Olivier, M.; Piechowiak, E.; Tanabe, Y.

    1998-01-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.)

  19. Design of 9 tesla superconducting solenoid for VECC RIB facility

    International Nuclear Information System (INIS)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok

    2013-01-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  20. Design of 9 tesla superconducting solenoid for VECC RIB facility

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok [Variable Energy Cyclotron Centre, Kolkata (India)

    2013-07-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  1. The Influence of Older Age Groups to Sustainable Product Design Research of Urban Public Facilities

    Science.gov (United States)

    Wen-juan, Zhang; Hou-peng, Song

    2017-01-01

    Through summarize the status quo of public facilities design to older age groups in China and a variety of factors what influence on them, the essay, from different perspective, is designed to put forward basic principle to sustainable design of public facilities for the aged in the city, and thus further promote and popularize the necessity of sustainable design applications in the future design of public facilities for elderly people.

  2. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  3. RIP INPUT TABLES FROM WAPDEG FOR LA DESIGN SELECTION: ENHANCED DESIGN ALTERNATIVE V

    International Nuclear Information System (INIS)

    K. Mon

    1999-01-01

    The purpose of this calculation is to document (1) the Waste Package Degradation (WAPDEG) version 3.09 (CRWMS M and O 1998b, Software Routine Report for WAPDEG (Version 3.09)) simulations used to analyze degradation and failure of 2-cm thick titanium grade 7 corrosion resistant material (CRM) drip shields (that are placed over waste packages composed of a 2-cm thick Alloy 22 corrosion resistant material (CRM) as the outer barrier and an unspecified material to provide structural support as the inner barrier) as well as degradation and failure of the waste packages themselves, and (2) post-processing of these results into tables of drip shield/waste package degradation time histories suitable for use as input into the Integrated Probabilistic Simulator for Environmental Systems (RIP) version 5.19.01 (Golder Associates 1998) computer code. Performance credit of the inner barrier material is not taken in this calculation. This calculation supports Performance Assessment analysis of the License Application Design Selection (LADS) Enhanced Design Alternative V. Additional details concerning the Enhanced Design Alternative V are provided in a Design Input Request (CRWMS M and O 1999e, Design Input Request for LADS Phase II EDA Evaluations, Item 3)

  4. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    Science.gov (United States)

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  5. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  6. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    International Nuclear Information System (INIS)

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  7. 77 FR 1019 - Renewable Energy Alternate Uses of Existing Facilities on the Outer Continental Shelf-Acquire a...

    Science.gov (United States)

    2012-01-09

    ...-0045] RIN 1010-AD79 Renewable Energy Alternate Uses of Existing Facilities on the Outer Continental... rule related to acquiring a lease non-competitively for offshore renewable energy projects. DATES... or Timothy Redding, Renewable Energy, BOEM, at (703) 787-1219 or email [email protected

  8. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    International Nuclear Information System (INIS)

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-01-01

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed

  9. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-06-18

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed.

  10. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers; Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.

    2001-05-16

    Greening Federal Facilities, Second Edition, is a nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the performance of Federal buildings and facilities. The guide highlights practical actions that facility managers, design and construction staff, procurement officials, and facility planners can take to save energy and money, improve the comfort and productivity of employees, and benefit the environment. It supports a national effort to promote energy and environmental efficiency in the nation's 500,000 Federal buildings and facilities. Topics covered include current Federal regulations; environmental and energy decision-making; site and landscape issues; building design; energy systems; water and wastewater; materials; waste management, and recycling; indoor environmental quality; and managing buildings.

  11. Target designs for energetics experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Meezan, N B; Glenzer, S H; Suter, L J

    2008-01-01

    The goal of the first hohlraum energetics experiments on the National Ignition Facility (NIF) [G. H. Miller et al, Optical Eng. 43, 2841 (2004)] is to select the hohlraum design for the first ignition experiments. Sub-scale hohlraums heated by 96 of the 192 laser beams on the NIF are used to emulate the laser-plasma interaction behavior of ignition hohlraums. These 'plasma emulator' targets are 70% scale versions of the 1.05 MJ, 300 eV ignition hohlraum and have the same energy-density as the full-scale ignition designs. Radiation-hydrodynamics simulations show that the sub-scale target is a good emulator of plasma conditions inside the ignition hohlraum, reproducing density n e within 10% and temperature T e within 15% along a laser beam path. Linear backscatter gain analysis shows the backscatter risk to be comparable to that of the ignition target. A successful energetics campaign will allow the National Ignition Campaign to focus its efforts on optimizing ignition hohlraums with efficient laser coupling

  12. Cost-benefit analysis of alternative fuels and motive designs.

    Science.gov (United States)

    2013-04-01

    This project was funded by the Federal Railroad Administration to better understand the potential cost and benefits of using alternative fuels for U.S. freight and passenger locomotive operations. The framework for a decision model was developed by T...

  13. An alternative design for a metal image slicing IFU for EAGLE

    Science.gov (United States)

    Dubbeldam, Cornelis M.; Robertson, David J.; Rolt, Stephen; Talbot, R. Gordon

    2012-09-01

    The Centre for Advanced Instrumentation (CfAI) of Durham University (UK) has developed a conceptual design for the Integral Field Unit (IFU) for EAGLE based on diamond-machined monolithic multi-faceted metal-mirror arrays as an alternative to the glass IFU which is currently baselined. The CfAI has built up substantial expertise with the design, manufacture, integration, alignment and acceptance testing of such systems, through the successful development of IFUs for the Gemini Near-InfraRed Spectrograph (GNIRS) and JWST NIRSpec and 24 IFUs for ESO’s K-band Multi-Object Spectrometer (KMOS). The unprecedented performance of the KMOS IFUs (Strehl risks and cost. Through the timely completion of the KMOS IFUs, which required the fabrication of an unprecedented 1152 optical surfaces, the CfAI have demonstrated that they have the capacity to produce the required volume within reasonable schedule constraints. All the facilities (design, fabrication e.g. diamond machining, metrology, integration and test) required for the successful realisation of such systems are available in-house, thus minimising programmatic risks. This paper presents the opto-mechanical design and predicted performance (based on the actual measured performance of the KMOS IFUs) of the proposed metal IFU.

  14. The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)

    International Nuclear Information System (INIS)

    1994-12-01

    The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration

  15. Process of establishing design requirements and selecting alternative configurations for conceptual design of a VLA

    Directory of Open Access Journals (Sweden)

    Bo-Young Bae

    2017-04-01

    Full Text Available In this study, a process for establishing design requirements and selecting alternative configurations for the conceptual phase of aircraft design has been proposed. The proposed process uses system-engineering-based requirement-analysis techniques such as objective tree, analytic hierarchy process, and quality function deployment to establish logical and quantitative standards. Moreover, in order to perform a logical selection of alternative aircraft configurations, it uses advanced decision-making methods such as morphological matrix and technique for order preference by similarity to the ideal solution. In addition, a preliminary sizing tool has been developed to check the feasibility of the established performance requirements and to evaluate the flight performance of the selected configurations. The present process has been applied for a two-seater very light aircraft (VLA, resulting in a set of tentative design requirements and two families of VLA configurations: a high-wing configuration and a low-wing configuration. The resulting set of design requirements consists of three categories: customer requirements, certification requirements, and performance requirements. The performance requirements include two mission requirements for the flight range and the endurance by reflecting the customer requirements. The flight performances of the two configuration families were evaluated using the sizing tool developed and the low-wing configuration with conventional tails was selected as the best baseline configuration for the VLA.

  16. Design, placement, and sampling of groundwater monitoring wells for the management of hazardous waste disposal facilities

    International Nuclear Information System (INIS)

    Tsai, S.Y.

    1988-01-01

    Groundwater monitoring is an important technical requirement in managing hazardous waste disposal facilities. The purpose of monitoring is to assess whether and how a disposal facility is affecting the underlying groundwater system. This paper focuses on the regulatory and technical aspects of the design, placement, and sampling of groundwater monitoring wells for hazardous waste disposal facilities. Such facilities include surface impoundments, landfills, waste piles, and land treatment facilities. 8 refs., 4 figs

  17. Design verification and validation plan for the cold vacuum drying facility

    International Nuclear Information System (INIS)

    NISHIKAWA, L.D.

    1999-01-01

    The Cold Vacuum Drying Facility (CVDF) provides the required process systems, supporting equipment, and facilities needed for drying spent nuclear fuel removed from the K Basins. This document presents the both completed and planned design verification and validation activities

  18. Report to Congress on innovative safety and security technology solutions for alternative transportation facilities

    Science.gov (United States)

    2017-05-01

    This research collected information on the frequency and impact of safety and security incidents (threats) at selected facilities and identified priority incidents at each facility. A customized all hazards approach was used to determine the ha...

  19. Ventilation design for Yucca Mountain Exploratory Studies Facility

    International Nuclear Information System (INIS)

    Jurani, R.S.

    1995-01-01

    Yucca Mountain, located in Southern Nevada approximately 160 km northwest of Las Vegas, is currently the site of intensive surface-based and underground investigations. The investigations are required to determine if the site is suitable for long term isolation of the Nation's high level nuclear waste inventory. A major component of the program is the Exploratory Studies Facility, or ESF. The ESF, when completed, will consist of approximately 25,600 meters of tunnels and drifts. The network of tunnels and drifts will house and support a wide array of testing programs conceived to provide physical information about the site. Information on geologic, geomechanical, and hydrologic data will be used in the repository design if the site is found suitable. Besides a few special requirements, the general ESF ventilation criteria during construction are similar to that of commercial tunneling and mining operations. The minimum air velocity at the Tunnel Boring Machine (TBM) and other active mining faces is 0.51 meter per second (m/s) (100 feet per minute [fpm]). Airways, estimated leakages and ventilation controls are converted into equivalent resistances for input to mine ventilation network computer simulations. VNETPC Version 3.1 computer software is used to generate the ventilation models for optimized system design and component selection. Subsequently, actual performance of the ventilation system will be verified and validated to comply with applicable nuclear regulatory quality assurance requirements. Dust control in the ESF is dependent on effective dust collection, enclosure, and airflow dilution. Minimum use of water, as feasible, is necessary to avoid adding moisture to the potential repository horizon. The limitation of water use for test drilling and TBM operation, and the rigid compliance with applicable federal and state regulations, make the ESF a ventilation design challenge

  20. Cold Vacuum Drying facility civil - structural system design description (SYS 06)

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying (CVD) Facility civil - structural system. This system consists of the facility structure, including the administrative and process areas. The system's primary purpose is to provide for a facility to house the CVD process and personnel and to provide a tertiary level of containment. The document provides a description of the facility and demonstrates how the design meets the various requirements imposed by the safety analysis report and the design requirements document

  1. Spent Nuclear Fuel Cold Vacuum Drying facility comprehensive formal design review report

    International Nuclear Information System (INIS)

    HALLER, C.S.

