WorldWideScience

Sample records for facilities microwave landing

  1. Environmental assessment: South microwave communication facilities

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Western Area Power Administration (Western) is proposing to construct, operate, and maintain eight microwave repeater stations in southwestern Colorado, southeastern Utah, and northern Arizona, in order to meet the minimum fade criteria established by the Western Systems Coordinating Council (WSCC) for the operation and protection of electric power systems. The proposed microwave facilities would increase the reliability of communication. This environmental assessment (EA) describes the existing environmental conditions and the impacts from construction of the eight microwave communication facilities. The EA was prepared in compliance with the National Environmental Policy Act of 1969, the Council on Environmental Quality Regulations (40 CFR 1500-1508), and the Department of Energy Guidelines (52 FR 47662, December 15, 1987). The proposed project would consist of constructing eight microwave facilities, each of which would include a self-supported lattice tower, an equipment building, a propane tank, distribution lines to provide electric power to the sites, and access roads to the sites. The facilities would be constructed in San Miguel and Montezuma Counties in Colorado, San Juan County, Utah, and Navajo, Apache, Coconino, and Yavapai Counties in Arizona. 20 refs., 2 figs., 2 tabs.

  2. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  3. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  4. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  5. Sophisticated test facility to detect land mines

    NARCIS (Netherlands)

    Jong, W. de; Lensen, H.A.; Janssen, Y.H.L.

    1999-01-01

    In the framework of the Dutch government humanitarian demining project 'HOM-2000', an outdoor test facility has been realized to test, improve and develop detection equipment for land mines. This sophisticated facility, allows us to access and compare the performance of the individual and of a combi

  6. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    Science.gov (United States)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  7. Neil Armstrong At Lunar Landing Research Facility

    Science.gov (United States)

    1969-01-01

    Nearly 25 years ago, on July 20,1969, Neil Armstrong, shown here with NASA Langley Research Centers Lunar Excursion Module (LEM) Simulator, became the first human to walk on the moon after practicing with the simulator in May of 1969. Training with the simulator, part of Langleys Lunar Research Facility, allowed the Apollo astronauts to study and safely overcome problems that could have occurred during the final 150-foot descent to the surface of the moon. NASA needed such a facility in order to explore and develop techniques for landing the LEM on the moons surface, where gravity is only one-sixth as strong as on the Earth, as well as to determine the limits of human piloting capabilities in the new surroundings. This unique facility, completed in 1965 and now a National Historic Landmark, effectively canceled all but one-sixth of Earths gravitational force by using an overhead cable system.

  8. Advanced microwave forward model for the land surface data assimilation

    Science.gov (United States)

    Park, Chang-Hwan; Pause, Marion; Gayler, Sebastian; Wollschlaeger, Ute; Jackson, Thomas J.; LeDrew, Ellsworth; Behrendt, Andreas; Wulfmeyer, Volker

    2015-04-01

    From local to global scales, microwave remote-sensing techniques can provide temporally and spatially highly resolved observations of land surface properties including soil moisture and temperature as well as the state of vegetation. These variables are critical for agricultural productivity and water resource management. Furthermore, having accurate information of these variables allows us to improve the performances of numerical weather forecasts and climate prediction models. However, it is challenging to translate a measured brightness temperature into the multiple land surface properties because of the inherent inversion problem. In this study, we introduce a novel forward model for microwave remote sensing to resolve this inversion problem and to close the gap between land surface modeling and observations. It is composed of the Noah-MP land surface model as well as new models for the dielectric mixing and the radiative transfer. For developing a realistic forward operator, the land surface model must simulate soil and vegetation processes properly. The Noah-MP land surface model provides an excellent starting point because it contains already a sophisticated soil texture and land cover data set. Soil moisture transport is derived using the Richards equation in combination with a set of soil hydraulic parameters. Vegetation properties are considered using several photosynthesis models with different complexity. The energy balance is closed for the top soil and the vegetation layers. The energy flux becomes more realistic due to including not only the volumetric ratio of land surface properties but also their surface fraction as sub-grid scale information (semitile approach). Dielectric constant is the fundamental link to quantify the land surface properties. Our physical based new dielectric-mixing model is superior to previous calibration and semi-empirical approaches. Furthermore, owing to the consideration of the oversaturated surface dielectric behaviour

  9. Characterization of Different Land Classes and Disaster Monitoring Using Microwave Land Emissivity for the Indian Subcontinent

    Science.gov (United States)

    Saha, Korak; Raju, Suresh; Antony, Tinu; Krishna Moorthy, K.

    Despite the ability of satellite borne microwave radiometers to measure the atmospheric pa-rameters, liquid water and the microphysical properties of clouds, they have serious limitations over the land owing its large and spatially heterogeneous emissivity compared to the relatively low and homogenous oceans. This calls for determination of the spatial maps of land-surface emissivity with accuracies better than ˜2%. In this study, the characterization of microwave emissivity of different land surface classes over the Indian region is carried out with the forth-coming Indo-French microwave satellite program Megha-Tropiques in focus. The land emissivity is retrieved using satellite microwave radiometer data from Special Sensor Microwave/Imager (SSM/I) and TRMM Microwave Imager (TMI) at 10, 19, 22, 37 and 85 GHz. After identify-ing the clear sky daily data, the microwave radiative transfer computation, is applied to the respective daily atmospheric profile for deducing the upwelling and downwelling atmospheric radiations. This, along with the skin temperature data, is used to retrieve land emission from satellites data. The emissivity maps of placecountry-regionIndia for three months representing winter (January) and post-monsoon (September-October) seasons of 2008 at V and H polar-izations of all the channels (except for 22 GHz) are generated. Though the land emissivity values in V-polarization vary between 0.5 and ˜1, some land surface classes such as the desert region, marshy land, fresh snow covered region and evergreen forest region, etc, show distinct emissivity characteristics. On this basis few typical classes having uniform physical properties over sufficient area are identified. Usually the Indian desert region is dry and shows low emis-sivity (˜0.88 in H-polarisation) and high polarization difference, V-H (˜0.1). Densely vegetated zones of tropical rain forests exhibit high emissivity values (˜0.95) and low polarization dif-ference (lt;0.01). The

  10. Lunar launch and landing facilities and operations

    Science.gov (United States)

    1987-01-01

    The Florida Institute of Technology established an Interdisciplinary Design Team to design a lunar based facility whose primary function involves launch and landing operations for future moon missions. Both manned and unmanned flight operations were considered in the study with particular design emphasis on the utilization (or reutilization) of all materials available on the moon. This resource availability includes man-made materials which might arrive in the form of expendable landing vehicles as well as in situ lunar minerals. From an engineering standpoint, all such materials are considered as to their suitability for constructing new lunar facilities and/or repairing or expanding existing structures. Also considered in this design study was a determination of the feasibility of using naturally occurring lunar materials to provide fuel components to support lunar launch operations. Conventional launch and landing operations similar to those used during the Apollo Program were investigated as well as less conventional techniques such as rail guns and electromagnetic mass drivers. The Advanced Space Design team consisted of students majoring in Physics and Space Science as well as Electrical, Mechanical, Chemical and Ocean Engineering.

  11. Quantifying Uncertainties in Land-Surface Microwave Emissivity Retrievals

    Science.gov (United States)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2013-01-01

    Uncertainties in the retrievals of microwaveland-surface emissivities are quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including the Special Sensor Microwave Imager, the Tropical Rainfall Measuring Mission Microwave Imager, and the Advanced Microwave Scanning Radiometer for Earth Observing System, are studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land-surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors inthe retrievals. Generally, these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 1%-4% (3-12 K) over desert and 1%-7% (3-20 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.5%-2% (2-6 K). In particular, at 85.5/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are most likely caused by rain/cloud contamination, which can lead to random errors up to 10-17 K under the most severe conditions.

  12. Source analysis of spaceborne microwave radiometer interference over land

    Institute of Scientific and Technical Information of China (English)

    Li GUAN; Sibo ZHANG

    2016-01-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI).Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16,2011,RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper.The X band AMSR-E measurements in England and Italy are mostly affected by the stable,persistent,active microwave transmitters on the surface,while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers.The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period.The observations of spacebome microwave radiometers in ascending portions of orbits are usually interfered with over European land,while no RFI was detected in descending passes.The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor.Only these fields of view of a spacebome instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  13. Source analysis of spaceborne microwave radiometer interference over land

    Science.gov (United States)

    Guan, Li; Zhang, Sibo

    2016-03-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI). Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16, 2011, RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper. The X band AMSR-E measurements in England and Italy are mostly affected by the stable, persistent, active microwave transmitters on the surface, while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers. The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period. The observations of spaceborne microwave radiometers in ascending portions of orbits are usually interfered with over European land, while no RFI was detected in descending passes. The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor. Only these fields of view of a spaceborne instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  14. Quantifying Uncertainties in Land Surface Microwave Emissivity Retrievals

    Science.gov (United States)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2012-01-01

    Uncertainties in the retrievals of microwave land surface emissivities were quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including SSM/I, TMI and AMSR-E, were studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors in the retrievals. Generally these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 14% (312 K) over desert and 17% (320 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.52% (26 K). In particular, at 85.0/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are mostly likely caused by rain/cloud contamination, which can lead to random errors up to 1017 K under the most severe conditions.

  15. Recycling Facilities - Mine Drainage Treatment/Land Recycling Project Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Mine Drainage Treatment/Land Reclamation Locations are clean-up projects that are working to eliminate some form of abandoned mine. The following sub-facility types...

  16. Advances in Satellite Microwave Precipitation Retrieval Algorithms Over Land

    Science.gov (United States)

    Wang, N. Y.; You, Y.; Ferraro, R. R.

    2015-12-01

    Precipitation plays a key role in the earth's climate system, particularly in the aspect of its water and energy balance. Satellite microwave (MW) observations of precipitation provide a viable mean to achieve global measurement of precipitation with sufficient sampling density and accuracy. However, accurate precipitation information over land from satellite MW is a challenging problem. The Goddard Profiling Algorithm (GPROF) algorithm for the Global Precipitation Measurement (GPM) is built around the Bayesian formulation (Evans et al., 1995; Kummerow et al., 1996). GPROF uses the likelihood function and the prior probability distribution function to calculate the expected value of precipitation rate, given the observed brightness temperatures. It is particularly convenient to draw samples from a prior PDF from a predefined database of observations or models. GPROF algorithm does not search all database entries but only the subset thought to correspond to the actual observation. The GPM GPROF V1 database focuses on stratification by surface emissivity class, land surface temperature and total precipitable water. However, there is much uncertainty as to what is the optimal information needed to subset the database for different conditions. To this end, we conduct a database stratification study of using National Mosaic and Multi-Sensor Quantitative Precipitation Estimation, Special Sensor Microwave Imager/Sounder (SSMIS) and Advanced Technology Microwave Sounder (ATMS) and reanalysis data from Modern-Era Retrospective Analysis for Research and Applications (MERRA). Our database study (You et al., 2015) shows that environmental factors such as surface elevation, relative humidity, and storm vertical structure and height, and ice thickness can help in stratifying a single large database to smaller and more homogeneous subsets, in which the surface condition and precipitation vertical profiles are similar. It is found that the probability of detection (POD) increases

  17. Facile and efficient synthesis of quinoline-4-carboxylic acids under microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A facile and efficient method for the preparation of 2-non-substituted quinoline-4-carboxylic acids is described via the Pfitzinger reaction of isatins with sodium pyruvate following consequent decarboxylation under microwave irradiation.

  18. [Study of the microwave emissivity characteristics over different land cover types].

    Science.gov (United States)

    Zhang, Yong-Pan; Jiang, Ling-Mei; Qiu, Yu-Bao; Wu, Sheng-Li; Shi, Jian-Cheng; Zhang, Li-Xin

    2010-06-01

    The microwave emissivity over land is very important for describing the characteristics of the lands, and it is also a key factor for retrieving the parameters of land and atmosphere. Different land covers have their emission behavior as a function of structure, water content, and surface roughness. In the present study the global land surface emissivities were calculated using six month (June, 2003-August, 2003, Dec, 2003-Feb, 2004) AMSR-E L2A brightness temperature, MODIS land surface temperature and the layered atmosphere temperature, and humidity and pressure profiles data retrieved from MODIS/Aqua under clear sky conditions. With the information of IGBP land cover types, "pure" pixels were used, which are defined when the fraction cover of each land type is larger than 85%. Then, the emissivity of sixteen land covers at different frequencies, polarization and their seasonal variation were analyzed respectively. The results show that the emissivity of vegetation including forests, grasslands and croplands is higher than that over bare soil, and the polarization difference of vegetation is smaller than that of bare soil. In summer, the emissivity of vegetation is relatively stable because it is in bloom, therefore the authors can use it as its emissivity in our microwave emissivity database over different land cover types. Furthermore, snow cover can heavily impact the change in land cover emissivity, especially in winter.

  19. Facile Synthesis of Hydantoin Derivatives under Microwave Irradiation

    OpenAIRE

    FAGHIHI, Khalil; ZAMANI, Khosrow; Mobinikhaledi, Akbar

    2004-01-01

    The rapid and highly efficient synthesis of hydantoin derivatives 3(a-f) was achieved under microwave irradiation by using a domestic microwave oven from the reactions of cyanohydrin derivatives 2(a-f) with ammonium carbonate. The reaction proceeded rapidly (2-5 min.), and as a result a series of hydantoin derivatives 3(a-f) were obtained in high yields. All of the synthesized compounds were fully characterized by their melting point, 1H-NMR, FTIR spectroscopy and elemental analyses....

  20. Facile Synthesis of 1, 2-Diazepine Derivatives under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Jin Xian WANG; Xiao Ning SHI; Ke Hu WANG; Xiu Qin MEN

    2004-01-01

    An efficient and convenient synthesis of 3, 5, 7-triaryl-4H-1, 2-diazepine from 2, 4, 6-triarylpyrylium salts and hydrazine in water under microwave irradiation is reported. The same reaction can be conducted using 2, 4, 6-triarylthiopyrylium salts and hydrazine.

  1. Leveraging microwave polarization information for calibration of a land data assimilation system

    Science.gov (United States)

    This letter contributes a new approach to calibrating a tau-omega radiative transfer model coupled to a land surface model with low frequency (< 10 GHz) microwave brightness temperature (TB) observations. The problem of calibrating this system is generally poorlyposed because various parameter combi...

  2. On the Light Speed Anisotropy vs Cosmic Microwave Background Dipole: European Synchrotron Radiation Facility Measurements

    CERN Document Server

    Gurzadyan, V G; Kashin, A; Margarian, A T; Bartalini, O; Bellini, V; Castoldi, M; D'Angelo, A; Didelez, J P; Salvo, R D; Fantini, A; Gervino, G; Ghio, F; Girolami, B; Giusa, A; Guidal, M; Hourany, E; Knyazyan, S; Kouznetsov, V; Kunne, Ronald Alexander; Lapik, A; Levi-Sandri, P; Llères, A; Mehrabyan, S S; Moricciani, D; Nedorezov, V; Perrin, C; Rebreyend, D; Russo, G; Rudnev, N; Schärf, C; Sperduto, M L; Sutera, M C; Turinge, A

    2007-01-01

    The measurement of the Compton edge of the scattered electrons in GRAAL facility in European Synchrotron Radiation Facility (ESRF) in Grenoble with respect to the Cosmic Microwave Background dipole reveals up to 10 sigma variations larger than the statistical errors. We now show that the variations are not due to the frequency variations of the accelerator. The nature of Compton edge variations remains unclear, thus outlining the imperative of dedicated studies of light speed anisotropy.

  3. Hazardous Waste Land Disposal Facility Assessment. Volume 2. Appendices

    Science.gov (United States)

    1988-09-01

    Decontamination Assessment of Land and Facilities at RIA ( DALF )(RNACCPHT, 3 1984/RIC 84034R01), identified three types of potentially contaminated waste...Bibliography were reviewed. The DALF and the current Remedial Investigation/Feasibility Studies (RI/FS) of Ebasco Services Incorporated (Ebasco) and...53,000 12 119,000 -- 119,000 -- - 119,000I TOTALS L.s 65,010 AI R 6,7.6s,284.907 I )A/ DALF , 1984. 2/ Volume rounded to nearest thousand bank

  4. Towards the Consideration of Surface and Environment variables for a Microwave Precipitation Algorithm Over Land

    Science.gov (United States)

    Wang, N. Y.; You, Y.; Ferraro, R. R.; Guch, I.

    2014-12-01

    Microwave satellite remote sensing of precipitation over land is a challenging problem due to the highly variable land surface emissivity, which, if not properly accounted for, can be much greater than the precipitation signal itself, especially in light rain/snow conditions. Additionally, surfaces such as arid land, deserts and snow cover have brightness temperatures characteristics similar to precipitation Ongoing work by NASA's GPM microwave radiometer team is constructing databases for the GPROF algorithm through a variety of means, however, there is much uncertainty as to what is the optimal information needed for the wide array of sensors in the GPM constellation, including examination of regional conditions. The at-launch database focuses on stratification by emissivity class, surface temperature and total precipitable water (TPW). We'll perform sensitivity studies to determine the potential role of environmental factors such as land surface temperature, surface elevation, and relative humidity and storm morphology such as storm vertical structure, height, and ice thickness to improve precipitation estimation over land, including rain and snow. In other words, what information outside of the satellite radiances can help describe the background and subsequent departures from it that are active precipitating regions? It is likely that this information will be a function of the various precipitation regimes. Statistical methods such as Principal Component Analysis (PCA) will be utilized in this task. Databases from a variety of sources are being constructed. They include existing satellite microwave measurements of precipitating and non-precipitating conditions, ground radar precipitation rate estimates, surface emissivity climatology from satellites, surface temperature and TPW from NWP reanalysis. Results from the analysis of these databases with respect to the microwave precipitation sensitivity to the variety of environmental conditions in different climate

  5. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis

    Directory of Open Access Journals (Sweden)

    Magda Blosi

    2016-07-01

    Full Text Available This work deals with the development of a green and versatile synthesis of stable mono- and bi-metallic colloids by means of microwave heating and exploiting ecofriendly reagents: water as the solvent, glucose as a mild and non-toxic reducer and polyvinylpirrolidone (PVP as the chelating agent. Particle size-control, total reaction yield and long-term stability of colloids were achieved with this method of preparation. All of the materials were tested as effective catalysts in the reduction of p-nitrophenol in the presence of NaBH4 as the probe reaction. A synergistic positive effect of the bimetallic phase was assessed for Au/Cu and Pd/Au alloy nanoparticles, the latter showing the highest catalytic performance. Moreover, monoand bi-metallic colloids were used to prepare TiO2- and CeO2-supported catalysts for the liquid phase oxidation of 5-hydroxymethylfufural (HMF to 2,5-furandicarboxylic acid (FDCA. The use of Au/Cu and Au/Pd bimetallic catalysts led to an increase in FDCA selectivity. Finally, preformed Pd/Cu nanoparticles were incorporated into the structure of MCM-41-silica. The resulting Pd/Cu MCM-41 catalysts were tested in the hydrodechlorination of CF3OCFClCF2Cl to CF3OCF=CF2. The effect of Cu on the hydrogenating properties of Pd was demonstrated.

  6. Low power microwave tests on RF gun prototype of the Iranian Light Source Facility

    Directory of Open Access Journals (Sweden)

    A Sadeghipanah

    2017-08-01

    Full Text Available In this paper, we introduce RF electron gun of Iranian Light Source Facility (ILSF pre-injection system. Design, fabrication and low-power microwave tests results of the prototype RF electron gun have been described in detail. This paper also explains the tuning procedure of the prototype RF electron gun to the desired resonant frequency. The outcomes of this project brighten the path to the fabrication of the RF electron gun by the local industries  

  7. A facile and green microwave-assisted synthesis of new functionalized picolinium-based ionic liquids

    OpenAIRE

    Mouslim Messali

    2016-01-01

    A facile preparation of a series of 17 new functionalized picolinium-based ionic liquids under “green chemistry” conditions is described. For the first time, target ionic liquids were prepared using standard methodology and under microwave irradiation in short duration of time with quantitative yields. Their structures were characterized by FT-IR, 1H NMR, 13C NMR, 11B, 19F, 31P and mass spectra.

  8. Diffraction studies applicable to 60-foot microwave research facilities

    Science.gov (United States)

    Schmidt, R. F.

    1973-01-01

    The principal features of this document are the analysis of a large dual-reflector antenna system by vector Kirchhoff theory, the evaluation of subreflector aperture-blocking, determination of the diffraction and blockage effects of a subreflector mounting structure, and an estimate of strut-blockage effects. Most of the computations are for a frequency of 15.3 GHz, and were carried out using the IBM 360/91 and 360/95 systems at Goddard Space Flight Center. The FORTRAN 4 computer program used to perform the computations is of a general and modular type so that various system parameters such as frequency, eccentricity, diameter, focal-length, etc. can be varied at will. The parameters of the 60-foot NRL Ku-band installation at Waldorf, Maryland, were entered into the program for purposes of this report. Similar calculations could be performed for the NELC installation at La Posta, California, the NASA Wallops Station facility in Virginia, and other antenna systems, by a simple change in IBM control cards. A comparison is made between secondary radiation patterns of the NRL antenna measured by DOD Satellite and those obtained by analytical/numerical methods at a frequency of 7.3 GHz.

  9. Large-scale laser-microwave synchronization for attosecond photon science facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shafak, Kemal

    2017-04-15

    Low-noise transfer of time and frequency standards over large distances provides high temporal resolution for ambitious scientific explorations such as sensitive imaging of astronomical objects using multi-telescope arrays, comparison of distant optical clocks or gravitational-wave detection using large laser interferometers. In particular, rapidly expanding photon science facilities such as X-ray free-electron lasers (FELs) and attoscience centers have the most challenging synchronization requirements of sub-fs timing precision to generate ultrashort X-ray pulses for the benefit of creating super-microscopes with sub-atomic spatiotemporal resolution. The critical task in these facilities is to synchronize various pulsed lasers and microwave sources across multi-kilometer distances as required for seeded FELs and attosecond pump-probe experiments. So far, there has been no timing distribution system meeting this strict requirement. Therefore, insufficient temporal precision provided by the current synchronization systems hinders the development of attosecond hard X-ray photon science facilities. The aim of this thesis is to devise a timing distribution system satisfying the most challenging synchronization requirements in science mandated by the next-generation photon science facilities. Using the pulsed-optical timing distribution approach, attosecond timing precision is realized by thoroughly investigating and eliminating the remaining noise sources in the synchronization system. First, optical and microwave timing detection schemes are further developed to support long-term stable, attosecond-precision measurements. Second, the feasibility of the master laser to support a kilometer-scale timing network with attosecond precision is examined by experimentally characterizing its free-running timing jitter and improving its long-term frequency stability with a sophisticated environmental insulation. Third, nonlinear pulse propagation inside optical fibers is studied

  10. The design, development, and flight test results of the Boeing 737 aircraft antennas for the ICAO demonstration of the TRSB microwave landing system

    Science.gov (United States)

    Campbell, T. G.; White, W. E.; Gilreath, M. C.

    1976-01-01

    The Research Support Flight System, a modified Boeing 737, was used to evaluate the performance of several aircraft antennas and locations for the Time Reference Scanning Beam (TRSB) Microwave Landing System (MLS). These tests were conducted at the National Aviation Facilities Experimental Center (NAFEC), Atlantic City, New Jersey on December 18, 1975. The flight tests measured the signal strength and all pertinent MLS data during a straight-in approach, a racetrack approach, and ICAO approach profiles using the independent antenna-receiver combinations simultaneously on the aircraft. Signal drop-outs were experienced during the various approaches but only a small percentage could be attributed to antenna pattern effects.

  11. Subsurface Emission Effects in AMSR-E Measurements: Implications for Land Surface Microwave Emissivity Retrieval

    Science.gov (United States)

    Galantowicz, John F.; Moncet, Jean-Luc; Liang, Pan; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    An analysis of land surface microwave emission time series shows that the characteristic diurnal signature associated with subsurface emission in sandy deserts carry over to arid and semi-arid region worldwide. Prior work found that diurnal variation of Special Sensor Microwave/Imager (SSM/I) brightness temperatures in deserts was small relative to International Satellite Cloud Climatology Project land surface temperature (LST) variation and that the difference varied with surface type and was largest in sand sea regions. Here we find more widespread subsurface emission effects in Advanced Microwave Scanning Radiometer-EOS (AMSR-E) measurements. The AMSR-E orbit has equator crossing times near 01:30 and 13 :30 local time, resulting in sampling when near-surface temperature gradients are likely to be large and amplifying the influence of emission depth on effective emitting temperature relative to other factors. AMSR-E measurements are also temporally coincident with Moderate Resolution Imaging Spectroradiometer (MODIS) LST measurements, eliminating time lag as a source of LST uncertainty and reducing LST errors due to undetected clouds. This paper presents monthly global emissivity and emission depth index retrievals for 2003 at 11, 19, 37, and 89 GHz from AMSR-E, MODIS, and SSM/I time series data. Retrieval model fit error, stability, self-consistency, and land surface modeling results provide evidence for the validity of the subsurface emission hypothesis and the retrieval approach. An analysis of emission depth index, emissivity, precipitation, and vegetation index seasonal trends in northern and southern Africa suggests that changes in the emission depth index may be tied to changes in land surface moisture and vegetation conditions

  12. Hanford Federal Facility state of Washington leased land

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This report was prepared to provide information concerning past solid and hazardous waste management practices for all leased land at the US DOE Hanford Reservation. This report contains sections including land description; land usage; ground water, air and soil monitoring data; and land uses after 1963. Numerous appendices are included which provide documentation of lease agreements and amendments, environmental assessments, and site surveys.

  13. Assessment of the consistency among global microwave land surface emissivity products

    Directory of Open Access Journals (Sweden)

    H. Norouzi

    2014-09-01

    Full Text Available The goal of this work is to inter-compare a number of global land surface emissivity products over various land-cover conditions to assess their consistency. Ultimately, the discrepancies between the studied emissivity products will help interpreting the divergences among numerical weather prediction models in which land emissivity is a key surface boundary parameter. The intercompared retrieved land emissivity products were generated over five-year period (2003–2007 using observations from the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E, Special Sensor Microwave Imager (SSM/I, The Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI and Windsat. First, all products were reprocessed in the same projection and spatial resolution as they were generated from sensors with various configurations. Then, the mean value and standard deviations of monthly emissivity values were calculated for each product to assess the spatial distribution of the consistencies/inconsistencies among the products across the globe. The emissivity values from four products were also compared to soil moisture estimates and satellite-based vegetation index to assess their sensitivities to the changes in land surface conditions. Results show that systematic differences among products exist and variation of emissivities at each product has similar frequency dependency at any land cover type. Monthly means of emissivity values from AMSR-E in the vertical and horizontal polarizations seem to be systematically lower across various land cover condition which may be attributed to the 1.30 a.m./p.m. overpass time of the sensor and possibly a residual skin temperature effect in the product. The standard deviation of the analysed products was the lowest (less than 0.01 in rain forest regions for all products and the highest in northern latitudes, above 0.04 for AMSR-E and SSM/I and around 0.03 for WindSat. Despite differences in absolute

  14. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  15. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  16. Guidance studies for curved, descending approaches using the Microwave Landing System (MLS)

    Science.gov (United States)

    Feather, J. B.

    1986-01-01

    Results for the Microwave Landing System (MLS) guidance algorithm development conducted under the Advance Transport Operating System (ATOPS) Technology Studies (NAS1-16202) are documented. The study consisted of evaluating guidance law for vertical and lateral path control, as well as speed control, for approaches not possible with the present Instrument Landing System (ILS) equipment. Several specific approaches were simulated using the MD-80 aircraft simulation program, including curved, descending (segmented glide slope), and decelerating paths. Emphasis was placed on development of guidance algorithms specifically for approaches at Burbank, where proposed flight demonstrations are planned. Results of this simulation phase are suitable for use in future fixed base simulator evaluations employing actual hardware (autopilot and a performance management system).

  17. Facile synthesis of Ni/ZnO composite: Morphology control and microwave absorption properties

    Science.gov (United States)

    Zhao, Biao; Shao, Gang; Fan, Bingbing; Guo, Wenhui; Xie, Yajun; Zhang, Rui

    2015-05-01

    In this work, Ni/ZnO composites with varying morphologies were synthesized by a facile hydrothermal method. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were performed to characterize Ni/ZnO composites. SEM images reveal that NH3·H2O concentration play a vital role on morphology of Ni/ZnO composite. The complex permittivity and permeability of three different morphologies of Ni/ZnO were measured in the frequency range of 1-18 GHz and their microwave absorption properties were investigated. The core-shell structured Ni/ZnO (ZnO polyhedron coating) composite prepared for 1.0 mL NH3·H2O shows excellent microwave absorption properties. A minimum reflection loss is -48.6 dB at 13.4 GHz and the corresponding thickness is 2.0 mm. The effective absorption (below -10 dB) can be tuned between 9.0 GHz and 18.0 GHz by adjusting thickness in 1.5-2.5 mm, and the frequency for RL exceeding -20 dB is located at 11.1-16.2 GHz with thickness of 1.8-2.2 mm. It is demonstrated that the polyhedron ZnO-coated Ni composite is a promising microwave absorbent with small thickness, strong absorption, and broad bandwidth.

  18. Microwave irradiation and instrumental behavior in rats: unitized irradiation and behavioral evaluation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lebovitz, R.M.; Seaman, R.L.

