WorldWideScience

Sample records for facilities monitored include

  1. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  2. Near-facility environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W.; Johnson, A.R.; Markes, B.M.; McKinney, S.M.; Perkins, C.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the routine near-facility environmental monitoring programs which are presently being conducted at the Hanford Site. Several types of environmental media are sampled near nuclear facilities to monitor the effectiveness of waste management and restoration activities, and effluent treatment and control practices. These media include air, surface water and springs, surface contamination, soil and vegetation, investigative sampling (which can include wildlife), and external radiation. Sampling and analysis information and analytical results for 1994 for each of these media are summarized in this section. Additional data and more detailed information may be found in Westinghouse Hanford Company Operational Environmental Monitoring Annual Report, Calendar Year 1994.

  3. Facility effluent monitoring plan for the 327 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  4. Environmental monitoring of nuclear facilities

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Environmental monitoring of nuclear facilities is part of general monitoring for environmental radioactivity all over the territory of the Federal Republic of Germany. General principles of environmental monitoring were formulated by the ICRP in 1965. In 1974 guidelines for measures of monitoring the environment of NPP incorporating LWR were drafted, which helped to standardize environmental monitoring programs. Since 1958, data on environmental radioactivity from measurements by authorized laboratories have been published in reports. (DG)

  5. Environmental monitoring of nuclear facilities

    International Nuclear Information System (INIS)

    Winter, M.

    1983-01-01

    The objectives of one environmental monitoring program for nuclear facilities, are presented. The program in Federal Republic of Germany, its goals, its basic conditions, its regulations, and its dose limits are emphasized. (E.G.) [pt

  6. Facility effluent monitoring plan for the 325 Facility

    International Nuclear Information System (INIS)

    1998-01-01

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  7. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  8. Facility effluent monitoring plan for the 324 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  9. Laundry monitor for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Mitsuo (Toshiba Corp., Fuchu (Japan). Fuchu Works)

    1984-06-01

    A laundry monitor has been developed for the detection and cleansification of radiation contamination on the clothes, headgear, footgear, etc. of workers in nuclear facilities. With this monitor, measurement is made irrespective of the size and shape of the objects; a large-area plastic scintillation detector is incorporated; it has stable and highly sensitive characteristics, with the merits of swift measurement, economical operation and easy maintenance. Connected with a folding machine, automatic carrying and storing compartment through a conveyor, it is capable of saving energy and man power, contributing to scheduled operation, and improving the efficiency of the facilities.

  10. Laundry monitor for nuclear facilities

    International Nuclear Information System (INIS)

    Ishibashi, Mitsuo

    1984-01-01

    A laundry monitor has been developed for the detection and cleansification of radiation contamination on the clothes, headgear, footgear, etc. of workers in nuclear facilities. With this monitor, measurement is made irrespective of the size and shape of the objects ; a large-area plastic scintillation detector is incorporated ; it has stable and highly sensitive characteristics, with the merits of swift measurement, economical operation and easy maintenance. Connected with a folding machine, automatic carrying and storing compartment through a conveyor, it is capable of saving energy and man power, contributing to scheduled operation, and improving the efficiency of the facilities. (author)

  11. A systems approach to nuclear facility monitoring

    International Nuclear Information System (INIS)

    Argo, P.E.; Doak, J.E.; Howse, J.W.

    1996-01-01

    Sensor technology for use in nuclear facility monitoring has reached an advanced stage of development. Research on where to place these sensors in a facility and how to combine their outputs in a meaningful fashion does not appear to be keeping pace. In this paper, the authors take a global view of the problem where sensor technology is viewed as only one piece of a large puzzle. Other pieces of this puzzle include the optimal location and type of sensors used in a specific facility, the rate at which sensors record information, and the risk associated with the materials/processes at a facility. If the data are analyzed off-site, how will they be transmitted? Is real-time analysis necessary? Is one monitoring only the facility itself, or might one also monitor the processing that occurs there (e.g., tank levels and concentrations)? How is one going to combine the outputs from the various sensors to give us an accurate picture of the state of the facility? This paper will not try to answer all these questions, but rather it will attempt to stimulate thought in this area by formulating a systems approach to the problem demonstrated by a prototype system and a system proposed for an actual facility. The focus will be on the data analysis aspect of the problem. Future work in this area should focus on recommendations and guidelines for a monitoring system based upon the type of facility and processing that occurs there

  12. Facility effluent monitoring plan for the tank farms facilities

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.; Kenoyer, J.L.; Moeller, M.P.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum three years. A variety of liquid wastes are generated in processing treatment, and disposal operations throughout the Hanford Site. The Tank Farms Project serves a major role in Hanford Site waste management activities as the temporary repository for these wastes. Stored wastes include hazardous components regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and as by-product material regulated under the Atomic Energy Act of 1954. A total of 177 single- and double-shell tanks (SST and DST) have been constructed in the 200 East and 200 West Areas of the Hanford Site. These facilities were constructed to various designs from 1943 to 1986. The Tank Farms Project is comprised of these tanks along with various transfer, receiving, and treatment facilities

  13. Facility effluent monitoring plan determinations for the 200 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  14. A system approach to nuclear facility monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.E.; Doak, J.E.; Howse, J.W.

    1996-09-01

    Sensor technology for use in nuclear facility monitoring has reached and advanced stage of development. Research on where to place these sensors in a facility and how to combine their outputs in a meaningful fashion does not appear to be keeping pace. In this paper, we take a global view of the problem where sensor technology is viewed as only one piece of a large puzzle. Other pieces of this puzzle include the optimal location and type of sensors used in a specific facility, the rate at which sensors record information, and the risk associated with the materials/processes at a facility. If the data are analyzed off-site, how will they be transmitted? Is real-time analysis necessary? Are we monitoring only the facility itself, or might we also monitor the processing that occurs there? How are we going to combine the output from the various sensors to give us an accurate picture of the state of the facility? This paper will not try to answer all these questions, but rather it will attempt to stimulate thought in this area by formulating a systems approach to the problem demonstrated by a prototype system and a systems proposed for an actual facility. Our focus will be on the data analysis aspect of the problem.

  15. Facility effluent monitoring plan for the fast flux test facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Dahl, N.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  16. Environmental monitoring of nuclear facilities

    International Nuclear Information System (INIS)

    Papadopoulos, D.; Winter, M.

    1982-01-01

    Environmental monitoring adds to the control of emissions of radioactive substances from nuclear facilities. The radioactive substances released with the exhaust air and the liquid effluent result in impact levels in the immediate vicinity, which must be ascertained by measurement. Impact control serves for the quantitative assessment of man-made radioactivity in different media of relevant pathways and for the direct assessment of the radiation exposure of the public living in the vicinity. In this way, the radiation exposure of the environment, which can be calculated if the emission data and the meteorological diffusion parameters are known, is controlled directly. (orig./RW)

  17. Monitor for safety engineering facility

    International Nuclear Information System (INIS)

    Sato, Akira; Kaneda, Mitsunori.

    1982-01-01

    Purpose: To improve the reactor safety and decrease misoperation upon periodical inspection by instantly obtaining the judgement for the stand-by states in engineering safety facilities of a nuclear power plant. Constitution: Process inputs representing the states of valves, pumps, flowrates or the likes of the facility are gathered into an input device and inputted to a status monitor. The status of the facility inputted to the input device are judged for each of the inputs in a judging section and recognized as a present system stand-by pattern of the system (Valve) to be inspected. While on the other hand, a normal system stand-by pattern previously stored in a memory unit is read out by an instruction from an operator console and judged by comparison with the system stand-by pattern in a comparison section. The results are displayed on a display device. Upon periodical inspection, inspection procedures stored in the memory unit are displayed on the display device by the instruction from the operator console. (Seki, T.)

  18. Facility effluent monitoring plan for 242-A Evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1993-03-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility effluent Monitoring Plans, WHC-EP-0438-1**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  19. Facility effluent monitoring plan for the tank farm facility

    Energy Technology Data Exchange (ETDEWEB)

    Crummel, G.M.

    1998-05-18

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  20. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  1. Facility Effluent Monitoring Plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  2. Facility effluent monitoring plan for the plutonium uranium extraction facility

    International Nuclear Information System (INIS)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  3. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    International Nuclear Information System (INIS)

    Greager, E.M.

    1997-01-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years

  4. Distributed intelligent monitoring and reporting facilities

    Science.gov (United States)

    Pavlou, George; Mykoniatis, George; Sanchez-P, Jorge-A.

    1996-06-01

    Distributed intelligent monitoring and reporting facilities are of paramount importance in both service and network management as they provide the capability to monitor quality of service and utilization parameters and notify degradation so that corrective action can be taken. By intelligent, we refer to the capability of performing the monitoring tasks in a way that has the smallest possible impact on the managed network, facilitates the observation and summarization of information according to a number of criteria and in its most advanced form and permits the specification of these criteria dynamically to suit the particular policy in hand. In addition, intelligent monitoring facilities should minimize the design and implementation effort involved in such activities. The ISO/ITU Metric, Summarization and Performance management functions provide models that only partially satisfy the above requirements. This paper describes our extensions to the proposed models to support further capabilities, with the intention to eventually lead to fully dynamically defined monitoring policies. The concept of distributing intelligence is also discussed, including the consideration of security issues and the applicability of the model in ODP-based distributed processing environments.

  5. A guide for preparing Hanford Site facility effluent monitoring plans

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1992-06-01

    This document provides guidance on the format and content of effluent monitoring plans for facilities at the Hanford Site. The guidance provided in this document is designed to ensure compliance with US Department of Energy (DOE) Orders 5400.1 (DOE 1988a), 5400.3 (DOE 1989a), 5400.4 (DOE 1989b), 5400.5 (DOE 1990a), 5480.1 (DOE 1982), 5480.11 (DOE 1988b), and 5484.1 (DOE 1981). These require environmental monitoring plans for each site, facility, or process that uses, generates, releases, or manages significant pollutants of radioactive or hazardous materials. In support of DOE Orders 5400.5 (Radiation Protection of the Public and the Environment) and 5400.1 (General Environmental Protection Program), the DOE Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE 1991) should be used to establish elements of a radiological effluent monitoring program in the Facility Effluent Monitoring Plan. Evaluation of facilities for compliance with the US Environmental Protection Agency Clean Air Act of 1977 requirements also is included in the airborne emissions section of the Facility Effluent Monitoring Plans. Sampling Analysis Plans for Liquid Effluents, as required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), also are included in the Facility Effluent Monitoring Plans. The Facility Effluent Monitoring Plans shall include complete documentation of gaseous and liquid effluent sampling and monitoring systems

  6. Facility effluent monitoring plan for 242-A evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years

  7. Global nuclear material monitoring with NDA and C/S data through integrated facility monitoring

    International Nuclear Information System (INIS)

    Howell, J.A.; Menlove, H.O.; Argo, P.; Goulding, C.; Klosterbuer, S.; Halbig, J.

    1996-01-01

    This paper focuses on a flexible, integrated demonstration of a monitoring approach for nuclear material monitoring. This includes aspects of item signature identification, perimeter portal monitoring, advanced data analysis, and communication as a part of an unattended continuous monitoring system in an operating nuclear facility. Advanced analysis is applied to the integrated nondestructive assay and containment and surveillance data that are synchronized in time. End result will be the foundation for a cost-effective monitoring system that could provide the necessary transparency even in areas that are denied to foreign nationals of both US and Russia should these processes and materials come under full-scope safeguards or bilateral agreements. Monitoring systems of this kind have the potential to provide additional benefits including improved nuclear facility security and safeguards and lower personnel radiation exposures. Demonstration facilities in this paper include VTRAP-prototype, Los Alamos Critical Assemblies Facility, Kazakhstan BM-350 Reactor monitor, DUPIC radiation monitoring, and JOYO and MONJU radiation monitoring

  8. Radiation monitoring around accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shinichi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan)

    2000-07-01

    The present status of a network of radiation monitors (NORM) working at KEK is described in detail. NORM consists of there parts; stand-alone radiation monitors (SARM), local-monitoring stations (STATION) and a central data-handling system (CENTER). NORM has developed to a large-scaled monitoring system in which more than 250 SARMs are under operation for monitoring the radiation fields and radioactivities around accelerators in KEK. (author)

  9. Tritium monitoring equipments for animal experiment facilities

    International Nuclear Information System (INIS)

    Sato, Hiroo

    1980-01-01

    Animal experiment facilities using tritium are described with reference to laws and regulations concerning radiological safety. Usual breeding facilities and surrounding conditions at non-radioactive animal experiments are summarized on feasible and effective designs of tritium monitors. Characteristics and desirable arrangements of various kinds of tritium monitors such as ionization chambers, proportional counters and liquid scintillation detectors are discussed from the standpoint of monitoring for room, glove-box, stack, liquid waste and personnel. (J.P.N.)

  10. Environmental monitoring handbook for coal conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Salk, M.S.; DeCicco, S.G. (eds.)

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impacts during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.

  11. Facility effluent monitoring plan for the tank farms facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, D.D.; Crummel, G.M.

    1995-05-01

    A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  12. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    The Basis for Design established the functional requirements and design criteria for an Integral Monitored Retrievable Storage (MRS) facility. The MRS Facility design, described in this report, is based on those requirements and includes all infrastructure, facilities, and equipment required to routinely receive, unload, prepare for storage, and store spent fuel (SF), high-level waste (HLW), and transuranic waste (TRU), and to decontaminate and return shipping casks received by both rail and truck. The facility is complete with all supporting facilities to make the MRS Facility a self-sufficient installation

  13. Effluent Treatment Facility tritium emissions monitoring

    International Nuclear Information System (INIS)

    Dunn, D.L.

    1991-01-01

    An Environmental Protection Agency (EPA) approved sampling and analysis protocol was developed and executed to verify atmospheric emissions compliance for the new Savannah River Site (SRS) F/H area Effluent Treatment Facility. Sampling equipment was fabricated, installed, and tested at stack monitoring points for filtrable particulate radionuclides, radioactive iodine, and tritium. The only detectable anthropogenic radionuclides released from Effluent Treatment Facility stacks during monitoring were iodine-129 and tritium oxide. This paper only examines the collection and analysis of tritium oxide

  14. Analysis of facility-monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.A.

    1996-09-01

    This paper discusses techniques for analysis of data collected from nuclear-safeguards facility-monitoring systems. These methods can process information gathered from sensors and make interpretations that are in the best interests of the facility or agency, thereby enhancing safeguards while shortening inspection time.

  15. Expert systems for protective monitoring of facilities

    International Nuclear Information System (INIS)

    Carr, K.R.

    1987-01-01

    In complex plants, the possibility of serious operator error always exists to some extent, but, this can be especially true during an experiment or some other unusual exercise. Possible contributing factors to operational error include personnel fatigue, misunderstanding in communication, mistakes in executing orders, uncertainty about the delegated authority, pressure to meet a demanding schedule, and a lack of understanding of the possible consequences of deliberate violations of the facility's established operating procedures. Authoritative reports indicate that most of these factors were involved in the disastrous Russian Chernobyl-4 nuclear reactor accident in April 1986, which, ironically, occurred when a safety experiment was being conducted. Given the computer hardware and software now available for implementing expert systems together with integrated signal monitoring and communications, plant protection could be enhanced by an expert system with extended features to monitor the plant. The system could require information from the operators on a rigidly enforced schedule and automatically log in and report on a scheduled time basis to authorities at a central remote site during periods of safe operation. Additionally, the system could warn an operator or automatically shut down the plant in case of dangerous conditions, while simultaneously notifying independent, responsible, off-site personnel of the action taken. This approach would provide protection beyond that provided by typical facility scram circuits. This paper presents such an approach to implementing an expert system for plant protection, together with specific hardware and software configurations. The Chernobyl accident is used as the basis of discussion

  16. Facility effluent monitoring plan for WESF

    Energy Technology Data Exchange (ETDEWEB)

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  17. Facility effluent monitoring plan for WESF

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    1999-01-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the efferent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability

  18. Facility Effluent Monitoring Plan for the 222-S Laboratory

    International Nuclear Information System (INIS)

    Robinson, A.V.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems against applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. The current operation of the 222-S facilities includes the provision of analytical and radiological chemistry services in support of Hanford Site processing plants. The emphasis is on waste management, chemical processing, environmental monitoring effluent programs at B Plant, the Uranium Oxide Plant, Tank Farms, the 242-A Evaporator, the Waste Encapsulation and Storage Facility, the Plutonium-Uranium Extraction Facility, the Plutonium Finishing Plant, process development/impact activities, and essential materials. The laboratory also supplies analytical services in support of ongoing waste tank characterization

  19. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 6 Book 1, contains information on design studies of a Monitored Retrievable Storage (MRS) facility. Topics include materials handling; processing; support systems; support utilities; spent fuel; high-level waste and alpha-bearing waste storage facilities; and field drywell storage

  20. Radiation monitoring considerations for radiobiology facilities

    International Nuclear Information System (INIS)

    McClelland, T.W.; McFall, E.D.

    1976-01-01

    Battelle, Pacific Northwest Laboratories, conducts a wide variety of radiobiology and radioecology research in a number of facilities on the Hanford Reservation. Review of radiation monitoring problems associated with storage, plant and animal experiments, waste handling and sterile facilities shows that careful monitoring, strict procedural controls and innovative techniques are required to minimize occupational exposure and control contamination. Although a wide variety of radioactivity levels are involved, much of the work is with extremely low level materials. Monitoring low level work is mundane and often impractical but cannot be ignored in today's ever tightening controls

  1. Facility effluent monitoring plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontag, S.

    1991-11-01

    A facility effluent monitoring plant is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The UO 3 Plant is located in the south-central portion of the 200 West Area of the Hanford Site. The plant consists of two primary processing buildings and several ancillary facilities. The purpose of the UO 3 Plant is to receive uranyl nitrate hexahydrate (UNH) from the Plutonium-Uranium Extraction (PUREX) Plant, concentrate it, convert the UNH to uranium trioxide (UO 3 ) powder by calcination and package it for offsite shipment. The UO 3 Plant has been placed in a standby mode. There are two liquid discharges, and three gaseous exhaust stacks, and seven building exhausters that are active during standby conditions

  2. Facility Effluent Monitoring Plan for the 3720 Building

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the Environmental Science Laboratory (3720 Facility) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs'' This FEMP has been prepared for the 3720 Facility primarily because it has a major (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The 3720 Facility provides office and laboratory space for PNNL scientific and engineering staff conducting multidisciplinary research in the areas of materials characterization and testing and waste management. The facility is designed to accommodate the use of radioactive and hazardous materials to conduct these activities. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, and dispersible particulate. The facility is in the process of being vacated for shutdown, but is considered a Major Emission Point as of the date of this document approval.

  3. Database for environmental monitoring at nuclear facilities

    International Nuclear Information System (INIS)

    Raceanu, M.; Varlam, C.; Enache, A.; Faurescu, I.

    2006-01-01

    To ensure that an assessment could be made of the impact of nuclear facilities on the local environment, a program of environmental monitoring must be established well in advance of nuclear facilities operation. Enormous amount of data must be stored and correlated starting with: location, meteorology, type sample characterization from water to different kind of food, radioactivity measurement and isotopic measurement (e.g. for C-14 determination, C-13 isotopic correction it is a must). Data modelling is a well known mechanism describing data structures at a high level of abstraction. Such models are often used to automatically create database structures, and to generate code structures used to access databases. This has the disadvantage of losing data constraints that might be specified in data models for data checking. Embodiment of the system of the present application includes a computer-readable memory for storing a definitional data table for defining variable symbols representing respective measurable physical phenomena. The definitional data table uniquely defines the variable symbols by relating them to respective data domains for the respective phenomena represented by the symbols. Well established rules of how the data should be stored and accessed, are given in the Relational Database Theory. The theory comprise of guidelines such as the avoidance of duplicating data using technique call normalization and how to identify the unique identifier for a database record. (author)

  4. Database for environmental monitoring in nuclear facilities

    International Nuclear Information System (INIS)

    Raceanu, Mircea; Varlam, Carmen; Iliescu, Mariana; Enache, Adrian; Faurescu, Ionut

    2006-01-01

    To ensure that an assessment could be made of the impact of nuclear facilities on the local environment, a program of environmental monitoring must be established well before of nuclear facility commissioning. Enormous amount of data must be stored and correlated starting with: location, meteorology, type sample characterization from water to different kind of foods, radioactivity measurement and isotopic measurement (e.g. for C-14 determination, C-13 isotopic correction it is a must). Data modelling is a well known mechanism describing data structures at a high level of abstraction. Such models are often used to automatically create database structures, and to generate the code structures used to access the databases. This has the disadvantage of losing data constraints that might be specified in data models for data checking. Embodiment of the system of the present application includes a computer-readable memory for storing a definitional data table for defining variable symbols representing the corresponding measurable physical quantities. Developing a database system implies setting up well-established rules of how the data should be stored and accessed what is commonly called the Relational Database Theory. This consists of guidelines regarding issues as how to avoid duplicating data using the technique called normalization and how to identify the unique identifier for a database record. (authors)

  5. Tritium monitoring for nuclear facilities and environment in China

    International Nuclear Information System (INIS)

    Yang Huaiyuan

    1995-12-01

    Reviews of achievement and great progress of tritium monitoring techniques for nuclear facility and environment in China over the past 30 years are made which including the development experiences of several important detectors and instruments for health physics monitoring on site and some sampling and measuring methods for environmental monitoring and assessment. Information on nation wide survey activities during 1970∼1980 years on natural environmental radioactivity level in China and the related tritium data are given. (28 refs., 6 tabs.)

  6. Facility operations transparency and remote monitoring

    International Nuclear Information System (INIS)

    Beddingfield, David

    2006-01-01

    Remote monitoring technologies offer many opportunities, not only to strengthen IAEA safeguards, but also to improve national, industrial and local oversight of various nuclear operations. Remote monitoring benefits in greater timeliness, reduced inspector presence and improved state-of-health awareness are well-known attributes. However, there is also the capability to organize data into a comprehensive knowledge of the 'normal operating envelope' of a facility. In considering future applications of remote monitoring there is also a need to develop a better understanding of the potential cost-savings versus higher up-front costs and potential long-term maintenance or upgrade costs. (author)

  7. Design, placement, and sampling of groundwater monitoring wells for the management of hazardous waste disposal facilities

    International Nuclear Information System (INIS)

    Tsai, S.Y.

    1988-01-01

    Groundwater monitoring is an important technical requirement in managing hazardous waste disposal facilities. The purpose of monitoring is to assess whether and how a disposal facility is affecting the underlying groundwater system. This paper focuses on the regulatory and technical aspects of the design, placement, and sampling of groundwater monitoring wells for hazardous waste disposal facilities. Such facilities include surface impoundments, landfills, waste piles, and land treatment facilities. 8 refs., 4 figs

  8. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, H.D.; Lee, Y.B.; Lee, W.Y.; Park, D.W.; Chung, B.G.

    1980-01-01

    For the KAERI site, various environmental samples were collected three times a month, and the natural environmental radiation levels were also measured at each sampling point. Measurements for gross alpha and beta radioactivities of the samples were routinely measured for all samples. Strontium-90 concentrations were also analysed for the fallout and air samples collected daily basis on the roof of the main building. Accumulated exposure including the possibility of determination of low level environmental radiation field by employing thermoluminescent dosimeter, CaSO 4 : Dsub(y)-0.4 teflon disc type, at 6 posts in on-site of the KAERI. As for Kori site, at 19 points of ON, OFF-site, and at the same time the environmental radiation exposure rate at each sampling point were measured. Several environmental samples such as surface soil, pine needles, water samples, milk sample and pasture samples were collected and analysed on a quarterly basis. As a result of the survey it can be said that no significant release of radiation to the environment due to the operations of nuclear facilities including research reactor at the KAERI and power reactor at the Kori has been found during the period of the survey and monitoring. (author)

  9. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, M.Y.; Shields, K.D.

    1999-04-02

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

  10. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    International Nuclear Information System (INIS)

    Ballinger, M.Y.; Shields, K.D.

    1999-01-01

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP

  11. Radiation monitoring system in medical facilities

    International Nuclear Information System (INIS)

    Matsuno, Kiyoshi

    1981-01-01

    (1) RI selective liquid effluent monitor is, in many cases, used at medical facilities to obtain data for density of radioactivity of six radionuclides. In comparison with the conventional gross measuring systems, over-evaluation is less, and the monitor is more practical. (2) Preventive monitor for loss of radium needle is a system which prevents missing of radium needle at a flush-toilet in radium treatment wards, and this monitor is capable of sensing a drop-off of radium needle of 0.5 mCi (minimum). (3) Short-lived positron gas measuring device belongs to a BABY CYCLOTRON installed in a hospital, and this device is used to measure density of radioactivity, radioactive impurity and chemical impurity of produced radioactive gas. (author)

  12. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Marcel Y.; Gervais, Todd L.

    2004-11-15

    The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are

  13. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Geun Sik and others

    2001-02-01

    Environmental Radiation Monitoring was carried out with measurement of environment. Radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry.

  14. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Chang Woo; Choi, Young Ho

    2000-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows: The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost some level compared with the past years. Gross α, β radioactivity in environmental samples showed a environmental level. γ-radionuclides in water sample were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by γ-spectrometry. (author)

  15. Monitoring of the storage facility Asse II

    International Nuclear Information System (INIS)

    Regenauer, Urban; Wittwer, Christiane

    2012-01-01

    The storage facility Asse II is former salt mine near Wolfenbuettel in Niedersachsen. From 1967 to 1978 totally 125787 barrels with low-and medium-level radioactive wastes were disposed in the salt cavern. Since 1988 ingress of saturated brines from the adjoining rocks were observed in the mine. An extensive monitoring concept was installed for the surveillance of possible radionuclides released with the mine air into the surrounding. The report is aimed to n describe the actual situation in the salt mine Asse II with special emphasis to the monitoring concept. The discussion is based on the history of the storage facility that was primarily a research mine. Furthermore a regional accompanying process is described that was created in 2007.

  16. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Young Ho

    2000-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows: The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost some level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water sample were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry. (author)

  17. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Young Ho; Lee, M.H. [and others

    1999-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul research reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul research reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul research reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry. (author). 3 refs., 50 tabs., 12 figs.

  18. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Chang Woo; Choi, Geun Sik and others

    2001-02-01

    Environmental Radiation Monitoring was carried out with measurement of environment. Radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross α, β radioactivity in environmental samples showed a environmental level. γ-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by γ-spectrometry

  19. Environmental monitoring around the Swedish Nuclear Facilities

    International Nuclear Information System (INIS)

    Bondesson, A.; Luening, M.; Wallberg, L.; Wijk, H.

    1999-01-01

    The environmental monitoring programme for the nuclear facilities has shown that the radioactive discharges increase the concentrations of some radionuclides in the local marine environment around the Swedish nuclear facilities. Samples from the terrestrial environment rarely show increased radionuclide concentrations. From a radiological point of view the most important nuclide in the environmental samples usually is CS-137. However, the largest part of the present concentrations of Cs-137 in the Swedish environment originate from the Chernobyl accident. The concentrations of radionuclides that can be found in biota around the nuclear facilities are much lower than the concentration levels that are known to give acute damage to organisms. The total radiation doses from the discharges of radionuclides are small. (au)

  20. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Operational Area Monitoring Plan for environmental monitoring, is for EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) which operates several offsite facilities in support of activities at the Nevada Test Site (NTS). These facilities include: (1) Amador Valley Operations (AVO), Pleasanton, California; (2) Kirtland Operations (KO), Kirtland Air Force base, Albuquerque, New Mexico (KAFB); (3) Las Vegas Area Operations (LVAO), Remote Sensing Laboratory (RSL), and North Las Vegas (NLV) Complex at Nellis Air Force Base (NAFB), North Las Vegas, Nevada; (4) Los Alamos Operations (LAO), Los Alamos, New Mexico; (5) Santa Barbara Operations (SBO), Goleta, California; (6) Special Technologies Laboratory (STL), Santa Barbara, California; (7) Washington Aerial Measurements Department (WAMD), Andrews Air Force Base, Maryland; and, (8) Woburn Cathode Ray Tube Operations (WCO), Woburn, Massachusetts. Each of these facilities has an individual Operational Area Monitoring Plan, but they have been consolidated herein to reduce redundancy

  1. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    International Nuclear Information System (INIS)

    Shields, K.D.; Ballinger, M.Y.

    1999-03-01

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities

  2. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  3. Environmental monitoring for EG and G Idaho facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Tkachyk, J.W.; Wright, K.C.; Wilhelmsen, R.N.

    1990-08-01

    This report describes the 1989 environmental-monitoring activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G-operated facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Additional monitoring activities performed by Environmental Monitoring are also discussed, including drinking-water monitoring and nonradiological liquid-effluent monitoring, as well as data management. The primary purposes of monitoring are to evaluate environmental conditions and to provide and interpret data, in compliance with applicable regulations, to ensure protection of human health and the environment. This report compares 1989 environmental-monitoring data with derived concentration guides and with data from previous years. This report also presents results of sampling performed by the Radiological and Environmental Sciences Laboratory and by the United States Geological Survey. 17 refs., 49 figs., 11 tabs

  4. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  5. NN-SITE: A remote monitoring testbed facility

    International Nuclear Information System (INIS)

    Kadner, S.; White, R.; Roman, W.; Sheely, K.; Puckett, J.; Ystesund, K.

    1997-01-01

    DOE, Aquila Technologies, LANL and SNL recently launched collaborative efforts to create a Non-Proliferation Network Systems Integration and Test (NN-Site, pronounced N-Site) facility. NN-Site will focus on wide area, local area, and local operating level network connectivity including Internet access. This facility will provide thorough and cost-effective integration, testing and development of information connectivity among diverse operating systems and network topologies prior to full-scale deployment. In concentrating on instrument interconnectivity, tamper indication, and data collection and review, NN-Site will facilitate efforts of equipment providers and system integrators in deploying systems that will meet nuclear non-proliferation and safeguards objectives. The following will discuss the objectives of ongoing remote monitoring efforts, as well as the prevalent policy concerns. An in-depth discussion of the Non-Proliferation Network Systems Integration and Test facility (NN-Site) will illuminate the role that this testbed facility can perform in meeting the objectives of remote monitoring efforts, and its potential contribution in promoting eventual acceptance of remote monitoring systems in facilities worldwide

  6. Monitoring System with Two Central Facilities Protocol

    Directory of Open Access Journals (Sweden)

    Caesar Firdaus

    2017-03-01

    Full Text Available The security of data and information on government’s information system required proper way of defending against threat. Security aspect can be achieved by using cryptography algorithm, applying information hiding concept, and implementing security protocol. In this research, two central facilities protocol was implemented on Research and Development Center of Mineral and Coal Technology’s Cooperation Contract Monitoring System by utilizing AES and whitespace manipulation algorithm. Adjustment on the protocol by creating several rule of validation ID’s generation and checking processes could fulfill two of four cryptography objectives, consist of authentication and non-repudiation. The solid collaboration between central legitimization agency (CLA, central tabulating facility (CTF, and client is the main idea in two central facilities protocol. The utilization of AES algorithm could defend the data on transmission from man in the middle attack scenario. On the other hand, whitespace manipulation algorithm provided data integrity aspect of the document that is uploaded to the system itself. Both of the algorithm fulfill confidentiality, data integrity, and authentication.

  7. Groundwater Monitoring Plan for the Z-Area Saltstone Facility

    International Nuclear Information System (INIS)

    Wells, D.

    2002-01-01

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. In 1996 SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of each waste-containing cell with additional samples being taken in areas where excessive cracking had been observed. The direct push proposal was accepted by The South Carolina Department of Health and Environmental Control (SCDHEC). The Industrial Solid Waste Landfill Regulations were revised in 1998 and now include requirements for groundwater monitoring. The major elements of those regulations and their application at Z-Area are discussed. These are a point of compliance, groundwater protection standards, the groundwater monitoring system, sampling and analysis, and data evaluation and reporting

  8. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Frazier, T.P.

    1994-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans

  9. Remote intelligent nuclear facility monitoring in LabVIEW

    International Nuclear Information System (INIS)

    Kucewicz, J.C.; Argo, P.E.; Caffrey, M.; Loveland, R.C.; McNeil, P.J.

    1996-01-01

    A prototype system implemented in LabVIEW for the intelligent monitoring of the movement of radioactive' material within a nuclear facility is presented. The system collects and analyzes radiation sensor and video data to identify suspicious movement of material within the facility. The facility system also transmits wavelet- compressed data to a remote system for concurrent monitoring. 2 refs., 2 figs

  10. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force

  11. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force.

  12. Proposal for Monitoring Within the Centrifuge Cascades of Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, David R.

    2017-04-01

    Safeguards are technical measures implemented by the International Atomic Energy Agency (IAEA) to independently verify that nuclear material is not diverted from peaceful purposes to weapons (IAEA, 2017a). Safeguards implemented at uranium enrichment facilities (facilities hereafter) include enrichment monitors (IAEA, 2011). Figure 1 shows a diagram of how a facility could be monitored. The use of a system for monitoring within centrifuge cascades is proposed.

  13. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo

    2012-03-15

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis on the sites of KAERI nuclear facilities and Seoul Research Reactors and their environments. The average level of environmental radiation dose measured by an ERM and the accumulated radiation dose by a TLD were almost same level compared with the previous years. The activity of gross {alpha} and gross {beta}, Tritium, Uranium and Strontium in environmental samples showed a environmental level. The {gamma}-radionuclides such as natural radionuclides 40K or 7Be were detected in pine needle and food. The nuclear radionuclides 134Cs, 137Cs or 131I were temporarily detected in the samples of air particulate and rain in April and of fall out in 2nd quarter from the effect of Fukusima accident.

  14. Environmental Radiation Monitoring Around the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geun Sik; Lee, Chang Woo

    2008-05-15

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis on the sites of KAERI nuclear facilities and Seoul Research Reactors and their environments. The average level of environmental radiation dose measured by an ERM and the accumulated radiation dose by a TLD were almost same level compared with the previous years. The activity of gross {alpha} and gross {beta}, Tritium, Uraniu and Strontium in environmental samples showed a environmental level. The radioactivities of most {gamma}-radionuclides in air particulate, surface water and ground water were less than MDA except {sup 40}K or {sup 7}Be which are natural radionuclides. However, not only {sup 40}K or {sup 7}Be but also {sup 137}Cs were detected at the background level in surface soil, discharge sediment and fallout or pine needle.

  15. Beam Position Monitoring in the CSU Accelerator Facility

    Science.gov (United States)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  16. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 1, contains cost estimate summaries for a monitored retrievable storage (MRS) facility. The cost estimate is based on the engineering performed during the conceptual design phase of the MRS Facility project

  17. Workplace air monitoring and sampling practices at DOE facilities

    International Nuclear Information System (INIS)

    Swinth, K.L.; Kenoyer, J.L.; Selby, J.M.

    1987-01-01

    The Pacific Northwest Laboratory (PNL) surveyed the current air monitoring and sampling practices at U.S. Department of Energy (DOE) facilities as a part of an air monitoring upgrade task. A comprehensive questionnaire was developed and distributed to DOE contractors through the DOE field offices. Twenty-six facilities returned a completed questionnaire. Questionnaire replies indicate a large diversity in air sampling and monitoring practices among DOE facilities. The differences among the facilities exist in monitoring and sampling instrumentation, procedures, calibration, analytical methods, detection levels, and action levels. Many of these differences could be attributed to different operational needs. 5 references, 2 figures, 2 tables

  18. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document

  19. Monitored Retrievable Storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume

  20. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs{hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document.

  1. Monitored Retrievable Storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs {hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume.

  2. Data analysis for neutron monitoring in an enrichment facility

    International Nuclear Information System (INIS)

    Markin, J.T.; Stewart, J.E.; Goldman, A.S.

    1982-01-01

    Area monitoring of neutron radiation to detect high-enriched uranium production is a potential strategy for inspector verification of operations in the cascade area of a centrifuge enrichment facility. This paper discusses the application of statistical filtering and hypothesis testing procedures to experimental data taken in an enrichment facility. The results demonstrate that these data analysis methods can enhance detection of facility misoperation by neutron monitoring

  3. Facility effluent monitoring plan for the B plant

    International Nuclear Information System (INIS)

    Lesser, J.E.

    1994-09-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plant assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated every three years

  4. Facility effluent monitoring plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Lavey, G.H.

    1992-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  5. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Geiger, J.L.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified. in. A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  6. Near-facility environmental monitoring quality assurance project plan

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1997-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site

  7. Analysis of general specifications for nuclear facilities environmental monitoring vehicles

    International Nuclear Information System (INIS)

    Xu Xiaowei

    2014-01-01

    At present, with the nuclear energy more increasingly extensive application, the continuous stable radiation monitoring has become the focus of the public attention. The main purpose of the environmental monitoring vehicle for the continuous monitoring of the environmental radiation dose rate and the radionuclides concentration in the medium around nuclear facilities is that the environmental radiation level and the radioactive nuclides activity in the environment medium are measured. The radioactive pollution levels, the scope contaminated and the trends of the pollution accumulation are found out. The change trends for the pollution are observed and the monitoring results are explained. The domestic demand of the environmental monitoring for the nuclear facilities is shown in this report. The changes and demands of the routine environmental monitoring and the nuclear emergency monitoring are researched. The revision opinions for EJ/T 981-1995 General specifications for nuclear facilities environmental monitoring vehicles are put forward. The purpose is to regulate domestic environmental monitoring vehicle technical criterion. The criterion makes it better able to adapt and serve the environmental monitoring for nuclear facilities. The technical guarantee is provided for the environmental monitoring of the nuclear facilities. (authors)

  8. Monitored Retrievable Storage (MRS) facility project status

    International Nuclear Information System (INIS)

    Milner, R.A.; Trebules, V.W.; Blandford, J.B.

    1994-01-01

    1993 has been yet another year of major change in the Monitored Retrievable Storage (MRS) project. The change in administration has brought a new Secretary of Energy to the Department. Secretary O'Leary has brought a strong leadership background and fresh ideas to address the Department's many complex challenges, including the Civilian Radioactive Waste Management System (CRWMS). Dr. Daniel Dreyfus was named Director of the Office of Civilian Radioactive Waste Management. Mr. Richard Stallings has been named, as the new, Nuclear Waste Negotiator under the Nuclear Waste Policy Act, Amendments of 1987. The overall mission of the Office of Civilian Radioactive Waste Management (OCRWM) has not changed. OCRWM is tasked with finding technically sound, environmentally responsible and economically viable solutions to spent nuclear fuel and high-level radioactive waste storage and disposal

  9. Liquid effluent retention facility final-status groundwater monitoring plan

    International Nuclear Information System (INIS)

    Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

    1997-09-01

    The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the open-quotes Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967close quotes, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure

  10. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2011-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS Trigger and DAQ(TDAQ) community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available ...

  11. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2010-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS TDAQ community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available to remote users t...

  12. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  13. Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1

    International Nuclear Information System (INIS)

    Lewis, C.J.

    1995-10-01

    A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  14. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontage, S.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  15. Facility Effluent Monitoring Plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Carter, G.J.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updates as a minimum every three years

  16. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, NM (United States)

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  17. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 7, contains cost estimate information for a monitored retrievable storage (MRS) facility. Cost estimates are for onsite improvements, waste storage, and offsite improvements for the Clinch River Site

  18. Monitoring of tritium-contaminated surfaces, including skin

    Energy Technology Data Exchange (ETDEWEB)

    Surette, R A; Wood, M J

    1994-05-01

    We have examined various commercially available tritium surface contamination monitors along with different swipe media and techniques for direct and indirect (swipe) monitoring of contaminated surfaces, including skin. None of the methods or instruments evaluated were more sensitive than the swipe and liquid scintillation counting (LSC) method. Swipe measurements with open-window proportional counters were, in general, less than half as sensitive as LSC, but have the advantages of having the results available almost immediately, and no sample preparation is required. The Nuclear Measurement Corporation`s PC-55 is the most suitable instrument we tested for the analysis of routine swipe measurement. The PC-55 was about one third as sensitive as LSC when used with Ontario Hydro filter paper swipe media. Surface contamination measurement results can be obtained within minutes using the PC-55, compared to hours using LSC. The selection of swipe media for use with proportional counter-based instruments is critical. A medium that is electrically insulating can develop an electrostatic charge on its surface; this may alter the field gradient in the detector and may adversely influence the results. Although the PC-55 is sufficiently sensitive and very convenient, operational experience with the instrument is needed before recommending that it replace current LSC methods. The PC-55`s susceptibility to internal tritium contamination may limit its practical usefulness. Because of the complexity of using live animals to evaluate direct and indirect methods for assessing skin contamination, pig skin was investigated as a possible substitute. We concluded that, for the first few hours post-exposure, pig skin mimics the kinetics of animal skin that has contacted a tritium-contaminated surface. (author). 30 refs., 1 tab., 7 figs.

  19. Monitoring of tritium-contaminated surfaces, including skin

    International Nuclear Information System (INIS)

    Surette, R.A.; Wood, M.J.

    1994-05-01

    We have examined various commercially available tritium surface contamination monitors along with different swipe media and techniques for direct and indirect (swipe) monitoring of contaminated surfaces, including skin. None of the methods or instruments evaluated were more sensitive than the swipe and liquid scintillation counting (LSC) method. Swipe measurements with open-window proportional counters were, in general, less than half as sensitive as LSC, but have the advantages of having the results available almost immediately, and no sample preparation is required. The Nuclear Measurement Corporation's PC-55 is the most suitable instrument we tested for the analysis of routine swipe measurement. The PC-55 was about one third as sensitive as LSC when used with Ontario Hydro filter paper swipe media. Surface contamination measurement results can be obtained within minutes using the PC-55, compared to hours using LSC. The selection of swipe media for use with proportional counter-based instruments is critical. A medium that is electrically insulating can develop an electrostatic charge on its surface; this may alter the field gradient in the detector and may adversely influence the results. Although the PC-55 is sufficiently sensitive and very convenient, operational experience with the instrument is needed before recommending that it replace current LSC methods. The PC-55's susceptibility to internal tritium contamination may limit its practical usefulness. Because of the complexity of using live animals to evaluate direct and indirect methods for assessing skin contamination, pig skin was investigated as a possible substitute. We concluded that, for the first few hours post-exposure, pig skin mimics the kinetics of animal skin that has contacted a tritium-contaminated surface. (author). 30 refs., 1 tab., 7 figs

  20. Review of biological monitoring programs at nuclear facilities

    International Nuclear Information System (INIS)

    Quintana, L.R.; Oakes, T.W.; Shank, K.E.

    Biological monitoring programs, as well as relevant radioecological research studies, are reviewed at specific Department of Energy facilities; the program at Oak Ridge National Laboratory is discussed in detail. The biological measurements that are being used for interpreting the impact of a facility on its surrounding environment and nearby population are given. Suggestions which could facilitate interlaboratory comparison studies are presented

  1. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    FRAZIER, T.P.

    1999-01-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years

  2. Near-Facility Environmental Monitoring Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    MCKINNEY, S.M.

    2000-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards

  3. A monitored retrievable storage facility: Technical background information

    International Nuclear Information System (INIS)

    1991-07-01

    The US government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an integral part of the federal system for safe and permanent disposal of the nation's high-level radioactive wastes. The MRS will accept shipments of spent fuel from commercial nuclear power plants, temporarily store the spent fuel above ground, and stage shipments of it to a geologic repository for permanent disposal. The law authorizing the MRS provides an opportunity for a state or an Indian tribe to volunteer to host the MRS. The law establishes the Office of the Nuclear Waste Negotiator, who is to seek a state or an Indian tribe willing to host an MRS at a technically-qualified site on reasonable terms, and is to negotiate a proposed agreement specifying the terms and conditions under which the MRS would be developed and operated at that site. This agreement can ensure that the MRS is acceptable to -- and benefits -- the host community. The proposed agreement must be submitted to Congress and enacted into law to become effective. This technical background information presents an overview of various aspects of a monitored retrievable storage facility, including the process by which it will be developed

  4. Recommendations on the proposed Monitored Retrievable Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    Following the Department of Energy's announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE's primary and secondary sites, were invited to participate in the state's review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor's Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

  5. Recommendations on the proposed Monitored Retrievable Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    Following the Department of Energy`s announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE`s primary and secondary sites, were invited to participate in the state`s review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor`s Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

  6. Facility effluent monitoring plan for the 300 Area Fuels Fabrication Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Brendel, D.F.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring system by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The Fuel Fabrication Facility in the Hanford 300 Area supported the production reactors from the 1940's until they were shut down in 1987. Prior to 1987 the Fuel Fabrication Facility released both airborne and liquid radioactive effluents. In January 1987 the emission of airborne radioactive effluents ceased with the shutdown of the fuels facility. The release of liquid radioactive effluents have continued although decreasing significantly from 1987 to 1990

  7. Aerial infrared monitoring for nuclear fuel cycle facilities in Ukraine

    International Nuclear Information System (INIS)

    Stankevich, S.A.; Dudar, T.V.; Kovalenko, G.D.; Kartashov, V.V.

    2015-01-01

    The scientific research overall objective is rapid express detection and preliminary identification of pre-accidental conditions at nuclear fuel cycle facilities. We consider development of a miniature unmanned aerial vehicle equipped with high-precision infrared spectroradiometer able to detect remotely internal warming up of hazardous facilities by its thermal infrared radiation. The possibility of remote monitoring using unmanned aerial vehicle is considered at the example of the dry spent fuel storage facility of the Zaporizhzhya Nuclear Power Plant. Infrared remote monitoring is supposed to present additional information on the monitored facilities based on different physical principles rather than those currently in use. Models and specifications towards up-to-date samples of infrared surveying equipment and its small-sized unmanned vehicles are presented in the paper.

  8. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  9. Annual evaluation of routine radiological survey/monitoring frequencies for the High Ranking Facilities Deactivating Project at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-12-01

    The Bethel Valley Watershed at the Oak Ridge National Laboratory (ORNL) has several Environmental Management (EM) facilities that are designated for deactivation and subsequent decontamination and decommissioning (D and D). The Surplus Facilities Program at ORNL provides surveillance and maintenance support for these facilities as deactivation objectives are completed to reduce the risks associated with radioactive material inventories, etc. The Bechtel Jacobs Company LLC Radiological Control (RADCON) Program has established requirements for radiological monitoring and surveying radiological conditions in these facilities. These requirements include an annual evaluation of routine radiation survey and monitoring frequencies. Radiological survey/monitoring frequencies were evaluated for two High Ranking Facilities Deactivation Project facilities, the Bulk Shielding Facility and Tower Shielding Facility. Considerable progress has been made toward accomplishing deactivation objectives, thus the routine radiological survey/monitoring frequencies are being reduced for 1999. This report identifies the survey/monitoring frequency adjustments and provides justification that the applicable RADCON Program requirements are also satisfied

  10. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  11. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  12. Development of Spectrophotometric Process Monitors for Aqueous Reprocessing Facilities

    International Nuclear Information System (INIS)

    Smith, N.; Krebs, J.; Hebden, A.

    2015-01-01

    The safeguards envelope of an aqueous reprocessing plant can be extended beyond traditional measures to include surveillance of the process chemistry itself. By observing the concentration of accountable species in solution directly, a measure of real time accountancy can be applied. Of equal importance, select information on the process chemistry can be determined that will allow the operator and inspectors to verify that the process is operating as intended. One of the process monitors that can be incorporated is molecular spectroscopy, such as UV-Visible absorption spectroscopy. Argonne National Laboratory has developed a process monitoring system that can be tailored to meet the specific chemistry requirements of a variety of processes. The Argonne Spectroscopic Process monitoring system (ASP) is composed of commercial-off-the-shelf (COTS) spectroscopic hardware, custom manufactured sample handling components (to meet end user requirements) and the custom Plutonium and Uranium Measurement and Acquisition System (PUMAS) software. Two versions of the system have been deployed at the Savannah River Site's H-Canyon facility, tailored for high and low concentration streams. (author)

  13. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS, W.E.

    2000-03-08

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

  14. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    DAVIS, W.E.

    2000-01-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years

  15. Modern integrated environmental monitoring and processing systems for nuclear facilities

    International Nuclear Information System (INIS)

    Oprea, I.

    2000-01-01

    The continuous activity to survey and monitor releases and the current radiation levels in the vicinity of a nuclear object is essential for person and environment protection. Considering the vast amount of information and data needed to keep an updated overview of a situation both during the daily surveillance work and during accident situations, the need for an efficient monitoring and processing system is evident. The rapid development, both in computer technology and in telecommunications, the evolution of fast and accurate computer codes enabling the on-line calculations improve the quality of decision-making in complex situations and assure a high efficiency. The monitoring and processing systems are used both for environmental protection and for controlling nuclear power plant emergency and post-accident situations. Such a system can offer information to the radiation management systems in order to assess the consequences of nuclear accidents and to establish a basis for right decisions in civil defense. The integrated environmental monitoring systems have as main task to record, collect, process and transmit the radiation levels and weather data, incorporating a number of stationary or mobile radiation monitoring equipment, weather parameter measuring station, an information processing center and the communication network, all running under a real-time operating system.They provide the automatic data collection on-line and off-line, remote diagnostic, advanced presentation techniques, including a graphically oriented executive support, which has the ability to respond to an emergency by geographical representation of the hazard zones on the map. The systems are based on local intelligent measuring and transmission units, simultaneous processing and data presentation using a real-time operating system for personal computers and geographical information system (GIS). All information can be managed directly from the map by multilevel data retrieving and

  16. Facility Effluent Monitoring Plan for the N Reactor

    International Nuclear Information System (INIS)

    Watson, D.J.; Brendel, D.F.; Shields, K.D.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The primary purpose of the N Reactor Facility Effluent Monitoring Plan (FEMP), during standby, is to ensure that the radioactive effluents are properly monitored and evaluated for compliance with the applicable DOE orders and regulatory agencies at the federal, state, and local levels. A secondary purpose of the FEMP is to ensure that hazardous wastes are not released, in liquid effluents, to the environment even though the potential to do so is extremely low. The FEMP is to provide a monitoring system that collects representative samples in accordance with industry standards, performs analyses within stringent quality control (QC) requirements, and evaluates the data through the use of comparative analysis with the standards and acceptable environmental models

  17. Criticality safety considerations. Integral Monitored Retrievable Storage (MRS) Facility

    International Nuclear Information System (INIS)

    1986-09-01

    This report summarizes the criticality analysis performed to address criticality safety concerns and to support facility design during the conceptual design phase of the Monitored Retrievable Storage (MRS) Facility. The report addresses the criticality safety concerns, the design features of the facility relative to criticality, and the results of the analysis of both normal operating and hypothetical off-normal conditions. Key references are provided (Appendix C) if additional information is desired by the reader. The MRS Facility design was developed and the related analysis was performed in accordance with the MRS Facility Functional Design Criteria and the Basis for Design. The detailed description and calculations are documented in the Integral MRS Facility Conceptual Design Report. In addition to the summary portion of this report, explanatary notes for various terms, calculation methodology, and design parameters are presented in Appendix A. Appendix B provides a brief glossary of technical terms

  18. Fermilab accelerator control system: Analog monitoring facilities

    International Nuclear Information System (INIS)

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system

  19. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, H.D.; Lee, W.Y.; Park, D.W.

    1981-01-01

    Measurements and monitoring of the environmental radiation levels, as well as radioactivity of the various environmental samples were carried out three times a month in the on-site and the off-site around the KAERI site. Measurements were made for both gross alpha and beta radioactivity of all environmental samples. Gross beta measurements were made for radioactivity of the fallout, airborne particulates and precipitations which were collected on a daily basis on the roof of the main building. Measurements of the accumulated doses were also carried out at 10 posts on a bimonthly basis by employing thermoluminescent dosimeters

  20. Noble gas atmospheric monitoring at reprocessing facilities

    International Nuclear Information System (INIS)

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-01-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data

  1. Multi-Isotope Process (MIP) Monitor: A Near-Real-Time Monitor For Reprocessing Facilities

    International Nuclear Information System (INIS)

    Schwantes, Jon M.; Douglas, Matthew; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard

    2008-01-01

    The threat of protracted diversion of Pu from commercial reprocessing operations is perhaps the greatest concern to national and international agencies tasked with safeguarding these facilities. While it is generally understood that a method for direct monitoring of process on-line and in near-real time (NRT) would be the best defense against protracted diversion scenarios, an effective method with these qualities has yet to be developed. Here, we attempt to bridge this gap by proposing an on-line NRT process monitoring method that should be sensitive to minor alterations in process conditions and compatible with small, easily deployable, detection systems. This Approach is known as the Multi-Isotope Process (MIP) Monitor and involves the determination and recognition of the contaminant pattern within a process stream for a suite of indicator (radioactive) elements present in the spent fuel as a function of process variables. Utilization of a suite of radio-elements, including ones with multiple oxidation states, decreases the likelihood that attempts to divert Pu by altering the ReDox environment within the process would go undetected. In addition, by identifying gamma-emitting indicator isotopes, this Approach might eliminate the need for bulky neutron detection systems, relying instead on small, portable, high-resolution gamma detectors easily deployable throughout the facility

  2. Integral Monitored Retrievable Storage (MRS) Facility conceptual basis for design

    International Nuclear Information System (INIS)

    1985-10-01

    The purpose of the Conceptual Basis for Design is to provide a control document that establishes the basis for executing the conceptual design of the Integral Monitored Retrievable Storage (MRS) Facility. This conceptual design shall provide the basis for preparation of a proposal to Congress by the Department of Energy (DOE) for construction of one or more MRS Facilities for storage of spent nuclear fuel, high-level radioactive waste, and transuranic (TRU) waste. 4 figs., 25 tabs

  3. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    International Nuclear Information System (INIS)

    William S. Charlton

    1999-01-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels

  4. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This report presents a summary design description of the Conceptual Design for an Integral Monitored Retrievable Storage (MRS) Facility, as prepared by The Ralph M. Parsons Company under an A-E services contract with the Richland Operations Office of the Department of Energy. More detailed design requirements and design data are set forth in the Basis for Design and Design Report, bound under separate cover and available for reference by those desiring such information. The design data provided in this Design Report Executive Summary, the Basis for Design, and the Design Report include contributions by the Waste Technology Services Division of Westinghouse Electric Corporation (WEC), which was responsible for the development of the waste receiving, packaging, and storage systems, and Golder Associates Incorporated (GAI), which supported the design development with program studies. The MRS Facility design requirements, which formed the basis for the design effort, were prepared by Pacific Northwest Laboratory for the US Department of Energy, Richland Operations Office, in the form of a Functional Design Criteria (FDC) document, Rev. 4, August 1985. 9 figs., 6 tabs

  5. Environmental monitoring for tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, Ioan; Steflea, Dumitru; Lazar, Roxana Elena

    2001-01-01

    The Cryogenic Pilot is an experimental project within the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and almost all the neighbors of the Experimental Cryogenic Pilot are chemical plants. It is necessary to emphasize this aspect because the sewage system is connected with the other tree chemical plants from the neighborhood. In this work, a low background liquid scintillation is used to determine tritium activity concentration according to ISO 9698/1998. We measured drinking water, precipitation, river water, underground and waste water. The tritium level was between 10 TU and 27 TU what indicates that there is no sources of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decided to monitor monthly each location. In this paper it is presented the standard method used for tritium determination in water samples, the precautions needed in order to achieve reliable results, and the evolution of tritium level in different location near the Tritium and Deuterium Cryogenic Separation Experimental Pilot. (authors)

  6. Seismic monitoring of the Yucca Mountain facility

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in signal detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  7. Atomics International environmental monitoring and facility effluent annual report, 1976

    International Nuclear Information System (INIS)

    Moore, J.D.

    1977-01-01

    Environmental and facility effluent radioactivity monitoring at Atomics International (AI) is performend by the Radiation and Nuclear Safety Unit of the Health, Safety, and Radiation Services Department. Soil, vegetation, and surface water are routinely sampled to a distance of 10 miles from AI sites. Continuous ambient air sampling and thermoluminescent dosimetry are performed on site for monitoring airborne radioactivity and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from AI facilities is continuously sampled and monitored to ensure that levels released to unrestricted areas are within appropriate limits, and to identify processes which may require additional engineering safeguards to minimize radioactivity levels in such effluents. In addition, selected nonradioactive constituents in surface water discharged to unrestricted areas are determined. This report summarizes and discusses monitoring results for 1976. The results of a special soil plutonium survey performed during the year are also summarized

  8. Opportunities for Process Monitoring Techniques at Delayed Access Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Michael M.; Gitau, Ernest TN; Johnson, Shirley J.; Schanfein, Mark; Toomey, Christopher

    2013-09-20

    Except for specific cases where the International Atomic Energy Agency (IAEA) maintains a continuous presence at a facility (such as the Japanese Rokkasho Reprocessing Plant), there is always a period of time or delay between the moment a State is notified or aware of an upcoming inspection, and the time the inspector actually enters the material balance area or facility. Termed by the authors as “delayed access,” this period of time between inspection notice and inspector entrance to a facility poses a concern. Delayed access also has the potential to reduce the effectiveness of measures applied as part of the Safeguards Approach for a facility (such as short-notice inspections). This report investigates the feasibility of using process monitoring to address safeguards challenges posed by delayed access at a subset of facility types.

  9. Performance assessment of the proposed Monitored Retrievable Storage Facility

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.; Winter, C.

    1986-02-01

    Pacific Northwest laboratory (PNL) has completed a performance evaluation of the proposed monitored retrievable storage (MRS) facility. This study was undertaken as part of the Department of Energy MRS Program at PNL. The objective of the performance evaluation was to determine whether the conceptual MRS facility would be able to process spent fuel at the specified design rate of 3600 metric tons of uranium (MTU) per year. The performance of the proposed facility was assessed using the computer model COMPACT (Computer Optimization of Processing and Cask Transport) to simulate facility operations. The COMPACT model consisted of three application models each of which addressed a different aspect of the facility's operation: MRS/waste transportation interface; cask handling capability; and disassembly/consolidation (hot cell) operations. Our conclusions, based on the assessment of design criteria for the proposed facility, are as follows: Facilities and equipment throughout the facility have capability beyond the 3600 MTU/y design requirement. This added capability provides a reserve to compensate for unexpected perturbations in shipping or handling of the spent fuel. Calculations indicate that the facility's maximum maintainable processing capability is approximately 4800 MTU/y

  10. PNC/DOE Remote Monitoring Project at Japan's Joyo Facility

    International Nuclear Information System (INIS)

    Ross, M.; Hashimoto, Yu; Sonnier, C.; Dupree, S.; Ystesund, K.; Hale, W.

    1996-01-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan and the US Department of Energy (DOE) are cooperating on the development of a remote monitoring system for nuclear nonproliferation efforts. This cooperation is part of a broader safeguards agreement between PNC and DOE. A remote monitoring system is being installed in a spent fuel storage area at PNC's experimental reactor facility Joyo in Oarai. The system has been designed by Sandia National Laboratories (SNL) and is closely related to those used in other SNL remote monitoring projects. The Joyo project will particularly study the unique aspects of remote monitoring in contribution to nuclear nonproliferation. The project will also test and evaluate the fundamental design and implementation of the remote monitoring system in its application to regional and international safeguards efficiency. This paper will present a short history of the cooperation, the details of the monitoring system and a general schedule of activities

  11. Licensing of spent fuel storage facility including its physical protection in the Czech Republic

    International Nuclear Information System (INIS)

    Fajman, V.; Sedlacek, J.

    1992-01-01

    The current spent fuel management policies as practised in the Czech Republic are described, and the conception of the fuel cycle back end is outlined. The general principles and the legislative framework are explained of the licensing process concerning spent fuel interim storage facilities, including the environmental impact assessment component. The history is outlined of the licensing process for the spent fuel storage facility at the Dukovany NPP site, including the licensing of the transport and storage cask. The basic requirements placed on the physical safeguarding of the facility and on the licensing process are given. (J.B.). 13 refs

  12. Continuous monitoring system for environmental {gamma} radiation near nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jin; Qingyu, Yue; Wenhai, Wang [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency {gamma} radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy{center_dot}h{sup -1} to 10 mGy{center_dot}h{sup -1} because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.).

  13. Continuous monitoring system for environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency γ radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy·h -1 to 10 mGy·h -1 because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.)

  14. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael Kruzic

    2007-01-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D and D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release

  15. Mortality monitoring design for utility-scale solar power facilities

    Science.gov (United States)

    Huso, Manuela; Dietsch, Thomas; Nicolai, Chris

    2016-05-27

    IntroductionSolar power represents an important and rapidly expanding component of the renewable energy portfolio of the United States (Lovich and Ennen, 2011; Hernandez and others, 2014). Understanding the impacts of renewable energy development on wildlife is a priority for the U.S. Fish and Wildlife Service (FWS) in compliance with Department of Interior Order No. 3285 (U.S. Department of the Interior, 2009) to “develop best management practices for renewable energy and transmission projects on the public lands to ensure the most environmentally responsible development and delivery of renewable energy.” Recent studies examining effects of renewable energy development on mortality of migratory birds have primarily focused on wind energy (California Energy Commission and California Department of Fish and Game, 2007), and in 2012 the FWS published guidance for addressing wildlife conservation concerns at all stages of land-based wind energy development (U.S. Fish and Wildlife Service, 2012). As yet, no similar guidelines exist for solar development, and no published studies have directly addressed the methodology needed to accurately estimate mortality of birds and bats at solar facilities. In the absence of such guidelines, ad hoc methodologies applied to solar energy projects may lead to estimates of wildlife mortality rates that are insufficiently accurate and precise to meaningfully inform conversations regarding unintended consequences of this energy source and management decisions to mitigate impacts. Although significant advances in monitoring protocols for wind facilities have been made in recent years, there remains a need to provide consistent guidance and study design to quantify mortality of bats, and resident and migrating birds at solar power facilities (Walston and others, 2015).In this document, we suggest methods for mortality monitoring at solar facilities that are based on current methods used at wind power facilities but adapted for the

  16. Occupational dose estimates for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Harty, R.; Stoetzel, G.A.

    1986-06-01

    Occupational doses were estimated for radiation workers at the monitored retrievable storage (MRS) facility. This study provides an estimate of the occupational dose based on the current MRS facility design, examines the extent that various design parameters and assumptions affect the dose estimates, and identifies the areas and activities where exposures can be reduced most effectively. Occupational doses were estimated for both the primary storage concept and the alternate storage concept. The dose estimates indicate the annual dose to all radiation workers will be below the 5 rem/yr federal dose equivalent limit. However, the estimated dose to most of the receiving and storage crew (the workers responsible for the receipt, storage, and surveillance of the spent fuel and its subsequent retrieval), to the crane maintenance technicians, and to the cold and remote maintenance technicians is above the design objective of 1 rem/yr. The highest annual dose is received by the riggers (4.7 rem) in the receiving and storage crew. An indication of the extent to which various design parameters and assumptions affect the dose estimates was obtained by changing various design-based assumptions such as work procedures, background dose rates in radiation zones, and the amount of fuel received and stored annually. The study indicated that a combination of remote operations, increased shielding, and additional personnel (for specific jobs) or changes in operating procedures will be necessary to reduce worker doses below 1.0 rem/yr. Operations that could be made at least partially remote include the removal and replacement of the tiedowns, impact limiters, and personnel barriers from the shipping casks and the removal or installation of the inner closure bolts. Reductions of the background dose rates in the receiving/shipping and the transfer/discharge areas may be accomplished with additional shielding

  17. Monitoring Plan for Fiscal Year 1999 Borehole Logging at 200 East Area Specific Retention Facilities

    International Nuclear Information System (INIS)

    Horton, D.G.

    1999-01-01

    The Hanford Groundwater Monitoring Project's vadose zone monitoring effort for fiscal year (FY) 1999 involves monitoring 30 boreholes for moisture content and gamma-ray emitting radionuclides. The boreholes are associated with specific retention trenches and cribs in the 200 East Area of the Hanford Site. The facilities to be monitored are the 216-A-2, -4, and -7 cribs, the 216-A-18 trench, the 216-B-14 through -19 cribs, the 216-B-20 through -34, -53A, and -58 trenches, the 216-B-35 through -42 trenches, and the 216-C-5 crib. This monitoring plan describes the facilities and the vadose zone at the cribs and trenches to be monitored; the field activities to be accomplished; the constituents of interest and the monitoring methods, including calibration issues; and the quality assurance and quality control requirements governing the monitoring effort. The results from the FY 1999 monitoring will show the current configuration of subsurface contamination and will be compared with past monitoring results to determine whether changes in contaminant distribution have occurred since the last monitoring effort

  18. Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility

    International Nuclear Information System (INIS)

    Tanaka, M.; Uda, T.; Wang, J.; Fujiwara, O.

    2012-01-01

    For safety management at a magnetic confinement fusion-test facility, protection from not only ionising radiation, but also non-ionising radiation such as the leakage of static magnetic and electromagnetic fields is an important issue. Accordingly, the use of a commercially available personal RF monitor for multipoint area monitoring is proposed. In this study, the performance of both fast- and slow-type personal RF monitors was investigated by using a transverse electromagnetic cell system. The range of target frequencies was between 10 and 300 MHz, corresponding to the ion cyclotron range of frequency in a fusion device. The personal RF monitor was found to have good linearity, frequency dependence and isotropic response. However, the time constant for the electric field sensor of the slow-type monitor was much longer than that for the fast-type monitor. Considering the time-varying field at the facility, it is found that the fast-type monitor is suitable for multipoint monitoring at magnetic confinement fusion test facilities. (authors)

  19. Program of radiological monitoring environmental a nuclear facility in latency

    International Nuclear Information System (INIS)

    Blas, A. de; Riego, A.; Batalla, E.; Tapia, C.; Garcia, R.; Sanchez, J.; Toral, J.

    2013-01-01

    This paper presents the Radiological Environmental Monitoring program of the Vandellos I nuclear power plant in the latency period. This facility was dismantled to level 2, as defined by the International Atomic Energy Agency. The program is an adaptation of the implanted one during the dismantling, taking into account the isotopes that may be present, as well as the main transfer routes. Along with the description of the program the results obtained in the latent period from 2005 until 2012 are presented.

  20. INFRASTRUCTURE FACILITIES FOR MONITORING AND INTELLECTUAL ROAD TRAFFIC MANAGEMENT

    Directory of Open Access Journals (Sweden)

    G. Belov

    2014-10-01

    Full Text Available Review of automatic management of road traffic technologies in major cities of Ukraine is carried out in the given article. Priority directions of studies are determined for producing modern and perspective technologies in the given area. The facilities for monitoring and intelligence management of the road traffic on the basis of the programmed logical controller, using the device of fuzzy logic are considered.

  1. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    International Nuclear Information System (INIS)

    1993-03-01

    During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year

  2. On possibilities of using global monitoring in effective prevention of tailings storage facilities failures.

    Science.gov (United States)

    Stefaniak, Katarzyna; Wróżyńska, Magdalena

    2018-02-01

    Protection of common natural goods is one of the greatest challenges man faces every day. Extracting and processing natural resources such as mineral deposits contributes to the transformation of the natural environment. The number of activities designed to keep balance are undertaken in accordance with the concept of integrated order. One of them is the use of comprehensive systems of tailings storage facility monitoring. Despite the monitoring, system failures still occur. The quantitative aspect of the failures illustrates both the scale of the problem and the quantitative aspect of the consequences of tailings storage facility failures. The paper presents vast possibilities provided by the global monitoring in the effective prevention of these failures. Particular attention is drawn to the potential of using multidirectional monitoring, including technical and environmental monitoring by the example of one of the world's biggest hydrotechnical constructions-Żelazny Most Tailings Storage Facility (TSF), Poland. Analysis of monitoring data allows to take preventive action against construction failures of facility dams, which can have devastating effects on human life and the natural environment.

  3. Environmental monitoring standardization of effluent from nuclear fuel cycle facilities in China

    International Nuclear Information System (INIS)

    Gao Mili

    1993-01-01

    China has established some environmental monitoring standards of effluent from nuclear fuel cycle facilities. Up to date 33 standards have been issued; 10 to be issued; 11 in drafting. These standards cover sampling, gross activities measurement, analytical methods and management rules and so on. They involve with almost all nuclear fuel cycle facilities and have formed a complete standards system. By the end of the century, we attempt to draft a series of analytical and determination standards in various environmental various medium, they include 36 radionuclides from nuclear fuel cycle facilities. (3 tabs.)

  4. Environmental monitoring of subsurface low-level waste disposal facilities at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Hicks, D.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) generates low-level waste (LLW) as part of its research and isotope production activities. This waste is managed in accordance with US Department of Energy (DOE) Order 5820.2A. Solid LLW management includes disposal in above-ground, tumulus-type facilities as well as in various types of subsurface facilities. Since 1986, subsurface disposal has been conducted using various designs employing greater-confinement-disposal (GCD) techniques. The purpose of this paper is to present monitoring results that document the short-term performance of these GCD facilities

  5. Work place monitoring in accelerator facilities using thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Ribeiro, M.S.; Sanches, M.P.; Osima, A.M.; Rodriguez, D.L.; Carvalho, R.N.; Somessari, R.N.

    1998-01-01

    The increase in the use of large amounts of energy and large particles accelerators in development or in industrial processes for the reticulation, polymerization and sterilization of cables and wires allowed to discover and monitor work places in facilities having particle accelerators at the Institute of Energy and Nuclear Inquiries Comissao National de Energy Nuclear. Measures previously taken by technicians in routine monitoring, show that radiation doses found in the beams tube and at the door of the accelerator area is high enough to require routine programs to monitor work places at the installation. That is why, fifteen thermoluminescent dosimeters (TLD) where placed in different points of the facility where doses must be measured along a three month period and at the same time readings must be taken from control dosimeters kept within a shielded container. The monitor had a small double layer with three pellets of TLD CaSO4 Dy inside of a route carrier adopted in routine workers dosimetry usually. Outcomes show that the radiological protection program must be implemented to ameliorate and guarantee safety procedures

  6. MONITOR: A computer model for estimating the costs of an integral monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Reimus, P.W.; Sevigny, N.L.; Schutz, M.E.; Heller, R.A.

    1986-12-01

    The MONITOR model is a FORTRAN 77 based computer code that provides parametric life-cycle cost estimates for a monitored retrievable storage (MRS) facility. MONITOR is very flexible in that it can estimate the costs of an MRS facility operating under almost any conceivable nuclear waste logistics scenario. The model can also accommodate input data of varying degrees of complexity and detail (ranging from very simple to more complex) which makes it ideal for use in the MRS program, where new designs and new cost data are frequently offered for consideration. MONITOR can be run as an independent program, or it can be interfaced with the Waste System Transportation and Economic Simulation (WASTES) model, a program that simulates the movement of waste through a complete nuclear waste disposal system. The WASTES model drives the MONITOR model by providing it with the annual quantities of waste that are received, stored, and shipped at the MRS facility. Three runs of MONITOR are documented in this report. Two of the runs are for Version 1 of the MONITOR code. A simulation which uses the costs developed by the Ralph M. Parsons Company in the 2A (backup) version of the MRS cost estimate. In one of these runs MONITOR was run as an independent model, and in the other run MONITOR was run using an input file generated by the WASTES model. The two runs correspond to identical cases, and the fact that they gave identical results verified that the code performed the same calculations in both modes of operation. The third run was made for Version 2 of the MONITOR code. A simulation which uses the costs developed by the Ralph M. Parsons Company in the 2B (integral) version of the MRS cost estimate. This run was made with MONITOR being run as an independent model. The results of several cases have been verified by hand calculations

  7. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    International Nuclear Information System (INIS)

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA reg-sign canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA reg-sign, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities

  8. Continuous monitoring system of environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-01-01

    The continuous monitoring system for the environmental γ radiation and accident emergency near nuclear facility is described. The continuous monitoring system consists of high pressurized ionization chamber, integrated weak current amplifier, V-F converter and intelligent data recorder. PC 486 microcomputer with standard RS-232C interface is used for data handling and graph plotting. This intelligent data recorder has the functions of alarm over threshold and records the output signal of detector and temperature. The measuring range is from 10 nGy h -1 to 10 mGy h -1 because a high insulation switch automatical changing the measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability

  9. Operation of radiation monitoring system in radwaste form test facility

    International Nuclear Information System (INIS)

    Ryu, Young Gerl; Kim, Ki Hong; Lee, Jae Won; Kwac, Koung Kil

    1998-08-01

    RWFTF (RadWaste Form Test Facility) must have a secure radiation monitoring system (RMS) because of having a hot-cell capable of handling high radioactive materials. And then in controlled radiation zone, which is hot-cell and its maintenance and operation / control room, area dose rate, radioactivities in air-bone particulates and stack, and surface contamination are monitored continuously. For the effective management such as higher utilization, maintenance and repair, the status of this radiation monitoring system, the operation and characteristics of all kinds of detectors and other parts of composing this system, and signal treatment and its evaluation were described in this technical report. And to obtain the accuracy detection results and its higher confidence level, the procedure such as maintenance, functional check and system calibration were established and appended to help the operation of RMS. (author). 6 tabs., 30 figs

  10. Environmental Monitoring Report - United States Department of Energy, Oak Ridge Facilities, Calendar Year 1984

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, R.G.

    1999-01-01

    Each year since 1972, a report has been prepared on the environmental monitoring activities for the DOE facilities in oak Ridge, Tennessee, for the previous calendar year. previously, the individual facilities published quarterly and annual progress reports that contained some environmental monitoring data. The environmental monitoring program for 1984 includes sampling and analysis of air, water from surface streams, groundwater, creek sediment, biota, and soil for both radioactive and nonradioactive (including hazardous) materials. Special environmental studies that have been conducted in the Oak Ridge area are included in this report, primarily as abstracts or brief summaries. The annual report for 1984 on environmental monitoring and surveillance of the Oak Ridge community by Oak Ridge Associated Universities (ORAU) is included as an appendix. A brief description of the topography and climate of the Oak Ridge area and a short description of the three DOE facilities are provided below to enhance the reader's understanding of the direction and contents of the environmental monitoring program for Oak Ridge.

  11. Environmental monitoring of low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Shum, E.Y.; Starmer, R.J.; Young, M.H.

    1989-12-01

    This branch technical position (BTP) paper on the environmental monitoring program for a low-level radioactive waste disposal facility provides general guidance on what is required by Section 61.53 of Title 10 of the Code of Federal Regulations (10 CFR) of applicants submitting a license application for such a facility. In general, the environmental monitoring program consists of three phases: preoperational, operational, and postoperational. Each phase of the monitoring program should be designed to fulfill the specific objectives defined in the BTP paper. During the preoperational phase, the objectives of the program are to provide site characterization information, to demonstrate site suitability and acceptability, to obtain background or baseline information, and to provide a record for public information. During the operational phase, the emphasis on measurement shifts. Monitoring data are obtained to provide early warning of releases and to document compliance with regulations, the dose limits of 10 CFR Part 61, or applicable standards of the US Environmental Protection Agency. Data are also used to update important pathway parameters to improve predictions of site performance and to provide a record of performance for public information. The postoperational environmental monitoring program emphasizes measurements to demonstrate compliance with the site-closure requirements and continued compliance with the performance objective in regard to the release of radionuclides to the environment. The data are used to support evaluation of long-term effects on the general public and for public information. Guidance is also provided in the BTP paper on the choice of which constituents to measure, setting action levels, relating measurements to appropriate actions in a corrective action plan, and quality assurance

  12. Designing monitoring programs for chemicals of emerging concern in potable reuse ⋯ What to include and what not to include?

    KAUST Repository

    Drewes, Jorg; Anderson, Paul D.; Denslow, Nancy D.; Olivieri, Adam W.; Schlenk, Daniel K.; Snyder, Shane A.; Maruya, Keith

    2012-01-01

    This study discussed a proposed process to prioritize chemicals for reclaimed water monitoring programs, selection of analytical methods required for their quantification, toxicological relevance of chemicals of emerging concern regarding human health, and related issues. Given that thousands of chemicals are potentially present in reclaimed water and that information about those chemicals is rapidly evolving, a transparent, science-based framework was developed to guide prioritization of which compounds of emerging concern (CECs) should be included in reclaimed water monitoring programs. The recommended framework includes four steps: (1) compile environmental concentrations (e.g., measured environmental concentration or MEC) of CECs in the source water for reuse projects; (2) develop a monitoring trigger level (MTL) for each of these compounds (or groups thereof) based on toxicological relevance; (3) compare the environmental concentration (e.g., MEC) to the MTL; CECs with a MEC/MTL ratio greater than 1 should be prioritized for monitoring, compounds with a ratio less than '1' should only be considered if they represent viable treatment process performance indicators; and (4) screen the priority list to ensure that a commercially available robust analytical method is available for that compound. © IWA Publishing 2013.

  13. Designing monitoring programs for chemicals of emerging concern in potable reuse--what to include and what not to include?

    Science.gov (United States)

    Drewes, J E; Anderson, P; Denslow, N; Olivieri, A; Schlenk, D; Snyder, S A; Maruya, K A

    2013-01-01

    This study discussed a proposed process to prioritize chemicals for reclaimed water monitoring programs, selection of analytical methods required for their quantification, toxicological relevance of chemicals of emerging concern regarding human health, and related issues. Given that thousands of chemicals are potentially present in reclaimed water and that information about those chemicals is rapidly evolving, a transparent, science-based framework was developed to guide prioritization of which compounds of emerging concern (CECs) should be included in reclaimed water monitoring programs. The recommended framework includes four steps: (1) compile environmental concentrations (e.g., measured environmental concentration or MEC) of CECs in the source water for reuse projects; (2) develop a monitoring trigger level (MTL) for each of these compounds (or groups thereof) based on toxicological relevance; (3) compare the environmental concentration (e.g., MEC) to the MTL; CECs with a MEC/MTL ratio greater than 1 should be prioritized for monitoring, compounds with a ratio less than '1' should only be considered if they represent viable treatment process performance indicators; and (4) screen the priority list to ensure that a commercially available robust analytical method is available for that compound.

  14. Designing monitoring programs for chemicals of emerging concern in potable reuse ⋯ What to include and what not to include?

    KAUST Repository

    Drewes, Jorg

    2012-11-01

    This study discussed a proposed process to prioritize chemicals for reclaimed water monitoring programs, selection of analytical methods required for their quantification, toxicological relevance of chemicals of emerging concern regarding human health, and related issues. Given that thousands of chemicals are potentially present in reclaimed water and that information about those chemicals is rapidly evolving, a transparent, science-based framework was developed to guide prioritization of which compounds of emerging concern (CECs) should be included in reclaimed water monitoring programs. The recommended framework includes four steps: (1) compile environmental concentrations (e.g., measured environmental concentration or MEC) of CECs in the source water for reuse projects; (2) develop a monitoring trigger level (MTL) for each of these compounds (or groups thereof) based on toxicological relevance; (3) compare the environmental concentration (e.g., MEC) to the MTL; CECs with a MEC/MTL ratio greater than 1 should be prioritized for monitoring, compounds with a ratio less than \\'1\\' should only be considered if they represent viable treatment process performance indicators; and (4) screen the priority list to ensure that a commercially available robust analytical method is available for that compound. © IWA Publishing 2013.

  15. Structural integrity monitoring of critical components in nuclear facilities

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2007-01-01

    Full text: The paper presents the results obtained as part of the Project 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', RIMIS, a research work underway within the framework of the Ministry of Education and Research Programme 'Research of Excellence'. The main objective of the Project is to constitute a network integrating the national R and D institutes with preoccupations in the structural integrity assessment of critical components in the nuclear facilities operating in Romania, in order to elaborate a specific procedure for this field. The degradation mechanisms of the structural materials used in the CANDU type reactors, operated by Unit 1 and Unit 2 at Cernavoda (pressure tubes, fuel elements sheaths, steam generator tubing) and in the nuclear facilities relating to reactors of this type as, for instance, the Hydrogen Isotopes Separation facility, will be investigated. The development of a flexible procedure will offer the opportunity to extend the applications to other structural materials used in the nuclear field and in the non-nuclear fields as well, in cooperation with other institutes involved in the developed network. The expected results of the project will allow the integration of the network developed at national level in the structures of similar networks operating within the EU, the enhancement of the scientific importance of Romanian R and D organizations as well as the increase of our country's contribution in solving the major issues of the nuclear field. (authors)

  16. Framework for Certification of Fish Propagation, Protection and Monitoring Facilities. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Costello, Ronald J.

    1997-06-01

    A conceptual framework for certification of fish production and monitoring facilities including software templates to expedite implementation of the framework are presented. The framework is based on well established and widely utilized project management techniques. The implementation templates are overlays for Microsoft Professional Office software products: Excel, Word, and Project. Use of the software templates requires Microsoft Professional Office. The certification framework integrates two classical project management processes with a third process for facility certification. These processes are: (1) organization and definition of the project, (2) acquisition and organization of project documentation, and (3) facility certification. The certification process consists of systematic review of the production processes and the characteristics of the produced product. The criteria for certification review are the plans and specifications for the products and production processes that guided development of the facility. The facility is certified when the production processes are operating as designed and the product produced meets specifications. Within this framework, certification is a performance based process, not dissimilar from that practiced in many professions and required for many process, or a product meets professional/industry standards of performance. In the case of fish production facilities, the certifying authority may be diffuse, consisting of many entities acting through a process such as NEPA. A cornerstone of certification is accountability, over the long term, for the operation and products of a facility. This is particularly important for fish production facilities where the overall goal of the facility may require decades to accomplish.

  17. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    In April 1985, the Department of Energy (DOE) selected the Clinch River site as its preferred site for the construction and operation of the monitored retrievable storage (MRS) facility (USDOE, 1985). In support of the DOE MRS conceptual design activity, available data describing the site have been gathered and analyzed. A composite geotechnical description of the Clinch River site has been developed and is presented herein. This report presents Clinch River site description data in the following sections: general site description, surface hydrologic characteristics, groundwater characteristics, geologic characteristics, vibratory ground motion, surface faulting, stability of subsurface materials, slope stability, and references. 48 refs., 35 figs., 6 tabs

  18. Naval Reactors Facility environmental monitoring report, calendar year 2001

    International Nuclear Information System (INIS)

    2002-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 2001 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U. S. Environmental Protection Agency and the U. S. Department of Energy

  19. 1997 environmental monitoring report for the Naval Reactors Facility

    International Nuclear Information System (INIS)

    1997-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 1997 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE)

  20. Naval Reactors Facility Environmental Monitoring Report, Calendar Year 2003

    International Nuclear Information System (INIS)

    2003-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 2003 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency and the U.S. Department of Energy

  1. Naval Reactors Facility environmental monitoring report, calendar year 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 1999 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE)

  2. 1993 environmental monitoring report for the naval reactors facility

    International Nuclear Information System (INIS)

    1994-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 1993 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE)

  3. Fault diagnosis method for area gamma monitors in Nuclear Facilities

    International Nuclear Information System (INIS)

    Srinivas Reddy, P.; Amudhu Ramesh Kumar, R.; Geo Mathews, M.; Amarendra, G.

    2016-01-01

    Area Gamma Monitors (AGM) using Geiger-Muller (GM) counter are deployed in nuclear facilities for detection of gamma radiation. The AGMs display the dose rate locally and in Data Acquisition System (DAS) at central monitoring station. It also provides local visual and audio alarms in case of dose rate exceeding alarm set point. Regular surveillance checking, testing and calibration of AGMs are mandatory as per safety guidelines. This paper describes quick testing the AGMs without using radioactive source. The four point High Voltages (HV) and Discriminator Bias (DB) voltage characteristics are used to diagnose the state of health of GM counter. The profiles of HV and DB voltage are applied during testing of the AGMs

  4. 1991 environmental monitoring report for the Naval Reactors Facility

    International Nuclear Information System (INIS)

    1991-01-01

    The results of the radiological and non-radiological environmental monitoring programs for 1991 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were within the guidelines established by state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or heath and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the EnVironmental Protection Agency (EPA) and the Department of Energy (DOE)

  5. Naval Reactors Facility environmental monitoring report, calendar year 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 2000 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE)

  6. Monitoring around the secret nuclear facilities of naval ports

    International Nuclear Information System (INIS)

    Jaskierowicz, D.; Quere, St.

    2010-01-01

    Based within large industrial cities (Brest, Toulon, Cherbourg) or more rural areas like Crozon (Ile Longue), French navy exploits nuclear facilities where are built, maintained and decommissioned nuclear power submarines and aircraft-carrier. The safety and the security of these installations as well as the non-impact on people and environment are continuously monitored. The DSND, a governmental regulatory body dedicated to the Defense, applies the same regulations enforced by the ASN for civilian nuclear activities. Concerning environmental monitoring, the navy answers to the DSND or the ASN, depending on the type of survey. In every nuclear site, an automatic nuclear monitoring sensor system (2SNM) runs 24/7, with the supervision of specialized personnel in radioprotection. Each year, more than 7000 samples are collected in the ecosystem and thousands of measurements are carried out in four laboratories (LASEM in Cherbourg, Brest and Toulon) - SPRS ILO) of the navy. These results are sent to the DSND and have been integrated since February 2010 to the brand-new public web site of the national monitoring network of radioactivity in the environment (RMN). (author)

  7. Wide-area monitoring to detect undeclared nuclear facilities

    International Nuclear Information System (INIS)

    Wogman, N.

    1994-09-01

    The International Atomic Energy Agency (IAEA) is committed to strengthening and streamlining the overall effectiveness of the IAEA safeguards system. The IAEA is investigating the use of environmental monitoring techniques to strengthen its capability to detect undeclared nuclear activities. The IAEA's Program 93+2 Initiative has been established to develop, test, and assess strengthening techniques and measures. Some of the techniques have been validated and are being implemented during routine safeguards inspections. The effectiveness of other techniques is being studied as a part of extensive field trials conducted at nuclear facilities of various Member States during 1993 and 1994. Proposals based on the results of these investigations and recommendations for new safeguards activities are expected to be presented to the March 1995 Board of Governors Meeting. The techniques in use or under study during IAEA field trials address various types of environmental monitoring applications as outlined under Program 93+2's Task 3, Environmental Monitoring Techniques for Safeguards Applications, namely, the use of short-range monitoring during inspections and visits to investigate sites of possible undeclared activities. With the exception of wide-area water sampling in Iraq, the use of long-range monitoring, in the absence of any indication of undeclared nuclear activities, remains largely unexamined by the IAEA. The efficacy of long-range monitoring depends on the availability of mobile signature isotopes or compounds and on the ability to distinguish the nuclear signatures from background signals and attributing them to a source. The scope of this paper is to provide technical information to the International Atomic Energy Agency (IAEA) on possible wide-area survey techniques for the detection of undeclared nuclear activities. The primary focus is the detection of effluents from reprocessing activities

  8. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    DIEDIKER, L.P.

    1999-07-29

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  9. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    International Nuclear Information System (INIS)

    DIEDIKER, L.P.

    1999-01-01

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years

  10. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2007- Appendix 2

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Craig J.; Dorsey, Michael; Mckinney, Stephen M.; Wilde, Justin W.; Duncan, Joanne P.

    2008-10-13

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant (PFP), Canister Storage Building (CSB), and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  11. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Wilde, Justin W.; Poston, Ted M.

    2009-09-15

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant, Canister Storage Building, and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  12. 1996 environmental monitoring report for the Naval Reactors Facility

    International Nuclear Information System (INIS)

    1996-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 1996 at the Naval Reactors Facility (NRF) are presented in this report. The NRF is located on the Idaho National Engineering and Environmental Laboratory and contains three naval reactor prototypes and the Expended Core Facility, which examines developmental nuclear fuel material samples, spent naval fuel, and irradiated reactor plant components/materials. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE)

  13. Monitoring critical facilities by using advanced RF devices

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hanchung; Liu, Yung Y. [Argonne National Laboratory, Argonne, IL (United States); Shuler, James [U.S. Department of Energy, Washington, D.C. (United States)

    2013-07-01

    The ability to monitor critical environment parameters of nuclear plants at all times, particularly during and after a disruptive accident, is vital for the safety of plant personnel, rescue and recovery crews, and the surrounding communities. Conventional hard-wired assets that depend on supplied power may be decimated as a result of such events, as witnessed in the Japanese Fukushima nuclear power plant in March 2011. Self-powered monitoring devices operating on a wireless platform, on the other hand, may survive such calamity and remain functional. The devices would be pre-positioned at strategic locations, particularly where the dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance. Equipped with sensors for β-γ radiation, neutrons, hydrogen gas, temperature, humidity, pressure, and water level, as well as with criticality alarms and imaging equipment for heat, video, and other capabilities, these devices can provide vital surveillance information for assessing the extent of plant damage, mandating responses (e.g., evacuation before impending hydrogen explosion), and enabling overall safe and efficient recovery in a disaster. A radio frequency identification (RFID)-based system - called ARG-US - may be modified and adapted for this task. Developed by Argonne for DOE, ARG-US (meaning 'watchful guardian') has been used successfully to monitor and track sensitive nuclear materials packages at DOE sites. It utilizes sensors in the tags to continuously monitor the state of health of the packaging and promptly disseminates alarms to authorized users when any of the preset sensor thresholds is violated. By adding plant-specific monitoring sensors to the already strong sensor suite and adopting modular hardware, firmware, and software subsystems that are tailored for specific subsystems of a plant, a Remote Area Modular Monitoring (RAMM) system, built on a wireless sensor network (WSN) platform, is being

  14. Monitoring critical facilities by using advanced RF devices

    International Nuclear Information System (INIS)

    Tsai, Hanchung; Liu, Yung Y.; Shuler, James

    2013-01-01

    The ability to monitor critical environment parameters of nuclear plants at all times, particularly during and after a disruptive accident, is vital for the safety of plant personnel, rescue and recovery crews, and the surrounding communities. Conventional hard-wired assets that depend on supplied power may be decimated as a result of such events, as witnessed in the Japanese Fukushima nuclear power plant in March 2011. Self-powered monitoring devices operating on a wireless platform, on the other hand, may survive such calamity and remain functional. The devices would be pre-positioned at strategic locations, particularly where the dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance. Equipped with sensors for β-γ radiation, neutrons, hydrogen gas, temperature, humidity, pressure, and water level, as well as with criticality alarms and imaging equipment for heat, video, and other capabilities, these devices can provide vital surveillance information for assessing the extent of plant damage, mandating responses (e.g., evacuation before impending hydrogen explosion), and enabling overall safe and efficient recovery in a disaster. A radio frequency identification (RFID)-based system - called ARG-US - may be modified and adapted for this task. Developed by Argonne for DOE, ARG-US (meaning 'watchful guardian') has been used successfully to monitor and track sensitive nuclear materials packages at DOE sites. It utilizes sensors in the tags to continuously monitor the state of health of the packaging and promptly disseminates alarms to authorized users when any of the preset sensor thresholds is violated. By adding plant-specific monitoring sensors to the already strong sensor suite and adopting modular hardware, firmware, and software subsystems that are tailored for specific subsystems of a plant, a Remote Area Modular Monitoring (RAMM) system, built on a wireless sensor network (WSN) platform, is being

  15. Monitoring system for an experimental facility using GMDH methodology

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Bueno, Elaine Inacio, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br, E-mail: ebueno@ifsp.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), São Paulo, SP (Brazil)

    2017-07-01

    This work presents a Monitoring System developed based on the GMDH - Group Method of Data Handling methodology to be used in an Experimental Test Facility. GMDH is a combinatorial multi-layer algorithm in which a network of layers and nodes is generated using a number of inputs from the data stream being evaluated. The GMDH network topology has been traditionally determined using a layer by layer pruning process based on a pre-selected criterion of what constitutes the best nodes at each level. The traditional GMDH method is based on an underlying assumption that the data can be modeled by using an approximation of the Volterra Series or Kolmorgorov-Gabor polynomial. The Fault Test Experimental Facility was designed to simulate a PWR nuclear power plant and is composed by elements that correspond to the pressure vessel, steam generator, pumps of the primary and secondary reactor loops. The nuclear reactor core is represented by an electrical heater with different values of power. The experimental plant will be fully instrumented with sensors and actuators, and the data acquisition system will be constructed in order to enable the details of the temporal analysis of process variables. The Fault Test Experimental Facility can be operated to generate normal and fault data. These failures can be added initially with small magnitude, and their magnitude being increasing gradually in a controlled way. The database will interface with the plant supervisory system SCADA (Supervisory Control and Data Acquisition) that provides the data through standard interface. (author)

  16. Monitoring system for an experimental facility using GMDH methodology

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Moraes, Davi Almeida; Bueno, Elaine Inacio

    2017-01-01

    This work presents a Monitoring System developed based on the GMDH - Group Method of Data Handling methodology to be used in an Experimental Test Facility. GMDH is a combinatorial multi-layer algorithm in which a network of layers and nodes is generated using a number of inputs from the data stream being evaluated. The GMDH network topology has been traditionally determined using a layer by layer pruning process based on a pre-selected criterion of what constitutes the best nodes at each level. The traditional GMDH method is based on an underlying assumption that the data can be modeled by using an approximation of the Volterra Series or Kolmorgorov-Gabor polynomial. The Fault Test Experimental Facility was designed to simulate a PWR nuclear power plant and is composed by elements that correspond to the pressure vessel, steam generator, pumps of the primary and secondary reactor loops. The nuclear reactor core is represented by an electrical heater with different values of power. The experimental plant will be fully instrumented with sensors and actuators, and the data acquisition system will be constructed in order to enable the details of the temporal analysis of process variables. The Fault Test Experimental Facility can be operated to generate normal and fault data. These failures can be added initially with small magnitude, and their magnitude being increasing gradually in a controlled way. The database will interface with the plant supervisory system SCADA (Supervisory Control and Data Acquisition) that provides the data through standard interface. (author)

  17. Measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-08-01

    The purpose of this work has been an analysis and evaluation of the state-of-the-art of measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities. The occurrence of plutonium and uranium in the nuclear fuel cycle, the corresponding potential for releases, associated radiological protection standards and monitoring objectives are discussed. Techniques for monitoring via decay radiation from plutonium and uranium isotopes are presented in detail, emphasizing air monitoring, but also including soil sampling and survey methods. Additionally, activation and mass measurement techniques are discussed. The availability and prevalence of these various techniques are summarized. Finally, possible improvements in monitoring capabilities due to alterations in instrumentation, data analysis, or programs are presented

  18. Design, construction and monitoring of temporary storage facilities for removed contaminants

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Funaki, Hironori; Kurikami, Hiroshi; Sakamoto, Yoshiaki; Tokizawa, Takayuki

    2013-01-01

    Since the Fukushima Daiichi nuclear power plant accident caused by the Tohoku Region Pacific Coast Earthquake on March 11, 2011, decontamination work has been conducted in the surrounding environment within the Fukushima prefecture. Removed contaminants including soil, grass and trees are to be stored safely at temporary storage facilities for up to three years, after which they will be transferred to a planned interim storage facility. The decontamination pilot project was carried out in both the restricted and planned evacuation areas in order to assess decontamination methods and demonstrate measures for radiation protection of workers. Fourteen temporary storage facilities of different technical specifications were designed and constructed under various topographic conditions and land use. In order to support the design, construction and monitoring of temporary storage facilities for removed contaminants during the full-scale decontamination within the prefecture of Fukushima, technical know-how obtained during the decontamination pilot project has been identified and summarized in this paper. (author)

  19. Facility effluent monitoring plan for K Area Spent Fuel. Revision 1

    International Nuclear Information System (INIS)

    Hunacek, G.S.

    1995-09-01

    The scope of this document includes program plans for monitoring and characterizing radioactive and nonradioactive hazardous materials discharged in the K Area effluents. This FEMP includes complete documentation for both airborne and liquid effluent monitoring systems that monitor radioactive and nonradioactive hazardous pollutants that could be discharged to the environment under routine and/or upset conditions. This documentation is provided for each K Area facility that uses, generates, releases, or manages significant quantities of radioactive and nonradioactive hazardous materials that could impact public and employee safety and the environment. This FEW describes the airborne and liquid effluent paths and the associated sampling and monitoring systems of the K Area facilities. Sufficient information is provided on the effluent characteristics and the effluent monitoring systems so that a compliance assessment against requirements may be performed. Adequate details are supplied such that radioactive and hazardous material source terms may be related to specific effluent streams which are, in turn, related to discharge points and finally compared to the effluent monitoring system capability

  20. Monitored retrievable storage submission to Congress: Volume 2, Environmental assessment for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    1986-02-01

    This Environmental Assessment (EA) supports the DOE proposal to Congress to construct and operate a facility for monitored retrievable storage (MRS) of spent fuel at a site on the Clinch River in the Roane County portion of Oak Ridge, Tennessee. The first part of this document is an assessment of the value of, need for, and feasibility of an MRS facility as an integral component of the waste management system. The second part is an assessment and comparison of the potential environmental impacts projected for each of six site-design combinations. The MRS facility would be centrally located with respect to existing reactors, and would receive and canister spent fuel in preparation for shipment to and disposal in a geologic repository. 207 refs., 57 figs., 132 tabs

  1. Facility effluent monitoring plan for the 284-E and 284-W power plants

    International Nuclear Information System (INIS)

    Nickels, J.M.; Herman, D.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  2. Reactor cover gas monitoring at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Bechtold, R.A.; Holt, F.E.; Meadows, G.E.; Schenter, R.E.

    1986-09-01

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled reactor designed for irradiation testing of fuels, materials and components for LMRs. It is operated by the Westinghouse Hanford Company for the US Department of Energy on the government-owned Hanford reservation near Richland, Washington. The first 100-day operating cycle began in April 1982 and the eighth operating cycle was completed in July 1986. Argon is used as the cover gas for all sodium systems at the plant. A program for cover gas monitoring has been in effect since the start of sodium fill in 1978. The argon is supplied to the FFTF by a liquid argon Dewar System and used without further purification

  3. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  4. Cold Vacuum Drying facility personnel monitoring system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) instrument air (IA) system that provides instrument quality air to the CVDF. The IA system provides the instrument quality air used in the process, HVAC, and HVAC instruments. The IA system provides the process skids with air to aid in the purging of the annulus of the transport cask. The IA system provides air for the solenoid-operated valves and damper position controls for isolation, volume, and backdraft in the HVAC system. The IA system provides air for monitoring and control of the HVAC system, process instruments, gas-operated valves, and solenoid-operated instruments. The IA system also delivers air for operating hand tools in each of the process bays

  5. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    International Nuclear Information System (INIS)

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB 2 (Water Table) and Aquifer Zone IIB 1 , (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters

  6. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    Shallow land burial has been a common practice for disposing radioactive waste materials since the beginning of plutonium production operations. Accurate monitoring of radionuclide transport and factors causing transport within the burial sites is essential to minimizing risks associated with disposal. However, monitoring has not always been adequate. Consequently, the Department of Energy (DOE) has begun a program aimed at better assuring and evaluating containment of radioactive wastes at shallow land burial sites. This program includes a technological base for monitoring transport. As part of the DOE program, Pacific Northwest Laboratory (PNL) is developing geohydrologic monitoring systems to evaluate burial sites located in arid regions. For this project, a field test facility was designed and constructed to assess monitoring systems for near-surface disposal of radioactive waste and to provide information for evaluating site containment performance. The facility is an integrated network of monitoring devices and data collection instruments. This facility is used to measure water and radionuclide migration under field conditions typical of arid regions. Monitoring systems were developed to allow for measurement of both mass and energy balance. Work on the facility is ongoing. Continuing work includes emplacement of prototype monitoring instruments, data collection, and data synthesis. At least 2 years of field data are needed to fully evaluate monitoring information

  7. Development of holdup monitor system (HMOS) during facility maintenance

    International Nuclear Information System (INIS)

    Nakamura, Hironobu; Hosoma, Takashi; Tanaka, Izumi

    1999-01-01

    Holdup MOnitor System (HMOS) was developed for the purpose of verifying the constant holdup during facility maintenance in Plutonium Conversion Development Facility (PCDF). The glove box assay system (GBAS; big slab) has been used by inspectors, measures the holdup periodically (i.e. IIV) using coincidence counting. The GBAS couldn't be used for inspection during maintenance period. Because many glove boxes (GB) set in process area had been occupied by large vinyl green-houses due to maintenance. We aimed that the holdup except for the maintenance GB should be constant during maintenance period, the HMOSs were set to 3 GBs. The system had been used from June '98 to July '99 for verification. The HMOS detector is located top/bottom of the GB, counts total neutron variation in the GB continuously. Detector efficiencies are 1.2%(top) and 0.12%(bottom), respectively. The measurement variation is observed up to 1.5%(3σ). The HMOS has high sensitivity 8 to 90g Pu (3σ; In case of 1kg Pu holdup, the sensitivity depends on position in the GB). The movement of equipment or nuclear material from/in the GB can be detected effectively. Though the HMOS observes measurement variation related to humidity in the GB, hygroscopic effect of denitration MOX powder, material/equipment movement and mainly 241 Pu nuclear decay, this system can verify that the holdup is constant qualitatively. As a result, in PCDF, safeguard related to the inventory verification during maintenance period (more than 1 year) were successfully performed using holdup monitor system. (author)

  8. Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.

    2000-01-01

    The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time

  9. Data analysis for remote monitoring of safeguarded facilities

    International Nuclear Information System (INIS)

    DeLand, S.M.

    1997-01-01

    The International Remote Monitoring Project (IRMP) sponsored by the US DOE allows DOE and its international partners to gain experience with the remote collection, transmission, and interpretation of safeguards-relevant data. This paper focuses on the interpretation of the data from these remote monitoring systems. Users of these systems need to be able to ascertain that the remote monitoring system is functioning as expected and that the events generated by the sensors are consistent with declared activity. The initial set of analytical tools being provided for IRMP installations this year include a suite of automatically generated views of user-selected data. The baseline set of tools, with illustrative examples, will be discussed. Plans for near-term enhancements will also be discussed. Finally, the applicability of more advanced analytical techniques such as expert systems will be discussed

  10. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Environmental Monitoring Plan applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this Environmental Monitoring Plan brings together in one document a description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA). The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  11. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    International Nuclear Information System (INIS)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  12. Annual report for RCRA groundwater monitoring projects at Hanford site facilities for 1994

    International Nuclear Information System (INIS)

    1995-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the U.S. Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1993 and September 1994. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  13. Radiation Monitoring in a Newly Established Nuclear Medicine Facility

    International Nuclear Information System (INIS)

    Afroj, Kamila; Anwar-Ul-Azim, Md.; Nath, Khokon Kumar; Khan, Md. Rezaul Karim

    2010-05-01

    A study of area monitoring in a nuclear medicine department's new physical facility was performed for 3 months to ascertain the level of radiation protection of the staff working in nuclear medicine and that of the patients and patient's attendants. Exposure to nuclear medicine personnel is considered as occupational exposure, while exposure to patients is considered medical exposure and exposure to patients' attendants is considered public exposure. The areas for the sources of radiation considered were the hot laboratory, where unsealed isotopes, radionuclides, generators are stored and dosages are prepared, the patients' waiting room, where the radioactive nuclides are administered orally and intravenously for diagnosis and treatment and the SPECT rooms, where the patients' acquisition are taken. The monitoring process was performed using the TLD supplied and measured by the Health Physics Division of Bangladesh Atomic Energy Commission. The result shows no over-exposure of radiation from any of the working areas. The environment of the department is safe for work and free from unnecessary radiation exposure risk. (author)

  14. Immunological monitoring of the personnel at radiation hazardous facilities

    International Nuclear Information System (INIS)

    Kiselev, S.M.; Sokolnikov, M.E.; Lyss, L.V.; Ilyina, N.I.

    2017-01-01

    The study of possible mechanisms resulting in changes in the immune system after exposure to ionizing radiation is an area that has not been thoroughly evaluated during recent years. This article presents an overview of immunological monitoring studies of personnel from the radiation-hazardous factories that took place over the past 20 years in Russia. The methodology of these studies is based on: (1) the preclinical evaluation of immune status of workers whose occupation involves potential exposure to ionizing radiation; (2) selecting at risk groups according to the nature of immune deficiency manifestation; and (3) studying the changes of immune status of employees with regard to the potential effects of radiation exposure. The principal aim of these studies is accumulation of new data on the impact of radiation exposure on the human immune system and search for the relationship between the clinical manifestations of immune disorders and laboratory parameters of immunity to improve the monitoring system of the health status of the professional workers involved in radiation-hazardous industrial environments and the population living close to these facilities. (authors)

  15. Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters

  16. Environmental Monitoring, Water Quality - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  17. 33 CFR 125.15 - Access to waterfront facilities, and port and harbor areas, including vessels and harbor craft...

    Science.gov (United States)

    2010-07-01

    ..., and port and harbor areas, including vessels and harbor craft therein. 125.15 Section 125.15....15 Access to waterfront facilities, and port and harbor areas, including vessels and harbor craft....09 to those waterfront facilities, and port and harbor areas, including vessels and harbor craft...

  18. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Science.gov (United States)

    2010-10-01

    ... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included in an eligible rural water supply project? A rural water supply project may include, but is not...

  19. Reactor cover gas monitoring at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, R A; Holt, F E; Meadows, G E; Schenter, R E [Westinghouse Hanford Company, Richland, WA (United States)

    1987-07-01

    The Fast Flux Test Facility (FFTF) is a 400 megawatt (thermal) sodium cooled reactor designed for irradiation testing of fuels, materials and components for LMRs. It is operated by the Westinghouse Hanford Company for the U. S. Department of Energy on the government-owned Hanford reservation near Richland, Washington. The first 100 day operating cycle began in April 1982 and the eighth operating cycle was completed In July 1986. Argon is used as the cover gas for all sodium systems at the plant. A program for cover gas monitoring has been in effect since the start of sodium fill in 1978. The argon is supplied to the FFTF by a liquid argon Dewar System and used without further purification. A liquid argon Dewar system provides the large volume of inert gas required for operation of the FFTF. The gas is used as received and is not recycled. Low concentrations of krypton and xenon in the argon supply are essential to preclude interference with the gas tag system. Gas chromatography has been valuable for detection of inadvertent air in leakage during refueling operations. A temporary system is installed over the reactor during outages to prevent oxide formation in the sodium vapor traps upstream from the on line gas chromatograph. On line gas monitoring by gamma spectrometry and grab sampling with GTSTs has been successful for the identification of numerous radioactive gas releases from creep capsule experiments as well as 9 fuel pin ruptures. A redundant fission gas monitoring system has been installed to insure constant surveillance of the reactor cover gas.

  20. Groundwater Monitoring Plan for the Z-Area Saltstone Disposal Facility, Revision 3

    International Nuclear Information System (INIS)

    WELLS, DANIEL

    2005-01-01

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. At the time of the 1996 permit renewal, it was determined that a more robust monitoring program was needed. The draft permit required new monitoring wells within 25 feet of each active disposal cell. As an alternative, SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of each waste-containing cell with additional samples being taken in areas where excessive cracking had been observed. The direct push proposal was accepted by The South Carolina Department of Health and Environmental Control (SCDHEC), and was incorporated by reference into the Z-Area Saltstone Industrial Solid Waste Permit, No.025500-1603. The Industrial Solid Waste Landfill Regulations were revised in 1998 and now include specific requirements for groundwater monitoring. SRS's plan for complying with those regulations is discussed below. The plan calls for a return to traditional monitoring with permanent wells. It also proposes a more technically sound monitoring list based on the actual composition of saltstone

  1. Strategy for assessing occupational radiation monitoring data from many facilities for use in epidemiologic studies

    International Nuclear Information System (INIS)

    Strom, D.J.

    1984-01-01

    The process of transforming occupational radiation monitoring data into a form useful for epidemiology is called dose assessment. A review of previous dose assessment activities is done as a background for development of standard dose assessment procedures for use at many facilities. The scientific issues identified include the accuracy, precision, and comparability of doses over time and across facilities, the use of internal monitoring results; neutron quality factors; minimum detection limits; the quality and validity of data; and the impact of uncertainty in the exposure variable on misclassification of workers with respect to that variable. The standard dose assessment procedures developed address these issues, and include a method for determining what data are available and what form they are in, illustrated by application to 36 facilities in the US Department of Energy 5-Rem Study. The standard procedures are illustrated and tested on external and uranium monitoring results from the Y-12 Plant in Oak Ridge, Tennessee, where data permitted inferences of doses and variances to total body, skin, and lung, but not bone or kidney

  2. Mixed Waste Management Facility Groundwater Monitoring Report, Fourth Quarter 1998 and 1998 Summary

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    During fourth quarter 1998, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells

  3. Tritium monitoring in environment at ICIT Tritium Separation Facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, I.; Vagner, Irina; Faurescu, I.; Toma, A.; Dulama, C.; Dobrin, R.

    2008-01-01

    Full text: The Cryogenic Pilot is an experimental project developed within the national nuclear energy research program, which is designed to develop the required technologies for tritium and deuterium separation by cryogenic distillation of heavy water. The process used in this installation is based on a combination between liquid-phase catalytic exchange (LPCE) and cryogenic distillation. Basically, there are two ways that the Cryogenic Pilot could interact with the environment: by direct atmospheric release and through the sewage system. This experimental installation is located 15 km near the region biggest city and in the vicinity - about 1 km, of Olt River. It must be specified that in the investigated area there is an increased chemical activity; almost the entire Experimental Cryogenic Pilot's neighborhood is full of active chemical installations. This aspect is really essential for our study because the sewerage system is connected with the other three chemical plants from the neighborhood. For that reason we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and wastewater of industrial activity from neighborhood. In order to establish the base level of tritium concentration in the environment around the nuclear facilities, we investigated the sample preparation treatment for different types of samples: onion, green beams, grass, apple, garden lettuce, tomato, cabbage, strawberry and grapes. We used azeotropic distillation of all types of samples, the carrier solvent being toluene from different Romanian providers. All measurements for the determination of environmental tritium concentration were performed using liquid scintillation counting (LSC), with the Quantulus 1220 spectrometer. (authors)

  4. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year's data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B

  5. Hanford site near-facility environmental monitoring annual report, calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, C.J.

    1997-08-05

    This document summarizes the results of the near-facility environmental monitoring results for 1996 in the 100, 200/600, and 300/400 areas of the Hanford Site in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. The monitoring implements applicable portions of DOE Orders 5400.1 (DOE 1988a), 5400.5 (DOE 1990), and 5820.2A (DOE 1988b); Washington Administrative Code (WAC) 246-247; and Title 40 Code of Federal Regulations (CFR) Part 61, Subpart H (EPA 1989). In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels were slightly elevated when compared to offsite locations, the differences are less than in previous years.

  6. Strategy for assessing occupational radiation monitoring data from many facilities for use in epidemiologic studies

    International Nuclear Information System (INIS)

    Strom, D.J.

    1983-01-01

    A comprehensive strategy for dose assessment at US DOE facilities was developed. The strategy includes a determination of what data are available at each site, and what form they are in for the various times and types of monitoring. At the same time, information is gathered regarding the radiation hazards as a function of time, in order to judge the adequacy of monitoring. Information is collected on documentation of the personnel monitoring programs at each site. After this information is compiled and analyzed, site-specific data retrieval criteria and methods are finalized and meshed with general criteria and methods. Concurrently, Standard Assessment Procedures (SAP) are developed. Detailed steps are presented for the inference of annual doses from the kinds of occupational records found at DOE facilities, and when such inferences are too uncertain to be useful, guidance is provided for use of results in the control of confounding by undetermined exposures. The strategy was tested on a facility in the US Department of Energy (DOE) Health and Mortality Study, the Y-12 plant in Oak Ridge, Tennessee. 156 references, 53 figures, 45 tables

  7. Real-time Monitoring on the Tunnel Wall Movement and Temperature Variation of KURT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Bae, Dae Seok; Koh, Young Kwon; Choi, Jong Won

    2010-04-15

    The optical fiber cable acting as a sensor was embedded in the underground research tunnel and portal area in order to monitor their stability and the spatial temperature variation. This system includes two types of sensing function to monitor the distributed strain and temperature along the line, where sensor cable is installed, not a point sensing. The measurement resolution for rock mass displacement is 1 mm per 1 m and it covers 30 km length with every 1 m interval in minimum. In temperature, the cable measures the range of -160{approx}600 .deg. C with 0.01 .deg. C resolution according to the cable types. This means that it would be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc

  8. Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities.

    Science.gov (United States)

    Zhu, Liang; Schade, Gunnar Wolfgang; Nielsen, Claus Jørgen

    2013-12-17

    We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.

  9. 25 CFR 170.807 - What must BIA include when it develops an IRR Transportation Facilities Maintenance Management...

    Science.gov (United States)

    2010-04-01

    ... Transportation Facilities Maintenance Management System? 170.807 Section 170.807 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.807 What must BIA include when it develops an IRR Transportation Facilities Maintenance Management System...

  10. Regulatory measures for occupational health monitoring in BARC facilities

    International Nuclear Information System (INIS)

    Rajdeep; Chattopadhyay, S.

    2017-01-01

    Bhabha Atomic Research Centre (BARC) is the premier organization actively engaged in the research and developmental activities related to nuclear science and technology for the benefit of society and the nation. BARC has various facilities like nuclear fuel fabrication facilities, research reactors, spent fuel storage facilities, nuclear fuel re-cycling facilities, radioactive waste management facilities, machining workshops and various Physics, Chemistry and Biological laboratories. In BARC, aspects related to Occupational Safety and Health (OSH) are given paramount importance. The issues related OSH are subjected to multi-tier review process. BARC Safety Council (BSC) is the apex committee in the three-tier safety and security review framework of BARC. BSC functions as regulatory body for BARC facilities. BSC is responsible for occupational safety and health of employees in BARC facilities

  11. Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingyu

    2018-04-10

    including a medium-scale vacuum drying chamber and a small-scale mockup canister available for the desired testing. Our work developed the potential candidate for long term structural health monitoring of spent fuel canister through piezoelectric wafer sensors and provided the sensing methodologies based on AE and GUW methodologies. It overall provides an innovative system and methodology for enhancing the safe operation of nuclear power plant. All major accomplishments planned in the original proposal were successfully achieved.

  12. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07

    ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Analysis of technical features required for tamper indication and resistance will demonstrate the viability of successful application of the system in taking ES within a bulk handling location. Further exploration of putting this technology into practice is planned to include mapping uranium enrichment facilities for the identification of optimal for installation of air monitoring devices.

  13. The DOE position on the MRS [monitored retrievable storage] facility

    International Nuclear Information System (INIS)

    1989-06-01

    The DOE supports the development of an MRS facility as an integral part of the waste-management system because an MRS facility would allow the DOE to better meet its strategic objectives of timely disposal, timely and adequate waste acceptance, schedule confidence, and system flexibility. This facility would receive, store, and stage shipments of intact spent fuel to the repository and could be later expanded to perform additional functions that may be determined to be beneficial or required as the system design matures. Recognizing the difficulty of DOE-directed siting through national or regional screening, the DOE prefers an MRS facility that is sited through the efforts of the Nuclear Waste Negotiator, especially if the siting negotiations lead to linkages that allow the advantages of an MRS facility to be more fully realized. Even if such revised linkages are not achieved, however, the DOE supports the development of the MRS facility. 23 refs

  14. Preconceptual design for a Monitored Retrievable Storage (MRS) transfer facility

    International Nuclear Information System (INIS)

    Woods, W.D.; Jowdy, A.K.; Smith, R.I.

    1990-09-01

    The contract between the DOE and the utilities specifies that the DOE will receive spent fuel from the nuclear utilities in 1998. This study investigates the feasibility of employing a simple Transfer Facility which can be constructed quickly, and operate while the full-scale MRS facilities are being constructed. The Transfer Facility is a hot cell designed only for the purpose of transferring spent fuel assemblies from the Office of Civilian Radioactive Waste Management (OCRWM) transport casks (shipped from the utility sites) into onsite concrete storage casks. No operational functions other than spent fuel assembly transfers and the associated cask handling, opening, and closing would be performed in this facility. Radioactive waste collected in the Transfer Facility during operations would be stored until the treatment facilities in the full-scale MRS facility became operational, approximately 2 years after the Transfer Facility started operation. An alternate wherein the Transfer Facility was the only waste handling building on the MRS site was also examined and evaluated. 6 figs., 26 tabs

  15. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    DB Barnett

    2000-01-01

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  16. Economic analysis of including an MRS facility in the waste management system

    International Nuclear Information System (INIS)

    Williams, J.W.; Conner, C.; Leiter, A.J.; Ching, E.

    1992-01-01

    The MRS System Study Summary Report (System Study) in June 1989 concluded that an MRS facility would provide early spent fuel acceptance as well as flexibility for the waste management system. However, these advantages would be offset by an increase in the total system cost (i.e., total cost to the ratepayer) ranging from $1.3 billion to about $2.8 billion depending on the configuration of the waste management system. This paper discusses this new investigation which will show that, in addition to the advantages of an MRS facility described above, a basic (i.e., store-only) MRS facility may result in a cost savings to the total system, primarily due to the inclusion in the analysis of additional at-reactor operating costs for maintaining shutdown reactor sites

  17. The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

    1995-02-01

    This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

  18. Implementation of remove monitoring in facilities under safeguards with unattended systems

    International Nuclear Information System (INIS)

    Beddingfield, David H.; Nordquist, Heather A.; Umebayaashi, Eiji

    2009-01-01

    Remote monitoring is being applied by the International Atomic Energy Agency (IAEA) at nuclear facilities around the world. At the Monju Reactor in Japan we have designed, developed and implemented a remote monitoring approach that can serve as a model for applying remote monitoring to facilities that are already under full-scope safeguards using unattended instrumentation. Remote monitoring implementations have historically relied upon the use of specialized data collection hardware and system design features that integrate remote monitoring into the safeguards data collection system. The integration of remote monitoring and unattended data collection increases the complexity of safeguards data collection systems. This increase in complexity necessarily produces a corresponding reduction of system reliability compared to less-complex unattended monitoring systems. At the Monju facility we have implemented a remote monitoring system that is decoupled from the activity of safeguards data collection. In the completed system the function of remote data transfer is separated from the function of safeguards data collection. As such, a failure of the remote monitoring function cannot produce an associated loss of safeguards data, as is possible with integrated remote-monitoring implementations. Currently, all safeguards data from this facility is available to the IAEA on a 24/7 basis. This facility employs five radiation-based unattended systems, video surveillance and numerous optical seal systems. The implementation of remote monitoring at this facility, while increasing the complexity of the safeguards system, is designed to avoid any corresponding reduction in reliability of the safeguards data collection systems by having decoupled these functions. This design and implementation can serve as a model for implementation of remote monitoring at nuclear facilities that currently employ unattended safeguards systems.

  19. On results of monitoring of environmental radiation around Rokkasho reprocessing facilities (fiscal year 1995) (acknowledgement)

    International Nuclear Information System (INIS)

    1997-01-01

    The Nuclear Safety Commission received the report on this matter from the expert committee on environmental radiation monitoring central evaluation on August 30, 1996, and acknowledged it after the deliberation. The report was recognized as appropriate. The monitoring was carried out according to the monitoring plan for environmental radiation around Rokkasho reprocessing facilities. The monitoring plan is outlined. At the time of the deliberation, the propriety of the techniques of monitoring and technical level carried out by Japan Nuclear Fuel Service Co. was examined. As the result, it was confirmed that the techniques of monitoring and technical level were appropriate. The results of monitoring are reported. (K.I.)

  20. MRS systems study, Task F: Transportation impacts of a monitored retrievable storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Brentlinger, L.A.; Gupta, S.; Plummer, A.M.; Smith, L.A.; Tzemos, S.

    1989-05-01

    The passage of the Nuclear Waste Policy Amendments Act of 1987 (NWPAA) modified the basis from which the Office of Civilian Radioactive Waste Management (OCRWM) had derived and developed the configuration of major elements of the waste system (repository, monitored retrievable storage, and transportation). While the key aspects of the Nuclear Waste Policy Act of 1982 remain unaltered, NWPAA provisions focusing site characterization solely at Yucca Mountain, authorizing a monitored retrievable storage (MRS) facility with specific linkages to the repository, and establishing an MRS Review Commission make it prudent for OCRWM to update its analysis of the role of the MRS in the overall waste system configuration. This report documents the differences in transportation costs and radiological dose under alternative scenarios pertaining to a nuclear waste management system with and without an MRS, to include the effect of various MRS packaging functions and locations. The analysis is limited to the impacts of activities related directly to the hauling of high-level radioactive waste (HLW), including the capital purchase and maintenance costs of the transportation cask system. Loading and unloading impacts are not included in this study because they are treated as facility costs in the other task reports. Transportation costs are based on shipments of 63,000 metric tons of uranium (MTU) of spent nuclear fuel and 7,000 MTU equivalent of HLW. 10 refs., 41 tabs.

  1. Enhancing Efficiency of Safeguards at Facilities that are Shutdown or Closed-Down, including those being Decommissioned

    Energy Technology Data Exchange (ETDEWEB)

    Moran, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stern, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Colley, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marzo, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-15

    International Atomic Energy Agency (IAEA) safeguards involves verification activities at a wide range of facilities in a variety of operational phases (e.g., under construction, start-up, operating, shutdown, closed-down, and decommissioned). Safeguards optimization for each different facility type and operational phase is essential for the effectiveness of safeguards implementation. The IAEA’s current guidance regarding safeguards for the different facility types in the various lifecycle phases is provided in its Design Information Examination (DIE) and Verification (DIV) procedure. 1 Greater efficiency in safeguarding facilities that are shut down or closed down, including those being decommissioned, could allow the IAEA to use a greater portion of its effort to conduct other verification activities. Consequently, the National Nuclear Security Administration’s Office of International Nuclear Safeguards sponsored this study to evaluate whether there is an opportunity to optimize safeguards approaches for facilities that are shutdown or closed-down. The purpose of this paper is to examine existing safeguards approaches for shutdown and closed-down facilities, including facilities being decommissioned, and to seek to identify whether they may be optimized.

  2. A microprocessor based monitoring system for a small nuclear reactor facility

    International Nuclear Information System (INIS)

    Miller, G.E.; DeKeyser, C.F.

    1980-01-01

    An inexpensive microprocessor based system has been designed and constructed for our 250 kilowatt TRIGA reactor facility. The system, which is beginning operational testing, can monitor on a continuous basis the status of up to 54 devices and maintain a record of events. These devices include fixed radiation monitors, pool water level trips, security alarms and an access control unit. In the latter case, the unit permits selection of different levels of access permission based on the time of day. The system can alert security and other personnel in the event of abnormalities. Because of the inclusion of this in the security system, special reliability and failure mode operation. The unit must also be simple to install, program and operate. (author)

  3. Development of solution monitoring software for enhanced safeguards at a large scale reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Van Handenhove, Carl; Breban, Domnica; Creusot, Christophe [International Atomic Energy Agency, Vienna (Austria); Dransart, Pascal; Dechamp, Luc [Joint Research Centre, European Commission, Ispra, Varese, (Italy); Jarde, Eric [Euriware, Equeurdreville (France)

    2011-12-15

    The implementation of an effective and efficient IAEA safeguards approach at large scale reprocessing facilities with large throughput and continuous flow of nuclear material requires the introduction of enhanced safeguards measures to provide added assurance about the absence of diversion of nuclear material and confirmation that the facility is operated as declared. One of the enhanced safeguards measures, a Solution Monitoring and Measurement System (SMMS), comprising data collection instruments, data transmission equipment and an advanced Solution Monitoring Software (SMS), is being implemented at a large scale reprocessing plant in Japan. SMS is designed as a tool to enable automatic calculations of volumes, densities and flow-rates in selected process vessels, including most of the vessels of the main nuclear material stream. This software also includes automatic features to support the inspectorate in verifying inventories and inventory changes. The software also enables one to analyze the flows of nuclear material within the process and of specified 'cycles' of operation, and, in order to provide assurance that the facility is being operated as declared to compare these with those expected (reference signatures). The configuration and parameterization work (especially the analytical and comparative work) for the implementation and configuration of the SMS has been carried out jointly between the IAEA, Euriware-France (the software developer) and the Joint Research Centre (JRC)-Ispra. This paper describes the main features of the SMS, including the principles underlying the automatic analysis functionalities. It then focuses on the collaborative work performed by the JRC-Ispra, Euriware and the IAEA for the parameterization of the software (vessels and cycles of operation), including the current status and the future challenges.

  4. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description. Appendix I. Engineering drawings

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    The engineering plans for a test facility to monitor radionuclide transport in water through partially saturated geological media are included. Drawings for the experimental set-up excavation plan and details, lysimeter, pad, access caisson, and caisson details are presented

  5. States and compacts: Issues and events affecting facility development efforts, including the Barnwell opening

    Energy Technology Data Exchange (ETDEWEB)

    Larson, G.S.

    1995-12-31

    Ten years have passed since the first regional low-level radioactive waste compacts received Congressional consent and initiated their efforts to develop new disposal capacity. During these 10 years, both significant achievements and serious setbacks have marked our efforts and affect our current outlook. Recent events in the waste marketplace, particularly in the operating status of the Barnwell disposal facility, have now raised legitimate questions about the continued rationale for the regional framework that grew out of the original legislation enacted by Congress in 1980. At the same time, licensing activities for new regional disposal facilities are under way in three states, and a fourth awaits the final go-ahead to begin construction. Uncertainty over the meaning and reliability of the marketplace events makes it difficult to gauge long-term implications. In addition, differences in the status of individual state and compact facility development efforts lead to varying assessments of the influence these events will, or should, have on such efforts.

  6. States and compacts: Issues and events affecting facility development efforts, including the Barnwell opening

    International Nuclear Information System (INIS)

    Larson, G.S.

    1995-01-01

    Ten years have passed since the first regional low-level radioactive waste compacts received Congressional consent and initiated their efforts to develop new disposal capacity. During these 10 years, both significant achievements and serious setbacks have marked our efforts and affect our current outlook. Recent events in the waste marketplace, particularly in the operating status of the Barnwell disposal facility, have now raised legitimate questions about the continued rationale for the regional framework that grew out of the original legislation enacted by Congress in 1980. At the same time, licensing activities for new regional disposal facilities are under way in three states, and a fourth awaits the final go-ahead to begin construction. Uncertainty over the meaning and reliability of the marketplace events makes it difficult to gauge long-term implications. In addition, differences in the status of individual state and compact facility development efforts lead to varying assessments of the influence these events will, or should, have on such efforts

  7. Initial Operation of the Savannah River Site Advanced Storage Monitoring Facility

    International Nuclear Information System (INIS)

    McCurry, D.R.

    2001-01-01

    An advanced storage monitoring facility has been constructed at the Savannah River Site capable of storing sensitive nuclear materials (SNM) with access to monitoring information available over the Internet. This system will also have monitoring information available over the Internet to appropriate users. The programs will ultimately supply authenticated and encrypted data from the storage sites to certified users to demonstrate the capability of using the Internet as a safe and secure communications medium for remote monitoring of sensitive items

  8. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  9. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    King, J.W.

    1993-01-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction

  10. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    King, J.W.

    1993-08-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  11. M-area hazardous waste management facility groundwater monitoring and corrective-action report, First quarter 1995, Volume 1

    International Nuclear Information System (INIS)

    1995-05-01

    This report, in three volumes, describes the ground water monitoring and c corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during the fourth quarter 1994 and first quarter 1995. Concise description of the program and considerable data documenting the monitoring and remedial activities are included in the document. This is Volume 1 covering the following topics: sampling and results; hydrogeologic assessment; water quality assessment; effectiveness of the corrective-action program; corrective-action system operation and performance; monitoring and corrective-action program assessment; proposed monitoring and corrective-action program modifications. Also included are the following appendicies: A-standards; B-flagging criteria; C-figures; D-monitoring results tables; E-data quality/usability assessment

  12. Addendum to environmental monitoring plan Nevada Test Site and support facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-11-01

    This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  13. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities; Addendum 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    This 1993 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  14. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities

    International Nuclear Information System (INIS)

    1993-11-01

    This 1993 Addendum to the ''Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,'' Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  15. Development of radiation safety monitoring system at gamma greenhouse gamma facility

    International Nuclear Information System (INIS)

    Hairul Nizam Idris; Azimawati Ahmad, Ahmad Zaki Hussain; Ahmad Fairuz Mohd Nasir

    2009-01-01

    This paper is discussing about installation of radiation safety monitoring system at Gamma Greenhouse Gamma facility, Agrotechnology and Bioscience Division (BAB). This facility actually is an outdoor type irradiation facility, which first in Nuclear Malaysia and the only one in Malaysia. Source Cs-137 (801 Curie) was use as radiation source and it located at the centre of 30 metres diameter size of open irradiation area. The radiation measurement and monitoring system to be equipped in this facility were required the proper equipment and devices, specially purpose for application at outside of building. Research review, literature study and discussion with the equipment manufacturers was being carried out, in effort to identify the best system should be developed. Factors such as tropical climate, environment surrounding and security were considered during selecting the proper system. Since this facility involving with panoramic radiation type, several critical and strategic locations have been fixed with radiation detectors, up to the distance at 200 meter from the radiation source. Apart from that, this developed system also was built for capable to provide the online real-time reading (using internet). In general, it can be summarized that the radiation safety monitoring system for outdoor type irradiation facility was found much different and complex compared to the system for indoor type facility. Keyword: radiation monitoring, radiation safety, Gamma Greenhouse, outdoor irradiation facility, panoramic radiation. (Author)

  16. Facility effluent monitoring plan for K area spent fuel storage basin

    International Nuclear Information System (INIS)

    Hunacek, G.S.

    1996-01-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400. 1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in WHC-EP-0438-1, A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the second revision to the original annual report. Long-range integrity of the effluent monitoring system shall be ensured with updates of this report whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  17. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant (PFP); FINAL

    International Nuclear Information System (INIS)

    FRAZIER, T.P.

    1999-01-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years

  18. Study concerning an integrated radiation monitoring systems for nuclear facilities

    International Nuclear Information System (INIS)

    Oprea, I.; Oprea, M.; Stoica, M.; Cerga, V.; Pirvu, V; Badea, E.

    1996-01-01

    This paper presents an integrated radiation monitoring system designed to assess the effects of nuclear accidents and to provide a basis for making right decisions and countermeasures in order to reduce health damages. The system implies a number of stationary monitoring equipment, data processing unit and a communication network. The system meets the demands of efficiency and reliability, providing the needed tools to easily create programs able to process simple input data filling the information management system. (author). 10 refs

  19. Environmental monitoring in the vicinity of nuclear facilities

    International Nuclear Information System (INIS)

    Jacomino, V.M.F.; Maduar, M.F.

    1992-02-01

    The purpose of this manual is to provide guidance for setting up programmes of environmental monitoring in the vicinity of establishments in a normal condition of operation. It intends to contribute for trainning of technicians working in the nuclear field. In order to illustrate the application of the basic principles described in this manual, the routine environmental monitoring programme carried out in the IPEN-CNEN/SP is presented. (author)

  20. Scope and status of the USA Engineering Test Facility including relevant TFTR research and development

    International Nuclear Information System (INIS)

    Becraft, W.R.; Reardon, P.J.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The progress toward the design and construction of the ETF will reflect the significant achievements of past, present, and future experimental tokamak devices. Some of the features of this foundation of experimental results and relevant engineering designs and operation will derive from the Tokamak Fusion Test Reactor (TFTR) Project, now nearing the completion of its construction phase. The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy (OFE) established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF and discusses some highlights of the TFTR R and D work

  1. Scope and status of the USA Engineering Test Facility including relevant TFTR research and development

    International Nuclear Information System (INIS)

    Becraft, W.R.; Reardon, P.J.

    1981-01-01

    The vehicle by which the fusion programme would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The progress toward the design and construction of the ETF will reflect the significant achievements of past, present, and future experimental tokamak devices. Some of the features of this foundation of experimental results and relevant engineering designs and operation will derive from the Tokamak Fusion Test Reactor (TFTR) Project, now nearing the completion of its construction phase. The ETF would provide a test-bed for reactor components in the fusion environment. To initiate preliminary planning for the ETF decision, the Office of Fusion Energy (OFE) established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF and discusses some highlights of the TFTR R and D work. (author)

  2. Facility Effluent Monitoring Plan for the 284-E and 284-W power plants

    International Nuclear Information System (INIS)

    Herman, D.R.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The 284-E and 284-W Power Plants are coal-fired plants used to generate steam. Electricity is not generated at these facilities. The maximum production of steam is approximately 159 t (175 tons)/h at 101 kg (225 lb)/in 2 . Steam generated at these facilities is used in other process facilities (i. e., the B Plant, Plutonium-Uranium Extraction Plant, 242-A Evaporator) for heating and process operations. The functions or processes associated with these facilities do not have the potential to generate radioactive airborne effluents or radioactive liquid effluents, therefore, radiation monitoring equipment is not used on the discharge of these streams. The functions or processes associated with the production of steam result in the use, storage, management and disposal of hazardous materials

  3. Water quality facility investigation report : final summary of project and evaluation of monitoring plan implementation.

    Science.gov (United States)

    2005-07-05

    The Oregon Department of Transportation (ODOT) has installed several stormwater : treatment facilities throughout the State to improve the quality of runoff discharged from : highways. These facilities include a variety of both above ground and below...

  4. Annual Report for 2008 - 2009 Detection Monitoring at the Environmental Management Waste Management Facility, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Walker J.R.

    2010-03-01

    This annual Environmental Monitoring Report (EMR) presents results of environmental monitoring performed during fiscal year (FY) 2009 (October 1, 2008 - September 30, 2009) at the Environmental Management Waste Management Facility (EMWMF). The EMWMF is an operating state-of-the-art hazardous waste landfill located in Bear Creek Valley (BCV) west of the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee (Appendix A, Fig. A.1). Opened in 2002 and operated by a DOE prime contractor, Bechtel Jacobs Company LLC (BJC), the EMWMF was built specifically to accommodate disposal of acceptable solid wastes generated from Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial actions for former waste sites and buildings that have been impacted by past DOE operations on the ORR and at DOE sites off the ORR within the state of Tennessee. Environmental monitoring at the EMWMF is performed to detect and monitor the impact of facility operations on groundwater, surface water, stormwater, and air quality and to determine compliance with applicable or relevant and appropriate requirements (ARARs) specified in governing CERCLA decision documents. Annually, the EMR presents an evaluation of the groundwater, surface water, stormwater, and air monitoring data with respect to the applicable EMWMF performance standards. The purpose of the evaluation is to: (1) identify monitoring results that indicate evidence of a contaminant release from the EMWMF to groundwater, surface water, stormwater, or air, and (2) recommend appropriate changes to the associated sampling and analysis requirements, including sampling locations, methods, and frequencies; field measurements; or laboratory analytes that may be warranted in response to the monitoring data. Sect. 2 of this annual EMR provides background information relevant to environmental monitoring at the landfill, including

  5. 1993 Annual performance report for Environmental Oversight and Monitoring at Department of Energy facilities in New Mexico

    International Nuclear Information System (INIS)

    1993-01-01

    In October of 1990, the New Mexico Environment Department entered into an agreement with the US Department of Energy (DOE) to create the Department of Energy Oversight and Monitoring Program. This program is designed to create an avenue for the State to ensure DOE facilities are in compliance with applicable environmental regulations, to allow the State oversight and monitoring independent of the DOE, to allow the State valuable input into remediation decision making, and to protect the environment and the public health and safety of New Mexicans concerning DOE facility activities. This agreement, called the Agreement in Principle (AIP), includes all four of New Mexico's DOE facilities: Los Alamos National Laboratory in Los Alamos; Sandia National Laboratories and the Inhalation Toxicology Research Institute on Kirtland Air Force Base in Albuquerque; and the Waste Isolation Pilot Plant near Carlsbad

  6. Monitoring system including an electronic sensor platform and an interrogation transceiver

    Science.gov (United States)

    Kinzel, Robert L.; Sheets, Larry R.

    2003-09-23

    A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.

  7. Migration of carbon dioxide included micro-nano bubble water in porous media and its monitoring

    Science.gov (United States)

    Takemura, T.; Hamamoto, S.; Suzuki, K.; Koichi, O.

    2017-12-01

    The distributed CO2 storage is the small scale storage and its located near the emission areas. In the distributed CO2 storage, the CO2 is neutralized by sediment and underground water in the subsurface region (300-500m depth). Carbon dioxide (CO2) included micro-nano bubbles is one approach in neutralizing CO2 and sediments by increasing CO2 volume per unit volume of water and accelerating the chemical reaction. In order to design underground treatment for CO2 gas in the subsurface, it is required to elucidate the behavior of CO2 included micro-nano bubbles in the water. In this study, we carried out laboratory experiment using the soil tank, and measure the amount of leakage of CO2 gas at the surface. In addition, the process of migration of carbon dioxide included micro-nano bubble was monitored by the nondestructive method, wave velocity and resistivity.

  8. Fast Flux Test Facility performance monitoring management information

    International Nuclear Information System (INIS)

    Newland, D.J.

    1987-11-01

    The purpose of this report is to provide performance data on key performance indicators selected from the FFTF Early Warning System performance indicators. This report contains the results for key performance indicators divided into two categories of ''overall'' and ''other''. The ''overall'' performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance

  9. Monitoring of downstream salmon and steelhead at federal hydroelectric facilities

    International Nuclear Information System (INIS)

    Hawkes, L.A.; Martinson, R.D.; Absolon, R.F.

    1993-05-01

    The seaward migration of salmonid smolts was monitored by the National marine Fisheries Service (NMFS) at two sites on the Columbia River in 1992. The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program to index Columbia Basin juvenile salmonied stocks. It is coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Agencies and Tribes. Its purpose is to facilitate fish passage through reservoirs and at dams by providing FPC with timely smolt migration data used for flow and spill management. Data is also used for travel time, migration timing and relative run size magnitude analysis. This program is carried out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration (BPA). Sampling sites were John Day and Bonneville Dams under the 1992 Smolt Monitoring Program. All pertinent fish capture, condition, brand recovery, and flow data, were reported daily to FPC. These data were incorporated into the FPC's Fish Passage Data System (FPDS)

  10. Fast Flux Test Facility performance monitoring management information: [Final report

    International Nuclear Information System (INIS)

    Newland, D.J.

    1987-09-01

    The purpose of this report is to provide management with performance data on key performance indicators for the month of July, 1987. This report contains the results for key performance indicators divided into two categories of ''overall'' and ''other''. The ''overall'' performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance

  11. Permanent radiation and weather monitoring systems at the Posiva nuclear waste facilities

    International Nuclear Information System (INIS)

    Laukkanen, J.; Palomaeki, M.; Viitanen, P.; Kumpula, L.

    2012-12-01

    Posiva Oy is planning to build a complex of two nuclear waste facilities in Olkiluoto. The facilities will encapsulate and dispose the spent nuclear fuel from the nuclear power plants operated by Posiva's owners into Olkiluoto bedrock. The spent fuel is strongly radioactive, so the radiation safety of the facilities and their processes for its users and the environment must be ensured. This paper deals with of the stationary radiation and weather measurement systems designed for the monitoring of Posiva's nuclear waste facilities and their processes. The systems are used for monitoring the encapsulation and disposal facilities and processes, as well as the emissions to the environment. The document collects also the system design basis and other requirements to be considered in the design of these systems at this early stage. (orig.)

  12. Facility Effluent Monitoring Plan for the Spent Nuclear Fuel (SNF) Project

    International Nuclear Information System (INIS)

    HUNACEK, G.S.

    2000-01-01

    A facility effluent monitoring plan is required by the US. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in Westinghouse Hanford Company (WHC)-EP-0438-1, ''A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans'', and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the third revision to the original annual report. This document is reviewed annually even if there are no operational changes, and it is updated as necessary

  13. Experimental monitoring of ozone production in a PET cyclotron facility

    International Nuclear Information System (INIS)

    Zanibellato, L.; Cicoria, G.; Pancaldi, D.; Boschi, S.; Mostacci, D.; Marengo, M.

    2010-01-01

    Ozone produced from radiolytic processes was investigated as a possible health hazard in the working environment at the University Hospital 'S.Orsola-Malpighi' PET facility. Intense radiation fields can generate ozone, known to be the most toxic gas produced by ionizing radiation around a particle accelerator. To evaluate ozone concentration in air, two different measurement campaigns were conducted with passive diffusion detectors. Comparison of the results with the concentration limits recommended by American Conference of Governmental Industrial Hygienists (ACGIH) demonstrated that ozone poses no health hazard to workers around a biomedical cyclotron.

  14. Pollution control and environmental monitoring efforts at DOE's Coal-Fired Flow Facility

    International Nuclear Information System (INIS)

    Attig, R.C.; Crawford, L.W.; Lynch, T.P.; Sheth, A.C.

    1991-01-01

    Proof-of-Concept (POC) scale demonstration of such technology is currently being carried out at the US Department of Energy's (DOE's) Coal-Fired Flow Facility (CFFF), located at The University of Tennessee Space Institute (UTSI) in Tullahoma, Tennessee and at the Component Development and Integration Facility in Butte, Montana. The CFFF is dedicated to the evaluation of downstream (steam cycle) components and technology that may be considered for a full-scale MHD system. The objectives of the CFFF testing include the demonstration of various pollution control devices and techniques at a scale sufficient for future scale-up. The CFFF offers a unique test environment in which emissions control techniques can be developed and evaluated through emissions and environmental monitoring. Results thus far have demonstrated the ability of sulfur oxide (SO x ), nitrogen oxide (NO x ) and particulate emissions well below the New Source Performance Standards (NSPS). Regeneration of the potassium sulfate to produce sulfur-free compounds also has been demonstrated. The experimental program at the CFFF is now aimed at determining the optimum conditions for future commercial scale designs. Because of increased interests in Air Toxics, measurements of nitrous oxide (N 2 O), a potential greenhouse gas, priority pollutants (inorganic as well as organics), and chlorine-containing species (Cl 2 and HCl) are also included in our ongoing efforts. Environmental monitoring activities are being pursued to develop an environmental impact assessment data base. These include the use of three ambient air sites to determine the impacts of gaseous and particulate emissions, five lake water sites to determine impacts due to process water discharges and seven sites to collect terrestrial data on possible soil contamination and tree growth. In this paper, we will summarize the status of our ongoing environmental program. 16 refs., 15 figs., 3 tabs

  15. Environmental monitoring for tritium in tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, Ioan; Steflea, Dumitru; Lazar, Roxana Elena

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and chemical plants make up almost entire neighborhood of the Experimental Cryogenic Pilot. It is necessary to emphasize this aspect because the hall sewage system of the pilot is connected with the one of other three chemical plants from vicinity. This is the reason why we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and sewage from neighboring industrial activity. In this work, a low background liquid scintillation was used to determine tritium activity concentration according to ISO 9698/1998 standard. We measured drinking water, precipitation, river water, underground water and wastewater. The tritium level was between 10 TU and 27 TU what indicates that there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decided to monitor monthly each location. In this paper it is presented a standard method used for tritium determination in water samples, the precautions needed to achieve reliable results and the evolution of tritium level in different location near the Experimental Pilot for Tritium and Deuterium Cryogenic Separation. (authors)

  16. Environmental radiological monitoring methods in TENORM facilities and its relevance

    International Nuclear Information System (INIS)

    Teng Iyu Lin; Ismail Bahari; Muhamad Samudi Yasir

    2011-01-01

    In Malaysia, mineral processing plant is one of the Naturally Occurring Radioactive Material (NORM) processing industries controlled by the Atomic Energy Licensing Board (AELB) through the enforcement of Atomic Energy Licensing Act 1984 (Act 304). The activities generated waste which is called as TENORM wastes. TENORM wastes are mainly found in thorium hydroxide from the processing of xenotime and monazite, and iron oxide and red gypsum from the processing of ilmenite. Other TENORM wastes are scales and sludge from the oil and gas industries, tin slag produced from the smelting of tin, and ilmenite, zircon, and monazite produced from the processing of tin tailing (amang). The environmental and radiological monitoring program is needed to ensure that the TENORM wastes did not caused any contamination to the environment. The wastes vary in the types of samples, parameters of analysis as well as the frequency of monitoring based on licenses conditions issued by the AELB. The main objective of this study is to assess the suitability of licenses condition and the monitoring program required in oil and gas, and mineral processing industries. Study was done by assessing the data submitted to the AELB in order to comply with the licensing requirement. This study had found out that there are a few of licenses conditions that need to be reviewed accordingly based on the processing activity. (Author)

  17. Results of the F/H Effluent Treatment Facility biological monitoring program, July 1987--July 1991

    International Nuclear Information System (INIS)

    Specht, W.L.

    1992-07-01

    As required by the South Carolina Department of Health and Environmental Control (SCDHEC) under NPDES Permit SCO000175, biological monitoring was conducted in Upper Three Runs Creek to determine if discharges from the F/H Effluent Treatment Facility have adversely impacted the biotic community of the receiving stream. Data included in this summary report encompass July 1987 through July 1991. As originally designed, the F/H ETF was not expected to remove all of the mercury from the wastewater; therefore, SCDHEC specified that studies be conducted to determine if mercury was bioaccumulating in aquatic biota. Subsequent to approval of the biological monitoring program, an ion exchange column was added to the F/H ETF specifically to remove mercury, which eliminated mercury from the F/H ETF effluent. The results of the biological monitoring program indicate that at the present rate of discharge, the F/H ETF effluent has not adversely affected the receiving stream with respect to any of the parameters that were measured. The effluent is not toxic at the in-stream waste concentration and there is no evidence of mercury bioaccumulation

  18. Cleanup and treatment of radioactively contaminated land including areas near nuclear facilities. A selected bibliography

    International Nuclear Information System (INIS)

    Fore, C.S.; Faust, R.A.; Brewster, R.H.

    1982-09-01

    This annotated bibliography of 337 references summarizes the literature published on the cleanup and treatment of radioactively contaminated land. Specifically, this bibliography focuses on literature concerned with the methods of cleanup and treatment being applied - chemical, physical, or vegetative stabilization; the types of equipment being used; and the influence of climatic conditions on the method selected for use. The emphasis in such literature is placed on hazardous site cleanup efforts that have been completed as well as those that are in progress and are being planned. Appendix A includes 135 additional references to literature identified but not included in the bibliography because of time and funding constraints. Appendix B consists of a table that identifies the cleanup and treatment research conducted at specific sites. All of the information included in this bibliography is stored in a computerized form that is readily available upon request

  19. Groundwater monitoring plan: 200 Areas treated effluent disposal facility (Project W-049H)

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-04-01

    This groundwater monitoring plan provides information that supports the US Department of Energy's application (DOE-RL 1994) for waste water discharge permit No. WA-ST-4502 from the State of Washington, under the auspices of Washington Administrative Code 173-216. The monitoring plan has two functions: (1) to summarize the results of a 3-yr characterization of the current hydrogeology and groundwater quality of the discharge site and (2) to provide plans for evaluating the effects of the facility's operation on groundwater quality and document compliance with applicable groundwater quality standards. Three wells were drilled to define the stratigraphy, evaluate sediment characteristics, and establish a groundwater monitoring net work for the discharge facility. These wells monitor groundwater quality upgradient and downgradient in the uppermost aquifer. This report proposes plans for continuing the monitoring of groundwater quality and aquifer characteristics after waste water discharges begin

  20. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information

  1. Monitoring of Corrientes facility using nuclear registers techniques

    International Nuclear Information System (INIS)

    Yesquen L, S.

    1994-01-01

    Knowledge of fluid movement in the reservoir is a key to enhanced production management. Direct measurement of water and oil saturation variations with time, is the most reliable method in determining the depletion profile of reservoirs with ample range of permeabilities. This paper illustrates how nuclear logging techniques aids proper management in strong water drive reservoir named Cetico Corrientes Field, in east Peru. Important production increase was obtained with work over and drilling program, based on reservoir monitoring using thermal decay tool. (author). 7 figs

  2. Beam profile monitors for a tagged photon beam facility

    International Nuclear Information System (INIS)

    Arends, J.; Breuer, M.; Dahmen, H.D.; Detemple, P.; Schneider, W.; Urban, D.; Zucht, B.

    1991-01-01

    A beam profile monitor for electron and photon beams is described, which operates at the low intensities encountered in a tagged bremsstrahlung beam environment, typically 10 10 electrons/s and 10 7 photons/s. The method is based on a wire scanner and utilizes the presence of a tagging spectrometer. The accuracy of the measurements can be tuned in a wide range to meet the requirements set by the actual beam parameters. Examples of measured electron and photon beam profiles at the tagged photon beam of the PHOENICS experiment at the electron stretcher ring ELSA in Bonn are given. (orig.)

  3. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, S.A., E-mail: dewjisa@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States); Lee, D.L.; Croft, S. [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States); Hertel, N.E. [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States); Nuclear and Radiological Engineering Program, Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States); Chapman, J.A.; McElroy, R.D.; Cleveland, S. [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States)

    2016-07-01

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO{sub 2}(NO{sub 3}){sub 2}) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10–90 g U/L of natural uranyl nitrate are presented. A range of

  4. Cyanobacteria, Toxins and Indicators: Field Monitoring,Treatment Facility Monitoring and Treatment Studies

    Science.gov (United States)

    This presentation is a compilation of harmful algal bloom (HAB) related field monitoring data from the 2015 bloom season, treatment plant monitoring data from the 2013 and 2014 bloom seasons, and bench-scale treatment study data from 2015.

  5. An automated DICOM database capable of arbitrary data mining (including radiation dose indicators) for quality monitoring.

    Science.gov (United States)

    Wang, Shanshan; Pavlicek, William; Roberts, Catherine C; Langer, Steve G; Zhang, Muhong; Hu, Mengqi; Morin, Richard L; Schueler, Beth A; Wellnitz, Clinton V; Wu, Teresa

    2011-04-01

    The U.S. National Press has brought to full public discussion concerns regarding the use of medical radiation, specifically x-ray computed tomography (CT), in diagnosis. A need exists for developing methods whereby assurance is given that all diagnostic medical radiation use is properly prescribed, and all patients' radiation exposure is monitored. The "DICOM Index Tracker©" (DIT) transparently captures desired digital imaging and communications in medicine (DICOM) tags from CT, nuclear imaging equipment, and other DICOM devices across an enterprise. Its initial use is recording, monitoring, and providing automatic alerts to medical professionals of excursions beyond internally determined trigger action levels of radiation. A flexible knowledge base, aware of equipment in use, enables automatic alerts to system administrators of newly identified equipment models or software versions so that DIT can be adapted to the new equipment or software. A dosimetry module accepts mammography breast organ dose, skin air kerma values from XA modalities, exposure indices from computed radiography, etc. upon receipt. The American Association of Physicists in Medicine recommended a methodology for effective dose calculations which are performed with CT units having DICOM structured dose reports. Web interface reporting is provided for accessing the database in real-time. DIT is DICOM-compliant and, thus, is standardized for international comparisons. Automatic alerts currently in use include: email, cell phone text message, and internal pager text messaging. This system extends the utility of DICOM for standardizing the capturing and computing of radiation dose as well as other quality measures.

  6. Environmental monitoring for tritium at tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, C.; Stefanescu, I.; Steflea, D.; Lazar, R.E.

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and the Experimental Cryogenic Pilot's, almost the entire neighborhood are chemical plants. It is necessary to emphasize this aspect because the sewerage system is connected with the other three chemical plants from the neighborhood. This is the reason that we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and waste water of industrial activity from neighborhood. In this work, a low background liquid scintillation is used to determine tritium activity concentration according to ISO 9698/1998. We measured drinking water, precipitation, river water, underground water and waste water. The tritium level was between 10 TU and 27 TU that indicates there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decide to monitories monthly each location. In this paper a standard method is presented which it is used for tritium determination in water sample, the precautions needed in order to achieve reliable results, and the evolution of tritium level in different location near the Experimental Pilot Tritium and Deuterium Cryogenic Separation.(author)

  7. Simulation and monitoring tools to protect disaster management facilities against earthquakes

    Science.gov (United States)

    Saito, Taiki

    2017-10-01

    The earthquakes that hit Kumamoto Prefecture in Japan on April 14 and 16, 2016 severely damaged over 180,000 houses, including over 8,000 that were completely destroyed and others that were partially damaged according to the Cabinet Office's report as of November 14, 2016 [1]. Following these earthquakes, other parts of the world have been struck by earthquakes including Italy and New Zealand as well as the central part of Tottori Prefecture in October, where the earthquake-induced collapse of buildings has led to severe damage and casualties. The earthquakes in Kumamoto Prefecture, in fact, damaged various disaster management facilities including Uto City Hall, which significantly hindered the city's evacuation and recovery operations. One of the most crucial issues in times of disaster is securing the functions of disaster management facilities such as city halls, hospitals and fire stations. To address this issue, seismic simulations are conducted on the East and the West buildings of Toyohashi City Hall using the analysis tool developed by the author, STERA_3D, with the data of the ground motion waveform prediction for the Nankai Trough earthquake provided by the Ministry of Land, Infrastructure, Transport and Tourism. As the result, it was found that the buildings have sufficient earthquake resistance. It turned out, however, that the west building is at risk for wall cracks or ceiling panel's collapse while in the east building, people would not be able to stand through the strong quakes of 7 on the seismic intensity scale and cabinets not secured to the floors or walls would fall over. Additionally, three IT strong-motion seismometers were installed in the city hall to continuously monitor vibrations. Every five minutes, the vibration data obtained by the seismometers are sent to the computers in Toyohashi University of Technology via the Internet for the analysis tools to run simulations in the cloud. If an earthquake strikes, it is able to use the results

  8. Monitoring Nuclear Facilities Using Satellite Imagery and Associated Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Lafitte, Marc; Robin, Jean‑Philippe

    2015-01-01

    The mission of the European Union Satellite Centre (SatCen) is “to support the decision making and actions of the European Union in the field of the CFSP and in particular the CSDP, including European Union crisis management missions and operations, by providing, at the request of the Council or the European Union High Representative, products and services resulting from the exploitation of relevant space assets and collateral data, including satellite and aerial imagery, and related services”. The SatCen Non‑Proliferation Team, part of the SatCen Operations Division, is responsible for the analysis of installations that are involved, or could be involved, in the preparation or acquisition of capabilities intended to divert the production of nuclear material for military purposes and, in particular, regarding the spread of Weapons of Mass destruction and their means of delivery. For the last four decades, satellite imagery and associated remote sensing and geospatial techniques have increasingly expanded their capabilities. The unprecedented Very High Resolution (VHR) data currently available, the improved spectral capabilities, the increasing number of sensors and ever increasing computing capacity, has opened up a wide range of new perspectives for remote sensing applications. Concurrently, the availability of open source information (OSINF), has increased exponentially through the medium of the internet. This range of new capabilities for sensors and associated remote sensing techniques have strengthened the SatCen analysis capabilities for the monitoring of suspected proliferation installations for the detection of undeclared nuclear facilities, processes and activities. The combination of these remote sensing techniques, imagery analysis, open source investigation and their integration into Geographic Information Systems (GIS), undoubtedly improve the efficiency and comprehensive analysis capability provided by the SatCen to the EU stake‑holders. The

  9. System Configuration Management Implementation Procedure for the Cold Vacuum Drying Facility Monitoring and Control System

    International Nuclear Information System (INIS)

    ANGLESEY, M.O.

    2000-01-01

    The purpose of this document is to establish the System Configuration Management Implementation Procedure (SCMIP) for the Cold Vacuum Drying Facility (CVDF) Monitoring and Control System (MCS). This procedure provides configuration management for the process control system. The process control system consists of equipment hardware and software that controls and monitors the instrumentation and equipment associated with the CVDF processes. Refer to SNF-3090, Cold Vacuum Drying Facility Monitoring and Control System Design Description, HNF-3553, Annex B, Safety Analysis Report for the Cold Vacuum Drying Facility, and AP-CM-6-037-00, SNF Project Process Automation Software and Equipment Configuration. This SCMIP identifies and defines the system configuration items in the control system, provides configuration control throughout the system life cycle, provides configuration status accounting, physical protection and control, and verifies the completeness and correctness of these items

  10. Groundwater monitoring plan for the Hanford Site 216-B-3 pond RCRA facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Chou, C.J.

    1998-06-01

    The 216-B-3 pond system was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In operation since 1945, the B Pond system has been a RCRA facility since 1986, with Resource Conservation and Recovery Act (RCRA) interim-status groundwater monitoring in place since 1988. In 1994, discharges were diverted from the main pond, where the greatest potential for contamination was thought to reside, to the 3C expansion pond. In 1997, all discharges to the pond system were discontinued. In 1990, the B Pond system was elevated from detection groundwater monitoring to an assessment-level status because total organic halogens and total organic carbon were found to exceed critical means in two wells. Subsequent groundwater quality assessment failed to find any specific hazardous waste contaminant that could have accounted for the exceedances, which were largely isolated in occurrence. Thus, it was recommended that the facility be returned to detection-level monitoring

  11. [Radon risk in healthcare facilities: environmental monitoring and effective dose].

    Science.gov (United States)

    Cammarota, B; Cascone, Maria Teresa; De Paola, L; Schillirò, F; Del Prete, U

    2009-01-01

    Radon, the second cause of lung cancer after smoking (WHO- IARC), is a natural, radioactive gas, which originates from the soil and pollutes indoor air, especially in closed or underground spaces. The purpose of this study was to determine the concentration of radon gas, its effective dose, and the measurement of microclimatic degrees C; U.R. % and air velocity in non-academic intensive care units of public hospitals in the Naples area. The annual average concentrations of radon gas were detected with EIC type ionization electret chambers, type LLT with exposure over four 3-month periods. The concentrations varied for all health facilities between 186 and 1191 Bq/m3. Overall, the effective dose of exposure to radon gas of 3mSv/a recommended by Italian legislation was never exceeded. The concentration of radon gas showed a decreasing trend starting from the areas below ground level to those on higher floors; such concentrations were also influenced by natural and artificial ventilation of the rooms, building materials used for walls, and by the state of maintenance and improvements of the building (insulation of floors and walls). The data obtained confirmed the increased concentration of radionuclides in the yellow tuff of volcanic origin in the Campania Region and the resulting rate of release of radon gas, whereas the reinforced concrete structure (a hospital located on the hillside), which had the lowest values, proved to provide good insulation against penetration and accumulation of radon gas.

  12. Emergency response facilities including primary and secondary prevention strategies across 79 professional football clubs in England.

    Science.gov (United States)

    Malhotra, Aneil; Dhutia, Harshil; Gati, Sabiha; Yeo, Tee-Joo; Finocchiaro, Gherardo; Keteepe-Arachi, Tracey; Richards, Thomas; Walker, Mike; Birt, Robin; Stuckey, David; Robinson, Laurence; Tome, Maite; Beasley, Ian; Papadakis, Michael; Sharma, Sanjay

    2017-06-14

    To assess the emergency response planning and prevention strategies for sudden cardiac arrest (SCA) across a wide range of professional football clubs in England. A written survey was sent to all professional clubs in the English football league, namely the Premiership, Championship, League 1 and League 2. Outcomes included: (1) number of clubs performing cardiac screening and frequency of screening; (2) emergency planning and documentation; (3) automated external defibrillator (AED) training and availability; and (4) provision of emergency services at sporting venues. 79 clubs (86%) responded to the survey. 100% clubs participated in cardiac screening. All clubs had AEDs available on match days and during training sessions. 100% Premiership clubs provided AED training to designated staff. In contrast, 30% of lower division clubs with AEDs available did not provide formal training. Most clubs (n=66; 83%) reported the existence of an emergency action plan for SCA but formal documentation was variable. All clubs in the Premiership and League 1 provided an ambulance equipped for medical emergencies on match days compared with 75% of clubs in the Championship and 66% in League 2. The majority of football clubs in England have satisfactory prevention strategies and emergency response planning in line with European recommendations. Additional improvements such as increasing awareness of European guidelines for emergency planning, AED training and mentorship with financial support to lower division clubs are necessary to further enhance cardiovascular safety of athletes and spectators and close the gap between the highest and lower divisions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Monitoring commercial conventional facilities control with the APS control system: The Metasys-to-EPICS interface

    International Nuclear Information System (INIS)

    Nawrocki, G.J.; Seaver, C.L.; Kowalkowski, J.B.

    1995-01-01

    As controls needs at the Advanced Photon Source matured from an installation phase to an operational phase, the need to monitor the existing conventional facilities control system with the EPICS-based accelerator control system was realized. This existing conventional facilities control network is based on a proprietary system from Johnson Controls called Metasys. Initially read-only monitoring of the Metasys parameters will be provided; however, the ability for possible future expansion to full control is available. This paper describes a method of using commercially available hardware and existing EPICS software as a bridge between the Metasys and EPICS control systems

  14. DOPA, a Digital Observatory for Protected Areas including Monitoring and Forecasting Services

    Science.gov (United States)

    Dubois, Gregoire; Hartley, Andrew; Peedell, Stephen; de Jesus, Jorge; Ó Tuama, Éamonn; Cottam, Andrew; May, Ian; Fisher, Ian; Nativi, Stefano; Bertrand, Francis

    2010-05-01

    The Digital Observatory for Protected Areas (DOPA) is a biodiversity information system currently developed as an interoperable web service at the Joint Research Centre of the European Commission in collaboration with other international organizations, including GBIF, UNEP-WCMC, Birdlife International and RSPB. DOPA is designed to assess the state and pressure of Protected Areas (PAs) and to prioritize them accordingly, in order to support decision making and fund allocation processes. To become an operational web service allowing the automatic monitoring of protected areas, DOPA needs to be able to capture the dynamics of spatio-temporal changes in habitats and anthropogenic pressure on PAs as well as the changes in the species distributions. Because some of the most valuable natural ecosystems and species on the planet cover large areas making field monitoring methods very difficult for a large scale assessment, the automatic collection and processing of remote sensing data are processes at the heart of the problem. To further be able to forecast changes due to climate change, DOPA has to rely on an architecture that enables it to communicate with the appropriate modeling web services. The purpose of this presentation is to present the architecture of the DOPA with special attention to e-Habitat, its web processing service designed for assessing the irreplaceability of habitats as well as for the modeling of habitats under different climate change scenarios. The use of open standards for spatial data and of open source programming languages for the development of the core functionalities of the system are expected to encourage the participation of the scientific community beyond the current partnerships and to favour the sharing of such an observatory which could be installed at any other location. Acknowledgement: Part of this work is funded under the 7th Framework Programme by the EuroGEOSS (www.eurogeoss.eu) project of the European Commission. The views

  15. Preservation of Records, Knowledge and Memory across Generations (RK and M). Monitoring of Geological Disposal Facilities - Technical and Societal Aspects

    International Nuclear Information System (INIS)

    2014-01-01

    Geological Repository (October 2013)', which is a contribution of an NEA RWMC Working party, the Forum on Stakeholder Confidence (FSC), to the RK and M project. The latter study draws on a questionnaire survey of FSC members in July and August 2012, followed up by structured interviews with a range of involved stakeholders from both national and local levels from seven countries and also comprises a literature review on the subject. This report is structured as follows: Chapter 2 summarizes the reviews of the literature on technical and societal monitoring published in the past decade. Technical monitoring is a key subject in several international radioactive waste disposal programmes and a number of national publications. Chapter 3 reviews the monitoring goals relevant to the entire repository life-cycle and evaluates a few major monitoring projects. The chapter describes the different monitoring aspects in the different life-cycle stages of the geological disposal program and the different monitoring projects. Chapter 4 outlines a logical scheme for developing a monitoring programme. This selection should be flexible enough to accommodate probable later needs for revisions during the repository life-cycle. Chapter 5 identifies and analyses the major challenges involved in technical monitoring which include: data management, material and equipment durability, parameter selection, identification of processes to be monitored, coupling processes, monitoring after repository closure. Chapter 6 presents the results of a questionnaire survey of members of the Forum of Stakeholders Confidence from the NEA (FSC) on expectations of local communities regarding monitoring and RK and M preservation of radioactive waste management (RWM) facilities. Chapter 7 covers the observations and results of the 2013 International Repository Monitoring Conference and workshop (organised within EC MoDeRn project). Chapter 8 identifies the overall lessons learned and the rationale for monitoring

  16. Hand held data collection and monitoring system for nuclear facilities

    Science.gov (United States)

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-26

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs.

  17. Hand held data collection and monitoring system for nuclear facilities

    International Nuclear Information System (INIS)

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-01

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs

  18. Environmental monitoring data review of a uranium ore processing facility in Argentina

    International Nuclear Information System (INIS)

    Bonetto, J.

    2014-01-01

    An uranium ore processing facility in the province of Mendoza (Argentina) that has produced uranium concentrate from 1954 to 1986 is currently undergoing the last steps of environmental restoration. The operator has been performing post-closure environmental monitoring since 1986, while the Nuclear Regulatory Authority (ARN) has been carrying out its own independent radiological environmental monitoring for verification purposes since its creation, in 1995. A detailed revision of ARN´s monitoring plan for uranium mining and milling facilities has been undergoing since 2013, starting with this particular site. Results obtained from long-time sampling locations (some of them currently unused) have been analyzed and potentially new sampling points have been studied and proposed. In this paper, some statistical analysis and comparison of sampling-points’ datasets are presented (specifically uranium and radium concentration in groundwater, surface water and sediments) with conclusions pertaining to their keeping or discarding as sampling points in future monitoring plans. (author)

  19. Groundwater Monitoring Plan for the 1301-N, 1324-N/NA, and 1325-N RCRA Facilities

    International Nuclear Information System (INIS)

    Hartman, Mary J.

    2001-01-01

    The 1301-N and 1325-N Liquid Waste Disposal Facilities, the 1324-N Surface Impoundment, and the 1324-NA Percolation Pond, located in the 100 N Area of the Hanford Site, are regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The closure plans for these facilities stipulate that groundwater is monitored according to the 100-N Pilot Project: Proposed Consolidated Groundwater Monitoring Program (BHI-00725). This document supplements the consolidated plan by providing information on sampling and analysis protocols, quality assurance, data management, and a conceptual model for the RCRA sites. Monitoring well networks, constituents, and sampling frequency remain the same as in the consolidated plan or the previous groundwater monitoring plan (Hartman 1996)

  20. Preliminary site requirements and considerations for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    1991-08-01

    This report presents preliminary requirements and considerations for siting monitored retrievable storage (MRS) facility. It purpose is to provide guidance for assessing the technical suitability of potential sites for the facility. It has been reviewed by the NRC staff, which stated that this document is suitable for ''guidance in making preliminary determinations concerning MRS site suitability.'' The MRS facility will be licensed by the US Nuclear Regulatory Commission. It will receive spent fuel from commercial nuclear power plants and provide a limited amount of storage for this spent fuel. When a geologic repository starts operations, the MRS facility will also stage spent-fuel shipments to the repository. By law, storage at the MRS facility is to be temporary, with permanent disposal provided in a geologic repository to be developed by the DOE

  1. Environmental assessment of the Carlsbad Environmental Monitoring and Research Center Facility

    International Nuclear Information System (INIS)

    1995-10-01

    This Environmental Assessment has been prepared to determine if the Carlsbad Environmental Monitoring and Research Center (the Center), or its alternatives would have significant environmental impacts that must be analyzed in an Environmental Impact Statement. DOE's proposed action is to continue funding the Center. While DOE is not funding construction of the planned Center facility, operation of that facility is dependent upon continued funding. To implement the proposed action, the Center would initially construct a facility of approximately 2,300 square meters (25,000 square feet). The Phase 1 laboratory facilities and parking lot will occupy approximately 1.2 hectares (3 acres) of approximately 8.9 hectares (22 acres) of land which were donated to New Mexico State University (NMSU) for this purpose. The facility would contain laboratories to analyze chemical and radioactive materials typical of potential contaminants that could occur in the environment in the vicinity of the DOE Waste Isolation Pilot Plant (WIPP) site or other locations. The facility also would have bioassay facilities to measure radionuclide levels in the general population and in employees of the WIPP. Operation of the Center would meet the DOE requirement for independent monitoring and assessment of environmental impacts associated with the planned disposal of transuranic waste at the WIPP

  2. Environmental assessment of the Carlsbad Environmental Monitoring and Research Center Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This Environmental Assessment has been prepared to determine if the Carlsbad Environmental Monitoring and Research Center (the Center), or its alternatives would have significant environmental impacts that must be analyzed in an Environmental Impact Statement. DOE`s proposed action is to continue funding the Center. While DOE is not funding construction of the planned Center facility, operation of that facility is dependent upon continued funding. To implement the proposed action, the Center would initially construct a facility of approximately 2,300 square meters (25,000 square feet). The Phase 1 laboratory facilities and parking lot will occupy approximately 1.2 hectares (3 acres) of approximately 8.9 hectares (22 acres) of land which were donated to New Mexico State University (NMSU) for this purpose. The facility would contain laboratories to analyze chemical and radioactive materials typical of potential contaminants that could occur in the environment in the vicinity of the DOE Waste Isolation Pilot Plant (WIPP) site or other locations. The facility also would have bioassay facilities to measure radionuclide levels in the general population and in employees of the WIPP. Operation of the Center would meet the DOE requirement for independent monitoring and assessment of environmental impacts associated with the planned disposal of transuranic waste at the WIPP.

  3. Screening and identification of sites for a proposed Monitored Retrievable Storage Facility

    International Nuclear Information System (INIS)

    1985-04-01

    The Director, Office of Civilian Radioactive Waste Management (OCRWM), Department of Energy (DOE), has identified the Clinch River Breeder Reactor site, the DOE Oak Ridge Reservation and the Tennessee Valley Authority (TVA) Hartsville Nuclear Plant site as preferred and alternative sites, respectively, for development of site-specific designs as part of the proposal for construction of an integrated Monitored Retrievable Storage (MRS) Facility. The proposal, developed pursuant to Section 141 (b) of the Nuclear Waste Policy Act of 1982, will be submitted to Congress in January 1986. The Director expects to propose to Congress that an MRS be constructed at the perferred site. His judgment could change based on information to be developed between now and January 1986. The decision to construct an MRS facility and final site selection are reserved by Congress for itself. The Director's judgment is based on the results of a rigorous site screening and evaluation process described in this report. The three sites were selected from among eleven sites evaluated in detail. The Clinch River Breeder Reactor site, owned by the Tennessee Valley Authority, was identified as the preferred site. It has several particularly desirable features including: (1) federal ownership and control by the Department of Energy; (2) particularly good transportation access (five miles to the nearest interstate highway and direct rail access); (3) site characteristics and current data base judged by the NRC in 1983 as sufficient for granting a limited work authorization for the now cancelled breeder reactor; and (4) a technical community in the vicinity of site which can provide experienced nuclear facility support functions. 6 figs., 2 tabs

  4. Monitoring, controlling and safeguarding radiochemical streams at spent fuel reprocessing facilities with optical and gamma-ray spectroscopic methods

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Bryan, S.A.; Orton, C.R.; Levitskaia, T.G.; Fraga, C.G.

    2013-01-01

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-usable nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MCA) at these facilities require time-consuming and resource intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies based upon gamma-ray and optical spectroscopic measurements to potentially reduce the time and resource burden associated with current techniques. The Multi-Isotope Process (MIP) Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major stable flowsheet reagents using UV-Vis, Near IR and Raman spectroscopy. Multi-variate analysis is also applied to the optical measurements in order to quantify concentrations of analytes of interest within a complex array of radiochemical streams. This paper will provide an overview of these methods and reports on-going efforts to develop

  5. Monitored retrievable storage submission to Congress: Volume 2, Environmental assessment for a monitored retrievable storage facility. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-02-01

    This Environmental Assessment (EA) supports the DOE proposal to Congress to construct and operate a facility for monitored retrievable storage (MRS) of spent fuel at a site on the Clinch River in the Roane County portion of Oak Ridge, Tennessee. The first part of this document is an assessment of the value of, need for, and feasibility of an MRS facility as an integral component of the waste management system. The second part is an assessment and comparison of the potential environmental impacts projected for each of six site-design combinations. The MRS facility would be centrally located with respect to existing reactors, and would receive and canister spent fuel in preparation for shipment to and disposal in a geologic repository. 207 refs., 57 figs., 132 tabs.

  6. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility

    International Nuclear Information System (INIS)

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively. - Highlights: • Two in-core neutron detectors and three BNCT neutron beam monitors were compared. • BNCT neutron beam monitors improve the stability in neutron

  7. Gaps in monitoring systems for Implanon NXT services in South Africa: An assessment of 12 facilities in two districts

    Directory of Open Access Journals (Sweden)

    D Pillay

    2017-10-01

    Full Text Available Background. Implanon NXT, a long-acting subdermal contraceptive implant, was introduced in South Africa (SA in early 2014 as part of an expanded contraceptive method mix. After initial high levels of uptake, reports emerged of frequent early removals and declines in use. Monitoring of progress and challenges in implant service delivery could identify aspects of the programme that require strengthening. Objectives. To assess data management and record keeping within implant services at primary care facilities. Methods. We developed a checklist to assess the tools used for monitoring implant services and data reporting to district offices. The checklist was piloted in seven facilities. An additional six high-volume and six low-volume implant insertion clinics in the City of Johannesburg (CoJ, Gauteng Province, and the Dr Kenneth Kaunda District, North West Province, were selected for assessment. Results. All 12 facilities completed a Daily Head Count Register, which tallied the number of clients attending the clinic, but not information about implant use. A more detailed Tick Register recorded services that clinic attendees received, with nine documenting number of implant insertions and six implant removals. A more specific tool, an Insertion Checklist, collected data on insertion procedures and client characteristics, but was only used in CoJ (five of six facilities. Other registers, which were developed de novo by staff at individual facilities, captured more detailed information about insertions and removals, including reasons. Five of six low-volume insertion facilities used these registers, but only three of six high-volume facilities. No facilities used the form specifically developed by the National Department of Health for implant pharmacovigilance. Nine of 12 clinics reported data on numbers of insertions to the district office, six reported removals and none provided data on reasons for removals. Conclusion. For data to inform effective

  8. Gaps in monitoring systems for Implanon NXT services in South Africa: An assessment of 12 facilities in two districts

    Science.gov (United States)

    Pillay, D; Morroni, C; Pleaner, M; Adeogba, O; Chersich, M; Naidoo, N; Mullick, S; Rees, H

    2017-10-01

    Background. Implanon NXT, a long-acting subdermal contraceptive implant, was introduced in South Africa (SA) in early 2014 as part of an expanded contraceptive method mix. After initial high levels of uptake, reports emerged of frequent early removals and declines in use. Monitoring of progress and challenges in implant service delivery could identify aspects of the programme that require strengthening. Objectives. To assess data management and record keeping within implant services at primary care facilities. Methods. We developed a checklist to assess the tools used for monitoring implant services and data reporting to district offices. The checklist was piloted in seven facilities. An additional six high-volume and six low-volume implant insertion clinics in the City of Johannesburg (CoJ), Gauteng Province, and the Dr Kenneth Kaunda District, North West Province, were selected for assessment. Results. All 12 facilities completed a Daily Head Count Register, which tallied the number of clients attending the clinic, but not information about implant use. A more detailed Tick Register recorded services that clinic attendees received, with nine documenting number of implant insertions and six implant removals. A more specific tool, an Insertion Checklist, collected data on insertion procedures and client characteristics, but was only used in CoJ (five of six facilities). Other registers, which were developed de novo by staff at individual facilities, captured more detailed information about insertions and removals, including reasons. Five of six low-volume insertion facilities used these registers, but only three of six high-volume facilities. No facilities used the form specifically developed by the National Department of Health for implant pharmacovigilance. Nine of 12 clinics reported data on numbers of insertions to the district office, six reported removals and none provided data on reasons for removals. Conclusion. For data to inform effective decision

  9. Solid state detectors for neutron radiation monitoring in fusion facilities

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.

    2014-01-01

    The purpose of this communication is to summarize the main solid state based detectors proposed for neutron diagnostic in fusion applications and their applicability under the required harsh conditions in terms of intense radiation, high temperature and available space restrictions. Activation systems, semiconductor based detectors, luminescent materials and Cerenkov fibre optics sensors (C-FOS) are the main devices that are described. - Highlights: • A state-of-the-art summary of solid state based detectors are described. • Conditions and restrictions for their applicability are described. • A list of the 38 more relevant references has been included

  10. Independent dose per monitor unit review of eight U.S.A. proton treatment facilities

    International Nuclear Information System (INIS)

    Moyers, M. F.; Ibbott, G. S.; Grant, R. L.; Summers, P. A.; Followill, D. S.

    2014-01-01

    Purpose: Compare the dose per monitor unit at different proton treatment facilities using three different dosimetry methods. Methods: Measurements of dose per monitor unit were performed by a single group at eight facilities using 11 test beams and up to six different clinical portal treatment sites. These measurements were compared to the facility reported dose per monitor unit values. Results: Agreement between the measured and reported doses was similar using any of the three dosimetry methods. Use of the ICRU 59 N D,w based method gave results approximately 3% higher than both the ICRU 59 N X and ICRU 78 (TRS-398) N D,w based methods. Conclusions: Any single dosimetry method could be used for multi-institution trials with similar conformity between facilities. A multi-institutional trial could support facilities using both the ICRU 59 N X based and ICRU 78 (TRS-398) N D,w based methods but use of the ICRU 59 N D,w based method should not be allowed simultaneously with the other two until the difference is resolved

  11. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    The Regulatory Assessment Document (RAD) was developed to provide assurance that the design meets the requirements of 10 CFR 72 as amended or clarified in the Federal Register (FR) and will not cause an undue risk to the health and safety of the public and workers during normal or off-normal operations. The RAD also fulfills the requirements of DOE Orders 6430 and 5481.1A, which require a preliminary safety evaluation of new projects be conducted to identify hazards or potential accidents and to describe and analyze the adequacy of the design to eliminate, control, or mitigate those hazards or accidents and/or their consequences. The results of this preliminary assessment thus provide a precursor to final design development, including special safety features to ensure the safety of operating personnel and the general public. 1 tab

  12. Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

  13. Advanced dust monitoring system applied to new TRU handling facility of JAERI

    International Nuclear Information System (INIS)

    Yabuta, H.; Shigeta, Y.; Sawahata, K.; Hasegawa, K.

    1993-01-01

    In JAERI, a large, scale multipurpose facility is under construction, which consists of a TRU waste management testing installation, a solution fuel treatment installation and critical assemblies with uranium and/or plutonium solution fuel. The facility is also equipped with a lot of gloveboxes for handling and treatment of solution fuel and hot cells for research on reprocessing process. As there may be a relatively high potential of air contamination, it is important to monitor air contamination effectively and efficiently. An advanced dust monitoring system was introduced for convenience of handling and automatical measurement of filter papers, by developing a filter-holder with an IC memory and a radioactivity measuring device with an automatic filter-holder changing mechanism as a part of a centralized monitoring system with a computer

  14. Personnel reliability impact on petrochemical facilities monitoring system's failure skipping probability

    Science.gov (United States)

    Kostyukov, V. N.; Naumenko, A. P.

    2017-08-01

    The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under

  15. Microbiological monitoring of guinea pigs reared conventionally at two breeding facilities in Korea.

    Science.gov (United States)

    Park, Jong-Hwan; Seok, Seung-Hyeok; Baek, Min-Won; Lee, Hui-Young; Kim, Dong-Jae; Cho, Jung-Sik; Kim, Chuel-Kyu; Hwang, Dae-Youn; Park, Jae-Hak

    2006-10-01

    In this study, microbiological monitoring of guinea pigs reared conventionally in two facilities was performed twice in 2004, with a three-month-interval between surveys. This study was based on the recommendations of the FELASA Working Group, with some modifications. In serological tests in the first survey, some animals from facility A showed positive results for Encephalitozoon cuniculi, Sendai virus, pneumonia virus of mice (PVM), and Reovirus-3 (Reo-3); facility B showed a positive result only for E. cuniculi. The results of the second survey were similar to the first, except for the presence of Sendai virus; all animals from the two facilities were Sendai virus-negative in the second experiment. No pathogenic bacteria were cultured in the organs of any of the animals in the first survey. However, in the second survey, Bordetella bronchiseptica was cultured from the lung tissue of two 10-week-old animals from facility A. Chlamydial infection was examined by the Macchiavello method, but no animal showed positive results. Tests using fecal flotation or the KOH wet mount method showed no infection of endoparasites, protozoa, ectoparasites, or dermatophytes in any animal in both surveys. However, in the histopathological examination, an infection of protozoa-like organisms was observed in the cecum of some animals from facility A. The present study revealed that microbiological contamination was present in guinea pigs reared conventionally in two facilities in Korea, suggesting that there is a need to improve environmental conditions in order to eradicate microbial contamination.

  16. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  17. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  18. Development of integrated containment and surveillance system for fast critical facility FCA. Portal and penetration monitors

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko; Ogawa, Hironobu; Yokota, Yasuhiro.

    1998-01-01

    Manpower and radiation exposure problems, accompanied by frequent Non Destructive Assay (NDA) based inspections at the Fast Critical Facility FCA of Japan Atomic Energy Research Institute (JAERI), are a burden for both the inspectorates and the facility operator. In the hope of alleviating these burdens, the development of containment and surveillance measures for the FCA was initiated in 1979. The integrated containment and surveillance system consists of a portal monitor and a penetration monitor. The reactor building provides an ideal containment measure because of its explosion-proof, airtight structure and limited number of penetrations. The function of the portal monitor is to detect undeclared removal of nuclear material from the reactor building through the doorway. The penetration monitor is designed for surveillance of diversion routes through containment boundaries, and of safeguards related activities for bypassing the portal monitor. The combination of monitoring by the penetration monitor of containment boundaries and all their penetrations except for the doorway, and monitoring by the portal monitor, provides complete coverage of realistic diversion routes. The development of the system was completed in 1988 and the field trial test was conducted for the period of twelve running months. The final report on the field trial was concluded on January 1990. The major conclusion of the report was that the system is effective, reliable and efficient. Following this successful conclusion, the International Atomic Energy Agency (IAEA) accepted the system for meeting its safeguards goals at the FCA on condition that an independent IAEA authentication equipment is provided. The development of the authentication equipment is accomplished as an separate Japan Support Programme for Agency Safeguards (JASPAS) task. (author)

  19. Testing of a prototype of calibration facility for noble gas monitoring using 41Ar

    International Nuclear Information System (INIS)

    Saibathulham, Holnisar; Wurdiyanto, Gatot; Marsum, Pujadi

    2012-01-01

    A prototype of a calibration facility for noble gas monitoring using 41 Ar in the PTKMR-BATAN has been tested. The facility was designed in such a way that the standard source of gas can be reused. The radioactive 41 Ar source was obtained by thermal neutron reaction of 40 Ar(n, γ) 41 Ar using a thermal neutron flux of 4.8×10 13 neutrons per cm 2 per second in two minutes on the multipurpose G.A. Siwabessy Reactor (Batan, Serpong, Indonesia). Gamma spectrometry was used to measure the radioactivity and purity of 41 Ar. The spectrum of the 41 Ar observed yields an energy of 1294 keV because of the highest intensity (99.2%). The activity of 41 Ar was 2821 kBq and 4% of the expanded uncertainty. The time required for 41 Ar to reach homogeneity was 7 min, and the effectiveness of resuse was 53%. - Highlights: ► Testing of a calibration facility prototype for noble gas monitor using 41 Ar in PTKMR-BATAN. ► This facility was designed such that a standard radioactive gas source can be used repeatedly. ► Standardization of the 41 Ar is performed using gamma spectrometry. ► The time required for the 41 Ar gas to be distributed evenly throughout the cavity of the facility was 7 min. ► The effectiveness of repeated use was 53%.

  20. The International Remote Monitoring Project: Results of the Swedish Nuclear Power Facility field trial

    International Nuclear Information System (INIS)

    Johnson, C.S.; af Ekenstam, G.; Sallstrom, M.

    1995-01-01

    The Swedish Nuclear Power Inspectorate (SKI) and the US Department of Energy (DOE) sponsored work on a Remote Monitoring System (RMS) that was installed in August 1994 at the Barseback Works north of Malmo, Sweden. The RMS was designed to test the front end detection concept that would be used for unattended remote monitoring activities. Front end detection reduces the number of video images recorded and provides additional sensor verification of facility operations. The function of any safeguards Containment and Surveillance (C/S) system is to collect information which primarily is images that verify the operations at a nuclear facility. Barseback is ideal to test the concept of front end detection since most activities of safeguards interest is movement of spent fuel which occurs once a year. The RMS at Barseback uses a network of nodes to collect data from microwave motion detectors placed to detect the entrance and exit of spent fuel casks through a hatch. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Stockholm, Sweden and Albuquerque, NM, USA. These remote monitoring stations operated by SKI and SNL respectively, can retrieve data and images from the RMS computer at the Barseback Facility. The data and images are encrypted before transmission. This paper presents details of the RMS and test results of this approach to front end detection of safeguard activities

  1. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    International Nuclear Information System (INIS)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W.

    2013-01-01

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  2. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    Energy Technology Data Exchange (ETDEWEB)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W. [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)

    2013-07-01

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  3. A control system of a mini survey facility for photometric monitoring

    Science.gov (United States)

    Tsutsui, Hironori; Yanagisawa, Kenshi; Izumiura, Hideyuki; Shimizu, Yasuhiro; Hanaue, Takumi; Ita, Yoshifusa; Ichikawa, Takashi; Komiyama, Takahiro

    2016-08-01

    We have built a control system for a mini survey facility dedicated to photometric monitoring of nearby bright (Kdome and a small (30-mm aperture) wide-field (5 × 5 sq. deg. field of view) infrared (1.0-2.5 microns) camera on an equatorial fork mount, as well as power sources and other associated equipment. All the components other than the camera are controlled by microcomputerbased I/O boards that were developed in-house and are in many of the open-use instruments in our observatory. We present the specifications and configuration of the facility hardware, as well as the structure of its control software.

  4. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    International Nuclear Information System (INIS)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

    1985-06-01

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year

  5. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    Energy Technology Data Exchange (ETDEWEB)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

    1985-06-01

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

  6. Method for assessment of stormwater treatment facilities - Synthetic road runoff addition including micro-pollutants and tracer.

    Science.gov (United States)

    Cederkvist, Karin; Jensen, Marina B; Holm, Peter E

    2017-08-01

    Stormwater treatment facilities (STFs) are becoming increasingly widespread but knowledge on their performance is limited. This is due to difficulties in obtaining representative samples during storm events and documenting removal of the broad range of contaminants found in stormwater runoff. This paper presents a method to evaluate STFs by addition of synthetic runoff with representative concentrations of contaminant species, including the use of tracer for correction of removal rates for losses not caused by the STF. A list of organic and inorganic contaminant species, including trace elements representative of runoff from roads is suggested, as well as relevant concentration ranges. The method was used for adding contaminants to three different STFs including a curbstone extension with filter soil, a dual porosity filter, and six different permeable pavements. Evaluation of the method showed that it is possible to add a well-defined mixture of contaminants despite different field conditions by having a flexibly system, mixing different stock-solutions on site, and use bromide tracer for correction of outlet concentrations. Bromide recovery ranged from only 12% in one of the permeable pavements to 97% in the dual porosity filter, stressing the importance of including a conservative tracer for correction of contaminant retention values. The method is considered useful in future treatment performance testing of STFs. The observed performance of the STFs is presented in coming papers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Seismic evaluation of a cooling water reservoir facility including fluid-structure and soil-structure interaction effects

    International Nuclear Information System (INIS)

    Kabir, A.F.; Maryak, M.E.

    1991-01-01

    Seismic analyses and structural evaluations were performed for a cooling water reservoir of a nuclear reactor facility. The horizontal input seismic motion was the NRC Reg. guide 1.60 spectrum shape anchored at 0.20g zero period acceleration. Vertical input was taken as two-thirds of the horizontal input. Soil structure interaction and hydrodynamic effects were addressed in the seismic analyses. Uncertainties in the soil properties were accounted for by considering three soil profiles. Two 2-dimensional SSI models and a 3-dimensional static model. Representing different areas of the reservoir structures were developed and analyzed to obtain seismic forces and moments, and accelerations at various locations. The results included in this paper indicated that both hydrodynamic and soil-structure interaction effects are significant contributors to the seismic responses of the water-retaining walls of the reservoir

  8. General principles governing sampling and measurement techniques for monitoring radioactive effluents from nuclear facilities

    International Nuclear Information System (INIS)

    Fitoussi, L.

    1978-01-01

    An explanation is given of the need to monitor the release of radioactive gases and liquid effluents from nuclear facilities, with particular emphasis on the ICRP recommendations and on the interest in this problem shown by the larger international organizations. This is followed by a description of the classes of radionuclides that are normally monitored in this way. The characteristics of monitoring 'in line' and 'by sample taking' are described; the disadvantages of in line monitoring and the problem of sample representativity are discussed. There follows an account of the general principles for measuring gaseous and liquid effluents that are applied in the techniques normally employed at nuclear facilities. Standards relating to the specifications for monitoring instruments are at present being devised by the International Electrotechnical Commission, and there are still major differences in national practices, at least as far as measurement thresholds are concerned. In conclusion, it is shown that harmonization of practices and standardization of equipment would probably help to make international relations in the field more productive. (author)

  9. Assessment of gold flux monitor at irradiation facilities of MINT TRIGA MK II reactor

    International Nuclear Information System (INIS)

    Wee Boon Siong; Abdul Khalik Wood; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Md Suhaimi Elias; Nazaratul Ashifa Abd Salim

    2005-01-01

    Neutron source of MINTs TRIGA MK II reactor has been used for activation analysis for many years and neutron flux plays important role in activation of samples at various positions. Currently, two irradiation facilities namely the pneumatic transfer system and rotary rack are available to cater for short and long lived irradiation. Neutron flux variation for both irradiation facilities have been determined using gold wire and gold solution as flux monitor. However, the use of gold wire as flux monitor is costlier if compared to gold solution. The results from analysis of certified reference materials showed that gold solution as flux monitors yield satisfactory results and proved to safe cost on the purchasing of gold wire. Further experiment on self-shielding effects of gold solution at various concentrations has been carried out. This study is crucial in providing vital information on the suitable concentration for gold solution as flux monitor. In the near future, gold solution flux monitor will be applied for routine analysis and hence to improve the capability of the laboratory on neutron activation analysis. (Author)

  10. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    International Nuclear Information System (INIS)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County

  11. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  12. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county`s future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  13. Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) Groups in

    Science.gov (United States)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured are activities of the Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) groups in the SL POCC during the IML-1 mission.

  14. Sub-micron resolution rf cavity beam position monitor system at the SACLA XFEL facility

    Science.gov (United States)

    Maesaka, H.; Ego, H.; Inoue, S.; Matsubara, S.; Ohshima, T.; Shintake, T.; Otake, Y.

    2012-12-01

    We have developed and constructed a C-band (4.760 GHz) rf cavity beam position monitor (RF-BPM) system for the XFEL facility at SPring-8, SACLA. The demanded position resolution of the RF-BPM is less than 1 μm, because an electron beam and x-rays must be overlapped within 4 μm precision in the undulator section for sufficient FEL interaction between the electrons and x-rays. In total, 57 RF-BPMs, including IQ demodulators and high-speed waveform digitizers for signal processing, were produced and installed into SACLA. We evaluated the position resolutions of 20 RF-BPMs in the undulator section by using a 7 GeV electron beam having a 0.1 nC bunch charge. The position resolution was measured to be less than 0.6 μm, which was sufficient for the XFEL lasing in the wavelength region of 0.1 nm, or shorter.

  15. Design of environmental monitoring system of nuclear facility based on a method of pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, N; Kiyose, R; Yamamoto, Y [Tokyo Univ. (Japan). Faculty of Engineering

    1977-10-01

    The problem to optimize the number and locations of environmental radiation monitoring detectors is formulated by taking the specifically defined distance measures as a performance index and solved numerically using heuristic programming such as branch and bound method. An ideal numerical example neglecting noises due to background radiation, shows that the desirable number and locations of detectors are determined mainly by the atmospheric conditions and are not significantly influenced by the variation of the rate and pattern of activity release from the nuclear facility. It is shown also that the appropriate and sufficient number of monitoring detectors to be located around the facility will be from three to six at most, if considered from the viewpoint of pattern recognition.

  16. A Review of Avian Monitoring and Mitigation Information at Existing Utility-Scale Solar Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Walston, Leroy J. [Argonne National Lab. (ANL), Argonne, IL (United States); Rollins, Katherine E. [Argonne National Lab. (ANL), Argonne, IL (United States); Smith, Karen P. [Argonne National Lab. (ANL), Argonne, IL (United States); LaGory, Kirk E. [Argonne National Lab. (ANL), Argonne, IL (United States); Sinclair, Karin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wendelin, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Souder, Heidi [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    There are two basic types of solar energy technology: photovoltaic and concentrating solar power. As the number of utility-scale solar energy facilities using these technologies is expected to increase in the United States, so are the potential impacts on wildlife and their habitats. Recent attention is on the risk of fatality to birds. Understanding the current rates of avian mortality and existing monitoring requirements is an important first step in developing science-based mitigation and minimization protocols. The resulting information also allows a comparison of the avian mortality rates of utility-scale solar energy facilities with those from other technologies and sources, as well as the identification of data gaps and research needs. This report will present and discuss the current state of knowledge regarding avian issues at utility-scale solar energy facilities.

  17. Z-Area Saltstone Disposal Facility Groundwater Monitoring Report. 1997 Annual Report

    International Nuclear Information System (INIS)

    Roach, J.L. Jr.

    1997-12-01

    Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit number-sign 025500-1603 (formerly IWP-217). No constituents were reported above SCDHEC-proposed groundwater monitoring standards or final Primary Drinking Water Standards during first or third quareters 1997. No constituents were detected above SRS flagging criteria during first or third quarters 1997

  18. Secondary beam monitors for the NuMI facility at FNAL

    International Nuclear Information System (INIS)

    Kopp, S.; Bishai, M.; Dierckxsens, M.; Diwan, M.; Erwin, A.R.; Harris, D.A.; Indurthy, D.; Keisler, R.; Kostin, M.; Lang, M.; MacDonald, J.; Marchionni, A.; Mendoza, S.; Morfin, J.; Naples, D.; Northacker, D.; Pavlovic, Z.; Phelps, L.; Ping, H.; Proga, M.; Vellissaris, C.; Viren, B.; Zwaska, R.

    2006-01-01

    The Neutrinos at the Main Injector (NuMI) facility is a conventional neutrino beam which produces muon neutrinos by focusing a beam of mesons into a long evacuated decay volume. We have built four arrays of ionization chambers to monitor the position and intensity of the hadron and muon beams associated with neutrino production at locations downstream of the decay volume. This article describes the chambers' construction, calibration, and commissioning in the beam

  19. M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1

    International Nuclear Information System (INIS)

    Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

    1994-05-01

    This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters

  20. Exploring the Use of Activity Patterns for Smart Monitoring of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Karen Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-10

    The world is at an inflection point where our ability to collect data now far outpaces our ability to make use of it. LANL has a number of efforts to help us pull more meaningful insights out of our data and target resources to where they will be most impactful. We are exploring an approach to recognizing activity patterns across disparate data streams for a more holistic view of nuclear facility monitoring.

  1. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year.

  2. System of radiation monitoring of nuclear hazardous facilities in Institute of Atomic Energy of National Nuclear Centre

    International Nuclear Information System (INIS)

    Azarov, V.A.; Meshin, M.M.; Shuklin, G.S.

    1996-01-01

    Issues of radiation monitoring (RM) at reactor complex of Inst. of Atomic Energy (IAE) are discussed in report. The National Nuclear Centre's reactor base consists of 2 complexes situated in 2 different locations: Bajkal-1 and IGR. So far as IAE has common mythology for RM at all hazardous nuclear facilities the issues of RM for Baikal-1 and IGR Radiation monitoring system includes: - personal dosimetric control of personnel, maintaining the reactor systems and research laboratories; RM of industrial buildings; - RM of technical areas of technical area of the facility; sanitary system of dosimetry control (DC); etc. The description of stationary DC system of the complex based on 'System' facility are given. Baikal is surround by sanitary area with radius of 5 km and with its centre in the reactor location. Complexity of studying the radiation status on the territory of Baikal-1 and its surroundings is the result of nuclear testing conducted at the test site in the past, reactor operation with open exhaust of coolant into atmosphere while testing on Nuclear Rocket Engines program as well as global fall out of radionuclides

  3. Integrated monitoring and reviewing systems for the Rokkasho Spent Fuel Receipt and Storage Facility

    International Nuclear Information System (INIS)

    Yokota, Yasuhiro; Ishikawa, Masayuki; Matsuda, Yuji

    1998-01-01

    The Rokkasho Spent Fuel Receipt and Storage (RSFS) Facility at the Rokkasho Reprocessing Plant (RRP) in Japan is expected to begin operations in 1998. Effective safeguarding by International Atomic Energy Agency (IAEA) and Japan Atomic Energy Bureau (JAEB) inspectors requires monitoring the time of transfer, direction of movement, and number of spent fuel assemblies transferred. At peak throughput, up to 1,000 spent fuel assemblies will be accepted by the facility in a 90-day period. In order for the safeguards inspector to efficiently review the resulting large amounts of inspection information, an unattended monitoring system was developed that integrates containment and surveillance (C/S) video with radiation monitors. This allows for an integrated review of the facility's radiation data, C/S video, and operator declaration data. This paper presents an outline of the integrated unattended monitoring hardware and associated data reviewing software. The hardware consists of a multicamera optical surveillance (MOS) system radiation monitoring gamma-ray and neutron detector (GRAND) electronics, and an intelligent local operating network (ILON). The ILON was used for time synchronization and MOS video triggers. The new software consists of a suite of tools, each one specific to a single data type: radiation data, surveillance video, and operator declarations. Each tool can be used in a stand-alone mode as a separate ion application or configured to communicate and match time-synchronized data with any of the other tools. A data summary and comparison application (Integrated Review System [IRS]) coordinates the use of all of the data-specific review tools under a single-user interface. It therefore automates and simplifies the importation of data and the data-specific analyses

  4. Radiation exposure monitoring and control in front-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Khan, A.H.

    2003-01-01

    The front end nuclear fuel cycle facilities presently operational in India are the mining and processing of beach mineral sands along the southern coast of Kerala, Tamilnadu and Orissa, mining and processing of uranium ore in Singhbhum-East in Jharkhand and refining and fuel fabrication at Hyderabad and Trombay. Dedicated Health Physics Units set up at each site regularly carry out in-plant and personnel monitoring to ensure safe working conditions and evaluate radiation exposure of workers and advise appropriate control measures. External gamma radiation, radon, thoron, their progeny and airborne long-lived activity due to radioactive dust are monitored. Personal dosimeters are also issued to workers. The total radiation exposure of workers from external and internal sources is evaluated from the plant and personal monitoring data. Provision of adequate ventilation, control of dust and spillage of active solutions, prompt decontamination, use of personal protective appliances and worker education are the key factors in keeping the doses to the workers well within the regulatory limits. It has been observed that the total radiation dose to workers has been well below 20 mSv.y - 1 at all stages of operations. The monitoring methodologies and summary of radiation exposure data for different facilities during the last few years are presented in the paper. (author)

  5. Real-time monitoring/emergency response modeling workstation for a tritium facility

    International Nuclear Information System (INIS)

    Lawver, B.S.; Sims, J.M.; Baskett, R.L.

    1993-01-01

    At Lawrence Livermore National Laboratory (LLNL) we have developed a real-time system to monitor two stacks on our tritium handling facility. The monitors transmit the stack data to a workstation, which computes a three-dimensional numerical model of atmospheric dispersion. The workstation also collects surface and upper air data from meteorological towers and a sodar. The complex meteorological and terrain setting in the Livermore Valley demands more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion than afforded by Gaussian models. We experience both mountain valley and sea breeze flows. To address these complexities, we have implemented the three-dimensional diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on the workstation for use in real-time emergency response modeling. Both MATHEW and ADPIC have shown their utility in a variety of complex settings over the last 15 yr within the U.S. Department of Energy's Atmospheric Release Advisory Capability (ARAC) project. Faster workstations and real-time instruments allow utilization of more complex three-dimensional models, which provides a foundation for building a real-time monitoring and emergency response workstation for a tritium facility. The stack monitors are two ion chambers per stack

  6. A web-based three-tier control and monitoring application for integrated facility management of photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Apostolos Meliones

    2014-01-01

    Full Text Available The architecture of a control system can be designed vertically with the distinction between functional levels. We adopt this layered approach for the design and implementation of a network-based control and monitoring application. In this paper we present the design and implementation of a network-based management application for controlling and monitoring the input and output data of remote equipment aiming at performance macro-observation, alarm detection, handling operation failures, installation security, access control, collection and recording of statistical data and provisioning of reports. The main services provided to the user and operating over the public internet and/or mobile network include control, monitoring, notification, reporting and data export. Our proposed system consists of a front-end for field (site-level control and monitoring as well as a service back-end which undertakes to collect, store and manage data from all remote installations. Hierarchical data acquisition methodology and performance macro-observation are according to the IEC 61724 standard. We have successfully used our control and monitoring application for integrated facility management of photovoltaic plant installations; nevertheless it can be easily migrated to other renewable energy generation installations and remote automation applications in general.

  7. Proceeding of 26th domestic symposium on present and future of integrity monitoring technology in nuclear power generation facilities

    International Nuclear Information System (INIS)

    2000-06-01

    As the 26th domestic symposium of Atomic Energy Research Committee, the Japan Welding Engineering Society, the symposium was held titled as 'Current status and future of integrity monitoring techniques in nuclear power facilities'. Six speakers gave lectures titled as 'Maintenance and integrity monitoring in nuclear power plants', 'Present status of fatigue and creep-fatigue monitoring techniques in the US', 'Fatigue monitoring system in Tsuruga-1 nuclear power station', 'Vibration monitoring technique of rotational machine', 'SCC monitoring with electrochemical noise analysis' and Monitoring technique for corrosive environments and crack shape'. (T. Tanaka)

  8. Use of the Safety Monitor in operational decision-making at a nuclear generating facility

    International Nuclear Information System (INIS)

    Chien, Shan H.; Hook, Thomas G.; Lee, Roger J.

    1998-01-01

    The utilization of Safety Monitor at a nuclear generating facility in 1994 revolutionized the way US nuclear power plants manage configuration risks. At Southern California Edison (SCE) Company's San Onofre Nuclear Generating Station, it transformed probabilistic risk assessment (PRA) from a retrospective tool for understanding past risk into a prospective tool for controlling future risk. Since that time, many other nuclear utilities have taken aggressive steps in using PRA better to understand and manage risks associated with plant operation and maintenance. These utilities have employed a variety of methods ranging from systems similar to San Onofre's Safety Monitor to systems dramatically different in both technology and philosophy. In the development and use of its Safety Monitor, SCE has been guided by two philosophical goals: (1) maximize the objectivity of PRA-informed decision-making relative to managing configuration risks, and (2) ensure that risks are managed conservatively

  9. Monitoring of the Crab Nebula with Chandra and Other Observatories Including HST

    Science.gov (United States)

    Weisskopf, Martin C.

    2014-01-01

    Subsequent to the detections AGILE and Fermi/LAT of the gamma-ray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the X-Ray emission from the Crab on a regular basis. X-Ray observations have taken place typically once per month when viewing constraints allow and more recently four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gamma-ray flares. For much of the time regular HST observations were made in conjunction with the Chandra observations. The aim of this program to further characterize, in depth, the X-Ray and optical variations that take place in the nebula, and by so doing determine the regions which contribute to the harder X-ray variations and, if possible, determine the precise location within the Nebula of the origin of the gamma-ray flares. As part of this project members of the team have developed Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features. The current status of the project will be presented highlighting studies of the inner knot and possible correlations with the flares.

  10. Improving of spent fuel monitoring in condition of Slovak wet interim spent fuel storage facility

    International Nuclear Information System (INIS)

    Miklos, M.; Krsjak, V.; Bozik, M.; Vasina, D.

    2008-01-01

    Monitoring of WWER fuel assemblies condition in Slovakia is presented in the paper. The leak tightness results of fuel assemblies used in Slovak WWER units in last 20 years are analyzed. Good experiences with the 'Sipping system' are described. The Slovak wet interim spent fuel storage facility in NPP Jaslovske Bohunice was build and put in operation in 1986. Since 1999, leak tests of WWER-440 fuel assemblies are provided by special leak tightness detection system 'Sipping in Pool' delivered by Framatome-ANP facility with external heating for the precise detection of active specimens. Another system for monitoring of fuel assemblies condition was implemented in December 2006 under the name 'SVYPP-440'. First non-active tests started at February 2007 and are described in the paper. Although those systems seems to be very effective, the detection time of all fuel assemblies in one storage pool is too long (several months). Therefore, a new 'on-line' detection system, based on new sorbent KNiFC-PAN for effective 134 Cs and 137 Cs activity was developed. This sorbent was compared with another type of sorbent NIFSIL and results are presented. The design of this detection system and its possible application in the Slovak wet spent fuel storage facility is discussed. For completeness, the initial results of the new system are also presented. (authors)

  11. Development of adequate meteorological monitoring standards for safety analysis of nuclear facilities

    International Nuclear Information System (INIS)

    Alp, E.; Lewis, P.J.

    1985-09-01

    The aim of this report is to identify what constitutes adequate meteorological information for airborne dispersion calculations in case of releases from nuclear facilities during 'normal operation', 'design postulated accidents', and 'emergency situations'. The models used for estimating downwind dispersion are reviewed, including short-range simple terrain, short-range complex terrain and medium to long range models with emphasis on Lagrangian models. The meteorogolical input parameters required for running these models are identified. The methods by which these parameters may be obtained from raw meteorological data are then considered. Emphasis is placed on well-tried and recommended methods rather than those which are currently being developed and lack long-term field tests. The meteorological data required to calculate the parameters that are in turn input to dispersion calculation methods can be obtained mainly from tower measurements. Recommended tower height is 50 m, with two levels of instruments (10 and 50 m) for wind speed, wind direction and temperature. Data for precipitation and solar radiation, that may be required under certain conditions and for special calculations, may be estimated from nearby representative weather stations (if available). For simple terrain, a single tower is sufficient. For complex terrain, such as coastal regions, two towers are desirable for accurate characterization of the turbulence regime in the vicinity of a release site. The report provides the necessary accuracy specifications for instruments required for the meteorological measurements. Data monitoring and recording, maintenance, quality control and assurance are also discussed. Error propagation analyses are recommended to determine the full implications of instrument accuracies on the accuracy of dispersion model predictions. 82 refs

  12. Method for assessment of stormwater treatment facilities – Synthetic road runoff addition including micro-pollutants and tracer

    DEFF Research Database (Denmark)

    Cederkvist, Karin; Jensen, Marina Bergen; Holm, Peter Engelund

    2017-01-01

    Stormwater treatment facilities (STFs) are becoming increasingly widespread but knowledge on their performance is limited. This is due to difficulties in obtaining representative samples during storm events and documenting removal of the broad range of contaminants found in stormwater runoff...

  13. Universal chitosan-assisted synthesis of Ag-including heterostructured nanocrystals for label-free in situ SERS monitoring.

    Science.gov (United States)

    Cai, Kai; Xiao, Xiaoyan; Zhang, Huan; Lu, Zhicheng; Liu, Jiawei; Li, Qin; Liu, Chen; Foda, Mohamed F; Han, Heyou

    2015-12-07

    A universal chitosan-assisted method was developed to synthesize various Ag-including heterostructured nanocrystals, in which chelation probably plays a vital role. The as-prepared Ag/Pd heterostructured nanocrystals show outstanding properties when used as bifunctional nanocomposites in label-free in situ SERS monitoring of Pd-catalyzed reaction.

  14. Development of the computer code to monitor gamma radiation in the nuclear facility environment

    International Nuclear Information System (INIS)

    Akhmad, Y. R.; Pudjiyanto, M.S.

    1998-01-01

    Computer codes for gamma radiation monitoring in the vicinity of nuclear facility which have been developed could be introduced to the commercial potable gamma analyzer. The crucial stage of the first year activity was succeeded ; that is the codes have been tested to transfer data file (pulse high distribution) from Micro NOMAD gamma spectrometer (ORTEC product) and the convert them into dosimetry and physics quantities. Those computer codes are called as GABATAN (Gamma Analyzer of Batan) and NAGABAT (Natural Gamma Analyzer of Batan). GABATAN code can isable to used at various nuclear facilities for analyzing gamma field up to 9 MeV, while NAGABAT could be used for analyzing the contribution of natural gamma rays to the exposure rate in the certain location

  15. Characterization and monitoring of 300 Area facility liquid waste streams during 1994 and 1995

    International Nuclear Information System (INIS)

    Thompson, C.J.; Ballinger, M.Y.; Damberg, E.G.; Riley, R.G.

    1997-07-01

    Pacific Northwest National Laboratory's Facility Effluent Management Program characterized and monitored liquid waste streams from 300 Area buildings that are owned by the US Department of Energy and are operated by Pacific Northwest National Laboratory. The purpose of these measurements was to determine whether the waste streams would meet administrative controls that were put in place by the operators of the 300 Area Treated Effluent Disposal Facility. This report summarizes the data obtained between March 1994 and September 1995 on the following waters: liquid waste streams from Buildings 306, 320, 324, 325, 326, 327, 331, and 3,720; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe)

  16. Design of Safety Parameter Monitoring Function in a Research Reactor Facility

    International Nuclear Information System (INIS)

    Park, Jaekwan; Suh, Yongsuk

    2014-01-01

    The primary purpose of the safety parameter monitoring system (SPDS) is to help operating personnel in the control room make quick assessments of the plant safety status. Thus, the basic function of the SPDS is a provision of a continuous indication of plant parameters or derived variables representative of the safety status of the plant. NUREG-0737 Supplement 1 provides details of the functional criteria for the SPDS, as one of the action plan requirements from TMI accident. The system provides various functions as follows: · Alerting based on safety function decision logics, · Success path analysis to achieve the integrity of the safety functions, · 3 layer display architecture - safety function, success path display for each safety function, system summary and equipment details for each safety function, · Integration with computer-based procedure. According to a Notice of the NSSC No. 2012-31, a research reactor facility generating more than 2 MW of power should also be furnished with the SPDS for emergency preparedness. Generally, a research reactor is a small size facility, and its number of instrumentations is fewer than that of NPPs. In particular, it is actually hard to have various and powerful functions from an economic perspective. Therefore, a safety parameter display system optimized for a research reactor facility must be proposed. This paper provides the requirement analysis results and proposes the design of safety parameter monitoring function for a research reactor. The safety parameter monitoring function supporting control room personnel during emergency conditions should be designed in a research reactor facility. The facility size and number of signals are smaller than that of the power plants. Also, it is actually hard to have various and powerful functions of nuclear power plants from an economic perspective. Thus, a safety parameter display system optimized to a research reactor must be proposed. First, we found important design items

  17. Design of Safety Parameter Monitoring Function in a Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaekwan; Suh, Yongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The primary purpose of the safety parameter monitoring system (SPDS) is to help operating personnel in the control room make quick assessments of the plant safety status. Thus, the basic function of the SPDS is a provision of a continuous indication of plant parameters or derived variables representative of the safety status of the plant. NUREG-0737 Supplement 1 provides details of the functional criteria for the SPDS, as one of the action plan requirements from TMI accident. The system provides various functions as follows: · Alerting based on safety function decision logics, · Success path analysis to achieve the integrity of the safety functions, · 3 layer display architecture - safety function, success path display for each safety function, system summary and equipment details for each safety function, · Integration with computer-based procedure. According to a Notice of the NSSC No. 2012-31, a research reactor facility generating more than 2 MW of power should also be furnished with the SPDS for emergency preparedness. Generally, a research reactor is a small size facility, and its number of instrumentations is fewer than that of NPPs. In particular, it is actually hard to have various and powerful functions from an economic perspective. Therefore, a safety parameter display system optimized for a research reactor facility must be proposed. This paper provides the requirement analysis results and proposes the design of safety parameter monitoring function for a research reactor. The safety parameter monitoring function supporting control room personnel during emergency conditions should be designed in a research reactor facility. The facility size and number of signals are smaller than that of the power plants. Also, it is actually hard to have various and powerful functions of nuclear power plants from an economic perspective. Thus, a safety parameter display system optimized to a research reactor must be proposed. First, we found important design items

  18. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: Third quarter 1993

    International Nuclear Information System (INIS)

    1993-12-01

    During third quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards; and aluminum, iron, lead, manganese, pH, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters

  19. Integrated disposal Facility Sagebrush Habitat Mitigation Project: FY2007 Compensation Area Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2007-09-01

    This report summarizes the first year survival of sagebrush seedlings planted as compensatory mitigation for the Integrated Disposal Facility Project. Approximately 42,600 bare root seedlings and 26,000 pluglings were planted at a mitigation site along Army Loop Road in February 2007. Initial baseline monitoring occurred in March 2007, and first summer survival was assessed in September 2007. Overall survival was 19%, with bare root survival being marginally better than pluglings (21% versus 14%). Likely major factors contributing to low survival were late season planting and insufficient soil moisture during seedling establishment.

  20. Monitoring of downstream salmon and steelhead at federal hydroelectric facilities - 1996. Annual report

    International Nuclear Information System (INIS)

    Martinson, R.D.; Graves, R.J.; Mills, R.B.; Kamps, J.W.

    1997-08-01

    The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia River in 1996 The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. The purpose of the SMP is to monitor the migration of the juvenile salmonid stocks in the Columbia basin and make flow and spill recommendations designed to facilitate fish passage. Data are also used for travel time, migration timing, and relative run size analysis. The purpose of the NMFS portion of the program is to provide the FPC with species and project specific real time data from John Day and Bonneville Dams. Monitoring data collected included: river conditions; total numbers of fish; numbers of fry, adult salmon, and incidental catch; daily and seasonal passage patterns; and fish condition. 10 refs., 16 figs., 5 tabs

  1. Monitored Retrievable Storage conceptual system study: dry receiving and handling facility

    International Nuclear Information System (INIS)

    1984-01-01

    A preconceptual design and estimate for a MRS receiving and handling (R and H) facility at a hypothetical site in the United States are presented. The facility consists of a receiving and handling building plus associated operating buildings, system, and site development features. The R and H building and the supporting buildings and site development features are referred to as the R and H area. Adjoining the R and H area will be an interim waste storage area currently being considered by others. The desirability of building a full capacity (3000-MTU) MRS facility initially versus adding additional capacity at a later date in a phased construction program was investigated. Several advantages of phased construction include incorporation of new designs, modification of receiving-handling-packaging, and changes in regulatory requirements or the waste management program which may develop following startup and operation of an 1800-MTU MRS facility. The cost of a 3000-MTU MRS facility constructed initially was estimated at $193,200,000. If a phased construction program was implemented, including escalation to the mid-point of Phase 2 construction, a capital expenditure of $215,300,000 is estimated - a cost penalty of $22,100,000 or about 11% for phased construction

  2. A beam-profile monitor for the BNL Accelerator Test Facility (ATF)

    International Nuclear Information System (INIS)

    Russell, D.P.; McDonald, K.T.

    1989-01-01

    A beam-profile monitor has been designed to diagnose the 5-MeV high-brightness electron beam from the rf gun of the BNL Accelerator Test Facility (ATF). The monitor consists of a phosphor screen viewed by a CCD camera. The video images are digitized and stored by a framegrabber and analyzed by an IBM PC-AT to extract the emittance. Details of the hardware configuration are presented, along with the spatial resolution of the system measured as a function of phosphor-screen thickness. The strategies which will be used to measure the transverse and longitudinal emittances are briefly mentioned. The system should be capable of measuring a transverse geometric emittance of around 1 mm-mrad, as will be typical of the ATF beam. 6 refs., 2 figs

  3. Mixed waste management facility groundwater monitoring report. Fourth quarter 1996 and 1996 summary

    International Nuclear Information System (INIS)

    1997-03-01

    During fourth quarter 1996, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroethene, chloroform, 1,1-dichloroethylene, dichloromethane, gross alpha, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone llB2 (Water Table) and Aquifer Zone llB1 (Barnwell/McBean) wells and in six Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters

  4. Mixed waste management facility groundwater monitoring report. Fourth quarter 1995 and 1995 summary

    International Nuclear Information System (INIS)

    1996-03-01

    During fourth quarter 1995, seven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene, gross alpha, lead, mercury, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB 2 (Water Table) and Aquifer Zone IIB 1 (Barnwell/McBean) wells and in three Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters

  5. A remote monitoring system of environmental electromagnetic field in magnetic confinement fusion test facilities

    International Nuclear Information System (INIS)

    Tanaka, Masahiro; Uda, Tatsuhiko; Takami, Shigeyuki; Wang, Jianqing; Fujiwara, Osamu

    2010-01-01

    A remote, continuous environmental electromagnetic field monitoring system for use in magnetic confinement fusion test facilities is developed. Using this system, both the static magnetic field and the high frequency electromagnetic field could be measured. The required frequency range of the measurement system is from 25 to 100 MHz for the ICRF (Ion Cyclotron Range of Frequencies) heating system. The outputs from the measurement instruments are measured simultaneously by custom-built software using a laptop-type personal computer connected to a local area network. In this way, the electromagnetic field strength could be monitored from a control room located about 200 m from the fusion device building. Examples of measurement data from the vicinity of a high-frequency generator and amplifier and the leakage static magnetic field from a fusion test device are presented. (author)

  6. Interpretation of the results from individual monitoring of workers at the Nuclear Fuel Fabrication Facility, Brazil

    International Nuclear Information System (INIS)

    Castro, Marcelo Xavier de

    2005-01-01

    In nuclear fuel fabrication facilities, workers are exposed to different compounds of enriched uranium. Although in this kind of facility the main route of intake is inhalation, ingestion may occur in some situations, and also a mixture of both. The interpretation of the bioassay data is very complex, since it is necessary taking into account all the different parameters, which is a big challenge. Due to the high cost of the individual monitoring programme for internal dose assessment in the routine monitoring programmes, usually only one type of measurement is assigned. In complex situations like the one described in this study, where several parameters can compromise the accuracy of the bioassay interpretation it is need to have a combination of techniques to evaluate the internal dose. According to ICRP 78 (1997), the general order of preference of measurement methodologies in terms of accuracy of interpretation is: body activity measurement, excreta analysis and personal air sampling. Results of monitoring of working environment may provide information that assists in the interpretation on particle size, chemical form, solubility and date of intake. A group of fifteen workers from controlled area of the studied nuclear fuel fabrication facility was selected to evaluate the internal dose using all different available techniques during a certain period. The workers were monitored for determination of uranium content in the daily urinary and faecal excretion (collected over a period of 3 consecutive days), chest counting and personal air sampling. The results have shown that at least two types of sensitivity techniques must be used, since there are some sources of uncertainties on the bioassay interpretation, like mixture of uranium compounds intake and different routes of intake. The combination of urine and faeces analysis has shown to be the more appropriate methodology for assessing internal dose in this situation. The chest counting methodology has not shown

  7. A novel diamond-based beam position monitoring system for the High Radiation to Materials facility at CERN SPS

    CERN Document Server

    AUTHOR|(CDS)2092886; Höglund, Carina

    The High Radiation to Materials facility employs a high intensity pulsed beam imposing several challenges on the beam position monitors. Diamond has been shown to be a resilient material with its radiation hardness and mechanical strength, while it is also simple due to its wide bandgap removing the need for doping. A new type of diamond based beam position monitor has been constructed, which includes a hole in the center of the diamond where the majority of the beam is intended to pass through. This increases the longevity of the detectors as well as allowing them to be used for high intensity beams. The purpose of this thesis is to evaluate the performance of the detectors in the High Radiation to Materials facility for various beam parameters, involving differences in position, size, bunch intensity and bunch number. A prestudy consisting of calibration of the detectors using single incident particles is also presented. The detectors are shown to work as intended after a recalibration of the algorithm, alb...

  8. Monitoring around the secret nuclear facilities of naval ports; Surveillance autour des INBS des ports militaires

    Energy Technology Data Exchange (ETDEWEB)

    Jaskierowicz, D. [Marine Nationale, pharmacien en chef, conseiller scientifique et technique, etat-major de la marine, 83 - Toulon (France); Quere, St. [Marine Nationale, capitaine de corvette, adjoint charge de la prise en compte des installations nucleaires sur l' environnement et le personnel, 83 - Toulon (France)

    2010-06-15

    Based within large industrial cities (Brest, Toulon, Cherbourg) or more rural areas like Crozon (Ile Longue), French navy exploits nuclear facilities where are built, maintained and decommissioned nuclear power submarines and aircraft-carrier. The safety and the security of these installations as well as the non-impact on people and environment are continuously monitored. The DSND, a governmental regulatory body dedicated to the Defense, applies the same regulations enforced by the ASN for civilian nuclear activities. Concerning environmental monitoring, the navy answers to the DSND or the ASN, depending on the type of survey. In every nuclear site, an automatic nuclear monitoring sensor system (2SNM) runs 24/7, with the supervision of specialized personnel in radioprotection. Each year, more than 7000 samples are collected in the ecosystem and thousands of measurements are carried out in four laboratories (LASEM in Cherbourg, Brest and Toulon) - SPRS ILO) of the navy. These results are sent to the DSND and have been integrated since February 2010 to the brand-new public web site of the national monitoring network of radioactivity in the environment (RMN). (author)

  9. NFC like wireless technology for monitoring purposes in scientific/industrial facilities

    International Nuclear Information System (INIS)

    Badillo, I.; Eguiraun, M.; Jugo, J.

    2012-01-01

    Wireless technologies are becoming more and more used in large industrial and scientific facilities like particle accelerators for facilitating the monitoring and indeed sensing in these kind of large environments. Cabled equipment means little flexibility in placement and is very expensive in both money and effort whenever reorganization or new installation is needed. So, when cabling is not really needed for performance reasons wireless monitoring and control is a good option, due to the speed of implementation. There are several wireless flavors to choose, as Bluetooth, Zigbee, WiFi, etc. depending on the requirements of each specific application. In this work a wireless monitoring system for EPICS (Experimental and Industrial Control System) is presented. The desired control system variables are acquired over the network and published in a mobile device, allowing the operator to check process variables everywhere the signal spreads. In this approach, a Python based server will be continuously getting EPICS Process Variables via Channel Access protocol and sending them through a WiFi standard 802.11 network using ICE middle-ware. ICE is a tool-kit oriented to build distributed applications. Finally, the mobile device will read the data and show it to the operator. The security of the communication can be improved by means of a weak wireless signal, following the same idea as in Near Field Communication (NFC), but for more large distances. With this approach, local monitoring and control applications, as for example a vacuum control system for several pumps, are currently implemented. (authors)

  10. The Economy's Influence on Environmental Sustainability and Energy: Including the Top Ten Facilities Issues. APPA Thought Leaders Series, 2009

    Science.gov (United States)

    Lunday, Elizabeth

    2009-01-01

    Since 2006, the APPA (Association of Higher Education Facilities Officers) Thought Leaders Series has brought together experts in higher education for two days of discussion about the challenges facing colleges and universities in North America. Energy and the environment were the focal points for the 2009 Thought Leaders Symposium, and the result…

  11. Monitoring programmes for unrestricted release related to decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Decommissioning of nuclear facilities usually results in a large volume of radioactive and non-radioactive materials. All these materials will have to be segregated as radioactive, non-radioactive and exempt from regulatory control, and then disposed of, reused or recycled. As more and more facilities approach decommissioning, controlling these wastes and setting release criteria and limits for these materials will represent a major task for the regulatory body and the licensee. Efforts are, therefore, under way at the IAEA to help achieve international consensus on the release criteria for decommissioning and a monitoring programme to verify compliance with these criteria. Within the above context, the present report was conceived as a technical document to provide an overview of all the factors to be considered in the development, planning and implementation of a monitoring programme to assure regulatory compliance with criteria for unrestricted release of materials, buildings and sites from decommissioning. The report is intended as a planning document for the owners, operators and regulatory bodies involved in decommissioning. 41 refs, 4 figs, 2 tabs

  12. 1991 Annual performance report for environmental oversight and monitoring at Department of Energy Facilities in New Mexico

    International Nuclear Information System (INIS)

    1994-01-01

    On October 22, 1990 an agreement was entered into between the US DOE and the State of New Mexico. The agreement was designed to assure the citizens of New Mexico that the environment is protected and that public health, as related to the environment is also protected. The Agreement reflects the understanding and commitments between the parties regarding environmental oversight, monitoring, remediation and emergency response at the following DOE facilities: the Inhalation Toxicology Research Institute (ITRI); Los Alamos National Laboratory (LANL); Sandia National Laboratory (SNL); and the Waste Isolation Pilot Plant (WIPP). These provision are ongoing through a vigorous program of independent monitoring and oversight; prioritization of clean-up and compliance activities; and new commitments by DOE. While the initial assessment of the quality and effectiveness of the facilities' environmental monitoring and surveillance programs is not yet complete, preliminary findings are presented regarding air quality monitoring, environmental monitoring, and groundwater monitoring

  13. Concerning results of environmental monitoring around the reprocessing facilities of Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1989-01-01

    The Central Evaluation Expert Group for Environmental radiation Monitoring has been engaged in examinations of plants for and results of the environmental radiation monitoring performed by Power Reactor and Nuclear Fuel Development Corporation around its reprocessing facilities. The present report outlines an examination of the results of monitoring carried out in 1987 (January to December). It is concluded that the methods used for the monitoring and its technical level are satisfactory in meeting the objectives of the monitoring plans. Expept for tritium in seawater, the level of radiations stays within the normal variation determined based on preliminary measurements of the background radiation. The procedure used for the calculation of exposure dose is also satisfactory in meeting the requirements specified in the monitoring plants. It is confirmed that the exposure dose of the residents around the facilities is well below the permissible exposure dose limite specified in law. (Nogami. K.)

  14. Integrated network for structural integrity monitoring of critical components in nuclear facilities, RIMIS

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2008-01-01

    The round table aims to join specialists working in the research area of the Romanian R and D Institutes and Universities involved in structural integrity assessment of materials, especially those working in the nuclear field, together with the representatives of the end user, the Cernavoda NPP. This scientific event will offer the opportunity to disseminate the theoretical, experimental and modelling activities, carried out to date, in the framework of the National Program 'Research of Excellence', Module I 2006-2008, managed by the National Authority for Scientific Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities, RIMIS, the project has two main objectives: 1. - to elaborate a procedure applicable to the structural integrity assessment of critical components used in Romanian nuclear facilities (CANDU type Reactor, Hydrogen Isotopes Separation installations); 2. - to integrate the national networking into a similar one of European level, and to enhance the scientific significance of Romanian R and D organisations as well as to increase the contribution in solving major issues of the nuclear field. The topics of the round table will be focused on: 1. Development of a Structural Integrity Assessment Methodology applicable to the nuclear facilities components; 2. Experimental investigation methods and procedures; 3. Numeric simulation of nuclear components behaviour; 4. Further activities to finalize the assessment procedure. Also participations and contributions to sustain the activity in the European Network NULIFE, FP6 will be discussed. (authors)

  15. The ANTARES accelerator: a facility for environmental monitoring and materials characterisation

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    An analytical facility for Accelerator Mass Spectrometry (AMS) and Ion Beam Analysis (IBA) has been under development since 1989 on the 8-MV tandem accelerator ANTARES at the Lucas Heights Science and Technology Centre. Three beamlines are presently dedicated to the AMS analysis of long-lived radionuclides and one is used for the study of multilayered semiconductor structures by heavy ion recoil spectrometry. Having accomplished the task of transforming the old nuclear physics accelerator from Rutgers University into a world-class analytical facility, ANSTO scientists are now promoting research projects based on the capability of the ANTARES instruments. New instruments are being constructed on the ANTARES accelerator for future programs in environmental monitoring, safeguards, nuclear waste disposal and applications in advanced materials. A new AMS beamline has been designed that is expected to be capable of measuring rare heavy radionuclides, such as 236 U, 229 , 230T h and 244 Pu, in natural samples with ultra-high sensitivity. A novel, heavy ion microprobe will allow IBA of surfaces with a spatial resolution of 10 μm for high-energy ions (20-100 MeV) from chlorine to iodine. These instruments are complementary to other advanced analytical tools developed by ANSTO, such as the synchrotron radiation beamline at the Australian National Beamline Facility

  16. Information collection regarding geoscientific monitoring techniques during closure of underground facility in crystalline rock

    International Nuclear Information System (INIS)

    Hosoya, Shinichi; Yamashita, Tadashi; Iwatsuki, Teruki; Saegusa, Hiromitsu; Onoe, Hironori; Ishibashi, Masayuki

    2016-01-01

    The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami City in Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified the critical issues on the geoscientific research program: “Development of modelling technologies for mass transport”, “Development of drift backfilling technologies” and “Development of technologies for reducing groundwater inflow”, based on the latest results of the synthesizing R and D. The purposes of the “Development of drift backfilling technologies” are to develop closure methodology and technology, and long-term monitoring technology, and to evaluate resilience of geological environment. In order to achieve the purposes, previous information from the case example of underground facility constructed in crystalline rock in Europe has been collected in this study. In particular, the boundary conditions for the closure, geological characteristics, technical specifications, and method of monitoring have been focused. The information on the international project regarding drift closure test and development of monitoring technologies has also been collected. In addition, interviews were conducted to Finnish and Swedish specialists who have experiences involving planning, construction management, monitoring, and safety assessment for the closure to obtain the technical knowledge. Based on the collected information, concept and point of attention, which are regarding drift closure testing, and planning, execution management and monitoring on the closure of MIU, have been specified. (author)

  17. Assessment of furnaces including fuel storage facilities according to the 12th Federal Emission Control Ordinance (BImSchV)

    International Nuclear Information System (INIS)

    Hensler, G.; Ott, H.; Wunderlich, O.; Mair, K.

    1990-01-01

    Existing quantities of substances pursuant to Annex II of the 12th Federal Emission Control Ordinance in furnaces or in fuel storage facilities do not present a general hazard for fireplaces fired with coal, wood, heavy and light fuel oil within the meaning of the Accident Ordinance. In case of a fire in a storage facility for black coal, brown coal, untreated wood, light and heavy fuel oil, a general hazard on account of the release of developed substances is obviously excluded. Dispersion calculations pursuant to VDI 3783 have shown that concentrations of beryllium, arsenic, nickel, cobalt and mercury compounds in the vicinity of the fire source are so small that a general hazard can be excluded. (orig./DG) [de

  18. Design of a continuous emissions monitoring system at a manufacturing facility recycling hazardous waste

    International Nuclear Information System (INIS)

    Harlow, G.; Bartman, C.D.; Renfroe, J.

    1991-01-01

    In March 1988, Marine Shale Processors, Inc. (MSP) initiated a project to incorporate a continuous emissions monitoring system (CEMS) at its manufacturing facility in Amelia, Louisiana, which recycles hazardous material into light-weight, general purpose aggregate. The stimuli for the project were: To quantify stack gas emissions for the purpose of risk assessment; To use the data generated for process control and evaluation purposes; and, MSP's commitment to advance the science of continuous monitoring of stack gas emissions. In order to successfully respond to these goals, MSP sought a system which could monitor combustion products such as NOx, SO 2 , HCl and CO 2 , as well as speciated organic compounds. Several analytical technologies and sampling system designs were reviewed to determine the best fit to satisfy the requirements. A process mass spectrometer and a heated sample extraction subsystem were selected for the project. The purpose of this paper is to review the available analytical technologies for CEMS and sample extraction subsystems and to describe the CEMS now installed at MSP

  19. Environmental monitoring for low-level radioactive waste-disposal facilities

    International Nuclear Information System (INIS)

    Shum, E.Y.; Starmer, R.J.; Westbrook, K.; Young, M.H.

    1990-01-01

    The U.S. Nuclear Regulatory Commission prepared a Branch Technical Position (BTP) paper on environmental monitoring of a low-level radioactive waste-disposal facility. The BTP provides guidance on what is required in Section 61.53 of 10 CFR Part 61 for those submitting a license application. Guidance is also provided on choosing constituents to measure, setting action levels, relating measurements to appropriate actions in a corrective action plan, and quality assurance. The environmental monitoring program generally consists of three phases: preoperational, operational, and postoperational. Each phase should be designed to fulfill specific objectives defined in the BTP. During the preoperational phase, program objectives are to provide site characterization information, demonstrate site suitability and acceptability, and obtain background or baseline information. Emphasis during the operational phase is on measurement shifts. Monitoring data are obtained to demonstrate compliance with regulations, with dose limits of 10 CFR Part 61, or with applicable U.S. Environmental Protection Agency standards. Data are also used to update important pathway parameters to improve predictions of site performance and to provide a record of performance for public information. The postoperational phase emphasizes measurements to demonstrate compliance with site closure requirements and continued compliance with the performance objective for release. Data are used to support evaluation of long-term impacts to the general public and for public information

  20. Deformation integrity monitoring for GNSS positioning services including local, regional and large scale hazard monitoring - the Karlsruhe approach and software(MONIKA)

    Science.gov (United States)

    Jaeger, R.

    2007-05-01

    GNSS-positioning services like SAPOS/ascos in Germany and many others in Europe, America and worldwide, usually yield in a short time their interdisciplinary and country-wide use for precise geo-referencing, replacing traditional low order geodetic networks. So it becomes necessary that possible changes of the reference stations' coordinates are detected ad hoc. The GNSS-reference-station MONitoring by the KArlsruhe approach and software (MONIKA) are designed for that task. The developments at Karlsruhe University of Applied Sciences in cooperation with the State Survey of Baden-Württemberg are further motivated by a the official resolution of the German state survey departments' association (Arbeitsgemeinschaft der Vermessungsverwaltungen Deutschland (AdV)) 2006 on coordinate monitoring as a quality-control duty of the GNSS-positioning service provider. The presented approach can - besides the coordinate control of GNSS-positioning services - also be used to set up any GNSS-service for the tasks of an area-wide geodynamical and natural disaster-prevention service. The mathematical model of approach, which enables a multivariate and multi-epochal design approach, is based on the GNSS-observations input of the RINEX-data of the GNSS service, followed by fully automatic processing of baselines and/or session, and a near-online setting up of epoch-state vectors and their covariance-matrices in a rigorous 3D network adjustment. In case of large scale and long-term monitoring situations, geodynamical standard trends (datum-drift, plate-movements etc.) are accordingly considered and included in the mathematical model of MONIKA. The coordinate-based deformation monitoring approach, as third step of the stepwise adjustments, is based on the above epoch-state vectors, and - splitting off geodynamics trends - hereby on a multivariate and multi-epochal congruency testing. So far, that no other information exists, all points are assumed as being stable and congruent reference

  1. Animal facilities

    International Nuclear Information System (INIS)

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  2. Leveraging Educational, Research and Facility Expertise to Improve Global Seismic Monitoring: Preparing a Guide on Sustainable Networks

    Science.gov (United States)

    Nybade, A.; Aster, R.; Beck, S.; Ekstrom, G.; Fischer, K.; Lerner-Lam, A.; Meltzer, A.; Sandvol, E.; Willemann, R. J.

    2008-12-01

    Building a sustainable earthquake monitoring system requires well-informed cooperation between commercial companies that manufacture components or deliver complete systems and the government or other agencies that will be responsible for operating them. Many nations or regions with significant earthquake hazard lack the financial, technical, and human resources to establish and sustain permanent observatory networks required to return the data needed for hazard mitigation. Government agencies may not be well- informed about the short-term and long-term challenges of managing technologically advanced monitoring systems, much less the details of how they are built and operated. On the relatively compressed time scale of disaster recovery efforts, it can be difficult to find a reliable, disinterested source of information, without which government agencies may be dependent on partial information. If system delivery fails to include sufficient development of indigenous expertise, the performance of local and regional networks may decline quickly, and even data collected during an early high-performance period may be degraded or lost. Drawing on unsurpassed educational capabilities of its members working in close cooperation with its facility staff, IRIS is well prepared to contribute to sustainability through a wide variety of training and service activities that further promote standards for network installation, data exchange protocols, and free and open access to data. Members of the Consortium and staff of its Core Programs together could write a guide on decisions about network design, installation and operation. The intended primary audience would be government officials seeking to understand system requirements, the acquisition and installation process, and the expertise needed operate a system. The guide would cover network design, procurement, set-up, data use and archiving. Chapters could include advice on network data processing, archiving data (including

  3. Environmental monitoring radiological programs for the nuclear centre and the low level radioactive waste facility in Mexico

    International Nuclear Information System (INIS)

    Quintero, E.; Cervantes, L.; Rojas, V.

    2006-01-01

    The National Institute of Nuclear Research of Mexico (ININ) has its Laboratory of Environmental Radiological Monitoring, (LVRA), to assure the critical population and the environment they are not exposed to radiation doses greater than the limits established by the national and international legislation, this laboratory carries out environmental monitoring radiological programs the Nuclear Centre and its surroundings and the Low Level Radioactive Waste Facility (CADER) and its around. In order to carry out these programs the LVRA has rooms for evaporation, drying, grinding, ashing of environmental and food samples, and a laboratory for gamma ray spectrometry, liquid scintillation, alpha-beta gross counting and computer room. Since the year 2000 the (ININ) has tried to implant the quality system ISO 9001:2000 including a its (LVRA). This quality system includes: a Plan of Quality, Quality Manual, programs of technical and administrative document elaboration, technical and administrative procedures, technical and administrative qualification programmes for the laboratory staff, maintenance and calibration programs for measurement systems and finally participation in national and international exercises of intercomparison. The ININ counts with the management of quality assurance to verify these programs, in addition, our Nuclear Regulatory Commission (CNSNS) carries out periodic audits to authorize the of use and handling of radioactive and nuclear material licenses of these facilities. In this work we presented the advances and difficulties found in the implantation of the quality system, also we present the benefits obtained with uses of this system, the samples analyses results, and the calculation of the annual dose to the critical population for the last five years. In addition, we presented the calculation the radionuclides concentration tendencies in different sample types, according to our (CNSNS) requirements. In the same way the results of the calibrations

  4. A distributed process monitoring system for nuclear powered electrical generating facilities

    International Nuclear Information System (INIS)

    Sweney, A.D.

    1991-01-01

    Duke Power Company is one of the largest investor owned utilities in the United States, with a service area of 20,000 square miles extending across North and South Carolina. Oconee Nuclear Station, one of Duke Power's three nuclear generating facilities, is a three unit pressurized water reactor site and has, over the course of its 15-year operating lifetime, effectively run out of plant processing capability. From a severely overcrowded cable spread room to an aging overtaxed Operator Aid Computer, the problems with trying to add additional process variables to the present centralized Operator Aid Computer are almost insurmountable obstacles. This paper reports that for this reason, and to realize the inherent benefits of a distributed process monitoring and control system, Oconee has embarked on a project to demonstrate the ability of a distributed system to perform in the nuclear power plant environment

  5. Cavity beam position monitor system for the Accelerator Test Facility 2

    Directory of Open Access Journals (Sweden)

    Y. I. Kim

    2012-04-01

    Full Text Available The Accelerator Test Facility 2 (ATF2 is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1  μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  6. Cold Vacuum Drying facility personnel monitoring system design description (SYS 12); FINAL

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) instrument air (IA) system that provides instrument quality air to the CVDF. The IA system provides the instrument quality air used in the process, HVAC, and HVAC instruments. The IA system provides the process skids with air to aid in the purging of the annulus of the transport cask. The IA system provides air for the solenoid-operated valves and damper position controls for isolation, volume, and backdraft in the HVAC system. The IA system provides air for monitoring and control of the HVAC system, process instruments, gas-operated valves, and solenoid-operated instruments. The IA system also delivers air for operating hand tools in each of the process bays

  7. Mixed Waste Management Facility (MWMF) groundwater monitoring report. First quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters.

  8. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1993 and 1993 summary

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During fourth quarter 1993, 10 constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroform, chloroethane (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone 2B{sub 2} (Water Table) and Aquifer Zone 2B{sub 1}, (Barnwell/McBean) wells and in two Aquifer Unit 2A (Congaree) wells. The groundwater flow direction and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  9. Numerical analysis of the beam position monitor pickup for the Iranian light source facility

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, M., E-mail: mehdish@ipm.ir [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Feghhi, S.A.H. [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Rahighi, J. [Iranian Light Source Facility (ILSF), Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)

    2017-03-01

    In this paper, we describe the design of a button type Beam Position Monitor (BPM) for the low emittance storage ring of the Iranian Light Source Facility (ILSF). First, we calculate sensitivities, induced power and intrinsic resolution based on solving Laplace equation numerically by finite element method (FEM), in order to find the potential at each point of BPM's electrode surface. After the optimization of the designed BPM, trapped high order modes (HOM), wakefield and thermal loss effects are calculated. Finally, after fabrication of BPM, it is experimentally tested by using a test-stand. The results depict that the designed BPM has a linear response in the area of 2×4 mm{sup 2} inside the beam pipe and the sensitivity of 0.080 and 0.087 mm{sup −1} in horizontal and vertical directions. Experimental results also depict that they are in a good agreement with numerical analysis.

  10. Mixed Waste Management Facility (MWMF) groundwater monitoring report: Third quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    During third quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread constituents Chloroethene (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. The elevated constituents were found in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells. No elevated constituents were exhibited in Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  11. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  12. Environmental monitoring program of the uranium enrichment facility Almirante Alvaro Alberto

    International Nuclear Information System (INIS)

    Hiromoto, G.; Jacomino, V.M.F.; Venturini, L.; Moreira, S.R.D.; Gordon, A.M.P.L.; Duarte, C.L.; Pocequilo, B.R.S.; Mazzilli, B.P.

    1988-11-01

    In this report, the Environmental Monitoring Program of the Uranium Enrichment Facility Almirante Alvaro Alberto is outlined and the results obtained during the preoperational period are presented. Information concerning the population distribution, the use of water and land, the local agricultural production and the local meteorology are also available. In order to evaluate the levels of the background radiation, sample of water, air and biological and terrestrial indicators were analysed. Measurements were performed of natural gamma emitters concentrations levels and of uranium in air, surface water, precipitation, groundwater, river sediment, soil, grass, vegetation and various foodstuffs. For direct measurement of background radiation levels a solid state dosimeter network was used. Results are also presented for the analysis of non radioactive pollutants in the water samples and for the particles and gaseous fluorides concentration in the atmosphere. (author) [pt

  13. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters

  14. Cavity beam position monitor system for the Accelerator Test Facility 2

    Science.gov (United States)

    Kim, Y. I.; Ainsworth, R.; Aryshev, A.; Boogert, S. T.; Boorman, G.; Frisch, J.; Heo, A.; Honda, Y.; Hwang, W. H.; Huang, J. Y.; Kim, E.-S.; Kim, S. H.; Lyapin, A.; Naito, T.; May, J.; McCormick, D.; Mellor, R. E.; Molloy, S.; Nelson, J.; Park, S. J.; Park, Y. J.; Ross, M.; Shin, S.; Swinson, C.; Smith, T.; Terunuma, N.; Tauchi, T.; Urakawa, J.; White, G. R.

    2012-04-01

    The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  15. Present state and problems of radiological protection monitoring for high energy electron accelerator facilities in SPring-8

    International Nuclear Information System (INIS)

    Miyamoto, Yukihiro; Harada, Yasunori; Ueda, Hisao

    1998-09-01

    The present state and problems of the radiological protection monitoring for the high-energy electron accelerator are summarized. In the radiological protection monitoring for SPring-8, a third generation synchrotron radiation facility, there are many problems specific to the high-energy electron accelerator. This report describes the monitoring technique of pulsed radiation, high-energy radiation and low-energy radiation, and their problems. The management of induced radioactivity and the effects of electro-magnetic noise to monitoring instruments are also discussed. (author)

  16. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.

    2006-01-01

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary

  17. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.; JOCHEN; PREVETTE

    2007-01-01

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State are being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary

  18. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought

  19. Feasibility assessment grants in support of volunteer siting of a monitored retrievables storage facility

    International Nuclear Information System (INIS)

    Benson, A.; Weisman, N.M.; Morgan, W.

    1993-01-01

    The Monitored Retrievable Storage facility (MRS) is an integral component of the planned Federal radioactive waste management system. The MRS will temporarily store spent fuel from commercial nuclear power plants prior to shipment to a geologic repository for permanent disposal. To facilitate voluntary siting of an MRS facility, Congress, in 1987, authorized the award of feasibility assessment grants by the Department of Energy to assist potentially interested jurisdictions to consider the possibility of hosting an MRS. This paper addresses the experience with MRS feasibility assessment grants to date, reviewing the current status of grant applications and presenting observations on the grant program and the voluntary siting approach, which it supports. The authors note that although the voluntary siting process has yet to identify an MRS host, the feasibility assessment grants have been successful in generating interest and active consideration and debate regarding MRS siting among States, Indian Tribes, and affected units of local government. Continued information efforts about the grant process and more proactive DOE support for and participation in the voluntary siting process are among the recommendations offered

  20. Experimental validation of control strategies for a microgrid test facility including a storage system and renewable generation sets

    DEFF Research Database (Denmark)

    Baccino, Francesco; Marinelli, Mattia; Silvestro, Federico

    2012-01-01

    The paper is aimed at describing and validating some control strategies in the SYSLAB experimental test facility characterized by the presence of a low voltage network with a 15 kW-190 kWh Vanadium Redox Flow battery system and a 11 kW wind turbine. The generation set is connected to the local...... network and is fully controllable by the SCADA system. The control strategies, implemented on a local pc interfaced to the SCADA, are realized in Matlab-Simulink. The main purpose is to control the charge/discharge action of the storage system in order to present at the point of common coupling...... the desired power or energy profiles....

  1. The meteorological monitoring audit, preventative maintenance and quality assurance programs at a former nuclear weapons facility

    International Nuclear Information System (INIS)

    Maxwell, D.R.

    1995-01-01

    The purposes of the meteorological monitoring audit, preventative maintenance, and quality assurance programs at the Rocky Flats Environmental Technology Site (Site), are to (1) support Emergency Preparedness (EP) programs at the Site in assessing the transport, dispersion, and deposition of effluents actually or potentially released into the atmosphere by Site operations; and (2) provide information for onsite and offsite projects concerned with the design of environmental monitoring networks for impact assessments, environmental surveillance activities, and remediation activities. The risk from the Site includes chemical and radioactive emissions historically related to nuclear weapons component production activities that are currently associated with storage of large quantities of radionuclides (plutonium) and radioactive waste forms. The meteorological monitoring program provides information for site-specific weather forecasting, which supports Site operations, employee safety, and Emergency Preparedness operations

  2. RCRA [Resource Conservation and Recovery Act] ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    International Nuclear Information System (INIS)

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs

  3. Characterization and monitoring of 300 Area Facility liquid waste streams: Status report

    International Nuclear Information System (INIS)

    Manke, K.L.; Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Ikenberry, A.S.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.

    1994-09-01

    This report summarizes the results of characterizing and monitoring the following sources during a portion of this year: liquid waste streams from Buildings 331, 320, and 3720; treated and untreated Columbia River water; and water at the confluence of the waste streams (that is, end-of-pipe). Characterization and monitoring data were evaluated for samples collected between March 22 and June 21, 1994, and subsequently analyzed for hazardous chemicals, radioactivity, and general parameters. Except for bis(2-ethylhexyl)phthalate, concentrations of chemicals detected and parameters measured at end-of-pipe were below the US Environmental Protection Agency existing and proposed drinking water standards. The source of the chemicals, except bis(2-ethylhexyl)phthalate, is not currently known. The bis(2-ethylhexyl)phthalate is probably an artifact of the plastic tubing used in the early stages of the sampling program. This practice was stopped. Concentrations and clearance times for contaminants at end-of-pipe depended strongly on source concentration at the facility release point, waste stream flow rates, dispersion, and the mechanical action of sumps. When present, the action of sumps had the greatest impact on contaminant clearance times. In the absence of sump activity, dispersion and flow rate were the controlling factors

  4. A fuzzy logic based method to monitor organizational resilience: application in a brazilian radioactive facility

    International Nuclear Information System (INIS)

    Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Carvalho, Paulo V.R.; Vidal, Mario C.R.; Cosenza, Carlos A.N.

    2013-01-01

    Resilience is the intrinsic ability of a system to adjust its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under expected and unexpected conditions. This definition focuses on the ability to function, rather than on being impervious to failure, and thereby overcomes the traditional conflict between productivity and safety. Resilience engineering (RE) has fast become recognized as a valuable complement to the established approaches to safety of complex socio-technical systems and methods to monitor organizational resilience are needed. However, few, if any, comprehensive and systematic research studies focus on developing an objective, reliable and practical assessment model for monitoring organizational resilience. Most methods cannot fully solve the subjectivity of resilience evaluation. In order to remedy this deficiency, the aim of this research is to adopt a Fuzzy Set Theory (FST) approach to establish a method for resilience assessment in organizations based on leading safety performance indicators, defined according to the resilience engineering principles. The method uses FST concepts and properties to model the indicators and to assess the results of their application. To exemplify the method we performed an exploratory case study at the process of radiopharmaceuticals dispatch package of a Brazilian radioactive facility. (author)

  5. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas, E-mail: weber.th@gmx.de [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Mitteau, Raphael; Eaton, Russell [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m{sup 2} are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  6. A real-time monitoring/emergency response modeling workstation for a tritium facility

    International Nuclear Information System (INIS)

    Lawver, B.S.; Sims, J.M.; Baskett, R.L.

    1993-07-01

    At Lawrence Livermore National Laboratory (LLNL) we developed a real-time system to monitor two stacks on our tritium handling facility. The monitors transmit the stack data to a workstation which computes a 3D numerical model of atmospheric dispersion. The workstation also collects surface and upper air data from meteorological towers and a sodar. The complex meteorological and terrain setting in the Livermore Valley demands more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion than afforded by Gaussian models. We experience both mountain valley and sea breeze flows. To address these complexities, we have implemented the three-dimensional diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on the workstation for use in real-time emergency response modeling. Both MATHEW and ADPIC have shown their utility in a variety of complex settings over the last 15 years within the Department of Energy's Atmospheric Release Advisory Capability (ARAC[1,2]) project

  7. A fuzzy logic based method to monitor organizational resilience: application in a brazilian radioactive facility

    Energy Technology Data Exchange (ETDEWEB)

    Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Carvalho, Paulo V.R., E-mail: grecco@ien.gov.br, E-mail: luquetti@ien.gov.br, E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Divisao de Instrumentacao e Confiabilidade Humana; Vidal, Mario C.R.; Cosenza, Carlos A.N., E-mail: mvidal@ergonomia.ufrj.br, E-mail: cosenza@pep.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEP/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia de Producao

    2013-07-01

    Resilience is the intrinsic ability of a system to adjust its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under expected and unexpected conditions. This definition focuses on the ability to function, rather than on being impervious to failure, and thereby overcomes the traditional conflict between productivity and safety. Resilience engineering (RE) has fast become recognized as a valuable complement to the established approaches to safety of complex socio-technical systems and methods to monitor organizational resilience are needed. However, few, if any, comprehensive and systematic research studies focus on developing an objective, reliable and practical assessment model for monitoring organizational resilience. Most methods cannot fully solve the subjectivity of resilience evaluation. In order to remedy this deficiency, the aim of this research is to adopt a Fuzzy Set Theory (FST) approach to establish a method for resilience assessment in organizations based on leading safety performance indicators, defined according to the resilience engineering principles. The method uses FST concepts and properties to model the indicators and to assess the results of their application. To exemplify the method we performed an exploratory case study at the process of radiopharmaceuticals dispatch package of a Brazilian radioactive facility. (author)

  8. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    International Nuclear Information System (INIS)

    Weber, Thomas; Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald; Banetta, Stefano; Bellin, Boris; Mitteau, Raphael; Eaton, Russell

    2015-01-01

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m"2 are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  9. MRS Action Plan Task B report: Analyses of alternative designs and operating approaches for a Monitored Retrievable Storage Facility

    International Nuclear Information System (INIS)

    Woods, W.D.; Jowdy, A.K.; Keehn, C.H.; Gale, R.M.; Smith, R.I.

    1988-12-01

    The Nuclear Waste Policy Amendments Act (NWPAA) instituted a number of changes in the DOE commercial nuclear waste management system. After passage of the Act, the DOE initiated a number of systems studies to reevaluate the role of Monitored Retrievable Storage (MRS) within the federal waste management system. This report summarizes the results of a study to determine the schedules and costs of developing those MRS facilities needed under a number of scenarios, with differing functions allocated to the MRS and/or different spent fuel acceptance schedules. Nine cases were defined for the system study, seven of which included an MRS Facility. The study cases or scenarios evaluated varied relative to the specific functions to be performed at the MRS. The scenarios ranged in magnitude from storage and shipment of bare, intact spent fuel to consolidating the spent fuel into repository emplacement containers prior to storage and shipment. Each scenario required specific modifications to be made to the design developed for the MRS proposal to Congress (the Conceptual Design Report). 41 figs., 326 tabs

  10. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Lofy, Peter T. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-03-01

    This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherine Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.

  11. Environmental monitoring report on the US Department of Energy's inactive millsite facility, Monticello, Utah, for calendar year 1987

    International Nuclear Information System (INIS)

    1988-05-01

    The inactive Monticello Millsite is located in San Juan County, Utah, just south of the town of Monticello. Environmental monitoring at the site is funded by the Surplus Facilities Management Program (SFMP) and focuses on releases due to preexistent mill tailings. All contaminant discharges result from the leaching of uranium-mill-tailings-related elements by ground water and surface water, and from the release of radon gas and particulate matter into the atmosphere. Pathways facilitating the migration of contaminants from the Monticello site include ground water in the shallow alluvial aquifer underlying the inactive facility, surface water running across the site, and the surrounding atmosphere. Extensive measurement of radon contamination from the tailings piles was conducted during 1984, 1985, and to a lesser extent during 1986 and 1987. On-pile, site-boundary, and off-site atmospheric radon measurements, as well as on- and off-pile radon-flux measurements, were taken. Results of these measurements demonstrate that the EPA standard for radon emissions from inactive uranium processing sites is exceeded at all four tailings piles at the Monticello site. Air particulate monitoring was conducted during 1987 at two on-site locations and at one background location using high-volume Sierra-Anderson model 300 air particulate samplers. So that only the inhalable particles would be collected, 10-micron-size screens were added to the samplers. The maximum airborne concentrations of radium-226, thorium-230, and uranium were all several orders of magnitude below the regulatory limits specified by DOE Order 5480.1. 22 refs., 5 figs., 9 tabs

  12. Feasibility Study for Monitoring Actinide Elements in Process Materials Using FO-LIBS at Advanced spent fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bo-Young; Choi, Daewoong; Park, Se Hwan; Kim, Ho-Dong [Nonproliferation System Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Dae, Dongsun [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Whitehouse, Andrew I. [Applied Photonics Ltd., Unit 8 Carleton Business Park, Skipton, North Yorkshire BD23 2DE (United Kingdom)

    2015-07-01

    Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in the target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)

  13. Feasibility Study for Monitoring Actinide Elements in Process Materials Using FO-LIBS at Advanced spent fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Han, Bo-Young; Choi, Daewoong; Park, Se Hwan; Kim, Ho-Dong; Dae, Dongsun; Whitehouse, Andrew I.

    2015-01-01

    Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in the target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)

  14. Towards a Unified Environmental Monitoring, Control and Data Management System for Irradiation Facilities: the CERN IRRAD Use Case

    CERN Document Server

    Gkotse, Blerina; Jouvelot, Pierre; Matli, Emanuele; Pezzullo, Giuseppe; Ravotti, Federico

    2017-01-01

    The qualification of materials, electronic components and equipment for the CERN High Energy Physics experiments and beyond requires testing against possible radiation effects. These quite complex tests are performed by specialized teams working in irradiation facilities such as IRRAD, the Proton Irradiation Facility at CERN. Building upon the details of the overall irradiation control, monitoring, and logistical systems of IRRAD as a use case, we introduce the motivations for and general architecture of its new data management framework, currently under development at CERN. This infrastructure is intended to allow for the seamless and comprehensive handling of IRRAD irradiation experiments and to help manage all aspects of the facility. Its architecture, currently focused on the specific requirements of the IRRAD facility, is intended to be upgraded to a general framework that could be used in other irradiation facilities within the radiation effects community, as well as for other applications.

  15. Tennessee Valley region study: potential year 2000 radiological dose to population resulting from nuclear facility operations. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    A companion report, DOE/ET-0064/1, presents a geographic, cultural, and demographic profile of the Tennessee Valley Region study area. This report describes the calculations of radionuclide release and transport and of the resultant dose to the regional population, assuming a projected installed capacity of 220,000 MW in the year 2000, of which 144,000 MW would be nuclear. All elements of the fuel cycle were assumed to be in operation. The radiological dose was calculated as a one-year dose based on ingestion of 35 different food types as well as for nine non-food pathways, and was reported as dose to the total body and for six specific organs for each of four age groups (infant, child, teen, and adult). Results indicate that the average individual would receive an incremental dose of 7 x 10/sup -4/ millirems in the year 2000 from the operation of nuclear facilities within and adjacent to the region, five orders of magnitude smaller than the dose from naturally occurring radiation in the area. The major contributor to dose was found to be tritium, and the most significant pathways were immersion in air, inhalation of air, transpiration of tritium (absorption through the skin), and exposure radionuclide-containing soil. 60 references.

  16. Decommissioning of the nuclear licensed facilities at the Fontenay aux Roses CEA Center; cleanup of nuclear licensed facility 57 and monitoring of operations and operating feedback

    International Nuclear Information System (INIS)

    Estivie, D.; Bohar, M.P.; Jeanjacques, M.; Binet, C.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.

    2008-01-01

    This is a summary of the program for the decommissioning of all the CEA Licensed Nuclear Facilities in Fontenay aux Roses. The particularity of this center is now it is located in a built-up area. It is presented like example the operations to clean up the equipment of the Nuclear Licensed Facility 57 (NLF 57). Due to the diversity of the research and development work carried out on the reprocessing of spent fuel in it, this installation is emblematic of many of the technical and organizational issues liable to be encountered in the final closure of nuclear facilities. It was developed a method applied to establish the multi-annual budget, monitor the progress of operations and integrate, as work continues, the operating feedback. (author)

  17. Integrated ground-water monitoring strategy for NRC-licensed facilities and sites: Case study applications

    Science.gov (United States)

    Price, V.; Temples, T.; Hodges, R.; Dai, Z.; Watkins, D.; Imrich, J.

    2007-01-01

    This document discusses results of applying the Integrated Ground-Water Monitoring Strategy (the Strategy) to actual waste sites using existing field characterization and monitoring data. The Strategy is a systematic approach to dealing with complex sites. Application of such a systematic approach will reduce uncertainty associated with site analysis, and therefore uncertainty associated with management decisions about a site. The Strategy can be used to guide the development of a ground-water monitoring program or to review an existing one. The sites selected for study fall within a wide range of geologic and climatic settings, waste compositions, and site design characteristics and represent realistic cases that might be encountered by the NRC. No one case study illustrates a comprehensive application of the Strategy using all available site data. Rather, within each case study we focus on certain aspects of the Strategy, to illustrate concepts that can be applied generically to all sites. The test sites selected include:Charleston, South Carolina, Naval Weapons Station,Brookhaven National Laboratory on Long Island, New York,The USGS Amargosa Desert Research Site in Nevada,Rocky Flats in Colorado,C-Area at the Savannah River Site in South Carolina, andThe Hanford 300 Area.A Data Analysis section provides examples of detailed data analysis of monitoring data.

  18. An assessment of air sampling location for stack monitoring in nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Bok [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Tae Hyoung; Lee, Jong Il; Kim, Bong Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    In this study, air sampling locations in the stack of the Advanced Fuel Science Building (AFSB) at the Korea Atomic Energy Research Institute (KAERI) were assessed according to the ANSI/HPS N13.1-1999 specification. The velocity profile, flow angle and 10 μm aerosol particle profile at the cross-section as functions of stack height L and stack diameter D (L/D) were assessed according to the sampling location criteria using COMSOL. The criteria for the velocity profile were found to be met at 5 L/D or more for the height, and the criteria for the average flow angle were met at all locations through this assessment. The criteria for the particle profile were met at 5 L/D and 9 L/D. However, the particle profile at the cross-section of each sampling location was found to be non-uniform. In order to establish uniformity of the particle profile, a static mixer and a perimeter ring were modeled, after which the degrees of effectiveness of these components were compared. Modeling using the static mixer indicated that the sampling locations that met the criteria for the particle profile were 5-10 L/D. When modeling using the perimeter ring, the sampling locations that met the criteria for particle profile were 5 L/D and 7-10 L/D. The criteria for the velocity profile and the average flow angle were also met at the sampling locations that met the criteria for the particle profile. The methodologies used in this study can also be applied during assessments of air sampling locations when monitoring stacks at new nuclear facilities as well as existing nuclear facilities.

  19. Monitoring the performances of a real scale municipal solid waste composting and a biodrying facility using respiration activity indices.

    Science.gov (United States)

    Evangelou, Alexandros; Gerassimidou, Spyridoula; Mavrakis, Nikitas; Komilis, Dimitrios

    2016-05-01

    Objective of the work was to monitor two full-scale commingled municipal solid waste (MSW) mechanical and biological pretreatment (MBT) facilities in Greece, namely a biodrying and a composting facility. Monitoring data from a 1.5-year sampling period is presented, whilst microbial respiration indices were used to monitor the decomposition process and the stability status of the wastes in both facilities during the process. Results showed that in the composting facility, the organic matter reduced by 35 % after 8 weeks of combined composting/curing. Material exiting the biocells had a moisture content of less than 30 % (wb) indicating a moisture limitation during the active composting process. The static respiration indexes indicated that some stabilization occurred during the process, but the final material could not be characterized as stable compost. In the biodrying facility, the initial and final moisture contents were 50 % and less than 20 % wb, respectively, and the biodrying index was equal to 4.1 indicating effective biodrying. Lower heating values at the inlet and outlet were approximately 5.5 and 10 MJ/wet kg, respectively. The organic matter was reduced by 20 % during the process and specifically from a range of 63-77 % dw (inlet) to a range of 61-70 % dw. A significant respiration activity reduction was observed for some of the biodrying samples. A statistically significant correlation among all three respiration activity indices was recorded, with the two oxygen related activity indices (CRI7 and SRI24) observing the highest correlation.

  20. Burial ground as a containment system: 25 years of subsurface monitoring at the Savannah River Plant Facility

    International Nuclear Information System (INIS)

    Fenimore, J.W.

    1982-01-01

    As the Savannah River Plant (SRP) solid wastes containing small quantities of radionuclides are buried in shallow (20' deep) trenches. The hydrogeology of the burial site is described together with a variety of subsurface monitoring techniques employed to ensure the continued safe operation of this disposal facility. conclusions from over two decades of data collection are presented

  1. X-ray facility for the ground calibration of the X-ray monitor JEM-X on board INTEGRAL

    DEFF Research Database (Denmark)

    Loffredo, G.; Pelliciari, C.; Frontera, F.

    2003-01-01

    We describe the X-ray facility developed for the calibration of the X-ray monitor JEM-X on board the INTEGRAL satellite. The apparatus allowed the scanning of the detector geometric area with a pencil beam of desired energy over the major part of the passband of the instrument. The monochromatic...

  2. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    International Nuclear Information System (INIS)

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs

  3. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than ∼1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network

  4. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Third quarter, 1994

    International Nuclear Information System (INIS)

    1994-12-01

    During third quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Bis(2-ethylhexyl) phthalate exceeded final PDWS in one well. Aluminum, iron, manganese, tin, and total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and is complete; however, analytical data from these wells is not available yet

  5. Monitored Retrievable Storage (MRS) Facility and its impact on spent fuel transportation

    International Nuclear Information System (INIS)

    Joy, D.S.; Jolley, R.L.

    1986-01-01

    The Department of Energy has identified nine potential sites for a repository to permanently dispose of radioactive wastes. DOE has released several sets of maps and tables identifying expected transportation routes between nuclear reactors and repository sites. More recently, the DOE has announced three potential Monitored Retrievable Storage Facility (MRS) sites in the state of Tennessee. Obviously, if a large portion of the spent fuel is routed to Tennessee for consolidation and repackaging, there will be significant changes in the estimated routes. For typical scenarios, the number of shipments in the vicinity of the repository will be reduced. For example, with direct reactor to repository shipments, 995 highway and 262 rail shipments are expected to arrive at the repository annually. With a MRS these numbers are reduced to 201 and 30, respectively. The remaining consolidated fuel would be transported from the MRS in 22 dedicated trains (each train transporting five casks). Conversely, the MRS would result in an increase in the number of spent fuel shipments traveling through the eastern part of Tennessee. However, the operation of a MRS would significantly reduce the number of shipments through the central and western parts of the state

  6. Ultra-compact photoionization analyzers. Ecological monitoring application at hazardous production facilities

    Science.gov (United States)

    Mustafaev, Alexander; Rastvorova, Iuliia; Arslanova, Fatima

    2017-10-01

    It is generally recognized that careful implementation of ecological monitoring should be provided at hazardous production facilities continuously to protect the surrounding environment as well as health and safety of employees. However, the existing devices may not be able to control the environmental situation uninterruptedly due to their technical characteristics or measurement methods. Developed by The Mining University Plasma Research Group ultra-compact photoionization analyzer is proposed as innovative equipment which creates the basis for a new measuring approach. The general operating principle is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at the atmospheric pressure, the vacuum ultraviolet (VUV) photoionization sensor measures the energy of electrons produced by means of ionization with the resonance photons whose wavelength is situated in the VUV. A special software tool was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the characteristic electrons energy spectra. The portable analyzer with a unique set of parameters such as small size (10*10*1 mm), low cost, a wide range of recognizable molecules, great measurement accuracy at the atmospheric pressure can be effectively used both for rapid testing of air pollution load and the study of noxious factors that influence oil and gas industry employees. Dr. Sci., Ph.D, Principal Scientist, Professor.

  7. Monitoring the electron beam position at the TESLA test facility free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kamps, T

    2000-06-14

    The operation of a free electron laser working in the Self Amplified Spontaneous Emission mode (SASE FEL) requires the electron trajectory to be aligned with very high precision in overlap with the photon beam. In order to ensure this overlap, one module of the SASE FEL undulator at the TESLA Test Facility (TTF) is equipped with a new type of waveguide beam position monitor (BPM). Four waveguides are arranged symmetrically around the beam pipe, each channel couples through a small slot to the electromagnetic beam field. The induced signal depends on the beam intensity and on the transverse beam position in terms of beam-to-slot distance. With four slot--waveguide combinations a linear position sensitive signal can be achieved, which is independent of the beam intensity. The signals transduced by the slots are transferred by ridged waveguides through an impedance matching stage into a narrowband receiver tuned to 12 GHz. The present thesis describes design, tests, and implementation of this new type of BPM. (orig.)

  8. Technical support to environmental restoration division for groundwater level monitoring effort at entombed Hallam Nuclear Power Facility. Final report, August 1, 1993--July 31, 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This report provides an interim summary of information from a water-level monitoring program. The information was collected by the US Geological Survey (USGS) over a 6-month period. The monitoring program between the US DOE and the USGS was set up to measure water levels in 16 observation wells at the Hallam Nuclear Facility in Hallam, Nebraska. The summary of USGS data includes: (1) a description of the USGS monitoring program; (2) a description of the collection of continuous water-level data; (3) a description of the collection of monthly water-level data; (4) table of observation well number, latitude, longitude, and depth; (5) table of monthly ground-water levels data; (6) table of recorder wells, rainfall, and barometric pressure values; (7) table of recorder well, rainfall, and barometric pressure daily values; and (8) hydrographs of selected wells. 7 figs., 3 tabs

  9. Resolving MC and A alarms from process monitoring in a fuel fabrication facility

    International Nuclear Information System (INIS)

    Smith, B.W.; Razvi, J.

    1984-01-01

    Process monitoring data can be used for generating material loss estimates. The intent of using process control data is to enhance nuclear material control and accounting for the timely detection and resolution of discrepancies. The purpose of an alarm resolution system is to distinguish between system errors and an actual loss of nuclear material. A study has been performed to develop and test a site-specific set of alarm resolution procedures. The results of the study are described and include the frequency of alarms, the causes of alarms, the type of resolution, and the modeling of loss estimates

  10. Procedures and techniques for monitoring the radiation detection, signalization and alarm systems in the centralized ambience monitoring systems of the basic nuclear facilities of the CEN Saclay

    International Nuclear Information System (INIS)

    Andre, J.-J.; Drouet, J.; Leblanc, P.

    1979-01-01

    After referring to the regulations governing the 'systematic ambience monitoring' in the basic nuclear facilities, the main radiation detection, signalization and alarm devices existing at present in these facilities of the Saclay Nuclear Study Centre are described. The analysis of the operating defects of the measuring channels and detection possibilities leads to the anomalies being classified in two separate groups: the anomalies of the logical 'all or nothing' type of which all the possible origins are integrated into a so-called 'continuity' line and the evolutive anomalies of various origins corresponding to poor functioning extending possibly to a complete absence of signal. The techniques for testing the detection devices of the radiation monitoring board set up in the 'Departement de Rayonnements' at the Saclay Nuclear Study Centre are also described [fr

  11. Rotordynamic Analysis and Feasibility Study of a Disk Spin Test Facility for Rotor Health Monitoring

    Science.gov (United States)

    Sawicki, Jerzy T.

    2005-01-01

    Recently, National Aeronautics and Space Administration (NASA) initiated a program to achieve the significant improvement in aviation safety. One of the technical challenges is the design and development of accelerated experiments that mimic critical damage cases encountered in engine components. The Nondestructive Evaluation (NDE) Group at the NASA Glenn Research Center (GRC) is currently addressing the goal concerning propulsion health management and the development of propulsion system specific technologies intended to detect potential failures prior to catastrophe. For this goal the unique disk spin simulation system was assembled at NASA GRC, which allows testing of rotors with the spinning speeds up to 10K RPM, and at the elevated temperature environment reaching 540 C (1000 F). It is anticipated that the facility can be employed for detection of Low Cycle Fatigue disk cracking and further High Cycle Fatigue blade vibration. The controlled crack growth studies at room and elevated temperatures can be conducted on the turbine wheels, and various NDE techniques can be integrated and assessed as in-situ damage monitoring tools. Critical rotating parts in advanced gas turbine engines such as turbine disks frequently operate at high temperature and stress for long periods of time. The integrity of these parts must be proven by non-destructive evaluation (NDE) during various machining steps ranging from forging blank to finished shape, and also during the systematic overhaul inspections. Conventional NDE methods, however, have unacceptable limits. Some of these techniques are time-consuming and inconvenient for service aircraft testing. Almost all of these techniques require that the vicinity of the damage is known in advance. These experimental techniques can provide only local information and no indication of the structural strength at a component and/or system level. The shortcomings of currently available NDE methods lead to the requirement of new damage

  12. 340 Facility compliance assessment

    International Nuclear Information System (INIS)

    English, S.L.

    1993-10-01

    This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility

  13. United States Department of Energy Oak Ridge Facilities environmental-monitoring report

    International Nuclear Information System (INIS)

    1983-01-01

    The Environmental Monitoring Program for the Oak Ridge area includes sampling and analysis of air, water from surface streams, creek sediments, biota, and soil for both radioactive and nonradioactive materials. Surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennessee. Concentrations of radioactivity in the Clinch River and in fish collected from the river wre less than one percent of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards. Surveillance of nonradioactive materials in the Oak Ridge environs shows that established limits were not exceeded for those materials possibly present in the air as a result of plant operations. The chemical water quality data in surface streams obtained from the water sampling program indicated that average concentrations resulting from plant effluents were in compliance with state stream guidelines with the exception of fluoride at monitoring Station E-1 which was 110 percent of the guideline and nitrate at Station B-1 which was 100 percent of the guideline. National Pollutant Discharge Elimination System (NPDES) permit compliance information has been included in this report. During 1982 there were no spills of oil and/or hazardous materials from the Oak Ridge installations reported to the National Response Center

  14. Monitoring System for Storm Readiness and Recovery of Test Facilities: Integrated System Health Management (ISHM) Approach

    Science.gov (United States)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera; Schmalzel, John

    2010-01-01

    Severe weather events are likely occurrences on the Mississippi Gulf Coast. It is important to rapidly diagnose and mitigate the effects of storms on Stennis Space Center's rocket engine test complex to avoid delays to critical test article programs, reduce costs, and maintain safety. An Integrated Systems Health Management (ISHM) approach and technologies are employed to integrate environmental (weather) monitoring, structural modeling, and the suite of available facility instrumentation to provide information for readiness before storms, rapid initial damage assessment to guide mitigation planning, and then support on-going assurance as repairs are effected and finally support recertification. The system is denominated Katrina Storm Monitoring System (KStorMS). Integrated Systems Health Management (ISHM) describes a comprehensive set of capabilities that provide insight into the behavior the health of a system. Knowing the status of a system allows decision makers to effectively plan and execute their mission. For example, early insight into component degradation and impending failures provides more time to develop work around strategies and more effectively plan for maintenance. Failures of system elements generally occur over time. Information extracted from sensor data, combined with system-wide knowledge bases and methods for information extraction and fusion, inference, and decision making, can be used to detect incipient failures. If failures do occur, it is critical to detect and isolate them, and suggest an appropriate course of action. ISHM enables determining the condition (health) of every element in a complex system-of-systems or SoS (detect anomalies, diagnose causes, predict future anomalies), and provide data, information, and knowledge (DIaK) to control systems for safe and effective operation. ISHM capability is achieved by using a wide range of technologies that enable anomaly detection, diagnostics, prognostics, and advise for control: (1

  15. Applications of remote sensing and GIS technologies to wetland assessment and monitoring at a DOE facility

    International Nuclear Information System (INIS)

    Mackey, H.E.

    1993-01-01

    The Savannah River Site (SRS), a 777-km 2 site, located in the Upper Coastal Plain of South Carolina, was established in the early 1950s for the production of nuclear materials to support the defense needs of the United States. The SRS was closed to the public and shortly after its formation, much of the uplands and previous farmlands were planted to managed pine plantations for the US Department of Energy by the US Forest Service. More than 7500 hectares of wetlands, ranging from a large, 3000-hectare swamp, to extensive bottomland hardwood forests, to isolated upland Carolina bays, were present on the SRS at the time of its formation. During the subsequent 40-yr operation of the site, five stream systems and portions of the Savannah River swamp on the SRS were influenced by discharges of once-through cooling water from site operations. In addition, two large cooling lakes were constructed, Par Pond in 1958 and L Lake in 1985, to support reactor operations. Thus, the wetlands of the SRS have had a variety of influences, ranging from the protection afforded by the exclusion of the public from the site, past construction of major facilities, and discharges from site operations. Evaluation, assessment, and monitoring long-term changes to the extensive and varied wetlands of the SRS are formidable tasks. Archived remote sensing data of a variety of types, along with the advances in computer technologies that allow the integration of land-use/land-cover geographic information system (GIS) data layer and related GIS data bases, are providing the necessary tools and information to integrate wetlands protection and management into an effective operational environment

  16. Radon progeny monitoring at the Eastern North Atlantic (ENA), Graciosa Island ARM facility and a potential earthquake precursory signal

    Science.gov (United States)

    Barbosa, Susana; Mendes, Virgilio B.; Azevedo, Eduardo B.

    2016-04-01

    Radon has been considered a promising earthquake precursor, the main rationale being an expected increase in radon exhalation in soil and rocks due to stress associated with the preparatory stages of an earthquake. However, the precursory nature of radon is far from being convincingly demonstrated so far. A major hindrance is the many meteorological and geophysical factors diving radon temporal variability, including the geophysical parameters influencing its emanation (grain size, moisture content, temperature), as well as the meteorological factors (atmospheric pressure, moisture, temperature, winds) influencing its mobility. Despite the challenges, radon remains one of the strongest candidates as a potential earthquake precursor, and it is of crucial importance to investigate the many factors driving its variability and its potential association with seismic events. Continuous monitoring of radon progeny is performed at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM), established and supported by the Department of Energy (DOE) of the United States of America with the collaboration of the local government and University of the Azores. The Azores archipelago is associated with a complex geodynamic setting on the Azores triple junction where the American, Eurasian and African litospheric plates meet, resulting in significant seismic and volcanic activity. A considerable advantage of the monitoring site is the availability of a comprehensive dataset of concurrent meteorological observations performed at the ENA facility and freely available from the ARM data archive, enabling a detailed analysis of the environmental factors influencing the temporal variability of radon's progeny. Gamma radiation is being measured continuously every 15 minutes since May 2015. The time series of gamma radiation counts is dominated by sharp peaks lasting a few hours and

  17. Monitored retrievable storage (MRS) facility and salt repository integration: Engineering study report

    International Nuclear Information System (INIS)

    1987-07-01

    This MRS Facility and Salt Repository Integration Study evaluates the impacts of an integrated MRS/Salt Repository Waste Management System on the Salt Repository Surface facilities' design, operations, cost, and schedule. Eight separate cases were studied ranging from a two phase repository design with no MRS facility to a design in which the repository only received package waste from the MRS facility for emplacement. The addition of the MRS facility to the Waste Management System significantly reduced the capital cost of the salt repository. All but one of the cases studied were capable of meeting the waste acceptance data. The reduction in the size and complexity of the Salt Repository waste handling building with the integration of the MRS facility reduces the design and operating staff requirements. 7 refs., 35 figs., 43 tabs

  18. A luciferase-based assay for rapid assessment of drug activity against Mycobacterium tuberculosis including monitoring of macrophage viability.

    Science.gov (United States)

    Larsson, Marie C; Lerm, Maria; Ängeby, Kristian; Nordvall, Michaela; Juréen, Pontus; Schön, Thomas

    2014-11-01

    The intracellular (IC) effect of drugs against Mycobacterium tuberculosis (Mtb) is not well established but increasingly important to consider when combining current and future multidrug regimens into the best possible treatment strategies. For this purpose, we developed an IC model based on a genetically modified Mtb H37Rv strain, expressing the Vibrio harvei luciferase (H37Rv-lux) infecting the human macrophage like cell line THP-1. Cells were infected at a low multiplicity of infection (1:1) and subsequently exposed to isoniazid (INH), ethambutol (EMB), amikacin (AMI) or levofloxacin (LEV) for 5days in a 96-well format. Cell viability was evaluated by Calcein AM and was maintained throughout the experiment. The number of viable H37Rv-lux was determined by luminescence and verified by a colony forming unit analysis. The results were compared to the effects of the same drugs in broth cultures. AMI, EMB and LEV were significantly less effective intracellularly (MIC90: >4mg/L, 8mg/L and 2mg/L, respectively) compared to extracellularly (MIC90: 0.5mg/L for AMI and EMB; 0.25mg/L for LEV). The reverse was the case for INH (IC: 0.064mg/L vs EC: 0.25mg/L). In conclusion, this luciferase based method, in which monitoring of cell viability is included, has the potential to become a useful tool while evaluating the intracellular effects of anti-mycobacterial drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Development of a Community Radiation Monitoring program near a nuclear industrial facility

    International Nuclear Information System (INIS)

    Pauley, B.J.; Maxwell, D.R.

    1992-01-01

    The Community Radiation Monitoring (ComRad) program is a cooperative effort of the DOE, Rocky Flats Office (RFO), EG ampersand G, and surrounding communities. The intent of the ComRad program is to establish radiation and meteorological monitoring stations in the communities for their independent control and use. The primary objectives of the ComRad program are to provide (1) public education, (2) active participation of the public, and (3) better community relations. The ComRad program involves establishing new offsite environmental surveillance stations to be operated and managed by local community science teachers. The general public will be invited to inspect the air quality instrumentation and results displayed. The instrumentation for each station will include a gamma counter, weather station, high-volume (Hi-Vol) air sampler, and thermoluminescent dosimeter (TLD). The purpose of this paper is to describe the operation of the ComRad program emphasizing program objectives, organizational responsibility, participation by community technical representatives, station managers and alternate station managers training, and data dissemination to the public

  20. A home monitoring program including real-time wireless home spirometry in idiopathic pulmonary fibrosis: a pilot study on experiences and barriers.

    Science.gov (United States)

    Moor, C C; Wapenaar, M; Miedema, J R; Geelhoed, J J M; Chandoesing, P P; Wijsenbeek, M S

    2018-05-29

    In idiopathic pulmonary fibrosis (IPF), home monitoring experiences are limited, not yet real-time available nor implemented in daily care. We evaluated feasibility and potential barriers of a new home monitoring program with real-time wireless home spirometry in IPF. Ten patients with IPF were asked to test this home monitoring program, including daily home spirometry, for four weeks. Measurements of home and hospital spirometry showed good agreement. All patients considered real-time wireless spirometry useful and highly feasible. Both patients and researchers suggested relatively easy solutions for the identified potential barriers regarding real-time home monitoring in IPF.

  1. Monitoring of air toxics through air pathways in support of a No-Migration permit at a refinery land treatment facility

    International Nuclear Information System (INIS)

    Wineberry, W.T. Jr.; McReynolds, J.

    1991-01-01

    As part of Exxon's petition of the EPA for No-Migration variances, ambient concentrations of toxicants and carcinogens are required to be verified through onsite monitoring for comparison to the appropriate health based limits as well as for calibration of previously used atmospheric dispersion models. Ambient air around land treatment facilities us a very complex, dynamic system of interacting chemicals. Pollutants can be found in the gas phase, in the particulate phase, or in the aerosol phase. The complex nature of the dynamic air system around these facilities contributes to the complexity of the sampling and analytical selection for the identification and quantification for these chemicals. The selection of the proper sampling and analysis methods for a pollutant depends on many important interrelated factors, including compounds of interest, the level of detection required, the degree of specificity needed, and the purpose of the data collected. Other factors which may be as important as the above are cost, the accuracy and precision required, need for real-time versus long-term data, and the need for on-site or off-site analysis. Sampling time, sampling rate, the volume of air to be sampled and the acceptable risk level are also factors which must be considered when choosing a sampling method. The purpose of the ambient air monitoring program is to obtain a comparison of predicted concentration to those measured. This paper will focus on the ambient air monitoring program at Exxon's land treatment facility as part of a No-Migration variance to EPA's Land Ban Regulations. Ambient Air Monitoring data involving volatile, semi-volatile and metals/particulate matter less than ten microns (PM-10) will be presented

  2. Radiological environmental monitoring programs at Canadian nuclear facilities - a practical model for follow-up activities under the Canadian Environmental Assessment Act

    International Nuclear Information System (INIS)

    Tamm, J.A.; Zach, R.

    2000-01-01

    Under the Canadian Environmental Assessment Act (the Act), a federal authority, if it considers it appropriate, is to design a follow-up program for a project undergoing a federal environmental assessment and arrange for implementation of that program. Under the Act a follow-up program means a set of activities for verifying the accuracy of the environmental assessment (EA) of a project and for determining the effectiveness of any measures taken to mitigate any adverse environmental effects resulting from the project. The Act currently does not include regulations, guidelines, standards or procedures regarding the design, content and implementation requirements for follow-up programs (Canadian Environmental Assessment Agency [the Agency] 1999). Uncertainties also exist regarding the roles and responsibilities in designing, implementing, enforcing and auditing such activities. The Agency is presently specifying appropriate activities to address these issues. This paper considers the existing radiological environmental monitoring programs at nuclear facilities. Such programs consist of two types of monitoring-radioactivity releases from the facility via liquid and gaseous waste streams, and radioactivity in the environment at large, beyond the facility's immediate location. Such programs have been developed by AECL, Canadian nuclear utilities and uranium mining companies. Our analysis show that these programs can provide a good model for follow-up programs under the Act. (author)

  3. The Atmosphere-Space Interactions Monitor (ASIM) Payload Facility on the ISS

    DEFF Research Database (Denmark)

    Reibaldi, Giuseppe; Nasca, Rosario; Neubert, Torsten

    ASIM is a payload facility to be mounted on a Columbus external platform on the International Space Station (ISS). ASIM will study the coupling of thunderstorm processes to the upper atmosphere, ionosphere and radiation belts. ASIM is the most complex Earth Observation payload facility planned fo...

  4. Disposal project for LLW and VLLW generated from research facilities in Japan: A feasibility study for the near surface disposal of VLLW that includes uranium

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Hasegawa, M.; Sakamoto, Y.; Nakatani, T.

    2016-01-01

    Conclusion and future work: • JAEA plans trench disposal of U-bearing waste with less than 100 Bq/g. • Two safety measures of trench disposal of U-bearing waste have been discussed taking into account increasing radioactivity over a long period of time. 1. First is to carry out dose assessment of site use scenario by using a conservatively stylized condition. 2. Second is to control the average concentration of U in the trench facilities based on the concept of the existing exposure situation. • We are continuously developing the method for safety measures of near surface disposal of VLLW including U-bearing waste.

  5. Pilot monitoring program: geologic input for the hillslope component (includes a discussion of Caspar Creek geology and geomorphology)

    Science.gov (United States)

    T. E. Spittler

    1995-01-01

    The California Department of Conservation, Division of Mines and Geology (DMG) is submitting this report and accompanying maps to the California Department of Forestry and Fire Protection (CDF) to fulfill Interagency Agreement number 8CA38400, Pilot Monitoring Program -- Geologic Input for the Hillslope Component. Under this agreement, DMG has assisted CDF in the...

  6. H-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    International Nuclear Information System (INIS)

    1996-03-01

    Groundwater at the H-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental control (SCDHEC) Groundwater Protection Standard (GWPS). Historically as well as currently, nitrate-nitrite as nitrogen, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constituents also exceeded the GWPS in the second half of 1995. Elevated constituents were found primarily in the water table (Aquifer Zone IIB 2 ), however, constitutents exceeding standards also occurred in several different aquifer zones monitoring wells. Water-level maps indicate that the groundwater flow rates and directions at the H-Area HWMF have remained relatively constant since the basins ceased to be active in 1988

  7. F-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    International Nuclear Information System (INIS)

    1996-03-01

    Groundwater at the F-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental Control (SCDHEC) Groundwater Protection Standard (GWPS). Historically and currently, gross alpha, nitrates, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceed the GWPS in the groundwater during the second half of 1995, notably cadmium, lead, radium-226, radium-228, strontium-90, and total alpha-emitting radium. The elevated constituents were found primarily in the water table (aquifer zone IIB 2 ), however, several other aquifer unit monitoring wells contained elevated levels of constituents. Water-level maps indicate that the groundwater flow rates and directions at the F-Area HWMF have remained relatively constant since the basins ceased to be active in 1988

  8. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    International Nuclear Information System (INIS)

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros

    2009-01-01

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  9. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros [Center for Proton Therapy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2009-11-15

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  10. Safeguards and security design guidelines for conceptual monitored retrievable storage (MRS) facilities

    International Nuclear Information System (INIS)

    Byers, K.R.; Clark, R.G.; Harms, N.L.; Roberts, F.P.

    1984-07-01

    Existing safeguards/security regulations and licensing requirements that may be applicable to an MRS facility are not currently well-defined. Protection requirements consistent with the NRC-graded safeguards approach are identified, as a baseline safeguards system with a comparison of the impacts on safeguards and security of salient features of the different storage concepts. In addition, MRS facility design features and operational considerations are proposed that would enhance facility protection and provide additional assurance that protection systems and procedures would be effectively implemented. 3 figures

  11. Leveraging new information technology to monitor medicine use in 71 residential aged care facilities: variation in polypharmacy and antipsychotic use.

    Science.gov (United States)

    Pont, Lisa G; Raban, Magda Z; Jorgensen, Mikaela L; Georgiou, Andrew; Westbrook, Johanna I

    2018-06-08

    The aim of this study was to use routinely collected electronic medicines administration (eMAR) data in residential aged care (RAC) to investigate the quality use of medicines. A cross-sectional analysis of eMAR data. 71 RAC facilities in New South Wales and the Australian Capital Territory, Australia. Permanent residents living in a participating facility on 1 October 2015. None. Variation in polypharmacy (≥5 medications), hyper-polypharmacy (≥10 medications) and antipsychotic use across facilities was examined using funnel plot analysis. The study dataset included 4775 long-term residents. The mean resident age was 85.3 years and 70.6% of residents were female. The median facility size was 60 residents and 74.3% were in metropolitan locations. 84.3% of residents had polypharmacy, 41.2% hyper-polypharmacy and 21.0% were using an antipsychotic. The extent of polypharmacy (69.75-100% of residents), hyper-polypharmacy (38.81-76.19%) and use of antipsychotic medicines (0-75.6%) varied considerably across the 71 facilities. Using eMAR data we found substantial variation in polypharmacy, hyper-polypharmacy and antipsychotic medicine use across 71 RAC facilities. Further investigation into the policies and practices of facilities performing above or below expected levels is warranted to understand variation and drive quality improvement.

  12. Quality assurance for external personnel monitoring in nuclear industrial facilities, CNNC

    International Nuclear Information System (INIS)

    Zhang Yansheng; Dai Jun; Li Taosheng

    1993-01-01

    More than 6000 personnel are currently being monitored for occupational exposure in CNNC, China. Personnel monitoring is one of the important items of radiation protection. The data of individual dose are not only indispensable for radiation safety assessment but also the basis for radiation protection measures to be taken. Possibly, it could provide basic information for epidemiological studies, optimization procedure of radiation protection (risk/benefit analyses) and medical or legal purposes. Obviously, personnel monitoring and its quality assurance are very significant

  13. Annual monitoring and surveillance report for Piqua Nuclear Power Facility, Piqua, Ohio

    International Nuclear Information System (INIS)

    Mosho, G.D.

    1991-12-01

    This report discusses the decommissioned Piqua Nuclear Power Facility which is located in Piqua, Ohio near the Greater Miami River. The Facility was built by the US Atomic Energy Commission (now U. S. Department of Energy) and was operated from 1963 to 1966. The reactor was retired prior to 1970 and the facility was leased to the city of Piqua for use as offices and equipment storage. In December 1991, a radiological survey was done of the facility to document its radiological condition. The data show that all radiological parameters measured were essentially the same as that found in the natural environment. The only exception was that low levels of radioactive contamination were detected in one drain on the 56.5 ft elevation, but the radiation exposure rate in that area was also typical of natural background

  14. A gas monitoring facility with a quadrupole mass spectrometer for the ZEUS transition-radiation chambers

    International Nuclear Information System (INIS)

    Kapp, U.

    1988-07-01

    A gas analysis facility for the ZEUS transition-radiation chambers based on a quadrupole mass spectrometer is described. After a description of the spectrometer, the vacuum system, and the software, some test results are presented. (HSI)

  15. Computer monitoring system for pilot plant nuclear criticality facility (solution ZPR)

    International Nuclear Information System (INIS)

    Hua Xiaokang; Liang Huiping

    1999-01-01

    The system is used for the Solution Zero Power Reactor physics measurement and safety monitoring. Its software modularization design enables multi-task real-time monitoring and off-time data processing. The system is labor/time saving to experimenters and will enhance the experiment precision and the reactor operation safety performance

  16. Eighth experts meeting on environmental radioactivity monitoring: Technical and organisational means for an optimised measurement of ambient radioactivity in the environment of nuclear facilities

    International Nuclear Information System (INIS)

    1991-01-01

    The plant-specific emission monitoring and environmental monitoring near nuclear facilities are part of the items of the agreement between the EC and the IAEA, for mutual rapid information in the case of accidents. The lectures presented to the technical discussion meeting deal with the legal and technical aspects involved. Dispersion models, computer-aided dispersion models, computer-aided information systems and advanced programs as well as measuring techniques and results of the emission monitoring and environmental monitoring near nuclear facilities are the aspects of main interest discussed at the meeting. (DG) [de

  17. Radiological Monitoring Equipment For Real-Time Quantification Of Area Contamination In Soils And Facility Decommissioning

    International Nuclear Information System (INIS)

    M. V. Carpenter; Jay A. Roach; John R Giles; Lyle G. Roybal

    2005-01-01

    The environmental restoration industry offers several systems that perform scan-type characterization of radiologically contaminated areas. The Idaho National Laboratory (INL) has developed and deployed a suite of field systems that rapidly scan, characterize, and analyze radiological contamination in surface soils. The base system consists of a detector, such as sodium iodide (NaI) spectrometers, a global positioning system (GPS), and an integrated user-friendly computer interface. This mobile concept was initially developed to provide precertification analyses of soils contaminated with uranium, thorium, and radium at the Fernald Closure Project, near Cincinnati, Ohio. INL has expanded the functionality of this basic system to create a suite of integrated field-deployable analytical systems. Using its engineering and radiation measurement expertise, aided by computer hardware and software support, INL has streamlined the data acquisition and analysis process to provide real-time information presented on wireless screens and in the form of coverage maps immediately available to field technicians. In addition, custom software offers a user-friendly interface with user-selectable alarm levels and automated data quality monitoring functions that validate the data. This system is deployed from various platforms, depending on the nature of the survey. The deployment platforms include a small all-terrain vehicle used to survey large, relatively flat areas, a hand-pushed unit for areas where maneuverability is important, an excavator-mounted system used to scan pits and trenches where personnel access is restricted, and backpack- mounted systems to survey rocky shoreline features and other physical settings that preclude vehicle-based deployment. Variants of the base system include sealed proportional counters for measuring actinides (i.e., plutonium-238 and americium-241) in building demolitions, soil areas, roadbeds, and process line routes at the Miamisburg Closure

  18. Vadose zone monitoring plan using geophysical nuclear logging for radionuclides discharged to Hanford liquid waste disposal facilities

    International Nuclear Information System (INIS)

    Price, R.K.

    1995-11-01

    During plutonium production at Hanford, large quantities of hazardous and radioactive liquid effluent waste have been discharged to the subsurface (vadose zone). These discharges at over 330 liquid effluent disposal facilities (ie. cribs, ditches, and ponds) account for over 3,000,000 curies of radioactive waste released into the subsurface. It is estimated that 10% of the contaminants have reached the groundwater in many places. Continuing migration may further impact groundwater quality in the future. Through the RCRA Operational Monitoring Program, a Radionuclide Logging System (RLS) has been obtained by Hanford Technical Services (HTS) and enhanced to measure the distribution of contaminants and monitor radionuclide movement in existing groundwater and vadose zone boreholes. Approximately 100 wells are logged by HTS each year in this program. In some cases, movement has been observed years after discharges were terminated. A similar program is in place to monitor the vadose zone at the Tank Farms. This monitoring plan describes Hanford Programs for monitoring the movement of radioactive contamination in the vadose zone. Program background, drivers, and strategy are presented. The objective of this program is to ensure that DOE-RL is aware of any migration of contaminants in the vadose zone, such that groundwater can be protected and early actions can be taken as needed

  19. FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY

    International Nuclear Information System (INIS)

    Gunning, John E.; Laughter, Mark D.; March-Leuba, Jose A.

    2008-01-01

    A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

  20. 1992 Annual performance report for Environmental Monitoring and Oversight at Department of Energy facilities in New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    In October 1990 an Agreement-in-Principle (AIP) was entered into between the US Department of Energy (DOE) and the State of New Mexico for the purpose of supporting State oversight activities at DOE facilities in New Mexico. The State`s lead agency for the Agreement is the New Mexico Environment Department (NMED). DOE has agreed to provide the State with resources over a five year period to support State activities in environmental oversight, monitoring, access and emergency response to ensure compliance with applicable federal, state, and local laws at Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), the Waste Isolation Pilot Plant (WIPP), and the Inhalation Toxicology Research Institute (ITRI). The Agreement is designed to assure the citizens of New Mexico that public health, safety and the environment are being protected through existing programs; DOE is in compliance with applicable laws and regulations; DOE has made substantial new commitments; cleanup and compliance activities have been prioritized; and a vigorous program of independent monitoring and oversight by the State is underway. This report relates the quality and effectiveness of the facilities` environmental monitoring and surveillance programs. This report satisfies that requirement for the January--December 1992 time frame.

  1. 1992 Annual performance report for Environmental Monitoring and Oversight at Department of Energy facilities in New Mexico

    International Nuclear Information System (INIS)

    1992-01-01

    In October 1990 an Agreement-in-Principle (AIP) was entered into between the US Department of Energy (DOE) and the State of New Mexico for the purpose of supporting State oversight activities at DOE facilities in New Mexico. The State's lead agency for the Agreement is the New Mexico Environment Department (NMED). DOE has agreed to provide the State with resources over a five year period to support State activities in environmental oversight, monitoring, access and emergency response to ensure compliance with applicable federal, state, and local laws at Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), the Waste Isolation Pilot Plant (WIPP), and the Inhalation Toxicology Research Institute (ITRI). The Agreement is designed to assure the citizens of New Mexico that public health, safety and the environment are being protected through existing programs; DOE is in compliance with applicable laws and regulations; DOE has made substantial new commitments; cleanup and compliance activities have been prioritized; and a vigorous program of independent monitoring and oversight by the State is underway. This report relates the quality and effectiveness of the facilities' environmental monitoring and surveillance programs. This report satisfies that requirement for the January--December 1992 time frame

  2. 3Q/4Q98 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facility Groundwater Monitoring and Correction-Action Report, Volumes I, II, and III

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1998

  3. Radiation monitoring in a synchrotron light source facility using magnetically levitated electrode ionization chambers

    International Nuclear Information System (INIS)

    Ichiki, Hirofumi; Kawaguchi, Toshirou; Utsunomiya, Yoshitomo; Ishibashi, Kenji; Ikeda, Nobuo; Korenaga, Kazuhito

    2009-01-01

    We developed a highly accurate differential-type automatic radiation dosimeter to measure very low radiation doses. The dosimeter had two ionization chambers, each of which had a magnetically levitated electrode and it was operated in a repetitive-time integration mode. We first installed the differential-type automatic radiation dosimeter with MALICs at a high-energy electron accelerator facility (Kyushu Synchrotron Light Research Center Facility) and measured the background and ionizing radiations in the facility as well as the gaseous radiation in air. In the background dose measurements, the accuracy of the repetitive-time integration-type dosimeter was three times better than that of a commercial ionization chamber. When the radiation dose increased momentarily at the electron injection from the linac to the operating storage ring, the dosimeter with repetitive-time integral mode gave a successful response to the actual dose variation. The gaseous radiation dose in the facility was at the same level as that in Fukuoka City. We confirmed that the dosimeter with magnetically levitated electrode ionization chambers was usable in the accelerator facility, in spite of its limited response when operated in the repetitive-time integration mode. (author)

  4. Monitoring of downstream salmon and steelhead trout at federal hydroelectric facilities, annual report 2001.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife.

    2002-01-01

    The seaward migration of juvenile salmonids was monitored by the Pacific States Marine Fisheries Commission (PSMFC) at John Day Dam, located at river mile 216, and at Bonneville Dam, located at river mile 145 on the Columbia River (Figure 1). The PSMFC Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program is carried out under the auspices of the Northwest Power Planning Council's Fish and Wildlife Program and is funded by the Bonneville Power Administration

  5. Monitoring of downstream salmon and steelhead at federal hydroelectric facilities -- 1995. Annual report 1995

    International Nuclear Information System (INIS)

    Martinson, R.D.; Graves, R.J.; Langeslay, M.J.; Killins, S.D.

    1996-12-01

    The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia river in 1995. The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program focuses on protecting, mitigating, and enhancing fish populations affected by the development and operation of hydroelectric power plants on the Columbia River. The purpose of the SMP is to monitor the migration of the juvenile salmonid stocks in the Columbia basin and make flow and spill recommendations designed to facilitate fish passage. Data are also used for travel time, migration timing, and relative run size analysis. The purpose of the NMFS portion of the program is to provide FPC with species and project specific real time data from John Day and Bonneville Dams

  6. The Beam Profile Monitoring System for the CERN IRRAD Proton Facility

    CERN Document Server

    Ravotti, F; Glaser, M; Matli, E; Pezzullo, G; Gan, K K; Kagan, H; Smith, S; Warner, J D

    2017-01-01

    GeV/c proton beam is used. During beam steering and irradiation, the intensity and the transverse profile of the proton beam are monitored online with custom-made Beam Profile Monitor (BPM) devices. In this work, we present the design and the architecture of the IRRAD BPM system, some results on its performance with the proton beam, as well as its planned grades.

  7. Environmental monitoring report: United States Department of Energy Oak Ridge facilities, calendar year 1984

    International Nuclear Information System (INIS)

    1985-08-01

    The Environmental Monitoring Program for the Oak Ridge area includes sampling and analysis of air, water from surface streams, groundwater, creek sediments, biota, and soil for both radioactive and nonradioactive materials. This report presents a summary of the results of the program for CY 1984. Surveillance of radioactivity in the Oak Ridge environment indicates that atmospheric concentrations at some stations were above background but would result in radiation exposures well within the applicable Environmental Protection Agency guidelines. Levels of radioactivity in rainwater samples collected in the Oak Ridge areas were not significantly different from those collected at remote locations. Concentrations of radioactivity in the Clinch River and in fish collected from the river were similar to those of previous years. For an Oak Ridge resident, the average committed dose equivalent was 1.6 millirem and the average dose commitment to the pulmonary tissues was calculated to be 5.4 millirem. The primary contributor to the dose was attributed to airborne releases of uranium from the Y-12 Plant. The data on chemical water quality in surface streams obtained from the water sampling program indicated that average concentrations resulting from plant effluents during 1984 were in compliance with State Stream Standards for the protection of drinking water, fish and aquatic life, and recreation classification, except for cadmium, lead, mercury, nitrate, and zinc. The average concentrations of all chemicals analyzed in the processed water from the Oak Ridge Gaseous Diffusion Plant sanitary water pumping station were within the Tennessee Water Quality Criteria for domestic water supply, except for mercury. Although no mercury was detected in any of the samples, the detection limit of the analytical procedure exceeded the criteria

  8. The US Department of Energy's attempt to site the Monitored Retrievable Storage Facility (MRS) in Tennessee, 1985--1987

    International Nuclear Information System (INIS)

    Fitzgerald, M.R.; McCabe, A.S.

    1988-05-01

    This report is concerned with how America's public sector is handling the challenge of implementing a technical, environmental policy, that of managing the nation's high-level nuclear waste, as reflected in the attempt of the US Department of Energy (DOE) to site a Monitored Retrievable Storage Facility (MRS) for high-level radioactive waste in Tennessee. It has been observed that ''radioactive wastes present some of societies' most complex and vexing choices.'' There is deep and abiding disagreement about almost every aspect of radioactive waste management (RWM)

  9. Monitoring of fungal spores in the indoor air of preschool institution facilities in Novi Sad

    Directory of Open Access Journals (Sweden)

    Novaković Milana S.

    2013-01-01

    Full Text Available Fungal spores can cause a range of health problems in humans such as respiratory diseases and mycotoxicoses. Since children are the most vulnerable, the presence of fungal spores in the facilities of preschool and school institutions should be investigated readily. In order to estimate air contamination by fungal spores, air sampling was conducted in eight facilities of the preschool institution in Novi Sad during February and March, 2007. Sedimentation plate method was used for the detection of viable fungal spores, mostly being members of subdv. Deuteromycota (Fungi imperfecti. In 32 samples a total of 148 colonies were developed, among which five genera were identified: Penicillium, Cladosporium, Aspergillus, Alternaria and Acremonium while non-sporulating fungal colonies were labeled as sterile mycelia. Most frequently recorded genera were Penicillium with 46 colonies and Cladosporium with 44 colonies. The genera Aspergillus and Alternaria were represented with 3 colonies each and Acremonium with only 1 colony. The greatest number of colonies emerged in the samples from the day care facilities “Vendi” (58 colonies and “Panda” (49 colonies. Most diverse samples were obtained from the day care center “Zvončica”, with presence of all identified genera. These results showed notable presence of fungal spores in the indoor air of Preschool institution facilities and indicated the need for further, more complete seasonal research. Obtained information is considered useful for the evaluation of potential mycofactors that endanger health of children. [Projekat Ministarstva nauke Republike Srbije, br. III43002

  10. Spatio-temporal Facility Utilization Analysis from Exhaustive WiFi Monitoring

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger; Ruiz-Ruiz, Antonio; Blunck, Henrik

    2015-01-01

    The optimization of logistics in large building complexes with many resources, such as hospitals, require realistic facility management and planning. Current planning practices rely foremost on manual observations or coarse unverified assumptions and therefore do not properly scale or provide rea...

  11. 1980 Environmental monitoring report: US Department of Energy Facilities, Grand Junction, Colorado, and Monticello, Utah

    International Nuclear Information System (INIS)

    1981-04-01

    The effect the Grand Junction, Colorado and Monticello, Utah facilities have on the environment is reflected by the analyses of air, water, and sediment samples. The off-site water and sediment samples were taken to determine what effect the tailings and contaminated equipment buried on the sites may have on the air, water, and adjacent properties

  12. Radiation dose distribution monitoring at neutron radiography facility area, Nuclear Energy Unit, Malaysia

    International Nuclear Information System (INIS)

    Abdul Razak Daud

    1995-01-01

    One experiment was carried out to get the distribution of radiation doses at the neutron radiography facilities, Nuclear Energy Unit, Malaysia. The analysis was done to evaluate the safety level of the area. The analysis was used in neutron radiography work

  13. Evaluation of Seismic Response Trends from Long-Term Monitoring of Two Instrumented RC Buildings Including Soil-Structure Interaction

    Directory of Open Access Journals (Sweden)

    Faheem Butt

    2012-01-01

    Full Text Available This paper presents analyses of the seismic responses of two reinforced concrete buildings monitored for a period of more than two years. One of the structures was a three-storey reinforced concrete (RC frame building with a shear core, while the other was a three-storey RC frame building without a core. Both buildings are part of the same large complex but are seismically separated from the rest of it. Statistical analysis of the relationships between maximum free field accelerations and responses at different points on the buildings was conducted and demonstrated strong correlation between those. System identification studies using recorded accelerations were undertaken and revealed that natural frequencies and damping ratios of the building structures vary during different earthquake excitations. This variation was statistically examined and relationships between identified natural frequencies and damping ratios, and the peak response acceleration at the roof level were developed. A general trend of decreasing modal frequencies and increasing damping ratios was observed with increased level of shaking and response. Moreover, the influence of soil structure interaction (SSI on the modal characteristics was evaluated. SSI effects decreased the modal frequencies and increased some of the damping ratios.

  14. The importance of public sector health facility-level data for monitoring changes in maternal mortality risks among communities: the case of pakistan.

    Science.gov (United States)

    Jain, Anrudh K; Sathar, Zeba; Salim, Momina; Shah, Zakir Hussain

    2013-09-01

    This paper illustrates the importance of monitoring health facility-level information to monitor changes in maternal mortality risks. The annual facility-level maternal mortality ratios (MMRs), complications to live births ratios and case fatality ratios (CFRs) were computed from data recorded during 2007 and 2009 in 31 upgraded public sector health facilities across Pakistan. The facility-level MMR declined by about 18%; both the number of Caesarean sections and the episodes of complications as a percentage of live births increased; and CFR based on Caesarean sections and episodes of complications declined by 29% and 37%, respectively. The observed increases in the proportion of women with complications among those who come to these facilities point to a reduction in the delay in reaching facilities (first and second delays; Thaddeus & Maine, 1994); the decrease in CFRs points to improvements in treating obstetric complications and a reduction in the delay in receiving treatment once at facilities (the third delay). These findings point to a decline in maternal mortality risks among communities served by these facilities. A system of woman-level data collection instituted at health facilities with comprehensive emergency obstetric care is essential to monitor changes in the effects of any reduction in the three delays and any improvement in quality of care or the effectiveness of treating pregnancy-related complications among women reaching these facilities. Such a system of information gathering at these health facilities would also help policymakers and programme mangers to measure and improve the effectiveness of safe-motherhood initiatives and to monitor progress being made toward achieving the fifth Millennium Development Goal.

  15. Data support system for controlling decentralised nuclear power industry facilities through uninterruptible condition monitoring

    Directory of Open Access Journals (Sweden)

    Povarov Vladimir

    2018-01-01

    Full Text Available The article describes the automated uninterruptible multi-parameter system for monitoring operational vulnerability of critical NPP components, which differs from existing ones by being universally applicable for analysing mechanical damage of nuclear power unit components. The system allows for performing routine assessment of metal structures. The assessment of strained condition of a deteriorating component is based on three-dimensional finite element simulation with calculations adjusted with reference to in-situ measurements. A program for calculation and experimental analysis of maximum load and durability of critical area forms the core of uninterruptible monitoring system. The knowledge base on performance of the monitored components in different operating conditions and the corresponding comprehensive analysis of strained condition and deterioration rates compose the basis of control system data support, both for operating nuclear power units and robotic maintenance and repair systems.

  16. Monitoring of the incorporation of I-138 by inhalation in facilities of metabolic treatment

    International Nuclear Information System (INIS)

    Baquero, R.; Anton, D.; Miguel, D. de

    2013-01-01

    The measure of thyroid activity with a surface contamination meter allows you to rule out or confirm the presence of iodine in the thyroid of the nursing staff. You have these teams in all Nuclear Medicine facilities, which can be used with simplicity immediately. To carry out these measures is necessary to have a background environment in which are carried out low, so as the limit of detection got enable check low levels to determine. (Author)

  17. SAMS: The synchronization and monitoring system for ATF [Advanced Toroidal Facility] data acquisition

    International Nuclear Information System (INIS)

    Greenwood, D.E.

    1987-01-01

    SAMS performs much of the synchronization of the distributed data acquisition system for the Advanced Toroidal Facility (ATF). SAMS is responsible for propagating shot information and managing te data system directories and logical names. This paper describes how SAMS communicates with other processes, both within the VAX cluster that supports most of the ATF data acquisition and on VAXes that are connected to the cluster via DECnet. 3 refs

  18. Agriculture products as source of radionuclides and some monitoring principles of agriculture near nuclear facilities

    International Nuclear Information System (INIS)

    Aleksakhin, R.M.; Korneev, N.A.; Panteleev, L.I.; Shukhovtsev, B.I.

    1985-01-01

    Migration of radionuclides into agriculture products in regions adjoining the nuclear facilities depends on a large number of factors. Among them is the complex of ecological conditions: meteorological factors, type of soils etc., as well as biological peculiarities of agriculture plants and animals. It is possible to control the radionuclide content administered to man's organism with agriculture products changing large branches of agriculture and varying within the range of seprate branches of industry, taking into account the most effective ways of radionuclide pathways

  19. REMOTES: reliable and modular telescope solution for seamless operation and monitoring of various observation facilities

    Science.gov (United States)

    Jakubec, M.; Skala, P.; Sedlacek, M.; Nekola, M.; Strobl, J.; Blazek, M.; Hudec, R.

    2012-09-01

    Astronomers often need to put several pieces of equipment together and have to deploy them at a particular location. This task could prove to be a really tough challenge, especially for distant observing facilities with intricate operating conditions, poor communication infrastructure and unreliable power source. To have this task even more complicated, they also expect secure and reliable operation in both attended and unattended mode, comfortable software with user-friendly interface and full supervision over the observation site at all times. During reconstruction of the D50 robotic telescope facility, we faced many of the issues mentioned above. To get rid of them, we based our solution on a flexible group of hardware modules controlling the equipment of the observation site, connected together by the Ethernet network and orchestrated by our management software. This approach is both affordable and powerful enough to fulfill all of the observation requirements at the same time. We quickly figured out that the outcome of this project could also be useful for other observation facilities, because they are probably facing the same issues we have solved during our project. In this contribution, we will point out the key features and benefits of the solution for observers. We will demonstrate how the solution works at our observing location. We will also discuss typical management and maintenance scenarios and how we have supported them in our solution. Finally, the overall architecture and technical aspects of the solution will be presented and particular design and technology decisions will be clarified.

  20. Operating results for the beam profile monitor system currently in use at Bevalac Facility

    International Nuclear Information System (INIS)

    Stover, G.; Fowler, K.

    1987-03-01

    Three stations of a soon to be completed multi-station, multi-wire beam monitoring system have been installed in the Bevalac transfer line. The following article will provide a cursory analysis of the electronic circuitry, discuss new design additions and summarize the operating results obtained over the last year

  1. Solving the competitive facility location problem considering the reactions of competitor with a hybrid algorithm including Tabu Search and exact method

    Science.gov (United States)

    Bagherinejad, Jafar; Niknam, Azar

    2018-03-01

    In this paper, a leader-follower competitive facility location problem considering the reactions of the competitors is studied. A model for locating new facilities and determining levels of quality for the facilities of the leader firm is proposed. Moreover, changes in the location and quality of existing facilities in a competitive market where a competitor offers the same goods or services are taken into account. The competitor could react by opening new facilities, closing existing ones, and adjusting the quality levels of its existing facilities. The market share, captured by each facility, depends on its distance to customer and its quality that is calculated based on the probabilistic Huff's model. Each firm aims to maximize its profit subject to constraints on quality levels and budget of setting up new facilities. This problem is formulated as a bi-level mixed integer non-linear model. The model is solved using a combination of Tabu Search with an exact method. The performance of the proposed algorithm is compared with an upper bound that is achieved by applying Karush-Kuhn-Tucker conditions. Computational results show that our algorithm finds near the upper bound solutions in a reasonable time.

  2. Integrated systems of monitoring and environmental data processing for nuclear facilities

    International Nuclear Information System (INIS)

    Diaconu, C.; Guta, V.; Oprea, I.; Oprea, M.; Stoica, M.; Pirvu, V.; Vasilache, E.; Pirvu, I.

    2001-01-01

    The processing of huge amount of data necessary to assess the real radiological situation both in normal operational conditions and during accidents requires an efficient system of monitoring and data processing. It must be able to secure information for the complex systems of radioactivity control aiming at evaluating the nuclear accident consequences and establishing a basis for correct decision making in the field of civil protection. The integrated environmental monitoring systems are based on a number of fixed and mobile installations, a meteorological parameter measurement station, a center for data processing and a communication network, working all under the control of a real-time operation system. They collect, and process the radioactivity level and meteorological data and transmit them through the communication network. The local monitoring stations are made of detector ensembles with pressurized ionization chambers and autonomous units providing continuously information on dose and integrated rates, average values as well as the current state of the station. The meteorological data acquisition station supplies information concerning wind direction and speed, the temperature and precipitation level. The information processing center is based on a PC integrated in a local network which collects data from the radiation monitoring equipment, meteorological station as well as other work stations which process various dosimetric parameters. It is connected to Internet, so ensuring fast transfer of information towards interested authorities. The communication network consists in a local or extended Ethernet network, radio or serial connections for radioactivity level monitoring units which can be stationary, portable or mobile. Requirements raised by the application of geographic information system (GIS) and the real time operation system (QNX) ensuring multiuser and multitask operations are discussed

  3. A Synchronized Sensor Array for Remote Monitoring of Avian and Bat Interactions with Offshore Renewable Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Suryan, Robert [Oregon State Univ., Corvallis, OR (United States). Department of Fisheries and Wildlife; Albertani, Roberto [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial, and Manufacturing Engineering; Polagye, Brian [Univ. of Washington, Seattle, WA (United States). Department of Mechanical Engineering, Northwest National Marine Renewable Energy Center

    2016-07-15

    Wind energy production in the U.S. is projected to increase to 35% of our nation’s energy by 2050. This substantial increase in the U.S. is only a portion of the global wind industry growth, as many countries strive to reduce greenhouse gas emissions. A major environmental concern and potential market barrier for expansion of wind energy is bird and bat mortality from impacts with turbine blades, towers, and nacelles. Carcass surveys are the standard protocol for quantifying mortality at onshore sites. This method is imperfect, however, due to survey frequency at remote sites, removal of carcasses by scavengers between surveys, searcher efficiency, and other biases as well as delays of days to weeks or more in obtaining information on collision events. Furthermore, carcass surveys are not feasible at offshore wind energy sites. Near-real-time detection and quantification of interaction rates is possible at both onshore and offshore wind facilities using an onboard, integrated sensor package with data transmitted to central processing centers. We developed and experimentally tested an array of sensors that continuously monitors for interactions (including impacts) of birds and bats with wind turbines. The synchronized array includes three sensor nodes: (1) vibration (accelerometers and contact microphones), (2) optical (visual and infrared spectrum cameras), and (3) bioacoustics (acoustic and ultrasonic microphones). Accelerometers and contact acoustic microphones are placed at the root of each blade to detect impact vibrations and sound waves propagating through the structure. On-board data processing algorithms using wavelet analysis detect impact signals exceeding background vibration. Stereo-visual and infrared cameras were placed on the nacelle to allow target tracking, distance, and size calculations. On-board image processing and target detection algorithms identify moving targets within the camera field of view. Bioacoustic recorders monitor vocalizations

  4. Results of 1999 Spectral Gamma-Ray and Neutron Moisture Monitoring of Boreholes at Specific Retention Facilities in the 200 East Area, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    DG Horton; RR Randall

    2000-01-18

    Twenty-eight wells and boreholes in the 200 East Are% Hanford Site, Washington were monitored in 1999. The monitored facilities were past-practice liquid waste disposal facilities and consisted of six cribs and nineteen ''specific retention'' cribs and trenches. Monitoring consisted of spectral gamma-ray and neutron moisture logging. All data are included in Appendix B. The isotopes {sup 137}Cs, {sup 60}Co, {sup 235}U, {sup 238}U, and {sup 154}Eu were identified on spectral gamma logs from boreholes monitoring the PUREX specific retention facilities; the isotopes {sup 137}Cs, {sup 60}Co, {sup 125}Sb, and {sup 154}Eu were identified on the logs from boreholes at the BC Controlled Area cribs and trenches; and {sup 137}Cs, {sup 60}Co, and {sup 125}Sb were, identified on the logs from boreholes at the BX specific retention trenches. Three boreholes in the BC Controlled Area and one at the BX trenches had previous spectral gamma logs available for comparison with 1999 logs. Two of those logs showed that changes in the subsurface distribution of {sup 137}CS and/or {sup 60}Co had occurred since 1992. Although the changes are not great, they do point to continued movement of contaminants in the vadose zone. The logs obtained in 1999 create a larger baseline for comparison with future logs. Numerous historical gross gamma logs exist from most of the boreholes logged. Qualitative comparison of those logs with the 1999 logs show many substantial changes, most of which reflect the decay of deeper short-lived isotopes, such as {sup 106}Ru and {sup 125}Sb, and the much slower decay of shallower and longer-lived isotopes such as {sup 137}Cs. The radionuclides {sup 137}Cs and {sup 60}Co have moved in two boreholes since 1992. Given the amount of movement and the half-lives of the isotopes, it is expected that they will decay to insignificant amounts before reaching groundwater. However, gamma ray logging cannot detect many of the contaminants of interest such

  5. Resolution Studies at Beam Position Monitors at the FLASH Facility at DESY

    Science.gov (United States)

    Baboi, N.; Lund-Nielsen, J.; Noelle, D.; Riesch, W.; Traber, T.; Kruse, J.; Wendt, M.

    2006-11-01

    More than 60 beam position monitors (BPM) are installed along about 350m of beamline of the Free Electron LASer in Hamburg (FLASH) at DESY. The room-temperature part of the accelerator is equipped mainly with stripline position monitors. In the accelerating cryo-modules there are cavity and re-entrant cavity BPMs, which will not be discussed here. In the undulator part of the machine button BPMs are used. This area requires a single bunch resolution of 10μm. The electronics is based on the AM/PM normalization principle and is externally triggered. Single-bunch position is measured. This paper presents the methods used to determine the resolution of the BPMs. The results based on correlations between different BPMs along the machine are compared to noise measurements in the RF lab. The performance and difficulties with the BPM design and the current electronics as well as its development are discussed.

  6. A Low-Cost, Real-Time Network for Radiological Monitoring Around Nuclear Facilities

    International Nuclear Information System (INIS)

    Bertoldo, N A

    2004-01-01

    A low-cost, real-time radiological sensor network for emergency response has been developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the site perimeter to continuously monitor radiological conditions as part of LLNL's comprehensive environment/safety/health protection program. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These low-power sensors transmit measurement data back to a central command center (CCC) computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio- and computer- based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. This system provides a low-cost real-time radiation monitoring solution that is easily converted to incorporate both a hard-wired interior perimeter with strategically positioned wireless secondary and tertiary concentric remote locations. These wireless stations would be configured with solar voltaic panels that provide current to recharge batteries and power the sensors and radio transceivers. These platforms would supply data transmission at a range of up to 95 km from a single transceiver location. As necessary, using radio transceivers in repeater mode can extend the transmission range. The RTRAM network as it is presently configured at LLNL has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions. With the proposed

  7. Monitoring of downstream salmon and steelhead at federal hydroelectric facilities, 1991

    International Nuclear Information System (INIS)

    Hawkes, L.A.; Martinson, R.D.; Smith, W.W.

    1992-04-01

    The 1991 smolt monitoring project of the National Marine Fisheries Service provided data on the seaward migration of juvenile salmon and steelhead at John Day, The Dalles and Bonneville Dams. All pertinent fish capture and condition data as well as dam operations and river flow data were provided to Fish Passage Center for use in developing fish passage indices and migration timing, and for water budget and spill management

  8. Subcriticality monitoring method based on the exponential technique usable for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Suzaki, T.

    1987-01-01

    Buckling measurement methods in subcritical nuclear fuel systems (negative buckling measurements in small systems are well-known as the exponential experiment) were discussed from the viewpoint of the applicability to on-site monitorings of subcriticality and fuel characteristics of interest. From demonstration experiments using the TCA, it was revealed that the method is quite promising. Applicability of the method to the critical approach in critical assemblies was also discussed. (author)

  9. Monitoring of downstream salmon and steelhead at Federal hydroelectric facilities. Annual report 1993

    International Nuclear Information System (INIS)

    Wood, L.A.; Martinson, R.D.; Graves, R.J.; Carroll, D.R.; Killins, S.D.

    1994-04-01

    The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia River in 1993 (river mile 145 and 216, respectively, Figure 1). The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program is carried out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration. The purpose of the SMP is to index Columbia Basin juvenile salmonid stocks and develop and implement flow and spill requests intended to facilitate fish passage. Data is also used for travel time, migration timing and relative run size magnitude analysis. The purpose of the NMFS portion of the program is to provide FPC with species specific data; numbers, condition, length, brand recaptures and flow data from John Day, and Bonneville Dams on a daily basis

  10. The international inspection of a US excess fissile material storage facility with and without remote monitoring: A cost comparison

    International Nuclear Information System (INIS)

    Abrams, M.; Nilsen, C.; Tolk, K.M.; McGilvary, R.C. III

    1996-01-01

    This study estimates the DOE-incurred costs in preparing for and hosting potential IAEA inspections of an excess pit storage facility at the Pantex Site with and without the aid of remote monitoring. Focus was on whether an investment in remote monitoring is recoverable, ie, whether the costs for installing, operating, and maintaining a remote monitoring system (RMS) are overcome by the costs that would be incurred without its use. A baseline RMS incorporating demonstrated technologies is defined and its cost estimated. This estimate and several multiples of it, together with estimates of labor and operational costs incurred under a postulated inspection regime serve as the bases of this study. A key finding is that, for the range of parameters considered, the times for investment recovery are reached relatively quickly, ie, within a decade after the inspection regime's onset. Investment recovery times, expenditures in reaching them, and average annual cost accrual rates are provided as function of RMS initial cost. A guideline indicating when investment recovery is theoretically possible is also provided

  11. Age correction in monitoring audiometry: method to update OSHA age-correction tables to include older workers.

    Science.gov (United States)

    Dobie, Robert A; Wojcik, Nancy C

    2015-07-13

    The US Occupational Safety and Health Administration (OSHA) Noise Standard provides the option for employers to apply age corrections to employee audiograms to consider the contribution of ageing when determining whether a standard threshold shift has occurred. Current OSHA age-correction tables are based on 40-year-old data, with small samples and an upper age limit of 60 years. By comparison, recent data (1999-2006) show that hearing thresholds in the US population have improved. Because hearing thresholds have improved, and because older people are increasingly represented in noisy occupations, the OSHA tables no longer represent the current US workforce. This paper presents 2 options for updating the age-correction tables and extending values to age 75 years using recent population-based hearing survey data from the US National Health and Nutrition Examination Survey (NHANES). Both options provide scientifically derived age-correction values that can be easily adopted by OSHA to expand their regulatory guidance to include older workers. Regression analysis was used to derive new age-correction values using audiometric data from the 1999-2006 US NHANES. Using the NHANES median, better-ear thresholds fit to simple polynomial equations, new age-correction values were generated for both men and women for ages 20-75 years. The new age-correction values are presented as 2 options. The preferred option is to replace the current OSHA tables with the values derived from the NHANES median better-ear thresholds for ages 20-75 years. The alternative option is to retain the current OSHA age-correction values up to age 60 years and use the NHANES-based values for ages 61-75 years. Recent NHANES data offer a simple solution to the need for updated, population-based, age-correction tables for OSHA. The options presented here provide scientifically valid and relevant age-correction values which can be easily adopted by OSHA to expand their regulatory guidance to

  12. Engaging Communities in Commodity Stock Monitoring Using Telecommunication Technology in Primary Health Care Facilities in Rural Nigeria

    Directory of Open Access Journals (Sweden)

    Ugo Okoli

    2015-10-01

    Full Text Available Background: With several efforts being made by key stakeholders to bridge the gap between beneficiaries and their having full access to free supplies, frequent stock-out, pilfering, collection of user fees for health commodities, and poor community engagement continue to plague the delivery of health services at the primary health care (PHC level in rural Nigeria. Objective: To assess the potential in the use of telecommunication technology as an effective way to engage members of the community in commodity stock monitoring, increase utilization of services, as well as promote accountability and community ownership. Methods: The pilot done in 8 PHCs from 4 locations within Nigeria utilized telecommunication technologies to exchange information on stock monitoring. A triangulated technique of data validation through cross verification from 3 subsets of respondents was used: 160 ward development committee (WDC members, 8 officers-in-charge (OICs of PHCs, and 383 beneficiaries (health facility users participated. Data collection made through a call center over a period of 3 months from July to September 2014 focused on WDC participation in inventory of commodities and type and cost of maternal, neonatal, and child health services accessed by each beneficiary. Results: Results showed that all WDCs involved in the pilot study became very active, and there was a strong cooperation between the OICs and the WDCs in monitoring commodity stock levels as the OICs participated in the monthly WDC meetings 96% of the time. A sharp decline in the collection of user fees was observed, and there was a 10% rise in overall access to free health care services by beneficiaries. Conclusion: This study reveals the effectiveness of mobile phones and indicates that telecommunication technologies can play an important role in engaging communities to monitor PHC stock levels as well as reduce the incidence of user fees collection and pilfering of commodities (PHC level in

  13. Is it safe to prescribe clomiphene citrate without ultrasound monitoring facilities?

    LENUS (Irish Health Repository)

    Coughlan, C

    2010-05-01

    The majority of triplet and higher order multiple pregnancies now result from ovulation induction\\/superovulation rather than in vitro fertilisation. However, clomiphene citrate is still widely prescribed by gynaecologists and general practitioners who do not have access to ultrasound monitoring. The objective of our study was to determine the prevalence of multifollicular development with different doses of clomiphene citrate. A retrospective review of transvaginal ultrasound monitoring of 425 cycles in 182 women receiving clomiphene citrate from January 2002 to December 2003, was studied. Three or more follicles of >or= 14 mm were identified in 58 cycles (14%). Patients received 50 mg of clomiphene citrate in 52 of these 58 cycles and 25 mg in the remaining six. One patient was noted to have developed five follicles and 10 patients developed four follicles. One patient developed six follicles, despite receiving only 25 mg clomiphene citrate daily. It was concluded that a significant number of women (14%) developed three or more follicles, despite receiving low doses of clomiphene citrate.

  14. Study of the Ubiquitous Hog Farm System Using Wireless Sensor Networks for Environmental Monitoring and Facilities Control

    Directory of Open Access Journals (Sweden)

    Jeonghwan Hwang

    2010-12-01

    Full Text Available Many hog farmers are now suffering from high pig mortality rates due to various wasting diseases and increased breeding costs, etc. It is therefore necessary for hog farms to implement systematic and scientific pig production technology to increase productivity and produce high quality pork in order to solve these problems. In this study, we describe such a technology by suggesting a ubiquitous hog farm system which applies WSN (Wireless Sensor Network technology to the pig industry. We suggest that a WSN and CCTV (Closed-circuit television should be installed on hog farms to collect environmental and image information which shall then help producers not only in monitoring the hog farm via the Web from outside the farm, but also facilitate the control of hog farm facilities in remote locations. In addition, facilities can be automatically controlled based on breeding environment parameters which are already set up and a SMS notice service to notify of deviations shall provide users with convenience. Hog farmers may increase production and improve pork quality through this ubiquitous hog farm system and prepare a database with information collected from environmental factors and the hog farm control devices, which is expected to provide information needed to design and implement suitable control strategies for hog farm operation.

  15. The problems of individual monitoring for internal exposure of monazite storage facility workers

    International Nuclear Information System (INIS)

    Ekidin, A.; Kirdin, I.; Yarmoshenko, I.; Zhukovsky, M.

    2006-01-01

    traditionally two situations of internal inhalation exposure by alpha emitting nuclides are considered in radiological protection: occupational exposure due to inhalation of plutonium aerosols; inhalation exposure by 222 Rn daughters in working places and in home. for these situations the problems of radioactive aerosols intake, nuclide dynamics in human body, internal dosimetry, nuclide excretion, monitoring of internal exposure have been investigated in details especially for plutonium inhalation exposure. The results of these studies are presented in details in ICRP Publications and UNSCEAR reports. However there is very specific case in which the special analysis of internal inhalation exposure is need. it is the working places with anomalous, extremely high concentration of thoron ( 220 Rn) daughters. The problems of internal radiation exposure of workers in such working place are the main topic of this publication. (authors)

  16. Structural health monitoring and lifecycle-management for civil engineering constructions in power plants and industrial facilities; Zustandsueberwachung und Lebensdauermanagement von baulichen Einrichtungen in Kraftwerken und Industrieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lehnen, Dieter; Demmer, Martin; Pfister, Tobias [ZERNA Planen und Pruefen GmbH, Bochum (Germany)

    2013-09-01

    In contrast to other fields of engineering, structural health monitoring and lifecycle management for civil engineering constructions in power plants and industrial facilities have to be developed yet. The necessity of this development immediately arises from the building regulations law with its extensive set of regulations as well as from economic constraints. Approaches and methods of structural health monitoring and lifecycle management for civil engineering constructions in power plants and industrial facilities could be improved intensively during recent years. The paper focuses on practical examples that show the necessity of comprehensive and strategic structural health monitoring in conjunction with lifecycle management for civil engineering constructions in power plants and industrial facilities unambiguously und clear. (orig.)

  17. Survey of statistical and sampling needs for environmental monitoring of commercial low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Eberhardt, L.L.; Thomas, J.M.

    1986-07-01

    This project was designed to develop guidance for implementing 10 CFR Part 61 and to determine the overall needs for sampling and statistical work in characterizing, surveying, monitoring, and closing commercial low-level waste sites. When cost-effectiveness and statistical reliability are of prime importance, then double sampling, compositing, and stratification (with optimal allocation) are identified as key issues. If the principal concern is avoiding questionable statistical practice, then the applicability of kriging (for assessing spatial pattern), methods for routine monitoring, and use of standard textbook formulae in reporting monitoring results should be reevaluated. Other important issues identified include sampling for estimating model parameters and the use of data from left-censored (less than detectable limits) distributions

  18. Characterization and monitoring of 300 Area facility liquid waste streams: 1994 Annual report

    International Nuclear Information System (INIS)

    Manke, K.L.; Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Julya, J.L.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.; Vogel, H.R.

    1995-04-01

    This report summarizes the results of characterizing and monitoring the following sources during calendar year 1994: liquid waste streams from Buildings 306, 320, 324, 326, 331, and 3720 in the 300 Area of Hanford Site and managed by the Pacific Northwest Laboratory; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe). Data were collected from March to December before the sampling system installation was completed. Data from this initial part of the program are considered tentative. Samples collected were analyzed for chemicals, radioactivity, and general parameters. In general, the concentrations of chemical and radiological constituents and parameters in building wastewaters which were sampled and analyzed during CY 1994 were similar to historical data. Exceptions were the occasional observances of high concentrations of chloride, nitrate, and sodium that are believed to be associated with excursions that were occurring when the samples were collected. Occasional observances of high concentrations of a few solvents also appeared to be associated with infrequent building r eases. During calendar year 1994, nitrate, aluminum, copper, lead, zinc, bis(2-ethylhexyl) phthalate, and gross beta exceeded US Environmental Protection Agency maximum contaminant levels

  19. NASA Infrared Telescope Facility Comet Halley monitoring program 2: Post-perihelion results

    International Nuclear Information System (INIS)

    Tokunaga, A.T.; Golisch, W.F.; Griep, D.M.; Kaminski, C.D.; Hanner, M.S.

    1988-01-01

    The post perihelion results of a 1 to 20 micrometer infrared monitoring program of Comet Halley are presented. These results complement previous observations of the pre-perihelion passages of Halley. The observations cover the time period of Mar. 1986 to the present time. During the time the comet was observable, two or more observations were obtained per month. The most interesting results were: (1) a detectable change in the J-H and H-K colors of Halley, and (2) a search for a nucleus rotation at J during 20 Feb. to 10 Mar. was unsuccessful. The perihelion J-H and K-K colors were constant at 0.48 + or - 0.01 and 0.17, respectively. A preliminary reduction of the data is given. It is concluded that the colors were at first similar to pre-perihelion and then changed from July onward to be bluer and more similar to the solar colors. This suggests that a change may have occurred in the composition of the dust coma of Halley in July 1986

  20. Sampling and monitoring of carbon-14 in gaseous effluents from nuclear facilities - a literature survey

    International Nuclear Information System (INIS)

    Snellman, M.

    1988-12-01

    C-14 compounds produced in the coolant may be released mainly together with off-gas and waste water from the coolant purification and treatment system. In reactors the release of C-14 will occur mainly in gaseous effluents and only a few percent in liquid effluents. Reported releases from BWRs range from 260 to 670 GBq/GW(e) x year and from 90 to 430 GBq/GW(e) x year for PWRs. At BWRs the condenser air ejector contributes the main inplant release pathway, whereas in PWRs the off-gas treatment vents are the main pathway for C-14 release. C-14 sampling methods depend generally on the C-14 being in the form of CO 2 . The off-gas discharges from BWRs are mainly in the form of CO 2 whereas in PWRs a major fraction of the released C-14 is in the form of hydrocarbons or carbon monoxide (generally 80-100%). Sampling systems in PWRs should therefore be equipped with a catalytic oxidizer to convert all C-14 to CO 2 before trapping. The purpose of this study is to provide information on the techniques available for sampling and monitoring C-14

  1. Site status monitoring report for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    International Nuclear Information System (INIS)

    1994-10-01

    The purpose of this document is to provide hydrogeologic, geochemical, and vapor monitoring data required for site status monitoring of underground storage tanks (UST) 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility. Comprehensive monitoring was conducted at the site in May 1994 as part of a Monitoring Only program approved by Tennessee Department of Environment and Conservation (TDEC) based on review and approval of Site Ranking. This document presents the results of the first semiannual site status monitoring, which was conducted in September 1994. Site status monitoring and preparation of this report have been conducted in accordance with the requirements of the TDEC Rule 1200-1-15, the TDEC UST Reference Handbook, Second Edition, and direction from TDEC. This document is organized into three sections. Section 1 presents introductory information relative to the site including regulatory initiative and a site description. Section 2 includes the results of sampling of monitoring wells GW-508, GW-631, GW-632, and GW-634. Section 3 presents data from vapor monitoring conducted in subsurface utilities present at the site

  2. Telephone audit for monitoring stroke unit facilities: a post hoc analysis from PROSIT study.

    Science.gov (United States)

    Candelise, Livia; Gattinoni, Monica; Bersano, Anna

    2015-01-01

    Although several valid approaches exist to measure the number and the quality of acute stroke units, only few studies tested their reliability. This study is aimed at establishing whether the telephone administration of the PROject of Stroke unIt ITaly (PROSIT) audit questionnaire is reliable compared with direct face-to-face interview. Forty-three medical leaders in charge of in-hospital stroke services were interviewed twice using the same PROSIT questionnaire with 2 different modalities. First, the interviewers approached the medical leaders by telephone. Thereafter, they went to the hospital site and performed a direct face-to-face interview. Six independent couples of trained researchers conducted the audit interviews. The degree of intermodality agreement was measured with kappa statistic. We found a perfect agreement for stroke units identification between the 2 different audit modalities (K = 1.00; standard error [SE], 1.525). The agreement was also very good for stroke dedicated beds (K = 1.00; SE, 1.525) and dedicated personnel (K = 1.00; SE, 1.525), which are the 2 components of stroke unit definition. The agreement was lower for declared in use process of care and availability of diagnostic investigations. The telephone audit can be used for monitoring stroke unit structures. It is more rapid, less expensive, and can repeatedly be used at appropriate intervals. However, a reliable description of the process of care and diagnostic investigations indicators should be obtained by either local site audit visit or prospective stroke register based on individual patient data. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. Description of the U.S. Geological Survey's water-quality sampling and water-level monitoring program at the Hallam Nuclear Facility, August through September 1997

    International Nuclear Information System (INIS)

    1997-01-01

    A water-quality and water-level program between the US Department of Energy (USDOE) and the US Geological Survey (USGS) was re-established in August 1997 to (1) collect one set of water-quality samples from 17 of the 19 USDOE monitor wells, and (2) make five water-level measurements during a 2-month period from the 19 USDOE monitor wells at the Hallam Nuclear Facility, Hallam, Nebraska. Data from these wells are presented

  4. Environmental impact monitoring methods in the vicinity of waste incineration and co-incineration facilities - State-of-the-art. State-of-the-art of environmental impact monitoring methods in the vicinity of waste incineration and co-incineration facilities. Synthesis

    International Nuclear Information System (INIS)

    Chassagnac, T.; Cornet, C.; Mathieu, L.

    2005-10-01

    Since the beginning of the 70's, the growing concern from the public opinion and the scientific community for the waste incineration issue made people aware of a number of difficulties of the process and the potential risks linked to it. For example checking the good functioning conditions of the facilities has been made compulsory through the continuous emission monitoring of a number of parameters. The ministerial decree from the 20 September 2002 brings something new: the monitoring of the impact of the facilities on its nearby environment. This monitoring comes in addition to the existing continuous monitoring of some gaseous compounds of the incineration process, and widens the scale of the monitoring to the environment of the incineration facilities. But there is no further information in the ministerial decree about the methods available to match this requirement. Incineration facilities' managers have to face a close deadline (28 December 2005) and have to make the optimal choice of a technique matching these requirements but also the needs of their facilities. The aim of this study is to help incineration facilities' managers thanks to an overview as large as possible of the different techniques available. Managers will have to take into account the characteristics of the methods and their adequacy with the local contexts of their sites. This document is meant to be a support for dealing with this issue. (authors)

  5. The Earthscope USArray Array Network Facility (ANF): Metadata, Network and Data Monitoring, Quality Assurance During the Second Year of Operations

    Science.gov (United States)

    Eakins, J. A.; Vernon, F. L.; Martynov, V.; Newman, R. L.; Cox, T. A.; Lindquist, K. L.; Hindley, A.; Foley, S.

    2005-12-01

    The Array Network Facility (ANF) for the Earthscope USArray Transportable Array seismic network is responsible for: the delivery of all Transportable Array stations (400 at full deployment) and telemetered Flexible Array stations (up to 200) to the IRIS Data Management Center; station command and control; verification and distribution of metadata; providing useful remotely accessible world wide web interfaces for personnel at the Array Operations Facility (AOF) to access state of health information; and quality control for all data. To meet these goals, we use the Antelope software package to facilitate data collection and transfer, generation and merging of the metadata, real-time monitoring of dataloggers, generation of station noise spectra, and analyst review of individual events. Recently, an Antelope extension to the PHP scripting language has been implemented which facilitates the dynamic presentation of the real-time data to local web pages. Metadata transfers have been simplified by the use of orb transfer technologies at the ANF and receiver end points. Web services are being investigated as a means to make a potentially complicated set of operations easy to follow and reproduce for each newly installed or decommissioned station. As part of the quality control process, daily analyst review has highlighted areas where neither the regional network bulletins nor the USGS global bulletin have published solutions. Currently four regional networks (Anza, BDSN, SCSN, and UNR) contribute data to the Transportable Array with additional contributors expected. The first 100 stations (42 new Earthscope stations) were operational by September 2005 with all but one of the California stations installed. By year's end, weather permitting, the total number of stations deployed is expected to be around 145. Visit http://anf.ucsd.edu for more information on the project and current status.

  6. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report, First and Second Quarters 1999, Volume III

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during the first and second quarters 1999

  7. Environmental monitoring (operational period) of the uranium enrichment facility Almirante Alvaro Alberto. Quadrimonthly report of gamma spectroscopy measurements: march to june 1988

    International Nuclear Information System (INIS)

    Venturini, L.; Pecequilo, B.R.S.

    1990-02-01

    In this report we present the assessment of the environmental monitoring radiation levels during the operation period of the Uranium Enrichment Facility Almirante Alvaro Alberto from March to July 1988. The purpose was achieved by sampling and analyzing using gamma spectrometry, water and terrestrial and biological indicators. (author) [pt

  8. Environmental survey near a decommissioning nuclear facility: example of tritium monitoring in the terrestrial environment of Creys-Malville - Environmental survey near a nuclear facility undergoing decommissioning: example of tritium monitoring in the terrestrial environment of Creys-Malville

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, C.; Gontier, G.; Chauveau, J.L. [EDF CIDEN, Division Environnement, 154 Avenue Thiers, 69458 Lyon (France); Pourcelot, L.; Roussel-Debet, S.; Cossonnet, P.C. [IRSN, LERCM Cadarache and LMRE Orsay (France); Jean-Baptiste, P. [LSCE, UMR 1572-CEA/CNRS/UVQS, 91198 Gif sur Yvette (France)

    2014-07-01

    and adapts it to the specific radionuclides generated by the decommissioning phase. Some results from the terrestrial monitoring of the decommissioning site of Creys-Malville are presented here. Data highlight the very weak influence of gaseous discharges during all the operating phases and the decommissioning of the facility. Since the beginning (1985) to the end of plant operation (1998), tritium detected in the terrestrial environment near the Creys-Malville site (some Bq.L{sup -1} to a few tens of Bq.L{sup -1}) is almost exclusively linked to the global fall-out of nuclear bomb tests. During decommissioning operations, most of the observed environmental values remain very close to the ambient levels measured in zones not influenced by radioactive releases from nuclear activities i.e. 1 to 10 Bq.L{sup -1} (depending on the nature of the samples analyzed). In connection with the specific decommissioning operations, a slight influence of discharges had been briefly observed in the terrestrial environment; the measured concentrations were from 1 to 18 Bq.L{sup -1} for free water tritium, and from 1 to 11 Bq.L{sup -1} for organically bound tritium. (authors)

  9. An alpha particle detector based on a GPS mosaic scintillator plate for continuous air monitoring in plutonium handling facilities

    International Nuclear Information System (INIS)

    Kaneko, Junichi H.; Izaki, Kenji; Toui, Kouhei; Shimaoka, Takehiro; Morishita, Yuki; Tsubota, Youichi; Higuchi, Mikio

    2016-01-01

    An alpha particle detector was developed for continuous air monitoring of radioactive contamination in working chambers at plutonium handling facilities. A 5-cm-square Gd 2 Si 2 O 7 :Ce (cerium-doped gadolinium pyro-silicate, GPS:Ce) mosaic scintillator plate for alpha particle measurements was fabricated from GPS single-crystal grains of around 550 μm diameter; the GPS grains were made of a GPS polycrystalline body grown using a top seeded solution method. The scintillator layer thickness was approximately 100 μm. The surface filling rate of the GPS grains was ca. 62%. To suppress the influence of non-uniformity of pulse heights of a photomultiplier tube, a central part of ∅ 40 mm of a 76-mm-diameter photomultiplier tube was used. In addition, 3 mm thick high-transmission glass was used as a substrate of the scintillator plate. The detector achieved energy resolution of 13% for 5.5 MeV alpha particles, detection efficiency of 61% and a radon progeny nuclide reduction ratio of 64.5%. A new alpha particle detector was developed to achieve a high radon progeny nuclide reduction ratio approaching that of a silicon semiconductor detector, with high resistance to electromagnetic noise and corrosion. - Highlights: • An alpha particle detector was developed for continuous air monitoring. • The detector comprises a mosaic scintillator plate and a photomultiplier tube. • A 5-cm-square GPS mosaic scintillator plate was fabricated. • Its respective energy resolution and detection efficiency were 13 and 61%. • The radon progeny nuclide reduction ratio of the developed detector was 64.5%.

  10. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Rick D.; Kovalchuk, Gregory M.; Ballinger, Dean (Pacific States Marine Fisheries Commission, The Dalles, OR)

    2006-04-01

    this year, we successfully held Pacific lamprey ammocetes. The number of fish sampled at Bonneville Dam was also down this year to 260,742, from 444,580 last year. Reasons for the decline are the same as stated above for John Day. Passage timing at Bonneville Dam was quite similar to previous years with one notable exception, sockeye. Sockeye passage was dominated by two large spikes in late May that greatly condensed the passage pattern, with the middle 80% passing Bonneville in just 18 days. Unlike John Day, passage for the rest of the species was well disbursed from late April through early June. Fish condition was good, with reductions in descaling rates for all species except unclipped steelhead and sockeye. Sockeye mortality matched last year's rate but was considerably lower for all other species. Rare species sampled at Bonneville this year included a bull trout and a eulachon.

  11. Monitoring and predicting the risk of violence in residential facilities. No difference between patients with history or with no history of violence.

    Science.gov (United States)

    de Girolamo, Giovanni; Buizza, Chiara; Sisti, Davide; Ferrari, Clarissa; Bulgari, Viola; Iozzino, Laura; Boero, Maria Elena; Cristiano, Giuseppe; De Francesco, Alessandra; Giobbio, Gian Marco; Maggi, Paolo; Rossi, Giuseppe; Segalini, Beatrice; Candini, Valentina

    2016-09-01

    Most people with mental disorders are not violent. However, the lack of specific studies in this area and recent radical changes in Italy, including the closure of six Forensic Mental Hospitals, has prompted a more detailed investigation of patients with aggressive behaviour. To compare socio-demographic, clinical and treatment-related characteristics of long-term inpatients with a lifetime history of serious violence with controls; to identify predictors of verbal and physical aggressive behaviour during 1-year follow-up. In a prospective cohort study, patients living in Residential Facilities (RFs) with a lifetime history of serious violence were assessed with a large set of standardized instruments and compared to patients with no violent history. Patients were evaluated bi-monthly with MOAS in order to monitor any aggressive behaviour. The sample included 139 inpatients, 82 violent and 57 control subjects; most patients were male. The bi-monthly monitoring during the 1-year follow-up did not show any statistically significant differences in aggressive behaviour rates between the two groups. The subscale explaining most of the MOAS total score was aggression against objects, although verbal aggression was the most common pattern. Furthermore, verbal aggression was significantly associated with aggression against objects and physical aggression. Patients with a history of violence in RFs, where treatment and clinical supervision are available, do not show higher rates of aggressiveness compared to patients with no lifetime history of violence. Since verbal aggression is associated with more severe forms of aggression, prompt intervention is warranted to reduce the risk of escalation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Modular design of processing and storage facilities for small volumes of low and intermediate level radioactive waste including disused sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    A number of IAEA Member States generate relatively small quantities of radioactive waste and/or disused sealed sources in research or in the application of nuclear techniques in medicine and industry. This publication presents a modular approach to the design of waste processing and storage facilities to address the needs of such Member States with a cost effective and flexible solution that allows easy adjustment to changing needs in terms of capacity and variety of waste streams. The key feature of the publication is the provision of practical guidance to enable the users to determine their waste processing and storage requirements, specify those requirements to allow the procurement of the appropriate processing and storage modules and to install and eventually operate those modules.

  13. Digital radiation monitor system

    International Nuclear Information System (INIS)

    Quan Jinhu; Zhai Yongchun; Guan Junfeng; Ren Dangpei; Ma Zhiyuan

    2003-01-01

    The article introduced digital radiation monitor system. The contents include: how to use advanced computer net technology to establish equipment net for nuclear facility, how to control and manage measuring instruments on field equipment net by local area net, how to manage and issue radiation monitoring data by internet

  14. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  15. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  16. Integron, Plasmid and Host Strain Characteristics of Escherichia coli from Humans and Food Included in the Norwegian Antimicrobial Resistance Monitoring Programs.

    Science.gov (United States)

    Sunde, Marianne; Simonsen, Gunnar Skov; Slettemeås, Jannice Schau; Böckerman, Inger; Norström, Madelaine

    2015-01-01

    Antimicrobial resistant Escherichia coli (n=331) isolates from humans with bloodstream infections were investigated for the presence of class 1 and class 2 integrons. The integron cassettes arrays were characterized and the findings were compared with data from similar investigations on resistant E. coli from meat and meat products (n=241) produced during the same time period. All isolates were obtained from the Norwegian monitoring programs for antimicrobial resistance in human pathogens and in the veterinary sector. Methods used included PCR, sequencing, conjugation experiments, plasmid replicon typing and subtyping, pulsed-field-gel-electrophoresis and serotyping. Integrons of class 1 and 2 occurred significantly more frequently among human isolates; 45.4% (95% CI: 39.9-50.9) than among isolates from meat; 18% (95% CI: 13.2 -23.3), (pfood source and from a human clinical sample highlights the possible role of meat as a source of resistance elements for pathogenic bacteria.

  17. Radioactive discharges and environmental monitoring at the Swedish nuclear facilities 2002-2004; Utslaepps- och omgivningskontroll vid de kaerntekniska anlaeggningarna 2002-2004

    Energy Technology Data Exchange (ETDEWEB)

    Luening, Maria

    2005-11-15

    According to Swedish regulations the effective dose to an individual in the critical group, from one year of releases of radioactive substances to air and water from all facilities located in the same geographically delimited area, shall not exceed 0.1 mSv. The effective dose, which concerns the dose from external radiation and the committed effective dose from internal radiation, shall be integrated over a period of 50 years. When calculating the dose to individuals in the critical group, both children and adults shall be taken into consideration. If the calculated dose exceeds 0.01 mSv per calendar year, realistic calculations of radiation doses shall be conducted for the most affected area. SSI has not defined any radionuclide specific discharge limits. Limitation of releases is being implemented through the restriction of dose to the critical group members. For each nuclear facility, e.g. each reactor, and for each radionuclide that may be released, specific release-to-dose factors have been calculated. The factors have been calculated for hypothetical critical groups, and take into consideration local dispersion conditions in air and in the environment, local settlements, local production of food-stuffs as well as moderately conservative assumptions on diet and contribution of locally produced food-stuff to the diet of the group. For nuclear power reactors, release-to-dose factors (mSv/Bq) have been calculated for 97 radionuclides that may be discharged to the marine environment and 159 radionuclides that may be emitted to air. Discharges shall be controlled through the measurement of representative samples for each release pathway. The analyses shall include nuclide-specific measurements of gamma and alpha-emitting radioactive substances as well as, where relevant, strontium-90 and tritium. The discharges of radioactive substances from the Swedish NPPs result in very low doses well below the limits issued by SSI. Even so, the concentration of radionuclides in

  18. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress Report for the Period April 1 to June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-09-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period April 1 to June 30, 1989. These projects are for the 300 area process trenches (300 area), 183-H solar evaporation basins (100-H area), 200 areas low-level burial grounds, nonradioactive dangerous waste landfill (southeast of the 200 areas), 1301-N liquid waste disposal facility (100-N area), 1324-N surface impoundment and 1324-NA percolation pond (100-N area), 1325-N liquid waste disposal facility (100-N area), 216-A-10 crib (200-east area), 216-A-29 ditch (200-east area), 216-A-36B crib (200-east area), 216-B-36B crib (200-east area), 216-B-3 pond (east of the 200-east area), 2101-M pond (200-east area), grout treatment facility (200-east area).

  19. Installation of a permeable reactive barrier at the mining complex facility in Los Gigantes - Cordoba : Monitoring plan of surface and underground water

    International Nuclear Information System (INIS)

    Grande Cobian, Juan D.; Sanchez Proano, Paula; Cicerone, Daniel S.

    2009-01-01

    The Argentine National Atomic Energy Commission declares under its Environmental policy the commitment to restore those sites where activities concerning Uranium mining were developed. It makes it beyond the scope of the Project of Environmental Restitution of the Uranium Mining (PRAMU from its Spanish abbreviation). The Chemistry of Water and Soil Division at the Environmental Chemistry and Energy Generation Department belonging to the Chemistry Management Office assist the PRAMU on the installation of an hydroxyapatite permeable reactive barrier (PRB) inside the Mining Complex facility placed at Los Gigantes in the Argentine province of Cordoba (in advance named the site). Among the preliminary assessment activities that are being carried out before the installation of the PRB, it has been prepared a monitoring program of surface water and groundwater useful to develop an environmental baseline suitable for the efficiency assessment of the corrective action to be applied. An exploratory campaign was conducted in the site with the aim of establishing a monitoring net of meteorological and hydrological, as well as physical, chemical and biological parameters in matrixes of sediments, water and suspended particulate matter collected on a regular time basis from its surface water and groundwater bodies. The processed results turn into useful environmental information to: a) determine the status of the environmental baseline of the site, b) establish a water quality index (WQI) to manage the natural resource quality according to a rational basis, c) plan experiments related to the design process of a biogenic hydroxyapatite PRB and d) apply chemometric and mechanistic models to forecast the contaminants mobilization through different scenarios and improve the engineering design of the PRB. Once achieved the hydrogeological characterisation of the site and taking into account the originality of the system the following results have been reached: 1) The boundaries of

  20. Annual Report of Radioactive Waste Facilities Operation in 2015

    Institute of Scientific and Technical Information of China (English)

    DU; Hong-ming; GAO; Zhi-gang; DIAO; Lei; SHEN; Zheng; LI; Wen-ge

    2015-01-01

    301of the Department of Radiochemistry,is in charge of the management of radioactive waste and the safety of the relative facilities to meet the request of the scientific research production.There are 16radioactive waste facilities,including9facilities which are closed and monitored