    1999-01-01

    The majority of the Cold Vacuum Drying Facility (CVDF) design and construction is complete; isolated portions are still in the design and fabrication process. The project commissioned a formal design review to verify the sufficiency and accuracy of current design media to assure that: (1) the design completely and accurately reflects design criteria, (2) design documents are consistent with one another, and (3) the design media accurately reflects the current design. This review is a key element in the design validation and verification activities required by SNF-4396, ''Design Verification and Validation Plan For The Cold Vacuum Drying Facility''. This report documents the results of the formal design review

  2. Technical considerations in the design of near surface disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    2001-11-01

    Good design is an important step towards ensuring operational as well as long term safety of low and intermediate level waste (LILW) disposal. The IAEA has produced this report with the objective of outlining the most important technical considerations in the design of near surface disposal facilities and to provide some examples of the design process in different countries. This guidance has been developed in light of experience gained from the design of existing near surface disposal facilities in a range of Member States. In particular the report provide information on design objective, design requirements, and design phases. The report focuses on: near surface disposal facilities accepting solidified LILW; disposal facilities on or just below the ground surface, where the final protective covering is of the order of a few metres thick; and disposal facilities several tens of metres below the ground surface (including rock cavern type facilities)

  3. Conceptual design study of a concrete canister spent-fuel storage facility

    International Nuclear Information System (INIS)

    Lidfors, E.D.; Tabe, T.; Johnson, H.M.

    1979-01-01

    This report presents a conceptual design study for the interim storage of CANDU spent fuel in concrete canisters. The canisters will be concrete flasks, which contain fuel prepackaged in double steel containment, and will be cooled by natural air convection. This is one of the methods proposed as a potential alternative to water pool storage. A preliminary study of this concept was done by CAFS (Committee Assessing Fuel Storage), and WNRE (Whiteshell Nuclear Research Establishment) is currently conducting a development and demonstration program. This study of a central facility for the storage of all Canadian spent fuel arisings to the year 2000 was completed in 1975. A brief description of the facilities required and the operations involved, a summary of costs, a survey of the monitoring requirements and a prediction of the personnel exposures associated with this method of storing spent fuel are reported here. The estimated total cost of interim storage in cylindrical canisters at a central site is $6.02/kg U (1975 dollars). Approximately half of this cost is incurred in the shipment of fuel from the reactors to the storage facility. (author)

  4. 340 Facility Secondary Containment and Leak Detection Project W-302 Functional Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Stordeur, R.T.

    1995-03-01

    This functional design criteria for the upgrade to the 340 radioactive liquid waste storage facility (Project W-302) specifically addresses the secondary containment issues at the current vault facility of the 340 Complex. This vault serves as the terminus for the Radioactive Liquid Waste System (RLWS). Project W-302 is necessary in order to bring this portion of the Complex into full regulatory compliance. The project title, ``340 Facility Secondary Containment and Leak Detection``, illustrates preliminary thoughts of taking corrective action directly upon the existing vault (such as removing the tanks, lining the vault, and replacing tanks). However, based on the conclusion of the engineering study, ``Engineering Study of the 300 Area Process Wastewater Handling System``, WHC-SD-WM-ER-277 (as well as numerous follow-up meetings with cognizant staff), this FDC prescribes a complete replacement of the current tank/vault system. This offers a greater array of tanks, and provides greater operating flexibility and ease of maintenance. This approach also minimizes disruption to RLWS services during ``tie-in``, as compared to the alternative of trying to renovate the old vault. The proposed site is within the current Complex area, and maintains the receipt of RLWS solutions through gravity flow.

  5. Design of the magnetized muon shield for the prompt-neutrino facility

    International Nuclear Information System (INIS)

    Baltay, C.; Bosek, N.; Couch, J.

    1982-01-01

    The main technical challenge in the design of the prompt neutrino beam is the magnetized muon shield. Two satisfactory alternate designs have been developed for such a shield during this past year and the background muon fluxes have been calculated by three independent programs at Columbia, Fermilab, and MIT. The background muon fluxes have been calculated to be satisfactory in all of the detectors that might use the beam. In Section III of this report we describe in detail the three Monte Carlo programs used in these calculations. In Section IV we give the details of the flux calculations for the E-613 shield and the comparisons with the observed fluxes with various configurations of that shield. In Section V we describe the designs that have been developed for the neutrino area shield. In Section VI we discuss the problem of proton beam transport losses and the associated muon fluxes. Finally, in Section VII a comparison of the two solutions is made which covers cost, effectiveness, schedule and responsiveness to future unknowns. We conclude that there are not overwhelming reasons for the choice of one design over the other. However, for a variety of secondary reasons the superconducting design offers advantages. We therefore propose the construction of the prompt neutrino facility with the superconducting magnet design

  6. Radonclose - the system of Soviet designed regional waste management facilities

    International Nuclear Information System (INIS)

    Horak, W.C.; Reisman, A.; Purvis, E.E. III.

    1997-01-01

    The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30 years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities

  7. Basic design study on plutonium electro-refining facility of oxide fuel pyroelectrochemical reprocessing

    International Nuclear Information System (INIS)

    Ogura, Kenji; Kondo, Naruhito; Kamoshida, Hiroshi; Omori, Takashi

    2001-02-01

    The test facility basic design, utility necessity and estimation cost of the Oxide Fuel Pyro-process for the use of Chemical Processing Facility (CPF) of JNC have been studied with the information of the previous year concept study and the additional conditions. Drastic down sizing design change or the building reconstruction is necessary to place the Oxide Fuel Pyro-process Facility in the laboratory ''C'', because it is not possible to reserve enough maintenance space and the weight of the facility is over the acceptable limit of the building. A further study such as facility down sizing, apparatus detail design and experiment detail process treatment has to be planned. (author)

  8. SNS Target Test Facility for remote handling design and verification

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Graves, V.B.; Schrock, S.L.

    1998-01-01

    The Target Test Facility will be a full-scale prototype of the Spallation Neutron Source Target Station. It will be used to demonstrate remote handling operations on various components of the mercury flow loop and for thermal/hydraulic testing. This paper describes the remote handling aspects of the Target Test Facility. Since the facility will contain approximately 1 cubic meter of mercury for the thermal/hydraulic tests, an enclosure will also be constructed that matches the actual Target Test Cell

  9. Radiological safety design considerations for a laser-fusion facility

    International Nuclear Information System (INIS)

    Singh, M.S.

    1977-01-01

    Detailed neutronics and photonics calculations have been performed for analyzing prompt and residual radiations and required shielding associated with the design of a laser-fusion facility with a nominal yield of 10 19 neutrons per D--T burn pulse. The standard Livermore Monte Carlo codes and nuclear data cross section libraries were used in calculations. The Bateman equation was used to calculate the accumulation and decay of radionuclide chain products. A number of activation sensitivity experiments were conducted and the results were found to be in very good agreement within 10 percent of those calculated. It has been found that neutron yields of 2 x 10 19 per day can be conducted continuously if the reactor chamber is Kevlar-epoxy or silica, the primary shield is 0.60-m of water immediately on the chamber, and the building concrete is 1.80 m thick. These precautions result in dose equivalents below the primary protection limits inside the target room after a few hours of cool-down per each 10 19 pulse, 10 percent of the primary protection limits immediately outside the target room, and 1 percent of the natural background level at the nearest site boundary

  10. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  11. [Design of an HACCP program for a cocoa processing facility].

    Science.gov (United States)

    López D'Sola, Patrizia; Sandia, María Gabriela; Bou Rached, Lizet; Hernández Serrano, Pilar

    2012-12-01

    The HACCP plan is a food safety management tool used to control physical, chemical and biological hazards associated to food processing through all the processing chain. The aim of this work is to design a HACCP Plan for a Venezuelan cocoa processing facility.The production of safe food products requires that the HACCP system be built upon a solid foundation of prerequisite programs such as Good Manufacturing Practices (GMP) and Sanitation Standard Operating Procedures (SSOP). The existence and effectiveness of these prerequisite programs were previously assessed.Good Agriculture Practices (GAP) audit to cocoa nibs suppliers were performed. To develop the HACCP plan, the five preliminary tasks and the seven HACCP principles were accomplished according to Codex Alimentarius procedures. Three Critical Control Points (CCP) were identified using a decision tree: winnowing (control of ochratoxin A), roasting (Salmonella control) and metallic particles detection. For each CCP, Critical limits were established, the Monitoring procedures, Corrective actions, Procedures for Verification and Documentation concerning all procedures and records appropriate to these principles and their application was established. To implement and maintain a HACCP plan for this processing plant is suggested. Recently OchratoxinA (OTA) has been related to cocoa beans. Although the shell separation from the nib has been reported as an effective measure to control this chemical hazard, ochratoxin prevalence study in cocoa beans produced in the country is recommended, and validate the winnowing step as well

  12. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    International Nuclear Information System (INIS)

    Zygmunt, S.; Christensen, L.; Richardson, C.

    1997-01-01

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation's inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned

  13. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Zygmunt, S.; Christensen, L.; Richardson, C.

    1997-12-12

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned.

  14. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    International Nuclear Information System (INIS)

    Pence, D.T.; Kirstein, B.E.

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m 3 /h (15-ft 3 /min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed

  15. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Pence, D T; Kirstein, B E

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m/sup 3//h (15-ft/sup 3//min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed.

  16. ''Econodump'' design for the Fermilab Direct Neutral Lepton Facility

    International Nuclear Information System (INIS)

    Childress, S.; Brown, C.; Koizumi, G.; Malensek, A.; Morfin, J.G.; Murphy, T.; Stefanski, R.; Wehman, A.; Lu, B.

    1986-08-01

    An extensive effort has been directed toward a major redesign of the Fermilab Direct Neutral Lepton Facility (DNLF). The goal has been a very significant cost reduction of the facility, with minimal sacrifice of physics potential. Hence the name ''Econodump'' applied to the redesign effort

  17. ANALYSIS OF ALTERNATIVE PAYMENT DESIGNS FOR FARMLAND DEVELOPMENT RIGHTS

    OpenAIRE

    Hanson, Steven D.

    1999-01-01

    Four alternative payment rules were examined to evaluate their ability to accomplish the objectives of the development rights purchase program. Paying the true economic value for the development rights does not allow the program to target high quality agricultural land. Modifying the payment strategy by offering a minimum payment will provide some extra incentive for high quality agricultural land in areas with little development pressure, but will provide little help in areas with high devel...