    1980-01-01

    A facility for the exposure of small animals to pulse-modulated microwave radiation (PM MWR) concurrent with their performance of operant behavioral tasks is described. The computer-managed facility comprises an array of 32 individual waveguide exposure cells, each enclosing instrumental conditioning apparatus within a plastic subhousing. The distribution of the microwave electric field intensity within the waveguide was measured by a nonperturbing probe and the modifications induced by the behavioral apparatus and animal within the waveguide determined. Input and interior voltage standing-wave ratios are presented to characterize the design of the chambers and to demonstrate the suitability of the chambers for whole-body irradiation of rat. The specific absorption rate (SAR) is presented utilizing data derived from incremental thermometric examination of saline loads and of selected sites in rat carcasses. This is compared with the whole-body SAR derived from the input/output energy balance equation for the waveguide. The results of continuous monitoring of the SAR by the latter method, while unrestrained rats were engaged in operant and exploratory behavior within the waveguide, are utilized to derive a relationship between chamber input power and the dose rate for adult rats behaviorally active within the waveguide. From these data, we conclude that the experimental array provides a practical method for exposing a large number of animals to PM MWR for long periods of time and coincident with the establishment and/or performance of complex operant behavior.

  19. Sample Federal Facility Land Use Control ROD Checklist and Suggested Language (LUC Checklist)

    Science.gov (United States)

    The LUC Checklist provides direction on describing and documenting land use controls (LUCs) in federal facility actrions under CERCLA in Records of Decision (RODs), remedial designs (RDs), and remedial action work plans (RAWPs).

  20. Biological Considerations in Land Use Planning for a Federal Facility

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document presents biological considerations of land use planning for the United States Department of Agriculture Beltsville Agricultural Research Center and for...

  1. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

    Science.gov (United States)

    Makridis, A; Chatzitheodorou, I; Topouridou, K; Yavropoulou, M P; Angelakeris, M; Dendrinou-Samara, C

    2016-06-01

    The application of ferrite magnetic nanoparticles (MNPs) in medicine finds its rapidly developing emphasis on heating mediators for magnetic hyperthermia, the ever-promising "fourth leg" of cancer treatment. Usage of MNPs depends largely on the preparation processes to select optimal conditions and effective routes to finely tailor MNPs. Microwave heating, instead of conventional heating offers nanocrystals at significantly enhanced rate and yield. In this work, a facile mass-production microwave hydrothermal synthetic approach was used to synthesize stable ferromagnetic manganese and cobalt ferrite nanoparticles with sizes smaller than 14 nm from metal acetylacetonates in the presence of octadecylamine. Prolonging the reaction time from 15 to 60 min, led to ferrites with improved crystallinity while the sizes are slight increased. The high crystallinity magnetic nanoparticles showed exceptional magnetic heating parameters. In vitro application was performed using the human osteosarcoma cell line Saos-2 incubated with manganese ferrite nanoparticles. Hyperthermia applied in a two cycle process, while AC magnetic field remained on until the upper limit of 45 °C was achieved. The comparative results of the AC hyperthermia efficiency of ferrite nanoparticles in combination with the in vitro study coincide with the magnetic features and their tunability may be further exploited for AC magnetic hyperthermia driven applications.

  2. Automated Computer-Based Facility for Measurement of Near-Field Structure of Microwave Radiators and Scatterers

    DEFF Research Database (Denmark)

    Mishra, Shantnu R.;; Pavlasek, Tomas J. F.;; Muresan, Letitia V.

    1980-01-01

    An automatic facility for measuring the three-dimensional structure of the near fields of microwave radiators and scatterers is described. The amplitude and phase for different polarization components can be recorded in analog and digital form using a microprocessor-based system. The stored data...

  3. Facile synthesis of allyl resinate monomer in an aqueous solution under microwave irradiation

    Indian Academy of Sciences (India)

    Yanju Lu; Mixia Wang; Zhendong Zhao; Yuxiang Chen; Shichao Xu; Jing Wang; Liangwu Bi

    2015-07-01

    We have developed a facile method for production of allyl resinate monomer (allyl rosin ester) via a phase transfer reaction under microwave irradiation. The synthesis of allyl resinate was conducted using allyl chloride and sodium resinate as starting materials in aqueous solution at 50°C for 30 min with a yield of 94.7%, which is 20% higher than conventional heating method. The products precipitated spontaneously from the aqueous phase after reaction, which significantly facilitated the subsequent separation of monomer products. The synthesized monomer product appeared as a viscous liquid, with a viscosity of 460 mPa·s at 25°C and a density of 1.0469 g/cm3. The physical and chemical properties suggested that the synthesized monomer has great potential for free radical polymerization.

  4. Hazardous Waste Land Disposal Facility Assessment. Volume 1

    Science.gov (United States)

    1988-09-01

    Facilities ( DALF ) at RVA" (USATHANA, 1984) provided the basis for the volume estimates for siting a disposal facility as discussed in Appendix 1.3. The... DALF also addressed on-site disposal options in addition to other technologies. This study supported the on-site disposal option by stating that a...impermeable bedrock do not exist at RMA. The DALF , drawing on the conclusions of the earlier WES 1983 report, recoumended a site in the northeast quarter of

  5. Synthetic tests of passive microwave brightness temperature assimilation over snow covered land using machine learning algorithms

    Science.gov (United States)

    Forman, B. A.

    2015-12-01

    A novel data assimilation framework is evaluated that assimilates passive microwave (PMW) brightness temperature (Tb) observations into an advanced land surface model for the purpose of improving snow depth and snow water equivalent (SWE) estimates across regional- and continental-scales. The multifrequency, multipolarization framework employs machine learning algorithms to predict PMW Tb as a function of land surface model state information and subsequently merges the predicted PMW Tb with observed PMW Tb from the Advanced Microwave Scanning Radiometer (AMSR-E). The merging procedure is predicated on conditional probabilities computed within a Bayesian statistical framework using either an Ensemble Kalman Filter (EnKF) or an Ensemble Kalman Smoother (EnKS). The data assimilation routine produces a conditioned (updated) estimate of modeled SWE that is more accurate and contains less uncertainty than the model without assimilation. A synthetic case study is presented for select locations in North America that compares model results with and without assimilation against synthetic observations of snow depth and SWE. It is shown that the data assimilation framework improves modeled estimates of snow depth and SWE during both the accumulation and ablation phases of the snow season. Further, it is demonstrated that the EnKS outperforms the EnKF implementation due to its ability to better modulate high frequency noise into the conditioned estimates. The overarching findings from this study demonstrate the feasibility of machine learning algorithms for use as an observation model operator within a data assimilation framework in order to improve model estimates of snow depth and SWE across regional- and continental-scales.

  6. A Method to Retrieve Rainfall Rate Over Land from TRMM Microwave Imager Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Over tropical land regions, rain rate maxima in mesoscale convective systems revealed by the Precipitation Radar (PR) flown on the Tropical Rainfall Measuring Mission (TRMM) satellite are found to correspond to thunderstorms, i.e., Cbs. These Cbs are reflected as minima in the 85 GHz brightness temperature, T85, observed by the TRMM Microwave Imager (TMI) radiometer. Because the magnitude of TMI observations do not discriminate satisfactorily convective and stratiform rain, we developed here a different TMI discrimination method. In this method, two types of Cbs, strong and weak, are inferred from the Laplacian of T85 at minima. Then, to retrieve rain rate, where T85 is less than 270 K, a weak (background) rain rate is deduced using T85 observations. Furthermore, over a circular area of 10 km radius centered at the location of each T85 minimum, an additional Cb component of rain rate is added to the background rain rate. This Cb component of rain rate is estimated with the help of (T19-T37) and T85 observations. Initially, our algorithm is calibrated with the PR rain rate measurements from 20 MCS rain events. After calibration, this method is applied to TMI data taken from several tropical land regions. With the help of the PR observations, we show that the spatial distribution and intensity of rain rate over land estimated from our algorithm are better than those given by the current TMI-Version-5 Algorithm. For this reason, our algorithm may be used to improve the current state of rain retrievals on land.

  7. Simulation of snow microwave radiance observations using a coupled land surface- radiative transfer models

    Science.gov (United States)

    Toure, A. M.; Rodell, M.; Hoar, T. J.; Kwon, Y.; Yang, Z.; Zhang, Y.; Beaudoing, H.

    2013-12-01

    Radiance assimilation (RA) has been used in operational numerical weather forecasting for generating realistic initial and boundary conditions for the last two decades. Previous studies have shown that the same approach can be used to characterize seasonal snow. Since the penetration depth of microwaves depends essentially on snow physical properties, studies have also shown that for RA to be successful, it is crucial that the land surface model (LSM) represents with great fidelity snow physical properties such as the effective grain size, the temperature, the stratigraphy, the densification and the melt/refreeze processes. The Community Land Model version 4 (CLM4), the land model component of the Community Earth System Model (CESM), describes the physical, chemical, biological, and hydrological processes by which terrestrial ecosystems interact with climate across a variety of spatial and temporal scales. Sub-grid heterogeneity of the CLM4 is represented by fractional coverage of glacier, lake, wetland, urban, and vegetation land cover types. The vegetation portion is further divided into mosaic of plant functional types (pfts) each with its own leaf and stem area index and canopy height. Processes such as snow accumulation, depletion, densification, metamorphism, percolation, and refreezing of water are represented by a state-of-the-art multi-layer (up to five layers) snow model. Each snow layer is characterized by its thickness, ice mass, liquid water content, temperature, and effective grain radius. The model is considered to be one of the most sophisticated snow models ever within a general circulation model. One of the main challenges in simulating the radiance observed by a radiometer on-board a satellite is the spatial heterogeneity of the land within the footprint of the radiometer. Since CLM4 has the capability to represent the sub-grid heterogeneity, it is perfect candidate for a model operator for simulating the observed brightness temperature (Tb). The

  8. Using Microwave Observations to Estimate Land Surface Temperature during Cloudy Conditions

    Science.gov (United States)

    Holmes, T. R.; Crow, W. T.; Hain, C.; Anderson, M. C.

    2014-12-01

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and passive microwave observations (MW). TIR is the most commonly used approach and the method of choice to provide standard LST products for various satellite missions. MW-based LST retrievals on the other hand are not as widely adopted for land applications; currently their principle use is in soil moisture retrieval algorithms. MW and TIR technologies present two highly complementary and independent means of measuring LST. MW observations have a high tolerance to clouds but a low spatial resolution, and TIR has a high spatial resolution with temporal sampling restricted to clear skies. The nature of the temperature at the very surface layer of the land makes it difficult to combine temperature estimates between different methods. The skin temperature is characterized by a strong diurnal cycle that is dependant in timing and amplitude on the exact sensing depth and thermal properties of the vegetation. This paper builds on recent progress in characterizing the main structural components of the DTC that explain differences in TIR and MW estimates of LST. Spatial patterns in DTC timing (phase lag with solar noon) and DTC amplitude have been calculated for TIR, MW and compared to weather prediction estimates. Based on these comparisons MW LST can be matched to the TIR record. This paper will compare in situ measurements of LST with satellite estimates from (downscaled) TIR and (reconciled) MW products. By contrasting the validation results of clear sky days with those of cloudy days the expected tolerance to clouds of the MW observations will be tested. The goal of this study is to determine the weather conditions in which MW can supplement the TIR LST record.

  9. Parametrization of Land Surface Temperature Fields with Optical and Microwave Remote Sensing in Brazil's Atlantic Forest

    Science.gov (United States)

    McDonald, K. C.; Khan, A.; Carnaval, A. C.

    2016-12-01

    Brazil is home to two of the largest and most biodiverse ecosystems in the world, primarily encompassed in forests and wetlands. A main region of interest in this project is Brazil's Atlantic Forest (AF). Although this forest is only a fraction of the size of the Amazon rainforest, it harbors significant biological richness, making it one of the world's major hotspots for biodiversity. The AF is located on the East to Southeast region of Brazil, bordering the Atlantic Ocean. As luscious and biologically rich as this region is, the area covered by the Atlantic Forest has been diminishing over past decades, mainly due to human influences and effects of climate change. We examine 1 km resolution Land Surface Temperature (LST) data from NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) combined with 25 km resolution radiometric temperature derived from NASA's Advanced Microwave Scanning Radiometer on EOS (AMSR-E) to develop a capability employing both in combination to assess LST. Since AMSR-E is a microwave remote sensing instrument, products derived from its measurements are minimally effected by cloud cover. On the other hand, MODIS data are heavily influenced by cloud cover. We employ a statistical downscaling technique to the coarse-resolution AMSR-E datasets to enhance its spatial resolution to match that of MODIS. Our approach employs 16-day composite MODIS LST data in combination with synergistic ASMR-E radiometric brightness temperature data to develop a combined, downscaled dataset. Our goal is to use this integrated LST retrieval with complementary in situ station data to examine associated influences on regional biodiversity

  10. Services to Operate and Maintain Walter Reed Army Institute of Research’s (WRAIR) Microwave Facility.

    Science.gov (United States)

    1994-06-20

    tactile startle by pre-pulse. The microwave pre-pulse used was a single 8 / pulse generated by an Epsco PH40K at 5 kW peak power which provided a 100 kW...a Epsco PH40 K * transmitter was used as a test stimulus. Gated CWs were used instead of high peak 72 power pulsed microwave stimuli. Microwave

  11. Experimental facility for testing nuclear instruments for planetary landing missions

    Science.gov (United States)

    Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey

    2017-04-01

    The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.

  12. Facile Microwave-Assisted Synthesis of Klockmannite CuSe Nanosheets and Their Exceptional Electrical Properties

    Science.gov (United States)

    Liu, Yong-Qiang; Wang, Feng-Xia; Xiao, Yan; Peng, Hong-Dan; Zhong, Hai-Jian; Liu, Zheng-Hui; Pan, Ge-Bo

    2014-08-01

    Klockmannite copper selenide nanosheets (CuSe NSs) are synthesized by a facile microwave-assisted method and fully characterized. The nanosheets have smooth surface and hexagonal shape. The lateral size is 200-500 nm × 400-800 nm and the thickness is 55 +/- 20 nm. The current-voltage characteristics of CuSe NS films show unique Ohmic and high-conducting behaviors, comparable to the thermally-deposited gold electrode. The high electrical conductivity of CuSe NSs implies their promising applications in printed electronics and nanodevices. Moreover, the local electrical variation is observed, for the first time, within an individual CuSe NS at low bias voltages (0.1 ~ 3 V) by conductive atomic force microscopy (C-AFM). This is ascribed to the quantum size effect of NS and the presence of Schottky barrier. In addition, the influence of the molar ratio of Cu2+/SeO2, reaction temperature, and reaction time on the growth of CuSe NSs is explored. The template effect of oleylamine and the intrinsic crystal nature of CuSe NS are proposed to account for the growth of hexagonal CuSe NSs.

  13. Microwave-controlled facile synthesis of well-defined PbS hexapods.

    Science.gov (United States)

    Chen, Ganchao; Fan, Junbing; Zhao, Tian; Xu, Xiaobo; Zhu, Mingqiang; Tang, Zhiyong

    2011-09-01

    Controlled synthesis of well-defined PbS nanostructures in terms of size and shape has been strongly motivated by their potential applications ranging from solar photovoltaics to near-infrared optics. Hereby, we report a facile microwave-assistant method for ultrafast fabrication of PbS nanostructures, by which uniform PbS hexapods with six arms stretching along six (100) directions of the crystal seeds have been easily synthesized within minutes. Various morphologies including rectangle plates, uniform cubes as well as nanoparticles were obtained by tuning the parameters for the formation of PbS nanocrystals. The results reveal that both concentration and feed ratio of precursors determine the growth of PbS nanocrystals significantly. And higher initial precursor concentration favors the formation of the hexapod structures. The process of crystal growth is monitored through scanning electron microscopy of PbS from different durations of the reaction. This controlled ultrafast synthesis of PbS structures at nanometer and micrometer scale with various morphologies may be promising in large scale fabrication of nanostructures. Based on the systematically study of the growth process, a possible mechanism for the formation of the hexapod-like structure is discussed.

  14. Microwave-assisted Facile and Ultrafast Growth of ZnO Nanostructures and Proposition of Alternative Microwave-assisted Methods to Address Growth Stoppage

    Science.gov (United States)

    Rana, Abu Ul Hassan Sarwar; Kang, Mingi; Kim, Hyun-Seok

    2016-04-01

    The time constraint in the growth of ZnO nanostructures when using a hydrothermal method is of paramount importance in contemporary research, where a long fabrication time rots the very essence of the research on ZnO nanostructures. In this study, we present the facile and ultrafast growth of ZnO nanostructures in a domestic microwave oven within a pressurized environment in just a few minutes. This method is preferred for the conventional solution-based method because of the ultrafast supersaturation of zinc salts and the fabrication of high-quality nanostructures. The study of the effect of seed layer density, growth time, and the solution’s molar concentration on the morphology, alignment, density, and aspect ratio of ZnO nanorods (ZNRs) is explored. It is found in a microwave-assisted direct growth method that ~5 mins is the optimum time beyond which homogeneous nucleation supersedes heterogeneous nucleation, which results in the growth stoppage of ZNRs. To deal with this issue, we propound different methods such as microwave-assisted solution-replacement, preheating, and PEI-based growth methods, where growth stoppage is addressed and ZNRs with a high aspect ratio can be grown. Furthermore, high-quality ZnO nanoflowers and ZnO nanowalls are fabricated via ammonium hydroxide treatment in a very short time.

  15. Renewable Energy Assessment of Bureau of Reclamation Land and Facilities Using Geographic Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heimiller, D.; Haase, S.; Melius, J.

    2013-05-01

    This report summarizes results of geographic information system screening for solar and wind potential at select Bureau of Reclamation lands in the western United States. The study included both utility-scale and facility-scale potential. This study supplements information in the report titled Renewable Energy Assessment for the Bureau of Reclamation: Final Report.

  16. IsoDAR@KamLAND: A Conceptual Design Report for the Technical Facility

    CERN Document Server

    Abs, M; Alonso, J R; Axani, S; Barletta, W A; Barlow, R; Bartoszek, L; Bungau, A; Calabretta, L; Calanna, A; Campo, D; Castro, G; Celona, L; Collin, G H; Conrad, J M; Gammino, S; Johnson, R; Karagiorgi, G; Kayser, S; Kleeven, W; Kolano, A; Labrecque, F; Loinaz, W A; Minervini, J; Moulai, M H; Okuno, H; Owen, H; Papavassiliou, V; Shaevitz, M H; Shimizu, I; Shokair, T M; Sorensen, K F; Spitz, J; Toups, M; Vagins, M; Van Bibber, K; Wascko, M O; Winklehner, D; Winslow, L A; Yang, J J

    2015-01-01

    This conceptual design report describes the technical facility for the IsoDAR electron-antineutrino source at KamLAND. The IsoDAR source will allow an impressive program of neutrino oscillation and electroweak physics to be performed at KamLAND. This report provides information on the physics case, the conceptual design for the subsystems, alternative designs considered, specifics of installation at KamLAND, and identified needs for future development. We discuss the risks we have identified and our approach to mitigating those risks with this design. A substantial portion of the conceptual design is based on three years of experimental efforts and on industry experience. This report also includes information on the conventional facilities.

  17. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...... for food crops, represent significant potential for growing biomass that could be used for energy. This biomass could be used to supply power plants of up to 15MWe in accordance with heat demands of the chosen locations. The methodology for regional energy potential assessment was elaborated in previous...... work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10PJ/year. The added value of fruit trees pruning...

  18. Microwave-assisted facile and rapid Friedel-Crafts benzoylation of arenes catalysed by bismuth trifluoromethanesulfonate

    DEFF Research Database (Denmark)

    Tran, Phoung Hoang; Hansen, Poul Erik; Pham, Thuy Than;

    2014-01-01

    The catalytic activity of metal triflates was investigated in Friedel–Crafts benzoylation under microwave irradiation. Friedel–Crafts benzoylation with benzoyl chloride of a variety of arenes containing electron-rich and electron-poor rings using bismuth triflate under microwave irradiation is de...

  19. Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN

    Science.gov (United States)

    Shwetha, H. R.; Kumar, D. Nagesh

    2016-07-01

    Land Surface Temperature (LST) with high spatio-temporal resolution is in demand for hydrology, climate change, ecology, urban climate and environmental studies, etc. Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the most commonly used sensors owing to its high spatial and temporal availability over the globe, but is incapable of providing LST data under cloudy conditions, resulting in gaps in the data. In contrast, microwave measurements have a capability to penetrate under clouds. The current study proposes a methodology by exploring this property to predict high spatio-temporal resolution LST under cloudy conditions during daytime and nighttime without employing in-situ LST measurements. To achieve this, Artificial Neural Networks (ANNs) based models are employed for different land cover classes, utilizing Microwave Polarization Difference Index (MPDI) at finer resolution with ancillary data. MPDI was derived using resampled (from 0.25° to 1 km) brightness temperatures (Tb) at 36.5 GHz channel of dual polarization from Advance Microwave Scanning Radiometer (AMSR)-Earth Observing System and AMSR2 sensors. The proposed methodology is tested over Cauvery basin in India and the performance of the model is quantitatively evaluated through performance measures such as correlation coefficient (r), Nash Sutcliffe Efficiency (NSE) and Root Mean Square Error (RMSE). Results revealed that during daytime, AMSR-E(AMSR2) derived LST under clear sky conditions corresponds well with MODIS LST resulting in values of r ranging from 0.76(0.78) to 0.90(0.96), RMSE from 1.76(1.86) K to 4.34(4.00) K and NSE from 0.58(0.61) to 0.81(0.90) for different land cover classes. During nighttime, r values ranged from 0.76(0.56) to 0.87(0.90), RMSE from 1.71(1.70) K to 2.43(2.12) K and NSE from 0.43(0.28) to 0.80(0.81) for different land cover classes. RMSE values found between predicted LST and MODIS LST during daytime under clear sky conditions were within acceptable

  20. Disposal facilities on land for low and intermediate level radioactive wastes: guidance on requirements for qauthorisation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This document, published by the Environmental Agency, contains guidance on the principles and requirements against which applications for authorisation to build or operate a land-based specialised disposal facility for solid low or intermediate level wastes, will be assessed, with the aim of protecting the public from hazards which may arise from their disposal to the environment. The guide provides information on terms used, the framework governing radioactive waste disposal and the Agencies` expectations of applicants, including radiological and technical requirements. (UK).

  1. A Facile Microwave-Assisted Synthesis of Some Fused Pyrimidine Derivatives

    Directory of Open Access Journals (Sweden)

    S. A. Al-Issa

    2014-06-01

    Full Text Available The highly accelerated synthesis of thienopyrimidinones, theino- pyrimidines,thioxotheinopyrimidinones and a thienotriazolopyrimidinone derivatives under microwave irradiation is reported. Compared to conventional conditions, microwaves method offered several advantage likes short time, good yields, simple procedure, mild conditions and easy workup. The structure of synthesized compounds have been characterized on the basis of their elemental analysis and spectral data, and screened for their antimicrobial activity.

  2. Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach

    Science.gov (United States)

    Liu, Guosheng; Seo, Eun-Kyoung

    2013-02-01

    has been long believed that the dominant microwave signature of snowfall over land is the brightness temperature decrease caused by ice scattering. However, our analysis of multiyear satellite data revealed that on most of occasions, brightness temperatures are rather higher under snowfall than nonsnowfall conditions, likely due to the emission by cloud liquid water. This brightness temperature increase masks the scattering signature and complicates the snowfall detection problem. In this study, we propose a statistical method for snowfall detection, which is developed by using CloudSat radar to train high-frequency passive microwave observations. To capture the major variations of the brightness temperatures and reduce the dimensionality of independent variables, the detection algorithm is designed to use the information contained in the first three principal components resulted from Empirical Orthogonal Function (EOF) analysis, which capture ~99% of the total variances of brightness temperatures. Given a multichannel microwave observation, the algorithm first transforms the brightness temperature vector into EOF space and then retrieves a probability of snowfall by using the CloudSat radar-trained look-up table. Validation has been carried out by case studies and averaged horizontal snowfall fraction maps. The result indicated that the algorithm has clear skills in identifying snowfall areas even over mountainous regions.

  3. Sand Dune Movement in Xinjiang of Northwest China and Prevention of Desertification by Windbreak Facilities in Arid Lands

    National Research Council Canada - National Science Library

    T. MAKI; M. DU; R. SAMESHIMA; B. PAN

    1996-01-01

    .... There are various countermeasure against desertification in arid lands of the world. In this paper, we demonstrated the situation of sand erosion and movement of sand dunes, and we propose the prevention method by using windbreak facilities, i. e...

  4. Experimental facility for investigation of gaseous pollutants removal process stimulated by electron beam and microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z.; Chmielewski, A.G.; Bulka, S.; Roman, K.; Licki, J. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1994-12-31

    A laboratory unit for the investigation of toxic gases removal from flue gases based on an ILU 6 accelerator has been built at the Institute of Nuclear Chemistry and Technology. This installation was provided with independent pulsed and continuous wave (c.w.) microwave generators to create electrical discharge and another pulsed microwave generator for plasma diagnostics. This allows to investigate a combined removal process based on the simultaneous use of the electron beam and streams of microwave energy in one reaction vessel. Two heating furnaces, each of them being a water-tube boiler with 100 kW thermal power, were applied for the production of combustion gas with flow rates 5-400 Nm{sup 3}/h. Proper composition of the flue gas was obtained by introducing such components as SO{sub 2}, NO and NH{sub 3} to the gas stream. The installation consists of: inlet system (two boilers - house heating furnace, boiler pressure regulator, SO{sub 2}, NO and NH{sub 3} dosage system, analytical equipment); reaction vessel where the electron beam from ILU 6 accelerator and microwave streams from the pulse and c.w. generators can be introduced simultaneously or separately and plasma diagnostic pulsed microwave stream can be applied; outlet system (retention chamber, filtration unit, fan, off-take duct of gas, analytical equipment). The experiments have demonstrated that it is possible to investigate the removal process in the presence of NH{sub 3} by separate or simultaneous application of the electron beam and of microwave energy streams under stable experimental conditions. (author). 15 refs, 26 figs, 5 tabs.

  5. A facile self-template strategy for synthesizing 1D porous Ni@C nanorods towards efficient microwave absorption

    Science.gov (United States)

    Zhang, Yanan; Zhang, Xingmiao; Quan, Bin; Ji, Guangbin; Liang, Xiaohui; Liu, Wei; Du, Youwei

    2017-03-01

    Ni@C composites, which simultaneously possess porous, core–shell and 1D nanostructures have been synthesized with a facile self-template strategy. The precursors were obtained by a hydrothermal process using NiCl2 · 6H2O and nitrilotriacetic acid as the starting material and then annealed at 400 °C, 500 °C, and 600 °C. The Ni@C composites annealed at 500 °C display a nanorod feature with a length of ∼3 μm and diameter of 230–500 nm. In addition, about 3 nm carbon shells and 4 nm Ni cores can be found in Ni@C nanorods. Attributed to the interconnected mesoporous texture in nanorods, strengthened interfacial polarization from core–shell structure, and better impedance matching benefiting from a great deal of pores, Ni@C nanorod composites exhibit perfect microwave absorption performance. The minimum reflection loss (RL) value of ‑26.3 dB can be gained at 10.8 GHz with a thickness of 2.3 mm. Moreover, the effective bandwidth (RL ≤ ‑10 dB) can be achieved, 5.2 GHz (12.24–17.4 GHz) under an absorber thickness of 1.8 mm, indicating its great potential in the microwave absorption field. Considering this technique is facile and effective, our study may provide a good reference for the synthesis of 1D carbon-based microwave absorbers with core–shell nanostructure.

  6. Using a Support Vector Machine and a Land Surface Model to Estimate Large-Scale Passive Microwave Temperatures over Snow-Covered Land in North America

    Science.gov (United States)

    Forman, Barton A.; Reichle, Rolf Helmut

    2014-01-01

    A support vector machine (SVM), a machine learning technique developed from statistical learning theory, is employed for the purpose of estimating passive microwave (PMW) brightness temperatures over snow-covered land in North America as observed by the Advanced Microwave Scanning Radiometer (AMSR-E) satellite sensor. The capability of the trained SVM is compared relative to the artificial neural network (ANN) estimates originally presented in [14]. The results suggest the SVM outperforms the ANN at 10.65 GHz, 18.7 GHz, and 36.5 GHz for both vertically and horizontally-polarized PMW radiation. When compared against daily AMSR-E measurements not used during the training procedure and subsequently averaged across the North American domain over the 9-year study period, the root mean squared error in the SVM output is 8 K or less while the anomaly correlation coefficient is 0.7 or greater. When compared relative to the results from the ANN at any of the six frequency and polarization combinations tested, the root mean squared error was reduced by more than 18 percent while the anomaly correlation coefficient was increased by more than 52 percent. Further, the temporal and spatial variability in the modeled brightness temperatures via the SVM more closely agrees with that found in the original AMSR-E measurements. These findings suggest the SVM is a superior alternative to the ANN for eventual use as a measurement operator within a data assimilation framework.

  7. L band microwave remote sensing and land data assimilation improve the representation of prestorm soil moisture conditions for hydrologic forecasting

    Science.gov (United States)

    Crow, W. T.; Chen, F.; Reichle, R. H.; Liu, Q.

    2017-06-01

    Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i.e., total streamflow divided by total rainfall accumulation in depth units) and prestorm surface soil moisture estimates from a range of surface soil moisture data products. Results demonstrate that both satellite-based, L band microwave radiometry and the application of land data assimilation techniques have significantly improved the utility of surface soil moisture data sets for forecasting streamflow response to future rainfall events.type="synopsis">type="main">Plain Language SummaryForecasting streamflow conditions is important for minimizing loss of life and property during flooding and adequately planning for low streamflow conditions accompanying drought. One way to improve these forecasts is measuring the amount of water in the soil—since soil moisture conditions determine what fraction of rainfall will run off horizontally into stream channels (versus vertically infiltrate into the soil column). Within the past 5 years, there have been important advances in our ability to monitor soil moisture over large scales using both satellite-based sensors and the application of new land data assimilation techniques. This paper illustrates that these advances have significantly improved our capacity to forecast how much streamflow will be generated by future precipitation events. These results may eventually be used by operational forecasters to improve flash flood forecasting and agricultural water use management.

  8. Facile microwave synthesis, characterization, and solar cell application of selenium nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Panahi-Kalamuei, Mokhtar [Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317-51167, Kashan (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317-51167, Kashan (Iran, Islamic Republic of); Hosseinpour-Mashkani, S. Mostafa [Young Researchers and Elites Club, Kashan Branch, Islamic Azad University, Kashan (Iran, Islamic Republic of)

    2014-12-25

    Highlights: • Selenium (Se) nanoparticles were synthesized via a simple microwave method. • The effects of preparation parameters were investigated. • A preliminary study on the possibility of developing a solar cell having FTO/TiO{sub 2}/Se/Pt-FTO. - Abstract: In the current study, selenium (Se) nanoparticles with hexagonal phase were synthesized by applying microwave irradiation using selenium tetrachloride as a starting reagent in distilled water at various conditions. Se nanoparticles were formed using hydrazine in short reaction time (4 min). The effects of reaction time, irradiation power, and types of surfactant including sodium dodecyl sulfate (SDS), polyethylene glycol 600 (PEG 600), and cetyltrimethylammonium bromide (CTAB) on the particle size of the product were investigated. To fabricate a FTO/TiO{sub 2}/Se/Pt-FTO and FTO/Se/CdS/Pt-FTO solar cell, selenium film was directly deposited on top of the TiO{sub 2} and FTO glass prepared by Doctor’s blade method, respectively. Solar cell results indicate that an inexpensive solar cell could be developed by synthesis of Se nanoparticles through microwave method.

  9. Lunar landing and launch facilities (Complex 39L): Guidance systems and propellant systems

    Science.gov (United States)

    1989-01-01

    After a general, overall definition of Complex 39L during the previous two years, the 1988-89 projects were chosen to focus on more specific aspects, specifically, guidance systems and propellant systems. Six teams or subtasks were formulated: cascade refrigeration for boil-off recovery of cryogenic storage vessels; lunar ground-based radar system to track space vehicles; microwave altimeter for spacecraft; development of a computational model for the determination of lunar surface and sub-surface temperatures; lunar cryogenic facility for the storage of fuels; and lunar lander fuel inventory tent for the storage of cryogenic vessels. At the present time, a cascade refrigeration system for a cryogenic boil-off recovery system has been designed. This is to serve as a baseline system. The ground-based tracking system uses existing technology to implement a reliable tracking radar for use on the lunar surface. A prototype has been constructed. The microwave altimeter is for use on lunar landers. It makes use of the Doppler effect to measure both altitude and the vertical velocity component of the spacecraft. A prototype has been constructed. A computational model that predicts the spatial and temporal temperature profiles of the lunar subsurface was formulated. Propellant storage vessels have been designed. A support for these vessels which minimizes heat leaks was also designed. Further work on the details of the Fuel Inventory Tent (FIT) was performed. While much design work on the overall Complex 39L remains to be done, significant new work has been performed in the subject areas.

  10. Wireless Channel Characterization: Modeling the 5 GHz Microwave Landing System Extension Band for Future Airport Surface Communications

    Science.gov (United States)

    Matolak, D. W.; Apaza, Rafael; Foore, Lawrence R.

    2006-01-01

    We describe a recently completed wideband wireless channel characterization project for the 5 GHz Microwave Landing System (MLS) extension band, for airport surface areas. This work included mobile measurements at large and small airports, and fixed point-to-point measurements. Mobile measurements were made via transmission from the air traffic control tower (ATCT), or from an airport field site (AFS), to a receiving ground vehicle on the airport surface. The point-to-point measurements were between ATCT and AFSs. Detailed statistical channel models were developed from all these measurements. Measured quantities include propagation path loss and power delay profiles, from which we obtain delay spreads, frequency domain correlation (coherence bandwidths), fading amplitude statistics, and channel parameter correlations. In this paper we review the project motivation, measurement coordination, and illustrate measurement results. Example channel modeling results for several propagation conditions are also provided, highlighting new findings.

  11. High-Resolution, Near Real-Time Simulation of Microwave Radiance Using a Simple Land-Cover Based Emissivity Prior

    Directory of Open Access Journals (Sweden)

    Dimitrios Katsanos

    2014-01-01

    Full Text Available Satellite simulators are used to calculate the brightness temperature Tb that would be measured by a space borne sensor under a set of atmospheric conditions accounting for the radiometric characteristics of the sensor and the orbital parameters of the satellite. In this study, a simple approach is proposed for the parameterization of emissivity over land, a key parameter for the calculation of microwave Tb. The rationale is to simulate a large ensemble of emissivity values for each frequency and surface characteristics and then relate the most likely observed value with soil characteristics. The derived emissivity values are used for the simulation of Tb and simulated radiance is then compared with satellite observations. It is shown that this method improves the simulation of radiance and that it is suitable to provide a first guess of the emissivity value (a prior that can then be refined using iterative procedures.

  12. A facile microwave-assisted synthesis of 8,9-cycloalkathieno[3,2-] [1,2,4]triazolo[1,5-]pyrimidin-5(6)-ones

    Indian Academy of Sciences (India)

    Rajwinder Kaur; D Pran Kishore; B Lakshmi Narayana; K Venkat Rao; C Balakumar; V Rajkumar; A Raghuram Rao

    2011-01-01

    A new series of fused thieno[3,2-][1,2,4]triazolo[1,5-]pyrimidinones was synthesized by condensation of ethyl-3-cyano-4,5,6,7-tetrahydrobenzo[]thiophene-2-yl carbamate with aryl acid hydrazides in quantitative yields using a facile, one-pot procedure under microwave-assisted conditions.

  13. Facile Formation of Acetic Sulfuric Anhydride in a Supersonic Jet: Characterization by Microwave Spectroscopy and Computational Chemistry

    Science.gov (United States)

    Huff, Anna; Smith, CJ; Mackenzie, Becca; Leopold, Ken

    2017-06-01

    Sulfur trioxide and acetic acid are shown to react under supersonic jet conditions to form acetic sulfuric anhydride, CH_{3}COOSO_{2}OH. Rotational spectra of the parent, ^{34}S, methyl ^{13}C, and fully deuterated isotopologues have been observed by chirped-pulse and conventional cavity microwave spectroscopy. A and E internal rotation states have been observed for each isotopologue studied and the methyl group internal rotation barriers have been determined (241.043(65) \\wn for the parent species). The reaction is analogous to that of our previous report on the reaction of sulfur trioxide and formic acid. DFT and CCSD calculations are also presented which indicate that the reaction proceeds via a π_{2} + π_{2} + σ_{2} cycloaddition reaction. These results support our previous conjecture that the reaction of SO_{3} with carboxylic acids is both facile and general. Possible implications for atmospheric aerosol formation are discussed.

  14. Using microwave observations to estimate land surface temperature during cloudy conditions

    Science.gov (United States)

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and...

  15. Increased respiratory disease mortality at a microwave popcorn production facility with worker risk of bronchiolitis obliterans.

    Directory of Open Access Journals (Sweden)

    Cara N Halldin

    Full Text Available BACKGROUND: Bronchiolitis obliterans, an irreversible lung disease, was first associated with inhalation of butter flavorings (diacetyl in workers at a microwave popcorn company. Excess rates of lung-function abnormalities were related to cumulative diacetyl exposure. Because information on potential excess mortality would support development of permissible exposure limits for diacetyl, we investigated respiratory-associated mortality during 2000-2011 among current and former workers at this company who had exposure to flavorings and participated in cross-sectional surveys conducted between 2000-2003. METHODS: We ascertained workers' vital status through a Social Security Administration search. Causes of death were abstracted from death certificates. Because bronchiolitis obliterans is not coded in the International Classification of Disease 10(th revision (ICD-10, we identified respiratory mortality decedents with ICD-10 codes J40-J44 which encompass bronchitis (J40, simple and mucopurulent chronic bronchitis (J41, unspecified chronic bronchitis (J42, emphysema (J43, and other chronic obstructive pulmonary disease (COPD (J44. We calculated expected number of deaths and standardized mortality ratios (SMRs with 95% confidence intervals (CI to determine if workers exposed to diacetyl experienced greater respiratory mortality than expected. RESULTS: We identified 15 deaths among 511 workers. Based on U.S. population estimates, 17.39 deaths were expected among these workers (SMR = 0.86; CI:0.48-1.42. Causes of death were available for 14 decedents. Four deaths among production and flavor mixing workers were documented to have a multiple cause of 'other COPD' (J44, while 0.98 'other COPD'-associated deaths were expected (SMR = 4.10; CI:1.12-10.49. Three of the 4 'other COPD'-associated deaths occurred among former workers and workers employed before the company implemented interventions reducing diacetyl exposure in 2001. CONCLUSION: Workers

  16. Microwave-assisted facile green synthesis of silver nanoparticles and spectroscopic investigation of the catalytic activity

    Indian Academy of Sciences (India)

    Siby Joseph; Beena Mathew

    2015-06-01

    Silver nanoparticles have been successfully synthesized in aqueous medium by a green, rapid and costefficient synthetic approach based on microwave irradiation. In this study, iota-carrageenan (I-carrageenan) is used both as reducing and stabilizing agent. The formation of nanoparticles is determined using UV–vis, Fourier transform infrared (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) and high-resolution-transmission electron microscopic (HR-TEM) analysis. Transmission electron microscopic (TEM) images show that the nanoparticles are of spherical shape with an average diameter of 18.2 nm. I-carrageenan-stabilized silver nanoparticles show outstanding catalytic activity for the reduction of 4-nitrophenol in the presence of NaBH4 in aqueous medium. The reaction follows pseudo-first-order kinetics and the reaction rate increases with the increase in amount of the catalyst. The study of the temperature dependence of reaction rate gives activation energy of 42.81 kJ mol−1. The synthesized silver nanoparticles are anticipated to be a promising material for pollution abatement.

  17. Inter-Calibration of Satellite Passive Microwave Land Observations from AMSR-E and AMSR2 Using Overlapping FY3B-MWRI Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Jinyang Du

    2014-09-01

    Full Text Available The development and continuity of consistent long-term data records from similar overlapping satellite observations is critical for global monitoring and environmental change assessments. We developed an empirical approach for inter-calibration of satellite microwave brightness temperature (Tb records over land from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E and Microwave Scanning Radiometer 2 (AMSR2 using overlapping Tb observations from the Microwave Radiation Imager (MWRI. Double Differencing (DD calculations revealed significant AMSR2 and MWRI biases relative to AMSR-E. Pixel-wise linear relationships were established from overlapping Tb records and used for calibrating MWRI and AMSR2 records to the AMSR-E baseline. The integrated multi-sensor Tb record was largely consistent over the major global vegetation and climate zones; sensor biases were generally well calibrated, though residual Tb differences inherent to different sensor configurations were still present. Daily surface air temperature estimates from the calibrated AMSR2 Tb inputs also showed favorable accuracy against independent measurements from 142 global weather stations (R2 ≥ 0.75, RMSE ≤ 3.64 °C, but with slightly lower accuracy than the AMSR-E baseline (R2 ≥ 0.78, RMSE ≤ 3.46 °C. The proposed method is promising for generating consistent, uninterrupted global land parameter records spanning the AMSR-E and continuing AMSR2 missions.

  18. Improvement of Cold Season Land Precipitation Retrievals Through The Use Of WRF Simulations and High Frequency Microwave Radiative Transfer Model

    Science.gov (United States)

    Wang, N.; Ferraro, R. R.; Gopalan, K.; Tao, W.; Shi, J. J.

    2009-12-01

    As we move from the TRMM to GPM era, more emphasis will be placed on a larger regime of precipitation in mid- and high-latitudes, including light rain, mixed-phase precipitation and snowfall. In these areas, a large and highly variable portion of the total annual precipitation is snow. There is a wealth of observational evidence of brightness temperature depression from frozen hydrometeor scattering at the high frequency from aircraft and spacecraft microwave instruments. Research on the development of snowfall retrieval over land has become increasing important in the last few years (Chen and Staelin, 2003; Kongoli et al., 2004; Skofronick-Jackson et al., 2004, Noh et al., 2006; Aonashi et al., 2007; Liu, 2008; Grecu and Olson, 2008; Kim et al., 2008). However, there is still a considerable amount of work that needs to be done to develop global snowfall detection and retrieval algorithms. This paper describes the development and testing of snowfall models and retrieval algorithms using WRF snowfall simulations and high frequency radiative transfer models for snowfall events took place in January 2007 over Ontario, Canada.

  19. An Unexpected Green and Facile Synthesis of 2,6-Diaryl-4-styrylpyridines via Multi-component Reactions in Microwave-assisted Solvent-free Conditions

    Institute of Scientific and Technical Information of China (English)

    SHI Feng; ZHANG Ge; ZHOU Dianxiang; MA Ning; ZHANG Yajie; CHEN Rongshun; TU Shujiang

    2009-01-01

    An unexpected green and facile synthesis of 2,6-diaryl-4-styryipyridines was realized via microwave-assisted multi-component reactions of 3-arylacrylaldehyde oximes,l-arylethanones and ammonium acetate in solvent-free conditions.This protocol has the prominent advantages of environmental-friendliness,short reaction time,high yields,low cost,easy operation as well as broad scope of applicability.

  20. Facile microwave synthesis of uniform magnetic nanoparticles with minimal sample processing

    Science.gov (United States)

    Schneider, Thomas; Löwa, Anna; Karagiozov, Stoyan; Sprenger, Lisa; Gutiérrez, Lucía; Esposito, Tullio; Marten, Gernot; Saatchi, Katayoun; Häfeli, Urs O.

    2017-01-01

    We present a simple and rapid method for the synthesis of small magnetic nanoparticles (diameters in the order of 5-20 nm) and narrow size distributions (CV's of 20-40%). The magnetite nanoparticles were synthesized in green solvents within minutes and the saturation magnetization of the particles was tunable by changes in the reaction conditions. We show that this particle synthesis method requires minimal processing steps and we present the successful coating of the particles with reactive bisphosphonates after synthesis without washing or centrifugation. We found minimal batch-to-batch variability and show the scalability of the particle synthesis method. We present a full characterization of the particle properties and believe that this synthesis method holds great promise for facile and rapid generation of magnetic nanoparticles with defined surface coatings for magnetic targeting applications.

  1. Park Facilities, Park Facilities, Published in 2008, 1:24000 (1in=2000ft) scale, Lafayette County Land Records.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Park Facilities dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Field Survey/GPS information as of 2008. It is described as...

  2. The effect of sensor spacing on wind measurements at the Shuttle Landing Facility

    Science.gov (United States)

    Merceret, Francis J.

    1995-01-01

    This document presents results of a field study of the effect of sensor spacing on the validity of wind measurements at the Space Shuttle landing Facility (SLF). Standard measurements are made at one second intervals from 30 foot (9.1m) towers located 500 feet (152m) from the SLF centerline. The centerline winds are not exactly the same as those measured by the towers. This study quantifies the differences as a function of statistics of the observed winds and distance between the measurements and points of interest. The field program used logarithmically spaced portable wind towers to measure wind speed and direction over a range of conditions. Correlations, spectra, moments, and structure functions were computed. A universal normalization for structure functions was devised. The normalized structure functions increase as the 2/3 power of separation distance until an asymptotic value is approached. This occurs at spacings of several hundred feet (about 100m). At larger spacings, the structure functions are bounded by the asymptote. This enables quantitative estimates of the expected differences between the winds at the measurement point and the points of interest to be made from the measured wind statistics. A procedure is provided for making these estimates.

  3. The effect of sensor sheltering and averaging techniques on wind measurements at the Shuttle Landing Facility

    Science.gov (United States)

    Merceret, Francis J.

    1995-01-01

    This document presents results of a field study of the effect of sheltering of wind sensors by nearby foliage on the validity of wind measurements at the Space Shuttle Landing Facility (SLF). Standard measurements are made at one second intervals from 30-feet (9.1-m) towers located 500 feet (152 m) from the SLF centerline. The centerline winds are not exactly the same as those measured by the towers. A companion study, Merceret (1995), quantifies the differences as a function of statistics of the observed winds and distance between the measurements and points of interest. This work examines the effect of nearby foliage on the accuracy of the measurements made by any one sensor, and the effects of averaging on interpretation of the measurements. The field program used logarithmically spaced portable wind towers to measure wind speed and direction over a range of conditions as a function of distance from the obstructing foliage. Appropriate statistics were computed. The results suggest that accurate measurements require foliage be cut back to OFCM standards. Analysis of averaging techniques showed that there is no significant difference between vector and scalar averages. Longer averaging periods reduce measurement error but do not otherwise change the measurement in reasonably steady flow regimes. In rapidly changing conditions, shorter averaging periods may be required to capture trends.

  4. Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes

    Directory of Open Access Journals (Sweden)

    Shunmugiah Gayathri

    2015-12-01

    Full Text Available An efficient and facile method was adopted to prepare TiO2-graphene (TG nanocomposites with TiO2 nanoparticles uniformly distributed on graphene. By adjusting the amount of TiO2 precursor, both high and low dense TiO2 nanoparticles on graphene were effectively attained via electrostatic attraction between graphene oxide sheets and TiO2 nanoparticles. The prepared nanocomposites were characterized by various characterization techniques. The TG nanocomposite showed an excellent activity for the photodegradation of the organic dyes such as methylene blue (MB and rose bengal (RB under ultra violet (UV light irradiation. The TG nanocomposite of TG 2.5 showed better photocatalytic performance than bare TiO2 nanoparticles and other composites. The enhanced activity of the composite material is attributed to the reduction in charge recombination and interaction of organic dyes with graphene. The decrease in charge recombination was evidenced from the photoluminescence (PL spectra. The observed results suggest that the synthesized TG composites have a potential application to treat the industrial effluents, which contain organic dyes.

  5. Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes

    Science.gov (United States)

    Gayathri, Shunmugiah; Kottaisamy, Muniasamy; Ramakrishnan, Veerabahu

    2015-12-01

    An efficient and facile method was adopted to prepare TiO2-graphene (TG) nanocomposites with TiO2 nanoparticles uniformly distributed on graphene. By adjusting the amount of TiO2 precursor, both high and low dense TiO2 nanoparticles on graphene were effectively attained via electrostatic attraction between graphene oxide sheets and TiO2 nanoparticles. The prepared nanocomposites were characterized by various characterization techniques. The TG nanocomposite showed an excellent activity for the photodegradation of the organic dyes such as methylene blue (MB) and rose bengal (RB) under ultra violet (UV) light irradiation. The TG nanocomposite of TG 2.5 showed better photocatalytic performance than bare TiO2 nanoparticles and other composites. The enhanced activity of the composite material is attributed to the reduction in charge recombination and interaction of organic dyes with graphene. The decrease in charge recombination was evidenced from the photoluminescence (PL) spectra. The observed results suggest that the synthesized TG composites have a potential application to treat the industrial effluents, which contain organic dyes.

  6. Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, Shunmugiah [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai-625021, Tamilnadu (India); Kottaisamy, Muniasamy [Department of Chemistry, Thiagarajar College of Engineering, Madurai-625015, Tamilnadu (India); Ramakrishnan, Veerabahu, E-mail: vr.optics1@gmail.com [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai-625021, Tamilnadu (India); Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram-695016, Kerala (India)

    2015-12-15

    An efficient and facile method was adopted to prepare TiO{sub 2}-graphene (TG) nanocomposites with TiO{sub 2} nanoparticles uniformly distributed on graphene. By adjusting the amount of TiO{sub 2} precursor, both high and low dense TiO{sub 2} nanoparticles on graphene were effectively attained via electrostatic attraction between graphene oxide sheets and TiO{sub 2} nanoparticles. The prepared nanocomposites were characterized by various characterization techniques. The TG nanocomposite showed an excellent activity for the photodegradation of the organic dyes such as methylene blue (MB) and rose bengal (RB) under ultra violet (UV) light irradiation. The TG nanocomposite of TG 2.5 showed better photocatalytic performance than bare TiO{sub 2} nanoparticles and other composites. The enhanced activity of the composite material is attributed to the reduction in charge recombination and interaction of organic dyes with graphene. The decrease in charge recombination was evidenced from the photoluminescence (PL) spectra. The observed results suggest that the synthesized TG composites have a potential application to treat the industrial effluents, which contain organic dyes.

  7. Quality Assurance Project Plan for Closure of the Central Facilities Area Sewage Treatment Plant Lagoon 3 and Land Application Area

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael G.

    2016-09-23

    This quality assurance project plan describes the technical requirements and quality assurance activities of the environmental data collection/analyses operations to close Central Facilities Area Sewage treatment Plant Lagoon 3 and the land application area. It describes the organization and persons involved, the data quality objectives, the analytical procedures, and the specific quality control measures to be employed. All quality assurance project plan activities are implemented to determine whether the results of the sampling and monitoring performed are of the right type, quantity, and quality to satisfy the requirements for closing Lagoon 3 and the land application area.

  8. Terminal area automatic navigation, guidance, and control research using the Microwave Landing System (MLS). Part 2: RNAV/MLS transition problems for aircraft

    Science.gov (United States)

    Pines, S.

    1982-01-01

    The problems in navigation and guidance encountered by aircraft in the initial transition period in changing from distance measuring equipment, VORTAC, and barometric instruments to the more precise microwave landing system data type navaids in the terminal area are investigated. The effects of the resulting discontinuities on the estimates of position and velocity for both optimal (Kalman type navigation schemes) and fixed gain (complementary type) navigation filters, and the effects of the errors in cross track, track angle, and altitude on the guidance equation and control commands during the critical landing phase are discussed. A method is presented to remove the discontinuities from the navigation loop and to reconstruct an RNAV path designed to land the aircraft with minimal turns and altitude changes.

  9. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling

    Science.gov (United States)

    Hain, Christopher R.; Crow, Wade T.; Mecikalski, John R.; Anderson, Martha C.; Holmes, Thomas

    2011-08-01

    Remotely sensed soil moisture studies have mainly focused on retrievals using active and passive microwave (MW) sensors, which provide measurements that are directly related to soil moisture (SM). MW sensors have obvious advantages such as the ability to retrieve through nonprecipitating cloud cover which provides shorter repeat cycles. However, MW sensors offer coarse spatial resolution and suffer from reduced retrieval skill over moderate to dense vegetation. A unique avenue for filling these information gaps is to exploit the retrieval of SM from thermal infrared (TIR) observations, which can provide SM information under vegetation cover and at significantly higher resolutions than MW. Previously, an intercomparison of TIR-based and MW-based SM has not been investigated in the literature. Here a series of analyses are proposed to study relationships between SM products during a multiyear period (2003-2008) from a passive MW retrieval (AMSR-E), a TIR based model (ALEXI), and a land surface model (Noah) over the continental United States. The three analyses used in this study include (1) a spatial anomaly correlation analysis, (2) a temporal correlation analysis, and (3) a triple collocation error estimation technique. In general, the intercomparison shows that the TIR and MW methods provide complementary information about the current SM state. TIR can provide SM information over moderate to dense vegetation, a large information gap in current MW methods, while serving as an additional independent source of SM information over low to moderate vegetation. The complementary nature of SM information from MW and TIR sensors implies a potential for integration within an advanced SM data assimilation system.

  10. P-type nitrogen-doped ZnO nanostructures with controlled shape and doping level by facile microwave synthesis.

    Science.gov (United States)

    Herring, Natalie P; Panchakarla, Leela S; El-Shall, M Samy

    2014-03-04

    We report herein the development of a facile microwave irradiation (MWI) method for the synthesis of high-quality N-doped ZnO nanostructures with controlled morphology and doping level. We present two different approaches for the MWI-assisted synthesis of N-doped ZnO nanostructures. In the first approach, N-doping of Zn-poor ZnO prepared using zinc peroxide (ZnO2) as a precursor is carried out under MWI in the presence of urea as a nitrogen source and oleylamine (OAm) as a capping agent for the shape control of the resulting N-doped ZnO nanostructures. Our approach utilizes the MWI process for the decomposition of ZnO2, where the rapid transfer of energy directly to ZnO2 can cause an instantaneous internal temperature rise and, thus, the activation energy for the ZnO2 decomposition is essentially decreased as compared to the decomposition under conductive heating. In the second synthesis method, a one-step synthesis of N-doped ZnO nanostructures is achieved by the rapid decomposition of zinc acetate in a mixture of urea and OAm under MWI. We demonstrate, for the first time, that MWI decomposition of zinc acetate in a mixture of OAm and urea results in the formation of N-doped nanostructures with controlled shape and N-doping level. We report a direct correlation between the intensity of the Raman scattering bands in N-doped ZnO and the concentration of urea used in the synthesis. Electrochemical measurements demonstrate the successful synthesis of stable p-type N-doped ZnO nanostructures using the one-step MWI synthesis and, therefore, allow us to investigate, for the first time, the relationship between the doping level and morphology of the ZnO nanostructures. The results provide strong evidence for the control of the electrical behavior and the nanostructured shapes of ZnO nanoparticles using the facile MWI synthesis method developed in this work.

  11. Facile One-Step Microwave-Assisted Route towards Ni Nanospheres/Reduced Graphene Oxide Hybrids for Non-Enzymatic Glucose Sensing

    Directory of Open Access Journals (Sweden)

    Mojiao Zhou

    2012-04-01

    Full Text Available In this work, a facile one-step microwave-assisted method for deposition of monodisperse Ni nanospheres on reduced graphene oxide (rGO sheets to form Ni-rGO nanohybrids is discussed. In the presence of hydrazine monohydrate, Ni nanospheres are grown onto rGO sheets using nickel precursor and GO as starting materials in ethylene glycol (EG solution under a low level of microwave irradiation (300 W for 20 min, during which GO is also reduced to rGO. The as-prepared nanohybrids exhibit well-dispersed Ni nanosphere (about 80 nm in diameter loadings and effective reduction of graphene oxide. The resulting Ni-rGO nanohybrids-modified glassy carbon electrode (GCE shows significantly improved electrochemical performance in nonenzymatic amperometric glucose detection. In addition, interference from the oxidation of common interfering species under physiological conditions, such as ascorbic acid (AA and uric acid (UA, is effectively avoided.

  12. Extremely fast dark adsorption rate of carbon and nitrogen co-doped TiO2 prepared by a relatively fast, facile and low-cost microwave method

    Science.gov (United States)

    Du, Chun; Zhou, Jiangshan; Li, Fangzhou; Li, Wei; Wang, Yinzhen; He, Qinyu

    2016-07-01

    A facile and low-cost microwave method was used to prepare C and N co-doped TiO2 in just 8 min. The prepared samples were thoroughly characterized and were found to have favourable features such as surface adsorption of pollutants and photocatalysis. The rapid decomposition of CH5N3HCl under microwave irradiation led to mesopores and surface roughness in the as-prepared particles, resulting in large surface adsorption of pollutant and good photodegradation. The best sample is the one with the ratio of TiO2/CH2N3HCl at 3:1, which adsorbed 86.3 % of a methylene orange (MO) solution (20 mg L-1) in 10 min.

  13. Report to the Minister of Environment Affairs on an environmental impact assessment of a proposed emergency landing facility on Marion Island - 1987

    CSIR Research Space (South Africa)

    Heymann, G

    1987-01-01

    Full Text Available The report contains background on the Prince Edward Islands, the status of environmental protection on them and a description of the proposed emergency landing strip. The viability of this proposed facility is assessed, the environmental components...

  14. Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chonghai, E-mail: chdeng@mail.ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical and Materials Engineering, Hefei University, Hefei 230022 (China); Tian, Xiaobo [Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026 (China)

    2013-10-15

    Graphical abstract: - Highlights: • Three kinds of CdS nanostructures have been controllably synthesized. • Ethanediamine acts as a phase and morphology controlling reagent. • Three CdS nanostructures display high visible light photocatalytic activities. • Cubic CdS-3 shows superior photocatalytic activity to the other hexagonal CdS. • The growth processes for fabrication of CdS nanocrystals are also discussed. - Abstract: Three kinds of CdS nanostructures, that is, hexagonal nanospheres (CdS-1), hierarchical caterpillar-fungus-like hexagonal nanorods (CdS-2) and hierarchical cubic microspheres (CdS-3), were controllably synthesized by a facile and one-pot microwave-assisted aqueous chemical method using ethanediamine as a phase and morphology controlling reagent. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (DRS) and photoluminescence (PL) spectra. The results show that CdS-1 is mainly composed of monodispersed hexagonal nanospheres with average diameters of about 100 nm; hexagonal CdS-2 has lengths in the range of 600–800 nm and diameters of 40–60 nm, assembled by nanoparticles about 20 nm in diameter; and CdS-3 is pure cubic microspheres with diameters in the range of 0.8–1.3 μm, aggregated by tiny nanograins with size of 5.8 nm. The band gap energies of CdS products were calculated to be 2.30, 2.31 and 2.24 eV observed from UV–vis DRS for CdS-1, CdS-2 and CdS-3, respectively. PL spectra of CdS samples showed that sphalerite CdS-3 possesses a very weak fluorescence, while wurtzite CdS-2 has a strongest green near-band edge emission (NBE) at 550 nm. The visible light photodegradation of methylene blue and rhodamine B in the presence of CdS photocatalysts illustrates that all of them display high photocatalytic activities. Significantly, the cubic CdS-3 exhibits more excellent photocatalytic

  15. Microwave assisted facile synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and their application as active SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wadhwa, Heena, E-mail: heenawadhwa1988@gmail.com; Kumar, Devender, E-mail: devkumsaroha@kuk.ac.in; Mahendia, Suman, E-mail: mahendia@gmail.com; Kumar, Shyam, E-mail: profshyam@gmail.com

    2017-06-15

    The present paper represents the facile and rapid synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite with the help of microwave irradiation. The graphene oxide (GO) solution has been prepared in bulk using Hummer's method followed by microwave assisted in-situ reduction of GO and silver nitrate (AgNO{sub 3}) by hydrazine hydrate in a short spam of 5 min. The prepared nanocomposite has been characterized using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) Scanning Electron Microscopy (SEM) and UV–Visible spectroscopy. TEM analysis shows that Ag nanoparticles with average size 32 nm are uniformly entangled with in RGO layers. The UV–Visible absorption spectrum of nanocomposite depicts the reduction of GO to RGO along with the formation of Ag nanoparticles with the presence of characteristic surface Plasmon resonance (SPR) peak of Ag nanoparticles at 422 nm. The performance of prepared nanocomposite has been tested as the active Surface Enhanced Raman Scattering (SERS) substrate for Rhodamine 6G with detection limit 0.1 μM. - Highlights: • The RGO and RGO-Ag nanocomposite were synthesized with microwave irradiation. • Ag nanoparticles of average size 32 nm are uniformly entangled within RGO layers. • RGO itself is a florescence quencher with SERS detection limit 1 μM for R6G. • RGO-Ag nanocomposite show good SERS activity for R6G with detection limit 0.1 μM.

  16. Facile fabrication of carbon microspheres decorated with B(OH) 3 and α-Fe 2 O 3 nanoparticles: superior microwave absorption

    KAUST Repository

    Zhong, Bo

    2017-06-02

    We demonstrate that novel three-dimensional (3D) B(OH)3 and α-Fe2O3 nanoparticles decorated carbon microspheres (B(OH)3/α-Fe2O3-CMSs) can be fabricated via a facile thermal treatment process. The carbon microspheres with diameter of 1 to 3 μm and decorated B(OH)3 and α-Fe2O3 nanoparticles with diameters of several to tens of nanometers are successfully fabricated. These novel 3D B(OH)3/α-Fe2O3-CMS composites exhibit enhanced microwave absorption with tunable strong absorption wavebands in the frequency range of 2–18 GHz. They have a minimum reflection loss (RL) value of -52.69 dB at a thickness of 3.0 mm, and the effective absorption bandwidth for RL less than -10 dB is as large as 5.64 GHz. The enhanced microwave absorption performance arises from the synergy of the impedance matching caused by the B(OH)3 nanoparticles, dielectric loss as well as the enhancement of multiple reflection among 3D α-Fe2O3 nanocrystals. These results provide a new strategy to tune electromagnetic properties and enhance the capacity of high-efficient microwave absorbers.

  17. land use changes and its effects on the provision of social facilities ...

    African Journals Online (AJOL)

    Osondu

    lines of the water company while others had interruptions in the flow of water. Again residents had difficulties disposing of refuse and waste water from their homes. Open spaces ..... training traditional land owners about their management of ...

  18. The land-use of Bandung, its density, overcrowded area and public facility toward a compact city

    Science.gov (United States)

    Paramita, B.

    2016-04-01

    The concept of a compact city has been introduced since 1973. It is a utopian vision largely driven by a desire to see more efficient uses of resources. In 1980s, the reconfiguration of the physical urban form of metropolitan areas was increasingly debated by both theorists and practitioners. Recently, the concept of a compact city has been more focused on developed countries in which the population tends to decrease. However, in Asia, except Japan which contains many dense cities, it has become a concept which promotes relatively high residential density with mixed land uses, though rather only in population and density. This paper addresses the land-use of Bandung that having the density over 14,000 people/km2, which has been so much potential toward a compact city. Somehow, unprepared ness of urban planning and regulation, the city seemed overwrought to serve its inhabitants. This condition is shown from the demographic condition, especially population density in Bandung based on its sub areas of the city (SWK). The stack of public facilities in a certain district has led the concentration of density and activity, which finally raising the slum and overcrowded settlement. Finally, this paper explores the implications of land use management and describes challenges faced and possible approaches, especially in land-use management strategies to be implemented in Bandung.

  19. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  20. Facile Synthesis of 3-Substituted Isoquinolines Derivatives via Microwave-assisted Tandem Three-component Coupling Cyclization

    Institute of Scientific and Technical Information of China (English)

    林龙; 吴琼友; 黄绍维; 杨光富

    2012-01-01

    A novel three-component reaction of o-bromobenzaldehyde, terminal alkynes and tert-butyl amine has been established, which proceeded smoothly to give 3-substituted isoquinolines in good yields in the presence of palladium/copper catalysts under microwave irradiation.

  1. Terminal area automatic navigation, guidance and control research using the Microwave Landing System (MLS). Part 5: Design and development of a Digital Integrated Automatic Landing System (DIALS) for steep final approach using modern control techniques

    Science.gov (United States)

    Halyo, N.

    1983-01-01

    The design and development of a 3-D Digital Integrated Automatic Landing System (DIALS) for the Terminal Configured Vehicle (TCV) Research Aircraft, a B-737-100 is described. The system was designed using sampled data Linear Quadratic Gaussian (LOG) methods, resulting in a direct digital design with a modern control structure which consists of a Kalman filter followed by a control gain matrix, all operating at 10 Hz. DIALS uses Microwave Landing System (MLS) position, body-mounted accelerometers, as well as on-board sensors usually available on commercial aircraft, but does not use inertial platforms. The phases of the final approach considered are the localizer and glideslope capture which may be performed simultaneously, localizer and steep glideslope track or hold, crab/decrab and flare to touchdown. DIALS captures, tracks and flares from steep glideslopes ranging from 2.5 deg to 5.5 deg, selected prior to glideslope capture. Digital Integrated Automatic Landing System is the first modern control design automatic landing system successfully flight tested. The results of an initial nonlinear simulation are presented here.

  2. Proposed Land Conveyance for Construction of Three Facilities at March Air Force Base, California

    Science.gov (United States)

    1988-09-01

    found. The species composition of this community includes grasses such as slender wild oat (Avena barbata), red brome ( Bromus rubens), foxtail...Hordeum sp.), ripgutgrass ( Bromus diandrus), and Schismus barbatus. Native bunch grasses of the undisturbed valley grassland community, such as needle...the southwestern part of the land, dominated by Dallis grass ( Paspalum dilatatum). The central, previously developed area consists of various

  3. Land

    CSIR Research Space (South Africa)

    Audouin, M

    2007-01-01

    Full Text Available Unsustainable agricultural practices have had a role to play in the degradation of land on which agriculture depends. South Africa has an international obligation to develop a National Action Programme (NAP), the purpose of which is to identify...

  4. High yield and facile microwave-assisted synthesis of conductive H{sub 2}SO{sub 4} doped polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Gizdavic-Nikolaidis, Marija R., E-mail: m.gizdavic@auckland.ac.nz [School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand); Faculty of Physical Chemistry, Studentski Trg 12-16, PO Box 137, 11001, Belgrade (Serbia); Jevremovic, Milutin M. [Public Company Nuclear Facilities of Serbia, 12-14 Mike Petrovica Alasa, Vinca, 11351, Belgrade (Serbia); Milenkovic, Maja [Faculty of Physical Chemistry, Studentski Trg 12-16, PO Box 137, 11001, Belgrade (Serbia); Allison, Morgan C. [School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand); Stanisavljev, Dragomir R. [Faculty of Physical Chemistry, Studentski Trg 12-16, PO Box 137, 11001, Belgrade (Serbia); Bowmaker, Graham A. [School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand); Zujovic, Zoran D. [School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140 (New Zealand); Institute of General and Physical Chemistry, Studentski Trg 12-16, 11001, Belgrade (Serbia)

    2016-04-15

    The microwave-assisted synthesis of polyaniline (PANI) was performed using ammonium persulphate (APS) as oxidizing agent in 0.5 M–2.5 M concentration range of aqueous sulphuric acid (H{sub 2}SO{sub 4}) at 93 W applied microwave power of 10 min duration. The microwave (MW) synthesized PANIs had 3 times higher yield in comparison to PANI samples prepared using a classical method, CS (0 W MW power) at the same temperature for 10 min synthesis duration period. Fourier Transform Infrared (FTIR) and UV–Vis spectroscopies confirmed the formation of PANI structure in all products. The influence of H{sub 2}SO{sub 4} acid dopant on the spin concentration of MW and CS H{sub 2}SO{sub 4} doped PANI samples were examined by EPR spectroscopy, while the morphological characteristics were investigated by using scanning electron microscopy (SEM). XRD results showed amorphous phases in both MW and CS H{sub 2}SO{sub 4} doped PANI samples. Conductivity measurements revealed ∼1.5 times higher conductivity values for MW H{sub 2}SO{sub 4} doped PANI samples in comparison with PANI samples prepared by the CS method under same condition. The influence of sulfate anion in comparison to chloride anion as a dopant on morphological, dopant levels and conductivity properties of MW PANI samples were also investigated. - Highlights: • Nanoporous microwave synthesized doped polyanilines as chemical sensor material. • Morphology and physical properties of polyanilines depend on acid concentration. • Spin concentration is determined by the nature of the polyaniline synthesis.

  5. Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes

    Science.gov (United States)

    Kashinath, L.; Namratha, K.; Byrappa, K.

    2015-12-01

    Microwave assisted hydrothermal process of synthesis of ZnO-GO nanocomposite by using ZnCl2 and NaOH as precursors is being reported first time. In this investigation, a novel route to study on synthesis, interaction, kinetics and mechanism of hybrid zinc oxide-graphene oxide (ZnO-GO) nanocomposite using microwave assisted facile hydrothermal method has been reported. The results shows that the ZnO-GO nanocomposite exhibits an enhancement and acts as stable photo-response degradation performance of Brilliant Yellow under the UV light radiation better than pure GO and ZnO nanoparticles. The microwave exposure played a vital role in the synthesis process, it facilitates with well define crystalline structure, porosity and fine morphology of ZnO/GO nanocomposite. Different molar concentrations of ZnO precursors doped to GO sheets were been synthesized, characterized and their photodegradation performances were investigated. The optical studies by UV-vis and Photo Luminescence shows an increase in band gap of nanocomposite, which added an advantage in photodegradation performance. The in situ flower like ZnO nano particles are were densely decorated and anchored on the surfaces of graphene oxide sheets which aids in the enhancement of the surface area, adsorption, mass transfer of dyes and evolution of oxygen species. The nanocomposite having high surface area and micro/mesoporous in nature. This structure and morphology supports significantly in increasing photo catalytic performance legitimate to the efficient photosensitized electron injection and repressed electron recombination due to electron transfer process with GO as electron collector and transporter dependent on the proportion of GO in ZnO/GO composite.

  6. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method

    Institute of Scientific and Technical Information of China (English)

    Abolghasem Hoseinzadeh; Aziz Habibi-Yangjeh; Mahdi Davari

    2016-01-01

    In the present work, magnetically separable Fe3O4/ZnO/AgBr nanocomposites with different weight ra-tios of Fe3O4 to ZnO/AgBr were prepared by a facile microwave-assisted method. The resultant samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission elec-tron microscopy (TEM), energy dispersive analysis of X-rays (EDX), and vibrating sample magnetometery (VSM). Antifungal activity of the as-prepared samples was evaluated against Fusarium graminearum and Fusarium oxysporum as two phytopathogenic fungi. Among the nanocomposites, the sample with 1:8 weight ratio of Fe3O4 to ZnO/AgBr was selected as the best nanocomposite. This nanocomposite in-activates Fusarium graminearum and Fusarium oxysporum at 120 and 60 min, respectively. Moreover, it was observed that the microwave irradiation time has considerable influence on the antifungal activity and the sample prepared by irradiation for 10 min showed the best activity. Moreover, the nano-composite without any thermal treatment displayed the superior activity.

  7. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method

    Directory of Open Access Journals (Sweden)

    Abolghasem Hoseinzadeh

    2016-08-01

    Full Text Available In the present work, magnetically separable Fe3O4/ZnO/AgBr nanocomposites with different weight ratios of Fe3O4 to ZnO/AgBr were prepared by a facile microwave-assisted method. The resultant samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive analysis of X-rays (EDX, and vibrating sample magnetometery (VSM. Antifungal activity of the as-prepared samples was evaluated against Fusarium graminearum and Fusarium oxysporum as two phytopathogenic fungi. Among the nanocomposites, the sample with 1:8 weight ratio of Fe3O4 to ZnO/AgBr was selected as the best nanocomposite. This nanocomposite inactivates Fusarium graminearum and Fusarium oxysporum at 120 and 60 min, respectively. Moreover, it was observed that the microwave irradiation time has considerable influence on the antifungal activity and the sample prepared by irradiation for 10 min showed the best activity. Moreover, the nanocomposite without any thermal treatment displayed the superior activity.

  8. Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe{sub 2}O{sub 4} spinel magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Eduardo; Perez-Mirabet, Leonardo [Universitat Autonoma de Barcelona, Departament de Quimica (Spain); Martinez-Julian, Fernando; Guzman, Roger; Arbiol, Jordi; Puig, Teresa; Obradors, Xavier [Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC (Spain); Yanez, Ramon [Universitat Autonoma de Barcelona, Departament de Quimica (Spain); Pomar, Alberto; Ricart, Susagna, E-mail: ricart@icmab.es [Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC (Spain); Ros, Josep [Universitat Autonoma de Barcelona, Departament de Quimica (Spain)

    2012-08-15

    Well-defined synthesis conditions of high quality MFe{sub 2}O{sub 4} (M = Mn, Fe, Co, Ni, Zn, and Cu) spinel ferrite magnetic nanoparticles, with diameters below 10 nm, have been described based on facile and efficient one-pot solvothermal or microwave-assisted heating procedures. Both methods are reproducible and scalable and allow forming concentrated stable colloidal solutions in polar solvents, but microwave-assisted heating allows reducing 15 times the required annealing time and leads to an enhanced monodispersity of the nanoparticles. Non-agglomerated nanoparticles dispersions have been achieved using a simple one-pot approach where a single compound, triethyleneglycol, behaves at the same time as solvent and capping ligand. A narrow nanoparticle size distribution and high quality crystallinity have been achieved through selected nucleation and growth conditions. High resolution transmission electron microscopy images and electron energy loss spectroscopy analysis confirm the expected structure and composition and show that similar crystal faceting has been formed in both synthetic approaches. The spinel nanoparticles behave as ferrimagnets with a high saturation magnetization and are superparamagnetic at room temperature. The influence of synthesis route on phase purity and unconventional magnetic properties is discussed in some particular cases such as CuFe{sub 2}O{sub 4}, CoFe{sub 2}O{sub 4}, and ZnFe{sub 2}O{sub 4}.

  9. Facile preparation of super-hydrophilic poly(ethylene terephthalate) fabric using dilute sulfuric acid under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fang [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Guangxian, E-mail: zgx656472@sina.com.cn [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Fengxiu [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Yuansong [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China)

    2015-09-15

    Highlights: • A durable super-hydrophilic PET fabric was prepared using dilute H{sub 2}SO{sub 4} under microwave irradiation. • Dilute sulfuric acid was gradually concentrated enough to sulfonate PET fabric. • Microwave irradiation made PET fabric modification highly efficient. • The mechanical properties of modified PET fibers were kept well. • The method was novel, rapid, and eco-friendly. - Abstract: The hydrophilicity of a poly(ethylene terephthalate) (PET) fabric was greatly modified by using dilute sulfuric acid, which gradually became concentrated enough to sulfonate the fabric when microwave irradiation (MW) was applied. The modified PET fabric was super-hydrophilic. Modifying the fabric caused the water contact angle to decrease from 132.46 (for the unmodified fabric) to 0°, the water absorption rate to increase from 36.45 to 119.78%, and the capillary rise height to increase from 0.4 to 14.4 cm. The hydrophilicity of the modified PET fabric was not affected by washing it many times. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed that there were sulfonic acid groups on the modified fibers. Almost no difference between the surfaces of the unmodified and modified PET fibers was found using scanning electron microscopy. Analysis by differential scanning calorimetry showed that the unmodified and modified fabrics had similar thermostabilities. X-ray diffraction analysis of the crystalline structures of the unmodified and modified fibers showed that they were almost the same. The strength, elasticity, and rigidity of the unmodified fabric were retained by the modified fabric. The modified fabric had better dyeing properties than the unmodified fabric.

  10. A Facile Synthesis of Arylazonicotinates for Dyeing Polyester Fabrics under Microwave Irradiation and Their Biological Activity Profiles

    Directory of Open Access Journals (Sweden)

    Saleh M. Al-Mousawi

    2012-09-01

    Full Text Available A as textile dyes and the fastness properties of the dyed samples were measured. Most of the dyed fabrics tested displayed very good washing and perspiration fastness and series of 2-hydroxy- and 2-amino-6-substituted-5-arylazonicotinate monoazo compounds 7a–e and 9a–c were prepared via condensation of 3-oxo-3-substituted-2-arylhydrazonals 2a–e with active methylene nitriles 3a–d using microwave irradiation as an energy source. These substances were then tested moderate light fastness. Finally, the biological activity of the synthesized compounds against Gram positive bacteria, Gram negative bacteria and yeast were evaluated.

  11. A facile synthesis of arylazonicotinates for dyeing polyester fabrics under microwave irradiation and their biological activity profiles.

    Science.gov (United States)

    Al-Mousawi, Saleh M; El-Apasery, Morsy A; Mahmoud, Huda M

    2012-09-27

    A as textile dyes and the fastness properties of the dyed samples were measured. Most of the dyed fabrics tested displayed very good washing and perspiration fastness and series of 2-hydroxy- and 2-amino-6-substituted-5-arylazonicotinate monoazo compounds 7a-e and 9a-c were prepared via condensation of 3-oxo-3-substituted-2-arylhydrazonals 2a-e with active methylene nitriles 3a-d using microwave irradiation as an energy source. These substances were then tested moderate light fastness. Finally, the biological activity of the synthesized compounds against gram positive bacteria, gram negative bacteria and yeast were evaluated.

  12. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data

    Institute of Scientific and Technical Information of China (English)

    MAO KeBiao; SHI JianCheng; LI ZhaoLiang; QIN ZhiHao; LI ManChun; XU Bin

    2007-01-01

    AMSR-E and MODIS are two EOS (Earth Observing System) instruments on board the Aqua satellite. A regression analysis between the brightness of all AMSR-E bands and the MODIS land surface temperature product indicated that the 89 GHz vertical polarization is the best single band to retrieve land surface temperature. According to simulation analysis with AIEM, the difference of different frequencies can eliminate the influence of water in soil and atmosphere, and also the surface roughness partly. The analysis results indicate that the radiation mechanism of surface covered snow is different from others. In order to retrieve land surface temperature more accurately, the land surface should be at least classified into three types: water covered surface, snow covered surface, and non-water and non-snow covered land surface. In order to improve the practicality and accuracy of the algorithm, we built different equations for different ranges of temperature. The average land surface temperature error is about 2-3℃ relative to the MODIS LST product.

  13. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AMSR-E and MODIS are two EOS (Earth Observing System) instruments on board the Aqua satellite. A regression analysis between the brightness of all AMSR-E bands and the MODIS land surface tem-perature product indicated that the 89 GHz vertical polarization is the best single band to retrieve land surface temperature. According to simulation analysis with AIEM,the difference of different frequen-cies can eliminate the influence of water in soil and atmosphere,and also the surface roughness partly. The analysis results indicate that the radiation mechanism of surface covered snow is different from others. In order to retrieve land surface temperature more accurately,the land surface should be at least classified into three types:water covered surface,snow covered surface,and non-water and non-snow covered land surface. In order to improve the practicality and accuracy of the algorithm,we built different equations for different ranges of temperature. The average land surface temperature er-ror is about 2―3℃ relative to the MODIS LST product.

  14. Facile synthesis of lead iodide nanostructures by microwave irradiation technique and their structural, morphological, photoluminescence and dielectric studies

    Science.gov (United States)

    Shkir, Mohd.; Yahia, I. S.; AlFaify, S.; Abutalib, M. M.; Muhammad, Shabbir

    2016-04-01

    Lead iodide (PbI2) nanostructures have been synthesized by co-precipitation, hydrothermal and rapidly by microwave irradiation techniques. SEM analysis indicated the formation of well aligned nanocrystals and nanorods of average diameter between 100 nm and 400 nm. The powder X-ray diffraction and FT-Raman spectroscopic analysis confirms the formation of a 2H-PbI2 polytypic predominantly. These studies also show that there is no extra phase due to impurity in the synthesized nanostructures. The optical energy band gap of nanostructures prepared by co-precipitation, hydrothermal and microwave irradiation techniques were found to be 2.283, 2.493, 2.542 eV and 2.331. 2.350, 2.375 eV calculated from UV-Vis absorption and diffuse reflectance data, respectively, which shows a clear blue shift in the wavelength due to confinement effect. Photoluminescence spectrum was recorded at different excitation wavelengths and shows clear blue shift in the emission peak which is due to the recombination of free excitons with band to band type transition and also may be due to confinement effect. Further the dielectric studies have been performed and a good enhancement in the dielectric constant has been observed due to small size of the fabricated nanostructures in comparison to bulk material.

  15. Field Sampling Plan for Closure of the Central Facilities Area Sewage Treatment Plant Lagoon 3 and Land Application Area

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael George [Idaho National Laboratory

    2016-10-01

    This field sampling plan describes sampling of the soil/liner of Lagoon 3 at the Central Facilities Area Sewage Treatment Plant. The lagoon is to be closed, and samples obtained from the soil/liner will provide information to determine if Lagoon 3 and the land application area can be closed in a manner that renders it safe to human health and the environment. Samples collected under this field sampling plan will be compared to Idaho National Laboratory background soil concentrations. If the concentrations of constituents of concern exceed the background level, they will be compared to Comprehensive Environmental Response, Compensation, and Liability Act preliminary remediation goals and Resource Conservation and Recovery Act levels. If the concentrations of constituents of concern are lower than the background levels, Resource Conservation and Recovery Act levels, or the preliminary remediation goals, then Lagoon 3 and the land application area will be closed. If the Resource Conservation and Recovery Act levels and/or the Comprehensive Environmental Response, Compensation, and Liability Act preliminary remediation goals are exceeded, additional sampling and action may be required.

  16. Development of technology for the design of shallow land burial facilities at arid sites

    Science.gov (United States)

    Nyhan, J. W.; Abeele, W. V.; Drennon, B. J.; Herrera, W. J.; Lopez, E. A.; Langhorst, G. J.; Stallings, E. A.; Walker, R. D.; Martinez, J. L.

    The Los Alamos field research program involving technology development for arid shallow land burial (SLB) sites is described. Field data are presented for an integrated field experiment, which was designed to test individual SLB component experiments related to erosion control, biobarriers, and subsurface capillary and migration barriers. Field tests of biointrusion barriers at waste disposal sites and in experimental plots are reported. The results of a joint DOE/NRC experiment to evaluate leaching and transport of sorbing (Cs, Sr, Li) and nonsorbing (I, Br) solutes in sandy silt backfill are presented for steady-state and unsteady-state flow conditions. A capillary barrier experiment performed in a large caisson (3-m diameter, 6.1 m deep) is described and a year's worth of field data is presented.

  17. Development of technology for the design of shallow land burial facilities at arid sites

    Energy Technology Data Exchange (ETDEWEB)

    Nyhan, J.W.; Abeele, W.V.; Drennon, B.J.; Herrera, W.J.; Lopez, E.A.; Langhorst, G.J.; Stallings, E.A.; Walker, R.D.; Martinez, J.L.

    1985-01-01

    The Los Alamos field research program involving technology development for arid shallow land burial (SLB) sites is described. Field data are presented for an integrated field experiment, which was designed to test individual SLB component experiments related to erosion control, biobarriers, and subsurface capillary and migration barriers. Field tests of biointrusion barriers at waste disposal sites and in experimental plots are reported. The results of a joint DOE/NRC experiment to evaluate leaching and transport of sorbing (Cs, Sr, Li) and nonsorbing (I, Br) solutes in sandy silt backfill are presented for steady-state and unsteady-state flow conditions. A capillary barrier experiment performed in a large caisson (3-m diameter, 6.1 m deep) is described and a year's worth of field data is presented.

  18. A facile microwave assisted one pot synthesis of novel xanthene derivatives as potential anti-inflammatory and analgesic agents

    Directory of Open Access Journals (Sweden)

    Anupam G. Banerjee

    2016-09-01

    Full Text Available Microwave assisted irradiation of resorcinol and substituted aryl aldehydes using sulfamic acid as catalyst afforded novel 9-aryl-9H-xanthene-3,6-diol derivatives (1a–f in good yields. The newly synthesized compounds which were previously selected on the basis of PASS prediction were tested for anti-inflammatory activity using carrageenan-induced rat paw edema and analgesic activity using acetic acid induced writhing and formalin-induced paw edema in mice along with the estimation of gastric ulcerogenicity index. Compounds 1e and 1f exhibited significant anti-inflammatory and analgesic activities as compared to standard drug. The study also revealed that compounds (1a–f showed minimum or no ulcerogenicity in mice as that of the standard drug.

  19. An ensemble Kalman filter dual assimilation of thermal infrared and microwave satellite observations of soil moisture into the Noah land surface model

    Science.gov (United States)

    Hain, Christopher R.; Crow, Wade T.; Anderson, Martha C.; Mecikalski, John R.

    2012-11-01

    Studies that have assimilated remotely sensed soil moisture (SM) into land surface models (LSMs) have generally focused on retrievals from microwave (MW) sensors. However, retrievals from thermal infrared (TIR) sensors have also been shown to add unique information, especially where MW sensors are not able to provide accurate retrievals (due to, e.g., dense vegetation). In this study, we examine the assimilation of a TIR product based on surface evaporative flux estimates from the Atmosphere Land Exchange Inverse (ALEXI) model and the MW-based VU Amsterdam NASA surface SM product generated with the Land Parameter Retrieval Model (LPRM). A set of data assimilation experiments using an ensemble Kalman filter are performed over the contiguous United States to assess the impact of assimilating ALEXI and LPRM SM retrievals in isolation and together in a dual-assimilation case. The relative skill of each assimilation case is assessed through a data denial approach where a LSM is forced with an inferior precipitation data set. The ability of each assimilation case to correct for precipitation errors is quantified by comparing with a simulation forced with a higher-quality precipitation data set. All three assimilation cases (ALEXI, LPRM, and Dual assimilation) show relative improvements versus the open loop (i.e., reduced RMSD) for surface and root zone SM. In the surface zone, the dual assimilation case provides the largest improvements, followed by the LPRM case. However, the ALEXI case performs best in the root zone. Results from the data denial experiment are supported by comparisons between assimilation results and ground-based SM observations from the Soil Climate Analysis Network.

  20. NAVTOLAND Microwave Scanning Beam Tests at NOSC. Three Landing Guidance Systems Tested in a Specular Multipath Environment.

    Science.gov (United States)

    1981-02-01

    Technology Department ACKNOWLEDGEMENTS The author would like to thank Kenneth Sliegus and Wayland Carlson for their participation in the tests. L 𔄃 i...guidance system concepts in a specular multipath environment for application to vertical takeoff and landing systems aboard small ships. Specifically...tested is, show\

  1. INDEPENDENT CONFIRMATORY SURVEY REPORT FOR THE REACTOR BUILDING, HOT LABORATORY, PRIMARY PUMP HOUSE, AND LAND AREAS AT THE PLUM BROOK REACTOR FACILITY, SANDUSKY, OHIO

    Energy Technology Data Exchange (ETDEWEB)

    Erika N. Bailey

    2011-10-10

    In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities

  2. The Special Sensor Microwave Imager Wind Dataset: A Source of Quantitative Information for the Ocean-to-Land Advection

    Science.gov (United States)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Demaree, G.; Huth, R.; Jaagus, J.; Koslowsky, D.; Przybylak, R.; Wos, A.; Atlas, Robert (Technical Monitor)

    1999-01-01

    It is well recognized that advection from the North Atlantic has a profound effect on the climatic conditions in central Europe. A new dataset of the ocean-surface winds, derived from the Special Sensor Microwave Imager, SSM/1, is now available. This satellite instrument measures the wind speed, but not the direction. However, variational analysis developed at the Data Assimilation Office, NASA Goddard Space Flight Center, by combining the SSM/I measurements with wind vectors measured from ships, etc., produced global maps of the ocean surface winds suitable for climate analysis. From this SSM/I dataset, a specific index I(sub na) of the North Atlantic surface winds has been developed, which pertinently quantifies the low-level advection into central Europe. For a selected time-period, the index I(sub na) reports the average of the amplitude of the wind, averaging only the speed when the direction is from the southwest (when the wind is from another direction, the contribution counts to the average as zero speed). Strong correlations were found between February I(sub na) and the surface air temperatures in Europe 50-60 deg N. In the present study, we present the correlations between I(sub na) and temperature I(sub s), and also the sensitivity of T(sub s), to an increase in I(sub na), in various seasons and various regions. We specifically analyze the flow of maritime-air from the North Atlantic that produced two extraordinary warm periods: February 1990, and early-winter 2000/2001. The very cold December 2001 was clearly due to a northerly flow. Our conclusion is that the SSM/I dataset is very useful for providing insight to the forcing of climatic fluctuations in Europe.

  3. Accurate Analysis and Evaluation of Acidic Plant Growth Regulators in Transgenic and Nontransgenic Edible Oils with Facile Microwave-Assisted Extraction-Derivatization.

    Science.gov (United States)

    Liu, Mengge; Chen, Guang; Guo, Hailong; Fan, Baolei; Liu, Jianjun; Fu, Qiang; Li, Xiu; Lu, Xiaomin; Zhao, Xianen; Li, Guoliang; Sun, Zhiwei; Xia, Lian; Zhu, Shuyun; Yang, Daoshan; Cao, Ziping; Wang, Hua; Suo, Yourui; You, Jinmao

    2015-09-16

    Determination of plant growth regulators (PGRs) in a signal transduction system (STS) is significant for transgenic food safety, but may be challenged by poor accuracy and analyte instability. In this work, a microwave-assisted extraction-derivatization (MAED) method is developed for six acidic PGRs in oil samples, allowing an efficient (<1.5 h) and facile (one step) pretreatment. Accuracies are greatly improved, particularly for gibberellin A3 (-2.72 to -0.65%) as compared with those reported (-22 to -2%). Excellent selectivity and quite low detection limits (0.37-1.36 ng mL(-1)) are enabled by fluorescence detection-mass spectrum monitoring. Results show the significant differences in acidic PGRs between transgenic and nontransgenic oils, particularly 1-naphthaleneacetic acid (1-NAA), implying the PGRs induced variations of components and genes. This study provides, for the first time, an accurate and efficient determination for labile PGRs involved in STS and a promising concept for objectively evaluating the safety of transgenic foods.

  4. Facile Preparation, Characterization, and Highly Effective Microwave Absorption Performance of CNTs/Fe3O4/PANI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deqing Zhang

    2013-01-01

    Full Text Available A facile method has been developed to synthesize light-weight CNTs/Fe3O4/PANI nanocomposites. The formation route was proposed as the coprecipitation of Fe2+ and Fe3+ and an additional process of in situ polymerization of aniline monomer. The structure and morphology of CNTs/Fe3O4/PANI were characterized by transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared (FTIR spectroscopy. The TEM investigation shows that the CNTs/Fe3O4/PANI nanocomposites exhibit less intertwined structure and that many more Fe3O4 particles are attached homogeneously on the surface of CNTs, indicating that PANI can indeed help CNTs to disperse in isolated form. The wave-absorbing properties were investigated in a frequency of 2–18 GHz. The results show that the CNTs/Fe3O4/PANI nanocomposites exhibit a super absorbing behavior and possess a maximum reflection loss of −48 dB at 12.9 GHz, and the bandwidth below −20 dB is more than 5 GHz. More importantly, the absorption peak frequency ranges of the CNTs/Fe3O4/PANI composites can be tuned easily by changing the wax weight ratio and thickness of CNTs/Fe3O4/PANI paraffin wax matrix.

  5. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  6. Critical parameters and TCLP performance of the RFP microwave solidification system

    Energy Technology Data Exchange (ETDEWEB)

    Sprenger, G.S.

    1993-01-01

    Two series of experiments were conducted at Rocky Flats Plant (RFP) to identify the critical operating parameters for microwave solidification and to evaluate the performance of the product against the EPA's Toxicity Characteristic Leach Procedure (TCLP). A surrogate hydroxide coprecipitation sludge spiked with heavy metals was used in the study. The RFP process uses microwave energy to heat and melt the waste into a vitreous final form that is suitable for land disposal. The results of the study indicate that waste loading and borax content in the glass forming frit are critical in the treatment of hydroxide sludge. Also, the product will easily satisfy EPA's limitations for land disposal. These results are very encouraging and support RFP's commitment to the use of microwave technology for treatment of various mixed waste streams at the facility.

  7. Hydro-Electric Facilities, (Municpality Name) Hydro-electric Facility, Published in 2005, 1:24000 (1in=2000ft) scale, Lafayette County Land Records.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Hydro-Electric Facilities dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Field Observation information as of 2005. It is...

  8. Microwave-Assisted Facile Synthesis, Anticancer Evaluation and Docking Study of N-((5-(Substituted methylene amino-1,3,4-thiadiazol-2-ylmethyl Benzamide Derivatives

    Directory of Open Access Journals (Sweden)

    Shailee V. Tiwari

    2017-06-01

    Full Text Available In the present work, 12 novel Schiff’s bases containing a thiadiazole scaffold and benzamide groups coupled through appropriate pharmacophore were synthesized. These moieties are associated with important biological properties. A facile, solvent-free synthesis of a series of novel 7(a–l N-((5-(substituted methylene amino-1,3,4-thiadiazol-2-ylmethyl benzamide was carried out under microwave irradiation. Structures of the synthesized compounds were confirmed by IR, NMR, mass spectral study and elemental analysis. All the synthesized hybrids were evaluated for their in vitro anticancer activity against a panel of four human cancer cell lines, viz. SK-MEL-2 (melanoma, HL-60 (leukemia, HeLa (cervical cancer, MCF-7 (breast cancer and normal breast epithelial cell (MCF-10A using 3-(4,5-dimethythiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay method. Most of the synthesized compounds exhibited promising anticancer activity, showed comparable GI50 values comparable to that of the standard drug Adriamycin. The compounds 7k, 7l, 7b, and 7a were found to be the most promising anticancer agents in this study. A molecular docking study was performed to predict the probable mechanism of action and computational study of the synthesized compounds 7(a–l was performed to predict absorption, distribution, metabolism, excretion and toxicity (ADMET properties, by using QikProp v3.5 (Schrödinger LLC. The results showed the good oral drug-like behavior of the synthesized compounds 7(a–l.

  9. Detecting Anthropogenic and Climate Change Induced Land Cover and Land Use Change in the Vicinity of an Oil/gas Facility in Northwestern Siberia, Russia

    Science.gov (United States)

    Yu, Q.; Shiklomanov, N. I.; Streletskiy, D. A.; Engstrom, R.; Epstein, H. E.

    2015-12-01

    Arctic ecosystems are changing dramatically due to changes in climate, vegetation and human activities. Northwestern Siberia is one of the regions which has been undergoing various land cover and land use changes associated primarily with animal husbandry and oil/gas development. These changes have been exacerbated by warming climatic conditions over the last fifty years. In this study, we investigated land cover and land use changes associated with oil and gas development southeast of the city of Nadym within the context of climate change based on multi-source and multi-temporal remote sensing imagery. The impacts of land use on surface vegetation, radiation, and hydrological properties were evaluated using the Normalized Difference Vegetation Index (NDVI), albedo and the Normalized Difference Water Index (NDWI). The results from a comparison between high spatial resolution imagery acquired in1968 and 2006 indicate that the vegetation cover was reduced in areas disturbed by oil and gas development. Vegetation cover increased in natural landscapes over the same period,. Water logging was found along the linear structures near the oil/gas development, while in natural landscapes the drying of thermokarst lakes is evident due to permafrost degradation. Derived indices suggest that the direct impacts associated with infrastructure development are mostly within 100 m distance from the disturbance source. While these impacts are rather localized they persist for decades despite partial recovery of vegetation after the initial disturbance.

  10. Microwave Ovens

    Science.gov (United States)

    ... ovens heat food using microwaves, a form of electromagnetic radiation similar to radio waves. Microwaves have three characteristics ... that their microwave oven products meet the strict radiation safety standard ... if your microwave oven has damage to its door hinges, latches, or seals, or ...

  11. Park Land and Nature Preserves, Park facilities are maintained by Johnson County Parks and Recreation Department and includes all parks with in Johnson County, Published in Not Provided, Johnson County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Park Land and Nature Preserves dataset current as of unknown. Park facilities are maintained by Johnson County Parks and Recreation Department and includes all parks...

  12. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  13. A facile approach for the synthesis of 3,4-dihydropyrimidin-2-(1)-ones using a microwave promoted Biginelli protocol in ionic liquid

    Indian Academy of Sciences (India)

    Abhishek N Dadhania; Vaibhav K Patel; Dipak K Raval

    2012-07-01

    Carboxy functionalized ionic liquid [cmmim][BF4] has been demonstrated to be an efficient and green catalyst for the one pot synthesis of 3,4-dihydropyrimidin-2-(1)-ones heterocycles under microwave irradiation. The ionic liquid-microwave strategy represents an easy access to Biginelli compounds with high yields and purity. The protocol was found to be compatible with different structurally diverse aldehydes. The ionic liquid was recycled and reused in at least six subsequent reactions with consistent activity.

  14. The Influence of Urban Land-Use and Public Transport Facilities on Active Commuting in Wellington, New Zealand: Active Transport Forecasting Using the WILUTE Model

    Directory of Open Access Journals (Sweden)

    Joreintje Dingena Mackenbach

    2016-03-01

    Full Text Available Physical activity has numerous physical and mental health benefits, and active commuting (walking or cycling to work can help meet physical activity recommendations. This study investigated socioeconomic differences in active commuting, and assessed the impact of urban land-use and public transport policies on active commuting in the Wellington region in New Zealand. We combined data from the New Zealand Household Travel Survey and GIS data on land-use and public transport facilities with the Wellington Integrated Land-Use, Transportation and Environment (WILUTE model, and forecasted changes in active commuter trips associated with changes in the built environment. Results indicated high income individuals were more likely to commute actively than individuals on low income. Several land-use and transportation factors were associated with active commuting and results from the modelling showed a potential increase in active commuting following an increase in bus frequency and parking fees. In conclusion, regional level policies stimulating environmental factors that directly or indirectly affect active commuting may be a promising strategy to increase population level physical activity. Access to, and frequency of, public transport in the neighbourhood can act as a facilitator for a more active lifestyle among its residents without negatively affecting disadvantaged groups.

  15. Microwave Photonics

    OpenAIRE

    Seeds, A.J.; Liu, C. P.; T. Ismail; Fice, M. J.; Pozzi, F; Steed, R. J.; Rouvalis, E.; Renaud, C.C.

    2010-01-01

    Microwave photonics is the use of photonic techniques for the generation, transmission, processing and reception of signals having spectral components at microwave frequencies. This tutorial reviews the technologies used and gives applications examples.

  16. EFFECT OF POLY (ETHYLENE GLYCOL) ON THE FORMATION OF NANOSTRUCTURES: A FACILE SUSTAINABLE APPROACH FOR THE SYNTHESIS OF SILVER NANORODS USING MICROWAVE IRRADIATION

    Science.gov (United States)

    Bulk synthesis of silver nanorods employing poly (ethylene glycol) (PEG) under microwave irradiation is reported. The formation of nanorods or particulate morphology is dependent on the PEG concentration. This greener method uses no surfactants or reducing agents and employs a b...

  17. Modelling the passive microwave signature from land surfaces: a review of recent results and application to the SMOS & SMAP soil moisture retrieval algorithms

    Science.gov (United States)

    Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009....

  18. Assessment of the feasibility of recommissioning the French Landing Hydroelectric Facility in Van Buren Township, Michigan. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The results of a study of the feasibility of recommissioning a small, low-head hydroelectric facility in southeastern Michigan are presented. The study concludes that there are several cost-effective designs for recommissioning the site, based on the use of vertical turbines and the sale of power to nearby industrial markets. In terms of the bulk sale of power to the local electric utility, no cost-effective alternatives were found to exist. A major burden on project cost-effectiveness was found to be the relatively large costs for structural repairs to the dam and powerhouse needed to insure safe operation and on adequate service life. From an engineering standpoint it was found that the items of equipment needed to recommission the site are readily available from both US and foreign manufacturers. A variety of hydraulic turbine designs could be successfully adapted to the existing powerhouse, without extensive new construction. It was determined that the production capacity of the facility had an important influence on the cost-effectiveness of the project. A detailed benefit/cost analysis was conducted to identify the optimum facility size in terms of incremental costs and revenues. A detailed environmental assessment using an impact matrix methodology concluded that the development of the facility for hydroelectric generation would have important positive environmental consequences related to improved impoundment and flow management techniques as well as enhanced public safety due to structural repairs to the dam. The institutional and regulatory implications of developing the site for hydroelectric generation were found to be significant but manageable.

  19. Advances in the Study of Land Surface Emissivity Retrieval from Passive Microwave Remote Sensing%被动微波遥感反演地表发射率研究进展

    Institute of Scientific and Technical Information of China (English)

    吴莹; 王振会

    2012-01-01

    The microwave land surface emissivity ( MLSE ) is a very important parameter for describing the characteristics of the lands, and it is also a key factor for retrieving the parameters of land and atmosphere. Space - borne passive microwave radiometers provide direct retrieved land surface emissivity spectra with larger temporal and spatial scales compared with physical modeling simulation in that the physical modeling simulation needs plenty of parameters, but quite a few of these parameters, such as parameters of land surface and vegetation, are not available from traditional measurements. This paper systematically reviews MLSE retrieving algorithms for passive microwave remote sensing data, which include statistical approach, atmospheric radiation transfer model approach, index analysis approach, neural network approach and one - dimensionally variational analysis approach. The main advantages and limitations of these five methods are also discussed. Finally, the development tendencies of estimating MLSE by remote sensing are pointed out, such as developing algorithms of Radio Frequency Interference ( RFI) detection and correction, improving algorithms of detection of clouds and rain -affected radiances, and intensive research on microwave atmospheric radiation transfer process.%微波地表发射率是表征地表特征的重要参数,也是反演地表、大气参数的重要条件.相比较物理模型,其模拟计算需要若干输入参数,且相当一部分地表、植被特征参数很难从常规资料中获取,应用星载被动微波辐射计资料可以在更大空间和时间尺度范围内直接反演地表发射率.从目前常用的几种被动微波遥感反演方法(包括经验统计方法、辐射传输方程方法、指数分析方法、神经网络方法、一维变分方法等等)回顾了微波地表发射率反演的国内外研究进展及其研究中存在的问题,并对这些方法的优、缺点进行了评价.最后指出,今后应

  20. Engineering and design of holding yards, loading ramps and handling facilities for land and sea transport of livestock

    Directory of Open Access Journals (Sweden)

    Temple Grandin

    2008-03-01

    Full Text Available Facilities designed for intensively raised animals trained to lead are not appropriate for handling extensively raised animals unaccustomed to close contact with people. The author provides information on facility design for both intensively and extensively raised livestock. Non-slip flooring in handling facilities is essential for all livestock. Cleats must be spaced on loading ramps for trucks or ships so that the hooves of the animals fit easily between them. Cleats spaced too far apart cause slipping and falling. In developing countries, building stationary ramps for vehicles of differing heights using concrete, wood or steel is recommended. Highly mechanised systems, such as hydraulic tailgate lifts, are not recommended in developing countries due to maintenance difficulties. The holding capacity for livestock shipping and receiving terminals should be designed to hold the largest number of animals handled on the busiest days. To maintain high standards of animal welfare, it is important to train employees to handle animals using methods to reduce stress and to conduct weekly audits of handling using an objective, numerical scoring system to maintain high welfare standards.

  1. Microwave-mediated reductive amination-cyclization of 4-aryl-4-oxobutanoates: Facile synthesis of 3-methylidene-5-phenyl-2,3-dihydropyrrolidones

    Indian Academy of Sciences (India)

    H Surya Prakash Rao; S P Senthilkumar

    2004-03-01

    Microwave-mediated three-component condensation of 4-aryl-4-oxobutanoates with ammonium formate furnishes 3-methylidene-5-phenyl-2,3-dihydropyrrolidones in good yield within 2 min. The pyrrolidone products were characterized on the basis of spectral data and X-ray crystal structure analysis. The reaction is found to be general and a variation in the ester and aryl moieties is possible. However, when alkylammonium formate is used only amide products are formed.

  2. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  3. Purchase of Microwave Reactors for Implementation of Small-scale Microwave-accelerated Organic Chemistry Laboratory Program in Undergraduate Curriculum and Synthetic Chemistry Research at HU

    Science.gov (United States)

    2015-05-16

    Microwave-accelerated Organic Chemistry Laboratory Program in Undergraduate Curriculum and Synthetic Chemistry Research at HU The views, opinions and/or...Research Triangle Park, NC 27709-2211 Microwave laboratory facility, Undergraduate organic chemistry laboratory, Implementation/Development of...Purchase of Microwave Reactors for Implementation of Small-scale Microwave-accelerated Organic Chemistry Laboratory Program in Undergraduate

  4. A facile microwave assisted one-pot synthesis of novel 1-methylhexahydroquinazolin-5(6H-ones and bis-1-methylhexahydroquinazolin-5(6H-ones

    Directory of Open Access Journals (Sweden)

    Madhusudhan Saha

    2011-03-01

    Full Text Available Novel hexahydroquinazolin-5(6H-ones 3a-j have been synthesized in good yields by the reaction of enaminones 2a-b with primary amines and formaldehyde under the influence microwaves. Enaminones 2a-b have also been reacted with diamines and formaldehyde under similar conditions resulting in hitherto unreported bis- hexahydroquinazolin-5(6H-ones 4a-d and 5a-d. The structures of the molecules have been established with the help of spectral and analytical data.

  5. Tailoring surface and photocatalytic properties of ZnO and nitrogen-doped ZnO nanostructures using microwave-assisted facile hydrothermal synthesis

    Science.gov (United States)

    Rangel, R.; Cedeño, V.; Ramos-Corona, A.; Gutiérrez, R.; Alvarado-Gil, J. J.; Ares, O.; Bartolo-Pérez, P.; Quintana, P.

    2017-08-01

    Microwave hydrothermal synthesis, using an experimental 23 factorial design, was used to produce tunable ZnO nano- and microstructures, and their potential as photocatalysts was explored. Photocatalytic reactions were conducted in a microreactor batch system under UV and visible light irradiation, while monitoring methylene blue degradation, as a model system. The variables considered in the microwave reactor to produce ZnO nano- or microstructures, were time, NaOH concentration and synthesis temperature. It was found that, specific surface area and volume/surface area ratio were affected as a consequence of the synthesis conditions. In the second stage, the samples were plasma treated in a nitrogen atmosphere, with the purpose of introducing nitrogen into the ZnO crystalline structure. The central idea is to induce changes in the material structure as well as in its optical absorption, to make the plasma-treated material useful as photocatalyst in the visible region of the electromagnetic spectrum. Pristine ZnO and nitrogen-doped ZnO compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (BET), XPS, and UV-Vis diffuse reflectance spectroscopy. The results show that the methodology presented in this work is effective in tailoring the specific surface area of the ZnO compounds and incorporation of nitrogen into their structure, factors which in turn, affect its photocatalytic behavior.

  6. Zoning and mode of rural residential land consolidation based on accessibility to production and living facilities%基于生产生活可达性的农村居民点整治分区及模式

    Institute of Scientific and Technical Information of China (English)

    刘耀林; 范建彬; 孔雪松; 刘艳芳

    2015-01-01

    The consolidation of rural residential land should meet the needs of farmers for their life and for agriculture production, and improve the accessibility to production and living facilities. In this paper, we started with the accessibility to production and living facilities and used the accessibility to production and living facilities in rural residential land as the basis for deciding different zones for consolidation and what consolidation modes to adopt. Firstly, we built an indicator system for assessing the accessibility in terms of the two aspects, the production accessibility and living facilities accessibility. Production accessibility was based on the consideration of both agricultural production sites and non-agricultural employment places. While the living facilities accessibility was based on the accessibility of education, medical care, commercial and recreational facilities. Then, we used the time-cost to demonstrate the accessibility. On the basis of setting the passage time of unit distance (30 m) on the lands of different function, measure the accessibility of various facilities using Path Distance Tool of ARCGIS 10.0 with elevation as its correction factor. After that, by using indicator comprehensive judgment method, and superimposing with map layer of rural residential land, we obtained the accessibility to production and living facilities of rural residential land, which was divided into four grades I, II, III and IV, corresponding to development zone, optimization zone, guidance zone and demolition zone, respectively. Finally, according to different zones of consolidation and the actual situation, six modes of consolidation were presented, including urbanization development mode, urban and rural overall development mode, comprehensive optimization mode, networking guidance mode, land-use increase and decrease linked mode and ecological relocation mode. In the development zone, rural residential lands located in the urban planning area were

  7. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  8. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  9. Use of microwave in diagnostic pathology

    Directory of Open Access Journals (Sweden)

    Basavaradhya Sahukar Shruthi

    2013-01-01

    Microwaves a form of electromagnetic wave-induced heat, when applied in histotechnology, reproducibly yields histolologic material of similar or superior quality to that provided by conventional processing methods, making it more popular in the recent years. A laboratory microwave offers features like maximum output of 2000-3000 watts, an in-built source of adjustable temperature probe, facility for ventilation of hazardous fumes, but is expensive. Considering the usefulness of microwave in histotechnology, i.e., reducing the time required for the diagnosis, replacing the conventional equipments of laboratories by microwave-guided ones is a remarkable and an acceptable change.

  10. An improved facile method for extraction and determination of steroidal saponins in Tribulus terrestris by focused microwave-assisted extraction coupled with GC-MS.

    Science.gov (United States)

    Li, Tianlin; Zhang, Zhuomin; Zhang, Lan; Huang, Xinjian; Lin, Junwei; Chen, Guonan

    2009-12-01

    An improved fast method for extraction of steroidal saponins in Tribulus terrestris based on the use of focus microwave-assisted extraction (FMAE) is proposed. Under optimized conditions, four steroidal saponins were extracted from Tribulus terrestris and identified by GC-MS, which are Tigogenin (TG), Gitogenin (GG), Hecogenin (HG) and Neohecogenin (NG). One of the most important steroidal saponins, namely TG was quantified finally. The recovery of TG was in the range of 86.7-91.9% with RSDTribulus terrestris from different areas of occurrence. The difference in chromatographic characteristics of steroidal saponins was proved to be related to the different areas of occurrence. The results showed that FMAE-GC-MS is a simple, rapid, solvent-saving method for the extraction and determination of steroidal saponins in Tribulus terrestris.

  11. A facile green synthesis of Sm2O3 nanoparticles via microwave-assisted urea precipitation route and their optical properties

    Science.gov (United States)

    Xue, Hansong; Zhang, Weina; Li, Xinyu; You, Xiaochang; Rao, Jinsong; Pan, FuSheng

    2017-05-01

    Samarium oxide (Sm2O3) nanoparticles with a narrow size distribution were successfully synthesized by microwave-assisted using urea as precipitant without surfactant or template. The Sm2O3 particles were characterized using X-ray diffraction analysis, field-emission scanning electron microscopy, field-emission transmission electron microscopy and ultraviolet-visible-near-infrared spectrophotometer. The results showed that the samples prepared with different concentration of urea had different particle sizes. When the concentration of urea was 1.2 mol/L, the sample had the smallest particle size. A possible mechanism for the formation of the nanoparticles was proposed. Optical properties of Sm2O3 nanoparticles showed that the nanoparticles had a strong absorption property in the deep ultraviolet region between 200 nm and 270 nm. [Figure not available: see fulltext.

  12. L-band microwave remote sensing and land data assimilation improve the representation of pre-storm soil moisture conditions for hydrologic forecasting

    Science.gov (United States)

    Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i...

  13. Solvent-free microwave-mediated Michael addition reactions

    Indian Academy of Sciences (India)

    H Surya Prakash Rao; S Jothilingam

    2005-07-01

    Facile Michael addition of active methylene compounds to ,-unsaturated carbonyl compounds takes place on the surface of potassium carbonate under microwave irradiation. Further studies on microwave-mediated Robinson annulations reveal a convenient and facile method for condensation of chalcone with methylene compounds to furnish cyclohexenones.

  14. Microwave generator

    Science.gov (United States)

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  15. Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-Band SMOS SMAP Soil Moisture Retrieval Algorithms

    Science.gov (United States)

    Wigneron, J.-P.; Jackson, T. J.; O'Neill, P.; De Lannoy, G.; De Rosnay, P.; Walker, J. P.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J. P.; hide

    2017-01-01

    Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009. The SMAP sensor, based on a large mesh reflector 6 m in diameter providing a conically scanning antenna beam with a surface incidence angle of 40deg, was launched in January of 2015. Over the last decade, an intense scientific activity has focused on the development of the SM retrieval algorithms for the two missions. This activity has relied on many field (mainly tower-based) and airborne experimental campaigns, and since 2010-2011, on the SMOS and Aquarius space-borne L-band observations. It has relied too on the use of numerical, physical and semi-empirical models to simulate the microwave brightness temperature of natural scenes for a variety of scenarios in terms of system configurations (polarization, incidence angle) and soil, vegetation and climate conditions. Key components of the inversion models have been evaluated and new parameterizations of the effects of the surface temperature, soil roughness, soil permittivity, and vegetation extinction and scattering have been developed. Among others, global maps of select radiative transfer parameters have been estimated very recently. Based on this intense activity, improvements of the SMOS and SMAP SM inversion algorithms have been proposed. Some of them have already been implemented, whereas others are currently being investigated. In this paper, we present a review of the significant progress which has been made over the last decade in this field of research with a focus on L-band, and a discussion on possible applications to the SMOS and SMAP soil moisture retrieval approaches.

  16. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  17. Solid Waste Management Facilities with Permits by the Iowa DNR

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  18. Solid Waste Land Applications with Permits by the Iowa DNR

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  19. Facile and single step synthesis of three dimensional reduced graphene oxide-NiCoO2 composite using microwave for enhanced electron field emission properties

    Science.gov (United States)

    Kumar, Rajesh; Singh, Rajesh K.; Singh, Ashwani K.; Vaz, Alfredo R.; Rout, Chandra S.; Moshkalev, Stanislav A.

    2017-09-01

    We report the enhanced field emission properties of three-dimensional (3D) mixed transition metal oxide with reduced graphene oxide nanosheets (rGO-NSs) using a simple and fast synthesis route. The rGO-NSs with different/mixed transition metal oxide (rGO-MxOy) (MxOy = CoO, NiO and NiCoO2) composite has been synthesized for comparative studies for the electron field emission properties. The various rGO-MxOy composite materials were synthesized by microwave irradiation using soild precursor powder. The electron field emission properties were studied for all the samples as rGO-NSs, rGO-CoO, rGO-NiO and 3D rGO-NiCoO2 composite. It was found that specially, rGO-NiCoO2 composite shows the enhanced field emission performance due to synergic effect of mixed transition metal oxide as NiCoO2 nanoparticles with rGO-NSs and also the proper anchoring of NiCoO2 nanoparticles on rGO-NSs. The attachment of NiCoO2 mixed transition metal oxide with rGO-NSs exhibited lower turn-on field, lower threshold field, larger field enhancement factor and stable emission current stability as compared with those of the rGO-NSs, rGO-CoO and rGO-NiO composite. The surface microstructural analysis and morphology were probed by XRD, scanning and Raman. We suggest that anchoring of binary metal oxide nanoparticles on rGO-NSs could be exploited for the development of efficient field emitters.

  20. Real-time radar signal processing for autonomous aircraft landing

    Science.gov (United States)

    Sadjadi, Firooz A.; Helgeson, Michael A.; Radke, Jeffrey D.; Stein, Gunter

    1993-11-01

    Landing in poor weather is a crucial problem for the air transportation system. To aid the pilots for these conditions several solutions have been suggested and/or implemented including instrument landing systems (ILS) and microwave landing systems (MLS) that put the responsibility of the landing to a large extent in the hands of the airport facilities. These systems even though useful are not available due to their high costs even in a few major metropolitan airports. This shortcoming has generated interest in providing all weather capabilities not on the landing facility but on the vehicle itself. The Synthetic Vision System Technology Demonstration sponsored by the United States Federal Aviation Administration (FAA) and the U.S. Air Force represents an effort to respond to the above needs. In this paper we present a summary of a typical synthetic vision system. This system consists of a scanning 35 GHz radar, a scanning antenna, a signal/image processor and a head up display (HUD). The pilot is presented a final perspective image of the scene sensed by the radar with associated flight guidance symbology. This system is implemented in real time hardware and has been undergoing tower and flight testing under a variety of weather conditions since early 1992.

  1. Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal-carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene.

    Science.gov (United States)

    Vollmer, Christian; Redel, Engelbert; Abu-Shandi, Khalid; Thomann, Ralf; Manyar, Haresh; Hardacre, Christopher; Janiak, Christoph

    2010-03-22

    Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (M-NPs) have been reproducibly obtained by facile, rapid (3 min), and energy-saving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal-carbonyl precursors [M(x)(CO)(y)] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF(4)]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180-250 degrees C, 6-12 h) of [M(x)(CO)(y)] in ILs. The MWI-obtained nanoparticles have a very small (IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active and easily recyclable catalysts for the biphasic liquid-liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product) (mol Ru)(-1) h(-1) and 884 (mol product) (mol Rh)(-1) h(-1) and give almost quantitative conversion within 2 h at 10 bar H(2) and 90 degrees C. Catalyst poisoning experiments with CS(2) (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of Ru-NPs.

  2. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction.

    Science.gov (United States)

    Li, Dan; Huang, Yudai; Sharma, Neeraj; Chen, Zhixin; Jia, Dianzeng; Guo, Zaiping

    2012-03-14

    A composite cathode material for lithium ion battery applications, Mo-doped LiFePO(4)/C, is obtained through a facile and fast microwave-assisted synthesis method. Rietveld analysis of LiFePO(4)-based structural models using synchrotron X-ray diffraction data shows that Mo-ions substitute onto the Fe sites and displace Fe-ions to the Li sites. Supervalent Mo(6+) doping can act to introduce Li ion vacancies due to the charge compensation effect and therefore facilitate lithium ion diffusion during charging/discharging. Transmission electron microscope images demonstrate that the pure and doped LiFePO(4) nanoparticles were uniformly covered by an approximately 5 nm thin layer of graphitic carbon. Amorphous carbon on the graphitic carbon-coated pure and doped LiFePO(4) particles forms a three-dimensional (3D) conductive carbon network, effectively improving the conductivity of these materials. The combined effects of Mo-doping and the 3D carbon network dramatically enhance the electrochemical performance of these LiFePO(4) cathodes. In particular, Mo-doped LiFePO(4)/C delivers a reversible capacity of 162 mA h g(-1) at a current of 0.5 C and shows enhanced capacity retention compared to that of undoped LiFePO(4)/C. Moreover, the electrode exhibits excellent rate capability, with an associated high discharge capacity and good electrochemical reversibility.

  3. Microwave-Initiated Facile Formation of Ni3Se4 Nanoassemblies for Enhanced and Stable Water Splitting in Neutral and Alkaline Media.

    Science.gov (United States)

    Anantharaj, Sengeni; Kennedy, Jeevarathinam; Kundu, Subrata

    2017-02-28

    Molecular hydrogen (H2) generation through water splitting with minimum energy loss has become practically possible due to the recent evolution of high-performance electrocatalysts. In this study, we fabricated, evaluated, and presented such a high-performance catalyst which is the Ni3Se4 nanoassemblies that can efficiently catalyze water splitting in neutral and alkaline media. A hierarchical nanoassembly of Ni3Se4 was fabricated by functionalizing the surface-cleaned Ni foam using NaHSe solution as the Se source with the assistance of microwave irradiation (300 W) for 3 min followed by 5 h of aging at room temperature (RT). The fabricated Ni3Se4 nanoassemblies were subjected to catalyze water electrolysis in neutral and alkaline media. For a defined current density of 50 mA cm(-2), the Ni3Se4 nanoassemblies required very low overpotentials for the oxygen evolution reaction (OER), viz., 232, 244, and 321 mV at pH 14.5, 14.0, and 13.0 respectively. The associated lower Tafel slope values (33, 30, and 40 mV dec(-1)) indicate the faster OER kinetics on Ni3Se4 surfaces in alkaline media. Similarly, in the hydrogen evolution reaction (HER), for a defined current density of 50 mA cm(-2), the Ni3Se4 nanoassemblies required low overpotentials of 211, 206, and 220 mV at pH 14.5, 14.0, and 13.0 respectively. The Tafel slopes for HER at pH 14.5, 14.0, and 13.0 are 165, 156, and 128 mV dec(-1), respectively. A comparative study on both OER and HER was carried out with the state-of-the-art RuO2 and Pt under identical experimental conditions, the results of which revealed that our Ni3Se4 is a far better high-performance catalyst for water splitting. Besides, the efficiency of Ni3Se4 nanoassemblies in catalyzing water splitting in neutral solution was carried out, and the results are better than many previous reports. With these amazing advantages in fabrication method and in catalyzing water splitting at various pH, the Ni3Se4 nanoassemblies can be an efficient, cheaper

  4. Assessment of Physical, Chemical, and Hydrologic Factors Affecting the Infiltration of Treated Wastewater in theNew Jersey Coastal Plain, with Emphasis on theHammonton Land Application Facility

    Science.gov (United States)

    Reilly, Timothy J.; Romanok, Kristin M.; Tessler, Steven; Fischer, Jeffrey M.

    2010-01-01

    A hydrogeologic and water-quality investigation of the Hammonton Land Application Facility (Hammonton LAF) in Hammonton, New Jersey, was conducted to determine the factors that impede the infiltration of treated wastewater and to assess the potential for similar conditions to exist elsewhere in the Coastal Plain of New Jersey (particularly within the Pinelands National Reserve). Gamma logs, sediment cores, and hydraulic-profile testing indicate that extensive fine-grained strata and iron-cemented sands underlying the Hammonton LAF may impede infiltration and lead to the perching of diluted treated wastewater. Perched water was observed in augured holes adjacent to infiltration trenches, and analysis of wastewater loading and infiltration data indicates that infiltration trenches may receive lateral flow from multiple perched-water sources. Analysis of water-quality properties characteristic of treated wastewater show that although infiltrated wastewater is reaching the underlying aquifer, lengthy holding times and a long recharge pathway greatly reduce the concentrations of nitrate, boron, and many organic compounds typical of wastewater. Conditions at two currently operating facilities and one potential future facility in the New Jersey Coastal Plain were compared to those at the Hammonton Land Application Facility (LAF). Facilities operating as designed are not underlain by the restrictive strata that exist at the Hammonton LAF. Careful characterization of the geology and hydrology of the unsaturated zone underlying infiltration structures of future facilities in the New Jersey Coastal Plain and similar hydrogeologic settings will help to avoid constructing infiltration structures over or within low-hydraulic-conductivity strata that will decrease infiltration rates.

  5. Microwave Sterilization and Depyrogenation System

    Science.gov (United States)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R., Jr.

    2009-01-01

    at a given flow rate. These technologies can be employed in small-scale systems for efficient production of MGW in the laboratory or in a range of larger systems that meet various industrial requirements. The microwave antennas can also be adapted to selectively sterilize vulnerable connections to ultra-pure water production facilities or biologically vulnerable systems where microorganisms may intrude.

  6. Proceedings. NETEC workshop on shallow land disposal technology, 1997. 10. 20 - 10. 21, Taejon, Korea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This proceedings cover the design and operational experience of shallow land disposal facility, and safety assessment and licensing issues of shallow land disposal facility. Ten articles are submitted.

  7. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  8. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  9. Park Land and Nature Preserves, State Park point locations in Critical Facilities data layer, Published in 2008, 1:4800 (1in=400ft) scale, Logan County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Park Land and Nature Preserves dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Field Survey/GPS information as of 2008. It is...

  10. Meteosat SEVIRI Fire Radiative Power (FRP products from the Land Surface Analysis Satellite Applications Facility (LSA SAF – Part 1: Algorithms, product contents and analysis

    Directory of Open Access Journals (Sweden)

    M. J. Wooster

    2015-06-01

    Full Text Available Characterising changes in landscape scale fire activity at very high temporal resolution is best achieved using thermal observations of actively burning fires made from geostationary Earth observation (EO satellites. Over the last decade or more, a series of research and/or operational "active fire" products have been developed from these types of geostationary observations, often with the aim of supporting the generation of data related to biomass burning fuel consumption and trace gas and aerosol emission fields. The Fire Radiative Power (FRP products generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF from data collected by the Meteosat Second Generation (MSG Spinning Enhanced Visible and Infrared Imager (SEVIRI are one such set of products, and are freely available in both near real-time and archived form. Every 15 min, the algorithms used to generate these products identify and map the location of new SEVIRI observations containing actively burning fires, and characterise their individual rates of radiative energy release (fire radiative power; FRP that is believed proportional to rates of biomass consumption and smoke emission. The FRP-PIXEL product contains the highest spatial resolution FRP dataset, delivered for all of Europe, northern and southern Africa, and part of South America at a spatial resolution of 3 km (decreasing away from the west African sub-satellite point at the full 15 min temporal resolution. The FRP-GRID product is an hourly summary of the FRP-PIXEL data, produced at a 5° grid cell size and including simple bias adjustments for meteorological cloud cover and for the regional underestimation of FRP caused, primarily, by the non-detection of low FRP fire pixels at SEVIRI's relatively coarse pixel size. Here we describe the enhanced geostationary Fire Thermal Anomaly (FTA algorithm used to detect the SEVIRI active fire pixels, and detail methods used to deliver atmospherically corrected FRP

  11. Park Facilities, Jefferson County Parks, Published in 2008, 1:2400 (1in=200ft) scale, Jefferson County Land Information Office.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Park Facilities dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Published Reports/Deeds information as of 2008. It is described...

  12. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  13. Rapid and facile preparation of zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Anchieta, Chayene G.; Severo, Eric C.; Rigo, Caroline; Mazutti, Marcio A. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Kuhn, Raquel C., E-mail: raquelckuhn@yahoo.com.br [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Muller, Edson I.; Flores, Erico M.M. [Department of Chemistry, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Moreira, Regina F.P.M. [Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis (Brazil); Foletto, Edson L. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil)

    2015-06-15

    In this work zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide was rapidly and easily prepared by microwave-solvothermal route and its catalytic property in photo-Fenton reaction was evaluated. The effects of microwave heating time and power on the properties of produced particles were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and nitrogen adsorption–desorption isotherms were the techniques used for characterizing the solid products. The synthesized material was tested as a catalyst in the degradation of the textile dye molecule by the heterogeneous photo-Fenton process. Characterization results showed that the microwave heating time and power have significant influences on the formation of the phase spinel as well as on its physical properties. The reaction results showed that the ZnFe{sub 2}O{sub 4} oxide has good photocatalytic activity, which can be attributed to high surface area and pore volume, and large pore size. The ZnFe{sub 2}O{sub 4} oxide produced by the microwave irradiation exhibited promising photocatalytic activity for the removal of textile dye, reaching nearly 100% of decolorization at 40 min and 60% of mineralization at 240 min. Therefore, ZnFe{sub 2}O{sub 4} particles rapidly prepared by the microwave route have the potential for use in treatment of textile wastewater by the heterogeneous photo-Fenton process. - Highlights: • ZnFe{sub 2}O{sub 4} was synthesized by microwave-solvothermal method. • ZnFe{sub 2}O{sub 4} was prepared by different microwave heating times and powers. • ZnFe{sub 2}O{sub 4} was used as heterogeneous photo-Fenton catalyst. • Degradation of Procion red dye using heterogeneous photo-Fenton process. • ZnFe{sub 2}O{sub 4} was highly efficient to degrade textile dye under visible light.

  14. The Cold Land Process Experiment's (CLPX) Local Scale Observation Site

    Science.gov (United States)

    Hardy, J. P.; Cline, D.; Elder, K.; Davis, R. E.; Pomeroy, J.; Koh, Y.; Armstrong, R.; Koike, T.; McDonald, K.

    2002-12-01

    The Local Scale Observation Site (LSOS) is the smallest study site of the Cold Land Processes Experiment (CLPX) and is located within the Fraser Meso-cell Study Area (MSA), near the Fraser Experimental Forest Headquarters Facility, in Fraser, Colorado USA. The 100- x 100-m site consists of a small, open field, a managed dense canopy, and an open, mixed age canopy. Unlike the other components of the experiment, which focus on spatial distributions at relatively brief "snapshots" in time, measurements at the local-scale site focused on the temporal domain. Measurements made at the LSOS were designed to produce a comprehensive assessment of the snow, soil, and vegetation characteristics viewed by the ground-based remote sensing instruments. The objective of ground-based microwave remote sensing was to collect time series of active and passive microwave spectral signatures over snow, soil, and forest, coincident with intensive physical characterization of these features. Ground-based remote sensing instruments included Frequency Modulated Continuous Wave (FMCW) radars operating over multiple microwave bandwidths, the Ground-Based Microwave Radiometer (GBMR-7) (Advanced Microwave Scanning Radiometer (AMSR) Simulator; channels 18.7, 23.8, 36.5, and 89.0-GHz), and in 2003, an L/C/X/Ku-band scatterometer radar system. Snow and soil measurements included standard snow physical properties, snow surface roughness, snow depth transects, and soil moisture. The stem and canopy temperature, and xylem flux of several trees within the area, were monitored continuously. Two micrometeorological towers, one located in the open snow area and the other in the forested area, monitored ambient conditions and provided forcing data sets for 1-D snow/soil models. Arrays of radiometers (0.3-3 μm) and a scanning thermal radiometer (8-12 μm) characterized the variability of radiative receipt in the forests. These measurements, together with the ground-based remote sensing, provide the

  15. Extracting Microwave Emissivity Characteristics over City using AMSR-E

    Science.gov (United States)

    Zhang, T.; Zhang, L.; Jiang, L.; Li, Y.

    2010-12-01

    The spectrums of different land types are very important in the application of remote sensing. Different spectrums of different land types can be used in surface classification, change detection, and so on. The microwave emissivity over land is the foundation of land parameters retrieval using passive microwave remote sensing. It depends on land type due to different objects’ structure, moisture and roughness on the earth. It has shown that the land surface microwave emissivity contributed to atmosphere temperature and moisture retrieval. Meanwhile, it depends on land type, vegetation cover, and moisture et al.. There are many researches on microwave emissivity of various land types, such as bare soil, vegetation, snow, but city was less mentioned [1]. However, with the development of society, the process of urbanization accelerated quickly. The area of city expanded fast and the fraction of city area increased in one microwave pixel, especially in The North China Plain (about 30%). The passive microwave pixel containing city has impact on satellite observation and surface parameters retrieval then. So it is essential to study the emissivity of city in order to improve the accuracy of land surface parameters retrieval from passive microwave remote sensing. To study the microwave emissivity of city, some ‘pure’ city pixels were selected according to IGBP classification data, which was defined the fraction cover of city is larger than 85%. The city emissivity was calculated using AMSR-E L2A brightness temperature and GLDAS land surface temperature data at different frequencies and polarizations over 2008 in China. Then the seasonal variation was analyzed along the year. Finally, the characteristic of city emissivity were compared with some meteorological data, seeking the relationship between city emissivity and climatic factors. The results have shown that the emissivity of city was different for different frequencies. It increased with the frequency becoming

  16. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tronox Facility in Savannah, Georgia. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tronox Facility site in Savannah, Georgia, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  17. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between v...

  18. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  19. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  20. Microwave Radiometer (MWR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  1. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  2. An ARM Mobile Facility Designed for Marine Deployments

    Science.gov (United States)

    Wiscombe, W. J.

    2007-05-01

    The U.S. Dept. of Energy's ARM (Atmospheric Radiation Measurements) Program is designing a Mobile Facility exclusively for marine deployments. This marine facility is patterned after ARM's land Mobile Facility, which had its inaugural deployment at Point Reyes, California, in 2005, followed by deployments to Niger in 2006 and Germany in 2007 (ongoing), and a planned deployment to China in 2008. These facilities are primarily intended for the study of clouds, radiation, aerosols, and surface processes with a goal to include these processes accurately in climate models. They are preferably embedded within larger field campaigns which provide context. They carry extensive instrumentation (in several large containers) including: cloud radar, lidar, microwave radiometers, infrared spectrometers, broadband and narrowband radiometers, sonde-launching facilities, extensive surface aerosol measurements, sky imagers, and surface latent and sensible heat flux devices. ARM's Mobile Facilities are designed for 6-10 month deployments in order to capture climatically-relevant datasets. They are available to any scientist, U.S. or international, who wishes to submit a proposal during the annual Spring call. The marine facility will be adapted to, and ruggedized for, the harsh marine environment and will add a scanning two-frequency radar, a boundary-layer wind profiler, a shortwave spectrometer, and aerosol instrumentation adapted to typical marine aerosols like sea salt. Plans also include the use of roving small UAVs, automated small boats, and undersea autonomous vehicles in order to address the point-to-area-average problem which is so crucial for informing climate models. Initial deployments are planned for small islands in climatically- interesting cloud regimes, followed by deployments on oceanic platforms (like decommissioned oil rigs and the quasi-permanent platform of this session's title) and eventually on large ships like car carriers plying routine routes.

  3. 43 CFR 17.217 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Existing facilities. 17.217 Section 17.217... facilities. (a) Accessibility. A recipient shall operate each program or activity so that when each part is... not require a recipient to make each of its existing facilities or every part of a facility...

  4. Color sensing under microwaves

    Science.gov (United States)

    Choudhury, Debesh

    2013-09-01

    Inspired by recent results of artificial color due to Caulfield, we carry out intuitive experimental investigations on color sensing under microwave illumination. Experiemnts have been carried out using a Gunn diode as the microwave source and a microwave diode as a detector. More precise experimental studies have also been carried out utilizing a vector network analyzer. Preliminary results of the experiments validate the feasibility of sensing and discriminating otherwise visual colors under microwave illumination. Caulfield's presumption possibly paves the way for artificial color perception using microwaves.

  5. High brightness microwave lamp

    Science.gov (United States)

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  6. Facile synthesis of 1,3,4-benzotriazepines and 1-arylamide-1H-indazoles via palladium-catalyzed cyclization of aryl isocyanates and aryl hydrazones under microwave irradiation.

    Science.gov (United States)

    Dong, Chune; Xie, Lingli; Mou, Xiaohong; Zhong, Yashan; Su, Wei

    2010-11-07

    A strategy involving palladium-catalyzed cyclization of halo-phenyl hydrazones and aryl isocyanates provides a convenient approach to the synthesis of 1,3,4-benzotriazepines (4) or 1-arylamide-1H-indazoles (5) in good isolated yields. Microwave irradiation was found to afford high reaction efficiency, while the choice of halophenyl hydrazone had an effect on the pathway of the reaction.

  7. A blended land emissivity product from the Inter-Comparison of different Land Surface Emissivity Estimates

    Science.gov (United States)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2012-12-01

    Passive microwave observations are routinely used to estimate rain rate, cloud liquid water, and total precipitable water. In order to have accurate estimations from microwave, the contribution of the surface should be accounted for. Over land, due to the complex interaction between the microwave signal and the soil surface, retrieval of land surface emissivity and other surface and subsurface parameters is not straightforward. Several microwave emissivity products from various microwave sensors have been proposed. However, lack of ground truth measurements makes the validation of these products difficult. This study aims to inter-compare several available emissivity products over land and ultimately proposes a unique blended product that overcomes the flaws of each individual product. The selected products are based on observations from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), the Special Sensor Microwave Imager (SSM/I), the Advanced Microwave Sounding unit (AMSU), and the Special Sensor Microwave Imager/Sounder (SSMIS). In retrieval of emissivities from these sensors different methods and ancillary data have been used. Some inherent discrepancies between the selected products can be introduced by as the difference in geometry in terms of incident angle, spectral response, and the foot print size which can affect the estimations. Moreover, ancillary data especially skin temperature and cloud mask cover can cause significant discrepancies between various estimations. The time series and correlation between emissivity maps are explored to assess the consistency of emissivity variations with geophysical variable such as snow, precipitation and drought. Preliminary results reveal that inconsistency between products varies based on land cover type due to penetration depth effect and ancillary data. Six years of estimations are employed in this research study, and a global blended emissivity estimations based on all product with minimal discrepancies

  8. Microwave characterization of submicrometer-sized nickel hollow sphere composites

    Science.gov (United States)

    Deng, Yida; Zhao, Ling; Shen, Bin; Liu, Lei; Hu, Wenbin

    2006-07-01

    In this work, we report on the microwave properties of the nickel hollow spheres (NHSs) synthesized by a facile autocatalytic reduction method. The resonance characterization of the NHS-polyvinyl butyral composite, due to the skin effect, is observed in the microwave frequency. It is shown that the resonant and the matching frequencies of the composite largely depend on the particle size of the spheres.

  9. Using your microwave oven. Lesson 6, Microwave oven management

    OpenAIRE

    Woodard, Janice Emelie, 1929-

    1984-01-01

    Discusses cooking and reheating foods in microwave ovens, and adapting conventional recipes for the microwave. Revised Includes the publication: Adapting conventional recipes to microwave cooking : fact sheet 84 by Janice Woodard, Rebecca Lovingood, R.H. Trice.

  10. Using your microwave oven. Lesson 6, Microwave oven management

    OpenAIRE

    Woodard, Janice Emelie, 1929-

    1984-01-01

    Discusses cooking and reheating foods in microwave ovens, and adapting conventional recipes for the microwave. Revised Includes the publication: Adapting conventional recipes to microwave cooking : fact sheet 84 by Janice Woodard, Rebecca Lovingood, R.H. Trice.

  11. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Roscha, V.

    1994-11-29

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

  12. Conceptual design criteria for facilities for geologic disposal of radioactive wastes in salt formations

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The facility design requirements and criteria discussed are: general codes, standards, specifications, and regulations; site criteria; land improvements criteria, low-level waste facility criteria; canistered waste facility criteria; support facilities criteria; and utilities and services criteria. (LK)

  13. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  14. A Facile and Efficient Synthesis of Diaryl Amines or Ethers under Microwave Irradiation at Presence of KF/Al2O3 without Solvent and Their Anti-Fungal Biological Activities against Six Phytopathogens

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2013-09-01

    Full Text Available A series of diaryl amines, ethers and thioethers were synthesized under microwave irradiation efficiently at presence of KF/Al2O3 in 83%–96% yields without any solvent. The salient characters of this method lie in short reaction time, high yields, general applicability to substrates and simple workup procedure. At the same time, their antifungal biological activities against six phytopathogen were evaluated. Most of the compounds (3b, 3c, 3g–o are more potent than thiophannate-methyl against to Magnaporthe oryzae. This implies that diaryl amine or ether moiety may be helpful in finding a fungicide against Magnaporthe oryzae.

  15. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  16. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  17. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  18. Advances in microwaves 3

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 3 covers the advances and applications of microwave signal transmission and Gunn devices. This volume contains six chapters and begins with descriptions of ground-station antennas for space communications. The succeeding chapters deal with beam waveguides, which offer interesting possibilities for transmitting microwave energy, as well as with parallel or tubular beams from antenna apertures. A chapter discusses the electron transfer mechanism and the velocity-field characteristics, with a particular emphasis on the microwave properties of Gunn oscillators. The l

  19. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  20. Nuclear industry practice for clearance of materials, facilities and buildings as well as land. Tutorial; Kaerntekniska industrins praxis foer friklassning av material, lokaler och byggnader samt mark. Handledning

    Energy Technology Data Exchange (ETDEWEB)

    2011-12-15

    This handbook comprises the common practices of the Swedish nuclear industry for the clearance of material, rooms, buildings and soil in order to be exempted from the Swedish Nuclear Activities Act and the Swedish Radiation Protection Act. After clearance the management/usage of material, rooms, buildings and soil is permitted without any control from the radiation protection point of view. Clearance is practiced to reduce the amount radioactive waste. Cleared material can be reused according to its original form, recycled or, if these two possibilities are not available, disposed as conventional waste. The working procedures described in this handbook are mainly based on the regulation SSMFS 2011:2 from the Swedish Radiation Safety Authority: 'Regulations concerning clearance of material, rooms, buildings and soil from activities with ionising radiation'. The purpose of this handbook is to serve as a tool and guidance for generating specific routines and instructions for clearance. It describes the principles, processes and routines that should be followed under a clearance procedure. The intention is to accomplish the current regulation by following the routines and principles described in this manual. This handbook spans over a large number of conditions towards clearance, such as facility specific conditions and different types of objects. Because not all the conceivable conditions and objects can be included here, the purpose has been to cover the most common types of clearance practices. The practices comprise: - Description of regulations and recommendations, Swedish and international, that represent the basis of the requirements in this handbook. - Presentation of the processes for clearance of material, rooms, buildings and soil. Those which cannot be cleared are considered as radioactive waste. A proposal for the decision-making process is presented. - Illustration for radiological surveys to systems and components, buildings and soil in regard

  1. Artificial color perception using microwaves

    CERN Document Server

    Choudhury, Debesh

    2013-01-01

    We report the feasibility of artificial color perception under microwave illumination using a standard microwave source and an antenna. We have sensed transmitted microwave power through color objects and have distinguished the colors by analyzing the sensed transmitted power. Experiments are carried out using a Gunn diode as the microwave source, some colored liquids as the objects and a microwave diode as the detector. Results are presented which open up an unusual but new way of perceiving colors using microwaves.

  2. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  3. Bi-Static Active Microwave Remote Sensing of Reflected Signals-of-Opportunity Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate the use of these so-called signals-of-opportunity (SOP) to perform bi-static active microwave remote sensing of land surfaces. Specially,...

  4. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    Science.gov (United States)

    ELECTROMAGNETIC WAVE FILTERS, MICROWAVE FREQUENCY, PHASE SHIFT CIRCUITS, BANDPASS FILTERS, TUNED CIRCUITS, NETWORKS, IMPEDANCE MATCHING , LOW PASS FILTERS, MULTIPLEXING, MICROWAVE EQUIPMENT, WAVEGUIDE FILTERS, WAVEGUIDE COUPLERS.

  5. Microwave-Assisted Synthesis of Some 3,5-Arylated 2-Pyrazolines

    Directory of Open Access Journals (Sweden)

    Hassan Ghasemnejad

    2003-07-01

    Full Text Available Condensation of 2-acetylnaphthalene with benzaldehydes under microwave irradiation affords chalcones which undergo facile and clean cyclizations with hydrazines RNHNH2 (R= H, Ph, Ac to afford 3,5-arylated 2-pyrazolines in quantitative yields, also under microwave irradiation and in the presence of dry AcOH as cyclizing agent. The results obtained indicate that, unlike classical heating, microwave irradiation results in higher yields, shorter reaction times (2-12 min. and cleaner reactions.

  6. Microwave cavity diagnostics of microwave breakdown plasmas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckstrom, D.J.; Williams, M.S. [SRI International, Menlo Park, CA (United States)

    1989-08-01

    We have performed microwave cavity perturbation measurements in the LLNL AIM facility using a 329-MHz cavity that allow us to examine in detail the plasma formation and decay processes for electron densities between approximately 10{sup 5} and 10{sup 7}/cm{sup 3}. We believe these to be the lowest density plasmas ever studied in microwave breakdown experiments, and as such they allow us to determine the power and energy required to produce plasmas suitable for HF radar reflection as well as the effective lifetimes of these plasmas before re-ionization is required. Analyses of these results leads to the following conclusions. (1) For microwave breakdown pulses varying from 0.6 to 2.4 {mu}s, the threshold power required to produce measurable plasmas is 30 to 12 MW/m{sup 2} at 0.01 torr, decreasing to 3.5 to 1.8 MW/m{sup 2} at 1 to 3 torr, and then increasing to 5 to 3.5 MW/m{sup 2} at 30 torr. The threshold power in each case decreases with increasing pulse length, but the required pulse energy increases with decreasing power or increasing pulse length. (2) The effective electron density decay rates are approximately 100/s for 0.1 to 1 torr, after which they increase linearly with pressure. Thus, the useful plasma lifetimes are in the range of 20 to 40 ms at the lower pressures and decrease to about 1 ms at 30 torr. These decay rates and lifetimes are comparable to those that would exist for artificially ionized regions in the upper atmosphere. (3) The collision frequencies measured at pressures of 1 torr and above correspond to electron temperatures of 800 K or less. In fact, the inferred temperatures for p > 3 torr are below room temperature. This may be due to a contribution to the measured conductivity by negative ions.

  7. The Cosmic Microwave Background

    OpenAIRE

    Silk, Joseph

    2002-01-01

    This set of lectures provides an overview of the basic theory and phenomenology of the cosmic microwave background. Topics include a brief historical review; the physics of temperature and polarization fluctuations; acoustic oscillations of the primordial plasma; the space of inflationary cosmological models; current and potential constraints on these models from the microwave background; and constraints on inflation.

  8. Microwave Enhanced Reactive Distillation

    NARCIS (Netherlands)

    Altman, E.

    2011-01-01

    The application of electromagnetic irradiation in form of microwaves (MW) has gathered the attention of the scientific community in recent years. MW used as an alternative energy source for chemical syntheses (microwave chemistry) can provide clear advantages over conventional heating methods in ter

  9. 43 CFR 41.410 - Comparable facilities.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Comparable facilities. 41.410 Section 41... Basis of Sex in Education Programs or Activities Prohibited § 41.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but...

  10. The microwave absorption of ceramic-cup microwave ion source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An experiment system of ceramic-cup microwave ion source has been built here. Its microwave absorption efficiency as a function of the magnetic field and the pressure is presented. When the microwave incident power is 300~500W the microwave absorption efficiencies are more than 90% if the system is optimized and the magnetic field at the microwave window is 0.095T.

  11. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  12. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, a reduction in reaction time from 10 minutes to 1 minute, maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  13. Artificial color perception using microwaves

    OpenAIRE

    Choudhury, Debesh; Caulfield, H. John

    2013-01-01

    We report the feasibility of artificial color perception under microwave illumination using a standard microwave source and an antenna. We have sensed transmitted microwave power through color objects and have distinguished the colors by analyzing the sensed transmitted power. Experiments are carried out using a Gunn diode as the microwave source, some colored liquids as the objects and a microwave diode as the detector. Results are presented which open up an unusual but new way of perceiving...

  14. Advances in microwaves 4

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 4 covers some innovations in the devices and applications of microwaves. This volume contains three chapters and begins with a discussion of the application of microwave phasers and time delay elements as beam steering elements in array radars. The next chapter provides first an overview of the technical aspects and different types of millimeter waveguides, followed by a survey of their application to railroads. The last chapter examines the general mode of conversion properties of nonuniform waveguides, such as waveguide tapers, using converted Maxwell's equatio

  15. Integrated microwave photonics

    CERN Document Server

    Marpaung, David; Heideman, Rene; Leinse, Arne; Sales, Salvador; Capmany, Jose

    2012-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the reduction of size, weight, cost and power consumption. This article reviews the recent advances in this emerging field which is dubbed as integrated microwave photonics. Key integrated MWP technologies are reviewed and the prospective of the field is discussed.

  16. Advances in microwaves

    CERN Document Server

    Young, Leo

    1967-01-01

    Advances in Microwaves, Volume 2 focuses on the developments in microwave solid-state devices and circuits. This volume contains six chapters that also describe the design and applications of diplexers and multiplexers. The first chapter deals with the parameters of the tunnel diode, oscillators, amplifiers and frequency converter, followed by a simple physical description and the basic operating principles of the solid state devices currently capable of generating coherent microwave power, including transistors, harmonic generators, and tunnel, avalanche transit time, and diodes. The next ch

  17. The Microwave Hall Effect

    OpenAIRE

    2015-01-01

    This paper describes a simple microwave apparatus to measure the Hall effect in semiconductor wafers. The advantage of this technique is that it does not require contacts on the sample or the use of a resonant cavity. Our method consists of placing the semiconductor wafer into a slot cut in an X-band (8 - 12 GHz) waveguide series tee, injecting microwave power into the two opposite arms of the tee, and measuring the microwave output at the third arm. A magnetic field applied perpendicular to ...

  18. Monolithic microwave integrated circuits

    Science.gov (United States)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  19. Land Cover

    Data.gov (United States)

    Kansas Data Access and Support Center — The Land Cover database depicts 10 general land cover classes for the State of Kansas. The database was compiled from a digital classification of Landsat Thematic...

  20. Land acquisition

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of lands acquired by Neal Smith National Wildlife Refuge between 1991 and 2009. Lists of acres and locations of land acquired are provided for...

  1. Mulighedernes land?

    DEFF Research Database (Denmark)

    Munck Petersen, Rikke

    2001-01-01

    Kommentar om arbejde med det åbne land i forlængelse af konfencen "Mulighedernes land" og vigtigheden af at landskabsarkitekter går aktivt ind i debatten og arbejdet med landskabets forandring i Danmark.......Kommentar om arbejde med det åbne land i forlængelse af konfencen "Mulighedernes land" og vigtigheden af at landskabsarkitekter går aktivt ind i debatten og arbejdet med landskabets forandring i Danmark....

  2. Development of a Chinese land data assimilation system: its progress and prospects

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The objective of land data assimilation is to merge multi-source observations into the dynamics of land surface model for improving the estimation of land surface states. We have developed a land data assimilation system for China's land territory. In this system, the Common Land Model and Simple Biosphere Model 2 are used to simulate land surface processes. The radiative transfer models of thawed and frozen soil, snow, lake, and vegetation are used as observation operators to transfer model predictions into estimated brightness temperatures. A Monte-Carlo based sequential filter, the ensemble Kalman filter, is implemented as data assimilation method to integrate modeling and observation. The system is capable of assimilating passive microwave remotely sensed data such as special sensor microwave/imager (SSM/I), TRMM microwave imager (TMI), and advanced microwave scanning radiometer enhanced for EOS (AMSRE) and the conventional in situ measurements of soil and snow. A spatiotemporally consistent assimilated dataset for soil moisture, soil temperature, snow and frozen soil, with a spatial resolution of 0.25 degree and temporal resolution of one hour, has been produced. This paper introduces the development of Chinese land data assimilation system and the progress made on data assimilation algorithms, land surface modeling, microwave remote sensing of land surface hydrological variables, and the preparation of atmospheric forcing data. The distinct characteristics and challenges of developing land data assimilation system and the perspectives for future development are also discussed .

  3. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  4. Facility Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  5. Microwave Service Towers

    Data.gov (United States)

    Department of Homeland Security — This file is an extract of the Universal Licensing System (ULS) licensed by the Wireless Telecommunications Bureau (WTB). It consists of Microwave Transmitters (see...

  6. Microwave Radiometer Profiler

    Data.gov (United States)

    Oak Ridge National Laboratory — The microwave radiometer profiler (MWRP) provides vertical profiles of temperature, humidity, and cloud liquid water content as a function of height or pressure at...

  7. Microwave Oven Observations.

    Science.gov (United States)

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  8. Microwave Oven Observations.

    Science.gov (United States)

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  9. Microwave Radiometer - high frequency

    Data.gov (United States)

    Oak Ridge National Laboratory — The Microwave Radiometer-High Frequency (MWRHF) provides time-series measurements of brightness temperatures from two channels centered at 90 and 150 GHz. These two...

  10. Microwave workshop for Windows

    Directory of Open Access Journals (Sweden)

    Colin White

    1995-12-01

    Full Text Available A suite of three programs has been developed to support the teaching of microwave theory and design. A secondary function of the package is to support microwave engineers by providing a library of utilities to assist their design function. All three programs were written in Visual Basic and are aimed at supporting both tutor-directed and student-centred learning methodologies. The development team consisted of three final-year degree students.

  11. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  12. Gambia Land Use Land Cover

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This series of three-period land use land cover (LULC) datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is...

  13. Cosmic Microwave Background Mapping

    Science.gov (United States)

    Verkhodanov, O. V.; Doroshkevich, A. G.

    2012-03-01

    The last decade of research in cosmology was connected with the ambitious experiments including space and ground base observations. Among the most impressive results of these investigations are the measurements of the cosmic microwave background (CMB) radiation like WMAP* and Planck. Exactly from the CMB studies, we have started the epoch of the precision cosmology when generally the values of cosmological parameters have been known and present research is devoted to improvement of the precision. These achievements are connected with both the creation of the new facilities in millimeter and submillimeter astronomy (e.g., satellites, receivers, antennas, computers) and development of the methods for the CMB data analysis. Actually, the process of data analysis contains several technical stages including 1. Registration of time-ordered data (TOD) 2. Pixelization of the CMB data - map preparation 3. Component separation 4. Map statistics analysis 5. Map - spherical harmonics transformation 6. C(l)-spectrum calculation and spectrum statistics analysis 7. Cosmological parameters estimation Starting from the cosmic background explorer (COBE) experiment using the so-called Quadrilateralized Sky Cube Projection (see [1-3]), the problem of the whole sky CMB pixelization has attracted great interest and many such schemes were developed. Let us note however that accurate pixelization of the CMB data on the sphere is very important but not the final step of analysis. Usually, the next step implies the determination of the coefficients of the spherical harmonic decomposition of the CMB signal for both anisotropy and polarization. This means that some of the pixelization schemes provide a very accurate map but are inconvenient for further decomposition. This also means that the choice of suitable pixelization schemes depends upon the general goals of the investigation. In this review, we consider several of the most popular sky map pixelization schemes and link them with the

  14. Proposal for multi-agency facility : High Desert Interagency Partnership

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a proposal to construct a multi-agency facility to house the High Desert Interagency Partnership. The facility would be on federally owned land in Hines,...

  15. Land use and energy

    Energy Technology Data Exchange (ETDEWEB)

    Robeck, K.E.; Ballou, S.W.; South, D.W.; Davis, M.J.; Chiu, S.Y.; Baker, J.E.; Dauzvardis, P.A.; Garvey, D.B.; Torpy, M.F.

    1980-07-01

    This report provides estimates of the amount of land required by past and future energy development in the United States and examines major federal legislation that regulates the impact of energy facilities on land use. An example of one land use issue associated with energy development - the potential conflict between surface mining and agriculture - is illustrated by describing the actual and projected changes in land use caused by coal mining in western Indiana. Energy activities addressed in the report include extraction of coal, oil, natural gas, uranium, oil shale, and geothermal steam; uranium processing; preparation of synfuels from coal; oil refineries; fossil-fuel, nuclear, and hydro-electric power plants; biomass energy farms; and disposal of solid wastes generated during combustion of fossil fuels. Approximately 1.1 to 3.3 x 10/sup 6/ acres were devoted to these activities in the United States in 1975. As much as 1.8 to 2.0 x 10/sup 6/ additional acres could be required by 1990 for new, nonbiomass energy development. The production of grain for fuel ethanol could require an additional 16.9 to 55.7 x 10/sup 6/ acres by 1990. Federal laws that directly or indirectly regulate the land-use impacts of energy facilities include the National Environmental Protection Act, Clean Air Act, Federal Water Pollution Control Act, Surface Mining Control and Reclamation Act, and Coastal Zone Management Act. The major provisions of these acts, other relevant federal regulations, and similar state and local regulatons are described in this report. Federal legislation relating to air quality, water quality, and the management of public lands has the greatest potential to influence the location and timing of future energy development in the United States.

  16. 30 CFR 715.13 - Postmining use of land.

    Science.gov (United States)

    2010-07-01

    ... buildings, stores, parking facilities, apartment housed, motels, hotels, or similar facilities. (3) Public..., underground and surface utilities, and other servicing structures and appurtenances. (4) Residential. Single... land area of housing capacity, associated open space, and minor vehicle parking and...

  17. Modeling Land Surface Phenology Using Earthlight

    Science.gov (United States)

    Henebry, G. M.

    2005-12-01

    Microwave radiometers have long been used in earth observation, but the coarse spatial resolution of the data has discouraged its use in investigations of the vegetated land surface. The Advanced Microwave Scanning Radiometer (AMSR-E) on the Aqua satellite acquires multifrequency observations twice daily (1:30 and 13:30). From these brightness temperatures come two data products relevant to land surface phenology: soil moisture and vegetation water content. Although the nominal spatial resolution of these products is coarse (25 km), the fine temporal sampling allows characterization of the diel variation in surface moisture as contained in the uppermost soil layer and bound in the vegetation canopy. The ephermal dynamics of surficial soil moisture are difficult to validate due to the scale discrepancy between the 625 sq km coverage of a single pixel and the sparse network of weather stations. In contrast, canopy dynamics are more readily validated using finer spatial resolution data products and/or ecoregionalizations. For sites in the North American Great Plains and Northern Eurasia dominated by herbaceous vegetation, I will present land surface phenologies modeled using emitted earthlight and compare them with land surface phenologies modeled using reflected sunlight. I will also explore whether some key climate modes have a significant effect on the microwave-retrieved land surface phenologies.

  18. A conventional microwave oven for denture cleaning: a critical review.

    Science.gov (United States)

    Brondani, Mario Augusto; Samim, Firoozeh; Feng, Hong

    2012-06-01

    Denture cleaning should be quick and easy to perform, especially in long-term care facilities. The lack of proper oral hygiene can put older adults at higher risk from opportunistic oral infections, particularly fungal. As an alternative to regular brushing, the use of a microwave oven has been suggested for cleaning and disinfecting dentures. To synthesise and discuss the advantages and disadvantages of the use of a conventional microwave oven for cleaning and disinfecting complete dentures. A brief literature search focused on papers dealing with microwave therapy for denture cleaning through PubMed Central, Cochrane Database of Systematic Reviews, Google Scholar, Ovid MEDLINE(R) In-Process, and Scifinder Scholar. One hundred and sixty-seven manuscripts published in English with full text were found, and 28 were accepted and discussed in the light of the advantages and disadvantages of the use of conventional microwave oven for cleaning and disinfecting complete dentures. There was no standardisation for microwave use for denture cleaning. Manual cleaning still seemed to be the optimal method for controlling fungal infection and denture stomatitis. However, such a daily routine appeared to be underused, particularly in long-term care facilities. © 2010 The Gerodontology Society and John Wiley & Sons A/S.

  19. Anomalous Microwave Emission

    CERN Document Server

    Kogut, A J

    1999-01-01

    Improved knowledge of diffuse Galactic emission is important to maximize the scientific return from scheduled CMB anisotropy missions. Cross-correlation of microwave maps with maps of the far-IR dust continuum show a ubiquitous microwave emission component whose spatial distribution is traced by far-IR dust emission. The spectral index of this emission, beta_{radio} = -2.2 (+0.5 -0.7) is suggestive of free-free emission but does not preclude other candidates. Comparison of H-alpha and microwave results show that both data sets have positive correlations with the far-IR dust emission. Microwave data, however, are consistently brighter than can be explained solely from free-free emission traced by H-alpha. This ``anomalous'' microwave emission can be explained as electric dipole radiation from small spinning dust grains. The anomalous component at 53 GHz is 2.5 times as bright as the free-free emission traced by H-alpha, providing an approximate normalization for models with significant spinning dust emission.

  20. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  1. Energy and land use

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    This report addresses the land use impacts of past and future energy development and summarizes the major federal and state legislation which influences the potential land use impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which are used to measure, and in some cases, predict the potential conflicts between energy development and alternative uses of the nation's land resources. The topics section of this report is divided into three parts. The first part describes the myriad of federal, state and local legislation which have a direct or indirect impact upon the use of land for energy development. The second part addresses the potential land use impacts associated with the extraction, conversion and combustion of energy resources, as well as the disposal of wastes generated by these processes. The third part discusses the conflicts that might arise between agriculture and energy development as projected under a number of DOE mid-term (1990) energy supply and demand scenarios.

  2. Comprehensive facilities plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  3. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  4. Microwave-assisted Chemical Transformations

    Science.gov (United States)

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  5. Physics of the Microwave Oven

    Science.gov (United States)

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  6. Physics of the Microwave Oven

    Science.gov (United States)

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  7. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...

  8. Microwave Frequency Polarizers

    Science.gov (United States)

    Ha, Vien The; Mirel, Paul; Kogut, Alan J.

    2013-01-01

    This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.

  9. Microwave Discharge Ion Sources

    CERN Document Server

    Celona, L

    2013-01-01

    This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, stability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.

  10. Fundamentals of microwave photonics

    CERN Document Server

    Urick, V J; McKinney , Jason D

    2015-01-01

    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  11. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  12. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  13. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  14. EDITORIAL: Microwave Moisture Measurements

    Science.gov (United States)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  15. Microwave Cooking Practices in Minnesota Food Service Establishments.

    Science.gov (United States)

    Hedeen, Nicole; Reimann, David; Everstine, Karen

    2016-03-01

    Uneven cooking due to consumer use of microwave ovens to cook food products that have been prepared but are not ready to eat has been a documented risk factor in several foodborne disease outbreaks. However, the use of microwave ovens in restaurants and other food service establishments has not been well documented. The aim of this study was to describe the types of food service establishments that use microwave ovens, how these ovens are used, types of foods heated or cooked in these ovens, types of microwave ovens used in food service establishments, and the level of compliance with U.S. Food and Drug Administration (FDA) guidelines. From 2008 to 2009, the Minnesota Department of Health collected data from a convenience sample of 60 food establishments within the state. Facility types included fast-food restaurants, sit-down restaurants, school food service, nursing homes, hotels and motels, and daycare centers. Food preparation practices were classified as prep-serve, cookserve, or complex. Minnesota environmental health specialists administered a study questionnaire to managers during routine inspections. Establishments included in this study reported using microwave ovens primarily to warm commercial ready-to-eat products (67%) and to warm foods for palatability (50%). No minimum temperatures are required for these processes because these foods do not require pathogen destruction. However, food establishments using complex preparation practices more often reported using microwave ovens for multiple processes and for processes that require pathogen destruction. For establishments that did report microwave oven use for food requiring pathogen destruction, the majority of managers reported following most FDA recommendations for cooking and reheating for hot-holding potentially hazardous foods, but many did not report letting food stand for 2 min after cooking. Additional training on stand time after microwave cooking could be beneficial because of low reporting

  16. Investigating Satellite Microwave observations of Precipitation in Different Climate Regimes

    Science.gov (United States)

    Wang, N.; Ferraro, R. R.

    2013-12-01

    Microwave satellite remote sensing of precipitation over land is a challenging problem due to the highly variable land surface emissivity, which, if not properly accounted for, can be much greater than the precipitation signal itself, especially in light rain/snow conditions. Additionally, surfaces such as arid land, deserts and snow cover have brightness temperature characteristics similar to precipitation Ongoing work by GPM microwave radiometer team is constructing databases through a variety of means, however, there is much uncertainty as to what is the optimal information needed for the wide array of sensors in the GPM constellation, including examination of regional conditions. The original data sets will focus on stratification by emissivity class, surface temperature and total perceptible water. We'll perform sensitivity studies to determine the potential role of ancillary data (e.g., land surface temperature, snow cover/water equivalent, etc.) to improve precipitation estimation over land in different climate regimes, including rain and snow. In other words, what information outside of the radiances can help describe the background and subsequent departures from it that are active precipitating regions? It is likely that this information will be a function of the various precipitation regimes. Statistical methods such as Principal Component Analysis (PCA) will be utilized in this task. Databases from a variety of sources are being constructed. They include existing satellite microwave measurements of precipitating and non-precipitating conditions, ground radar precipitation rate estimates, surface emissivity climatology from satellites, surface temperature and TPW from NWP reanalysis. Results from the analysis of these databases with respect to the microwave precipitation sensitivity to the variety of environmental conditions in different climate regimes will be discussed.

  17. Microwave remote sensing: Active and passive. Volume 3 - From theory to applications

    Science.gov (United States)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1986-01-01

    Aspects of volume scattering and emission theory are discussed, taking into account a weakly scattering medium, the Born approximation, first-order renormalization, the radiative transfer method, and the matrix-doubling method. Other topics explored are related to scatterometers and probing systems, the passive microwave sensing of the atmosphere, the passive microwave sensing of the ocean, the passive microwave sensing of land, the active microwave sensing of land, and radar remote sensing applications. Attention is given to inversion techniques, atmospheric attenuation and emission, a temperature profile retrieval from ground-based observations, mapping rainfall rates, the apparent temperature of the sea, the emission behavior of bare soil surfaces, the emission behavior of vegetation canopies, the emission behavior of snow, wind-vector radar scatterometry, radar measurements of sea ice, and the back-scattering behavior of cultural vegetation canopies.

  18. Synergistic use of optical and microwave data in agrometeorological applications

    Science.gov (United States)

    Myneni, R. B.; Choudhury, B. J.

    1993-05-01

    Remotely sensed optical and microwave data can be synergistically used to infer land surface properties. Optical data can be used to estimate surface albedo, radiation absorption by vegetation canopies and their photosynthetic efficiencies. Vegetation canopy reflectance at red and near-infrared wavelengths can be used to correct for vegetation effect on microwave emissivities at low frequencies for estimating soil moisture. Optical data can also provide information about surface and air temperatures, precipitable water vapor, cloud top temperature and its water content. This information can be utilized to correct microwave data for atmospheric effects. These points are illustrated with theoretical analyses and by application to satellite data. The basic physical mechanisms operative at the various wavelengths are also discussed.

  19. Microwave Radiation Hazards

    Directory of Open Access Journals (Sweden)

    G. Subrahmanian

    1973-07-01

    Full Text Available Excessive exposure to microwave radiation could lead to biological damage. The criteria for maximum permissible exposure limits derived from experiments by several countries are discussed. Recommendations made for safety of operating personnel based on a recent protection survey are also presented.

  20. Leakage of Microwave Ovens

    Science.gov (United States)

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  1. Leakage of Microwave Ovens

    Science.gov (United States)

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  2. Invisible to Microwaves

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Scientists can't yet make an invisibility cloak like the one that Harry Potter uses.But,for the first time,they've constructed a simple cloaking(1)d__that makes itself and something placed inside it invisible to microwaves.

  3. Land-sea delineation in the visible channels of Landsat thematic mapper

    Digital Repository Service at National Institute of Oceanography (India)

    Menon, H.B.; Sathe, P.V.

    and the Martin-Taylor mapping of transformed components on a video terminal to produce false colour composites to aid visual interpretation. \\ 1. INTRODUCTION Detection of water bodies through passive remote sensing is normally done in infraredchannels as water... and land are at different temperatures, and water acts like a perfect black body for infrared radiation. In case of other passive channels such as, visible and microwaves, the former offers less contrast between water and land while earth's microwave...

  4. Federal Lands

    Data.gov (United States)

    Department of Homeland Security — This map layer consists of federally owned or administered lands of theUnited States, Puerto Rico, and the U.S. Virgin Islands. Only areas of 640 acres or more are...

  5. Land Resources

    Science.gov (United States)

    Young, Anthony

    1998-08-01

    Unless action is taken, the developing world will face recurrent problems of food security and conflict. This volume provides a summary and perspective of the field of land resources and suggests improvements needed to conserve resources for future generations. Coverage provides an authoritative review of the resources of soils, water, climate, forests and pastures on which agriculture depends. It assesses the interactions between land resources and wider aspects of development, including population and poverty. It provides a strong critique of current methods of assessing land degradation and placing an economic value on land. It should be read by all involved in rural development, including scientists, economists, geographers, sociologists, planners, and students of development studies.

  6. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  7. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  8. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  9. The Environmental Protection Agency's program to close and clean up hazardous waste land disposal facilities. Hearing before the Environment, Energy, and Natural Resources Subcommittee of the Committee on Government Operations, House of Representatives, One Hundred Second Congress, Second Session, May 28, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This hearing concerns the slow pace of EPA's actions to close and clean up most of the US hazardous waste land disposal facilities. Statements made personally to the subcommittee include Don R. Clay, Solid Waste and Emergency Response, EPA; Richard L. Hembra, Environmental Issues, Resources, Community, and Economic Development Division of the US General Accounting Office; Harold F. Reheis, Environmental Protection Division, Georgia Department of Natural Resources; Hon. Mike Synar, Chairman of the Subcommittee. Submitted for the record were 4 prepared documents from Don R. Clay, Richard L. Hembra; Sylvia Lowrance, Office of Solid Waste, EPA; Harold F. Reheis.

  10. Attosecond Precision Multi-km Laser-Microwave Network

    CERN Document Server

    Xin, M; Peng, M Y; Kalaydzhyan, A; Wang, W; Muecke, O D; Kaertner, F X

    2016-01-01

    Synchronous laser-microwave networks consisting of many optical and microwave sources distributed over km-distances are crucial for scientific efforts requiring highest spatio-temporal resolution. However, present synchronization techniques limit these networks to 10-fs relative timing jitter between their sub-sources. Here, we present a novel 4.7 km laser-microwave network with attosecond precision for over tens of hours of continuous operation. It is achieved through new metrological devices and careful balancing of fiber nonlinearities and fundamental noise contributions. This work may enable next-generation attosecond photon-science facilities to revolutionize many research fields from structural biology to material science and chemistry to fundamental physics. It will also accelerate the development in other research areas requiring high spatio-temporal resolution such as geodesy, very-long-baseline interferometry, high-precision navigation and multi-telescope arrays.

  11. Assessing Scale Effects on Snow Water Equivalent Retrievals Using Airborne and Spaceborne Passive Microwave Data

    Science.gov (United States)

    Derksen, C.; Walker, A.; Goodison, B.

    2003-12-01

    The Climate Research Branch (CRB) of the Meteorological Service of Canada (MSC) has a long-standing research program focused on the development of methods to retrieve snow cover information from passive microwave satellite data for Canadian regions. Algorithms that derive snow water equivalent (SWE) have been developed by CRB and are used to operationally generate SWE information over landscape regions including prairie, boreal forest, and taiga. New multi-scale research datasets were acquired in Saskatchewan, Canada during February 2003 to quantify the impact of spatially heterogeneous land cover and snowpack properties on passive microwave SWE retrievals. MSC microwave radiometers (6.9, 19, 37, and 85 GHz) were flown on the National Research Council (NRC) Twin Otter aircraft at two flying heights along a grid of flight lines, covering a 25 by 25 km study area centered on the Old Jack Pine Boreal Ecosystem Research and Monitoring Site (BERMS). Spaceborne Special Sensor Microwave/Imager (SSM/I) and Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperatures were also acquired for this region. SWE was derived for all passive microwave datasets using the CRB land cover sensitive algorithm suite. An intensive, coincident ground sampling program characterized in situ snow depth, density, water equivalent and pack structure using a land cover based sampling scheme to isolate the variability in snow cover parameters within and between forest stands and land cover types, and within a single spaceborne passive microwave grid cell. The passive microwave data sets that are the focus of this investigation cover a range of spatial resolutions from 100-150 m for the airborne data to 10 km (AMSR-E) and 25 km (SSM/I) for the satellite data, providing the opportunity to investigate and compare microwave emission characteristics, SWE retrievals and land cover effects at different spatial scales. Initial analysis shows that the small footprint airborne passive microwave

  12. Disaggregate land uses and walking.

    Science.gov (United States)

    McConville, Megan E; Rodríguez, Daniel A; Clifton, Kelly; Cho, Gihyoug; Fleischhacker, Sheila

    2011-01-01

    Although researchers have explored associations between mixed-use development and physical activity, few have examined the influence of specific land uses. This study analyzes how the accessibility, intensity, and diversity of nonresidential land uses are related to walking for transportation. Multinomial logistic regression was used to investigate associations between walking for transportation and neighborhood land uses in a choice-based sample of individuals (n=260) in Montgomery County MD. Land uses examined included banks, bus stops, fast-food restaurants, grocery stores, libraries, rail stations, offices, parks, recreation centers, non-fast-food restaurants, retail, schools, sports facilities, night uses, physical activity uses, and social uses. Exposure to these uses was measured as the street distance from participants' homes to the closest instance of each land use (accessibility); the number of instances of each land use (intensity); and the number of different land uses (diversity). Data were collected from 2004-2006 and analyzed in 2009-2010. After adjusting for individual-level characteristics, the distances to banks, bus stops, fast-food restaurants, grocery stores, rail stations, physical activity uses, recreational facilities, restaurants, social uses and sports facilities were associated negatively with transportation walking (ORs [95% CI] range from 0.01 [0.001, 0.11] to 0.91 [0.85, 0.97]). The intensities of bus stops, grocery stores, offices, and retail stores in participants' neighborhoods were associated positively with transportation walking (ORs [95% CI] range from 1.05 [1.01, 1.08] to 5.42 [1.73, 17.01]). Land-use diversity also was associated positively with walking for transportation (ORs [95% CI] range from 1.39 [1.20, 1.59] to 1.69 [1.30, 2.20]). The accessibility and intensity of certain nonresidential land uses, along with land-use diversity, are positively associated with walking for transportation. A careful mix of land uses in a

  13. The Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Jones Aled

    1998-01-01

    Full Text Available We present a brief review of current theory and observations of the cosmic microwave background (CMB. New predictions for cosmological defect theories and an overview of the inflationary theory are discussed. Recent results from various observations of the anisotropies of the microwave background are described and a summary of the proposed experiments is presented. A new analysis technique based on Bayesian statistics that can be used to reconstruct the underlying sky fluctuations is summarised. Current CMB data is used to set some preliminary constraints on the values of fundamental cosmological parameters $Omega$ and $H_circ$ using the maximum likelihood technique. In addition, secondary anisotropies due to the Sunyaev-Zel'dovich effect are described.

  14. Microwave Processing of Materials

    Science.gov (United States)

    1994-01-01

    Pennsylvania: Materials Research Society. Wagner, C., and W. Schottky. 1930. Zeitschrift fuer Physikalische Chemie. BL11:163. Walkiewicz, J. W., A. E. Clark...Science and Engineering. 66:468--469. Bloch, F. 1928. Zeitschrift fuer Physik. 52:555. Boch, P., N. Lequeux and P. Piluso. 1992. Reaction Sintering...Frankel, J. 1926. Zeitschrift fuer Physik. 35:652. Fukushima, H., T. Yamaka, and M. Matsui. 1990. Microwave Heating of Ceramics and its Application to

  15. SUNIST Microwave Power System

    Institute of Scientific and Technical Information of China (English)

    Feng Songlin; Yang Xuanzong; Feng Chunhua; Wang Long; Rao Jun; Feng Kecheng

    2005-01-01

    Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device.The 2.45 GHz/100 kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.

  16. Microwave Multicomponent Synthesis

    Directory of Open Access Journals (Sweden)

    Helmut M. Hügel

    2009-12-01

    Full Text Available In the manner that very important research is often performed by multidisciplinary research teams, the applications of multicomponent reactions involving the combination of multiple starting materials with different functional groups leading to the higher efficiency and environmentally friendly construction of multifunctional/complex target molecules is growing in importance. This review will explore the advances and advantages in microwave multicomponent synthesis (MMS that have been achieved over the last five years.

  17. Microwave sterilization method and apparatus

    OpenAIRE

    V. N. Vasilenko; Minuhin, V. V.; Podorozhnyak, A. A.; Trubaev, S. I.

    1995-01-01

    Experience of industrially developed countries in utilization of microwave radiation has been analyzed. Apparatus for realization of microwave method of sterilization has been designed. A number of experiments for the estimation of bactericidal, sporacidal, and virusidal properties of microwave radiation action has been carried out in 3 to 13 cm wavelength band. B. Lycheniform shtumm G., B. Subtilis ATTC 6633, E. Coli ATTC 25922 and bacterial virus FX 174 were used as test microbes. Effect of...

  18. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  19. Microwave-Assisted Olefin Metathesis

    Science.gov (United States)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  20. Numerical modeling of microwave heating

    Directory of Open Access Journals (Sweden)

    Shukla A.K.

    2010-01-01

    Full Text Available The present study compares the temperature distribution within cylindrical samples heated in microwave furnace with those achieved in radiatively-heated (conventional furnace. Using a two-dimensional finite difference approach the thermal profiles were simulated for cylinders of varying radii (0.65, 6.5, and 65 cm and physical properties. The influence of susceptor-assisted microwave heating was also modeled for the same. The simulation results reveal differences in the heating behavior of samples in microwaves. The efficacy of microwave heating depends on the sample size and its thermal conductivity.

  1. Microwave-assisted synthesis of graphene–Ni composites with enhanced microwave absorption properties in Ku-band

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zetao [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China); Sun, Xin [Science and Technology on Electromagnetic Scattering Laboratory, 100854 Beijing (China); Li, Guoxian [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang (China); Xue, Hairong; Guo, Hu; Fan, Xiaoli; Pan, Xuchen [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China); He, Jianping, E-mail: jianph@nuaa.edu.cn [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China)

    2015-03-01

    Recently, graphene has been applied as a new microwave absorber because of its high dielectric loss and low density. Nevertheless, the high dielectric constant of pristine graphene has caused unbalanced electromagnetic parameters and results in a bad impedance matching characteristic. In this study, we report a facile microwave-assisted heating approach to produce reduced graphene oxide–nickel (RGO–Ni) composites. The phase and morphology of as-synthesized RGO–Ni composites are characterized by XRD, Raman, FESEM and TEM. The results show that Ni nanoparticles with a diameter around 20 nm are grown densely and uniformly on the RGO sheets. In addition, enhanced microwave absorption properties in Ku-band of RGO–Ni composites is mainly due to the synergistic effect of dielectric loss and magnetic loss and the dramatically electron polarizations caused by the formation of large conductive network. The minimum reflection loss of RGO–Ni-2 composite with the thickness of 2 mm can reaches −42 dB at 17.6 GHz. The RGO–Ni composite is an attractive candidate for the new type of high performance microwave absorbing material. - Highlights: • Ni nanoparticles are grown densely and uniformly on the RGO sheets via microwave-assisted heating approach. • Ni resistance effect is proposed to explain the mechanism to decrease the permittivity with the rising combination of Ni and RGO. • The microwave absorption properties in Ku-band of RGO–Ni composites are effectively enhanced. • The mechanism to improve the microwave absorption properties is discussed.

  2. The Microwave SQUID Multiplexer

    Science.gov (United States)

    Mates, John Arthur Benson

    2011-12-01

    This thesis describes a multiplexer of Superconducting Quantum Interference Devices (SQUIDs) with low-noise, ultra-low power dissipation, and great scalability. The multiplexer circuit measures the magnetic flux in a large number of unshunted rf SQUIDs by coupling each SQUID to a superconducting microwave resonator tuned to a unique resonance frequency and driving the resonators from a common feedline. A superposition of microwave tones measures each SQUID simultaneously using only two coaxial cables between the cryogenic device and room temperature. This multiplexer will enable the instrumentation of arrays with hundreds of thousands of low-temperature detectors for new applications in cosmology, materials analysis, and nuclear non-proliferation. The driving application of the Microwave SQUID Multiplexer is the readout of large arrays of superconducting transition-edge sensors, by some figures of merit the most sensitive detectors of electromagnetic signals over a span of more than nine orders of magnitude in energy, from 40 GHz microwaves to 200 keV gamma rays. Modern transition-edge sensors have noise-equivalent power as low as 10-20 W / Hz1/2 and energy resolution as good as 2 eV at 6 keV. These per-pixel sensitivities approach theoretical limits set by the underlying signals, motivating a rapid increase in pixel count to access new science. Compelling applications, like the non-destructive assay of nuclear material for treaty verification or the search for primordial gravity waves from inflation use arrays of these detectors to increase collection area or tile a focal plane. We developed three generations of SQUID multiplexers, optimizing the first for flux noise 0.17 muPhi0 / Hz1/2, the second for input current noise 19 pA / Hz1/2, and the last for practical multiplexing of large arrays of cosmic microwave background polarimeters based on transition-edge sensors. Using the last design we demonstrated multiplexed readout of prototype polarimeters with the

  3. 75 FR 77954 - Transfer of Federally Assisted Facility

    Science.gov (United States)

    2010-12-14

    ... Charlottesville Facilities Maintenance Division of Public Works. The facility and land sit within a secure Public Works Yard and any other acquiring agency would need access to use this property. DATES: Effective Date... Charlottesville Public Works Yard, and includes no street frontage. The north side of the facility is bounded...

  4. Non-Ionizing Radiation Used in Microwave Ovens

    Science.gov (United States)

    ... in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual community of RadTown USA ! ... learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens use electromagnetic waves that ...

  5. The AMY experiment: Microwave emission from air shower plasmas

    Directory of Open Access Journals (Sweden)

    Alvarez-Muñiz J.

    2016-01-01

    Full Text Available You The Air Microwave Yield (AMY experiment investigate the molecular bremsstrahlung radiation emitted in the GHz frequency range from an electron beam induced air-shower. The measurements have been performed at the Beam Test Facility (BTF of Frascati INFN National Laboratories with a 510 MeV electron beam in a wide frequency range between 1 and 20 GHz. We present the apparatus and the results of the tests performed.

  6. Urban land grab or fair urbanization? : Compulsory land acquisition and sustainable livelihoods in Hue, Vietnam

    NARCIS (Netherlands)

    Nguyen Quang, P.

    2015-01-01

    Urbanization often goes hand in hand with a growing demand for housing, urban infrastructure and other facilities that are necessary for sustainable urban development. This has created numerous pressures on land, especially in peri-urban areas where land, traditionally used for agriculture, is still

  7. Urban land grab or fair urbanization? : Compulsory land acquisition and sustainable livelihoods in Hue, Vietnam

    NARCIS (Netherlands)

    Nguyen Quang, P.

    2015-01-01

    Urbanization often goes hand in hand with a growing demand for housing, urban infrastructure and other facilities that are necessary for sustainable urban development. This has created numerous pressures on land, especially in peri-urban areas where land, traditionally used for agriculture, is still

  8. Microwave Plasma System: PVA Tepla 300

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: Microwave Asher A tool using microwave oxygen plasma to remove organics on the surfaces Specifications / Capabilities: Frequency: 2.45 GHz...

  9. Asian Facilities

    Science.gov (United States)

    Nakahata, M.

    2011-04-01

    Asian underground facilities are reviewed. The YangYang underground Laboratory in Korea and the Kamioka observatory in Japan are operational and several astrophysical experiments are running. Indian Neutrino Observatory(INO) and China JinPing Underground Laboratory (CJPL) are under construction and underground experiments are being prepared. Current activities and future prospects at those underground sites are described.

  10. The European Microwave Week 2008 and its Microwave Conferences

    NARCIS (Netherlands)

    Hoogeboom, P.; Van Vliet, F.

    2009-01-01

    Under the auspices of the European Microwave Association (EuMA) the 11th annual European Microwave Week was organized in the Amsterdam RAI Congress Centre, The Netherlands, 27-31 October 2008. This major event consisted this year of five conferences, an exhibition, and various side events. The 38th

  11. Microwave Sterilization in School Microbiology.

    Science.gov (United States)

    Wynn, Brian; Dixon, Angela

    1988-01-01

    Described are two investigations carried out in a high school biology department using a domestic microwave oven to compare the relative attributes of the autoclave and microwave oven in school use. Discussed are equipment, methods, and results of each investigation. (Author/CW)

  12. PROGRAMMING THE MICROWAVE-OVEN

    NARCIS (Netherlands)

    KOK, LP; VISSER, PE; BOON, ME

    1994-01-01

    Microwaves can be used to stimulate chemical bonding, diffusion of reagents into and out of the specimen, and coagulation processes in preparatory techniques. Temperature plays an important role in these processes. There are several ways of controlling the temperature of microwave-exposed tissue, fl

  13. More Experiments with Microwave Ovens

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef

    2004-01-01

    Microwave ovens can be used to perform exciting demonstrations that illustrate a variety of physics topics. Experiments discussed here show superheating, visualize the inhomogeneous heating that takes place in a microwave and also show how to use a mobile phone to detect radiation leaking from the oven. Finally eggs can give some spectacular…

  14. More Experiments with Microwave Ovens

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef

    2004-01-01

    Microwave ovens can be used to perform exciting demonstrations that illustrate a variety of physics topics. Experiments discussed here show superheating, visualize the inhomogeneous heating that takes place in a microwave and also show how to use a mobile phone to detect radiation leaking from the oven. Finally eggs can give some spectacular…

  15. PROGRAMMING THE MICROWAVE-OVEN

    NARCIS (Netherlands)

    KOK, LP; VISSER, PE; BOON, ME

    1994-01-01

    Microwaves can be used to stimulate chemical bonding, diffusion of reagents into and out of the specimen, and coagulation processes in preparatory techniques. Temperature plays an important role in these processes. There are several ways of controlling the temperature of microwave-exposed tissue,

  16. Greener Friedel-Crafts Acylation using Microwave-enhanced reactivity of Bismuth Triflate in the Friedel-Crafts Benzoylation of Aromatic Compounds with Benzoic Anhydride

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Nguyen, hai Truong; Hansen, Poul Erik

    2017-01-01

    An efficient and facile bismuth trifluoromethanesulfonate-catalyzed benzoylation of aromatic compounds using benzoic anhydride under solvent-free microwave irradiation has been developed. The microwave-assisted Friedel-Crafts benzoylation results in good yields within short reaction times. Bismut...

  17. Advanced Microwave Radiometer (AMR) for SWOT mission

    Science.gov (United States)

    Chae, C. S.

    2015-12-01

    The objective of the SWOT (Surface Water & Ocean Topography) satellite mission is to measure wide-swath, high resolution ocean topography and terrestrial surface waters. Since main payload radar will use interferometric SAR technology, conventional microwave radiometer system which has single nadir look antenna beam (i.e., OSTM/Jason-2 AMR) is not ideally applicable for the mission for wet tropospheric delay correction. Therefore, SWOT AMR incorporates two antenna beams along cross track direction. In addition to the cross track design of the AMR radiometer, wet tropospheric error requirement is expressed in space frequency domain (in the sense of cy/km), in other words, power spectral density (PSD). Thus, instrument error allocation and design are being done in PSD which are not conventional approaches for microwave radiometer requirement allocation and design. A few of novel analyses include: 1. The effects of antenna beam size to PSD error and land/ocean contamination, 2. Receiver error allocation and the contributions of radiometric count averaging, NEDT, Gain variation, etc. 3. Effect of thermal design in the frequency domain. In the presentation, detailed AMR design and analyses results will be discussed.

  18. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  19. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation......State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...

  20. Microwave plasma combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    P.M. Kanilo; V.I. Kazantsev; N.I. Rasyuk; K. Schuenemann; D.M. Vavriv [Institute of Machine Building Problems of the National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    2003-01-01

    Microwave plasma is studied as an alternative to oil or gas fuel for ignition and stabilisation of burning of lean coal. The study is performed on an experimental set-up, which includes a burner with a microwave plasma generator, coal and air supply systems, and measurement equipment. Power and thermochemical characteristics of the coal-plasma interaction have been measured and analysed. The obtained results indicate an essential intensification of ignition and combustion processes in the microwave burner compared to those in conventional burners. In particular, it has been demonstrated that the microwave energy consumption is only about 10% of the required expenditure of oil or gas, measured in heat equivalent. A design of an industrial microwave-plasma burner is proposed. Prospects of such burner for applications at industrial boilers of power plants are discussed. 6 refs., 4 figs., 2 tabs.

  1. Microwave-Accelerated Organic Reactions

    Institute of Scientific and Technical Information of China (English)

    LU; TaJung

    2001-01-01

    The use of microwave technology in accelerating organic reactions has received intense attention leading to immense growth recently. Accordingly, we have been interested in improving the efficacy of organic processes by microwave irradiation. Here we report our results on the microwave assisted 1,3-dipolar cycloaddition reaction of nitrile oxides with allylic alcohols, the cleavage reaction of 1,3-diketones under alkaline conditions, and the formation of carbamates from isocyanates with alcohols. The reactions carried out under microwave irradiation, in general, required considerably less reaction time and afforded the desired products in higher yields than those under classical conditions. In all the cases we have studied, the procedures are simplified, the purity of the products are higher, and the cost of reaction is greatly reduced employing microwave.  ……

  2. Microwave-Accelerated Organic Reactions

    Institute of Scientific and Technical Information of China (English)

    LU TaJung

    2001-01-01

    @@ The use of microwave technology in accelerating organic reactions has received intense attention leading to immense growth recently. Accordingly, we have been interested in improving the efficacy of organic processes by microwave irradiation. Here we report our results on the microwave assisted 1,3-dipolar cycloaddition reaction of nitrile oxides with allylic alcohols, the cleavage reaction of 1,3-diketones under alkaline conditions, and the formation of carbamates from isocyanates with alcohols. The reactions carried out under microwave irradiation, in general, required considerably less reaction time and afforded the desired products in higher yields than those under classical conditions. In all the cases we have studied, the procedures are simplified, the purity of the products are higher, and the cost of reaction is greatly reduced employing microwave.

  3. Global relation between microwave satellite vegetation products and vegetation productivity

    Science.gov (United States)

    Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Miralles, Diego G.; Dorigo, Wouter A.

    2017-04-01

    The occurrence of unfavourable environmental conditions like droughts commonly reduces the photosynthetic activity of ecosystems and, hence, their potential to take up carbon from the atmosphere. Ecosystem photosynthetic activity is commonly determined using remote sensing observations in the optical domain, which however have limitations particularly in regions of frequent cloud cover, e.g. the tropics. In this study, we explore the potential of vegetation optical depth (VOD) from microwave satellite observations as an alternative source for assessing vegetation productivity. VOD serves as an estimate for vegetation density and water content, which has an impact on plant physiological processes and hence should potentially provide a link to gross primary production (GPP). However, to date, it is unclear how microwave-retrieved VOD data and GPP data are related. We compare seasonal dynamics and anomalies of VOD retrievals from different satellite sensors and microwave frequencies with site level and global GPP estimates. We use VOD observations from active (ASCAT) and passive microwave sensors (AMSR-E, SMOS). We include eddy covariance measurements from the FLUXNET2015 dataset to assess the VOD products at site level. For a global scale analysis, we use the solar-induced chlorophyll fluorescence (SIF) observations from GOME-2 as a proxy for GPP and the FLUXCOM GPP product, which presents an upscaling of site measurements based on remote sensing data. Our results demonstrate that in general a good agreement between VOD and GPP or SIF exists. However, the strength of these relations depends on the microwave frequency, land cover type, and the time within the growing season. Correlations between anomalies of VOD and GPP or SIF support the assumption that microwave-derived VOD can be used to monitor vegetation productivity dynamics. The study is performed as part of the EOWAVE project funded by the Vienna University of Technology (http://eowave.geo.tuwien.ac.at/) and

  4. Siting Criteria for the Microwave Landing System (MLS).

    Science.gov (United States)

    1983-02-01

    Government assumes no liability for its contents or use thereof. JM *8 % Technical Report Documentation Page / 1. Report No. 2. Government Accession No. 3...computer models. In many cases, the selection of antenna beamwidth and scan control can alleviate potential multipath problems by avoiding the illuminati ...Slope Threshold Crossing Height Requirements) governs the selection of the height of the approach reference datum. Factors that will be considered in

  5. Living Lands

    DEFF Research Database (Denmark)

    Christensen, Suna Møller

    2014-01-01

    , hunters attended to questions like safe-journeying on ice or the role of natural surroundings in children’s education, in ways revealing a relational perception of ‘nature’ and dissolving culture-nature dualisms. Hunters’ experiences in living the land afforded children a dwelling position from which...... of the social world pushes questions about education and life, disregarding being educated as human control of nature....

  6. ASACUSA facility

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    Photo 1-6 : view of the RFQ - RFQ of the ASACUSA experiment. It allows to slow down antiprotons coming from the AD from 5 MeV to 100 KeV with high efficiency. -------------- Photo 7 - 16 : view of the TRAP - The ASACUSA Cusp trap. Thanks to its special magnetic field configuration, it enables the extraction of an anti-hydrogen beam, thus allowing a high precision microwave spectroscopy outside the magnetic field of the trap. This new method opens a new path to make a stringent test of CPT symmetry between matter and antimatter. #mypanoviewer { height:480px; width: 800px; margin:auto} var viewer=new PTGuiViewer(); viewer.setSwfUrl("/record/1331558/files/PTGuiViewer.swf"); viewer.preferFlashViewer(); viewer.setVars({ pano: "/record/1331558/files/panoA_", format: "14faces", pan: 0, minpan: -180, maxpan: 180, tilt:0, mintilt: -75.60468140442133, maxtilt: 75.60468140442133, fov: 90, minfov: 10, maxfov: 120, autorotatespeed: 5, autorotatedelay: 1...

  7. Microwave systems design

    CERN Document Server

    Awang, Zaiki

    2014-01-01

    The aim of this book is to serve as a design reference for students and as an up-to-date reference for researchers. It also acts as an excellent introduction for newcomers to the field and offers established rf/microwave engineers a comprehensive refresher.  The content is roughly classified into two – the first two chapters provide the necessary fundamentals, while the last three chapters focus on design and applications. Chapter 2 covers detailed treatment of transmission lines. The Smith chart is utilized in this chapter as an important tool in the synthesis of matching networks for microwave amplifiers. Chapter 3 contains an exhaustive review of microstrip circuits, culled from various references. Chapter 4 offers practical design information on solid state amplifiers, while Chapter 5 contains topics on the design of modern planar filters, some of which were seldom published previously. A set of problems at the end of each chapter provides the readers with exercises which were compiled from actual uni...

  8. Microwave Frequency Multiplier

    Science.gov (United States)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  9. The Passive Microwave Neural Network Precipitation Retrieval (PNPR) for AMSU/MHS and ATMS cross-track scanning radiometers

    Science.gov (United States)

    Sano', Paolo; Casella, Daniele; Panegrossi, Giulia; Cinzia Marra, Anna; Dietrich, Stefano

    2016-04-01

    Spaceborne microwave cross-track scanning radiometers, originally developed for temperature and humidity sounding, have shown great capabilities to provide a significant contribution in precipitation monitoring both in terms of measurement quality and spatial/temporal coverage. The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross-track scanning radiometers, originally developed for the Advanced Microwave Sounding Unit/Microwave Humidity Sounder (AMSU-A/MHS) radiometers (on board the European MetOp and U.S. NOAA satellites), was recently newly designed to exploit the Advanced Technology Microwave Sounder (ATMS) on board the Suomi-NPP satellite and the future JPSS satellites. The PNPR algorithm is based on the Artificial Neural Network (ANN) approach. The main PNPR-ATMS algorithm changes with respect to PNPR-AMSU/MHS are the design and implementation of a new ANN able to manage the information derived from the additional ATMS channels (respect to the AMSU-A/MHS radiometer) and a new screening procedure for not-precipitating pixels. In order to achieve maximum consistency of the retrieved surface precipitation, both PNPR algorithms are based on the same physical foundation. The PNPR is optimized for the European and the African area. The neural network was trained using a cloud-radiation database built upon 94 cloud-resolving simulations over Europe and the Mediterranean and over the African area and radiative transfer model simulations of TB vectors consistent with the AMSU-A/MHS and ATMS channel frequencies, viewing angles, and view-angle dependent IFOV sizes along the scan projections. As opposed to other ANN precipitation retrieval algorithms, PNPR uses a unique ANN that retrieves the surface precipitation rate for all types of surface backgrounds represented in the training database, i.e., land (vegetated or arid), ocean, snow/ice or coast. This approach prevents different precipitation estimates from being inconsistent with one

  10. A comparison of all-weather land surface temperature products

    Science.gov (United States)

    Martins, Joao; Trigo, Isabel F.; Ghilain, Nicolas; Goettche, Frank-M.; Ermida, Sofia; Olesen, Folke-S.; Gellens-Meulenberghs, Françoise; Arboleda, Alirio

    2017-04-01

    The Satellite Application Facility on Land Surface Analysis (LSA-SAF, http://landsaf.ipma.pt) has been providing land surface temperature (LST) estimates using SEVIRI/MSG on an operational basis since 2006. The LSA-SAF service has since been extended to provide a wide range of satellite-based quantities over land surfaces, such as emissivity, albedo, radiative fluxes, vegetation state, evapotranspiration, and fire-related variables. Being based on infra-red measurements, the SEVIRI/MSG LST product is limited to clear-sky pixels only. Several all-weather LST products have been proposed by the scientific community either based on microwave observations or using Soil-Vegetation-Atmosphere Transfer models to fill the gaps caused by clouds. The goal of this work is to provide a nearly gap-free operational all-weather LST product and compare these approaches. In order to estimate evapotranspiration and turbulent energy fluxes, the LSA-SAF solves the surface energy budget for each SEVIRI pixel, taking into account the physical and physiological processes occurring in vegetation canopies. This task is accomplished with an adapted SVAT model, which adopts some formulations and parameters of the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL) model operated at the European Center for Medium-range Weather Forecasts (ECMWF), and using: 1) radiative inputs also derived by LSA-SAF, which includes surface albedo, down-welling fluxes and fire radiative power; 2) a land-surface characterization obtained by combining the ECOCLIMAP database with both LSA-SAF vegetation products and the H(ydrology)-SAF snow mask; 3) meteorological fields from ECMWF forecasts interpolated to SEVIRI pixels, and 4) soil moisture derived by the H-SAF and LST from LSA-SAF. A byproduct of the SVAT model is surface skin temperature, which is needed to close the surface energy balance. The model skin temperature corresponds to the radiative temperature of the interface between soil and atmosphere

  11. The DMRT-ML Model: Numerical Simulations of the Microwave Emission of Snowpacks Based on the Dense Media Radiative Transfer Theory

    Science.gov (United States)

    Brucker, Ludovic; Picard, Ghislain; Roy, Alexandre; Dupont, Florent; Fily, Michel; Royer, Alain

    2014-01-01

    Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer), and is available at http:lgge.osug.frpicarddmrtml.

  12. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  13. Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region

    Institute of Scientific and Technical Information of China (English)

    JIA Yuanyuan; LI Zhaoliang

    2008-01-01

    The radiative transfer is one of the significant theories that describe the processes of scattering,emission,and absorption of electromagnetic radiant intensity through scattering medium.It is the basis of the study on the quantitative remote sensing.In this paper,the radiative characteristics of soil,vegetation,and atmosphere were described respectively.The numerical solution of radiative transfer was accomplished by Successive Orders of Scattering (SOS).A radiative transfer model for simulating microwave brightness temperature over land surfaces was constructed,designed,and implemented.Analyzing the database generated from soil-vegetation-atmosphere radiative transfer model under Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) configuration showed that the atmospheric effects on microwave brightness temperature should not be neglected,particularly for higher frequency,and can be parameterized.At the same time,the relationship between the emissivities of the different channels was developed.The study results will promote the development of algorithm to retrieve geophysical parameters from microwave remotely sensed data.

  14. The Liverpool Microwave Palaeointensity System

    Science.gov (United States)

    Hill, Mimi; Biggin, Andrew; Hawkins, Louise; Hodgson, Emma; Hurst, Elliot

    2016-04-01

    The motivation for the group at Liverpool in the 1990s (led by John Shaw and Derek Walton) to start experimenting with using microwaves to demagnetise and remagnetise palaeomagnetic samples, rather than heating using conventional ovens, was to reduce laboratory induced alteration in absolute palaeointensity experiments. As with other methods, the non-ideal effects of grain size and naturally altered remanence must still be addressed. From humble beginnings using a domestic microwave oven the current 4th generation microwave system (MWS) has developed in to an integrated combined 14 GHz microwave resonant cavity and SQUID magnetometer system. The MWS is designed to investigate one 5 mm diameter sample at a time with microwave exposure (the equivalent of a heating step in conventional experiments) ranging from a few seconds up to around a minute. Each experiment (protocol, checks, direction and strength of applied field, number of steps etc) can be tailored to the behaviour of each individual sample. There have been many published studies demonstrating the equivalence of conventional thermal (Thellier) and microwave techniques using both artificial and natural remanence and also that the microwave method can indeed reduce laboratory induced alteration. Here an overview of the present MWS including a discussion of the physical processes occurring will be given. Examples of current projects (both archaeological and geological) utilising the method will also be described. Finally, future developments and applications of the method will be discussed.

  15. Measuring urban rainfall using microwave links from commercial cellular communication networks

    NARCIS (Netherlands)

    Overeem, A.; Leijnse, H.; Uijlenhoet, R.

    2011-01-01

    The estimation of rainfall using commercial microwave links is a new and promising measurement technique. Commercial link networks cover large parts of the land surface of the earth and have a high density, particularly in urban areas. Rainfall attenuates the electromagnetic signals transmitted betw

  16. Microwave radiometry and applications

    Science.gov (United States)

    Polívka, Jiří

    1995-09-01

    The radiometry in general is a method of detecting the radiation of matter. All material bodies and substances radiate energy in the form of electromagnetic waves according to Planck s Law. The frequency spectrum of such thermal radiation is determined, beyond the properties of a blackbody, by the emissivity of surfaces and by the temperature of a particular body. Also, its reflectivity and dispersion take part. Investigating the intensity of radiation and its spectral distribution, one may determine the temperature and characterize the radiating body as well as the ambient medium, all independently of distance. With the above possibilities, the radiometry represents a base of scientific method called remote sensing. Utilizing various models, temperature of distant bodies and images of observed scenes can be determined from the spatial distribution of radiation. In this method, two parameters are of paramount importance: the temperature resolution, which flows out from the detected energy, and the spatial resolution (or, angular resolution), which depends upon antenna size with respect to wavelength. An instrument usable to conduct radiometric observations thus consists of two basic elements: a detector or radiometer, which determines the temperature resolution, and an antenna which determines the angular or spatial resolution. For example, a photographic camera consists of an objective lens (antenna) and of a sensitive element (a film or a CCD). In remote sensing, different lenses and reflectors and different sensors are employed, both adjusted to a particular spectrum region in which certain important features of observed bodies and scenes are present: frequently, UV and IR bands are used. The microwave radiometry utilizes various types of antennas and detectors and provides some advantages in observing various scenes: the temperature resolution is recently being given in milikelvins, while the range extends from zero to millions of Kelvins. Microwaves also offer

  17. Microwave Radiometry in Remote Sensing

    DEFF Research Database (Denmark)

    Gudmandsen, Preben

    1982-01-01

    Microwave radiometry has shown its capabilities of observing and monitoring large-scale geophysical observables from space. Examples are sea surface temperature and surface wind over the ocean, sea ice extent, concentration and category and snow cover extent and water content. At low microwave...... frequencies the atmosphere is virtually transparent even with clouds which make microwave radiometry very valuable in regions with frequent cloud cover such as the temperate and arctic zones. At high frequencies, however, atmospheric absorption will degrade measurements of earth surfaces but this phenomenon...

  18. Microwave mixer technology and applications

    CERN Document Server

    Henderson, Bert

    2013-01-01

    Although microwave mixers play a critical role in wireless communication and other microwave applications employing frequency conversion circuits, engineers find that most books on this subject emphasize theoretical aspects, rather than practical applications. That's about to change with the forthcoming release of Microwave Mixer Technology and Applications. Based on a review of over one thousand patents on mixers and frequency conversion, authors Bert Henderson and Edmar Camargo have written a comprehensive book for mixer designers who want solid ideas for solving their own design challenges.

  19. Microwave Plasma Synthesis of Nanopowders

    Institute of Scientific and Technical Information of China (English)

    Joseph; Lik; Hang; Chau

    2007-01-01

    1 Results and Discussion Nanopowders were synthesized by using microwave plasma synthesis technique.The microwave plasma was operated in atmospheric pressure at a frequency of 2.45 GHz.The reaction temperature is directly related to the power of the microwave generator that can be controlled by adjusting the actual operating current.Firstly,ionization and dissociation of precursor species will be occurred in the plasma,nucleus can then be formed by the collision of these molecules,followed by the growth...

  20. Microwave diagnostics of atmospheric plasmas

    Science.gov (United States)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  1. Reverberant Microwave Propagation

    Science.gov (United States)

    2008-10-01

    Other cracks and seams in the aircraft skin for luggage compartments or landing gear stowage are not considered here; thus, this analysis is not...mounted in a chassis assembly requiring approximately 4 inches of rack space. As depicted in Figure A–7, the two sweepers, the real-time signal

  2. Microwave Magnetoelectric Devices

    Directory of Open Access Journals (Sweden)

    A. S. Tatarenko

    2012-01-01

    Full Text Available Tunable microwave magnetoelectric devices based on layered ferrite-ferroelectric structures are described. The theory and experiment for attenuator, band-pass filter and phase shifter are presented. Tunability of the ME devices characteristics can be executed by application of an electric field. This electric tuning is relatively fast and is not power-consuming. The attenuator insertion losses vary from 26 dB to 2 dB at frequency 7251 MHz. The tuning range of 25 MHz of band-pass filter at frequency 7360 MHz was obtained. A maximum phase shift of 30–40 degree at the frequency region 6–9 GHz was obtained.

  3. Cryogenic coaxial microwave filters

    CERN Document Server

    Tancredi, G; Meeson, P J

    2014-01-01

    At millikelvin temperatures the careful filtering of electromagnetic radiation, especially in the microwave regime, is critical for controlling the electromagnetic environment for experiments in fields such as solid-state quantum information processing and quantum metrology. We present a design for a filter consisting of small diameter dissipative coaxial cables that is straightforward to construct and provides a quantitatively predictable attenuation spectrum. We describe the fabrication process and demonstrate that the performance of the filters is in good agreement with theoretical modelling. We further perform an indicative test of the performance of the filters by making current-voltage measurements of small, underdamped Josephson Junctions at 15 mK and we present the results.

  4. Dynamic Evaluation of Rationality of Land Use Structure in the Changsha-Zhuzhou-Xiangtan Area

    Institute of Scientific and Technical Information of China (English)

    Jinning XIE; Jianhua GUO; Kaiguo YUAN; Bin QUAN

    2015-01-01

    The rationality of land use structure was evaluated with dynamic TOPSIS method based on changing data of land use from 2008 to 2011 in the Changsha-Zhuzhou-Xiangtan area. The results showed that during 2008- 2011,the rationality of land use structure was totally high,the dynamic value hi of Changsha,Zhuzhou,Xiangtan and the Changsha-Zhuzhou-Xiangtan area was 0. 7954,0. 7821,0. 8245 and0. 8186,respectively; the value Ci( tk) reflecting the rationality of land use structure at different time points was rapidly increased,and the gap between regions was not big and shrinking. According to the grey relational analysis,the change of different land use types had different effects on the rationality of land use structure: transportation land,the land for cities,towns and villages and the land for mining and industry are most highly correlated with the rationality of land use structure,while arable land,woodland,water area and water conservancy facility land have also an important impact on the rationality of land use structure; controlling the excessive growth of transportation land,the land for cities,towns and villages and the land for mining and industry,protecting arable land,forest land,water area and water conservancy facility land,and moderately increasing the garden plot,plays a decisive role in optimizing the land use structure in the Changsha-Zhuzhou-Xiangtan area.

  5. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  6. Theme: Laboratory Facilities Improvement.

    Science.gov (United States)

    Miller, Glen M.; And Others

    1993-01-01

    Includes "Laboratory Facilities Improvement" (Miller); "Remodeling Laboratories for Agriscience Instruction" (Newman, Johnson); "Planning for Change" (Mulcahy); "Laboratory Facilities Improvement for Technology Transfer" (Harper); "Facilities for Agriscience Instruction" (Agnew et al.); "Laboratory Facility Improvement" (Boren, Dwyer); and…

  7. Cosmic microwave background theory.

    Science.gov (United States)

    Bond, J R

    1998-01-06

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in -space are consistent with a DeltaT flat in frequency and broadly follow inflation-based expectations. That the levels are approximately (10(-5))2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Lambda cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 +/- 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 +/- 0.08 for DMR plus the SK95 experiment; 1.00 +/- 0.04 for DMR plus all smaller angle experiments; 1.00 +/- 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Lambda and moderate constraints on Omegatot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant.

  8. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis.

  9. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs

  10. Flood risk assessment of land pollution hotspots

    Science.gov (United States)

    Masi, Matteo; Arrighi, Chiara; Iannelli, Renato

    2017-04-01

    Among the risks caused by extreme events, the potential spread of pollutants stored in land hotspots due to floods is an aspect that has been rarely examined with a risk-based approach. In this contribution, an attempt to estimate pollution risks related to flood events of land pollution hotspots was carried out. