WorldWideScience

Sample records for facilities required pursuant

  1. 29 CFR 516.21 - Bulk petroleum employees partially exempt from overtime pay requirements pursuant to section 7(b...

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Bulk petroleum employees partially exempt from overtime pay requirements pursuant to section 7(b)(3) of the Act. 516.21 Section 516.21 Labor Regulations Relating to Labor....21 Bulk petroleum employees partially exempt from overtime pay requirements pursuant to section 7(b...

  2. Policy on the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-08-01

    This Regulatory Policy Statement describes the policy of the Atomic Energy Control Board (AECB) on the decommissioning of those facilities defined as nuclear facilities in the Atomic Energy Control (AEC) Regulations. It is intended as a formal statement, primarily for the information of licensees, or potential licensees, of the regulatory process and requirements generally applicable to the decommissioning of nuclear facilities licensed and regulated by the AECB pursuant to the authority of the AEC Act and Regulations

  3. National Ignition Facility site requirements

    International Nuclear Information System (INIS)

    1996-07-01

    The Site Requirements (SR) provide bases for identification of candidate host sites for the National Ignition Facility (NIF) and for the generation of data regarding potential actual locations for the facilities. The SR supplements the NIF Functional Requirements (FR) with information needed for preparation of responses to queries for input to HQ DOE site evaluation. The queries are to include both documents and explicit requirements for the potential host site responses. The Sr includes information extracted from the NIF FR (for convenience), data based on design approaches, and needs for physical and organization infrastructure for a fully operational NIF. The FR and SR describe requirements that may require new construction or may be met by use or modification of existing facilities. The SR do not establish requirements for NIF design or construction project planning. The SR document does not constitute an element of the NIF technical baseline

  4. Requirements of on-site facilities

    International Nuclear Information System (INIS)

    Burchardt, H.

    1977-01-01

    1) Requirements of on-site facilities: a) brief description of supplying the site with electricity and water; communication facilities, b) necessary facilities for containment and pipeline installation, c) necessary facilities for storage, safety, accommodation of personnel, housing; workshops; 2) Site management: a) Organisation schedules for 'turn-key-jobs' and 'single commission', b) Duties of the supervisory staff. (orig.) [de

  5. Safety of nuclear fuel cycle facilities. Safety requirements

    International Nuclear Information System (INIS)

    2008-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific reference include aspects of nuclear fuel generation, storage, reprocessing and disposal. Contents: 1. Introduction; 2. The safety objective, concepts and safety principles; 3. Legal framework and regulatory supervision; 4. The management system and verification of safety; 5. Siting of the facility; 6. Design of the facility; 7. Construction of the facility; 8. Commissioning of the facility; 9. Operation of the facility; 10. Decommissioning of the facility; Appendix I: Requirements specific to uranium fuel fabrication facilities; Appendix II: Requirements specific to mixed oxide fuel fabrication facilities; Appendix III: Requirements specific to conversion facilities and enrichment facilities

  6. National Ignition Facility system design requirements conventional facilities SDR001

    International Nuclear Information System (INIS)

    Hands, J.

    1996-01-01

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions

  7. Safety of magnetic fusion facilities: Requirements

    International Nuclear Information System (INIS)

    1996-05-01

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved

  8. 18 CFR 292.203 - General requirements for qualification.

    Science.gov (United States)

    2010-04-01

    ... certification, pursuant to § 292.207(b)(1), that has been granted. (c) Hydroelectric small power production facilities located at a new dam or diversion. (1) A hydroelectric small power production facility that..., pursuant to § 292.207(b)(1), that has been granted. (c) Hydroelectric small power production facilities...

  9. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a

  10. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  11. Cold vacuum drying facility design requirements

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified

  12. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  13. Decommissioning of Facilities. General Safety Requirements. Pt. 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-15

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning.

  14. Technical Safety Requirements for the Gamma Irradiation Facility (GIF)

    CERN Document Server

    Mahn, J A E M J G

    2003-01-01

    This document provides the Technical Safety Requirements (TSR) for the Sandia National Laboratories Gamma Irradiation Facility (GIF). The TSR is a compilation of requirements that define the conditions, the safe boundaries, and the administrative controls necessary to ensure the safe operation of a nuclear facility and to reduce the potential risk to the public and facility workers from uncontrolled releases of radioactive or other hazardous materials. These requirements constitute an agreement between DOE and Sandia National Laboratories management regarding the safe operation of the Gamma Irradiation Facility.

  15. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  16. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Science.gov (United States)

    2010-01-01

    ... postulated accidents that could lead to loss of safety functions. (5) Chemical protection. The design must... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for new facilities or new processes at... Critical Mass of Special Nuclear Material § 70.64 Requirements for new facilities or new processes at...

  17. Fuel Supply Shutdown Facility Interim Operational Safety Requirements

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    The Interim Operational Safety Requirements for the Fuel Supply Shutdown (FSS) Facility define acceptable conditions, safe boundaries, bases thereof, and management of administrative controls to ensure safe operation of the facility

  18. Recommendations to the NRC on acceptable standard format and content for the Fundamental Nuclear Material Control (FNMC) Plan required for low-enriched uranium enrichment facilities

    International Nuclear Information System (INIS)

    Moran, B.W.; Belew, W.L.; Hammond, G.A.; Brenner, L.M.

    1991-11-01

    A new section, 10 CFR 74.33, has been added to the material control and accounting (MC ampersand A) requirements of 10 CFR Part 74. This new section pertains to US Nuclear Regulatory Commission (NRC)-licensed uranium enrichment facilities that are authorized to produce and to possess more than one effective kilogram of special nuclear material (SNM) of low strategic significance. The new section is patterned after 10 CFR 74.31, which pertains to NRC licensees (other than production or utilization facilities licensed pursuant to 10 CFR Part 50 and 70 and waste disposal facilities) that are authorized to possess and use more than one effective kilogram of unencapsulated SNM of low strategic significance. Because enrichment facilities have the potential capability of producing SNM of moderate strategic significance and also strategic SNM, certain performance objectives and MC ampersand A system capabilities are required in 10 CFR 74.33 that are not contained in 10 CFR 74.31. This document recommends to the NRC information that the licensee or applicant should provide in the fundamental nuclear material control (FNMC) plan. This document also describes methods that should be acceptable for compliance with the general performance objectives. While this document is intended to cover various uranium enrichment technologies, the primary focus at this time is gas centrifuge and gaseous diffusion

  19. Development of High-Level Safety Requirements for a Pyroprocessing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Jun; Jo, Woo Jin; You, Gil Sung; Choung, Won Myung; Lee, Ho Hee; Kim, Hyun Min; Jeon, Hong Rae; Ku, Jeong Hoe; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Korea Atomic Energy Research Institute (KAERI) has been developing a pyroproceesing technology to reduce the waste volume and recycle some elements. The pyroprocessing includes several treatment processes which are related with not only radiological and physical but also chemical and electrochemical properties. Thus, it is of importance to establish safety design requirements considering all the aspects of those properties for a reliable pyroprocessing facility. In this study, high-level requirements are presented in terms of not only radiation protection, nuclear criticality, fire protection, and seismic safety but also confinement and chemical safety for the unique characteristics of a pyroprocessing facility. Several high-level safety design requirements such as radiation protection, nuclear criticality, fire protection, seismic, confinement, and chemical processing were presented for a pyroprocessing facility. The requirements must fulfill domestic and international safety technology standards for a nuclear facility. Furthermore, additional requirements should be considered for the unique electrochemical treatments in a pyroprocessing facility.

  20. Design requirements for new nuclear reactor facilities in Canada

    International Nuclear Information System (INIS)

    Shim, S.; Ohn, M.; Harwood, C.

    2012-01-01

    The Canadian Nuclear Safety Commission (CNSC) has been establishing the regulatory framework for the efficient and effective licensing of new nuclear reactor facilities. This regulatory framework includes the documentation of the requirements for the design and safety analysis of new nuclear reactor facilities, regardless of size. For this purpose, the CNSC has published the design and safety analysis requirements in the following two sets of regulatory documents: 1. RD-337, Design of New Nuclear Power Plants and RD-310, Safety Analysis for Nuclear Power Plants; and 2. RD-367, Design of Small Reactor Facilities and RD-308, Deterministic Safety Analysis for Small Reactor Facilities. These regulatory documents have been modernized to document past practices and experience and to be consistent with national and international standards. These regulatory documents provide the requirements for the design and safety analysis at a high level presented in a hierarchical structure. These documents were developed in a technology neutral approach so that they can be applicable for a wide variety of water cooled reactor facilities. This paper highlights two particular aspects of these regulatory documents: The use of a graded approach to make the documents applicable for a wide variety of nuclear reactor facilities including nuclear power plants (NPPs) and small reactor facilities; and, Design requirements that are new and different from past Canadian practices. Finally, this paper presents some of the proposed changes in RD-337 to implement specific details of the recommendations of the CNSC Fukushima Task Force Report. Major changes were not needed as the 2008 version of RD-337 already contained requirements to address most of the lessons learned from the Fukushima event of March 2011. (author)

  1. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Science.gov (United States)

    2010-07-01

    ... Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The State shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Requirements for hazardous waste...

  2. Decommissioning of Facilities. General Safety Requirements. Pt. 6 (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning.

  3. Decommissioning of Facilities. General Safety Requirements. Pt. 6 (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning

  4. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  5. Cold vacuum drying facility design requirements

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1997-01-01

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility

  6. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  7. 10 CFR 70.23a - Hearing required for uranium enrichment facility.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...

  8. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  9. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  10. 9 CFR 381.36 - Facilities required.

    Science.gov (United States)

    2010-01-01

    ... laundry service for inspectors' outer work clothing, or disposable outer work garments designed for one... 381.36 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Holiday Service; Billing Establishments § 381.36 Facilities required. (a) Inspector's Office. Office space...

  11. Project W-441 cold vacuum drying facility design requirements document

    International Nuclear Information System (INIS)

    O'Neill, C.T.

    1997-01-01

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage

  12. Safety assessment for facilities and activities. General safety requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF 6 ; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  13. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  14. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2010-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  15. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation.? read more The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are

  16. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  17. Technical Safety Requirements for the Waste Storage Facilities May 2014

    International Nuclear Information System (INIS)

    Laycak, D. T.

    2014-01-01

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  18. 17 CFR 249.325 - Form 13F, report of institutional investment manager pursuant to section 13(f) of the Securities...

    Science.gov (United States)

    2010-04-01

    ... institutional investment manager pursuant to section 13(f) of the Securities Exchange Act of 1934. 249.325... manager pursuant to section 13(f) of the Securities Exchange Act of 1934. This form shall be used by institutional investment managers which are required to furnish reports pursuant to section 13(f) of the...

  19. 30 CFR 71.402 - Minimum requirements for bathing facilities, change rooms, and sanitary flush toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... nonirritating cleansing agent shall be provided for use at each shower. (2) Sanitary flush toilet facilities. (i..., change rooms, and sanitary flush toilet facilities. 71.402 Section 71.402 Mineral Resources MINE SAFETY... Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.402 Minimum requirements for...

  20. Argonne-West facility requirements for a radioactive waste treatment demonstration

    International Nuclear Information System (INIS)

    Dwight, C.C.; Felicione, F.S.; Black, D.B.; Kelso, R.B.; McClellan, G.C.

    1995-01-01

    At Argonne National Laboratory-West (ANL-W), near Idaho Falls, Idaho, facilities that were originally constructed to support the development of liquid-metal reactor technology are being used and/or modified to meet the environmental and waste management research needs of DOE. One example is the use of an Argonne-West facility to conduct a radioactive waste treatment demonstration through a cooperative project with Science Applications International Corporation (SAIC) and Lockheed Idaho Technologies Company. The Plasma Hearth Process (PBP) project will utilize commercially-adapted plasma arc technology to demonstrate treatment of actual mixed waste. The demonstration on radioactive waste will be conducted at Argonne's Transient Reactor Test Facility (TREAT). Utilization of an existing facility for a new and different application presents a unique set of issues in meeting applicable federal state, and local requirements as well as the additional constraints imposed by DOE Orders and ANL-W site requirements. This paper briefly describes the PHP radioactive demonstrations relevant to the interfaces with the TREAT facility. Safety, environmental design, and operational considerations pertinent to the PHP radioactive demonstration are specifically addressed herein. The personnel equipment, and facility interfaces associated with a radioactive waste treatment demonstration are an important aspect of the demonstration effort. Areas requiring significant effort in preparation for the PBP Project being conducted at the TREAT facility include confinement design, waste handling features, and sampling and analysis considerations. Information about the facility in which a radioactive demonstration will be conducted, specifically Argonne's TREAT facility in the case of PHP, may be of interest to other organizations involved in developing and demonstrating technologies for mixed waste treatment

  1. Nuclear chemistry counting facilities: requirements definition

    International Nuclear Information System (INIS)

    O'Brien, D.W.; Baker, J.

    1979-01-01

    In an effort to upgrade outdated instrumentation and to take advantage of current and imminent technologies the Nuclear Chemistry Division at Lawrence Livermore Laboratory is about to undertake a major upgrade of their low level radiation counting and analysis facilities. It is expected that such a project will make a more coordinated data acquisition and data processing system, reduce manual data handling operations and speed up data processing throughput. Before taking on a systems design it is appropriate to establish a definition of the requirements of the facilities. This report examines why such a project is necessary in the context of the current and projected operations, needs, problems, risks and costs. The authors also address a functional specification as a prelude to a system design and the design constraints implicit in the systems implementation. Technical, operational and economic assessments establish necessary boundary conditions for this discussion. This report also establishes the environment in which the requirements definition may be considered valid. The validity of these analyses is contingent on known and projected technical, scientific and political conditions

  2. Decommissioning of reactor facilities (2). Required technology

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2014-01-01

    Decommissioning of reactor facilities was planned to perform progressive dismantling, decontamination and radioactive waste disposal with combination of required technology in a safe and economic way. This article outlined required technology for decommissioning as follows: (1) evaluation of kinds and amounts of residual radioactivity of reactor facilities with calculation and measurement, (2) decontamination technology of metal components and concrete structures so as to reduce worker's exposure and production of radioactive wastes during dismantling, (3) dismantling technology of metal components and concrete structures such as plasma arc cutting, band saw cutting and controlled demolition with mostly remote control operation, (3) radioactive waste disposal for volume reduction and reuse, and (4) project management of decommissioning for safe and rational work to secure reduction of worker's exposure and prevent the spreading of contamination. (T. Tanaka)

  3. 77 FR 16796 - Lead Requirements for Lead-Based Paint Activities in Target Housing and Child-Occupied Facilities...

    Science.gov (United States)

    2012-03-22

    ... document announces the receipt of Arkansas's rules established pursuant to its new 2011 statutory authority... program accreditation requirements, and work practice standards for lead-based paint activities in target...-based paint program and passed a new statute establishing a State lead-based paint program and changing...

  4. Technical requirement of experiments and facilities for fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.; Tillak, M.; Gierszwski, P.; Grover, J.; Puigh, R.; Sze, D.K.; Berwald, D.

    1986-06-01

    The technical issues and requirements of experiments and facilities for fusion nuclear technology (FNT) have been investigated. The nuclear subsystems addressed are: a) blanket, b) radiation shield, c) tritium processing system, and d) plasma interactive components. Emphasis has been placed on the important and complex development problems of the blanket. A technical planning process for FNT has been developed and applied, including four major elements: 1) characterization of issues, 2) quantification of testing requirements, 3) evaluation of facilities, and 4) development of a test plan to identify the role, timing, characteristics and costs of major experiments and facilities

  5. 30 CFR 71.404 - Application for waiver of surface facilities requirements.

    Science.gov (United States)

    2010-07-01

    ... requirements. 71.404 Section 71.404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS... Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a...

  6. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Laycak, D.T.

    2010-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  7. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  8. Sites Requiring Facility Response Plans, Geographic NAD83, EPA (2006) [facility_response_plan_sites_la_EPA_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — Locations of facilities in Louisiana requiring Oil Pollution Act (OPA) Facility Response Plans (FRP). The dataset was provided by the Region 6 OSCARS program....

  9. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements

  10. Required performance to the concrete structure of the accelerator facilities

    International Nuclear Information System (INIS)

    Irie, Masaaki; Yoshioka, Masakazu; Miyahara, Masanobu

    2006-01-01

    As for the accelerator facility, there is many a thing which is constructed as underground concrete structure from viewpoint such as cover of radiation and stability of the structure. Required performance to the concrete structure of the accelerator facility is the same as the general social infrastructure, but it has been possessed the feature where target performance differs largely. As for the body sentence, expressing the difference of the performance which is required from the concrete structure of the social infrastructure and the accelerator facility, construction management of the concrete structure which it plans from order of the accelerator engineering works facility, reaches to the design, supervision and operation it is something which expresses the method of thinking. In addition, in the future of material structural analysis of the concrete which uses the neutron accelerator concerning view it showed. (author)

  11. Salt Repository Project transportation system interface requirements: Transportation system/repository receiving facility interface requirements

    International Nuclear Information System (INIS)

    Smith, L.A.; Insalaco, J.W.; Trainer, T.A.

    1988-01-01

    This report is a preliminary review of the interface between the transportation system and the repository receiving facility for a nuclear waste mined geologic disposal system in salt. Criteria for generic cask and facility designs are developed. These criteria are derived by examining the interfaces that occur as a result of the operations needed to receive nuclear waste at a repository. These criteria provide the basis for design of a safe, operable, practical nuclear waste receiving facility. The processing functions required to move the shipping unit from the gate into the unloading area and back to the gate for dispatch are described. Criteria for a generic receiving facility are discussed but no specific facility design is presented or evaluated. The criteria are stated in general terms to allow application to a wide variety of cask and facility designs. 9 refs., 6 figs., 4 tabs

  12. 7 CFR 70.110 - Requirements for sanitation, facilities, and operating procedures in official plants.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Requirements for sanitation, facilities, and operating... Requirements for sanitation, facilities, and operating procedures in official plants. (a) The requirements for sanitation, facilities, and operating procedures in official plants shall be the applicable provisions stated...

  13. 305 Building K basin mockup facility functions and requirements

    International Nuclear Information System (INIS)

    Steele, R.M.

    1994-01-01

    This document develops functions and requirements for installation and operation of a cold mockup test facility within the 305 Building. The test facility will emulate a portion of a typical spent nuclear fuel storage basin (e.g., 105-KE Basin) to support evaluation of equipment and processes for safe storage and disposition of the spent nuclear fuel currently within the K Basins

  14. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Science.gov (United States)

    2010-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  15. Discussion paper : offshore wind facilities renewable energy approval requirements

    International Nuclear Information System (INIS)

    2010-06-01

    This paper discussed a proposed shoreline exclusion zone for offshore wind projects in Ontario. Considerations relevant to offshore wind projects and the protection of human health, cultural heritage, and the environment were also discussed. The paper was prepared in order to provide greater clarity to renewable energy developers and to Ontario residents about the offshore wind policy that is currently being considered by the Ontario Government. Feedback received from the discussion paper will be used to propose policy and associated regulatory amendments. A 5 km shoreline exclusion zone for all offshore wind facilities was proposed. Some projects may be required to be located beyond the proposed exclusion zone. Proposed developments within the exclusion zone must meet all applicable requirements, including those related to cultural and natural heritage. The zone will establish a distance between drinking water intakes, and ensure that sediment dredging and other construction-related activities do not impact drinking water quality, and ensure that potential noise levels are within acceptable levels. The zone will establish a distance between near-shore activities and wind facilities, and also help to maintain the ecological health of inland waters. Guidelines and technical requirements for wind facility operators were also included.

  16. Environmental Assessment for Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

    International Nuclear Information System (INIS)

    1993-06-01

    This Environmental Assessment (EA) has been prepared pursuant to the implementing regulations to the National Environmental Policy Act (NEPA), which require federal agencies to assess the environmental impacts of a proposed action to determine whether that action requires the preparation of an Environmental Impact Statement (EIS) or if a Finding of No Significant Impact (FONSI) can be issued. The Pantex Plant does not possess permanent containerized waste staging facilities with integral secondary containment or freeze protection. Additional deficiencies associated with some existing staging facilities include: no protection from precipitation running across the staging pads; lack of protection against weathering; and facility foundations not capable of containing leaks, spills or accumulated precipitation. These shortcomings have raised concerns with respect to requirements under Section 3001 of the Resource Conservation and Recovery Act (RCRA). Deficiencies for these waste staging areas were also cited by a government audit team (Tiger Team) as Action Items. The provision for the staging of hazardous, mixed, and low level waste is part of the no-action altemative in the Programmatic Environmental Impact Statement for the integrated ER/WM program. Construction of this proposed project will not prejudice whether or not this integration will occur, or how

  17. Technical Support Section Instrument Support Program for nuclear and nonnuclear facilities with safety requirements

    International Nuclear Information System (INIS)

    Adkisson, B.P.; Allison, K.L.

    1995-01-01

    This document describes requirements, procedures, and supervisory responsibilities of the Oak Ridge National Laboratory (ORNL) Instrumentation and Controls (I ampersand C) Division's Technical Support Section (TSS) for instrument surveillance and maintenance in nonreactor nuclear facilities having identified Operational Safety Requirements (OSRs) or Limiting Conditions Document (LCDs). Implementation of requirements comply with the requirements of U.S. Department of Energy (DOE) Orders 5480.5, 5480.22, and 5481.1B; Martin Marietta Energy Systems, Inc. (Energy Systems), Policy Procedure ESS-FS-201; and ORNL SPP X-ESH-15. OSRs and LCDs constitute an agreement or contract between DOE and the facility operating management regarding the safe operation of the facility. One basic difference between OSRs and LCDs is that violation of an OSR is considered a Category II occurrence, whereas violation of an LCD requirement is considered a Category III occurrence (see Energy Systems Standard ESS-OP-301 and ORNL SPP X-GP-13). OSRs are required for high- and moderate-hazard nuclear facilities, whereas the less-rigorous LCDs are required for low-hazard nuclear facilities and selected open-quotes generally acceptedclose quotes operations. Hazard classifications are determined through a hazard screening process, which each division conducts for its facilities

  18. Safety of Nuclear Fuel Cycle Facilities. Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific relevance include aspects of nuclear fuel generation, storage, reprocessing and disposal

  19. IAEA safety requirements for safety assessment of fuel cycle facilities and activities

    International Nuclear Information System (INIS)

    Jones, G.

    2013-01-01

    The IAEA's Statute authorises the Agency to establish standards of safety for protection of health and minimisation of danger to life and property. In that respect, the IAEA has established a Safety Fundamentals publication which contains ten safety principles for ensuring the protection of workers, the public and the environment from the harmful effects of ionising radiation. A number of these principles require safety assessments to be carried out as a means of evaluating compliance with safety requirements for all nuclear facilities and activities and to determine the measures that need to be taken to ensure safety. The safety assessments are required to be carried out and documented by the organisation responsible for operating the facility or conducting the activity, are to be independently verified and are to be submitted to the regulatory body as part of the licensing or authorisation process. In addition to the principles of the Safety Fundamentals, the IAEA establishes requirements that must be met to ensure the protection of people and the environment and which are governed by the principles in the Safety Fundamentals. The IAEA's Safety Requirements publication 'Safety Assessment for Facilities and Activities', establishes the safety requirements that need to be fulfilled in conducting and maintaining safety assessments for the lifetime of facilities and activities, with specific attention to defence in depth and the requirement for a graded approach to the application of these safety requirements across the wide range of fuel cycle facilities and activities. Requirements for independent verification of the safety assessment that needs to be carried out by the operating organisation, including the requirement for the safety assessment to be periodically reviewed and updated are also covered. For many fuel cycle facilities and activities, environmental impact assessments and non-radiological risk assessments will be required. The

  20. 105-DR Large Sodium Fire Facility closure plan

    International Nuclear Information System (INIS)

    1993-05-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, and activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950's and is located in the 100-D Area of the Hanford Site. The building housed the 105-DR defense reactor, which was shut down in 1964. The LSFF was initially used only for engineering-scale alkali metal reaction studies. In addition, the Fusion Safety Support Studies program sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium lead compounds. The facility has also been used to store and treat alkali metal waste, therefore the LSFF is subject to the regulatory requirements for the storage and treatment of dangerous waste. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610. This closure plan presents a description of the facility, the history of waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected

  1. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    International Nuclear Information System (INIS)

    KRAHN, D.E.

    2000-01-01

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included

  2. FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION

    International Nuclear Information System (INIS)

    SZALEWSKI, B.

    2005-01-01

    The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering

  3. Requirements Doc for Refurb of JASPER Facility in B131HB

    Energy Technology Data Exchange (ETDEWEB)

    Knittel, Kenn M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-25

    The Joint Actinide Shock Physics Experimental Research (JASPER) Program target fabrication facility is currently located in building 131 (B131) of the Lawrence Livermore National Laboratory (LLNL). A portion of this current facility has been committed to another program as part of a larger effort to consolidate LLNL capabilities into newer facilities. This facility assembles precision targets for scientific studies at the Nevada National Security Site (NNSS). B131 is also going through a modernization project to upgrade the infrastructure and abate asbestos. These activities will interrupt the continuous target fabrication efforts for the JASPER Program. Several options are explored to meet the above conflicting requirements, with the final recommendation to prepare a new facility for JASPER target fabrication operations before modernization efforts begin in the current facility assigned to JASPER. This recommendation fits within all schedule constraints and minimizes the disruption to the JASPER Program. This option is not without risk, as it requires moving an aged, precision coordinate measuring machine, which is essential to the JASPER Program’s success. The selected option balances the risk to the machine with continuity of operations.

  4. Fuel supply shutdown facility interim operational safety requirements

    International Nuclear Information System (INIS)

    Besser, R.L.; Brehm, J.R.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    These Interim Operational Safety Requirements (IOSR) for the Fuel Supply Shutdown (FSS) facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls to ensure safe operation. The IOSRs apply to the fuel material storage buildings in various modes (operation, storage, surveillance)

  5. 47 CFR 73.24 - Broadcast facilities; showing required.

    Science.gov (United States)

    2010-10-01

    ... requirements of good engineering practice. (f) That the facilities sought are subject to assignment as... proposed assignment will tend to effect a fair, efficient, and equitable distribution of radio service... corporation or other organization) is of good character and possesses other qualifications sufficient to...

  6. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Marcel Y.; Gervais, Todd L.

    2004-11-15

    located downstream of control technologies and just before discharge to the atmosphere. The need for monitoring airborne emissions of hazardous chemicals is established in the Hanford Site Air Operating Permit and in notices of construction. Based on the current potential-to-emit, the Hanford Site Air Operating Permit does not contain general monitoring requirements for BOP facilities. However, the permit identifies monitoring requirements for specific projects and buildings. Needs for future monitoring will be established by future permits issued pursuant to the applicable state and federal regulations. A number of liquid-effluent discharge systems serve the BOP facilities: sanitary sewer, process sewer, retention process sewer, and aquaculture system. Only the latter system discharges to the environment; the rest either discharge to treatment plants or to long-term storage. Routine compliance sampling of liquid effluents is only required at the Environmental Molecular Sciences Laboratory. Liquid effluents from other BOP facilities may be sampled or monitored to characterize facility effluents or to investigate discharges of concern. Effluent sampling and monitoring for the BOP facilities depends on the inventories, activities, and environmental permits in place for each facility. A description of routine compliance monitoring for BOP facilities is described in the BOP FEMP.

  7. Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule

    International Nuclear Information System (INIS)

    Soli T. Khericha

    2006-01-01

    This report presents preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T and FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation

  8. Systematic handling of requirements and conditions (in compliance with waste acceptance requirements for a radioactive waste disposal facility)

    International Nuclear Information System (INIS)

    Keyser, Peter; Helander, Anita

    2012-01-01

    This Abstract and presentation will demonstrate the need for a structured requirement management and draw upon experiences and development from SKB requirements data base and methodology, in addition to international guidelines and software tools. The presentation will include a discussion on how requirement management can be applied for the decommissioning area. The key issue in the decommissioning of nuclear facilities is the progressive removal of hazards, by stepwise decontamination and dismantling activities that have to be carried out safely and within the boundaries of an approved safety case. For decommissioning there exists at least two safety cases, one for the pre-disposal activities and one for the disposal facility, and a need for a systematic handling of requirements and conditions to safely manage the radioactive waste in the long term. The decommissioning safety case is a collection of arguments and evidence to demonstrate the safety of a decommissioning project. It also includes analyzing and updating the decommissioning safety case in accordance with the waste acceptance criteria's and the expected output, i.e. waste packages. It is a continuous process to confirm that all requirements have been met. On the other hand there is the safety case for a radioactive waste disposal facility, which may include the following processes and requirements: i) Integrating relevant scientific (and other) information in a structured, traceable and transparent way and, thereby, developing and demonstrating an understanding of the potential behavior and performance of the disposal system; ii) Identifying uncertainties in the behavior and performance of the disposal system, describing the possible significance of the uncertainties, and identifying approaches for the management of significant uncertainties; iii) Demonstrating long-term safety and providing reasonable assurance that the disposal facility will perform in a manner that protects human health and the

  9. Compliance with the Clean Air Act Title VI Stratospheric Ozone Protection Program requirements at U.S. DOE Oak Ridge Reservation Facilities

    International Nuclear Information System (INIS)

    Humphreys, M.P.; Atkins, E.M.

    1999-01-01

    The Title VI Stratospheric Ozone Protection Program of the Clean Air Act (CAA) requires promulgation of regulations to reduce and prevent damage to the earth's protective ozone layer. Regulations pursuant to Title VI of the CAA are promulgated in the Code of Federal Regulations (CFR) at Title 40 CFR, Part 822. The regulations include ambitious production phaseout schedules for ozone depleting substances (ODS) including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), halons, carbon tetrachloride, and methyl chloroform under 40 CFR 82, Subpart A. The regulations also include requirements for recycling and emissions reduction during the servicing of refrigeration equipment and technician certification requirements under Subpart F; provisions for servicing of motor vehicle air conditioners under Subpart B; a ban on nonessential products containing Class 1 ODS under Subpart C; restrictions on Federal procurement of ODS under Subpart D; labeling of products using ODS under Subpart E; and the Significant New Alternatives Policy Program under Subpart G. This paper will provide details of initiatives undertaken at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title VI Stratospheric Ozone Protection Program. The Stratospheric Ozone Protection Plans include internal DOE requirements for: (1) maintenance of ODS inventories; (2) ODS procurement practices; (3) servicing of refrigeration and air conditioning equipment; (4) required equipment modifications or replacement; (5) technician certification training; (6) labeling of products containing ODS; (7) substitution of chlorinated solvents; and (8) replacement of halon fire protection systems. The plans also require establishment of administrative control systems which assure that compliance is achieved and maintained as the regulations continue to develop and become effective

  10. Waste Encapsulation and Storage Facility interim operational safety requirements

    CERN Document Server

    Covey, L I

    2000-01-01

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  11. Codes, standards, and requirements for DOE facilities: natural phenomena design

    International Nuclear Information System (INIS)

    Webb, A.B.