  18. Values-led Participatory Design as a pursuit of meaningful alternatives

    DEFF Research Database (Denmark)

    Leong, Tuck Wah; Iversen, Ole Sejer

    2015-01-01

    Participatory Design (PD) is inherently concerned with inquiring into and supporting human values when designing IT. We argue that a PD approach that is led by a focus upon participants' values can allow participants to discover meaningful alternatives -- alternative uses and alternative...... conceptualizations for IT that are particularly meaningful to them. However, how PD works with values in the design process has not been made explicit. In this paper, we aim to (i) explicate this values-led PD approach, (ii) illustrate how this approach can lead to outcomes that are meaningful alternatives, and (iii...

  19. An Approach to Safeguards by Design (SBD) for Fuel Cycle Facilities

    International Nuclear Information System (INIS)

    Sankaran Nair, P.; Gangotra, S.; Karanam, R.

    2015-01-01

    Implementation of safeguards in bulk handling facilities such as fuel fabrication facilities and reprocessing facilities are a challenging task. This is attributed to the nuclear material present in the facility in the form of powder, pellet, green pellet, solution and gaseous. Additionally material hold up, material unaccounted for (MUF) and the operations carried out round the clock add to the difficulties in implementing safeguards. In facilities already designed or commissioned or operational, implementation of safeguards measures are relatively difficult. The authors have studied a number of measures which can be adopted at the design stage itself. Safeguard By Design (SBD) measures can help in more effective implementation of safeguards, reduction of cost and reduction in radiological dose to the installation personnel. The SBD measures in the power reactors are comparatively easier to implement than in the fuel fabrication plants, since reactors are item counting facilities while the fuel fabrication plants are bulk handling type of facilities and involves much rigorous nuclear material accounting methodology. The safeguards measures include technical measures like dynamic nuclear material accounting, near real time monitoring, remote monitoring, use of automation, facility imagery, Radio Frequency Identification (RFID) tagging, reduction of MUF in bulk handling facilities etc. These measures have been studied in the context of bulk handling facilities and presented in this paper. Incorporation of these measures at the design stage (SBD) is expected to improve the efficiency of safeguardability in such bulk handling and item counting facilities and proliferation resistance of nuclear material handled in such facilities. (author)

  20. Conceptual design and cost estimation of dry cask storage facility for spent fuel

    International Nuclear Information System (INIS)

    Maki, Yasuro; Hironaga, Michihiko; Kitano, Koichi; Shidahara, Isao; Shiomi, Satoshi; Ohnuma, Hiroshi; Saegusa, Toshiari

    1985-01-01

    In order to propose an optimum storage method of spent fuel, studies on the technical and economical evaluation of various storage methods have been carried out. This report is one of the results of the study and deals with storage facility of dry cask storage. The basic condition of this work conforms to ''Basic Condition for Spent Fuel Storage'' prepared by Project Group of Spent Fuel Dry Storage at July 1984. Concerning the structural system of cask storage facilities, trench structure system and concrete silo system are selected for storage at reactor (AR), and a reinforced concrete structure of simple design and a structure with membrance roof are selected for away from reactor (AFR) storage. The basic thinking of this selection are (1) cask is put charge of safety against to radioactivity and (2) storage facility is simplified. Conceptual designs are made for the selected storage facilities according to the basic condition. Attached facilities of storage yard structure (these are cask handling facility, cask supervising facility, cask maintenance facility, radioactivity control facility, damaged fuel inspection and repack facility, waste management facility) are also designed. Cost estimation of cask storage facility are made on the basis of the conceptual design. (author)

  1. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system

  2. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  3. RIP Input Tables from WAPDEG for LA Design Selection: Enhanced Design Alternative II-3

    International Nuclear Information System (INIS)

    A.M. Monib

    1999-01-01

    The purpose of this calculation is to document (1) the Waste Package Degradation (WAPDEG) version 3.09 (CRWMS M and O 1998b. ''Software Routine Report for WAPDEG'' (Version 3.09)) simulations used to analyze degradation and failure of 2-cm thick titanium grade 7 corrosion resistant material (CRM) drip shields (that are placed over waste packages composed of a 2-cm thick Alloy 22 corrosion resistant material (CRM) as the outer barrier and an unspecified material to provide structural support as the inner barrier) as well as degradation and failure of the waste packages themselves, and (2) post-processing of these results into tables of drip shield/waste package degradation time histories suitable for use as input into the Integrated Probabilistic Simulator for Environmental Systems (RIP) version 5.19.01 (Golder Associates 1998) computer code. This calculation supports Performance Assessment analysis of the License Application Design Selection (LADS) Enhanced Design Alternative (EDA) II-3. The aging period in the EDA II design (CRWMS M and O 1999f. ''Design Input Request for LADS Phase II EDA Evaluations'', Item 1 Row 9 Column 3) was replaced in the case of EDA II-3 with 25 years preclosure ventilation, leading to a total of 50 years preclosure ventilation. The waste packages are line loaded in the repository and no backfill is used

  4. Design Anthropology, Emerging Technologies and Alternative Computational Futures

    DEFF Research Database (Denmark)

    Smith, Rachel Charlotte

    Emerging technologies are providing a new field for design anthropological inquiry that unite experiences, imaginaries and materialities in complex way and demands new approaches to developing sustainable computational futures.......Emerging technologies are providing a new field for design anthropological inquiry that unite experiences, imaginaries and materialities in complex way and demands new approaches to developing sustainable computational futures....

  5. Schema Design Alternatives for Multi-Granular Data Warehousing

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Pedersen, Torben Bach

    2010-01-01

    Data warehousing is widely used in industry for reporting and analysis of huge volumes of data at different levels of detail. In general, data warehouses use standard dimensional schema designs to organize their data. However, current data warehousing schema designs fall short in their ability...

  6. Alternative designs of a superconducting synchronous generator: the Southampton approach

    OpenAIRE

    Goddard, K.F.; Lukasik, B.; Sykulski, J.K.

    2008-01-01

    The paper describes various designs undertaken at the University of Southampton for building both cored and coreless superconducting synchronous generators using high temperature superconducting (HTS) tapes. An overview of electromagnetic and mechanical design issues is presented and scalability is considered. Results are included for the full (original) size machine and extended to a double size unit.

  7. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 7, contains cost estimate information for a monitored retrievable storage (MRS) facility. Cost estimates are for onsite improvements, waste storage, and offsite improvements for the Clinch River Site

  8. LCA to choose among alternative design solutions: The case study of a new Italian incineration line

    International Nuclear Information System (INIS)

    Scipioni, A.; Mazzi, A.; Niero, M.; Boatto, T.

    2009-01-01

    At international level LCA is being increasingly used to objectively evaluate the performances of different Municipal Solid Waste (MSW) management solutions. One of the more important waste management options concerns MSW incineration. LCA is usually applied to existing incineration plants. In this study LCA methodology was applied to a new Italian incineration line, to facilitate the prediction, during the design phase, of its potential environmental impacts in terms of damage to human health, ecosystem quality and consumption of resources. The aim of the study was to analyse three different design alternatives: an incineration system with dry flue gas cleaning (without- and with-energy recovery) and one with wet flue gas cleaning. The last two technological solutions both incorporating facilities for energy recovery were compared. From the results of the study, the system with energy recovery and dry flue gas cleaning revealed lower environmental impacts in relation to the ecosystem quality. As LCA results are greatly affected by uncertainties of different types, the second part of the work provides for an uncertainty analysis aimed at detecting the extent output data from life cycle analysis are influenced by uncertainty of input data, and employs both qualitative (pedigree matrix) and quantitative methods (Monte Carlo analysis).

  9. Cold Vacuum Drying facility effluent drain system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) effluent drain system (EFS). The primary function of the EFS is to collect and transport fire suppression water discharged into a CVDF process bay to a retention basin located outside the facility. The EFS also provides confinement of spills that occur inside a process bay and allows non-contaminated water that drains to the process bay sumps to be collected until sampling and analysis are complete

  10. Cold Vacuum Drying facility deionized water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit

  11. RIP Input From WAPDEG for LA Design Selection: Enhanced Design Alternative II

    International Nuclear Information System (INIS)

    B.E. Bullard

    1999-01-01

    The purpose of this analysis is to identify and analyze concepts for the acquisition of data in support of the Performance Confirmation (PC) program at the potential subsurface nuclear waste repository at Yucca Mountain. This analysis is being prepared to document an investigation of design concepts, current available technology, technology trends, and technical issues associated with data acquisition during the PC period. This analysis utilizes the ''Performance Confirmation Plan'' (CRWMS M and O 2000b) to help define the scope for the PC data acquisition system. The focus of this analysis is primarily on the PC period for a minimum of 30 years after emplacement of the last waste package. The design of the data acquisition system shall allow for a closure deferral up to 300 years from initiation of waste emplacement. (CRWMS M and O 2000h, page 5-1). This analysis is a revision to and supercedes analysis, ''Performance Confirmation Data Acquisition System'', DI No. BCAI00000-017 17-0200-00002 Rev 00 (CRWMS M and O 1997), and incorporates the latest repository design changes following the M and O and DOE evaluation of a series of Enhanced Design Alternatives (EDAs), as described in the ''Enhanced Design Alternatives II Report'' (CRWMS M and O 1999d). Significant design changes include: thermal line loading of the emplacement drifts, closer spacing of the waste packages (WPs), wider spacing and fewer emplacement drifts, continuous ventilation of all active emplacement drifts, thinner walled WP designs which will increase external radiation levels, a 50-year repository closure option, inclusion of a drip-shield, exclusion of backfill, and new conceptual designs for the waste emplacement vehicles and equipment (Stroupe 2000). The scope and primary objectives of this analysis are to: (1) Review the criteria for design as presented in the Performance Confirmation Data Acquisition/Monitoring System Description Document, by way of the Input Transmittal, ''Performance

  12. Visual Geolocations. Repurposing online data to design alternative views

    Directory of Open Access Journals (Sweden)

    Gabriele Colombo

    2017-04-01

    Full Text Available Data produced by humans and machines is more and more heterogeneous, visual, and location based. This availability inspired in the last years a number of reactions from researchers, designers, and artists that, using different visual manipulations techniques, have attempted at repurposing this material to add meaning and design new perspectives with specific intentions. Three different approaches are described here: the design of interfaces for exploring satellite footage in novel ways, the analysis of urban esthetics through the visual manipulation of collections of user-generated contents, and the enrichment of geo-based datasets with the selection and rearrangement of web imagery.