    1985-01-01

    The basic requirements for codes, standards, and requirements are found in DOE Orders 5480.1A, 5480.4, and 6430.1. The type of DOE facility to be built and the hazards which it presents will determine the criteria to be applied for natural phenomena design. Mandatory criteria are established in the DOE orders for certain designs but more often recommended guidance is given. National codes and standards form a great body of experience from which the project engineer may draw. Examples of three kinds of facilities and the applicable codes and standards are discussed. The safety program planning approach to project management used at Westinghouse Hanford is outlined. 5 figures, 2 tables

  12. Radiation protection requirements for dental X-ray diagnostic facilities

    International Nuclear Information System (INIS)

    Taschner, P.; Koenig, W.; Andreas, M.; Trinius, W.

    1976-01-01

    On the basis of radiation protection regulations the planning of dental X-ray facilities is discussed considering organizational, technical and structural measures suitable for fulfilling protection requirements. Finally, instructions are given aimed at reducing radiation doses to personnel and patients. (author)

  13. Radiation protection requirements for dental X-ray diagnostic facilities

    Energy Technology Data Exchange (ETDEWEB)

    Taschner, P; Koenig, W [Staatliches Amt fuer Atomsicherheit und Strahlenschutz, Berlin (German Democratic Republic); Andreas, M [Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Fachrichtung Stomatologie; Trinius, W [Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Radiologische Klinik

    1976-03-01

    On the basis of radiation protection regulations the planning of dental X-ray facilities is discussed considering organizational, technical and structural measures suitable for fulfilling protection requirements. Finally, instructions are given aimed at reducing radiation doses to personnel and patients.

  14. Savannah River Site - Salt-stone Disposal Facility Performance Assessment Update

    International Nuclear Information System (INIS)

    Newman, J.L.

    2009-01-01

    The Savannah River Site (SRS) Salt-stone Facility is currently in the midst of a Performance Assessment revision to estimate the effect on human health and the environment of adding new disposal units to the current Salt-stone Disposal Facility (SDF). These disposal units continue the ability to safely process the salt component of the radioactive liquid waste stored in the underground storage tanks at SRS, and is a crucial prerequisite for completion of the overall SRS waste disposition plan. Removal and disposal of low activity salt waste from the SRS liquid waste system is required in order to empty tanks for future tank waste processing and closure operations. The Salt-stone Production Facility (SPF) solidifies a low-activity salt stream into a grout matrix, known as salt-stone, suitable for disposal at the SDF. The ability to dispose of the low-activity salt stream in the SDF required a waste determination pursuant to Section 3116 of the Ronald Reagan National Defense Authorization Act of 2005 and was approved in January 2006. One of the requirements of Section 3116 of the NDAA is to demonstrate compliance with the performance objectives set out in Subpart C of Part 61 of Title 10, Code of Federal Regulations. The PA is the document that is used to ensure ongoing compliance. (authors)

  15. 105-DR Large Sodium Fire Facility closure plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, and activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950`s and is located in the 100-D Area of the Hanford Site. The building housed the 105-DR defense reactor, which was shut down in 1964. The LSFF was initially used only for engineering-scale alkali metal reaction studies. In addition, the Fusion Safety Support Studies program sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium lead compounds. The facility has also been used to store and treat alkali metal waste, therefore the LSFF is subject to the regulatory requirements for the storage and treatment of dangerous waste. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610. This closure plan presents a description of the facility, the history of waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

  16. Radioactive Air Emmission Notice of Construction (NOC) for the Waste Receiving and Processing Facility (WRAP)

    Energy Technology Data Exchange (ETDEWEB)

    MENARD, N.M.

    2000-12-01

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61.07 for the Waste Receiving and Processing (WRAP) Facility. The rewrite of this NOC incorporates all the approved revisions (Sections 5.0, 6.0, 8.0, and 9.0), a revised potential to emit (PTE) based on the revised maximally exposed individual (MEI) (Sections 8.0, 10.0, 11.0, 12.0, 13.0, 14.0, and 15.0), the results of a study on fugitive emissions (Sections 6.0, 10.0, and 15.0), and reflects the current operating conditions at the WRAP Facility (Section 5.0). This NOC replaces DOE/RL-93-15 and DOE/RL-93-16 in their entirety. The primary function of the WRAP Facility is to examine, assay, characterize, treat, verify, and repackage radioactive material and mixed waste. There are two sources of emissions from the WRAP Facility: stack emissions and fugitive emissions. The stack emissions have an unabated total effective dose equivalent (TEDE) estimate to the hypothetical offsite MEI of 1.13 E+02 millirem per year. The abated TEDE for the stack emissions is estimated at 5.63 E-02 millirem per year to the MEI. The fugitive emissions have an unabated TEDE estimate to the hypothetical offsite MEI of 5.87 E-04. There is no abatement for the fugitive emissions.

  17. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    International Nuclear Information System (INIS)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-01-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed

  18. National Ignition Facility subsystem design requirements NIF site improvements SSDR 1.2.1

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements associated with the NIF Project Site at Lawrence Livermore National Laboratory (LLNL) at Livermore, California. It identifies generic design conditions for all NIF Project facilities, including siting requirements associated with natural phenomena, and contains specific requirements for furnishing site-related infrastructure utilities and services to the NIF Project conventional facilities and experimental hardware systems. Three candidate sites were identified as potential locations for the NIF Project. However, LLNL has been identified by DOE as the preferred site because of closely related laser experimentation underway at LLNL, the ability to use existing interrelated infrastructure, and other reasons. Selection of a site other than LLNL will entail the acquisition of site improvements and infrastructure additional to those described in this document. This SSDR addresses only the improvements associated with the NIF Project site located at LLNL, including new work and relocation or demolition of existing facilities that interfere with the construction of new facilities. If the Record of Decision for the PEIS on Stockpile Stewardship and Management were to select another site, this SSDR would be revised to reflect the characteristics of the selected site. Other facilities and infrastructure needed to support operation of the NIF, such as those listed below, are existing and available at the LLNL site, and are not included in this SSDR. Office Building. Target Receiving and Inspection. General Assembly Building. Electro- Mechanical Shop. Warehousing and General Storage. Shipping and Receiving. General Stores. Medical Facilities. Cafeteria services. Service Station and Garage. Fire Station. Security and Badging Services

  19. Preliminary site requirements and considerations for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    1991-08-01

    This report presents preliminary requirements and considerations for siting monitored retrievable storage (MRS) facility. It purpose is to provide guidance for assessing the technical suitability of potential sites for the facility. It has been reviewed by the NRC staff, which stated that this document is suitable for ''guidance in making preliminary determinations concerning MRS site suitability.'' The MRS facility will be licensed by the US Nuclear Regulatory Commission. It will receive spent fuel from commercial nuclear power plants and provide a limited amount of storage for this spent fuel. When a geologic repository starts operations, the MRS facility will also stage spent-fuel shipments to the repository. By law, storage at the MRS facility is to be temporary, with permanent disposal provided in a geologic repository to be developed by the DOE

  20. Requirements and design concept for a facility mapping system

    International Nuclear Information System (INIS)

    Barry, R.E.; Burks, B.L.; Little, C.Q.

    1995-01-01

    The Department of Energy (DOE) has for some time been considering the Decontamination and Dismantlement (D ampersand D) of facilities which are no longer in use, but which are highly contaminated with radioactive wastes. One of the holdups in performing the D ampersand D task is the accumulation of accurate facility characterizations that can enable a safe and orderly cleanup process. According to the Technical Strategic Plan for the Decontamination and Decommissioning Integrated Demonstration, open-quotes the cost of characterization using current baseline technologies for approximately 100 acres of gaseous diffusion plant at Oak Ridge alone is, for the most part incalculableclose quotes. Automated, robotic techniques will be necessary for initial characterization and continued surveillance of these types of sites. Robotic systems are being designed and constructed to accomplish these tasks. This paper describes requirements and design concepts for a system to accurately map a facility contaminated with hazardous wastes. Some of the technologies involved in the Facility Mapping System are: remote characterization with teleoperated, sensor-based systems, fusion of data sets from multiple characterization systems, and object recognition from 3D data models. This Facility Mapping System is being assembled by Oak Ridge National Laboratory for the DOE Office of Technology Development Robotics Technology Development Program

  1. Design impacts of safeguards and security requirements for a US MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Rinard, P.M.; Thomas, K.E.; Zack, N.R.; Jaeger, C.D.

    1998-01-01

    The disposition of plutonium that is no longer required for the nation's defense is being structured to mitigate risks associated with the material's availability. In the 1997 Record of Decision, the US Government endorsed a dual-track approach that could employ domestic commercial reactors to effect the disposition of a portion of the plutonium in the form of mixed oxide (MOX) reactor fuels. To support this decision, the Office of Materials Disposition requested preparation of a document that would review US requirements for safeguards and security and describe their impact on the design of a MOX fuel fabrication facility. The intended users are potential bidders for the construction and operation of the facility. The document emphasizes the relevant DOE Orders but also considers the Nuclear Regulatory Commission (NRC) requirements. Where they are significantly different, the authors have highlighted this difference and provided guidance on the impact to the facility design. Finally, the impacts of International Atomic Energy Agency (IAEA) safeguards on facility design are discussed. Security and materials control and accountability issues that influence facility design are emphasized in each area of discussion. This paper will discuss the prepared report and the issues associated with facility design for implementing practical, modern safeguards and security systems into a new MOX fuel fabrication facility

  2. Agreement Between the Government of India and the International Atomic Energy Agency for the Application of Safeguards to Civilian Nuclear Facilities. Addition to the List of Facilities Subject to Safeguards Under the Agreement

    International Nuclear Information System (INIS)

    2014-01-01

    In accordance with Paragraph 14(a) of the Agreement between the Government of India and the International Atomic Energy Agency for the Application of Safeguards to Civilian Nuclear Facilities (hereinafter “the Agreement”), India shall notify the Agency in writing of its decision to offer any facility identified by India for Agency safeguards under the Agreement. Any facility so notified by India becomes subject to the Agreement as of the date of receipt by the Agency of such written notification from India, and is to be included in the Annex to the Agreement. On 11 March 2014, the Agency received from India written notification, pursuant to Paragraph 14(a) of the Agreement, of its decision to bring one additional facility under safeguards in accordance with the provisions of the Agreement. Pursuant to Paragraph 14 4(a) of the Agreement, the Annex to the Agreement has been updated and is reproduced in this document for the information of all Members of the Agency

  3. Agreement Between the Government of India and the International Atomic Energy Agency for the Application of Safeguards to Civilian Nuclear Facilities. Addition to the List of Facilities Subject to Safeguards Under the Agreement

    International Nuclear Information System (INIS)

    2014-01-01

    In accordance with Paragraph 14(a) of the Agreement between the Government of India and the International Atomic Energy Agency for the Application of Safeguards to Civilian Nuclear Facilities (hereinafter “the Agreement”), India shall notify the Agency in writing of its decision to offer any facility identified by India for Agency safeguards under the Agreement. Any facility so notified by India becomes subject to the Agreement as of the date of receipt by the Agency of such written notification from India, and is to be included in the Annex to the Agreement. On 11 March 2014, the Agency received from India written notification, pursuant to Paragraph 14(a) of the Agreement, of its decision to bring one additional facility under safeguards in accordance with the provisions of the Agreement. Pursuant to Paragraph 14 4(a) of the Agreement, the Annex to the Agreement has been updated and is reproduced in this document for the information of all Members of the Agency [es

  4. 42 CFR 424.14 - Requirements for inpatient services of inpatient psychiatric facilities.

    Science.gov (United States)

    2010-10-01

    ... psychiatric facilities. 424.14 Section 424.14 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Certification and Plan Requirements § 424.14 Requirements for inpatient services of inpatient psychiatric... requirements differ from those for other hospitals because the care furnished in psychiatric hospitals is often...

  5. Regulatory quality assurance requirements for the operation of nuclear R and D facilities in Korea

    International Nuclear Information System (INIS)

    Kwon, H.I.; Lim, N.J.

    2006-01-01

    Full text: Korea Atomic Energy Research Institute (KAERI) has many R and D facilities in operation. including HANARO research reactor, radioactive waste treatment facility (RWTF), post-irradiation examination facility (PIEF) and irradiated material test facility (IMEF). Recently. nation-wide interest is focused on the safety and security of major industrial facilities. Safe operation of nuclear facilities is imperative because of the consequence of public disaster by radiological release/contamination, in case of an accident. Recently, Ministry of Science and Technology (MOST) of the Korean government announced amendments of Atomic Energy laws to enforce requirements of the physical protection and radiological emergency. All provisions on nuclear safety regulation and radiation protection are entrusted to the Atomic Energy Act(AEA). The Act is enacted as the main law concerning the safety regulation of nuclear installations, and is supplemented by the Enforcement Decree and Enforcement Regulation of the Act. These Atomic Energy laws include provisions on the construction permission and the operation license of nuclear installations, such as nuclear power reactors, research reactors, nuclear ships, nuclear fuel fabrication facilities, spent fuel treatment facilities, etc. Regulatory requirements for the regulatory inspection and the safety measures for operation are also defined in the laws. The Notice of the MOST prescribes specific issues including regulatory requirements and technical standards, as entrusted by the AEA, the Decree and the Regulation. Detailed QA requirements for nuclear installations are specified differently, depending upon the type of facility. The guidelines for safety reviews and regulatory inspections are developed by the Korea Institute of Nuclear Safety (KINS), which is an exclusive organization for safety regulation of nuclear installations in Korea. In this paper, the context of the Atomic Energy laws were reviewed to confirm the

  6. Radioactive Air Emmission Notice of Construction (NOC) Application for the Waste Receiving and Processing Facility (WRAP)

    International Nuclear Information System (INIS)

    MENARD, N.M.

    2000-01-01

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61.07 for the Waste Receiving and Processing (WRAP) Facility. The rewrite of this NOC incorporates all the approved revisions (Sections 5.0, 6.0, 8.0, and 9.0), a revised potential to emit (PTE) based on the revised maximally exposed individual (MEI) (Sections 8.0, 10.0, 11.0, 12.0, 13.0, 14.0, and 15.0), the results of a study on fugitive emissions (Sections 6.0, 10.0, and 15.0), and reflects the current operating conditions at the WRAP Facility (Section 5.0). This NOC replaces DOE/RL-93-15 and DOE/RL-93-16 in their entirety. The primary function of the WRAP Facility is to examine, assay, characterize, treat, verify, and repackage radioactive material and mixed waste. There are two sources of emissions from the WRAP Facility: stack emissions and fugitive emissions. The stack emissions have an unabated total effective dose equivalent (TEDE) estimate to the hypothetical offsite MEI of 1.13 E+02 millirem per year. The abated TEDE for the stack emissions is estimated at 5.63 E-02 millirem per year to the MEI. The fugitive emissions have an unabated TEDE estimate to the hypothetical offsite MEI of 5.87 E-04. There is no abatement for the fugitive emissions

  7. Regulatory requirements for designing PET-CT facility in India

    International Nuclear Information System (INIS)

    Tandon, Pankaj

    2010-01-01

    In India, cyclotron-produced radionuclides are gaining importance in molecular imaging in Nuclear Medicine (NM) departments. The importance of this modality among others is due to the fact that it provides valuable clinical information, which was lacking in other available modalities. Presently, every well-established hospital would like to procure Medical Cyclotron or positron emission tomography-computed tomography (PET-CT) facility in their NM department. Because cyclotron-produced radionuclides have higher energy than the other routinely used radionuclides for diagnosis, it becomes essential for the user to know about the regulatory requirement and radiation safety precautions that one has to take for the installation of this new modality in their premises. The various stages of approval of PET-CT facility by the Atomic Energy Regulatory Board (AERB) and important steps that one has to know/follow before planning for this new facility are summarized

  8. Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements

    International Nuclear Information System (INIS)

    French, Sean B.; Johns-Hughes, Kathryn W.

    2011-01-01

    Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

  9. State Environmental Policy Act (SEPA) Checklist for the 105-DR Large Sodium Fire Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950's and is located in the 100-D Area of the Hanford Site. The building housed the DR defense reactor, which was shut down in 1964. The LSFF is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Clean closure is the proposed method of closure for the LSFF. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989). This closure plan presents a description of the facility, the history of wastes managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

  10. 78 FR 63176 - Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting...

    Science.gov (United States)

    2013-10-23

    ... Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting Comments and Motions To... of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The...

  11. Waste encapsulation storage facility (WESF) standards/requirements identification document (S/RIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, B.S., Westinghouse Hanford

    1996-07-29

    This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ES{ampersand}H) standards/requirements for the Waste Encapsulation Storage Facility (WESF). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  12. A study on the influence of the regulatory requirements of a nuclear facility during decommissioning activities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seong; Park, Seung Kook; Park, Kook Nam; Hong, Yun Jeong; Park, Jang Jin; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The preliminary decommissioning plan should be written with various chapters such as a radiological characterization, a decommissioning strategy and methods, a design for decommissioning usability, a safety evaluation, decontamination and dismantling activities, radioactive waste management, an environmental effect evaluation, and fire protection. The process requirements of the decommissioning project and the technical requirements and technical criteria should comply with regulatory requirements when dismantling of a nuclear facility. The requirements related to safety in the dismantling of a nuclear facility refer to the IAEA safety serious. The present paper indicates that a decommissioning design and plan, dismantling activities, and a decommissioning project will be influenced by the decommissioning regulatory requirements when dismantling of a nuclear facility. We hereby paved the way to find the effect of the regulatory requirements on the decommissioning of a whole area from the decommissioning strategy to the radioactive waste treatment when dismantling a nuclear facility. The decommissioning requirements have a unique feature in terms of a horizontal relationship as well as a vertical relationship from the regulation requirements to the decommissioning technical requirements. The decommissioning requirements management will be conducted through research that can recognize a multiple relationship in the next stage.

  13. New requirements to collect operational data that are essential for facility decommissioning

    International Nuclear Information System (INIS)

    Kristofova, K.; Valcuha, P.

    2017-01-01

    The paper describes the features of the first nuclear regulatory safety guide to be released by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in field of decommissioning. This safety guide specifies requirements to collect those nuclear facility operational data that are essential for its decommissioning. Recommendations of international organisations as well as experience in selected countries are provided. The following operational data types necessary for decommissioning process are identified and analysed: design documentation including modifications and changes during operation, photo-documentation, operational events and material and radiological inventory of the nuclear facility. The guide establishes requirements for collection of the operational data that can be recorded in interconnected database modules. In addition, a structure of decommissioning database is proposed, representing material and radiological inventory of a nuclear facility. This inventory database forms a basis for planning of the decommissioning process. At last, the guide summarises recommendations for data collection, archiving and maintenance of database records and also their applications in safety documentation necessary for decommissioning of nuclear facilities in Slovakia. (authors)

  14. 10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.

    Science.gov (United States)

    2010-01-01

    ... enrichment facilities. 140.13b Section 140.13b Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...

  15. Review of Regulatory Quality Assurance Requirements for the Operation of Nuclear R and D Facilities

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Lim, Nam Jin

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) has many R and D facilities in operation, including HANARO research reactor, radioactive waste treatment facility (RWTF), post-irradiation examination facility (PIEF) and irradiated material test facility (IMEF). Recently, nation-wide interest is focused on the safety and security of major industrial facilities. Safe operation of nuclear facilities is imperative because of the consequence of public disaster by radiological release/ contamination, in case of an accident. Recently, Ministry of Science and Technology (MOST) of the Korean government announced amendments of Atomic Energy laws to enforce requirements of the physical protection and radiological emergency. In this paper, the context of amended Atomic Energy laws were reviewed to confirm quality assurance measures and identify additional QA activities, if any, that is required by the amendment

  16. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  17. National Ignition Facility subsystem design requirements optics assembly building (OAB) SSDR 1.2.2.3

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirement (SSDR) document establishes the performance, design, and verification requirements 'for the conventional building systems and subsystems of the Optics Assembly Building (OAB). These building system requirements are associated with housing and supporting the operational flow of personnel and materials throughout the OAB for preparing and repairing optical and mechanical components used in the National Ignition Facility (NIF) Laser and Target Building (LTAB). This SSDR addresses the following subsystems associated with the OAB: * Structural systems for the building spaces and operational-support equipment and building- support equipment. * Architectural building features associated with housing the space, operational cleanliness, and functional operation of the facility. * Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facility. * Plumbing systems that provide potable water and sanitary facilities for the occupants and stormwater drainage for transporting rainwater. * Fire Protection systems that guard against fire damage to the facility and its contents. * Material handling equipment for transferring optical assemblies and other materials within building areas and to the LTAB. * Mechanical process piping systems for liquids and gases that provide cooling, cleaning, and other service to optical and mechanical components. * Electrical power and grounding systems that provide service to the building and equipment, including lighting distribution and communications systems for the facilities. * Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Generic design criteria, such as siting data, seismic requirements, utility availability, and other information that contributes to the OAB design, are not addressed in this document

  18. 76 FR 1213 - Core Principles and Other Requirements for Swap Execution Facilities

    Science.gov (United States)

    2011-01-07

    ... Part II Commodity Futures Trading Commission 17 CFR Part 37 Core Principles and Other Requirements... RIN Number 3038-AD18 Core Principles and Other Requirements for Swap Execution Facilities AGENCY... Compliance With the Core Principles III. Effective Date and Transition Period IV. Related Matters A...

  19. Technical safety requirements for the Annular Core Research Reactor Facility (ACRRF)

    International Nuclear Information System (INIS)

    Boldt, K.R.; Morris, F.M.; Talley, D.G.; McCrory, F.M.

    1998-01-01

    The Technical Safety Requirements (TSR) document is prepared and issued in compliance with DOE Order 5480.22, Technical Safety Requirements. The bases for the TSR are established in the ACRRF Safety Analysis Report issued in compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. The TSR identifies the operational conditions, boundaries, and administrative controls for the safe operation of the facility

  20. Mobile/Modular BSL-4 Facilities for Meeting Restricted Earth Return Containment Requirements

    Science.gov (United States)

    Calaway, M. J.; McCubbin, F. M.; Allton, J. H.; Zeigler, R. A.; Pace, L. F.

    2017-01-01

    NASA robotic sample return missions designated Category V Restricted Earth Return by the NASA Planetary Protection Office require sample containment and biohazard testing in a receiving laboratory as directed by NASA Procedural Requirement (NPR) 8020.12D - ensuring the preservation and protection of Earth and the sample. Currently, NPR 8020.12D classifies Restricted Earth Return for robotic sample return missions from Mars, Europa, and Enceladus with the caveat that future proposed mission locations could be added or restrictions lifted on a case by case basis as scientific knowledge and understanding of biohazards progresses. Since the 1960s, sample containment from an unknown extraterrestrial biohazard have been related to the highest containment standards and protocols known to modern science. Today, Biosafety Level (BSL) 4 standards and protocols are used to study the most dangerous high-risk diseases and unknown biological agents on Earth. Over 30 BSL-4 facilities have been constructed worldwide with 12 residing in the United States; of theses, 8 are operational. In the last two decades, these brick and mortar facilities have cost in the hundreds of millions of dollars dependent on the facility requirements and size. Previous mission concept studies for constructing a NASA sample receiving facility with an integrated BSL-4 quarantine and biohazard testing facility have also been estimated in the hundreds of millions of dollars. As an alternative option, we have recently conducted an initial trade study for constructing a mobile and/or modular sample containment laboratory that would meet all BSL-4 and planetary protection standards and protocols at a faction of the cost. Mobile and modular BSL-2 and 3 facilities have been successfully constructed and deployed world-wide for government testing of pathogens and pharmaceutical production. Our study showed that a modular BSL-4 construction could result in approximately 90% cost reduction when compared to

  1. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Charles Park

    2006-01-01

    This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy

  2. Analysis of impact of noncompliance with physical-security requirements at nuclear facilities

    International Nuclear Information System (INIS)

    Green, J.N.

    1982-03-01

    Inspectors are required to analyze the impact of instances of noncompliance with physical security requirements at licensed nuclear facilities. A scoring procedure for components and a method for evaluating the effectiveness of the subsystems involved are proposed to reinforce an inspector's judgment about the remaining level of safeguards

  3. Cold Pump Test and Training and Mock-Up Facility Functions and Requirements

    International Nuclear Information System (INIS)

    BELLOMY, J.R.

    2000-01-01

    This document defines the functions and requirements (F and R) for a test facility to provide for pre-deployment, checkout, testing, and training for the underground storage tank retrieval equipment, systems, and crews that will be developed or deployed as part of Waste Feed Delivery. The F and R for a River Protection Project retrieval test facility, one that supports a production mode tank farm system, are identified

  4. 78 FR 38594 - Medicare and Medicaid Programs; Requirements for Long Term Care Facilities; Hospice Services

    Science.gov (United States)

    2013-06-27

    .... The LTC facility regulations clearly specify what services the facility is required to provide to... professional caregivers and are often paid by third-party payers, such as Medicaid. These facilities are... benefit. In regulations at 42 CFR 418.112(c), we specify what must be included in a written agreement...

  5. The Management System for Facilities and Activities. Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States in establishing and implementing effective management systems that integrate all aspects of managing nuclear facilities and activities in a coherent manner. It details the planned and systematic actions necessary to provide adequate confidence that all these requirements are satisfied. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement.

  6. Guidelines on the facilities required for minor surgical procedures and minimal access interventions.

    LENUS (Irish Health Repository)

    Humphreys, H

    2012-02-01

    There have been many changes in healthcare provision in recent years, including the delivery of some surgical services in primary care or in day surgery centres, which were previously provided by acute hospitals. Developments in the fields of interventional radiology and cardiology have further expanded the range and complexity of procedures undertaken in these settings. In the face of these changes there is a need to define from an infection prevention and control perspective the basic physical requirements for facilities in which such surgical procedures may be carried out. Under the auspices of the Healthcare Infection Society, we have developed the following recommendations for those designing new facilities or upgrading existing facilities. These draw upon best practice, available evidence, other guidelines where appropriate, and expert consensus to provide sensible and feasible advice. An attempt is also made to define minimal access interventions and minor surgical procedures. For minimal access interventions, including interventional radiology, new facilities should be mechanically ventilated to achieve 15 air changes per hour but natural ventilation is satisfactory for minor procedures. All procedures should involve a checklist and operators should be appropriately trained. There is also a need for prospective surveillance to accurately determine the post-procedure infection rate. Finally, there is a requirement for appropriate applied research to develop the evidence base required to support subsequent iterations of this guidance.

  7. Evolution of facility layout requirements and CAD [computer-aided design] system development

    International Nuclear Information System (INIS)

    Jones, M.

    1990-06-01

    The overall configuration of the Superconducting Super Collider (SSC) including the infrastructure and land boundary requirements were developed using a computer-aided design (CAD) system. The evolution of the facility layout requirements and the use of the CAD system are discussed. The emphasis has been on minimizing the amount of input required and maximizing the speed by which the output may be obtained. The computer system used to store the data is also described

  8. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1989

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1992-04-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC 1 licensees during the years 1969 through 1989. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC 1 licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1989 annual reports submitted by about 448 licensees indicated that approximately 216,294 individuals were monitored 111,000 of whom were monitored by nuclear power facilities. They incurred an average individual does of 0.18 rem (cSv) and an average measurable dose of 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,535 individuals completed their employment with one or more of the 448 covered licensees during 1989. Some 76,561 of these individuals terminated from power reactor facilities, and about 10, 344 of them were considered to be transient workers who received an average dose of 0.64 rem (cSv)

  9. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1988

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1991-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1988. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1988 annual reports submitted by about 429 licensees indicated that approximately 220,048 individuals were monitored, 113,00 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.20 rem (cSv) and an average measurable dose of 0.41 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,072 individuals completed their employment with one or more of the 429 covered licensees during 1988. Some 80,211 of these individuals terminated from power reactor facilities, and about 8,760 of them were considered to be transient workers who received an average dose of 0.27 rem (cSv). 17 refs., 11 figs., 29 tabs

  10. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1991

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1991. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1991 annual reports submitted by about 436 licensees indicated that approximately 206,732 individuals were monitored, 182,334 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.15 rem (cSv) and an average measurable dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 96,231 individuals completed their employment with one or more of the 436 covered licensees during 1991. Some 68,115 of these individuals terminated from power reactor facilities, and about 7,763 of them were considered to be transient workers who received an average dose of 0.52 rem (cSv)

  11. Posiva's application for a decision in principle concerning a disposal facility for spent nuclear fuel. STUK's statement and preliminary safety appraisal

    International Nuclear Information System (INIS)

    Ruokola, E.

    2000-03-01

    In May 1999, Posiva Ltd submitted to the Government an application, pursuant to the Nuclear Energy Act, for a Decision in Principle on a disposal facility for spent nuclear fuel from the Finnish nuclear power plants. The Ministry of Trade and Industry requested the Radiation and Nuclear Safety Authority (STUK) to draw up a preliminary safety appraisal concerning the proposed disposal facility. In the beginning of this report, STUK's statement to the Ministry and Industry concerning the proposed disposal facility is given. In that statement, STUK concludes that the Decision in Principle is currently justified from the standpoint of safety. The statement is followed by a safety appraisal, where STUK deems, how the proposed disposal concept, site and facility comply with the safety requirements included in the Government's Decision (478/1999). STUK's preliminary safety appraisal was supported by contributions from a number of outside experts. A collective opinion by an international group of ten distinguished experts is appended to this report. (orig.)

  12. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Science.gov (United States)

    2010-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... the Federal Power Act, at which non-Federal hydroelectric development is permissible; or (2) An...

  13. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  14. 5 CFR 2640.302 - Waivers issued pursuant to 18 U.S.C. 208(b)(3).

    Science.gov (United States)

    2010-01-01

    ... actual or potential profit or loss or cost of the matter to the company issuing the stock, the change in...) Requirements for issuing an individual waiver under 18 U.S.C. 208(b)(3). Pursuant to 18 U.S.C. 208(b)(3), an...) The type of interest that is creating the disqualification (e.g. stock, bonds, real estate, other...

  15. The development of functional requirement for integrated test facility

    International Nuclear Information System (INIS)

    Sim, B.S.; Oh, I.S.; Cha, K.H.; Lee, H.C.

    1994-01-01

    An Integrated Test Facility (ITF) is a human factors experimental environment comprised of a nuclear power plant function simulator, man-machine interfaces (MMI), human performance recording systems, and signal control and data analysis systems. In this study, we are going to describe how the functional requirements are developed by identification of both the characteristics of generic advanced control rooms and the research topics of world-wide research interest in human factors community. The functional requirements of user interface developed in this paper together with those of the other elements will be used for the design and implementation of the ITF which will serve as the basis for experimental research on a line of human factors topics. (author). 15 refs, 1 fig

  16. Characterization testing support requirements for the exploratory shaft facility at Yucca mountain

    International Nuclear Information System (INIS)

    Kalia, H.N.; Klkins, N.Z.

    1990-01-01

    The National waste Policy Act of 1982, as amended on December 22, 1987, requires that before proceeding to sink exploratory shafts at the Yucca Mountain site, the Secretary of the Department of Energy (DOE) shall submit to the Nuclear Regulatory Commission and to the Governor of Nevada or Legislature of the State of Nevada, for their review and comment, a general plane for the characterization activities to be conducted at the Yucca Mountain site. DOE submitted a Site Characterization Plan in December of 1988. This plan outlines activities to be undertaken by DOE to characterize the Yucca Mountain site as potentially the first national repository for the permanent isolation of high-level radioactive waste as well as the quality assurance (QA) program that will be applied on this project. The DOE plans to utilize an Exploratory Shaft Facility (ESF) to gain access to the underground environment and conduct characterization, construction, and mining-method evaluation and performance-related tests. This paper identifies the types of ESF tests to be performed, test requirements with respect to facility design, and the management of the testing program. An important ESF test program element is the design, installation, and management of an Integrated Data System (IDS), an automated system for collecting and recording test data for many of the tests. The rationale used in developing the facility and methodology used to develop testing and IDS requirements are also discussed in this paper

  17. 30 CFR 75.1600-2 - Communication facilities; working sections; installation and maintenance requirements; audible or...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Communication facilities; working sections; installation and maintenance requirements; audible or visual alarms. 75.1600-2 Section 75.1600-2 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Communications § 75.1600-2 Communication facilities; working...

  18. Requirements for facilities transferring or receiving select agents. Final rule.

    Science.gov (United States)

    2001-08-31

    CDC administers regulations that govern the transfer of certain biological agents and toxins ("select agents"). These regulations require entities that transfer or receive select agents to register with CDC and comply with biosafety standards contained in the Third Edition of the CDC/NIH publication "Biosafety in Microbiological and Biomedical Laboratories ("BMBL")." On October 28,1999, CDC published a Notice of Proposed Rulemaking ("NPRM") seeking both to revise the biosafety standards facilities must follow when handling select agents and to provide new biosecurity standards for such facilities. These new standards are contained in the Fourth Edition of BMBL, which the NPRM proposed to incorporate by reference, thereby replacing the Third Edition. No comments were received in response to this proposal. CDC is therefore amending its regulations to incorporate the Fourth Edition.

  19. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    International Nuclear Information System (INIS)

    L. V. Street

    2007-01-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility

  20. Assessment of furnaces including fuel storage facilities according to the 12th Federal Emission Control Ordinance (BImSchV)

    International Nuclear Information System (INIS)

    Hensler, G.; Ott, H.; Wunderlich, O.; Mair, K.

    1990-01-01

    Existing quantities of substances pursuant to Annex II of the 12th Federal Emission Control Ordinance in furnaces or in fuel storage facilities do not present a general hazard for fireplaces fired with coal, wood, heavy and light fuel oil within the meaning of the Accident Ordinance. In case of a fire in a storage facility for black coal, brown coal, untreated wood, light and heavy fuel oil, a general hazard on account of the release of developed substances is obviously excluded. Dispersion calculations pursuant to VDI 3783 have shown that concentrations of beryllium, arsenic, nickel, cobalt and mercury compounds in the vicinity of the fire source are so small that a general hazard can be excluded. (orig./DG) [de

  1. 49 CFR 599.401 - Requirements and limitations for disposal facilities that receive trade-in vehicles under the...

    Science.gov (United States)

    2010-10-01

    ... facilities that receive trade-in vehicles under the CARS program. 599.401 Section 599.401 Transportation... SAVE ACT PROGRAM Disposal of Trade-in Vehicle § 599.401 Requirements and limitations for disposal facilities that receive trade-in vehicles under the CARS program. (a) The disposal facility must: (1) Not...

  2. Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberger, Kent H. [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)

    2013-07-01

    The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and

  3. Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610

    International Nuclear Information System (INIS)

    Rosenberger, Kent H.

    2013-01-01

    The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling

  4. Functional requirements for the man-vehicle systems research facility. [identifying and correcting human errors during flight simulation

    Science.gov (United States)

    Clement, W. F.; Allen, R. W.; Heffley, R. K.; Jewell, W. F.; Jex, H. R.; Mcruer, D. T.; Schulman, T. M.; Stapleford, R. L.

    1980-01-01

    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included.

  5. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process.

  6. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    International Nuclear Information System (INIS)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won

    2008-12-01

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process

  7. Operational and safety requirement of radiation facility

    International Nuclear Information System (INIS)

    Zulkafli Ghazali

    2007-01-01

    Gamma and electron irradiation facilities are the most common industrial sources of ionizing radiation. They have been used for medical, industrial and research purposes since the 1950s. Currently there are more than 160 gamma irradiation facilities and over 600 electron beam facilities in operation worldwide. These facilities are either used for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, or the eradication of insect infestation. Irradiation with electron beam, gamma ray or ultra violet light can also destroy complex organic contaminants in both liquid and gaseous waste. EB systems are replacing traditional chemical sterilization methods in the medical supply industry. The ultra-violet curing facility, however, has found more industrial application in printing and furniture industries. Gamma and electron beam facilities produce very high dose rates during irradiation, and thus there is a potential of accidental exposure in the irradiation chamber which can be lethal within minutes. Although, the safety record of this industry has been relatively very good, there have been fatalities recorded in Italy (1975), Norway (1982), El Salvador (1989) and Israel (1990). Precautions against uncontrolled entry into irradiation chamber must therefore be taken. This is especially so in the case of gamma irradiation facilities those contain large amounts of radioactivity. If the mechanism for retracting the source is damaged, the source may remain exposed. This paper will, to certain extent, describe safety procedure and system being installed at ALURTRON, Nuclear Malaysia to eliminate accidental exposure of electron beam irradiation. (author)

  8. Agreement between the Government of India and the International Atomic Energy Agency for the application of safeguards to civilian nuclear facilities

    International Nuclear Information System (INIS)

    2009-01-01

    The text of the Agreement between the Government of India and the International Atomic Energy Agency for the Application of Safeguards to Civilian Nuclear Facilities is reproduced in this document for the information of all Members of the Agency. The Board of Governors approved the Agreement on 1 August 2008. It was signed in Vienna on 2 February 2009. Pursuant to paragraph 108 of the Agreement, the Agreement entered into force on 11 May 2009, the date on which the Agency received from India written notification that India's statutory and constitutional requirements for entry into force had been met

  9. Incorporating functional requirements into the structural design of the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Hsiu, F.J.; Ng, C.K.; Almuti, A.M.

    1986-01-01

    Vitrification Building-type structures have unique features and design needs. The structural design requires new concepts and custom detailing. The above special structural designs have demonstrated the importance of the five design considerations listed in the introduction. Innovative ideas and close coordination are required to achieve the design objectives. Many of these innovations have been applied to the DWPF facility which is a first of a kind

  10. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  11. 75 FR 1492 - Commission Guidance Regarding Independent Public Accountant Engagements Performed Pursuant to...

    Science.gov (United States)

    2010-01-11

    ... Guidance Regarding Independent Public Accountant Engagements Performed Pursuant to Rule 206(4)-2 Under the... independent public accountants in connection with the adoption of amendments to Rule 206(4)-2 under the... least once during each calendar year by an independent public accountant \\1\\ (``accountant''), pursuant...

  12. Space Station Furnace Facility. Volume 1: Requirements definition and conceptual design study, executive summary

    Science.gov (United States)

    1992-05-01

    The Space Station Freedom Furnace (SSFF) Study was awarded on June 2, 1989, to Teledyne Brown Engineering (TBE) to define an advanced facility for materials research in the microgravity environment of Space Station Freedom (SSF). The SSFF will be designed for research in the solidification of metals and alloys, the crystal growth of electronic and electro-optical materials, and research in glasses and ceramics. The SSFF is one of the first 'facility' class payloads planned by the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications of NASA Headquarters. This facility is planned for early deployment during man-tended operations of the SSF with continuing operations through the Permanently Manned Configuration (PMC). The SSFF will be built around a general 'Core' facility which provides common support functions not provided by SSF, common subsystems which are best centralized, and common subsystems which are best distributed with each experiment module. The intent of the facility approach is to reduce the overall cost associated with implementing and operating a variety of experiments. This is achieved by reducing the launch mass and simplifying the hardware development and qualification processes associated with each experiment. The Core will remain on orbit and will require only periodic maintenance and upgrading while new Furnace Modules, samples, and consumables are developed, qualified, and transported to the SSF. The SSFF Study was divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. The definition phase 1 is addressed. Phase 1 was divided into two parts. In the first part, the basic part of the effort, covered the preliminary definition and assessment of requirements; conceptual design of the SSFF; fabrication of mockups; and the preparation for and support of the Conceptual Design Review (CoDR). The second part, the option part, covered requirements update and

  13. 46 CFR 147.8 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Science.gov (United States)

    2010-10-01

    ...) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.8 OMB control numbers assigned pursuant... Management and Budget (OMB) pursuant to the Paperwork Reduction Act of 1980 (44 U.S.C. 3501 et seq.). The...

  14. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    Energy Technology Data Exchange (ETDEWEB)

    L. V. Street

    2007-04-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

  15. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    International Nuclear Information System (INIS)

    Rosnick, C.K.

    1996-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  16. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    International Nuclear Information System (INIS)

    Brann, E.C. II.

    1994-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  17. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  18. 18 CFR 292.208 - Special requirements for hydroelectric small power production facilities located at a new dam or...

    Science.gov (United States)

    2010-04-01

    ... for hydroelectric small power production facilities located at a new dam or diversion. 292.208 Section... requirements for hydroelectric small power production facilities located at a new dam or diversion. (a) A hydroelectric small power production facility that impounds or diverts the water of a natural watercourse by...

  19. 76 FR 51957 - Notice of Intent To Prepare an Environmental Impact Statement for the Medical Facilities...

    Science.gov (United States)

    2011-08-19

    ... Statement for the Medical Facilities Development and University Expansion at Naval Support Activity Bethesda...: Notice. SUMMARY: Pursuant to section (102)(2)(c) of the National Environmental Policy Act (NEPA) of 1969, the regulations implemented by the Council on Environmental Quality (40 Code of Federal Regulations...

  20. Study of In-Pile test facility for fast reactor safety research: performance requirements and design features

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, N.; Kawatta, N.; Niwa, H.; Kondo, S.; Maeda, K

    1996-12-31

    This paper describes a program and the main design features of a new in-pile safety facility SERAPH planned for future fast reactor safety research. The current status of R and D on technical developments in relation to the research objectives and performance requirements to the facility design is given.

  1. National Ignition Facility subsystem design requirements laser and target area building (LTAB) SSDR 1.2.2.1

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements for the conventional building systems and subsystems of the Laser and Target Area Building (LTAB), including those that house and support the operation of high-energy laser equipment and the operational flow of personnel and materials throughout the facility. This SSDR addresses the following subsystems associated with the LTAB: Building structural systems for the Target Bay, Switchyards, Diagnostic Building, Decontamination Area, Laser Bays, Capacitor Bays and Operations Support Area, and the necessary space associated with building-support equipment; Architectural building features associated with housing the space and with the operational cleanliness of the functional operation of the facilities; Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facilities; Plumbing systems that provide potable water and sanitary facilities for the occupants, plus stormwater drainage for transporting rainwater; Fire Protection systems that guard against fire damage to the facilities and their contents; Material handling systems for transporting personnel and heavy materials within the building areas; Mechanical process piping systems for liquids and gases that provide cooling and other service to experimental laser equipment and components; Electrical power and grounding systems that provide service and standby power to building and experimental equipment, including lighting distribution and communications systems for the facilities; Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Detailed requirements for building subsystems that are not addressed in this document (such as specific sizes, locations, or capacities) are included in detail-level NIP Project Interface Control Documents (ICDS)

  2. RCRA and CERCLA requirements affecting cleanup activities at a federal facility superfund site

    International Nuclear Information System (INIS)

    Walsh, T.J.

    1994-01-01

    The Fernald Environmental Management Project (FEMP) achieved success on an integrated groundwater monitoring program which addressed both RCRA and CERCLA requirements. The integrated plan resulted in a cost savings of approximately $2.6 million. At present, the FEMP is also working on an integrated closure process to address Hazardous Waste Management Units (HWMUs) at the site. To date, Ohio EPA seems willing to discuss an integrated program with some stipulations. If an integrated program is implemented, a cost savings of several million dollars will be realized since the CERCLA documents can be used in place of a RCRA closure plan. The success of an integrated program at the FEMP is impossible without the support of DOE and the regulators. Since DOE is an owner/operator of the facility and Ohio EPA regulates hazardous waste management activities at the FEMP, both parties must be satisfied with the proposed integration activities. Similarly, US EPA retains CERCLA authority over the site along with a signed consent agreement with DOE, which dictates the schedule of the CERCLA activities. Another federal facility used RCRA closure plans to satisfy CERCLA activities. This federal facility was in a different US EPA Region than the FEMP. While this approach was successful for this site, an integrated approach was required at the FEMP because of the signed Consent Agreement and Consent Decree. For federal facilities which have a large number of HWMUs along with OUs, an integrated approach may result in a timely and cost-effective cleanup

  3. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1990: Twenty-third annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-01-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1990. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1990 annual reports submitted by about 443 licensees indicated that approximately 214,568 individuals were monitored, 110,204 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.19 rem (cSv) and an average measurable dose of about 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,361 individuals completed their employment with one or more of the 443 covered licensees during 1990. Some 77,633 of these individuals terminated from power reactor facilities, and about 11,083 of them were considered to be transient workers who received an average dose of 0.67 rem (cSv)

  4. Internal environmental protection audits: a suggested guide for US Department of Energy facilities

    International Nuclear Information System (INIS)

    Barisas, S.; Polich, J.; Habegger, L.; Surles, T.

    1983-08-01

    This manual has been prepared for use by any DOE facility as an aid for conducting an internal environmental-protection audit. The manual is organized in modular format, with each module covering a separate area of environmental protection. The questions within each module were developed from existing DOE orders, executive orders, federal statutes, and Environmental Protection Agency (EPA) regulations issued pursuant to specific environmental legislation. A bibliography of such legislation is included at the end of this section. Each module also includes questions about a facility's use of industrial standards of practice

  5. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Science.gov (United States)

    2010-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this chapter. This form shall be used by all self-regulatory...

  6. 78 FR 47154 - Core Principles and Other Requirements for Swap Execution Facilities; Correction

    Science.gov (United States)

    2013-08-05

    ... COMMODITY FUTURES TRADING COMMISSION 17 CFR Part 37 RIN 3038-AD18 Core Principles and Other Requirements for Swap Execution Facilities; Correction AGENCY: Commodity Futures Trading Commission. ACTION... Principles [Corrected] 2. On page 33600, in the second column, under the heading Core Principle 3 of Section...

  7. 30 CFR 71.500 - Sanitary toilet facilities at surface work sites; installation requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Sanitary toilet facilities at surface work sites; installation requirements. 71.500 Section 71.500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND...

  8. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    Science.gov (United States)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  9. An overview of technical requirements on durable concrete production for near surface disposal facilities for radioactive wastes

    International Nuclear Information System (INIS)

    Tolentino, Evandro; Tello, Cledola Cassia Oliveira de

    2013-01-01

    Radioactive waste can be generated by a wide range of activities varying from activities in hospitals to nuclear power plants, to mines and mineral processing facilities. General public have devoted nowadays considerable attention to the subject of radioactive waste management due to heightened awareness of environmental protection. The preferred strategy for the management of all radioactive waste is to contain it and to isolate it from the accessible biosphere. The Federal Government of Brazil has announced the construction for the year of 2014 and operation for the year of 2016 of a near surface disposal facility for low and intermediate level radioactive waste. The objective of this paper is to provide an overview of technical requirements related to production of durable concrete to be used in near surface disposal facilities for radioactive waste concrete structures. These requirements have been considered by researchers dealing with ongoing designing effort of the Brazilian near surface disposal facility. (author)

  10. Use of a Graded Approach in the Application of the Management System Requirements for Facilities and Activities

    International Nuclear Information System (INIS)

    2014-06-01

    IAEA Safety Standards Series No. GS-R-3, The Management System for Facilities and Activities, defines the requirements for establishing, implementing, assessing and continually improving a management system that integrates safety, health, environmental, security, quality and economical elements. It details the need to grade the application of the management system requirements to ensure that resources are deployed and appropriate controls are applied on the basis of the consideration of: the significance and complexity of each product or activity; the hazards and the magnitude of the potential impact (risks) associated with the safety, health, environmental, security, quality and economical elements of each product or activity; and the possible consequences if a product fails or an activity is carried out incorrectly. The grading of the application of the requirements detailed in IAEA Safety Standards Series No. GS-R-3 is especially essential when they are implemented in smaller facilities and activities. The grading is done to ensure that the management system for smaller facilities and activities are suitably tailored to the hazards and the magnitude of the potential impact of the facilities and activities. Detailed guidance on how the grading requirements of IAEA Safety Standards Series No. GS-R-3 can be met and how to ensure that grading is performed in a consistent manner can be found in IAEA Safety Standards Series No. GS-G-3.1, Application of the Management System for Facilities and Activities. In addition, it contains guidance on systematic grading methods which will reduce the likelihood and consequences of improper grading. This publication provides an overview of grading fundamentals, the grading process, the role of classification in the process and the typical controls that can be graded. It also provides practical guidance and examples of grading as required by IAEA Safety Standards Series No. GS-R-3 to develop and apply a method of grading

  11. Quality assurance requirements for control of procurement items and services for nuclear fuel reprocessing facilities

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Requirements and guidelines are provided for the control of activities to be exercised during procurement of items and services which affect the quality of nuclear facilities. These requirements and guidelines apply to procurement activities for items and services such as designing, purchasing, fabricating, handling, shipping, storing, cleaning, constructing, erecting, installing, inspecting, texting, maintaining and modifying

  12. Developing of the protocol for electron beam food irradiation facility

    International Nuclear Information System (INIS)

    Petreska, Svetlana

    2012-01-01

    By establishing the needs for institution of new technologies in the process of food processing, in this case a randomized choice of electron beam accelerator facility, arises the need for designing a protocol for safe and secure performance of the facility. The protocol encompasses safety and security measures for protection from ionizing radiation of the individuals who work at the facility, as well as, the population and the environment in the immediate neighborhood of the facility. Thus, the adopted approach is the establishment of appropriate systems responding to the protocol. Dosimetry system, which includes appropriate procedures for accurate measure and recording of the absorbed dose values, according to the provisions for protection from ionizing radiation. Ionizing radiation protection system and providing the safety and security of the facility for food processing by means of ionizing radiation. System for providing quality and safety control of the facility for food processing by means of ionizing radiation. Pursuant to the designed a protocol for safe and secure performance of the facility for electron beam food processing, contributes to protection against ionizing radiation as occupationally exposed persons as well the population. (Author)

  13. Posiva's application for a decision in principle concerning a disposal facility for spent nuclear fuel. STUK's statement and preliminary safety appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Ruokola, E. [ed.

    2000-03-01

    In May 1999, Posiva Ltd submitted to the Government an application, pursuant to the Nuclear Energy Act, for a Decision in Principle on a disposal facility for spent nuclear fuel from the Finnish nuclear power plants. The Ministry of Trade and Industry requested the Radiation and Nuclear Safety Authority (STUK) to draw up a preliminary safety appraisal concerning the proposed disposal facility. In the beginning of this report, STUK's statement to the Ministry and Industry concerning the proposed disposal facility is given. In that statement, STUK concludes that the Decision in Principle is currently justified from the standpoint of safety. The statement is followed by a safety appraisal, where STUK deems, how the proposed disposal concept, site and facility comply with the safety requirements included in the Government's Decision (478/1999). STUK's preliminary safety appraisal was supported by contributions from a number of outside experts. A collective opinion by an international group of ten distinguished experts is appended to this report. (orig.)

  14. Tangible fixed assets of a company pursuant to the czech accounting law and international accounting standards

    OpenAIRE

    Patrik Svoboda; Emil Svoboda

    2007-01-01

    The valuation of assets is a challenging activity as well as a scientific discipline having an impact on the amount of the reported assets and economic result process. The report deals with the issue of valuation of the tangible fixed assets in the accounting entities compiling the financial statements pursuant to the Czech national legislation and in conformity with the requirements of the International Accounting Standards IAS/IFRS and US GAAP. The substantial differences in the definitions...

  15. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT and M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    International Nuclear Information System (INIS)

    RYAN GW

    2008-01-01

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized

  16. 40 CFR 63.11088 - What requirements must I meet for gasoline loading racks if my facility is a bulk gasoline...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false What requirements must I meet for gasoline loading racks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... § 63.11088 What requirements must I meet for gasoline loading racks if my facility is a bulk gasoline...

  17. Engineering evaluation/cost analysis for the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    Rugg, J.E.

    1996-08-01

    The 100, 200, 300 and 1100 Areas of the Hanford Site were placed on the U. S. Environmental Protection Agency's National Priorities List in November 1989 under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Located in the 200 Area is the deactivated 233-S Plutonium Concentration Facility (used in the REDOX process). The facility has undergone severe degradation due to exposure to extreme weather conditions. An expedited response is proposed to ensure protection of human health and the environment. The Department of Energy, Richland Operations Office (RL) in cooperation with the Washington State Department of Ecology, has prepared this Engineering Evaluation/Cost Analysis pursuant to CERCLA. Based on the evaluation, RL has determined that hazardous substances in the 233-S Facility may present a potential threat to human health or the environment, and that an expedited removal action is warranted for decommissioning of the facility

  18. 10 CFR 490.306 - Vehicle operation requirements.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Vehicle operation requirements. 490.306 Section 490.306... Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled vehicles acquired pursuant to section 490.302 of this part shall be operated solely on alternative fuels...

  19. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1992. Twenty-fifth annual report, Volume 14

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-12-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1992. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10CFR20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10CFR20.408. The 1992 annual reports submitted by about 364 licensees indicated that approximately 204,365 individuals were monitored, 183,927 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measurable dose of about 0.30 (cSv). Termination radiation exposure reports were analyzed to reveal that about 74,566 individuals completed their employment with one or more of the 364 covered licensees during 1992. Some 71,846 of these individuals terminated from power reactor facilities, and about 9,724 of them were considered to be transient workers who received an average dose of 0.50 rem (cSv)

  20. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1993. Volume 15, Twenty-six annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1995-01-01

    This report the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1993. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1993 annual reports submitted by about 360 licensees indicated that approximately 189,711 individuals were monitored, 169,872 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measured dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 99,749 individuals completed their employment with one or more of the 360 covered licensees during 1993. Some 91,000 of these individuals terminated from power reactor facilities, and about 12,685 of them were considered to be transient workers who received an average dose of 0.49 rem (cSv)

  1. Requirements and impacts of the Federal Facility Compliance Act on the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.; Tripp, S.C. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management

    1993-03-01

    The Federal Facilities Compliance Act (FFCA, the Act) was signed into law on October 6, 1992, primarily as a means of waiving sovereign immunity for federal facilities with respect to requirements under the Resource Conservation and Recovery Act. DOE`s implementation of the FFCA will have significant effects on current and future DOE waste management operations. DOE will need to rethink its strategy in the area of future compliance agreements to ensure commitments and deliverables are made consistent throughout the different DOE facilities. Several types of agreements that address mixed waste land disposal restriction (LDR) compliance have already been signed by both DOE and the regulators. These agreements are in place at the Hanford Reservation, the Savannah River Site, the Oak Ridge Reservation (Oak Ridge National Laboratory, K-25, Y-12), and the Paducah Gaseous Diffusion Plant. The Rocky Flats Agreement is now being renegotiated. Los Alamos National Laboratory, Sandia/Albuquerque National Laboratory, Lawrence Livermore National Laboratory, and Idaho National Engineering Laboratory agreements are in progress. Major components of the FFCA include provisions on: sovereign immunity waiver; cost reimbursements; mixed waste requirements, including inventory reports on mixed waste and treatment capacity and technologies; and plans for the development of treatment capacities and technologies. Each of these components is discussed within this paper.

  2. Requirements for facilities and measurement techniques to support CFD development for hypersonic aircraft

    Science.gov (United States)

    Sellers, William L., III; Dwoyer, Douglas L.

    1992-01-01

    The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.

  3. 19 CFR 115.40 - Technical requirements for containers.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Technical requirements for containers. 115.40...; DEPARTMENT OF THE TREASURY CARGO CONTAINER AND ROAD VEHICLE CERTIFICATION PURSUANT TO INTERNATIONAL CUSTOMS CONVENTIONS Procedures for Approval of Containers After Manufacture § 115.40 Technical requirements for...

  4. 14 CFR 145.103 - Housing and facilities requirements.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES REPAIR STATIONS Housing, Facilities, Equipment... provide— (1) Housing for the facilities, equipment, materials, and personnel consistent with its ratings...) Sufficient work space and areas for the proper segregation and protection of articles during all maintenance...

  5. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Geiger, J.L.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified. in. A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  6. Selection criteria and requirements for floors in nuclear facilities

    International Nuclear Information System (INIS)

    Kunze, S.

    1988-01-01

    As a surface protection of floors in nuclear facilities coatings, rubber and PVC coverings, respectively, are normally used, whereas stoneware tiles are still provided in rare cases only. All floor materials must be well decontaminable according to the German standard DIN 25415, Part 1. The general requirement is that low-porous, smooth products with little filler content, made of chemically resistant material, are very well decontaminable. Further investigations will be necessary for heavily loaded floor coatings. They include above all examinations for decontaminability after radiation and for wear and resistance to chemicals. These requirements have been compiled in DIN 55991. The examination of about 212 industrial products has revealed that the decontaminability of covering materials is frequently poor. Investigations have shown that the decontaminability is always deteriorated by additions of hygroscopic fillers. Additions of non-hygroscopic fillers and pigments may result in an excellent to poor decontaminability. The pore-free bonding of the covering materials by welding or jointing is of great importance with respect to the decontaminability of these floors. Care should be taken that the jointing compounds are as well decontaminable as the rubber coverings and stonewares. (orig.) [de

  7. Facility effluent monitoring plan for the fast flux test facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Dahl, N.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  8. Isotopic dilution requirements for 233U criticality safety in processing and disposal facilities

    International Nuclear Information System (INIS)

    Elam, K.R.; Forsberg, C.W.; Hopper, C.M.; Wright, R.Q.

    1997-11-01

    The disposal of excess 233 U as waste is being considered. Because 233 U is a fissile material, one of the key requirements for processing 233 U to a final waste form and disposing of it is to avoid nuclear criticality. For many processing and disposal options, isotopic dilution is the most feasible and preferred option to avoid nuclear criticality. Isotopic dilution is dilution of fissile 233 U with nonfissile 238 U. The use of isotopic dilution removes any need to control nuclear criticality in process or disposal facilities through geometry or chemical composition. Isotopic dilution allows the use of existing waste management facilities, that are not designed for significant quantities of fissile materials, to be used for processing and disposing of 233 U. The amount of isotopic dilution required to reduce criticality concerns to reasonable levels was determined in this study to be ∼ 0.66 wt% 233 U. The numerical calculations used to define this limit consisted of a homogeneous system of silicon dioxide (SiO 2 ), water (H 2 O), 233 U, and depleted uranium (DU) in which the ratio of each component was varied to determine the conditions of maximum nuclear reactivity. About 188 parts of DU (0.2 wt% 235 U) are required to dilute 1 part of 233 U to this limit in a water-moderated system with no SiO 2 present. Thus, for the US inventory of 233 U, several hundred metric tons of DU would be required for isotopic dilution

  9. 5 CFR 297.402 - Disclosure pursuant to a compulsory legal process served on the Office.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Disclosure pursuant to a compulsory legal process served on the Office. 297.402 Section 297.402 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PRIVACY PROCEDURES FOR PERSONNEL RECORDS Disclosure of Records § 297.402 Disclosure pursuant to a compulsory...

  10. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  11. 340 Facility compliance assessment

    International Nuclear Information System (INIS)

    English, S.L.

    1993-10-01

    This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility

  12. Engineering evaluation cost analysis for the 100-B/C area ancillary facilities at the 108-F Building

    International Nuclear Information System (INIS)

    1996-10-01

    In 1995, the US Department of Energy (DOE), Richland Operations Office (RL) conducted a removal site evaluation of selected facilities in the 100 Area of the Hanford Site in accordance with CERCLA and 40 Code of Federal Regulations (CFR) 300.410. The scope of the evaluation included the aboveground portions of the 108-F Biology Laboratory in the 100-F Area and all inactive ancillary buildings and structures in the 100-B/C Area, excluding the reactor building and the river outfall. Based on the evaluation, RL determined that hazardous substances in the 108-F Biology Laboratory and five of the 100-B/C Area facilities may present a potential threat to human health or the environment, and that a non-time critical removal action at these facilities is warranted. This determination was documented in an engineering evaluation/cost analysis (EE/CA) approval memorandum. The EE/CA approval memorandum is the basis on which to proceed with the performance of an EE/CA to determine the appropriate removal action. This report presents the results of the EE/CA for removal alternatives for final disposition of these six facilities. The EE/CA was conducted pursuant to the requirements of CERCLA and 40 CFR 300.415 and is intended to aid RL and the EPA in selecting a preferred removal action

  13. Licensing of radioactive materials and facilities in the Philippines

    International Nuclear Information System (INIS)

    Mateo, A.J.

    1976-12-01

    The importation, acquisition, possession, use, sale and/ or transfer of radioactive materials need to be regulated and controlled in order to safeguard the importer, possessor, user or seller and the general public as well. The Philippine Atomic Energy Commission pursuant to Republic Act No. 2067, as amended and Republic Act No. 5207, has been charged by the government to control, regulate and license all the radioactive materials and facilities in the Philippines. Licensing and control is accomplished through a system of rules and regulations applicable to all importers, possessors, users or sellers of radioactive materials

  14. 78 FR 7455 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Heterogeneous...

    Science.gov (United States)

    2013-02-01

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and... Tsing Hua University, Hsinchu, Taiwan, PEOPLE'S REPUBLIC OF CHINA; Ceva Inc., Mountain View, CA... the Act. The Department of Justice published a notice in the Federal Register pursuant to Section 6(b...

  15. 20 CFR 1001.122 - Reporting and budget requirements.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Reporting and budget requirements. 1001.122... Services to Veterans and Eligible Persons § 1001.122 Reporting and budget requirements. (a) State agencies... agency shall make reports and prepare budgets pursuant to instructions issued by the ASVET and in such...

  16. Pathways to privatization: Issues and concerns on the road to privatization of facilities on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Yard, C.R.

    1997-02-01

    Through the cooperative efforts of the State of Tennessee and the Department of Energy, privatization of the first federal facility on the Oak Ridge Reservation has become a reality. One section of the facility has been transferred to private industry while the other portion of the facility remains in control of the government`s prime contractor. Due to this unusual arrangement, there are significant issues to be dealt with. This paper will describe the issues and concerns expressed by the participants in the process. The State of Tennessee`s efforts are primarily conducted by two Divisions of the Department of Environment and Conservation. These two Divisions (Radiological Health and DOE-Oversight) share the responsibility of assuring that the privatization effort is properly implemented. This shared responsibility is divided along distinct lines by the Divisions respective regulatory and nonregulatory functions. DOE responsibilities during transfer are delineated in the Federal Facilities Agreement (FFA) section XLIII. Property Transfer. The FFA states (in part) that {open_quotes}the DOE shall include notice of this agreement in any document transferring ownership or operation of the site to any subsequent owner and/or operator of any portion of the site and shall notify EPA and TDEC of any such sale or Transfer.{close_quotes} The FFA continues by stating that {open_quotes}No change in ownership of the site or any portionthereof or notice pursuant to Section 120 (h) (3) (B) of CERCLA, 42 U.S.C. {delta} 9620 (h) (3) (B), shall relieve the DOE of its obligation to perform pursuant to this agreement. No change of ownership of the site or any portion thereof shall be consummated by the DOE without provision for continued maintenance of any containment system, treatment system, or other response action(s) installed or implemented pursuant to this Agreement. This provision does not relieve the DOE of its obligation under 40 C.F.R. Part 270.{close_quotes}

  17. 49 CFR 577.6 - Notification pursuant to Administrator's decision.

    Science.gov (United States)

    2010-10-01

    ... making his decision. (6) A clear description of the Administrator' stated evaluation as provided in his..., of the purchase price; and (C) A statement that, if the Court upholds the Administrator's decision... 49 Transportation 7 2010-10-01 2010-10-01 false Notification pursuant to Administrator's decision...

  18. 78 FR 64248 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Heterogeneous...

    Science.gov (United States)

    2013-10-28

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and...; Synopsys Inc., Mountain View, CA; and Kishonti Kft (individual member), Budapest, HUNGARY, have been added... the Act. The Department of Justice published a notice in the Federal Register pursuant to Section 6(b...

  19. Safety requirements and safety experience of nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schnurer, H.L.

    1977-01-01

    Peaceful use of nuclear energy within the F.R.G. is rapidly growing. The Energy Programme of the Federal Government forecasts a capacity of up to 50.000 MW in 1985. Whereas most of this capacity will be of the LWR-Type, other activities are related to LMFBR - and HTGR - development, nuclear ships, and facilities of the nuclear fuel cycle. Safety of nuclear energy is the pacemaker for the realization of nuclear programmes and projects. Due to a very high population - and industrialisation density, safety has the priority before economical aspects. Safety requirements are therefore extremely stringent, which will be shown for the legal, the technical as well as for the organizational area. They apply for each nuclear facility, its site and the nuclear energy system as a whole. Regulatory procedures differ from many other countries, assigning executive power to state authorities, which are supervised by the Federal Government. Another particularity of the regulatory process is the large scope of involvement of independent experts within the licensing procedures. The developement of national safety requirements in different countries generates a necessity to collaborate and harmonize safety and radiation protection measures, at least for facilities in border areas, to adopt international standards and to assist nuclear developing countries. However, different nationally, regional or local situations might raise problems. Safety experience with nuclear facilities can be concluded from the positive construction and operation experience, including also a few accidents and incidents and the conclusions, which have been drawn for the respective factilities and others of similar design. Another tool for safety assessments will be risk analyses, which are under development by German experts. Final, a scope of future problems and developments shows, that safety of nuclear installations - which has reached a high performance - nevertheless imposes further tasks to be solved

  20. Facility effluent monitoring plan for 242-A evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years

  1. 78 FR 23827 - Designation of Eighteen Individuals Pursuant to the Sergei Magnitsky Rule of Law Accountability...

    Science.gov (United States)

    2013-04-22

    ... DEPARTMENT OF THE TREASURY Office of Foreign Assets Control Designation of Eighteen Individuals Pursuant to the Sergei Magnitsky Rule of Law Accountability Act of 2012 AGENCY: Office of Foreign Assets... blocked pursuant to the Sergei Magnitsky Rule of Law Accountability Act of 2012 (Pub. L. 112-208, December...

  2. 78 FR 56939 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Opendaylight...

    Science.gov (United States)

    2013-09-16

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and.... In addition, Big Switch Networks, Mountain View, CA has withdrawn as a party to this venture. No... notification pursuant to Section 6(a) of the Act. The Department of Justice published a notice in the Federal...

  3. Facility effluent monitoring plan for 242-A Evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1993-03-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility effluent Monitoring Plans, WHC-EP-0438-1**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  4. Nursing home facilities in Malaysia (premise, shared facilities & individual accommodation: Space requirement): A literature review

    Science.gov (United States)

    Nordin, Nik Muhammad Faris Bin Nik; Hasbollah, Hasif Rafidee bin; Ibrahim, Mohd Asrul Hery Bin; Marican, Nor Dalila bin; Halim, Muhd Hafzal bin Abdul; Rashid, Ahmad Faezi Bin Ab.; Yasin, Nurul Hafizah Binti Mohd

    2017-10-01

    The numbers of elderly in Malaysia are increased every year. The request towards elderly care services necessitated by the Nursing Home are in demand. However, Nursing Home in Malaysia is lack of standard of facilities in order to cater the care services for the elderly. This paper intends review the minimum standard facilities for the Nursing Homes in globally. The paper also offered insights in developing standard Nursing Home facilities in Malaysia.

  5. Waste management system functional requirements for Interim Waste Management Facilities (IWMFs) and technology demonstrations, LLWDDD [Low-Level Disposal Development and Demonstration] Program

    International Nuclear Information System (INIS)

    1988-03-01

    The purpose of this report is to build upon the preceding decisions and body of information to prepare draft system functional requirements for each classification of waste disposal currently proposed for Low-Level Waste Disposal Development Demonstration (LLWDDD) projects. Functional requirements identify specific information and data needs necessary to satisfy engineering design criteria/objectives for Interim Waste Management Facilities. This draft will suppor the alternatives evaluation process and will continue to evolve as strategy is implemented, regulatory limits are established, technical and economic uncertainties are resolved, and waste management plans are being implemented. This document will become the planning basis for the new generation of solid LLW management facilities on new sites on the Reservation. Eighteen (18) general system requirements are identified which are applicable to all four Low-Level Waste (LLW) disposal classifications. Each classification of LLW disposal is individually addressed with respect ot waste characteristics, site considerations, facility operations, facility closure/post-closure, intruder barriers, institutional control, and performance monitoring requirements. Three initial LLW disposal sites have been proposed as locations on the ORR for the first demonstrations

  6. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  7. Facility effluent monitoring plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Lavey, G.H.

    1992-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  8. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  9. Research and test facilities required in nuclear science and technology

    International Nuclear Information System (INIS)

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  10. Regulatory philosophy and requirements for radiation control in Canadian uranium mine-mill facilities

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-10-01

    The approach the Canadian Atomic Energy Control Board takes in licensing uranium mine/mill facilities is based on a minimum of rigidly set regulatory requirements. The regulations state only the basic objectives: the obligation to acquire a licence, some administrative and reporting requirements, and exposure limits. The regulations are supported by a set of regulatory guides. The operator always has the option of following different procedures if he can demonstrate that they will produce the same or better results. Good relationships exist between the AECB and mine management as well as trade unions. Under this approach, however, it is difficult to take action against uncooperative parties. The Board has decided that a somewhat more formalized system is necessary. New regulations are being drafted, giving more detailed licensing and administrative requirements and covering the areas of ventilation and worker and supervisor education more thoroughly

  11. 21 CFR 111.310 - What are the requirements for the laboratory facilities that you use?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What are the requirements for the laboratory facilities that you use? 111.310 Section 111.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN...

  12. Historic preservation requirements and the evaluation of cold war era nuclear facilities at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Wescott, K. L.

    1999-01-01

    Project design for the decontamination and decommissioning (D and D) of federal facilities must address the requirements of the National Environmental Policy Act which includes compliance with the National Historic Preservation Act (NHPA). Section 106 of the NHPA requires that Federal agencies consider any effect their activities may have on historic properties. While a cultural property is not usually considered historic until it has reached an age of 50 years or older, special consideration is given to younger properties if they are of exceptional importance in demonstrating unique development in American history, architecture, archaeology, engineering, or culture. As part of the U.S. Department of Energy's (DOE's) D and D program at Argonne National Laboratory-East (ANL-E), site properties are evaluated within the context of the Cold War Era and within themes associated with nuclear technology. Under this program, ANL-E staff have conducted archival research on three nuclear reactor facilities, one accelerator, and one laboratory building. DOE and ANL-E have been working closely with the Illinois Historic Preservation Agency (IHPA) to determine the eligibility of these properties for listing on the National Register of Historic Places. In 1998, in consultation with the IHPA, the DOE determined that the reactor facilities were eligible. Memoranda of Agreement were signed between the DOE and the IHPA stipulating mitigation requirements for the recordation of two of these properties. The laboratory building was recently determined eligible and will likely undergo similar documentation procedures. The accelerator was determined not eligible. Similar studies and determinations will be required for all future D and D projects

  13. 76 FR 77250 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ODVA, Inc.

    Science.gov (United States)

    2011-12-12

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and... Prairie, MN, have been added as parties to this venture. Also, Actel Corporation, Mountain View, CA... Department of Justice published a notice in the Federal Register pursuant to Section 6(b) of the Act on...

  14. Facility Effluent Monitoring Plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  15. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Science.gov (United States)

    2010-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  16. Application for approval to construct the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    1993-02-01

    The following Application For Approval Of Construction is being submitted by the US Department of Energy, Richland Field Office pursuant to 40 CFR 61.07, ''Application for Approval of Construction or Modification,'' for the Waste Receiving and Processing (WRAP) Module 1 facility (also referred to as WRAP 1). The WRAP 1 facility will be a new source of radioactive emissions to the atmosphere. The WRAP 1 facility will be housed in the new 2336-W Building, which will be located in the 200 West Area south of 23rd Street and west of Dayton Avenue. The 200 West Area is located within the boundary of the Hanford Site. The mission of the WRAP 1 facility is to examine, assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the waste in accordance with all applicable regulations. The solid wastes to be handled in the WRAP 1 facility include low-level waste (LLW), Transuranic (TRU) waste, TRU mixed waste, and low-level mixed waste (LLMW). The WRAP 1 facility will only accept contact handled (CH) waste containers. CH waste is a waste category whose external surface dose rate does not exceed 200 mrem/h. These containers have a surface dose rate of less than 200 mrem/h

  17. 77 FR 63849 - Facility Security Officer Training Requirements; Correction

    Science.gov (United States)

    2012-10-17

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-0908] Facility Security Officer... comments on the development of a Facility Security Officer training program. The notice contains an inaccurate Internet link to RSVP for the public meeting. DATES: The notice of public meeting; request for...

  18. 75 FR 20003 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Connected Media...

    Science.gov (United States)

    2010-04-16

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and..., pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et... to the venture are: MXP4, Paris, FRANCE; Universal Music Group, Inc., Santa Monica, CA; Omediae, LLC...

  19. 75 FR 28294 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-The Applied...

    Science.gov (United States)

    2010-05-20

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--The Applied Nanotechnology Consortium Notice is hereby given that, on March 26, 2010, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et...

  20. 77 FR 40085 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-American Gap...

    Science.gov (United States)

    2012-07-06

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--American Gap Association Notice is hereby given that, on June 6, 2012, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq...

  1. 78 FR 55296 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-American Gap...

    Science.gov (United States)

    2013-09-10

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--American Gap Association Notice is hereby given that, on August 12, 2013, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq...

  2. 48 CFR 9904.414-40 - Fundamental requirement.

    Science.gov (United States)

    2010-10-01

    .... 9904.414-40 Section 9904.414-40 Federal Acquisition Regulations System COST ACCOUNTING STANDARDS BOARD... ACCOUNTING STANDARDS COST ACCOUNTING STANDARDS 9904.414-40 Fundamental requirement. (a) A contractor's... money rate shall be based on rates determined by the Secretary of the Treasury, pursuant to Public Law...

  3. Facility effluent monitoring plan for the tank farm facility

    Energy Technology Data Exchange (ETDEWEB)

    Crummel, G.M.

    1998-05-18

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  4. 49 CFR 1105.9 - Coastal Zone Management Act requirements.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Coastal Zone Management Act requirements. 1105.9... ENVIRONMENTAL LAWS § 1105.9 Coastal Zone Management Act requirements. (a) If the proposed action affects land or water uses within a State coastal zone designated pursuant to the Coastal Zone Management Act (16 U.S.C...

  5. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  6. 78 FR 56939 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-IMS Global...

    Science.gov (United States)

    2013-09-16

    ..., Dell Inc., Austin, TX; Miami-Dade College--Virtual College, Miami, FL; National Labor College, Silver.... The Department of Justice published a notice in the Federal Register pursuant to Section 6(b) of the..., 2013. A notice was published in the Federal Register pursuant to Section 6(b) of the Act on June 21...

  7. 76 FR 72724 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-National Warheads...

    Science.gov (United States)

    2011-11-25

    .... Specifically, Accurate Munition Systems, Inc., Austin, TX; Excelitas Technologies Sensors, Inc., Miamisburg, OH... Department of Justice published a notice in the Federal Register pursuant to Section 6(b) of the Act on June... notice was published in the Federal Register pursuant to Section 6(b) of the Act on September 23, 2011...

  8. Environmental restoration disposal facility applicable or relevant and appropriate requirements study report. Revision 00

    International Nuclear Information System (INIS)

    Roeck, F.V.; Vedder, B.L.; Rugg, J.E.

    1995-10-01

    The Environmental Restoration Disposal Facility (ERDF) will be a landfill authorized under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and will comply with the Resource Conservation and Recovery Act of 1976 (RCRA) substantive requirements. The facility will also comply with applicable or relevant and appropriate requirements (ARAR), including portions of the U.S. Environmental Protection Agency (EPA) regulations, Washington Administrative Code (WAC), and to-be-considered (TBC) elements such as U.S. Department of Energy (DOE) Orders. In considering the requirements of CERCLA, a detailed analysis of various alternatives for ERDF was completed using the nine CERCLA criteria, National Environmental Policy Act of 1969 (NEPA), and public comments. The ERDF record of decision (ROD) selected an alternative that includes a RCRA-compliant double-lined trench for the disposal of radioactive, hazardous, and mixed wastes resulting from the remediation of operable units (OU) within the National Priorities List (NPL) sites in the 100, 200, and 300 Areas. Only wastes resulting from the remediation of Hanford NPL sites will be allowed in the ERDF. Of the various siting and design alternatives proposed for ERDF, the selected alternative provides the best combination of features by balancing the nine CERCLA criteria, ARAR compliance, environmentally protective site, and various stakeholder and public recommendations. The ERDF trench design, compliant with RCRA Subtitle C minimum technical requirements (MTR), will be double lined and equipped with a leachate collection system. This design provides a more reliable system to protect groundwater than other proposed alternatives. The ERDF is located on the Hanford Site Central Plateau, southeast of the 200 West Area

  9. 8 CFR 1212.1 - Documentary requirements for nonimmigrants.

    Science.gov (United States)

    2010-01-01

    ... admissible. A passport is also required. (5) Aliens entering pursuant to International Boundary and Water... functions of the International Boundary and Water Commission, and entering the United States temporarily in... Republic, People's Republic of China, Colombia, Congo (Brazzaville), Cuba, India, Iran, Iraq, Libya...

  10. 77 FR 34067 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-National Warheads...

    Science.gov (United States)

    2012-06-08

    ..., 21 CT, Inc., Austin, TX; Cerebrus Corporation, Morris Plains, NJ; Conax Florida Corporation, St... Department of Justice published a notice in the Federal Register pursuant to Section 6(b) of the Act on June... notice was published in the Federal Register pursuant to Section 6(b) of the Act on March 15, 2012 (77 FR...

  11. Technical assessment of workplace air sampling requirements at tank farm facilities. Revision 1

    International Nuclear Information System (INIS)

    Olsen, P.A.

    1994-01-01

    WHC-CM-1-6 is the primary guidance for radiological control at Westinghouse Hanford Company (WHC). It was written to implement DOE N 5480.6 ''US Department of Energy Radiological Control Manual'' as it applies to programs at Hanford which are now overseen by WHC. As such, it complies with Title 10, Part 835 of the Code of Federal Regulations. In addition to WHC-CM-1-6, there is HSRCM-1, the ''Hanford Site Radiological Control Manual'' and several Department of Energy (DOE) Orders, national consensus standards, and reports that provide criteria, standards, and requirements for workplace air sampling programs. This document provides a summary of these, as they apply to WHC facility workplace air sampling programs. This document also provides an evaluation of the compliance of Tank Farms' workplace air sampling program to the criteria, standards, and requirements and documents compliance with the requirements where appropriate. Where necessary, it also indicates changes needed to bring specific locations into compliance

  12. Reporting of tangible fixed assets pursuant to the Czech accounting law and International Accounting Standards IAS/IFRS and US GAAP

    OpenAIRE

    Patrik Svoboda

    2007-01-01

    The valuation of assets is a relatively challenging activity as well as a scientific discipline having an impact on the amount of the reported assets and economic result process. The report deals with the issue of valuation of the tangible fixed assets in the accounting entities compiling the financial statements pursuant to the Czech national legislation and in conformity with the requirements of the International Accounting Standards IAS/IFRS and US GAAP. The substantial differences in the ...

  13. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING and SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    International Nuclear Information System (INIS)

    Griffin, P.W.

    2009-01-01

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  14. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  15. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  16. Facility effluent monitoring plan for the plutonium uranium extraction facility

    International Nuclear Information System (INIS)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  17. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    International Nuclear Information System (INIS)

    Greager, E.M.

    1997-01-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years

  18. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, NM (United States)

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  19. Radiation Protection Ordinance 1989. Supplement with Radiation Protection Register Ordinance, general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance, general administration regulation pursuant to Sect. 62 sub-sect. radiation passport

    International Nuclear Information System (INIS)

    Veith, H.M.

    1990-01-01

    The addendum contains regulations issued supplementary to the Radiation Protection Ordinance: The Radiation Protection Register as of April 3, 1990 including the law on the setting up of a Federal Office on Radiation Protection; the general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance as of February 21, 1990; the general administration regulation pursuant to Sect. 62 sub-sect. 2 Radiation Protection Ordinance as of May 3, 1990 (AVV Radiation passport). The volume contains, apart from the legal texts, the appropriate decision by the Bundesrat, the official explanation from the Bundestag Publications as well as a comprehensive introduction into the new legal matter. (orig.) [de

  20. Design of a system for examinations of the history of operation of selected WWER primary circuit facilities. Stage I: requirements

    International Nuclear Information System (INIS)

    Brumovsky, M.; Kraus, V.; Ruscak, M.; Vejvoda, S.

    1994-01-01

    A survey is presented of data required for the evaluation and control of nuclear power plant aging and service life, and a data acquisition and record-keeping system is proposed. The data fall in 3 classes: (i) information on the initial status, including design data and status data at the beginning of the operational lifetime of the facilities; (ii) data on the history of operation, including operating conditions at the level of the corresponding system and facility, as well as operating test and failure data; and (iii) data on the history of maintenance, including data on the monitoring of the facility condition and on maintenance. Basic information requirements for the evaluation of the service life of the pressure vessel, steam generator, pressurizer, and main circulation pipe are given; the way of processing this information is outlined. (J.B.). 2 figs

  1. 76 FR 79219 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Sematech, Inc. d...

    Science.gov (United States)

    2011-12-21

    ...., Hsinchu, TAIWAN; Global Foundaries Inc., Milpitas, CA; Freescale Semiconductor, Inc., Austin, TX; Infineon... notification pursuant to Section 6(a) of the Act. The Department of Justice published a notice in the Federal... with the Department on November 15, 2011. A notice was published in the Federal Register pursuant to...

  2. 75 FR 29404 - Contract Reporting Requirements of Intrastate Natural Gas Companies

    Science.gov (United States)

    2010-05-26

    ...; Order No. 735] Contract Reporting Requirements of Intrastate Natural Gas Companies May 20, 2010. AGENCY... revises the contract reporting requirements for those natural gas pipelines that fall under the Commission's jurisdiction pursuant to section 311 of the Natural Gas Policy Act or section 1(c) of the Natural...

  3. Facility effluent monitoring plan for the tank farms facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, D.D.; Crummel, G.M.

    1995-05-01

    A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  4. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MULKEY, C.H.

    1999-07-06

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.

  5. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants

  6. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    International Nuclear Information System (INIS)

    Groth, B.D.

    1995-01-01

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements

  7. Fuel Handling Facility Description Document

    International Nuclear Information System (INIS)

    M.A. LaFountain

    2005-01-01

    The purpose of the facility description document (FDD) is to establish the requirements and their bases that drive the design of the Fuel Handling Facility (FHF) to allow the design effort to proceed to license application. This FDD is a living document that will be revised at strategic points as the design matures. It identifies the requirements and describes the facility design as it currently exists, with emphasis on design attributes provided to meet the requirements. This FDD was developed as an engineering tool for design control. Accordingly, the primary audience and users are design engineers. It leads the design process with regard to the flow down of upper tier requirements onto the facility. Knowledge of these requirements is essential to performing the design process. It trails the design with regard to the description of the facility. This description is a reflection of the results of the design process to date

  8. U.S. Environmental Protection Agency Clear Air Act notice of construction for the spent nuclear fuel project - Cold Vacuum Drying Facility, project W-441

    International Nuclear Information System (INIS)

    Turnbaugh, J.E.

    1996-01-01

    This document provides information regarding the source and the estimated quantity of potential airborne radionuclide emissions resulting from the operation of the Cold Vacuum Drying (CVD) Facility. The construction of the CVD Facility is scheduled to commence on or about December 1996, and will be completed when the process begins operation. This document serves as a Notice of Construction (NOC) pursuant to the requirements of 40 Code of Federal Regulations (CFR) 61 for the CVD Facility. About 80 percent of the U.S. Department of Energy's spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is in open canisters, which allow release of corrosion products to the K East Basin water. Storage of the current inventory in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PURF-X Plant left approximately 2,100 MT (2,300 tons) of uranium as part of the N Reactor SNF in the K Basins with no means for near-term removal and processing. The CVD Facility will be constructed in the 100 Area northwest of the 190 K West Building, which is in close proximity to the K East and K West Basins (Figures 1 and 08572). The CVD Facility will consist of five processing bays, with four of the bays fully equipped with processing equipment and the fifth bay configured as an open spare bay. The CVD Facility will have a support area consisting of a control room, change rooms, and other functions required to support operations

  9. The Texts of the Instruments Concerning the Agency's Assistance to Mexico in Establishing a Nuclear Power Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-04-05

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico concerning the Agency's assistance to that Government in establishing a nuclear power facility, are reproduced herein for the information of all Members. The Agreements entered into force on 12 February 1974, pursuant to Articles VIII and IX respectively.

  10. The Texts of the Instruments Concerning the Agency's Assistance to Mexico in Establishing a Nuclear Power Facility

    International Nuclear Information System (INIS)

    1974-01-01

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico concerning the Agency's assistance to that Government in establishing a nuclear power facility, are reproduced herein for the information of all Members. The Agreements entered into force on 12 February 1974, pursuant to Articles VIII and IX respectively.

  11. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontage, S.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  12. 78 FR 37572 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Sematech, Inc. D...

    Science.gov (United States)

    2013-06-21

    ..., Windsor, Berkshire, UNITED KINGDOM; Freescale Semiconductor, Inc., Austin, TX; and TriQuint Semiconductors... pursuant to Section 6(a) of the Act. The Department of Justice published a notice in the Federal Register... Department on March 7, 2013. A notice was published in the Federal Register pursuant to Section 6(b) of the...

  13. 78 FR 37572 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-U.S. Photovoltaic...

    Science.gov (United States)

    2013-06-21

    ... circumstances. Specifically, Esgee Technologies, Inc., Austin, TX; and Magnolia Solar, Albany, NY, have been... Justice published a notice in the Federal Register pursuant to Section 6(b) of the Act on December 21... was published in the Federal Register pursuant to Section 6(b) of the Act on February 12, 2013 (78 FR...

  14. A study on the primary requirement for the safety of the Wolsong tritium removal facility

    International Nuclear Information System (INIS)

    Hwang, K. H.; Lee, K. J.; Jeong, C. W.

    2001-01-01

    Owing to the using a heavy water as a moderator and a coolant in Heavy water reactor, A large mount of tritium is produced due to a reaction of deuterium with neutron in the reactor and some of tritium is released to the environment. In Wolsong, 4 units (CANDU-600 type) Heavy water reactor is in operation. And the generated amount of tritium is increased with the increase of operational year of the Wolsong nuclear reactor. Decommissioning of the Wolsong unit 1 is expected to start at 2013. Before 2013, to reduce the workers internal radiation doses and environmental release of tritium, Tritium Removal Facility (TRF) is required and should be operated. Wolsong TRF (WTRF) is under developing stage by Korea Electric Power Corporation(KEPCO)and scheduled to start operation about 2006. Once the facility begins operation it can be contributed to the greatly reduction of tritium release to the environment and worker's expose. In this situation, study about the safety assessment method and regulatory requirement is essential for safety insurance of WTRF. And this helps the safety acquirement, successful operation and reliance of WTRF

  15. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG ampersand G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options

  16. 77 FR 20051 - Notice of Final Determination Revising the List of Products Requiring Federal Contractor...

    Science.gov (United States)

    2012-04-03

    ... Products Requiring Federal Contractor Certification as to Forced or Indentured Child Labor Pursuant to... ``Procedural Guidelines for the Maintenance of the List of Products Requiring Federal Contractor Certification... List of Products Requiring Federal Contractor Certification as to Forced or Indentured Child Labor...

  17. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  18. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Beesley. J.F.

    2005-01-01

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process

  19. Federal and state regulatory requirements for decontamination and decommissioning at US Department of Energy Oak Ridge Operations Facilities

    International Nuclear Information System (INIS)

    Etnier, E.L.; Houlberg, L.M.; Bock, R.E.

    1994-06-01

    The purpose of this report is to address regulatory requirements for decontamination and decommissioning (D and D) activities at the Oak Ridge Reservation and Paducah Gaseous Diffusion Plant. This report is a summary of potential federal and state regulatory requirements applicable to general D and D activities. Excerpts are presented in the text and tables from the complete set of regulatory requirements. This report should be used as a guide to the major regulatory issues related to D and D. Compliance with other federal, state, and local regulations not addressed here may be required and should be addressed carefully by project management on a site-specific basis. The report summarizes the major acts and implementing regulations (e.g., Resource and Conservation Recovery Act, Clean Air Act, and Toxic Substances Control Act) only with regard to D and D activities. Additional regulatory drivers for D and D activities may be established through negotiated agreements, such as the Federal Facility Agreement and the US Environmental Protection Agency Mixed Waste Federal Facility Compliance Agreement; these are discussed in this report. The DOE orders and Energy Systems procedures also are summarized briefly in instances where they directly apply to D and D

  20. 31 CFR 353.22 - Payment or reissue pursuant to judgment.

    Science.gov (United States)

    2010-07-01

    ... pursuant to judgment. (a) Divorce. The Department of the Treasury will recognize a divorce decree that... divorce decree does not set out the terms of the property settlement agreement, a certified copy of the... person found by a court to be entitled by reason of a gift causa mortis from the sole owner. (c) Date for...

  1. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis; FINAL

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants

  2. Facility effluent monitoring plan for the 300 Area Fuels Fabrication Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Brendel, D.F.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring system by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The Fuel Fabrication Facility in the Hanford 300 Area supported the production reactors from the 1940's until they were shut down in 1987. Prior to 1987 the Fuel Fabrication Facility released both airborne and liquid radioactive effluents. In January 1987 the emission of airborne radioactive effluents ceased with the shutdown of the fuels facility. The release of liquid radioactive effluents have continued although decreasing significantly from 1987 to 1990

  3. Molten Salt Reactor Experiment Facility (Building 7503) standards/requirements identification document adherence assessment plan at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    This is the Phase 2 (adherence) assessment plan for the Building 7503 Molten Salt Reactor Experiment (MSRE) Facility standards/requirements identification document (S/RID). This document outlines the activities to be conducted from FY 1996 through FY 1998 to ensure that the standards and requirements identified in the MSRE S/RID are being implemented properly. This plan is required in accordance with the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 90-2, November 9, 1994, Attachment 1A. This plan addresses the major aspects of the adherence assessment and will be consistent with Energy Systems procedure QA-2. 7 ''Surveillances.''

  4. Rocketball Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This test facility offers the capability to emulate and measure guided missile radar cross-section without requiring flight tests of tactical missiles. This facility...

  5. Dynamic Thermal Loads and Cooling Requirements Calculations for V ACs System in Nuclear Fuel Processing Facilities Using Computer Aided Energy Conservation Models

    International Nuclear Information System (INIS)

    EL Fawal, M.M.; Gadalla, A.A.; Taher, B.M.

    2010-01-01

    In terms of nuclear safety, the most important function of ventilation air conditioning (VAC) systems is to maintain safe ambient conditions for components and structures important to safety inside the nuclear facility and to maintain appropriate working conditions for the plant's operating and maintenance staff. As a part of a study aimed to evaluate the performance of VAC system of the nuclear fuel cycle facility (NFCF) a computer model was developed and verified to evaluate the thermal loads and cooling requirements for different zones of fuel processing facility. The program is based on transfer function method (TFM) and it is used to calculate the dynamic heat gain by various multilayer walls constructions and windows hour by hour at any orientation of the building. The developed model was verified by comparing the obtained calculated results of the solar heat gain by a given building with the corresponding calculated values using finite difference method (FDM) and total equivalent temperature different method (TETD). As an example the developed program is used to calculate the cooling loads of the different zones of a typical nuclear fuel facility the results showed that the cooling capacities of the different cooling units of each zone of the facility meet the design requirements according to safety regulations in nuclear facilities.

  6. Shielding of Medical Facilities. Shielding Design Considerations for PET-CT Facilities

    International Nuclear Information System (INIS)

    Cruzate, J.A.; Discacciatti, A.P.

    2011-01-01

    The radiological evaluation of a Positron Emission Tomography (PET) facility consists of the assessment of the annual effective dose both to workers occupationally exposed, and to members of the public. This assessment takes into account the radionuclides involved, the facility features, the working procedures, the expected number of patients per year, and so on. The evaluation embraces the distributions of rooms, the thickness and physical material of walls, floors and ceilings. This work detail the methodology used for making the assessment of a PET facility design taking into account only radioprotection aspects. The assessment results must be compared to the design requirements established by national regulations in order to determine whether or not, the facility complies with those requirements, both for workers and for members of the public. The analysis presented is useful for both, facility designers and regulators. In addition, some guidelines for improving the shielding design and working procedures are presented in order to help facility designer's job. (authors)

  7. Concrete structures for nuclear facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The detailed requirements for the design and fabrication of the concrete structures for nuclear facilities and for the documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are given in the guide. It also sets the requirements for the inspection of concrete structures during the construction and operation of facilities. The requirements of the guide primarily apply to new construction. As regards the repair and modification of nuclear facilities built before its publication, the guide is followed to the extent appropriate. The regulatory activities of the Finnish Centre for Radiation and Nuclear Safety during a nuclear facility's licence application review and during the construction and operation of the facility are summarised in the guide YVL 1.1

  8. Safety of magnetic fusion facilities: Guidance

    International Nuclear Information System (INIS)

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities

  9. The Texts of the Instruments Concerning the Agency's assistance to Mexico in Establishing a Nuclear Power Facility. A Second Supply Agreement

    International Nuclear Information System (INIS)

    1974-01-01

    As a sequel to the assistance which the Agency provided to the Government of Mexico in establishing a nuclear power facility, a Second Supply Agreement has been concluded between the Agency and that Government. The Agreement entered into force on 14 June 1974, pursuant to Article IX, and the text thereof is reproduced herein for the information of all Members.

  10. The Texts of the Instruments Concerning the Agency's assistance to Mexico in Establishing a Nuclear Power Facility. A Second Supply Agreement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-10-31

    As a sequel to the assistance which the Agency provided to the Government of Mexico in establishing a nuclear power facility, a Second Supply Agreement has been concluded between the Agency and that Government. The Agreement entered into force on 14 June 1974, pursuant to Article IX, and the text thereof is reproduced herein for the information of all Members.

  11. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introduced briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.

  12. Appendix F - Sample Contingency Plan

    Science.gov (United States)

    This sample Contingency Plan in Appendix F is intended to provide examples of contingency planning as a reference when a facility determines that the required secondary containment is impracticable, pursuant to 40 CFR §112.7(d).

  13. Facility effluent monitoring plan for the 327 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  14. 75 FR 80758 - Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies

    Science.gov (United States)

    2010-12-23

    ...] Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies December 16, 2010... natural gas pipelines to report semi-annually on their storage activities. This Notice of Inquiry will... reports required of interstate and intrastate natural gas companies pursuant to 18 CFR 284.13(e) and 284...

  15. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues

  16. Technical Safety Requirements for the B695 Segment of the Decontamination and Waste Treatment Facility

    International Nuclear Information System (INIS)

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment of the DWTF. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment of the DWTF (LLNL 2004). The analysis presented there determined that the B695 Segment of the DWTF is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment of the DWTF (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment of the DWTF are shown in the B695 Segment of the DWTF DSA. Activities typically conducted in the B695 Segment of the DWTF include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive waste. Operations specific to the SWPA include sorting and segregating low-level waste (LLW) and transuranic (TRU) waste, lab-packing, sampling, and crushing empty drums that previously contained LLW. A permit modification for B696S was submitted to DTSC in January 2004 to store and treat hazardous and mixed

  17. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  18. 24 CFR 92.222 - Reduction of matching contribution requirement.

    Science.gov (United States)

    2010-04-01

    ... major disaster pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act is made... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Reduction of matching contribution requirement. 92.222 Section 92.222 Housing and Urban Development Office of the Secretary, Department of...

  19. 40 CFR 86.407-78 - Certificate of conformity required.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Certificate of conformity required. 86... Regulations for 1978 and Later New Motorcycles, General Provisions § 86.407-78 Certificate of conformity... conformity issued pursuant to this subpart, except as specified in paragraph (b) of this section, or...

  20. Ion exchange separation of plutonium and gallium (1) resource and inventory requirements, (2) waste, emissions, and effluent, and (3) facility size

    International Nuclear Information System (INIS)

    DeMuth, S.

    1997-01-01

    The following report summarizes an effort intended to estimate within an order-of-magnitude the (1) resource and inventory requirements, (2) waste, emissions, and effluent amounts, and (3) facility size, for ion exchange (IX) separation of plutonium and gallium. This analysis is based upon processing 3.5 MT-Pu/yr. The technical basis for this summary is detailed in a separate document, open-quotes Preconceptual Design for Separation of Plutonium and Gallium by Ion Exchangeclose quotes. The material balances of this separate document are based strictly on stoichiometric amounts rather than details of actual operating experience, in order to avoid classification as Unclassified Controlled Nuclear Information. This approximation neglets the thermodynamics and kinetics which can significantly impact the amount of reagents required. Consequently, the material resource requirements and waste amounts presented here would normally be considered minimums for processing 3.5 MT-Pu/yr; however, the author has compared the inventory estimates presented with that of an actual operating facility and found them similar. Additionally, the facility floor space presented here is based upon actual plutonium processing systems and can be considered a nominal estimate

  1. 75 FR 78755 - Notice of Initial Determination Revising the List of Products Requiring Federal Contractor...

    Science.gov (United States)

    2010-12-16

    ... Products Requiring Federal Contractor Certification as to Forced/Indentured Child Labor Pursuant to... products requiring federal contractor certification as to the use of forced or indentured child labor. To.... 13126 (``Prohibition of Acquisition of Products Produced by Forced or Indentured Child Labor''), in...

  2. 77 FR 59418 - Notice of Initial Determination Revising the List of Products Requiring Federal Contractor...

    Science.gov (United States)

    2012-09-27

    ... of products requiring federal contractor certification as to the use of forced or indentured child... DEPARTMENT OF LABOR Notice of Initial Determination Revising the List of Products Requiring Federal Contractor Certification as to Forced/Indentured Child Labor Pursuant to Executive Order 13126...

  3. 76 FR 61384 - Notice of Initial Determination Revising the List of Products Requiring Federal Contractor...

    Science.gov (United States)

    2011-10-04

    ... Maintenance of the List of Products Requiring Federal Contractor Certification as to Forced or Indentured... DEPARTMENT OF LABOR Notice of Initial Determination Revising the List of Products Requiring Federal Contractor Certification as to Forced/Indentured Child Labor Pursuant to Executive Order 13126...

  4. Facility effluent monitoring plan for the tank farms facilities

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.; Kenoyer, J.L.; Moeller, M.P.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum three years. A variety of liquid wastes are generated in processing treatment, and disposal operations throughout the Hanford Site. The Tank Farms Project serves a major role in Hanford Site waste management activities as the temporary repository for these wastes. Stored wastes include hazardous components regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and as by-product material regulated under the Atomic Energy Act of 1954. A total of 177 single- and double-shell tanks (SST and DST) have been constructed in the 200 East and 200 West Areas of the Hanford Site. These facilities were constructed to various designs from 1943 to 1986. The Tank Farms Project is comprised of these tanks along with various transfer, receiving, and treatment facilities

  5. Ultra high vacuum activities and required modification at 14 UD BARC-TIFR pelletron accelerator facility

    International Nuclear Information System (INIS)

    Sharma, S.C.; Ninawe, N.G.; Ramjilal; Bhagwat, P.V.; Salvi, S.B.

    2003-01-01

    Full text: The 14 UD pelletron accelerator is working round the clock since 1989. The accelerator is housed inside a tank which is 6 meter in diameter and 25 meter long. The accelerator tank is pressurized with SF 6 at 80 to 100 PSIG in order to achieve 14MV. In pelletron, ions are extracted from SNICS are pre-accelerated up to 300 keV before being injected into low energy accelerator tube. In the terminal which is at high potential (4MV to 14 MV), the ion beam pass through the stripper and positive ions with high charge states are produced. The high energy beams are focussed and analyzed by 90 deg magnet. The analyzed beam is then transported to the various experimental ports. In order to achieve uniform ultra high vacuum (to reduce the loss of intensity and spread in the energy of ions beams) in more than 100 metre and 100 mm diameter beam lines including magnet chambers and various beam diagnostic devices, combination of getter-ion pumps and turbo pumps are being used at Pelletron Accelerator Facility. The 14 UD pelletron is equipped with a combination of foil and gas stripper in high voltage terminal section. The foil and gas stripper in the terminal section are mainly used for stripping of light and heavy ions respectively. The gas stripper plays a great role for stripping of heavy ions and its efficiency depends on gas stripper parameters and supporting pumps. The gas stripper is originally installed with getter pumps. These pumps required periodic replacement of titanium cartridges and slowly the pumping speed used to diminish with time. A new recirculation turbo molecular pumps based system is being designed to improve good beam transmission. Details of design will be presented. Proton beam of tens of MeV energy and μA range current is in demand to carry out specific radiochemistry experiments in this facility. It is proposed to built and accommodate a proton experimental setup in the tower area of the existing facility. Details of required UHV system for

  6. Engineering evaluation/cost analysis for the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    1997-01-01

    The deactivated 233-S Plutonium Concentration Facility (233-S Facility) is located in the 200 Area. The facility has undergone severe degradation due to exposure to extreme weather conditions. A rapid freeze and thaw cycle occurred at the Hanford Site during February 1996, which caused cracking to occur on portions of the building's roof. This has resulted in significantly infiltration of water into the facility, which provides a pathway for potential release of radioactive material into the environment (air and/or ground). The weather caused several existing cracks in the concrete portions of the structure to lengthen, increasing the potential for failed confinement of the radioactive material in the building. Differential settlement has also occurred, causing portions of the facility to separate from the main building structure thus creating a potential for release of radioactive material t the environment. An expedited removal action is proposed to ensure that a release from the 233-S Facility does not occur. The US Department of Energy (DOE), Richland Operations Office (RL), in cooperation with the EPA, has prepared this Engineering Evaluation/Cost Analysis (EE/CA) pursuant to CERCLA. Based on the evaluation, RL has determined that hazardous substances in the 233-S Facility may present a potential threat to human health and/or the environment, and that an expedited removal action is warranted. The purpose of the EE/CA is to provide the framework for the evaluation and selection of a technology from a viable set of alternatives for a removal action

  7. Facility Effluent Monitoring Plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Carter, G.J.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updates as a minimum every three years

  8. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS, W.E.

    2000-03-08

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

  9. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    DAVIS, W.E.

    2000-01-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years

  10. Technical Safety Requirements for the B695 Segment of the Decontamination and Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment of the DWTF. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment of the DWTF (LLNL 2004). The analysis presented there determined that the B695 Segment of the DWTF is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment of the DWTF (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment of the DWTF are shown in the B695 Segment of the DWTF DSA. Activities typically conducted in the B695 Segment of the DWTF include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive waste. Operations specific to the SWPA include sorting and segregating low-level waste (LLW) and transuranic (TRU) waste, lab-packing, sampling, and crushing empty drums that previously contained LLW. A permit modification for B696S was submitted to DTSC in January 2004 to store and treat hazardous and

  11. 77 FR 61771 - Facility Security Officer Training Requirements

    Science.gov (United States)

    2012-10-11

    ... following: (1) Draft model FSO training course; (2) Computer-based training and distance learning; (3... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-0908] Facility Security Officer... Security Officer training program, with the primary focus on developing the curriculum for such a program...

  12. 40 CFR 63.11117 - Requirements for facilities with monthly throughput of 10,000 gallons of gasoline or more.

    Science.gov (United States)

    2010-07-01

    ... monthly throughput of 10,000 gallons of gasoline or more. 63.11117 Section 63.11117 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in section § 63.11116(a). (b) Except as...

  13. Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1

    International Nuclear Information System (INIS)

    Lewis, C.J.

    1995-10-01

    A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  14. 48 CFR 622.1503 - Procedures for acquiring end products on the List of Products Requiring Contractor Certification...

    Science.gov (United States)

    2010-10-01

    ... end products on the List of Products Requiring Contractor Certification as to Forced or Indentured... List of Products Requiring Contractor Certification as to Forced or Indentured Child Labor. (e) The... manufacture an end product furnished pursuant to a contract awarded subject to the certification required in...

  15. The CUTLASS database facilities

    International Nuclear Information System (INIS)

    Jervis, P.; Rutter, P.

    1988-09-01

    The enhancement of the CUTLASS database management system to provide improved facilities for data handling is seen as a prerequisite to its effective use for future power station data processing and control applications. This particularly applies to the larger projects such as AGR data processing system refurbishments, and the data processing systems required for the new Coal Fired Reference Design stations. In anticipation of the need for improved data handling facilities in CUTLASS, the CEGB established a User Sub-Group in the early 1980's to define the database facilities required by users. Following the endorsement of the resulting specification and a detailed design study, the database facilities have been implemented as an integral part of the CUTLASS system. This paper provides an introduction to the range of CUTLASS Database facilities, and emphasises the role of Database as the central facility around which future Kit 1 and (particularly) Kit 6 CUTLASS based data processing and control systems will be designed and implemented. (author)

  16. HVAC optimization as facility requirements change with corporate restructuring

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, R.R.; Sankey, M.S.

    1997-06-01

    The hyper-competitive, dynamic 1990`s forced many corporations to {open_quotes}Right-Size,{close_quotes} relocating resources and equipment -- even consolidating. These changes led to utility reduction if HVAC optimization was thoroughly addressed, and energy conservation opportunities were identified and properly designed. This is true particularly when the facility`s heating and cooling systems are matched to correspond with the load changes attributed to the reduction of staff and computers. Computers have been downsized and processing power per unit of energy input increased, thus, the need for large mainframe computer centers, and their associated high intensity energy usage, have been decreased or eliminated. Cooling, therefore, also has been reduced.

  17. 75 FR 22864 - In the Matter of CAN USA, Inc., Harvey, Louisiana; General License Pursuant to 10 CFR 150.20...

    Science.gov (United States)

    2010-04-30

    ... CAN USA, Inc., Harvey, Louisiana; General License Pursuant to 10 CFR 150.20; Confirmatory Order (Effective Immediately) I CAN USA, Inc. (CAN USA or Licensee) is the holder of State of Louisiana Materials..., pursuant to 10 CFR 150.20(a)(1), CAN USA is granted a general license by the U.S. Nuclear Regulatory...

  18. 75 FR 27743 - Publication of State Plan Pursuant to the Help America Vote Act

    Science.gov (United States)

    2010-05-18

    ... ELECTION ASSISTANCE COMMISSION Publication of State Plan Pursuant to the Help America Vote Act... previously submitted by New Mexico. DATES: This notice is effective upon publication in the Federal Register... 27744

  19. Material control and accounting requirements for uranium enrichment facilities

    International Nuclear Information System (INIS)

    Ting, P.

    1991-01-01

    This paper reports that the U.S. Nuclear Regulatory Commission has defined material control and accounting (MC and A) requirement for low-enriched uranium enrichment plants licensed under 10 CFR parts 40 and 70. Following detailed assessment of potential safeguards issues relevant to these facilities, a new MC and A rule was developed. The primary safeguards considerations are detection of the loss of special nuclear material, detection of clandestine production of special nuclear material of low strategic significance for unauthorized use or distribution, and detection of unauthorized production of uranium enriched to ≥10 wt % U-235. The primary safeguards concerns identified were the large absolute limit of error associated with the material balance closing, the inability to shutdown some uranium enrichment technologies to perform a cleanout inventory of the process system, and the flexibility of some of these technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could circumvent the detection of the production and removal of 5 kilograms of U-235 as high-enriched uranium through conventional material control and accounting programs. Safeguards techniques, including the use of production and process control information, measurements, and technical surveillance, were identified to compensate for these concerns

  20. Inpatient Psychiatric Facility Follow-Up After Hospitalization for Mental Illness (FUH) Quality Measure Data – by Facility

    Data.gov (United States)

    U.S. Department of Health & Human Services — Psychiatric facilities that are eligible for the Inpatient Psychiatric Facility Quality Reporting (IPFQR) program are required to meet all program requirements,...

  1. Facility effluent monitoring plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontag, S.

    1991-11-01

    A facility effluent monitoring plant is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The UO 3 Plant is located in the south-central portion of the 200 West Area of the Hanford Site. The plant consists of two primary processing buildings and several ancillary facilities. The purpose of the UO 3 Plant is to receive uranyl nitrate hexahydrate (UNH) from the Plutonium-Uranium Extraction (PUREX) Plant, concentrate it, convert the UNH to uranium trioxide (UO 3 ) powder by calcination and package it for offsite shipment. The UO 3 Plant has been placed in a standby mode. There are two liquid discharges, and three gaseous exhaust stacks, and seven building exhausters that are active during standby conditions

  2. Facilities inventory protection for nuclear facilities

    International Nuclear Information System (INIS)

    Schmitt, F.J.

    1989-01-01

    The fact that shut-down applications have been filed for nuclear power plants, suggests to have a scrutinizing look at the scopes of assessment and decision available to administrations and courts for the protection of facilities inventories relative to legal and constitutional requirements. The paper outlines the legal bases which need to be observed if purposeful calculation is to be ensured. Based on the different actual conditions and legal consequences, the author distinguishes between 1) the legal situation of facilities licenced already and 2) the legal situation of facilities under planning during the licencing stage. As indicated by the contents and restrictions of the pertinent provisions of the Atomic Energy Act and by the corresponding compensatory regulation, the object of the protection of facilities inventor in the legal position of the facility owner within the purview of the Atomic Energy Act, and the licensing proper. Art. 17 of the Atomic Energy Act indicates the legislators intent that, once issued, the licence will be the pivotal point for regulations aiming at protection and intervention. (orig./HSCH) [de

  3. Dry Well Storage Facility conceptual design study

    International Nuclear Information System (INIS)

    1979-02-01

    The Dry Well Storage Facility described is assumed to be located adjacent to or near a Spent Fuel Receiving and Packaging Facility and/or a Packaged Fuel Transfer Facility. Performance requirements, quality levels and codes and standards, schedule and methods of performance, special requirements, quality assurance program, and cost estimate are discussed. Appendices on major mechanical equipment and electric power requirements are included

  4. Dry Well Storage Facility conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The Dry Well Storage Facility described is assumed to be located adjacent to or near a Spent Fuel Receiving and Packaging Facility and/or a Packaged Fuel Transfer Facility. Performance requirements, quality levels and codes and standards, schedule and methods of performance, special requirements, quality assurance program, and cost estimate are discussed. Appendices on major mechanical equipment and electric power requirements are included.

  5. 40 CFR 63.11118 - Requirements for facilities with monthly throughput of 100,000 gallons of gasoline or more.

    Science.gov (United States)

    2010-07-01

    ... monthly throughput of 100,000 gallons of gasoline or more. 63.11118 Section 63.11118 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in §§ 63.11116(a) and 63.11117(b). (b) Except...

  6. TA-55 facility control system upgrade project - human-system interface functional requirements

    International Nuclear Information System (INIS)

    Atkins, W.H.; Pope, N.G.; Turner, W.J.; Brown, R.E.

    1995-11-01

    The functional requirements for that part of the Technical Area (TA)-55 Operations Center Upgrade Project that involves the human-system interface (HSI) are described in this document. The upgrade project seeks to replace completely the center's existing computerized data acquisition and display system, which consists of the field multiplexer units, Data General computer systems, and associated peripherals and software. The upgrade project has two parts-the Facility Data Acquisition Interface System (FDAIS) and the HSI. The HSI comprises software and hardware to provide a high-level graphical operator interface to the data acquisition system, as well as data archiving, alarm annunciation, and logging. The new system will be built with modern, commercially available components; it will improve reliability and maintainability, and it can be expanded for future needs

  7. 75 FR 20785 - Polyglyceryl Phthalate Ester of Coconut Oil Fatty Acids; Exemption from the Requirement of a...

    Science.gov (United States)

    2010-04-21

    ... Phthalate Ester of Coconut Oil Fatty Acids; Exemption from the Requirement of a Tolerance; Technical... ester of coconut oil fatty acids; exemption from the requirement of a tolerance. This document is being... requirement of a tolerance for ``polyglyceryl phthalate ester of coconut oil fatty acids'' pursuant to a...

  8. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    International Nuclear Information System (INIS)

    Ballinger, M.Y.; Shields, K.D.

    1999-01-01

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP

  9. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, M.Y.; Shields, K.D.

    1999-04-02

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

  10. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, Troy P.; Andrus, Jason

    2016-07-01

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excess of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the

  11. 75 FR 17822 - Designation and Determination Pursuant to the Foreign Missions Act

    Science.gov (United States)

    2010-04-07

    ... Vietnam Trade Promotion Center, as well as any other entity in the United States which is substantially... protect the interests of the United States in that context, pursuant to the authority vested in me by the... Authority No. 214, Section 14, dated September 20, 1994, I hereby designate the Vietnam News Agency, an...

  12. 47 CFR 15.120 - Program blocking technology requirements for television receivers.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Program blocking technology requirements for television receivers. 15.120 Section 15.120 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO... transmitted pursuant to industry standard EIA/CEA-766-A “U.S. and Canadian Region Rating Tables (RRT) and...

  13. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    International Nuclear Information System (INIS)

    Dean, L.N.

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D ampersand D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project

  14. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    Energy Technology Data Exchange (ETDEWEB)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  15. Integrating innovative technology into remedial action at a US Department of Energy facility

    International Nuclear Information System (INIS)

    Diggs, I.W.

    1992-01-01

    The US Atomic Energy Commission (AEC), predecessor to the US Department Energy (DOE), established a production complex in the early 1950's for processing uranium and its compounds from natural uranium ore concentrates for the purpose of producing high purity uranium metal for various uses in defense reactor and nuclear weapons programs. This complex, previously known as the Feed Materials Production Center (FMPC), is now known as the Fernald Environmental Management Project (FEMP). In 1989, production was stopped at the feed materials facility due to a decision by the DOE. In December of 1989, the site was placed on the US EPA's National Priorities List (NPL) of sites requiring environmental cleanup. As a result, in April of 1990 the DOE and the US EPA signed a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Consent Agreement which augmented the FFCA. The DOE recently decided that production at the facility would not be resumed, and therefore, the main scope of work would change to remediation and closure of the site. In response to the FFCA and consistent with the modifications agreed to in the amended Consent Agreement, a Remedial Investigation/Feasibility Study (RI/FS) is in progress pursuant to CERCLA, as amended by the Superfund Amendments and Reauthorization Act (SARA). A RI/FS is a comprehensive environmental investigation systematically conducted according to US EPA regulations and guidelines used to identify and select an action plan for the cleanup of CERCLA sites. The RI phase incorporates a broad-based study to evaluate as completely as possible existing environmental and public health risks associated with past or existing facility operations. The FS phase develops and evaluates corrective action alternatives to mitigate identified environmental concerns

  16. ORNL Isotopes Facilities Shutdown Program Plan

    International Nuclear Information System (INIS)

    Gibson, S.M.; Patton, B.D.; Sears, M.B.

    1990-10-01

    This plan presents the results of a technical and economic assessment for shutdown of the Oak Ridge National Laboratory (ORNL) isotopes production and distribution facilities. On December 11, 1989, the Department of Energy (DOE), Headquarters, in a memorandum addressed to DOE Oak Ridge Operations Office (DOE-ORO), gave instructions to prepare the ORNL isotopes production and distribution facilities, with the exception of immediate facility needs for krypton-85, tritium, and yttrium-90, for safe shutdown. In response to the memorandum, ORNL identified 17 facilities for shutdown. Each of these facilities is located within the ORNL complex with the exception of Building 9204-3, which is located at the Y-12 Weapons Production Plant. These facilities have been used extensively for the production of radioactive materials by the DOE Isotopes Program. They currently house a large inventory of radioactive materials. Over the years, these aging facilities have inherited the problems associated with storing and processing highly radioactive materials (i.e., facilities' materials degradation and contamination). During FY 1990, ORNL is addressing the requirements for placing these facilities into safe shutdown while maintaining the facilities under the existing maintenance and surveillance plan. The day-to-day operations associated with the surveillance and maintenance of a facility include building checks to ensure that building parameters are meeting the required operational safety requirements, performance of contamination control measures, and preventative maintenance on the facility and facility equipment. Shutdown implementation will begin in FY 1993, and shutdown completion will occur by the end of FY 1994

  17. 7 CFR Appendix D to Subpart B of... - Certification of Independent Certified Public Accountant Regarding Notes To Be Issued Pursuant to...

    Science.gov (United States)

    2010-01-01

    ...—Certification of Independent Certified Public Accountant Regarding Notes To Be Issued Pursuant to 7 CFR 1744.30... 7 Agriculture 11 2010-01-01 2010-01-01 false Certification of Independent Certified Public Accountant Regarding Notes To Be Issued Pursuant to 7 CFR 1744.30 D Appendix D to Subpart B of Part 1744...

  18. 7 CFR Appendix B to Subpart B of... - Certification of Independent Certified Public Accountant Regarding Notes To Be Issued Pursuant to...

    Science.gov (United States)

    2010-01-01

    ...—Certification of Independent Certified Public Accountant Regarding Notes To Be Issued Pursuant to 7 CFR 1744.30... 7 Agriculture 11 2010-01-01 2010-01-01 false Certification of Independent Certified Public Accountant Regarding Notes To Be Issued Pursuant to 7 CFR 1744.30(c) B Appendix B to Subpart B of Part 1744...

  19. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training.

  20. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training

  1. 40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?

    Science.gov (United States)

    2010-07-01

    ... toxics requirements of this subpart apply separately for each of the following types of gasoline produced...) The gasoline toxics performance requirements of this subpart apply to gasoline produced at a refinery... not apply to gasoline produced by a refinery approved under § 80.1334, pursuant to § 80.1334(c). (2...

  2. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    The Basis for Design established the functional requirements and design criteria for an Integral Monitored Retrievable Storage (MRS) facility. The MRS Facility design, described in this report, is based on those requirements and includes all infrastructure, facilities, and equipment required to routinely receive, unload, prepare for storage, and store spent fuel (SF), high-level waste (HLW), and transuranic waste (TRU), and to decontaminate and return shipping casks received by both rail and truck. The facility is complete with all supporting facilities to make the MRS Facility a self-sufficient installation

  3. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    Science.gov (United States)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  4. 200 Area Deactivation Project Facilities Authorization Envelope Document

    International Nuclear Information System (INIS)

    DODD, E.N.

    2000-01-01

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation

  5. Facility model for the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Thomas, K.E.; Sohn, C.L.; Yarbro, T.F.; Hench, K.W.

    1986-01-01

    The Los Alamos Plutonium Facility contains more than sixty unit processes and handles a large variety of nuclear materials, including many forms of plutonium-bearing scrap. The management of the Plutonium Facility is supporting the development of a computer model of the facility as a means of effectively integrating the large amount of information required for material control, process planning, and facility development. The model is designed to provide a flexible, easily maintainable facility description that allows the faciltiy to be represented at any desired level of detail within a single modeling framework, and to do this using a model program and data files that can be read and understood by a technically qualified person without modeling experience. These characteristics were achieved by structuring the model so that all facility data is contained in data files, formulating the model in a simulation language that provides a flexible set of data structures and permits a near-English-language syntax, and using a description for unit processes that can represent either a true unit process or a major subsection of the facility. Use of the model is illustrated by applying it to two configurations of a fictitious nuclear material processing line

  6. 36 CFR 1234.10 - What are the facility requirements for all records storage facilities?

    Science.gov (United States)

    2010-07-01

    ... prevent water leaks and the piping assembly is inspected for potential leaks regularly. If drainage piping... facility must ensure that the roof membrane does not permit water to penetrate the roof. NARA strongly... the exception of fire protection sprinkler piping and storm water roof drainage piping) must not be...

  7. 75 FR 27855 - Certifications Pursuant to Section 609 of Public Law 101-162

    Science.gov (United States)

    2010-05-18

    ... DEPARTMENT OF STATE [Public Notice 7013] Certifications Pursuant to Section 609 of Public Law 101... Law 101-162 (``Section 609''), that 13 nations have adopted programs to reduce the incidental capture... 609 of Public Law 101-162 prohibits imports of certain categories of shrimp unless the President...

  8. 78 FR 13140 - Additional Designation of Amr Armanazi Pursuant to Executive Order 13382

    Science.gov (United States)

    2013-02-26

    ..., inter alia, of the International Emergency Economic Powers Act (50 U.S.C. 1701-1706) (``IEEPA''), issued... manufacture, acquire, possess, develop, transport, transfer or use such items, by any person or foreign... Control and International Security of the entity identified in this notice pursuant to Executive Order...

  9. 7 CFR 1425.24 - OMB control number assigned pursuant to Paperwork Reduction Act.

    Science.gov (United States)

    2010-01-01

    ...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COOPERATIVE MARKETING ASSOCIATIONS § 1425.24 OMB control number assigned pursuant to Paperwork Reduction Act. The... Office of Management and Budget (OMB) under the provisions of 44 U.S.C. Chapter 35 and have been assigned...

  10. 20 CFR 404.1623 - Facilities.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Facilities. 404.1623 Section 404.1623...- ) Determinations of Disability Administrative Responsibilities and Requirements § 404.1623 Facilities. (a) Space... determinations. (b) Location of facilities. Subject to appropriate Federal funding, the State will determine the...

  11. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  12. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    Energy Technology Data Exchange (ETDEWEB)

    SINGH, G.

    2000-09-06

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the

  13. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the

  14. 7 CFR 51.57 - Facilities.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Facilities. 51.57 Section 51.57 Agriculture... Requirements for Plants Operating Under Continuous Inspection on A Contract Basis § 51.57 Facilities. Each packing plant shall be equipped with adequate sanitary facilities and accommodations, including but not...

  15. 7 CFR 54.1034 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Science.gov (United States)

    2010-01-01

    ...) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS..., Processing, and Packaging of Livestock and Poultry Products § 54.1034 OMB control numbers assigned pursuant...

  16. 300 Area Process Trenches Postclosure Plan

    International Nuclear Information System (INIS)

    Badden, J.W.

    1998-05-01

    The 300 Area Process Trenches (300 APT) certified closure under a modified closure option and in compliance with Condition II.K.3 oft he Hartford Facility Dangerous Waste Permit (Penit) (Ecology 1994). Modified closure has been determined to be the appropriate closure option for this unit due to groundwater that remains contaminated from past operations at the 300 APT. Corrective actions required for dangerous waste constituents remaining in groundwater will occur pursuant to the 300 APT Resource Conservation and Recovery Act (RCRA) Final Status Facility Ground Water Monitoring Plan, the Hanford Site Wide Dangerous Waste Permit, and in conjunction with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial actions at the 300-FF-5 Groundwater Operable Unit (OU) pursuant to the Record of Decision (ROD) (EPA 1996). This postclosure plan identifies the modified closure actions required at the unit under postclosure care. It contains a description of the unit, past closure actions, and postclosure care requirements subject to compliance under the Permit (condition II.K.3)

  17. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Science.gov (United States)

    2010-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... perform their duties. (6) Prior to entry into a material access area, packages shall be searched for...

  18. Mound facility physical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  19. Safety of betaine as a novel food pursuant to Regulation (EC) No 258/97

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2017-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on betaine as a novel food (NF) pursuant to Regulation (EC) No 258/97. The information provided on the composition, the specifications, the batch......-to-batch variability, stability and production process of the NF is sufficient and does not raise concerns about the safety of the NF. The NF is proposed to be used in foods intended to meet additional requirements for intense muscular effort with a maximum intake of 2.5 g/day of betaine for sports people above 10...... as not sufficient. However, the total exposure to betaine from the diet (about 830 mg/day) is not known to be associated with adverse effects. Moreover, no adverse effects on platelet counts were noted in human intervention studies with exposure levels of 4 g/day of betaine for up to 6 months. A significant...

  20. 75 FR 29487 - Reports, Forms and Record Keeping Requirements, Agency Information Collection Activity Under OMB...

    Science.gov (United States)

    2010-05-26

    ... employees thereof, who respond or have a duty to respond to an information provision requirement pursuant to... likely to be a substantial motivating force for a submission of a proper report. We estimate that no more...

  1. 78 FR 23330 - Reports, Forms and Record Keeping Requirements, Agency Information Collection Activity Under OMB...

    Science.gov (United States)

    2013-04-18

    ... employees thereof, who respond or have a duty to respond to an information provision requirement pursuant to... likely to be a substantial motivating force for a submission of a proper report. We estimate that no more...

  2. Design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes the general safety requirements applicable to the design of both wet and dry spent fuel storage facilities; Section 3 deals with the design requirements specific to either wet or dry storage. Recommendations for the auxiliary systems of any storage facility are contained in Section 4; these are necessary to ensure the safety of the system and its safe operation. Section 5 provides recommendations for establishing the quality assurance system for a storage facility. Section 6 discusses the requirements for inspection and maintenance that must be considered during the design. Finally, Section 7 provides guidance on design features to be considered to facilitate eventual decommissioning. 18 refs

  3. The Text of the Agreement of 20 July 1977 between the Agency and the Democratic People's Republic of Korea for the Application of Safeguards in Respect of a Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-11-14

    The text of the Agreement of 20 July 1977 between the Agency and the Democratic People's Republic of Korea for the application of safeguards in respect of a research reactor facility is reproduced in this document for the information of all Members. The Agreement entered into force, pursuant to Article 23, on 20 July 1977.

  4. The Text of the Agreement of 20 July 1977 between the Agency and the Democratic People's Republic of Korea for the Application of Safeguards in Respect of a Research Reactor Facility

    International Nuclear Information System (INIS)

    1977-01-01

    The text of the Agreement of 20 July 1977 between the Agency and the Democratic People's Republic of Korea for the application of safeguards in respect of a research reactor facility is reproduced in this document for the information of all Members. The Agreement entered into force, pursuant to Article 23, on 20 July 1977

  5. Interim safety basis for fuel supply shutdown facility

    International Nuclear Information System (INIS)

    Brehm, J.R.; Deobald, T.L.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    This ISB in conjunction with the new TSRs, will provide the required basis for interim operation or restrictions on interim operations and administrative controls for the Facility until a SAR is prepared in accordance with the new requirements. It is concluded that the risk associated with the current operational mode of the Facility, uranium closure, clean up, and transition activities required for permanent closure, are within Risk Acceptance Guidelines. The Facility is classified as a Moderate Hazard Facility because of the potential for an unmitigated fire associated with the uranium storage buildings

  6. 78 FR 23332 - Supplemental Identification Information for Two (2) Individuals Designated Pursuant to Executive...

    Science.gov (United States)

    2013-04-18

    ... two (2) individuals in this notice, pursuant is effective on April 11, 2013. FOR FURTHER INFORMATION... determined by the Secretary of State, in consultation with the Secretary of the Treasury, the Secretary of..., in consultation with the Departments of State, Homeland [[Page 23333

  7. 75 FR 51759 - Publication of State Plan Pursuant to the Help America Vote Act

    Science.gov (United States)

    2010-08-23

    ... ELECTION ASSISTANCE COMMISSION Publication of State Plan Pursuant to the Help America Vote Act... previously submitted by California. DATES: This notice is effective upon publication in the Federal Register... plans submitted for publication provide information on how the respective state succeeded in carrying...

  8. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    CERN Document Server

    Singh, G

    2000-01-01

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cite...

  9. 45 CFR 1170.32 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Existing facilities. 1170.32 Section 1170.32... ASSISTED PROGRAMS OR ACTIVITIES Accessibility § 1170.32 Existing facilities. (a) Accessibility. A recipient... require a recipient to make each of its existing facilities or every part of a facility accessible to and...

  10. 17 CFR 201.550 - Summary suspensions pursuant to Exchange Act Section 12(k)(1)(A).

    Science.gov (United States)

    2010-04-01

    ... termination of suspension. Any person adversely affected by a suspension pursuant to Section 12(k)(1)(A) of... the public interest or for the protection of investors may file a sworn petition with the Secretary...

  11. Needs of Advanced Safeguards Technologies for Future Nuclear Fuel Cycle (FNFC) Facilities and a Trial Application of SBD Concept to Facility Design of a Hypothetical FNFC Facility

    International Nuclear Information System (INIS)

    Seya, M.; Hajima, R.; Nishimori, N.; Hayakawa, T.; Kikuzawa, N.; Shizuma, T.; Fujiwara, M.

    2010-01-01

    Some of future nuclear fuel cycle (FNFC) facilities are supposed to have the characteristic features of very large throughput of plutonium, low decontamination reprocessing (no purification process; existence of certain amount of fission products (FP) in all process material), full minor actinides (MA) recycle, and treatment of MOX with FP and MA in fuel fabrication. In addition, the following international safeguards requirements have to be taken into account for safeguards approaches of the FNFC facilities. -Application of integrated safeguards (IS) approach; -Remote (unattended) verification; - 'Safeguards by Design' (SBD) concept. These features and requirements compel us to develop advanced technologies, which are not emerged yet. In order to realize the SBD, facility designers have to know important parts of design information on advanced safeguards systems before starting the facility design. The SBD concept requires not only early start of R and D of advanced safeguards technologies (before starting preliminary design of the facility) but also interaction steps between researchers working on safeguards systems and nuclear facility designers. The interaction steps are follows. Step-1; researchers show images of advanced safeguards systems to facility designers based on their research. Step-2; facility designers take important design information on safeguards systems into process systems of demonstration (or test) facility. Step-3; demonstration and improvement of both systems based on the conceptual design. Step-4; Construction of a FNFC facility with the advanced safeguards systems We present a trial application of the SBD concept to a hypothetical FNFC facility with an advanced hybrid K-edge densitometer and a Pu NDA system for spent nuclear fuel assembly using laser Compton scattering (LCS) X-rays and γ-rays and other advanced safeguards systems. (author)

  12. Facility or Facilities? That is the Question.

    Science.gov (United States)

    Viso, M.

    2018-04-01

    The management of the martian samples upon arrival on the Earth will require a lot of work to ensure a safe life detection and biohazard testing during the quarantine. This will induce a sharing of the load between several facilities.

  13. Siting of an MRS facility: identification of a geographic region that reduces transportation requirements

    International Nuclear Information System (INIS)

    Holter, G.M.; Braitman, J.L.

    1985-04-01

    The study reported here was undertaken as part of the site screening and evaluation activities for the Monitored Retrievable Storage (MRS) Program of the Office of Civilian Radioactive Waste Management (OCRWM), Department of Energy (DOE). Its primary purpose was to determine: the location and shape of a preferred geographic region within which locating an MRS facility would minimize total shipment miles for spent fuel transported through the MRS facility to a repository, and the sensitivity of the location and shape of this region and the reduction in total shipment miles to possible variations in waste management system logistics. As a result of this analysis, a geographic region has been identified which is preferred for siting an MRS facility. This region will be referred to as the preferred region in this study. Siting an MRS facility in the preferred region will limit total shipment miles (i.e., the total miles traveled for all shipments of spent fuel) to and from the MRS facility to within 20% of the lowest achievable. The region is preferred for a mixed truck/rail system of transport from reactors to the MRS facility. It is assumed that rail will be used to ship spent fuel from the MRS facility to a geologic repository for disposal. Siting an MRS facility in the preferred region will reduce total shipment miles for all currently considered system logistics options which include an MRS facility in the system. These options include: any first repository location, the possible range of spent fuel consolidation at the MRS, use of multi-cask or single-cask train shipments, use of current or future spent fuel transport casks, servicing only the first or both the first and second repositories, and shipment of fuel from western reactors either through the MRS facility or to a western facility (a second, smaller MRS facility or the first repository)

  14. Storm water permitting for oil and gas facilities

    International Nuclear Information System (INIS)

    de Blanc, P.C.

    1991-01-01

    After several false starts, the US Environmental Protection Agency (EPA) published new federal storm water regulations in the November 16, 1990 Federal Register. These regulations identify facilities which must apply for a storm water permit and detail permit application requirements. The regulations appear at 40 CFR 122 Subpart B and became effective December 17, 1990. An outline of these regulations and their applicability to oil and gas facilities is presented. They are: facilities which require a storm water permit; types of storm water permits; permit application deadlines; permit application forms; facilities with existing storm water permits; storm water permit application data requirements; storm water sampling and analysis requirements; and EPA contacts for additional information

  15. 33 CFR 106.305 - Facility Security Assessment (FSA) requirements.

    Science.gov (United States)

    2010-07-01

    ... available to maintain essential services; (vi) The essential maintenance equipment and storage areas; (vii... procedures relating to essential services; (v) Measures to protect radio and telecommunication equipment... property, or economic disruption, of an attack on or at the OCS facility; and (7) Locations where access...

  16. 33 CFR 105.305 - Facility Security Assessment (FSA) requirements.

    Science.gov (United States)

    2010-07-01

    ... evacuation routes and assembly stations; and (viii) Existing security and safety equipment for protection of... protection systems; (iv) Procedural policies; (v) Radio and telecommunication systems, including computer... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Facility Security Assessment (FSA...

  17. 75 FR 6643 - Publication of State Plan Pursuant to the Help America Vote Act

    Science.gov (United States)

    2010-02-10

    ... ELECTION ASSISTANCE COMMISSION Publication of State Plan Pursuant to the Help America Vote Act... plans previously submitted by New Jersey and Wisconsin. DATES: This notice is effective upon publication... the State plans submitted for publication provide information on how the respective State succeeded in...

  18. 75 FR 39671 - Publication of State Plan Pursuant to the Help America Vote Act

    Science.gov (United States)

    2010-07-12

    ... ELECTION ASSISTANCE COMMISSION Publication of State Plan Pursuant to the Help America Vote Act... plan previously submitted by South Dakota. DATES: This notice is effective upon publication in the... 254(a)(12), all the state plans submitted for publication provide information on how the respective...

  19. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  20. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    International Nuclear Information System (INIS)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-01-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: (1) Identifies pre-conceptual design requirements; (2) Develops test loop equipment schematics and layout; (3) Identifies space allocations for each of the facility functions, as required; (4) Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems; (5) Identifies pre-conceptual utility and support system needs; and (6) Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs

  1. Monitored Retrievable Storage System Requirements Document

    International Nuclear Information System (INIS)

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design

  2. 77 FR 39320 - Suggestions for Environmental Cooperation Pursuant to the United States-Singapore Memorandum of...

    Science.gov (United States)

    2012-07-02

    ... friendly environmental technology and pollution management techniques; (2) participating in regional... DEPARTMENT OF STATE [Public Notice 7943] Suggestions for Environmental Cooperation Pursuant to the United States-Singapore Memorandum of Intent on Environmental Cooperation AGENCY: Department of State...

  3. Interim Safety Basis for Fuel Supply Shutdown Facility

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    This ISB, in conjunction with the IOSR, provides the required basis for interim operation or restrictions on interim operations and administrative controls for the facility until a SAR is prepared in accordance with the new requirements or the facility is shut down. It is concluded that the risks associated with tha current and anticipated mode of the facility, uranium disposition, clean up, and transition activities required for permanent closure, are within risk guidelines

  4. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  5. 75 FR 41454 - Publication of State Plan Pursuant to the Help America Vote Act

    Science.gov (United States)

    2010-07-16

    ... ELECTION ASSISTANCE COMMISSION Publication of State Plan Pursuant to the Help America Vote Act... plans previously submitted by Alaska. DATES: This notice is effective upon publication in the Federal... programs. In accordance with HAVA Section 254(a)(12), all the state plans submitted for publication provide...

  6. 78 FR 77110 - Publication of State Plan Pursuant to the Help America Vote Act

    Science.gov (United States)

    2013-12-20

    ... ELECTION ASSISTANCE COMMISSION Publication of State Plan Pursuant to the Help America Vote Act... at www.eac.gov . DATES: This notice is effective upon publication in the Federal Register. FOR... publication provide information on how the respective State succeeded in carrying out its previous State plan...

  7. 77 FR 20847 - Certain Mobile Electronic Devices Incorporating Haptics; Institution of Investigation Pursuant to...

    Science.gov (United States)

    2012-04-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices Incorporating Haptics; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U.S. International Trade.... International Trade Commission on February 7, 2012, and an amended complaint was filed with the U.S...

  8. Safety of hydroxytyrosol as a novel food pursuant to Regulation (EC) No 258/97

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2017-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on hydroxytyrosol, which is chemically synthesised, as a novel food (NF) pursuant to Regulation (EC) No 258/97. The information provided on the comp......Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on hydroxytyrosol, which is chemically synthesised, as a novel food (NF) pursuant to Regulation (EC) No 258/97. The information provided...... of hydroxytyrosol from the consumption of olive oils and olives, which has not been associated with adverse effects, and considering the similar kinetics of hydroxytyrosol in rats and humans, the Panel considers that the MoE for the NF at the intended uses and use levels is sufficient for the target population....... The Panel concludes that the novel food, hydroxytyrosol, is safe under the proposed uses and use levels....

  9. LH2 airport requirements study

    Science.gov (United States)

    Brewer, G. D. (Editor)

    1976-01-01

    A preliminary assessment of the facilities and equipment which will be required at a representative airport is provided so liquid hydrogen LH2 can be used as fuel in long range transport aircraft in 1995-2000. A complete facility was conceptually designed, sized to meet the projected air traffic requirement. The facility includes the liquefaction plant, LH2, storage capability, and LH2 fuel handling system. The requirements for ground support and maintenance for the LH2 fueled aircraft were analyzed. An estimate was made of capital and operating costs which might be expected for the facility. Recommendations were made for design modifications to the reference aircraft, reflecting results of the analysis of airport fuel handling requirements, and for a program of additional technology development for air terminal related items.

  10. General technical requirements (GTR) for inventory monitoring systems (IMS) for the trilateral initiative

    International Nuclear Information System (INIS)

    Pshakin, Gennady M.; Kuleshov, I.; Shea, T.; Puckett, J.M.; Zhukov, I.; Mangan, Dennis L.; Matter, John C.; Waddoups, I.; Smathers, D.; Abhold, M.E.; Hsue, S.-T.; Chiaro, P.

    2002-01-01

    Pursuant to the Trilateral Initiative, the three parties (The Russian Federation, the United States, and the International Atomic Energy Agency) have been engaged in discussions concerning the structure of reliable monitoring systems for storage facilities having large inventories. The intent of these monitoring systems is to provide the capability for the IAEA to maintain continuity of knowledge in a sufficiently reliable manner that should there be equipment failure, loss of continuity of knowledge would be restricted to a small population of the inventory, and thus reinventory of the stored items would be minimized These facility-specific monitoring systems, referred to as Inventory Monitoring Systems (IMS) are to provide the principal means for the M A to assure that the containers of fissile material remain accounted under the Verification Agreements which are to be concluded between the IAEA and the Russian Federation and the lAEA and the United States for the verification of weapon-origin and other fissile material specified by each State as released from its defense programs. A technical experts working group for inventory monitoring systems has been meeting since Feb- of 2000 to formulate General Technical Requirements (GTR) for Inventory Monitoring Systems for the Trilateral Initiative. Although provisional agreement has been reached by the three parties concerning the GTR, it is considered a living document that can be updated as warranted by the three parties. This paper provides a summary of the GTR as it currently exists.

  11. Facility effluent monitoring plan for the 325 Facility

    International Nuclear Information System (INIS)

    1998-01-01

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  12. Next generation storage facility

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1994-01-01

    With diminishing requirements for plutonium, a substantial quantity of this material requires special handling and ultimately, long-term storage. To meet this objective, we at Los Alamos, have been involved in the design of a storage facility with the goal of providing storage capabilities for this and other nuclear materials. This paper presents preliminary basic design data, not for the structure and physical plant, but for the container and arrays which might be configured within the facility, with strong emphasis on criticality safety features

  13. 77 FR 66921 - Approval and Promulgation of Air Quality Implementation Plans; New Hampshire; Reasonably...

    Science.gov (United States)

    2012-11-08

    ... individuals with a pre-existing respiratory disease, such as asthma. On April 30, 2004, pursuant to the..., 2016. These facilities must meet lower VOC coating limits or use pollution control equipment meeting 90.... Applicable sources are required to limit VOC emissions by one of the following methods: An add-on pollution...

  14. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  15. 42 CFR 493.1101 - Standard: Facilities.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Facilities. 493.1101 Section 493.1101... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Facility Administration for Nonwaived Testing § 493.1101 Standard: Facilities. (a) The laboratory must be constructed, arranged, and maintained to...

  16. 29 CFR 71.50 - General exemptions pursuant to subsection (j) of the Privacy Act.

    Science.gov (United States)

    2010-07-01

    ... (Investigative Case Tracking Systems/Audit Information Reporting Systems, USDOL/OIG), a system of records... ACCESS TO RECORDS UNDER THE PRIVACY ACT OF 1974 Exemption of Records Systems Under the Privacy Act § 71.50 General exemptions pursuant to subsection (j) of the Privacy Act. (a) The following systems of...

  17. 77 FR 75425 - Publication of State Plan Pursuant to the Help America Vote Act

    Science.gov (United States)

    2012-12-20

    ... ELECTION ASSISTANCE COMMISSION Publication of State Plan Pursuant to the Help America Vote Act... site at www.eac.gov . DATES: This notice is effective upon publication in the Federal Register. FOR... with HAVA Section 254(a)(12), all the State plans submitted for publication provide information on how...

  18. Universal Test Facility

    Science.gov (United States)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  19. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    International Nuclear Information System (INIS)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-01-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation

  20. Physics and detector simulation facility Type O workstation specifications

    International Nuclear Information System (INIS)

    Chartrand, G.; Cormell, L.R.; Hahn, R.; Jacobson, D.; Johnstad, H.; Leibold, P.; Marquez, M.; Ramsey, B.; Roberts, L.; Scipioni, B.; Yost, G.P.

    1990-11-01

    This document specifies the requirements for the front-end network of workstations of a distributed computing facility. This facility will be needed to perform the physics and detector simulations for the design of Superconducting Super Collider (SSC) detectors, and other computations in support of physics and detector needs. A detailed description of the computer simulation facility is given in the overall system specification document. This document provides revised subsystem specifications for the network of monitor-less Type 0 workstations. The requirements specified in this document supersede the requirements given. In Section 2 a brief functional description of the facility and its use are provided. The list of detailed specifications (vendor requirements) is given in Section 3 and the qualifying requirements (benchmarks) are described in Section 4

  1. A low-temperature research facility for space

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1991-01-01

    The Jet Propulsion Laboratory is proposing to NASA a new initiative to construct a Low Temperature Research Facility for use in space. The facility is described, together with some details of timing and support. An advisory group has been formed which seeks to advise JPL and NASA of the capabilities required in this facility and to invite investigators to propose experiments which require the combination of low temperature and reduced gravity to be successful. (orig.)

  2. UHV facility at pelletron

    International Nuclear Information System (INIS)

    Gupta, S.K.; Hattangadi, V.A.

    1993-01-01

    One of the important requirements of a heavy ion accelerator is the maintenance of a clean, ultrahigh vacuum (UHV) environment in the accelerating tubes as well as in the beamlines. This becomes necessary in order to minimise transmission losses of the ion beam due to charge exchange or scattering during collisions with the residual gas atoms. In view of these considerations, as an essential ancillary facility, a UHV laboratory with all required facilities has been set up for the pelletron accelerator and the work done in this laboratory is described. First the pelletron accelerator vacuum system is described in brief. The UHV laboratory facilities are described. Our operational experience with the accelerator vacuum system is discussed. The development of accelerator components carried out by the UHV laboratory is also discussed. (author)

  3. Reorganizing Nigeria's Vaccine Supply Chain Reduces Need For Additional Storage Facilities, But More Storage Is Required.

    Science.gov (United States)

    Shittu, Ekundayo; Harnly, Melissa; Whitaker, Shanta; Miller, Roger

    2016-02-01

    One of the major problems facing Nigeria's vaccine supply chain is the lack of adequate vaccine storage facilities. Despite the introduction of solar-powered refrigerators and the use of new tools to monitor supply levels, this problem persists. Using data on vaccine supply for 2011-14 from Nigeria's National Primary Health Care Development Agency, we created a simulation model to explore the effects of variance in supply and demand on storage capacity requirements. We focused on the segment of the supply chain that moves vaccines inside Nigeria. Our findings suggest that 55 percent more vaccine storage capacity is needed than is currently available. We found that reorganizing the supply chain as proposed by the National Primary Health Care Development Agency could reduce that need to 30 percent more storage. Storage requirements varied by region of the country and vaccine type. The Nigerian government may want to consider the differences in storage requirements by region and vaccine type in its proposed reorganization efforts. Project HOPE—The People-to-People Health Foundation, Inc.

  4. Waste Management System Requirement document

    International Nuclear Information System (INIS)

    1990-04-01

    This volume defines the top level technical requirements for the Monitored Retrievable Storage (MRS) facility. It is designed to be used in conjunction with Volume 1, General System Requirements. Volume 3 provides a functional description expanding the requirements allocated to the MRS facility in Volume 1 and, when appropriate, elaborates on requirements by providing associated performance criteria. Volumes 1 and 3 together convey a minimum set of requirements that must be satisfied by the final MRS facility design without unduly constraining individual design efforts. The requirements are derived from the Nuclear Waste Policy Act of 1982 (NWPA), the Nuclear Waste Policy Amendments Act of 1987 (NWPAA), the Environmental Protection Agency's (EPA) Environmental Standards for the Management and Disposal of Spent Nuclear Fuel (40 CFR 191), NRC Licensing Requirements for the Independent Storage of Spent Nuclear and High-Level Radioactive Waste (10 CFR 72), and other federal statutory and regulatory requirements, and major program policy decisions. This document sets forth specific requirements that will be fulfilled. Each subsequent level of the technical document hierarchy will be significantly more detailed and provide further guidance and definition as to how each of these requirements will be implemented in the design. Requirements appearing in Volume 3 are traceable into the MRS Design Requirements Document. Section 2 of this volume provides a functional breakdown for the MRS facility. 1 tab

  5. Nuclear Station Facilities Improvement Planning

    International Nuclear Information System (INIS)

    Hooks, R. W.; Lunardini, A. L.; Zaben, O.

    1991-01-01

    An effective facilities improvement program will include a plan for the temporary relocation of personnel during the construction of an adjoining service building addition. Since the smooth continuation of plant operation is of paramount importance, the phasing plan is established to minimize the disruptions in day-to-day station operation and administration. This plan should consider the final occupancy arrangements and the transition to the new structure; for example, computer hookup and phase-in should be considered. The nuclear industry is placing more emphasis on safety and reliability of nuclear power plants. In order to do this, more emphasis is placed on operations and maintenance. This results in increased size of managerial, technical and maintenance staffs. This in turn requires improved office and service facilities. The facilities that require improvement may include training areas, rad waste processing and storage facilities, and maintenance facilities. This paper discusses an approach for developing an effective program to plan and implement these projects. These improvement projects can range in magnitude from modifying a simple system to building a new structure to allocating space for a future project. This paper addresses the planning required for the new structures with emphasis on site location, space allocation, and internal layout. Since facility planning has recently been completed by Sargent and Leyden at six U. S. nuclear stations, specific examples from some of those plants are presented. Site planning and the establishment of long-range goals are of the utmost importance when undertaking a facilities improvement program for a nuclear station. A plan that considers the total site usage will enhance the value of both the new and existing facilities. Proper planning at the beginning of the program can minimize costs and maximize the benefits of the program

  6. A study on items necessary to develop the requirements for the management of serious accidents postulated in fuel fabrication, enrichment and reprocessing facilities

    International Nuclear Information System (INIS)

    Takanashi, Mitsuhiro; Yamate, Kazuki; Asada, Kazuo; Yamada, Takashi; Endo, Shigeki

    2013-05-01

    The purpose of this study is to supply the points to discuss on new rules of fuel fabrication, enrichment and reprocessing facilities (hereinafter referred to as 'fuel cycle facilities') conducted by Nuclear Regulation Authority. Requirements for management of serious accidents in the fuel cycle facilities were summarized in this study. Taking into account the lessons learned from the accident of TEPCO Fukushima Daiichi Nuclear Power Plant in Mar. 2011, Act for the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors was amended in June 2012. The main items of the amendment were as follows: Preparation for the management of serious accidents, Introduction of evaluation system for safety improvement, Application of new standards to existing nuclear facilities (back-fitting). Japan Nuclear Energy Safety organization (JNES) conducted a fundamental study on serious accidents and their management in the fuel cycle facilities and made a report. In the report, the concept of Defense in Depth and the definition of serious accidents for the fuel cycle facilities were discussed. Those discussions were conducted by reference to new regulation rules (draft) for power reactors and from the view of features of the fuel cycle facilities. However, further detailed studies are necessary in order to clarify some issues in it. It was also reflected opinions from experts in JNES technical meetings on accident management of the fuel cycle facilities to brush up this report. (author)

  7. Radiological assessment of the PET facility

    International Nuclear Information System (INIS)

    Discacciatti, Adrian; Cruzate, Juan A.; Bomben, Ana M.; Carelli, Jorge; Namias, Mario

    2008-01-01

    The radiological assessment of a Positron Emission Tomography (PET) facility consists of the evaluation of the annual effective dose to workers exposed occupationally and to members of the public. This evaluation takes into account the radionuclide involved, the characteristics of the facility, the working procedure and the expected number of patients per year. This paper details the methodology used by the Nuclear Regulatory Authority (in Spanish ARN) to independently assess the design of PET facilities considering only radioprotection aspects. The results of the evaluation are compared with the design requirements established in the ARN regulations to determine whether or not, the facility complies with those requirements, both for workers and for members of the public. As an example of the above mentioned methodology, this paper presents the assessment of a PET facility located in Buenos Aires called Fundacion Centro Diagnostico Nuclear (FCDN). (author)

  8. 77 FR 34121 - Designation and Determination Pursuant to the Foreign Missions Act Concerning the Designation of...

    Science.gov (United States)

    2012-06-08

    ..., 1994, I hereby designate the State Oil Company of the Republic of Azerbaijan (SOCAR), an entity engaged... apply to the acquisition or disposition of real property by or on behalf of such entities. Pursuant to...

  9. 9 CFR 117.2 - Animal facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Animal facilities. 117.2 Section 117.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES... Animal facilities. Animal facilities shall comply with the requirements provided in part 108 of this...

  10. 9 CFR 590.538 - Defrosting facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Defrosting facilities. 590.538 Section 590.538 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG..., and Facility Requirements § 590.538 Defrosting facilities. (a) Approved metal defrosting tanks or vats...

  11. 9 CFR 590.534 - Freezing facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing facilities. 590.534 Section 590.534 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off the...

  12. 42 CFR 136.110 - Facilities construction.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Facilities construction. 136.110 Section 136.110..., DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH Grants for Development, Construction, and Operation of Facilities and Services § 136.110 Facilities construction. In addition to other requirements of this subpart...

  13. Facility effluent monitoring plan for the 324 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  14. 76 FR 36870 - Special Conditions: Gulfstream Model GVI Airplane; Design Roll Maneuver Requirement for...

    Science.gov (United States)

    2011-06-23

    ... issue a finding of regulatory adequacy pursuant to section 611 of Public Law 92-574, the ``Noise Control... Requirement for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... airplane will have a novel or unusual design feature associated with an electronic flight control system...

  15. 76 FR 1459 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM International

    Science.gov (United States)

    2011-01-10

    ... Production Act of 1993-ASTM International Notice is hereby given that, on December 6, 2010, pursuant to.... (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with the...

  16. Implementation of the Clean Air Act, Title III, Section 112(r) Prevention of Accidental Release Rule requirements at U.S. DOE Oak Ridge Reservation facilities

    International Nuclear Information System (INIS)

    Humphreys, M.P.

    1997-01-01

    Title III, Section 112(r) of the Clean Air Act (CAA) Amendments of 1990 requires the Environmental Protection Agency (EPA) to promulgate regulations to prevent accidental releases of regulated substances and to reduce the severity of those releases that do occur. The final EPA rule for Risk Management Programs under Section 112(r)(7) of the CAA, promulgated June 20, 1996, applies to all stationary sources with processes that contain more than a threshold quantity of any of 139 regulated substances listed under 40 CFR 68.130. All affected sources will be required to prepare a risk management plan which must be submitted to EPA and be made available to state and local governments and to the public. This paper will provide details of initiatives underway at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of the Prevention of Accidental Release Rule. The ORR encompasses three DOE Facilities: the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the K-25 Site. The Y-12 Plant manufactures component parts for the national nuclear weapons program; the ORNL is responsible for research and development activities including nuclear engineering, engineering technologies, and the environmental sciences; and the K-25 Site conducts a variety of research and development activities and is the home of a mixed waste incinerator. ORR activities underway and soon to be undertaken toward implementation of the Prevention of Accidental Release Rule include: compilation of inventories of regulated substances at all processes at each of the three ORR Facilities for determination of affected processes and facilities; plans for inventory reduction to levels below threshold quantities, where necessary and feasible; determination of the overlap of processes subject to the OSHA PSM Standard and determination of parallel requirements; preparation of Risk Management Plans and Programs for affected processes and facilities including detailed requirements

  17. Analysis of recently enacted national energy legislation and the Clean Air Act Amendments of 1990 as related to Decontamination and Decommissioning at Federal, State, and private facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This report is a summary of an analysis of recently enacted national energy legislation and the Clean Air Act Amendments of 1990 as related to Decontamination and Decommissioning (D ampersand D) at Federal, State and private facilities. It is submitted pursuant to Appendix A of subcontract 9-X62-0785E-1, dated July 27, 1992, between the Regents of the University of California and Van Ness, Feldman ampersand Curtis

  18. 75 FR 70947 - Notice of Lodging of Consent Decree Pursuant to Oil Pollution Act

    Science.gov (United States)

    2010-11-19

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Pursuant to Oil Pollution Act Notice is... claims of the United States (on behalf of the Department of Commerce/National Oceanic and Atmospheric..., and the State of Rhode Island for natural resource damages under the Oil Pollution Act, 33 U.S.C. 2701...

  19. 77 FR 68828 - Certain Cases for Portable Electronic Devices; Institution of Investigation Pursuant to the...

    Science.gov (United States)

    2012-11-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-861] Certain Cases for Portable Electronic Devices; Institution of Investigation Pursuant to the Tariff Act of 1930, as Amended AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with...

  20. National Biomedical Tracer Facility: Project definition study

    International Nuclear Information System (INIS)

    Heaton, R.; Peterson, E.; Smith, P.

    1995-01-01

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design

  1. National Biomedical Tracer Facility: Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  2. In-pile experiments and test facilities proposed for fast reactor safety

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Avery, R.; Goldman, A.J.; Fauske, H.K.; Marchaterre, J.F.; Rose, D.; Wright, A.E.

    1976-01-01

    The role of in-pile experiments in support of the resolution of fast breeder reactor safety and licensing issues has been re-examined, with emphasis on key safety issues. Experiment needs have been related to the specific characteristics of these safety issues and to realistic requirements for additional test facility capabilities which can be achieved and utilized within the next ten years. It is found that those safety issues related to the energetics of core disruptive accidents have the largest impact on new facility requirements. However, utilization of existing facilities with modifications can provide for a continuing increase in experiment capability and experiment results on a timely bases. Emphasis has been placed upon maximum utilization of existing facilities and minimum requirements for new facilities. This evaluation has concluded that a new Safety Test Facility, STF, along with major modifications to the EBR II facility, improvement in TREAT capabilities, the existing Sodium Loop Safety Facility and corresponding Support Facilities provide the essential elements of the Safety Research Experiment Facilities (SAREF) required for resolution of key issues

  3. Data analysis facility at LAMPF

    International Nuclear Information System (INIS)

    Perry, D.G.; Amann, J.F.; Butler, H.S.; Hoffman, C.J.; Mischke, R.E.; Shera, E.B.; Thiessen, H.A.

    1977-11-01

    This report documents the discussions and conclusions of a study held in July 1977 to develop the requirements for a data analysis facility to support the experimental program in medium-energy physics at the Clinton P. Anderson Meson Physics Facility (LAMPF). 2 tables

  4. 18 CFR 154.307 - Joint facilities.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Joint facilities. 154... Changes § 154.307 Joint facilities. The Statements required by § 154.312 must show all costs (investment... in the subject rate change and are associated with joint facilities. The methods used in making such...

  5. 34 CFR 104.22 - Existing facilities.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Existing facilities. 104.22 Section 104.22 Education... Accessibility § 104.22 Existing facilities. (a) Accessibility. A recipient shall operate its program or activity.... This paragraph does not require a recipient to make each of its existing facilities or every part of a...

  6. Hanford Surplus Facilities Program plan

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  7. Inpatient Psychiatric Facility Quality Measure Data – by State

    Data.gov (United States)

    U.S. Department of Health & Human Services — Psychiatric facilities that are eligible for the Inpatient Psychiatric Facility Quality Reporting (IPFQR) program are required to meet all program requirements,...

  8. Sports Facilities Development and Urban Generation

    OpenAIRE

    Maassoumeh Barghchi; Dasimah B.   Omar; Mohd S.   Aman

    2009-01-01

    Problem statement: One major issue on sports facilities construction is the question of their funding and justification for investment. Due to, requirement of huge money for construction, constant maintenance costs and ancillary needs, which are almost certainly with substantial public investment, therefore, sports facilities have been considered. Further, sports facilities construction boom have been started for more than two decades. Approach: Recent sports facilities construction was not p...

  9. 77 FR 34367 - Proposed Subsequent Arrangement

    Science.gov (United States)

    2012-06-11

    ... pursuant to Article VIII(C) of the Agreement for Cooperation, that the provisions of Article XI of the... Development Facility (DFDF), along with identified analytical laboratories, at the Headquarters of the Korea... 2012. These facilities are found acceptable to both parties pursuant to Article VIII(C) of the...

  10. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J S; Choi, J W; Go, W I; Kim, H D; Song, K C; Jeong, I H; Park, H S; Im, C S; Lee, H M; Moon, K H; Hong, K P; Lee, K S; Suh, K S; Kim, E K; Min, D K; Lee, J C; Chun, Y B; Paik, S Y; Lee, E P; Yoo, G S; Kim, Y S; Park, J C

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  11. DUPIC facility engineering

    International Nuclear Information System (INIS)

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs

  12. Safety of magnetic fusion facilities: Volume 2, Guidance

    International Nuclear Information System (INIS)

    1995-01-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment

  13. Facility/equipment performance evaluation using microcomputer simulation analysis

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.

    1985-08-01

    A computer simulation analysis model was developed at the Pacific Northwest Laboratory to assist in assuring the adequacy of the Monitored Retrievable Storage facility design to meet the specified spent nuclear fuel throughput requirements. The microcomputer-based model was applied to the analysis of material flow, equipment capability and facility layout. The simulation analysis evaluated uncertainties concerning both facility throughput requirements and process duration times as part of the development of a comprehensive estimate of facility performance. The evaluations provided feedback into the design review task to identify areas where design modifications should be considered

  14. Project Waiver of American Iron and Steel Requirements to the Napa Sanitation District for 24-Inch Diameter Butterfly Valves

    Science.gov (United States)

    Waiver approval by EPA pursuant to the American Iron and Steel Requirements of the Clean Water Act Section 608 to the Napa Sanitation District in California for the purchase of 24-inch butterfly valves.

  15. Improvement of irradiation facilities performance in JMTR

    International Nuclear Information System (INIS)

    Kanno, Masaru; Sakurai, Susumu; Honma, Kenzo; Sagawa, Hisashi; Nakazaki, Chousaburo

    1999-01-01

    Various kinds of irradiation facilities are installed in the JMTR for the purpose of irradiation tests on fuels and materials and of producing radioisotopes. The irradiation facilities have been improved so far at every opportunity of new irradiation requirements and of renewing them which reached the design lifetime. Of these irradiation facilities, improvements of the power ramping test facility (BOCA/OSF-1 facility) and the hydraulic rabbit No.2 (HR-2 facility) are described here. (author)

  16. 340 Facility maintenance implementation plan

    International Nuclear Information System (INIS)

    1995-03-01

    This Maintenance Implementation Plan (MIP) has been developed for maintenance functions associated with the 340 Facility. This plan is developed from the guidelines presented by Department of Energy (DOE) Order 4330.4B, Maintenance Management Program (DOE 1994), Chapter II. The objective of this plan is to provide baseline information for establishing and identifying Westinghouse Hanford Company (WHC) conformance programs and policies applicable to implementation of DOE order 4330.4B guidelines. In addition, this maintenance plan identifies the actions necessary to develop a cost-effective and efficient maintenance program at the 340 Facility. Primary responsibility for the performance and oversight of maintenance activities at the 340 Facility resides with Westinghouse Hanford Company (WHC). Maintenance at the 340 Facility is performed by ICF-Kaiser Hanford (ICF-KH) South Programmatic Services crafts persons. This 340 Facility MIP provides interface requirements and responsibilities as they apply specifically to the 340 Facility. This document provides an implementation schedule which has been developed for items considered to be deficient or in need of improvement. The discussion sections, as applied to implementation at the 340 Facility, have been developed from a review of programs and practices utilizing the graded approach. Biennial review and additional reviews are conducted as significant programmatic and mission changes are made. This document is revised as necessary to maintain compliance with DOE requirements

  17. 340 Facility maintenance implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This Maintenance Implementation Plan (MIP) has been developed for maintenance functions associated with the 340 Facility. This plan is developed from the guidelines presented by Department of Energy (DOE) Order 4330.4B, Maintenance Management Program (DOE 1994), Chapter II. The objective of this plan is to provide baseline information for establishing and identifying Westinghouse Hanford Company (WHC) conformance programs and policies applicable to implementation of DOE order 4330.4B guidelines. In addition, this maintenance plan identifies the actions necessary to develop a cost-effective and efficient maintenance program at the 340 Facility. Primary responsibility for the performance and oversight of maintenance activities at the 340 Facility resides with Westinghouse Hanford Company (WHC). Maintenance at the 340 Facility is performed by ICF-Kaiser Hanford (ICF-KH) South Programmatic Services crafts persons. This 340 Facility MIP provides interface requirements and responsibilities as they apply specifically to the 340 Facility. This document provides an implementation schedule which has been developed for items considered to be deficient or in need of improvement. The discussion sections, as applied to implementation at the 340 Facility, have been developed from a review of programs and practices utilizing the graded approach. Biennial review and additional reviews are conducted as significant programmatic and mission changes are made. This document is revised as necessary to maintain compliance with DOE requirements.

  18. 76 FR 57653 - Bacillus thuringiensis eCry3.1Ab Protein in Corn; Temporary Exemption From the Requirement of a...

    Science.gov (United States)

    2011-09-16

    ... sensitivity to detect possible IgE epitopes without high false positive rates. 3. Prevalence in food... that would require EPA consideration of voluntary consensus standards pursuant to section 12(d) of the...

  19. A graded approach to safety documentation at processing facilities

    International Nuclear Information System (INIS)

    Cowen, M.L.

    1992-01-01

    Westinghouse Savannah River Company (WSRC) has over 40 major Safety Analysis Reports (SARs) in preparation for non-reactor facilities. These facilities include nuclear material production facilities, waste management facilities, support laboratories and environmental remediation facilities. The SARs for these various projects encompass hazard levels from High to Low, and mission times from startup, through operation, to shutdown. All of these efforts are competing for scarce resources, and therefore some mechanism is required for balancing the documentation requirements. Three of the key variables useful for the decision making process are Depth of Safety Analysis, Urgency of Safety Analysis, and Resource Availability. This report discusses safety documentation at processing facilities

  20. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  1. Environmental restoration plan for the transfer of surplus facilities to the Facility Transition Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-08-01

    This report will provide guidance on management, coordination, and integration of plans to transition facilities to the Facility Transition Program and activities as related to the Oak Ridge National Laboratory (ORNL) Environmental Restoration Program facilities. This report gives (1) guidance on the steps necessary for identifying ORNL surplus facilities, (2) interfaces of Surveillance and Maintenance (S and M) and Isotope Facility Deactivation program managers, (3) roles and responsibilities of the facility managers, and (4) initial S and M requirements upon acceptance into the Facility Transition Program

  2. Requirements of radiation and safety protection for NORM in petroleum and gas facilities

    International Nuclear Information System (INIS)

    Machavane, Edna Felicina Lisboa

    2017-01-01

    The work establishes radiation protection and safety requirements for NORM in oil and gas installations, enabling the National Atomic Energy Agency to draw up regulations on NORM. A bibliographic review and measurement of oil sludge activity concentrations was carried out to reach the objective. Significant amounts of NORM originating from reservoir rock are encountered during production, maintenance and decommissioning. The oil and gas industry operates in all climates and environments including the most arduous conditions and is continually challenged to achieve high operating efficiency while maintaining a high standard of safety and control - this includes the need to maintain control over exposure as well as protecting the public and the environment through the proper management of tailings that may be radiologically and chemically hazardous. The main objective of this work was not only to present the main radiological protection and safety requirements for NORM in oil and gas installations, but also to guide the competent governmental authorities of the Republic of Mozambique, that the installation of a radiometry laboratory and elaboration of NORM regulations involve a great control of radiological safety. The regulatory authority is responsible for authorizing facilities for the storage of radioactive waste, including the storage of contaminated tailings. It is recommended that studies of this kind be made to analyze the concentration of naturally occurring radioisotope activity. (author)

  3. 75 FR 35125 - Unblocking of Specially Designated Nationals and Blocked Persons Pursuant to the Foreign...

    Science.gov (United States)

    2010-06-21

    ... California CP 22000, Mexico; Calle Granito No. 2025, Seccion El Dorado, Fraccionamiento Playas de Tijuana, Tijuana, Baja California, Mexico; Calle Granito No. 602, Seccion El Dorado, Fraccionamiento Playas de... blocked pursuant to the Kingpin Act. 1. Carrillo Rodriguez, Luis Miguel, c/o VUELA PERU S.A.C., Lima, Peru...

  4. Bevalac Minibeam Facility

    International Nuclear Information System (INIS)

    Schimmerling, W.; Alonso, J.; Morgado, R.; Tobias, C.A.; Grunder, H.; Upham, F.T.; Windsor, A.; Armer, R.A.; Yang, T.C.H.; Gunn, J.T.

    1977-03-01

    The Minibeam Facility is a biomedical heavy-ion beam area at the Bevalac designed to satisfy the following requirements: (1) provide a beam incident in a vertical plane for experiments where a horizontal apparatus significantly increases the convenience of performing an experiment or even determines its feasibility; (2) provide an area that is well shielded with respect to electronic interference so that microvolt signals can be detected with acceptable signal-to-noise ratios; (3) provide a beam of small diameter, typically a few millimeters or less, for various studies of cellular function; and (4) provide a facility for experiments that require long setup and preparation times and apparatus that must be left relatively undisturbed between experiments and that need short periods of beam time. The design of such a facility and its main components is described. In addition to the above criteria, the design was constrained by the desire to have inexpensive, simple devices that work reliably and can be easily upgraded for interfacing to the Biomedical PDP 11/45 computer

  5. Quality management in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Garonis, Omar H.

    2002-01-01

    Internationally, the decommissioning organizations of nuclear facilities carry out the decommissioning according to the safety requirements established for the regulatory bodies. Some of them perform their activities in compliance with a quality assurance system. This work establishes standardization through a Specifications Requirement Document, for the management system of the nuclear facilities decommissioning organizations. It integrates with aspects of the quality, environmental, occupational safety and health management systems, and also makes these aspects compatible with all the requirements of the nuclear industry recommended for the International Atomic Energy Agency (IAEA). (author)

  6. Requirements of radiation protection and physical protection for facilities of petroleum well logging

    International Nuclear Information System (INIS)

    Goessa, Eunícia João

    2017-01-01

    Petroleum is generated from the transformation of the organic matter accumulated in the sedimentary rocks, when submitted to the appropriate thermal conditions and is found both in the marine and terrestrial subsoil. In order to determine the volume of petroleum existing in a deposit oil wells technique is used which consists of a set of operations in which are recorded as a function of the depth, some characteristics of the geological layers along the well, such as permeability and porosity with the use of radioactive sources. The sources used in this practice belong to category 3, among five categories of categorization considered dangerous and in case of accident represents a higher level of radiological risk. The present work aims to present the main requirements of radiological safety and physical security to be applied in the licensing of an oil well profiling plant. In this work, the author supported the bibliographical review, which consisted in the collection of the essential literature related to the theme. The literature is composed of theoretical references published in books, theses, Brazilian norms, Mozambican laws, IAEA manuals and some published on the internet. The methodology used in this work was the bibliographical review with the objective of obtaining information on the formation of oil, oil well profiling concept, the radioactive sources used in this practice, for information on the main applicable radiological security and safety requirements radioactive sources and oil well profiling facilities. The inventory of radioactive sources, the use of shielding and the smear tests in radioactive sources are technical requirements that integrate the radiological safety and physical safety that must be followed by the licensees of the oil well profiling. (author). (author)

  7. 10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-25

    Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

  8. Emergency planning for fuel cycle facilities

    International Nuclear Information System (INIS)

    Lacey, L.R.

    1991-01-01

    In April 1989, NRC published new emergency planning regulations which apply to certain by-product, source, and special nuclear materials licensees including most fuel cycle facilities. In addition to these NRC regulations, other regulatory agencies such as EPA, OSHA, and DOT have regulations concerning emergency planning or notification that may apply to fuel cycle facilities. Emergency planning requirements address such areas as emergency classification, organization, notification and activation, assessment, corrective and protective measures, emergency facilities and equipment, maintaining preparedness, records and reports, and recovery. This article reviews applicable regulatory requirements and guidance, then concentrates on implementation strategies to produce an effective emergency response capability

  9. 78 FR 27129 - Proposed Priority and Requirements-Education Facilities Clearinghouse

    Science.gov (United States)

    2013-05-09

    ..., acoustics, levels of thermal comfort, and lighting can affect the health and well-being of school occupants... recognize the linkages between the school facility and three areas: Academic instruction, student and... education stakeholders in creating and sustaining higher quality environments for students, educators, and...

  10. 78 FR 35646 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM...

    Science.gov (United States)

    2013-06-13

    ... Production Act of 1993--ASTM International Standards Notice is hereby given that, on May 10, 2013, pursuant... seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with..., ASTM has provided an updated list of current, ongoing ASTM standards activities originating between...

  11. 77 FR 34069 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM...

    Science.gov (United States)

    2012-06-08

    ... Production Act of 1993--ASTM International Standards Notice is hereby given that, on May 11, 2012, pursuant... seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with..., ASTM has provided an updated list of current, ongoing ASTM standards activities originating between...

  12. 76 FR 34252 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; ASTM...

    Science.gov (United States)

    2011-06-13

    ... Production Act of 1993; ASTM International Standards Notice is hereby given that, on May 11, 2011, pursuant... seq. (``the Act''), ASTM International Standards (``ASTM'') has filed written notifications.... Specifically, ASTM has provided an updated list of current, ongoing ASTM standards activities originating...

  13. 77 FR 28405 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Petroleum...

    Science.gov (United States)

    2012-05-14

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Petroleum Environmental Research Forum Notice is hereby given that, on April 17, 2012... seq. (``the Act''), Petroleum Environmental Research Forum (``PERF'') has filed written notifications...

  14. 77 FR 61786 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Petroleum...

    Science.gov (United States)

    2012-10-11

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Petroleum Environmental Research Forum Notice is hereby given that, on September 10....C. 4301 et seq. (``the Act''), Petroleum Environmental Research Forum (``PERF'') has filed written...

  15. 77 FR 54612 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Petroleum...

    Science.gov (United States)

    2012-09-05

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Petroleum Environmental Research Forum Notice is hereby given that, on July 5, 2012... seq. (``the Act''), Petroleum Environmental Research Forum (``PERF'') has filed written notifications...

  16. 77 FR 26583 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Petroleum...

    Science.gov (United States)

    2012-05-04

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Petroleum Environmental Research Forum Project No. 2011-01, Ultra Low Nutrient...''), Petroleum Environmental Research Forum (PERF) Project No. 2011-01, Ultra Low Nutrient Control in Wastewater...

  17. 77 FR 14046 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Petroleum...

    Science.gov (United States)

    2012-03-08

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Petroleum Environmental Research Forum Notice is hereby given that, on January 31....C. 4301 et seq. (``the Act''), Petroleum Environmental Research Forum (``PERF'') has filed written...

  18. 76 FR 78044 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Petroleum...

    Science.gov (United States)

    2011-12-15

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Petroleum Environmental Research Forum Notice is hereby given that, on November 1....C. 4301 et seq. (``the Act''), Petroleum Environmental Research Forum (``PERF'') has filed written...

  19. 75 FR 45156 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Petroleum...

    Science.gov (United States)

    2010-08-02

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Petroleum Environmental Research Forum Notice is hereby given that, on June 2, 2010... seq. (``the Act''), Petroleum Environmental Research Forum (``PERF'') has filed written notifications...

  20. 77 FR 40086 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Petroleum...

    Science.gov (United States)

    2012-07-06

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Petroleum Environmental Research Forum Notice is hereby given that, on June 8, 2012... seq. (``the Act''), Petroleum Environmental Research Forum (``PERF'') has filed written notifications...

  1. 29 CFR 71.52 - Specific exemptions pursuant to subsection (k)(5) of the Privacy Act.

    Science.gov (United States)

    2010-07-01

    ... (Investigative Case Tracking Systems/Audit Information Reporting Systems, USDOL/OIG), a system of records... AND ACCESS TO RECORDS UNDER THE PRIVACY ACT OF 1974 Exemption of Records Systems Under the Privacy Act § 71.52 Specific exemptions pursuant to subsection (k)(5) of the Privacy Act. (a) The following systems...

  2. 29 CFR 71.51 - Specific exemptions pursuant to subsection (k)(2) of the Privacy Act.

    Science.gov (United States)

    2010-07-01

    ... (Investigative Case Tracking Systems/Audit Information Reporting Systems, USDOL/OIG), a system of records... AND ACCESS TO RECORDS UNDER THE PRIVACY ACT OF 1974 Exemption of Records Systems Under the Privacy Act § 71.51 Specific exemptions pursuant to subsection (k)(2) of the Privacy Act. (a) The following systems...

  3. Design requirements for new nuclear reactor facilities in Canada (focus on important improvements from RD-337 version 1 of 2008)

    International Nuclear Information System (INIS)

    Shim, S.; Harwood, C.; Ohn, M-Y; Liu, Y.C.; Young, T.

    2014-01-01

    The Canadian Nuclear Safety Commission (CNSC) has established the regulatory framework that includes the documentation of the requirements and guidance for each of CNSC's 14 Safety and Control Areas, one important area being the design of nuclear power plants (NPPs). For the design area, the CNSC published RD-337 version 1 Design of New Nuclear Power Plants in 2008. As such regulatory documents are reviewed on a regular basis, this document was recently updated as RD-337 version 2, and its guidance document GD-337, Guidance for the Design of New Nuclear Power Plants was developed to provide guidance on how to meet the requirements. REGDOC-2.5.2 Design of Reactor Facilities: Nuclear Power Plants that combines RD-337 version 2 and GD-337 version 1 was presented to the Commission on March 27, 2014 after two rounds of consultation with stakeholders, and was subsequently published in May 28, 2014. Although REGDOC-2.5.2 maintains the structure and the contents nearly the same as RD-337 version 1, it introduces several important improvements to: Include GD-337 guidance for further clarity to applicants, licensees and vendors on how to meet the requirements. This guidance provides the review criteria considered in CNSC staff's review in a transparent way; Ensure alignment with international standards including recent IAEA SSR 2/1, Safety of Nuclear Power Plants: Design; Implement CNSC Fukushima Task Force Report findings that pertain to the design of reactor facilities for severe accidents; and, Make necessary improvements such as addition of requirements for cyber security. This paper describes the overall regulatory framework related to CNSC's design requirements and guidance for NPPs, and focus on the important improvements included in REGDOC-2.5.2 and their reasoning. (author)

  4. Design requirements for new nuclear reactor facilities in Canada (focus on important improvements from RD-337 version 1 of 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Shim, S.; Harwood, C.; Ohn, M-Y; Liu, Y.C.; Young, T. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2014-07-01

    The Canadian Nuclear Safety Commission (CNSC) has established the regulatory framework that includes the documentation of the requirements and guidance for each of CNSC's 14 Safety and Control Areas, one important area being the design of nuclear power plants (NPPs). For the design area, the CNSC published RD-337 version 1 Design of New Nuclear Power Plants in 2008. As such regulatory documents are reviewed on a regular basis, this document was recently updated as RD-337 version 2, and its guidance document GD-337, Guidance for the Design of New Nuclear Power Plants was developed to provide guidance on how to meet the requirements. REGDOC-2.5.2 Design of Reactor Facilities: Nuclear Power Plants that combines RD-337 version 2 and GD-337 version 1 was presented to the Commission on March 27, 2014 after two rounds of consultation with stakeholders, and was subsequently published in May 28, 2014. Although REGDOC-2.5.2 maintains the structure and the contents nearly the same as RD-337 version 1, it introduces several important improvements to: Include GD-337 guidance for further clarity to applicants, licensees and vendors on how to meet the requirements. This guidance provides the review criteria considered in CNSC staff's review in a transparent way; Ensure alignment with international standards including recent IAEA SSR 2/1, Safety of Nuclear Power Plants: Design; Implement CNSC Fukushima Task Force Report findings that pertain to the design of reactor facilities for severe accidents; and, Make necessary improvements such as addition of requirements for cyber security. This paper describes the overall regulatory framework related to CNSC's design requirements and guidance for NPPs, and focus on the important improvements included in REGDOC-2.5.2 and their reasoning. (author)

  5. Design of the PISCES-Upgrade facility

    International Nuclear Information System (INIS)

    Waganer, L.M.; Doerner, R.

    1994-01-01

    The PISCES-Upgrade facility is currently in the design and fabrication phases for the University of California. McDonnell Douglas is under contract to develop this experimental facility in order to enhance the capability for investigation of fusion materials erosion-redeposition and edge plasma behaviors. The advance in facility capability requires innovative design approaches and application of sophisticated analysis techniques

  6. 202-S Hexone Facility supplemental information to the Hanford Facility Contingency Plan

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-03-01

    This document is a unit-specific contingency plan for the 202-S Hexone Facility and is intended to be used as a supplement to the Hanford Facility Contingency Plan. This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of WAC 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units. The 202-S Hexone Facility is not used to process radioactive or nonradioactive hazardous material. Radioactive, dangerous waste material is contained in two underground storage tanks, 276-S-141 and 276-S-142. These tanks do not present a significant hazard to adjacent facilities, personnel, or the environment. Currently, dangerous waste management activities are not being applied at the tanks. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the 202-S Hexone Facility

  7. 40 CFR 35.925-1 - Facilities planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Facilities planning. 35.925-1 Section... Facilities planning. That, if the award is for step 2, step 3, or step 2=3 grant assistance, the facilities planning requirements in § 35.917 et seq. have been met. ...

  8. Steel structures for nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    In the guide the requirements concerning design and fabrication of steel structures for nuclear facilities and documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are presented. Furthermore, regulations concerning inspection of steel structures during construction of nuclear facilities and during their operation are set forth

  9. Monitored Retrievable Storage System Requirements Document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design.

  10. 33-GVA interrupter test facility

    International Nuclear Information System (INIS)

    Parsons, W.M.; Honig, E.M.; Warren, R.W.

    1979-01-01

    The use of commercial ac circuit breakers for dc switching operations requires that they be evaluated to determine their dc limitations. Two 2.4-GVA facilities have been constructed and used for this purpose at LASL during the last several years. In response to the increased demand on switching technology, a 33-GVA facility has been constructed. Novel features incorporated into this facility include (1) separate capacitive and cryogenic inductive energy storage systems, (2) fiber-optic controls and optically-coupled data links, and (3) digital data acquisition systems. Facility details and planned tests on an experimental rod-array vacuum interrupter are presented

  11. 76 FR 22611 - Specified Tax Return Preparers Required To File Individual Income Tax Returns Using Magnetic...

    Science.gov (United States)

    2011-04-22

    ... Specified Tax Return Preparers Required To File Individual Income Tax Returns Using Magnetic Media... Register on Wednesday, March 30, 2011 (76 FR 17521) providing guidance to specified tax return preparers who prepare and file individual income tax returns using magnetic media pursuant to section 6011(e)(3...

  12. Main principles of development stationary training facilities

    International Nuclear Information System (INIS)

    Tsiptsyura, R.D.

    1986-01-01

    The designation of stationary training facilities is shown and the main requirements for them are formulated. When considering the above-mentioned requirements, special attention was paid to obligatory correspondence between training experience and practical skill of an operator. It is shown, that the switchboard block is the major unit of the training facility, which should develop skills and habits of an operator

  13. Realities of proximity facility siting

    International Nuclear Information System (INIS)

    DeMott, D.L.

    1981-01-01

    Numerous commercial nuclear power plant sites have 2 to 3 reactors located together, and a group of Facilities with capabilities for fuel fabrication, a nuclear reactor, a storage area for spent fuel, and a maintenance area for contaminated equipment and radioactive waste storage are being designed and constructed in the US. The proximity of these facilities to each other provides that the ordinary flow of materials remain within a limited area. Interactions between the various facilities include shared resources such as communication, fire protection, security, medical services, transportation, water, electrical, personnel, emergency planning, transport of hazardous material between facilities, and common safety and radiological requirements between facilities. This paper will explore the advantages and disadvantages of multiple facilities at one site. Problem areas are identified, and recommendations for planning and coordination are discussed

  14. A modern depleted uranium manufacturing facility

    International Nuclear Information System (INIS)

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980's, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality

  15. 40 CFR 35.917 - Facilities planning (step 1).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Facilities planning (step 1). 35.917... Facilities planning (step 1). (a) Sections 35.917 through 35.917-9 establish the requirements for facilities... the facilities planning provisions of this subpart before award of step 2 or step 3 grant assistance...

  16. Preliminary design for a maglev development facility

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. (Argonne National Lab., IL (United States)); Zhang, Z.Y. (Polytechnic Univ., Brooklyn, NY (United States)); Myers, G.; Cvercko, A. (Sterling Engineering, Westchester, IL (United States)); Williams, J.R. (Alfred Benesch and Co., Chicago, IL (United States))

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  17. Radioactive material inventory control at a waste characterization facility

    International Nuclear Information System (INIS)

    Yong, L.K.; Chapman, J.A.; Schultz, F.J.

    1996-01-01

    Due to the recent introduction of more stringent Department of Energy (DOE) regulations and requirements pertaining to nuclear and criticality safety, the control of radioactive material inventory has emerged as an important facet of operations at DOE nuclear facilities. In order to comply with nuclear safety regulations and nuclear criticality requirements, radioactive material inventories at each nuclear facility have to be maintained below limits specified for the facility in its safety authorization basis documentation. Exceeding these radioactive material limits constitutes a breach of the facility's nuclear and criticality safety envelope and could potentially result in an accident, cause a shut-down of the facility, and bring about imminent regulatory repercussions. The practice of maintaining control of radioactive material, especially sealed and unsealed sources, is commonplace and widely implemented; however, the requirement to track the entire radioactivity inventory at each nuclear facility for the purpose of ensuring nuclear safety is a new development. To meet the new requirements, the Applied Radiation Measurements Department at Oak Ridge National Laboratory (ORNL) has developed an information system, called the open-quotes Radioactive Material Inventory Systemclose quotes (RMIS), to track the radioactive material inventory at an ORNL facility, the Waste Examination and Assay Facility (WEAF). The operations at WEAF, which revolve around the nondestructive assay and nondestructive examination of waste and related research and development activities, results in an ever-changing radioactive material inventory. Waste packages and radioactive sources are constantly being brought in or taken out of the facility; hence, use of the RMIS is necessary to ensure that the radioactive material inventory limits are not exceeded

  18. 77 FR 28790 - Medical Loss Ratio Requirements Under the Patient Protection and Affordable Care Act

    Science.gov (United States)

    2012-05-16

    ... Internet Web site of the Department of Health and Human Services.'' In addition, section 1103(b) of the... other things, ``require the inclusion of information on the percentage of total premium revenue expended..., pursuant to this final rule, for the 2011 MLR reporting year. \\5\\ Source: Agency for Healthcare Research...

  19. Facilities evaluation report

    International Nuclear Information System (INIS)

    Sloan, P.A.; Edinborough, C.R.

    1992-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities

  20. The National Ignition Facility and Industry

    Science.gov (United States)

    Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.

    1994-09-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.

  1. The National Ignition Facility and industry

    International Nuclear Information System (INIS)

    Harri, J.G.; Lowdermilk, W.H.; Paisner, J.A.; Boyes, J.D.; Kumpan, S.A.; Sorem, M.S.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of national construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project

  2. Shielding design for positron emission tomography facility

    International Nuclear Information System (INIS)

    Abdallah, I.I.

    2007-01-01

    With the recent advent of readily available tracer isotopes, there has been marked increase in the number of hospital-based and free-standing positron emission tomography (PET) clinics. PET facilities employ relatively large activities of high-energy photon emitting isotopes, which can be dangerous to the health of humans and animals. This coupled with the current dose limits for radiation worker and members of the public can result in shielding requirements. This research contributes to the calculation of the appropriate shielding to keep the level of radiation within an acceptable recommended limit. Two different methods were used including measurements made at selected points of an operating PET facility and computer simulations by using Monte Carlo Transport Code. The measurements mainly concerned the radiation exposure at different points around facility using the survey meter detectors and Thermoluminescent Dosimeters (TLD). Then the set of manual calculation procedures were used to estimate the shielding requirements for a newly built PEF facility. The results from the measurement and the computer simulation were compared to the results obtained from the set manual calculation procedure. In general, the estimated weekly dose at the points of interest is lower than the regulatory limits for the little company of Mary Hospital. Furthermore, the density and the HVL for normal strength concrete and clay bricks are almost similar. In conclusion, PET facilities present somewhat different design requirements and are more likely to require additional radiation shielding. Therefore, existing shields at the little Company of Mary Hospital are in general found to be adequate and satisfactory and additional shielding was found necessary at the new PET facility in the department of Nuclear Medicine of the Dr. George Mukhari Hospital. By use of appropriate design, by implying specific shielding requirements and by maintaining good operating practices, radiation doses to

  3. 76 FR 6497 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Industrial...

    Science.gov (United States)

    2011-02-04

    ..., 15 U.S.C. 4301 et seq. (``the Act''), Industrial Nacromolecular Crystallography Association (``INCA... activity of the group research project. Membership in this group research project remains open, and INCA..., INCA filed its original notification pursuant to Section 6(a) of the Act. The Department of Justice...

  4. 75 FR 57502 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Robotics...

    Science.gov (United States)

    2010-09-21

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Robotics Technology Consortium, Inc. Correction In notice document 2010-22215 beginning on page 54914 in the issue of Thursday, July 9, 2010, make the following corrections: 1. On page...

  5. 75 FR 13781 - Notice of Lodging of Consent Decree Pursuant to the Clean Water Act

    Science.gov (United States)

    2010-03-23

    ... Operating Partnership LP, Civ. A. No. 10-106, was lodged with the United States Court for the District of... Act, 33 U.S.C. 1321, against Defendant NuStar Pipeline Operating Partnership LP. The Complaint alleges that Defendant failed to comply with regulations issued pursuant to Section 311(j)(5) of the CWA, 33 U...

  6. Design of an integrated non-destructive plutonium assay facility

    International Nuclear Information System (INIS)

    Moore, C.B.

    1984-01-01

    The Department of Energy requires improved technology for nuclear materials accounting as an essential part of new plutonium processing facilities. New facilities are being constructed at the Savannah River Plant by the Du Pont Company, Operating Contractor, to recover plutonium from scrap and waste material generated at SRP and other DOE contract processing facilities. This paper covers design concepts and planning required to incorporate state-of-the-art plutonium assay instruments developed at several national laboratories into an integrated, at-line nuclear material accounting facility operating in the production area. 3 figures

  7. Sandia National Laboratories Facilities Management and Operations Center Design Standards Manual

    Energy Technology Data Exchange (ETDEWEB)

    Fattor, Steven [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The manual contains general requirements that apply to nonnuclear and nonexplosive facilities. For design and construction requirements for modifications to nuclear or explosive facilities, see the project-specific design requirements noted in the Design Criteria.

  8. Regulatory facility guide for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  9. Seismic procurement requirements at the FPR (Fuel Processing Restoration) facility at INEL (Idaho National Engineering Laboratory)

    International Nuclear Information System (INIS)

    Bingham, G.E.; Hardy, G.S.; Griffin, M.J.

    1989-01-01

    Traditional methods used to seismically qualify equipment for new facilities has been either by testing or analysis. Testing programs are generally expensive and their input loadings are conservative. It is also generally recognized that standard seismic analysis techniques produce overly conservative results. Seismic loads and response levels for equipment are typically calculated that far exceed the values actually experienced in earthquakes. A more efficient method for demonstrating the seismic adequacy of equipment has been developed which is based on conclusions derived from studying the performance of equipment that has been subjected to actual earthquake excitations. The earthquake experience data concludes that damage or malfunction to most types of equipment subjected to earthquakes is far less than that predicted by traditional testing and analysis techniques. The use of conclusions derived from experience data provides a more realistic approach in assessing the seismic ruggedness of equipment. By recognizing this inherently higher capacity that exists in specific classes of equipment, vendors can often supply off the shelf equipment without the need to perform expensive modifications to meet requirements imposed by conservative qualification analyses. This paper will describe the development of the experienced based method for equipment seismic qualification and its application at the FPR facility

  10. Compact Ignition Tokamak conventional facilities optimization

    International Nuclear Information System (INIS)

    Commander, J.C.; Spang, N.W.

    1987-01-01

    A high-field ignition machine with liquid-nitrogen-cooled copper coils, designated the Compact Ignition Tokamak (CIT), is proposed for the next phase of the United States magnetically confined fusion program. A team of national laboratory, university, and industrial participants completed the conceptual design for the CIT machine, support systems and conventional facilities. Following conceptual design, optimization studies were conducted with the goal of improving machine performance, support systems design, and conventional facilities configuration. This paper deals primarily with the conceptual design configuration of the CIT conventional facilities, the changes that evolved during optimization studies, and the revised changes resulting from functional and operational requirements (F and ORs). The CIT conventional facilities conceptual design is based on two premises: (1) satisfaction of the F and ORs developed in the CIT building and utilities requirements document, and (2) the assumption that the CIT project will be sited at the Princeton Plasma Physics Laboratory (PPPL) in order that maximum utilization can be made of existing Tokamak Fusion Test Reactor (TFTR) buildings and utilities. The optimization studies required reevaluation of the F and ORs and a second look at TFTR buildings and utilities. Some of the high-cost-impact optimization studies are discussed, including the evaluation criteria for a change from the conceptual design baseline configuration. The revised conventional facilities configuration are described and the estimated cost impact is summarized

  11. Empowering Facilities Teams through Technology

    Science.gov (United States)

    Cormier, Scott

    2013-01-01

    Facilities departments at colleges and universities are facing the same challenge: how not to do just the most projects, but also the right projects with the limited funds they are given. In order to make the best decisions, they need more control over the capital planning process, which requires accurate, current facility condition data. Each…

  12. Life Sciences Centrifuge Facility assessment

    Science.gov (United States)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  13. Requirements for a long-term safety certification for chemotoxic substances stored in a final storage facility for high radioactive and heat-generating radioactive waste in rock salt formations

    International Nuclear Information System (INIS)

    Tholen, M.; Hippler, J.; Herzog, C.

    2007-01-01

    Within the scope of a project funded by the German Federal Ministry of Economics and Technology (Bundesministerium fuer Wirtschaft und Technologie, BMWi), a safety certification concept for a future permanent final storage for high radioactive and heat-generating radioactive waste (HAW disposal facility) in rock salt formations is being prepared. For a reference concept, compliance with safety requirements in regard to operational safety as well as radiological and non-radiological protection objectives related to long-term safety, including ground water protection, will be evaluated. This paper deals with the requirements for a long-term safety certification for the purpose of protecting ground water from chemotoxic substances. In particular, longterm safety certifications for the permanent disposal of radioactive waste in a HAW disposal facility in rock salt formations and for the dumping of hazardous waste in underground storage facilities in rock salt formations are first discussed, followed by an evaluation as to whether these methods can be applied to the long-term safety certification for chemotoxic substances. The authors find it advisable to apply the long-term safety certification for underground storage facilities to the long-term safety certification for chemotoxic substances stored in a HAW disposal facility in rock salt formations. In conclusion, a corresponding certification concept is introduced. (orig.)

  14. Design of GMP compliance radiopharmaceutical production facility in MINT

    International Nuclear Information System (INIS)

    Anwar Abd Rahman; Shaharum Ramli; M Rizal Mamat Ibrahim; Rosli Darmawan; Yusof Azuddin Ali; Jusnan Hashim

    2005-01-01

    In 1985, MINT built the only radiopharmaceutical production facility in Malaysia. The facility was designed based on IAEA (International Atomic Energy Agency) standard guidelines which provide radiation safety to the staff and the surrounding environment from radioactive contamination. Since 1999, BPFK (Biro Pengawalan Farmaseutikal Kebangsaan) has used the guidelines from Pharmaceutical Inspection Convention Scheme (PICS) to meet the requirements of the Good Manufacturing Practice (GMP) for Pharmaceutical Products. In the guidelines, the pharmaceutical production facility shall be designed based on clean room environment. In order to design a radiopharmaceutical production facility, it is important to combine the concept of radiation safety and clean room to ensure that both requirements from GMP and IAEA are met. The design requirement is necessary to set up a complete radiopharmaceutical production facility, which is safe, has high production quality and complies with the Malaysian and International standards. (Author)

  15. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  16. Automation in a material processing/storage facility

    International Nuclear Information System (INIS)

    Peterson, K.; Gordon, J.

    1997-01-01

    The Savannah River Site (SRS) is currently developing a new facility, the Actinide Packaging and Storage Facility (APSF), to process and store legacy materials from the United States nuclear stockpile. A variety of materials, with a variety of properties, packaging and handling/storage requirements, will be processed and stored at the facility. Since these materials are hazardous and radioactive, automation will be used to minimize worker exposure. Other benefits derived from automation of the facility include increased throughput capacity and enhanced security. The diversity of materials and packaging geometries to be handled poses challenges to the automation of facility processes. In addition, the nature of the materials to be processed underscores the need for safety, reliability and serviceability. The application of automation in this facility must, therefore, be accomplished in a rational and disciplined manner to satisfy the strict operational requirements of the facility. Among the functions to be automated are the transport of containers between process and storage areas via an Automatic Guided Vehicle (AGV), and various processes in the Shipping Package Unpackaging (SPU) area, the Accountability Measurements (AM) area, the Special Isotope Storage (SIS) vault and the Special Nuclear Materials (SNM) vault. Other areas of the facility are also being automated, but are outside the scope of this paper

  17. 78 FR 28701 - Unblocking of Specially Designated Nationals and Blocked Persons Pursuant to Executive Order 12978

    Science.gov (United States)

    2013-05-15

    ... property and interests in property were blocked pursuant to the Order: 1. ARBOLEDA ARROYAVE, Pedro Nicholas (a.k.a. ARBOLEDA ARROYAVE, Pedro Nicolas), c/o DEPOSITO POPULAR DE DROGAS S.A., Cali, Colombia; c/ o...., Bogota, Colombia; Cedula No. 11352426 (Colombia) (individual) [SDNT]. 4. DUQUE MARTINEZ, Diego Fernando...

  18. 76 FR 9812 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Halon...

    Science.gov (United States)

    2011-02-22

    ... Production Act of 1993--Halon Alternatives Research Corporation, Inc. Notice is hereby given that, on January 18, 2011, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), Halon Alternatives Research Corporation, Inc. (``HARC'') has...

  19. Waste isolation facility description: bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria. (LK)

  20. Waste isolation facility description: bedded salt

    International Nuclear Information System (INIS)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria

  1. Design of the PRIDE Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, Won Myung; Lee, Eun Pyo; Cho, Il Je; Kwon, Kie Chan; Hong, Dong Hee; Lee, Won Kyung; Ku, Jeong Hoe

    2009-01-01

    From 2007, KAERI is developing a PyRoprocess Integrated inactive DEmonstration facility (the PRIDE facility). The maximum annual treatment capacity of this facility will be a 10 ton-HM. The process will use a natural uranium feed material or a natural uranium mixed with some surrogate material for a simulation of a spent fuel. KAERI has also another plan to construct a demonstration facility which can treat a real spent fuel by pyroprocessing. This facility is called by ESPF, Engineering Scale Pyroprocess Facility. The ESPF will have the same treatment capability of spent fuel with the PRIDE facility. The only difference between the PRIDE and the ESPF is a radiation shielding capability. From the PRIDE facility designing works and demonstration with a simulated spent fuel after construction, it will be able to obtain the basic facility requirements, remote operability, interrelation properties between process equipment for designing of the ESPF. The flow sheet of the PRIDE processes is composed of five main processes, such as a decladding and voloxidation, an electro-reduction, an electrorefining, an electro-winning, and a salt waste treatment. The final products from the PRIDE facility are a simulated TRU metal and U metal ingot

  2. Consenting process for radiation facilities. V. 4

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  3. Consenting process for radiation facilities. V. 3

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  4. Consenting process for radiation facilities. V. 1

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  5. Design considerations for the Yucca Mountain project exploratory shaft facility

    International Nuclear Information System (INIS)

    Bullock, R.L. Sr.

    1990-01-01

    This paper reports on the regulatory/requirements challenges of this project which exist because this is the first facility of its kind to ever be planned, characterized, designed, and built under the purview of a U.S. Nuclear Regulatory Agency. The regulations and requirements that flow down to the Architect/Engineer (A/E) for development of the Exploratory Shaft Facility (ESF) design are voluminous and unique to this project. The subsurface design and construction of the ESF underground facility may eventually become a part of the future repository facility and, if so, will require licensing by the Nuclear Regulatory Commission (NRC). The Fenix and Scisson of Nevada-Yucca Mountain Project (FSN-YMP) group believes that all of the UMP design and construction related activities, with good design/construct control, can be performed to meet all engineering requirements, while following a strict quality assurance program that will also meet regulatory requirements

  6. Hanford facilities tracer study report (315 Water Treatment Facility)

    International Nuclear Information System (INIS)

    Ambalam, T.

    1995-01-01

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations

  7. Facility effluent monitoring plan for the B plant

    International Nuclear Information System (INIS)

    Lesser, J.E.

    1994-09-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plant assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated every three years

  8. 76 FR 34252 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; Portland Cement...

    Science.gov (United States)

    2011-06-13

    ... Production Act of 1993; Portland Cement Association Notice is hereby given that, on May 12, 2011, pursuant to.... (``the Act''), Portland Cement Association (``PCA'') has filed written notifications simultaneously with... plaintiffs to actual damages under specified circumstances. Specifically, Drake Cement, LLC, Scottsdale, AZ...

  9. 77 FR 1085 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM International

    Science.gov (United States)

    2012-01-09

    ... Production Act of 1993--ASTM International Notice is hereby given that, on December 5, 2011, pursuant to.... (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with the..., ASTM has provided an updated list of current, ongoing ASTM standards activities originating between...

  10. 78 FR 58559 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Cable Television...

    Science.gov (United States)

    2013-09-24

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cable Television Laboratories, Inc. Notice is hereby given that, on August 26, 2013... seq. (``the Act''), Cable Television Laboratories, Inc. (``CableLabs'') has filed written...

  11. 77 FR 74877 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; Cable Television...

    Science.gov (United States)

    2012-12-18

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993; Cable Television Laboratories, Inc. Notice is hereby given that, on November 13, 2012... seq. (``the Act''), Cable Television Laboratories, Inc. (``CableLabs'') has filed written...

  12. 78 FR 49770 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Cable Television...

    Science.gov (United States)

    2013-08-15

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cable Television Laboratories, Inc. Notice is hereby given that, on July 9, 2013... seq. (``the Act''), Cable Television Laboratories, Inc. (``CableLabs'') has filed written...

  13. 78 FR 54277 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Cable Television...

    Science.gov (United States)

    2013-09-03

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cable Television Laboratories, Inc. Notice is hereby given that, on August 1, 2013... seq. (``the Act''), Cable Television Laboratories, Inc. (``CableLabs'') has filed written...

  14. 75 FR 79025 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Cable Television...

    Science.gov (United States)

    2010-12-17

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cable Television Laboratories, Inc. Notice is hereby given that, on November 4, 2010... seq. (``the Act''), Cable Television Laboratories, Inc. (``CableLabs'') has filed written...

  15. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  16. F/H Area high level waste removal plan ampersand schedule as required by the Federal Facility Agreement for the Savannah River Site

    International Nuclear Information System (INIS)

    Hunter, M.A.

    1993-11-01

    The F and H-area HLW Tank Farms are one component of a larger integrated waste treatment system consisting of facilities designed for the overall processing of several radioactive waste streams resulting from nuclear material processing. Section IX.E of the SRS Federal Facility Agreement requires the DOE to submit to the EPA and SCDHEC for review and approval, a plan(s) and schedule(s) for the removal from service of waste tank systems(s)/component(s) that do not meet secondary containment standards, or that leak or have leaked. The Plan and Schedule for removal from service of these waste tanks is shown in Appendices A and B, respectively. Other portions of this package which include schedule dates are provided for information only. The SRS intends to remove systems from service as opposed to providing secondary containment for non-compliant systems. The systems that do not meet secondary containment requirements or that have leaked (as determined by tank assessment reports) include High Level Waste Tanks No. 1--24 along with corresponding ancillary equipment

  17. Legal regime of water management facilities

    Directory of Open Access Journals (Sweden)

    Salma Jožef

    2013-01-01

    Full Text Available The paper analyzes the legal regime of water management facilities in the light of Serbian, foreign and European law. Different divisions of water management facilities are carried out (to public and private ones, natural and artificial ones, etc., with determination of their legal relevance. Account is taken of the issue of protection from harmful effects of waters to such facilities, as well. The paper points also to rules on the water management facilities, from acts of planning, to individual administrative acts and measures for maintenance of required qualitative and quantitative condition of waters, depending on their purpose (general use or special, commercial use o waters. Albeit special rules on water management facilities exist, due to the natural interlocking between all the components of the environment (water, air and soil, a comprehensive approach is required. A reference is made to other basic principles of protection of water management facilities as well, such as the principle of prevention, principle of sustainable development and the principle "polluter pays". The last one represents the achievement of contemporary law, which deviates from the idea accepted in the second half of 20th century that supported the socialization of risk from harmful effects of waters.

  18. 75 FR 24971 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Intellegere...

    Science.gov (United States)

    2010-05-06

    ... Production Act of 1993--Intellegere Foundation Notice is hereby given that, on April 7, 2010, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq...) to facilitate scientific collaboration by addressing challenges of national security; (b) to promote...

  19. 75 FR 20003 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Wireless...

    Science.gov (United States)

    2010-04-16

    ... circumstances. Specifically, Freescale Semiconductor, Inc., Austin, TX; and Cooper Industries, Houston, TX have... published a notice in the Federal Register pursuant to section 6(b) of the Act on September 18, 2008 (73 FR 54170). The last notification was filed with the Department on December 2, 2008. A notice was published...

  20. Hexone Storage and Treatment Facility closure plan

    International Nuclear Information System (INIS)

    1992-11-01

    The HSTF is a storage and treatment unit subject to the requirements for the storage and treatment of dangerous waste. Closure is being conducted under interim status and will be completed pursuant to the requirements of Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and WAC 173-303-640. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. The known hazardous/dangerous waste remaining at the site before commencing other closure activities consists of the still vessels, a tarry sludge in the storage tanks, and residual contamination in equipment, piping, filters, etc. The treatment and removal of waste at the HSTF are closure activities as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and WAC 173-303

  1. DRY TRANSFER FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2005-01-01

    This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Dry Transfer Facility Description Document'' (BSC 2005 [DIRS 173737], p. 3-8). A description of the changes is as follows: (1) Update the supporting calculations for the various Category 1 and 2 event sequences as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2005 [DIRS 171429], Section 7). (2) Update the criticality safety calculations for the DTF staging racks and the remediation pool to reflect the current design. This design calculation focuses on commercial spent nuclear fuel (SNF) assemblies, i.e., pressurized water reactor (PWR) and boiling water reactor (BWR) SNF. U.S. Department of Energy (DOE) Environmental Management (EM) owned SNF is evaluated in depth in the ''Canister Handling Facility Criticality Safety Calculations'' (BSC 2005 [DIRS 173284]) and is also applicable to DTF operations. Further, the design and safety analyses of the naval SNF canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. Also, note that the results for the Monitored Geologic Repository (MGR) Site specific Cask (MSC) calculations are limited to the

  2. 78 FR 73883 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Die Products...

    Science.gov (United States)

    2013-12-09

    ... Production Act of 1993--Die Products Consortium Notice is hereby given that, on November 7, 2013, pursuant to.... (``the Act''), Die Products Consortium (``DPC'') has filed written notifications simultaneously with the Attorney General and the Federal Trade Commission disclosing changes in its membership. The notifications...

  3. 75 FR 30440 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM International

    Science.gov (United States)

    2010-06-01

    ... Production Act of 1993--ASTM International Notice is hereby given that, on May 6, 2010, pursuant to Section 6... Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with the Attorney... recovery of antitrust plaintiffs to actual damages under specified circumstances. Specifically, ASTM has...

  4. 75 FR 11196 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM International

    Science.gov (United States)

    2010-03-10

    ... Production Act of 1993--ASTM International Notice is hereby given that, on February 16, 2010, pursuant to.... (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with the..., ASTM has provided an updated list of current, ongoing ASTM standards activities originating between May...

  5. 75 FR 65657 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM International

    Science.gov (United States)

    2010-10-26

    ... Production Act of 1993--ASTM International Notice is hereby given that, on September 23, 2010, pursuant to.... (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with the..., ASTM has provided an updated list of current, ongoing ASTM standards activities originating between May...

  6. 76 FR 63658 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; ASTM International

    Science.gov (United States)

    2011-10-13

    ... Production Act of 1993; ASTM International Notice is hereby given that, on August 31, 2011, pursuant to.... (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with the..., ASTM has provided an updated list of current, ongoing ASTM standards activities originating between May...

  7. EVA Training and Development Facilities

    Science.gov (United States)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  8. Spent fuel storage facility, Kalpakkam

    International Nuclear Information System (INIS)

    Shreekumar, B.; Anthony, S.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Kalpakkam is designed to store spent fuel arising from PHWRs. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Kalpakkam was hot commissioned in December 2006. All systems, structures and components (SSCs) related to safety are designed to meet the operational requirements

  9. Standard Specification for Nuclear Facility Transient Worker Records

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This specification covers the required content and provides retention requirements for records needed for in-processing of nuclear facility transient workers. 1.2 This specification applies to records to be used for in-processing only. 1.3 This specification is not intended to cover specific skills records (such as equipment operating licenses, ASME inspection qualifications, or welding certifications). 1.4 This specification does not reduce any regulatory requirement for records retention at a licensed nuclear facility. Note 1—Nuclear facilities operated by the U.S. Department of Energy (DOE) are not licensed by the U.S. Nuclear Regulatory Commission (NRC), nor are other nuclear facilities that may come under the control of the U.S. Department of Defense (DOD) or individual agreement states. The references in this specification to licensee, the U.S. NRC Regulatory Guides, and Title 10 of the U.S. Code of Federal Regulations are to imply appropriate alternative nomenclature with respect to DOE, DOD...

  10. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    Science.gov (United States)

    Beck, David F.

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  11. Facility Effluent Monitoring Plan for the 222-S Laboratory

    International Nuclear Information System (INIS)

    Robinson, A.V.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems against applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. The current operation of the 222-S facilities includes the provision of analytical and radiological chemistry services in support of Hanford Site processing plants. The emphasis is on waste management, chemical processing, environmental monitoring effluent programs at B Plant, the Uranium Oxide Plant, Tank Farms, the 242-A Evaporator, the Waste Encapsulation and Storage Facility, the Plutonium-Uranium Extraction Facility, the Plutonium Finishing Plant, process development/impact activities, and essential materials. The laboratory also supplies analytical services in support of ongoing waste tank characterization

  12. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental ampersand Regulatory Planning ampersand Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria

  13. Hanford Facility contingency plan

    International Nuclear Information System (INIS)

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials

  14. 29 CFR 516.22 - Employees engaged in charter activities of carriers pursuant to section 7(n) of the Act.

    Science.gov (United States)

    2010-07-01

    ... respect to each employee employed in charter activities for a street, suburban or interurban electric railway or local trolley or motorbus carrier pursuant to section 7(n) of the Act, the employer shall...

  15. 9 CFR 590.540 - Spray process drying facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Spray process drying facilities. 590.540 Section 590.540 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF..., Processing, and Facility Requirements § 590.540 Spray process drying facilities. (a) Driers shall be of a...

  16. 77 FR 5573 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Portland Cement...

    Science.gov (United States)

    2012-02-03

    ... Production Act of 1993--Portland Cement Association Notice is hereby given that, on January 6, 2012, pursuant... seq. (``the Act''), Portland Cement Association (``PCA'') has filed written notifications..., Newark, DE, has been added as a party to this venture. Also, Texas-Lehigh Cement Company, Buda, TX...

  17. 75 FR 80536 - Notice Pursuant to the National Cooperative Research and Production Act of 1993 National Warheads...

    Science.gov (United States)

    2010-12-22

    ... Production Act of 1993 National Warheads and Energetics Consortium Notice is hereby given that, on November 30, 2010, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993... Mountain Scientific Laboratory, Centennial, CO; Rocky Research, Boulder City, NV; The Research Foundation...

  18. 78 FR 67401 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Advanced Media...

    Science.gov (United States)

    2013-11-12

    ... Production Act of 1993--Advanced Media Workflow Association, Inc. Notice is hereby given that, on September 24, 2013, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993..., AudioVisual Preservation Solutions, New York, NY; Chellomedia Direct Programming, B.V., Amsterdam...

  19. 77 FR 26045 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Accellera Systems...

    Science.gov (United States)

    2012-05-02

    ..., IRELAND; Freescale Semiconductor, Austin, TX; IBM, Hopewell Junction, NY; Jasper Design Automation..., San Jose, CA; Vayavya Labs, Belguam, INDIA; Verilab, Austin, TX; and Xilinx, Inc., San Jose, CA, have.... The Department of Justice published a notice in the Federal Register pursuant to Section 6(b) of the...

  20. Interpreting the SARA and RCRA training requirements

    International Nuclear Information System (INIS)

    Moreland, W.M.; Wells, S.M.

    1987-01-01

    The Resource Conservation and Recovery Act (RCRA) and the Superfund Amendments and Reauthorization Act (SARA) promulgated by the EPA (RCRA) and the OSHA (SARA) require hazardous materials training for all individuals working with hazardous materials. Facilities that are involved in the generation, storage, treatment, transportation, or disposal/removal of hazardous materials/waste must comply with all relevant training regulations. Using the guidelines contained in the RCRA and SARA regulations, decisions must be made to determine: the type of regulatory requirement based on facility function (i.e., whether the facility is a RCRA or CERCLA facility). The type of training required for specific categories of workers (e.g. managers, supervisors, or general site workers). The level of training needed for each category of worker. This presentation outlines how the Environmental Compliance and Health Protection Technical Resources and Training Group, working with waste operations personnel, establishes specific training requirements