  13. Mechanical Design and Manufacturing Preparation of Loading Unloading Irradiation Facility in Reflector Irradiation Position

    International Nuclear Information System (INIS)

    Hasibuan, Djaruddin

    2004-01-01

    Base on planning to increase of the irradiation service quality in Multi purpose Reactor-GAS, the mechanical design and manufacturing of the (n,γ) irradiation facility has been done. The designed of (n,γ) irradiation facility is a new facility in Multi purpose Reactor-GAS. The design doing by design of stringer, guide bar and hanger. By the design installation, the continuous irradiation service of non fission reaction will be easy to be done without reactor shut down. The design of the facility needs 3 pieces Al pipe by 36 x 1.5 mm, a peace of Al round bar by 80 mm diameter and a piece of Al plate by 20 x 60 x 0.2 mm for the stringer and guide bar manufacturing. By the building of non fission irradiation facility in the reflector irradiation position, will make the irradiation service to be increased. (author)

  14. Conceptual design report for the spent fuel management technology research and test (SMATER) facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, S W; Ro, S G; Lee, J S; Min, D K; Shin, Y J [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    This study was intended to develop concept for a pilot-scale remote operation facility for longer term management of spent fuel and therefrom to provide technical requirement for later basic design of the facility. Main scope of work for the study was to revise the past (1990) conceptual design in functions, scale, hot cell layout etc. based on user requirements. Technical reference was made to the PKA facility in Germany, through collaboration with appropriate partner, to elaborate the design and requirements. The study was focused on establishing design criteria and conceptual design of the SMATER facility. The results of this study should be an essential and useful basis upon optimization for further work to basic design of the facility. (author). 17 figs., 12 tabs.

  15. Standard and alternative landfill capping design in Germany

    International Nuclear Information System (INIS)

    Simon, Franz-Georg; Mueller, Werner W.

    2004-01-01

    Engineered capping systems are in most cases an indispensable and often the only efficient component required by the long-term safety concept for landfills, mine tailings tips and contaminated land. In Germany the composite liner is the main component of standard landfill cappings for municipal and hazardous waste landfills and the compacted clay liner (CCL) for landfills for inert or low-contamination waste. The composite liner is a technically highly effective but very expensive system. Research and experience has given rise to concern about the proper long-term performance of a conventional single CCL as a landfill capping. Therefore, alternative capping systems are discussed and applied for landfills and for the containment of contaminated sites. This paper gives an overview on various alternative engineered cappings and suitable systems for capping reflecting the state of the art and the expert view in Germany. According to the European Council Directive on the landfill of waste an impermeable mineral layer is recommended for the surface sealing of non-hazardous landfills and a composition of artificial sealing liner and impermeable mineral layer for hazardous landfills. In both cases a drainage layer thickness of at least 0.5 m is suggested. These recommendations should be interpreted flexibly and to some extent modified in the light of the experience and results presented in this paper

  16. Alternative designs of high-temperature superconducting synchronous generators

    OpenAIRE

    Goddard, K. F.; Lukasik, B.; Sykulski, J. K.

    2010-01-01

    This paper discusses the different possible designs of both cored and coreless superconducting synchronous generators using high-temperature superconducting (HTS) tapes, with particular reference to demonstrators built at the University of Southampton using BiSCCO conductors. An overview of the electromagnetic, thermal, and mechanical issues is provided, the advantages and drawbacks of particular designs are highlighted, the need for compromises is explained, and practical solutions are offer...

  17. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.; Ott, K.O.; Terry, W.K.

    1987-01-01

    A new conceptual design of a fusion reactor blanket simulation facility has been developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBF), where experiments have resulted in the discovery of substantial deficiencies in neutronics predictions. With this design, discrepancies between calculation and experimental data can be nearly fully attributed to calculation methods because design deficiencies that could affect results are insignificant. The conceptual design of this FBBF analog, the Fusion Reactor Blanket Facility, is presented

  18. Building arrangement and site layout design guides for on site low level radioactive waste storage facilities

    International Nuclear Information System (INIS)

    McMullen, J.W.; Feehan, M.J.

    1986-01-01

    Many papers have been written by AE's and utilities describing their onsite storage facilities, why they are needed, NRC regulations, and disposal site requirements. This paper discusses a typical storage facility and address the design considerations and operational aspects that are generally overlooked when designing and siting a low level radioactive waste storage facility. Some topics to be addressed are: 1. Container flexibility; 2. Modular expansion capabilities; 3. DOT regulations; 4. Meterological requirements; 5. OSHA; 6. Fire protection; 7. Floods; 8. ALARA

  19. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    International Nuclear Information System (INIS)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO 2 oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO 2 pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs

  20. 75 FR 54025 - Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative...

    Science.gov (United States)

    2010-09-03

    ... responders for each vessel or facility with appropriate equipment and resources located in each zone of operation; specific lists of equipment that the resource providers will make available in case of an...

  1. Evaluation of Island and Nearshore Confined Disposal Facility Alternatives, Pascagoula River Harbor Dredged Material Management Plan

    National Research Council Canada - National Science Library

    Bunch, Barry

    2003-01-01

    ...) for the Federal navigation project at Pascagoula, MS. The studies focused on evaluating an option under consideration for the placement of dredged material in an island confined disposal facility (CDF...

  2. Value Engineering. "A Working Tool for Cost Control in the Design of Educational Facilities."

    Science.gov (United States)

    Lawrence, Jerry

    Value Engineering (VE) is a cost optimizing technique used to analyze design quality and cost-effectiveness. The application of VE procedures to the design and construction of school facilities has been adopted by the state of Washington. By using VE, the optimum value for every life cycle dollar spent on a facility is obtained by identifying not…

  3. Engineering design of the Nova Laser Facility for inertial-confinement fusion

    International Nuclear Information System (INIS)

    Simmons, W.W.; Godwin, R.O.; Hurley, C.A.

    1982-01-01

    The design of the Nova Laser Facility for inertial confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to-performance requirements as they impact the various subsystems that comprise this complex experimental facility

  4. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-02-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and ''graded approach'' philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  5. Family and Consumer Sciences: A Facility Planning and Design Guide for School Systems.

    Science.gov (United States)

    Maryland State Dept. of Education, Baltimore.

    This document presents design concepts and considerations for planning and developing middle and high school family and consumer sciences education facilities. It includes discussions on family and consumer sciences education trends and the facility planning process. Design concepts explore multipurpose laboratories and spaces for food/nutrition…

  6. Analysis on the Present Status of Conceptually Designed Pyroprocessing Facilities for Determining a Reference Pyroprocessing Facility

    International Nuclear Information System (INIS)

    Shin, Hee Sung; Ahn, Seong Kyu; Song, Dae Yong; Lee, Tae Hoon; Kim, Ho Dong; Seo, Ji Sun; Im, Hye In; Jang, Je Nam

    2009-12-01

    In this report, pyro processing facility concepts suggested by US, Japan, and Republic of Korea have been summarized and analyzed, and the determination principles were established to determine a reference pyro processing facility concept. Three proposals for a reference pyro processing facility concept were suggested based on these principles. The 1st proposal is based on the GEN-IV PR/PP model except the metal fuel fabrication process. It may be possible to later add the metal fuel fabrication process, UO2 recovery process of Japan, and continuous electrorefining process invented in Republic of Korea to be the generic model including all pyroprocessing facility concepts in the world. The 2nd proposal is based on INL and ANL model which is simple for the most part and has basic essential processes. The 3rd proposal is determined to be the ESPF of KAERI, which is almost identical with that of the 2nd proposal except in regards to utilization of an input accountability tank and continuous electrorefining process and the 3rd proposal is planned to be realized in 7 years. After the review of the IAEA and discussions at 3rd Working Group Meeting held in IAEA headquarters, the 3rd proposal has been determined as the final version of a reference pyroprocessing facility concept

  7. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  8. Reliability improvement through alternative designs-A case study

    International Nuclear Information System (INIS)

    Kumar, Saurabh; Chattopadhyay, Gopi; Kumar, Uday

    2007-01-01

    In today's competitive world, reliability of equipment is extremely important to maintain quality and delivery deadlines. This is achieved by using proper maintenance and design changes for unreliable subsystems and components of a complex system. It is significant to develop a strategy for maintenance, replacement and design changes related to those subsystems and components. An analysis of down time along with causes is essential to identify the unreliable components and subsystems. This paper presents an analysis of failure data of solenoid coils of automatic internal grinding machine used in a bearing manufacturing plant. It analyses various replacement and change of design options such as introduction of pneumatic system in place of electromagnetic solenoids for improvement of reliability of the plunger movement mechanism

  9. Ergonomics intervention on an alternative design of a spinal board.

    Science.gov (United States)

    Zadry, Hilma Raimona; Susanti, Lusi; Rahmayanti, Dina

    2017-09-01

    A spinal board is the evacuation tool of first aid to help the injured spinal cord. The existing spinal board has several weaknesses, both in terms of user comfort and the effectiveness and efficiency of the evacuation process. This study designs an ergonomic spinal board using the quality function deployment approach. A preliminary survey was conducted through direct observation and interviews with volunteers from the Indonesian Red Cross. Data gathered were translated into a questionnaire and answered by 47 participants in West Sumatra. The results indicate that the selection of materials, the application of strap systems as well as the addition of features are very important in designing an ergonomic spinal board. The data were used in designing an ergonomic spinal board. The use of anthropometric data ensures that this product can accommodate safety and comfort when immobilized, as well as the flexibility and speed of the rescue evacuation process.

  10. Regulatory requirements for designing PET-CT facility in India

    International Nuclear Information System (INIS)

    Tandon, Pankaj

    2010-01-01

    In India, cyclotron-produced radionuclides are gaining importance in molecular imaging in Nuclear Medicine (NM) departments. The importance of this modality among others is due to the fact that it provides valuable clinical information, which was lacking in other available modalities. Presently, every well-established hospital would like to procure Medical Cyclotron or positron emission tomography-computed tomography (PET-CT) facility in their NM department. Because cyclotron-produced radionuclides have higher energy than the other routinely used radionuclides for diagnosis, it becomes essential for the user to know about the regulatory requirement and radiation safety precautions that one has to take for the installation of this new modality in their premises. The various stages of approval of PET-CT facility by the Atomic Energy Regulatory Board (AERB) and important steps that one has to know/follow before planning for this new facility are summarized

  11. Development of Demonstration Facility Design Technology for Advanced Nuclear Fuel Cycle Process

    International Nuclear Information System (INIS)

    Cho, Il Je; You, G. S.; Choung, W. M.

    2010-04-01

    The main objective of this R and D is to develop the PRIDE (PyRoprocess Integrated inactive DEmonstration) facility for engineering-scale inactive test using fresh uranium, and to establish the design requirements of the ESPF (Engineering Scale Pyroprocess Facility) for active demonstration of the pyroprocess. Pyroprocess technology, which is applicable to GEN-IV systems as one of the fuel cycle options, is a solution of the spent fuel accumulation problems. PRIDE Facility, pyroprocess mock-up facility, is the first facility that is operated in inert atmosphere in the country. By using the facility, the functional requirements and validity of pyroprocess technology and facility related to the advanced fuel cycle can be verified with a low cost. Then, PRIDE will contribute to evaluate the technology viability, proliferation resistance and possibility of commercialization of the pyroprocess technology. The PRIDE evaluation data, such as performance evaluation data of equipment and operation experiences, will be directly utilized for the design of ESPF

  12. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  13. Design report for the interim waste containment facility at the Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    1986-05-01

    Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection

  14. Multi-phase alternative current machine winding design | Khan ...

    African Journals Online (AJOL)

    ... single-phase to 18-phase excitation. Experimental results of a five-phase induction machine supplied from a static five-phase supply are provided to support the proposed design. Keywords: AC machine, Multi-phase machine, Stator winding, Five-phase. International Journal of Engineering, Science and Technology, Vol.

  15. Positron computed tomography. Present and future design alternatives

    International Nuclear Information System (INIS)

    Phelps, M.E.; Hoffman, E.J.; Sung-Cheng Huang; Kuhl, D.E.

    1981-01-01

    There are six commercial companies in the United States of America, Canada, Europe and Asia that have or are developing PCT programs. Although positron computed tomography (PCT) system designs are still evolving and all the complex issues of system optimization are still not completely defined, some design concepts have achieved general acceptance. Circumferential designs employing hexagonal, octagonal or circular geometries are preferred since they maximize the tomographic plane efficiency. Bismuth germanate has become the detector of choice because of its high efficiency (intrinsic photopeak and geometric through high packing densities) when the small detectors required for high spatial resolution are used. Caesium fluoride detectors are also being investigated because of their short coincidence time resolution and potential for time of flight measurements. Multiplane systems, consisting of stacked single plane geometries, have been developed to provide higher overall organ efficiency, with some compromise in image quality compared with a single plane system. The most poorly characterized aspect of multiplane systems is the slit and septa shielding design that has a large impact on random and scatter coincidences, count-rate capability, efficiency and uniformity of spatial resolution. Present PCT systems have spatial resolutions in the tomographic plane of about 8 to 17 mm and axial resolution of about 12 to 18 mm. PCT systems that have been or are now being developed are providing the means to demonstrate the unique capability of PCT to provide quantitative measurements of local biochemical and functional processes in man

  16. Design element alternatives for stress-management intervention websites.

    Science.gov (United States)

    Williams, Reg A; Gatien, Gary; Hagerty, Bonnie

    2011-01-01

    Typical public and military-sponsored websites on stress and depression tend to be prescriptive. Some require users to complete lengthy questionnaires. Others reproduce printed flyers, papers, or educational materials not adapted for online use. Some websites require users to follow a prescribed path through the material. Stress Gym was developed as a first-level, evidence-based, website intervention to help U.S. military members learn how to manage mild to moderate stress and depressive symptoms using a self-help intervention with progress tracking and 24/7 availablility. It was designed using web-based, health-management intervention design elements that have been proven effective and users reported they prefer. These included interactivity, self-pacing, and pleasing aesthetics. Users learned how to manage stress by accessing modules they choose, and by practicing proven stress management strategies interactively immediately after login. Test results of Stress Gym with Navy members demonstrated that it was effective, with significant decreases in reported perceived stress levels from baseline to follow-up assessment. Stress Gym used design elements that may serve as a model for future websites to emulate and improve upon, and as a template against which to compare and contrast the design and functionality of future online, health-intervention websites. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. An alternative design concept in reverse osmosis desalination

    International Nuclear Information System (INIS)

    Boeddeker, K.W.; Hilgendorff, W.; Kaschemekat, J.

    1976-01-01

    A highly adaptable plate system for reverse osmosis and ultrafiltration with easily accessible flat membranes is introduced, employing a straight-channel construction of plastic components, designed to tolerate comparatively bold operations conditions at the calculated expense of membrane service life. Pilot installations are illustrated. (orig.) [de

  18. Alternate Materials In Design Of Radioactive Material Packages

    International Nuclear Information System (INIS)

    Blanton, P.; Eberl, K.

    2010-01-01

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  19. Cold Vacuum Drying facility sanitary sewage collection system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) sanitary sewage collection system. The sanitary sewage collection system provides collection and storage of effluents and raw sewage from the CVDF to support the cold vacuum drying process. This system is comprised of a sanitary sewage holding tank and pipes for collection and transport of effluents to the sanitary sewage holding tank

  20. Cold Vacuum Drying facility condensate collection system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) condensate collection system (CCS). The function of the CCS is to collect cooling coil condensate from air-handling units in the CVDF and to isolate the condensate in collection tanks until the condensate is determined to be acceptable to drain to the effluent drain collection basin

  1. Cold Vacuum Drying facility potable water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system

  2. Design criteria tank farm storage and staging facility. Revision 1

    International Nuclear Information System (INIS)

    Lott, D.T.

    1994-01-01

    Tank Farms Operations must store/stage material and equipment until work packages are ready to work. Consumable materials are also required to be stored for routine and emergency work. Connex boxes and open storage is currently used for much of the storage because of the limited space at 272AW and 272WA. Safety issues based on poor housekeeping and material deteriorating due to weather damage has resulted from this inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. Project W-402 and W-413 will provide a storage/staging area in 200 East and West Areas by the construction of two new storage facilities. The new facilities will be used by Operations, Maintenance and Materials groups to adequately store material and equipment. These projects will also furnish electrical services to the facilities for lighting and HVAC. Fire Protection shall be extended to the 200 East facility from 272AW if necessary

  3. 42 CFR 9.4 - Physical facility policies and design.

    Science.gov (United States)

    2010-10-01

    ....edu; or view it online at http://oacu.od.nih.gov/regs/guide/guidex.htm. You may inspect a copy at NIH... required to develop disaster and escaped animal contingency plans? The sanctuary facility must prepare disaster and escaped animal contingency plans outlining simple and easy to follow plans for dealing with...

  4. RIP Input Tables From Wapdeg For LA Design Selection: Enhanced Design Alternative IIIb

    International Nuclear Information System (INIS)

    K.G. Mon; K.G. Mast; J.H. Lee

    1999-01-01

    The purpose of this calculation is to document the Waste Package Degradation (WAPDEG) version 3.09 (CRWMS M and O 1998b. 'Software Routine Report for WAPDEG' (Version 3.09)) simulations used to analyze degradation and failure of 2-cm thick titanium grade 7 corrosion resistant material (CRM) drip shields as well as degradation and failure of the waste packages over which they are placed. The waste packages are composed of two corrosion resistant materials (CRM) barriers. The outer barrier is composed of 2 cm of Alloy 22 and the inner barrier is composed of 1.5 cm of titanium grade 7. The WAPDEG simulation results are post-processed into tables of drip shield/waste package degradation time histories suitable for use as input into the Integrated Probabilistic Simulator for Environmental Systems (RIP) version 5.19.01 (Golder Associates 1998) computer code. This calculation supports Performance Assessment analysis of the License Application Design Selection (LADS) Enhanced Design Alternative IIIb

  5. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    Energy Technology Data Exchange (ETDEWEB)

    Nitti, F.S., E-mail: francesco.nitti@enea.it [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Ida, M. [IHI Corporation, Tokyo (Japan); Favuzza, P. [ENEA Research Center Firenze (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Karlsruhe (Germany); Heidinger, R. [F4E Research Center, Garching (Germany); Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Micchiche, G. [ENEA Research Center, Brasimone (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho Japan (Japan); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2015-11-15

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  6. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    International Nuclear Information System (INIS)

    Nitti, F.S.; Ibarra, A.; Ida, M.; Favuzza, P.; Furukawa, T.; Groeschel, F.; Heidinger, R.; Kanemura, T.; Knaster, J.; Kondo, H.; Micchiche, G.; Sugimoto, M.; Wakai, E.

    2015-01-01

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  7. Designing a Physical Security System for Risk Reduction in a Hypothetical Nuclear Facility

    International Nuclear Information System (INIS)

    Saleh, A.A.; Abd Elaziz, M.

    2017-01-01

    Physical security in a nuclear facility means detection, prevention and response to threat, the ft, sabotage, unauthorized access and illegal transfer involving radioactive and nuclear material. This paper proposes a physical security system designing concepts to reduce the risk associated with variant threats to a nuclear facility. This paper presents a study of the unauthorized removal and sabotage in a hypothetical nuclear facility considering deter, delay and response layers. More over, the study involves performing any required upgrading to the security system by investigating the nuclear facility layout and considering all physical security layers design to enhance the weakness for risk reduction

  8. Design study of CEPC Alternating Magnetic Field Booster

    CERN Document Server

    Bian, T; Cai, Y; Cui, X; Gao, J; Koratzinos, M; Su, F; Wang, D; Wang, Y; Xiao, M; Zhang, C

    2017-01-01

    The CEPC is a next generation circular e+e- collider proposed by China. The design of the full energy booster ring of the CEPC is especially challenging. The ejected beam energy is 120 GeV, but that of the injected beam is only 6 GeV. In a conventional approach, the low magnetic field of the main dipole magnets creates problems. We propose operating the booster ring as a large wiggler at low beam energies and as a normal ring at high energies to avoid the problem of very low dipole magnet fields.

  9. Electric market models, competitive model and alternative design

    International Nuclear Information System (INIS)

    Arnedillo, O.

    2007-01-01

    Almost ten years after the liberalization of the Spanish electric system, its market design has remained basically unchanged. Therefore, it is reasonable to consider whether the current model continues to be adequate or whether it should be changed. However, although the current model is far from the absolute optimum, it is suited to the current state of the Spanish system. Only some improvements, such as the reform of the capacity guarantee payment can be undertaken immediately. It will only be possible to undertake other improvements as distribution companies cover all of their electricity needs in forward contracts acquired through a competitive process. (Author)

  10. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    International Nuclear Information System (INIS)

    Smith, K.E.

    1994-01-01

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design

  11. Alternative Design for Visual Identity of Yayasan Batik Indonesia

    Directory of Open Access Journals (Sweden)

    Puspita Putri Nugroho

    2015-01-01

    Full Text Available The research objective is to create a logo as the main visual identity. It is together with the graphic elements to support the overall visual identity of the organization and also apply the corporate identity to various applications to effectively foster the professional and trustworthy image of the organization as the foundation in Indonesia aiming for preserving and advancing Batik as the national asset. The writer used qualitative and quantitative method. Qualitative method included Face-to-face interview with the vice secretary of YBI, e-mail interview with the previous logo designer and direct survey to Textile Museum Jakarta and Batik Gallery; and Quantitative method through online survey. The result of the project is a new visual identity for Yayasan Batik Indonesia, which portrays its vision and mission. Design is the core in attaining an advantageous visual identity that could portray the image of the respected organization. When a consistency is applied through the whole visual identity, professional character of the organization is achieved. 

  12. Alternatives generation and analysis for phase I intermediate waste feed staging system design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Britton, M.D.

    1996-10-02

    This document provides; a decision analysis summary; problem statement; constraints, requirements, and assumptions; decision criteria; intermediate waste feed staging system options and alternatives generation and screening; intermediate waste feed staging system design concepts; intermediate waste feed staging system alternative evaluation and analysis; and open issues and actions.

  13. An Alternative View of Some FIA Sample Design and Analysis Issues

    Science.gov (United States)

    Paul C. Van Deusen

    2005-01-01

    Sample design and analysis decisions are the result of compromises and inputs from many sources. The end result would likely change if different individuals or groups were involved in the planning process. Discussed here are some alternatives to the procedures that are currently being used for the annual inventory. The purpose is to indicate that alternatives exist and...

  14. Providing training enhances the biomechanical improvements of an alternative computer mouse design

    NARCIS (Netherlands)

    Houwink, A.; Oude Hengel, K.M.; Odell, D.; Dennerlein, J.T.

    2009-01-01

    To determine if an alternative mouse promotes more neutral postures and decreases forearm muscle activity and if training enhances these biomechanical benefits is the purpose of the study. Computer mouse use is a risk factor for developing musculoskeletal disorders; alternative mouse designs can

  15. Design of integrated safeguards systems for nuclear facilities

    International Nuclear Information System (INIS)

    de Montmollin, J.M.; Walton, R.B.

    1978-06-01

    Safeguards systems that are capable of countering postulated threats to nuclear facilities must be closely integrated with plant layout and processes if they are to be effective and if potentially-severe impacts on plant operations are to be averted. This paper describes a facilities safeguards system suitable for production plant, in which the traditional elements of physical protection and periodic material-balance accounting are extended and augmented to provide close control of material flows. Discrete material items are subjected to direct, overriding physical control where appropriate. Materials in closely-coupled process streams are protected by on-line NDA and weight measurements, with rapid computation of material balances to provide immediate indication of large-scale diversion. The system provides information and actions at the safeguards/operations interface

  16. Design of integrated safeguards systems for nuclear facilities

    International Nuclear Information System (INIS)

    de Montmollin, J.M.; Walton, R.B.

    1976-01-01

    Safeguards systems that are capable of countering postulated threats to nuclear facilities must be closely integrated with plant layout and processes if they are to be effective and if potentially severe impacts on plant operations are to be averted. A facilities safeguards system suitable for a production plant is described in which the traditional elements of physical protection and periodic material-balance accounting are extended and augmented to provide close control of material flows. Discrete material items are subjected to direct, overriding physical control where appropriate. Materials in closely coupled process streams are protected by on-line NDA and weight measurements, with rapid computation of material balances to provide immediate indication of large-scale diversion. The system provides an information and actions at the safeguards/operations interface

  17. Cold Vacuum Drying facility crane and hoist system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) crane and hoist system. The overhead crane and hoist system is located in the process bays of the CVDF. It supports the processes required to drain the water and dry the spent nuclear fuel contained in the multi-canister overpacks after they have been removed from the K-Basins. The cranes will also be used to assist maintenance activities within the bays, as required

  18. Cold Vacuum Drying facility fire protection system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) fire protection system (FPS). The FPS provides fire detection, suppression, and loss limitation for the CVDF structure, personnel, and in-process spent nuclear fuel. The system provides, along with supporting interfacing systems, detection, alarm, and activation instrumentation and controls, distributive piping system, isolation valves, and materials and controls to limit combustibles and the associated fire loadings

  19. Occupational radiation protection organisation, facility and design safety features

    International Nuclear Information System (INIS)

    Joshi, M.L.

    1998-01-01

    There is no absolute standard or excellence in radiation protection. The concept of excellence implies a continuous search for improvement in performance and full utilization of available resources. Radiation protection requires the commitment of all plant staff, including higher levels of executive management. The improvements in performance must therefore be based primarily on management rather than technical factors and must be aimed at more effective use of investments already made in plant facilities

  20. Linear Accelerator Test Facility at LNF Conceptual Design Report

    CERN Document Server

    Valente, Paolo; Bolli, Bruno; Buonomo, Bruno; Cantarella, Sergio; Ceccarelli, Riccardo; Cecchinelli, Alberto; Cerafogli, Oreste; Clementi, Renato; Di Giulio, Claudio; Esposito, Adolfo; Frasciello, Oscar; Foggetta, Luca; Ghigo, Andrea; Incremona, Simona; Iungo, Franco; Mascio, Roberto; Martelli, Stefano; Piermarini, Graziano; Sabbatini, Lucia; Sardone, Franco; Sensolini, Giancarlo; Ricci, Ruggero; Rossi, Luis Antonio; Rotundo, Ugo; Stella, Angelo; Strabioli, Serena; Zarlenga, Raffaele

    2016-01-01

    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\\Phi}NE collider, as it is also a key element of the electron/...

  1. Structure and function design for nuclear facilities decommissioning information database

    International Nuclear Information System (INIS)

    Liu Yongkuo; Song Yi; Wu Xiaotian; Liu Zhen

    2014-01-01

    The decommissioning of nuclear facilities is a radioactive and high-risk project which has to consider the effect of radiation and nuclear waste disposal, so the information system of nuclear facilities decommissioning project must be established to ensure the safety of the project. In this study, by collecting the decommissioning activity data, the decommissioning database was established, and based on the database, the decommissioning information database (DID) was developed. The DID can perform some basic operations, such as input, delete, modification and query of the decommissioning information data, and in accordance with processing characteristics of various types of information data, it can also perform information management with different function models. On this basis, analysis of the different information data will be done. The system is helpful for enhancing the management capability of the decommissioning process and optimizing the arrangements of the project, it also can reduce radiation dose of the workers, so the system is quite necessary for safe decommissioning of nuclear facilities. (authors)

  2. Seismic design and analysis of nuclear fuel cycle facilities in France

    International Nuclear Information System (INIS)

    Sollogoub, P.

    2001-01-01

    Methodology for seismic design of nuclear fuel facilities and power plants in France is described. After the description of regulatory and normative texts for seismic design, different elements are examined: definition of ground motion, analysis methods, new trends, reevaluation and specificity of Fuel Cycle Facilities. R/D developments are explicated in each part. Their final objective are to better quantify the margins of each step which, in relation with safety analysis,lead to balanced design, analysis and retrofit rules. (author)

  3. Status and Prospect of Safeguards By Design for the Pyroprocessing Facility

    International Nuclear Information System (INIS)

    Kim, Hodong; Shin, H.S.; Ahn, S.K.

    2010-01-01

    The concept of Safeguards-By-Design (SBD), which is proposed and developed by the United States and the IAEA, is now widely acknowledged as a fundamental consideration for the effective and efficient implementation of safeguards. The application of a SBD concept is of importance especially for developmental nuclear facilities which have new technological features and relevant challenges to their safeguards approach. At this point of time, the examination of the applicability of SBD on a pyroprocessing facility, which has been being developed in the Republic of Korea (ROK), would be meaningful. The ROK developed a safeguards system with the concept of SBD for Advanced spent fuel Conditioning Process Facility (ACPF) and DUPIC Fuel Development Facility (DFDF) before the SBD concept was formally suggested. Currently. The PRIDE (PyRoprocess Integrated Inactive Demonstration) facility for the demonstration of pyroprocess using 10 ton of non-radioactive nuclear materials per year is being constructed in the ROK. The safeguards system for the facility has been designed in cooperation with a facility designer from the design phase, and the safeguards system would be established according to the future construction schedule. In preparing the design of Engineering Scale Pyroprocess Facility (ESPF), which will use spent fuels in an engineering scale and be constructed in 2016, a research on the safeguards system for this facility is also being conducted. In this connection, a project to support for development of safeguards approach for a reference pyroprocessing facility has been carried out by KAERI in cooperation with KINAC and the IAEA through an IAEA Member State Support Program (MSSP). When this MSSP project is finished in August, 2011, a safeguards system model and safeguards approach for a reference pyroprocessing facility would be established. Maximizing these early experiences and results, a safeguards system of ESPF based on the concept of SBD would be designed and

  4. Functional design criteria for an exploratory shaft facility in salt: Technical report

    International Nuclear Information System (INIS)

    1986-11-01

    The purpose of the Functional Criteria for Design is to provide technical direction for the development of detailed design criteria for the exploratory shaft facility. This will assure that the exploratory shaft facility will be designed in accordance with the current Mission Plan as well as the Nuclear Waste Policy Act and 10 CFR Part 60, which will facilitate the licensing process. The functional criteria for design are not intended to limit or constrain the designer's flexibility. The following philosophies will be incorporated in the designs: (1) The exploratory shaft will be designed to fulfill its intended purpose which is to characterize the salt site by subsurface testing; (2) the design will minimize any adverse impact which the facility may cause to the environment and any damage to the site if it should be found suitable for a repository; (3) the health and safety of the public and of the workers will be an essential factor in the design; (4) sound engineering principles and practices will be consistently employed in the design process; (5) the exploratory shaft and related surface and subsurface facilities will be designed to be economical and reliable in construction, operation, and maintenance; and (6) the exploratory shaft facility will be designed in accordance with applicable federal, state, and local regulations, as well as all applicable national consensus codes and standards

  5. Overview of the IFMIF test facility design in IFMIF/EVEDA phase

    International Nuclear Information System (INIS)

    Tian, Kuo; Abou-Sena, Ali; Arbeiter, Frederik; García, Ángela; Gouat, Philippe; Heidinger, Roland; Heinzel, Volker; Ibarra, Ángel; Leysen, Willem; Mas, Avelino; Mittwollen, Martin; Möslang, Anton; Theile, Jürgen; Yamamoto, Michiyoshi; Yokomine, Takehiko

    2015-01-01

    Highlights: • This paper summarizes the current design status of IFMIF EVEDA test facility. • The principle functions of the test facility and key components are described. • The brief specifications of the systems and key components are addressed. - Abstract: The test facility (TF) is one of the three major facilities of the International Fusion Material Irradiation Facility (IFMIF). Engineering designs of TF main systems and key components have been initiated and developed in the IFMIF EVEDA (Engineering Validation and Engineering Design Activities) phase since 2007. The related work covers the designs of a test cell which is the meeting point of the TF and accelerator facility and lithium facility, a series of test modules for experiments under different irradiation conditions, an access cell to accommodate remote handling systems, four test module handling cells for test module processing and assembling, and test facility ancillary systems for engineering support on energy, media, and control infrastructure. This paper summarizes the principle functions, brief specifications, and the current design status of the above mentioned IFMIF TF systems and key components.

  6. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  7. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    International Nuclear Information System (INIS)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-01-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed

  8. Computational issues in alternating projection algorithms for fixed-order control design

    DEFF Research Database (Denmark)

    Beran, Eric Bengt; Grigoriadis, K.

    1997-01-01

    Alternating projection algorithms have been introduced recently to solve fixed-order controller design problems described by linear matrix inequalities and non-convex coupling rank constraints. In this work, an extensive numerical experimentation using proposed benchmark fixed-order control design...... examples is used to indicate the computational efficiency of the method. These results indicate that the proposed alternating projections are effective in obtaining low-order controllers for small and medium order problems...

  9. Inequality aspects of alternative CO2 agreement designs

    International Nuclear Information System (INIS)

    Welsch, Heinz

    1992-01-01

    In recent years, the expected climate change, due to the atmospheric accumulation of CO 2 and other trace gases, has become an increasingly important issue in energy policy. Given the important contribution of CO 2 to the greenhouse effect, and the global character of the problem, an international agreement on curbing CO 2 emissions is under current consideration. The design of such an agreement inevitably raises significant questions of equity and efficiency. In the international political debate, most emphasis is generally put on the distributive aspect. Interestingly, the discussion usually focuses on equity in terms of the distribution of emissions. From an economic perspective, it appears more natural to address the equity issue from the point of view of income. It is obvious that a given degree of abatement can have dramatically different economic effects in different countries. Of course, this aspect is implicitly at the centre of all CO 2 related equity considerations. In what follows, this issue will be addressed explicitly, by examining the applicability and the implications of various economic approaches to distributive justice. (author)

  10. Alternative disposal technologies for new low-level radioactive waste disposal/storage facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    A Draft Environmental Impact Statement for Waste Management Activities for groundwater protection has been prepared for the Savannah River Plant. Support documentation for the DEIS included an Environmental Information Document on new radioactive waste disposal and storage facilities in which possible alternative disposal technologies were examined in depth. Six technologies that would meet the needs of the Savannah River Plant that selected for description and analysis include near surface disposal, near surface disposal with exceptions, engineered storage, engineered disposal, vault disposal of untreated waste, and a combination of near surface disposal, engineered disposal, and engineered storage. 2 refs

  11. Design Knowledge Management across Nuclear Facility Life-cycle

    International Nuclear Information System (INIS)

    Kolomiiets, V.

    2016-01-01

    Full text: Design knowledge (DK) of any nuclear technology system starts to develop as soon as a design organization and/or research organizations begin the conceptual design of a new plant, and continues throughout the design process. From the very beginning of the project life cycle, it is essential to highlight the importance of various stakeholder organizations (probably these need to be listed) and their different perspectives, needs and involvement in managing design knowledge. It is also important to recognize their respective roles and responsibilities in the various and necessary processes of design knowledge generation, capture, transfer, retention, and utilization. During the phases of design, licensing, manufacturing, construction, commissioning and throughout operations, refurbishment and decommissioning, design knowledge must be maintained and managed such that it is accessible and available and can be utilized to support organizational needs as and when required.. Design knowledge encompasses a wide scope and a tremendous amount of detail. It is multi-disciplinary, complex, and highly inter-dependent. It includes knowledge of the original design assumptions, constraints, rationale, and requirements. (author

  12. Shielding calculations for the design of neutron radiography facility around PARR

    International Nuclear Information System (INIS)

    Ashraf, M.M.; Khan, A.R.

    1989-06-01

    Shielding calculations for neutron radiography facility, proposed to be established around PARR have been carried out using two group diffusion theory and shielding formulae. Gamma radiation penetration calculations have been carried out using simple attenuation methods. The fabrication and installation of the neutron radiography facility would provide the basis for designing a better collimating system and would help establish under water radiography facility for the inspection of highly radioactive materials and components etc. (orig./A.B.)

  13. Conceptual structure design of experimental facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Joo, J. S.; Koo, J. H.; Jung, W. M.; Jo, I. J.; Kook, D. H.; Yoo, K. S.

    2003-01-01

    A study on the advanced spent fuel conditioning process (ACP) is carring out for the effective management of spent fuels of domestic nuclear power plants. This study presents basic shielding design, modification of IMEF's reserve hot cell facility which reserved for future usage, conceptual and structural architecture design of ACP hot cell and its contents, etc. considering the characteristics of ACP. The results of this study will be used for the basic and detail design of ACP demonstration facility, and utilized as basic data for the safety evaluation as essential data for the licensing of the ACP facility

  14. Design and Shielding of Radiotherapy Treatment Facilities; IPEM Report 75, 2nd Edition

    Science.gov (United States)

    Horton, Patrick; Eaton, David

    2017-07-01

    Design and Shielding of Radiotherapy Treatment Facilities provides readers with a single point of reference for protection advice to the construction and modification of radiotherapy facilities. The book assembles a faculty of national and international experts on all modalities including megavoltage and kilovoltage photons, brachytherapy and high-energy particles, and on conventional and Monte Carlo shielding calculations. This book is a comprehensive reference for qualified experts and radiation-shielding designers in radiation physics and also useful to anyone involved in the design of radiotherapy facilities.

  15. Results of the RAMI analyses performed for the IFMIF accelerator facility in the engineering design phase

    Energy Technology Data Exchange (ETDEWEB)

    Bargalló, Enric, E-mail: enric.bargallo@esss.se [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Abal, Javier; Dies, Javier; De Blas, Alfredo; Tapia, Carlos [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Moya, Joaquin; Ibarra, Angel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2015-10-15

    Highlights: • RAMI methodology used for IFMIF accelerator facility is presented. • Availability analyses and results are shown. • Main accelerator design changes are proposed. • Consequences and conclusions of the RAMI analyses are described. - Abstract: This paper presents a summary of the RAMI (Reliability Availability Maintainability Inspectability) analyses done for the IFMIF (International Fusion Materials Irradiation Facility) Accelerator facility in the Engineering Design Phase. The methodology followed, the analyses performed, the results obtained and the conclusions drawn are described. Moreover, the consequences of the incorporation of the RAMI studies in the IFMIF design are presented and the main outcomes of these analyses are shown.

  16. Results of the RAMI analyses performed for the IFMIF accelerator facility in the engineering design phase

    International Nuclear Information System (INIS)

    Bargalló, Enric; Arroyo, Jose Manuel; Abal, Javier; Dies, Javier; De Blas, Alfredo; Tapia, Carlos; Moya, Joaquin; Ibarra, Angel

    2015-01-01

    Highlights: • RAMI methodology used for IFMIF accelerator facility is presented. • Availability analyses and results are shown. • Main accelerator design changes are proposed. • Consequences and conclusions of the RAMI analyses are described. - Abstract: This paper presents a summary of the RAMI (Reliability Availability Maintainability Inspectability) analyses done for the IFMIF (International Fusion Materials Irradiation Facility) Accelerator facility in the Engineering Design Phase. The methodology followed, the analyses performed, the results obtained and the conclusions drawn are described. Moreover, the consequences of the incorporation of the RAMI studies in the IFMIF design are presented and the main outcomes of these analyses are shown.

  17. Conceptual design of a technology development facility (TDF)

    International Nuclear Information System (INIS)

    Doggett, J.N.; Damm, C.C.

    1981-01-01

    We have developed a concept for employing a single-cell mirror machine in a facility for testing and developing fusion reactor materials, components, and subsystems in a fusion reactor environment. Our approach is similar to that of the 1974 FERF study, except that we have added an auxiliary thermal-barrier cell at each end of the yin-yang magnet. In this way, we provide for plasma microstability by confining a warm plasma component between potential peaks at each end of the device (just as in the tandem mirror with auxiliary barrier cells) while we further improve confinement by the inherent reduction in ambipolar potential drop in the central cell

  18. Designing for Optimal Energy Use in Production Facilities

    National Research Council Canada - National Science Library

    2004-01-01

    These briefing charts accompany a presentation on how Albert Kahn Associate saves its clients energy costs through building structure, design of HVAC systems, lighting systems, process related systems...

  19. Encapsulation plant preliminary design, phase 2. Repository connected facility

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-12-01

    The disposal facility of the spent nuclear fuel will be located in Olkiluoto. The encapsulation plant is a part of the disposal facility. In this report, an independent encapsulation plant is located above the underground repository. In the encapsulation plant, the spent fuel is received and treated for disposal. In the fuel handling cell, the spent fuel assemblies are unloaded from the spent fuel transport casks and loaded into the disposal canisters. The gas atmosphere of the disposal canister is changed, the bolted inner canister lid is closed, and the electron beam welding method is used to close the lid of the outer copper canister. The disposal canisters are cleaned and transferred into the buffer store after the machining and inspection of the copper lid welds. From the buffer store, the disposal canisters are transferred into the repository spaces by help of the canister lift. All needed stages of operation are to be performed safely without any activity releases or remarkable personnel doses. The bentonite block interim storage is associated with the encapsulation plant. The bentonite blocks are made from bentonite powder. The bentonite blocks are used as buffer material around the disposal canister in the deposition hole. The average production rate of the encapsulation plant is 40 canisters per year. The nominal maximum production capacity is 100 canisters per year in one shift operation. (orig.)

  20. First Materials Science Research Facility Rack Capabilities and Design Features

    Science.gov (United States)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  1. Safety and environmental process for the design and construction of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brereton, S.J., LLNL

    1998-05-27

    The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

  2. Design analysis of engineered alternatives for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Myers, J.; Djordjevic, S.; Adams, M.; Spangler, L.; Valdez, J.; Vetter, D.; Drez, P.

    1991-01-01

    The effectiveness of several engineered alternatives, designed to enhance the performance of the Waste Isolation Pilot Plant (WIPP), were evaluated relative to the performance of the baseline design. This evaluation was performed using a computer program referred to as the Design Analysis Model which couples salt creep closure, brine inflow, gas generation and dissipation to realistically simulate these interrelated processes over a 10,000 year period following the decommissioning of the repository. Analyses of the baseline design and nine alternative designs were performed for the undisturbed repository conditions, as well as three human intrusion events. Improvements in repository performance of up to four orders of magnitude were predicted for various engineered alternative waste forms. 6 refs., 8 figs., 1 tab

  3. Facile fabrication of controllable zinc oxide nanorod clusters on polyacrylonitrile nanofibers via repeatedly alternating immersion method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ying; Li, Xia; Yu, Hou-Yong, E-mail: phdyu@zstu.edu.cn [Zhejiang Sci-Tech University, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles (China); Hu, Guo-Liang; Yao, Ju-Ming, E-mail: yaoj@zstu.edu.cn [Zhejiang Sci-Tech University, National Engineering Lab for Textile Fiber Materials and Processing Technology (China)

    2016-12-15

    Polyacrylonitrile/zinc oxide (PAN/ZnO) composite nanofiber membranes with different ZnO morphologies were fabricated by repeatedly alternating hot–cold immersion and single alternating hot–cold immersion methods. The influence of the PAN/ZnCl{sub 2} ratio and different immersion methods on the morphology, microstructure, and properties of the nanofiber membranes was investigated by using field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), and ultraviolet–visible (UV–Vis) spectroscopy. A possible mechanism for different morphologies of PAN/ZnO nanofiber membranes with different PAN/ZnCl{sub 2} ratio through different immersion processes was presented, and well-dispersed ZnO nanorod clusters with smallest average dimeter of 115 nm and hexagonal wurtzite structure were successfully anchored onto the PAN nanofiber surface for R-7/1 nanofiber membrane. Compared to S-5/1 prepared by single alternating hot–cold immersion method, the PAN/ZnO nanofiber membrane fabricated by repeatedly alternating hot–cold immersion method (especially for R-7/1) showed improved thermal stability and high photocatalytic activity for methylene blue (MB). Compared to S-5/1, decomposition temperature at 5% weight loss (T{sub 5%}) was increased by 43 °C from 282 to 325 °C for R-7/1; meanwhile, R-7/1 showed higher photocatalytic degradation ratio of approximately 100% (after UV light irradiation for 8 h) than 65% for S-5/1 even after irradiation for 14 h. Moreover, the degradation efficiency of R-7/1 with good reuse stability remained above 94% after 3 cycles.

  4. Preliminary design for hot dirty-gas control-valve test facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  5. Tools for Stakeholder Involvement in Facility Management Service Design

    DEFF Research Database (Denmark)

    Nardelli, Giulia; Scupola, Ada

    that are more in line with the stakeholder needs and expectations, and may thus result in increased customer satisfaction, better services and, at the very end, an increased competitive advantage for the organization. Background: The background of this study lies in user involvement in service design...... in the design process as well as FM service provision processes. Research limitations: The major limitation of the study consists of the relatively small amount of interviews conducted, which is the basis for finding the tools in FM service design processes....

  6. Implementation of decommissioning criteria in the conceptual design of the MRS facility

    International Nuclear Information System (INIS)

    Gross, D.L.; Wilcox, A.D.; Huang, S.

    1986-01-01

    The US Department of Energy (DOE) selected the Ralph M. Parsons Company (RMP) to prepare the conceptual design of the Monitored Retrievable Storage (MRS) Facility. The purpose of this facility is to consolidate and temporarily store spent fuel from civilian nuclear power plants. In addition, it will overpack, handle, and store high-level radioactive waste from non-defense related sources. The Functional Design Criteria (FDC) prepared by Pacific Northwest Laboratories, as well as 10 CFR 72, requires the facility to be designed for decommissioning, with provisions to facilitate decontamination of structures and equipment to minimize the volume of radioactive wastes and contaminated equipment at the time of decommissioning. Many problems associated with decommissioning a nuclear facility have been identified in recent years and the design for the MRS Facility presents a unique opportunity for RMP to implement decommissioning criteria into the conceptual design of a major nuclear facility. The provisions made in the design to facilitate decommissioning include good housekeeping during operations, controlled personnel access, access for equipment removal, equipment design, installed radiation monitors, adequate work space, installed decontamination systems and areas, control of all effluents, and operational documentation. These topics will be the major points of discussion for this paper

  7. Design impacts of safeguards and security requirements for a US MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Rinard, P.M.; Thomas, K.E.; Zack, N.R.; Jaeger, C.D.

    1998-01-01

    The disposition of plutonium that is no longer required for the nation's defense is being structured to mitigate risks associated with the material's availability. In the 1997 Record of Decision, the US Government endorsed a dual-track approach that could employ domestic commercial reactors to effect the disposition of a portion of the plutonium in the form of mixed oxide (MOX) reactor fuels. To support this decision, the Office of Materials Disposition requested preparation of a document that would review US requirements for safeguards and security and describe their impact on the design of a MOX fuel fabrication facility. The intended users are potential bidders for the construction and operation of the facility. The document emphasizes the relevant DOE Orders but also considers the Nuclear Regulatory Commission (NRC) requirements. Where they are significantly different, the authors have highlighted this difference and provided guidance on the impact to the facility design. Finally, the impacts of International Atomic Energy Agency (IAEA) safeguards on facility design are discussed. Security and materials control and accountability issues that influence facility design are emphasized in each area of discussion. This paper will discuss the prepared report and the issues associated with facility design for implementing practical, modern safeguards and security systems into a new MOX fuel fabrication facility

  8. MRS/IS facility co-located with a repository: preconceptual design and life-cycle cost estimates

    International Nuclear Information System (INIS)

    Smith, R.I.; Nesbitt, J.F.

    1982-11-01

    A program is described to examine the various alternatives for monitored retrievable storage (MRS) and interim storage (IS) of spent nuclear fuel, solidified high-level waste (HLW), and transuranic (TRU) waste until appropriate geologic repository/repositories are available. The objectives of this study are: (1) to develop a preconceptual design for an MRS/IS facility that would become the principal surface facility for a deep geologic repository when the repository is opened, (2) to examine various issues such as transportation of wastes, licensing of the facility, and environmental concerns associated with operation of such a facility, and (3) to estimate the life cycle costs of the facility when operated in response to a set of scenarios which define the quantities and types of waste requiring storage in specific time periods, which generally span the years from 1990 until 2016. The life cycle costs estimated in this study include: the capital expenditures for structures, casks and/or drywells, storage areas and pads, and transfer equipment; the cost of staff labor, supplies, and services; and the incremental cost of transporting the waste materials from the site of origin to the MRS/IS facility. Three scenarios are examined to develop estimates of life cycle costs of the MRS/IS facility. In the first scenario, HLW canisters are stored, starting in 1990, until the co-located repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at various intervals. In the second scenario, spent fuel is stored, starting in 1990, because the reprocessing plants are delayed in starting operations by 10 years, but no HLW is stored because the repositories open on schedule. In the third scenario, HLW is stored, starting in 1990, because the repositories are delayed 10 years, but the reprocessing plants open on schedule

  9. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  10. Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Shelton, J.D.

    1998-01-01

    The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report

  11. Site selection and design basis of the National Disposal Facility for LILW. Geological and engineering barriers

    International Nuclear Information System (INIS)

    Boyanov, S.

    2010-01-01

    Content of the presentation: Site selection; Characteristics of the “Radiana” site (location, geological structure, physical and mechanical properties, hydro-geological conditions); Design basis of the Disposal Facility; Migration analysis; Safety assessment approach

  12. Consistent natural phenomena design and evaluation guidelines for U.S. Department of Energy facilities

    International Nuclear Information System (INIS)

    Murray, R.C.; Short, S.A.

    1989-01-01

    Uniform design and evaluation guidelines for protection against natural phenomena hazards such as earthquakes, extreme winds, and flooding for facilities at Department of Energy (DOE) sites throughout the United States have been developed. The guidelines apply to design of new facilities and to evaluation or modification of existing facilities. These guidelines are an approach for design or evaluation for mitigating the effects of natural phenomena hazards. These guidelines are intended to control the level of conservatism introduced in the design/evaluation process such that all hazards are treated on a reasonably consistent and uniform basis and such that the level of conservatism is appropriate for facility characteristics such as importance, cost, and hazards to on-site personnel, the general public, and the environment. The philosophy and goals of these guidelines are covered by this paper

  13. Cold Vacuum Drying facility personnel monitoring system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) instrument air (IA) system that provides instrument quality air to the CVDF. The IA system provides the instrument quality air used in the process, HVAC, and HVAC instruments. The IA system provides the process skids with air to aid in the purging of the annulus of the transport cask. The IA system provides air for the solenoid-operated valves and damper position controls for isolation, volume, and backdraft in the HVAC system. The IA system provides air for monitoring and control of the HVAC system, process instruments, gas-operated valves, and solenoid-operated instruments. The IA system also delivers air for operating hand tools in each of the process bays

  14. Design of DOE facilities for wind-generated missiles

    International Nuclear Information System (INIS)

    Kuilanoff, G.; Drake, R.M.

    1991-01-01

    This paper presents criteria and procedures for the design of structures and components for wind-generated missiles. Methods for determining missile-induced loading, calculated structural response, performance requirements, and design considerations are covered. The presented criteria is applicable to Safety-Related concrete buildings as a whole and to all their exposed external components including walls, roofs, and supporting structural systems and elements

  15. Acoustics in Research Facilities--Control of Wanted and Unwanted Sound. Laboratory Design Notes.

    Science.gov (United States)

    Newman, Robert B.

    Common and special acoustics problems are discussed in relation to the design and construction of research facilities. Following a brief examination of design criteria for the control of wanted and unwanted sound, the technology for achieving desired results is discussed. Emphasis is given to various design procedures and materials for the control…

  16. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-01-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and open-quotes graded approachclose quotes philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  17. Structural optimization of an alternate design for the Space Shuttle solid rocket booster field joint

    Science.gov (United States)

    Barthelemy, Jean-Francois M.; Rogers, James L., Jr.; Chang, Kwan J.

    1987-01-01

    A structural optimization procedure is used to determine the shape of an alternate design for the Shuttle's solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in diameter and 135 studs of 1 3/16 in diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonlinear displacement analysis. The minimum weight design has 135 studs of 1 3/16 in diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.

  18. Incorporating functional requirements into the structural design of the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Hsiu, F.J.; Ng, C.K.; Almuti, A.M.

    1986-01-01

    Vitrification Building-type structures have unique features and design needs. The structural design requires new concepts and custom detailing. The above special structural designs have demonstrated the importance of the five design considerations listed in the introduction. Innovative ideas and close coordination are required to achieve the design objectives. Many of these innovations have been applied to the DWPF facility which is a first of a kind

  19. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-06

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H2 gas which requires monitoring of certain vessel’s vapor spaces. A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.

  20. 512-S Facility, Actinide Removal Process Radiological Design Summary Report

    International Nuclear Information System (INIS)

    Nathan, S.J.

    2004-01-01

    This report contains top-level requirements for the various areas of radiological protection for workers. Detailed quotations of the requirements for applicable regulatory documents can be found in the Radiological Design Summary Report Implementation Guide. For the purposes of demonstrating compliance with these requirements, per Engineering Standard 01064, ''shall consider / shall evaluate'' indicates that the designer must examine the requirement for the design and either incorporate or provide a technical justification as to why the requirement is not incorporated. This report describes how the Building 512-S, Actinide Removal Process meets the required radiological design criteria and requirements based on 10CFR835, DOE Order 420.1A, WSRC Manual 5Q and various other DOE guides and handbooks. The analyses supporting this Radiological Design Summary Report initially used a source term of 10.6 Ci/gallon of Cs-137 as the basis for bulk shielding calculations. As the project evolved, the source term was reduced to 1.1 Ci/gallon of Cs-137. This latter source term forms the basis for later dose rate evaluations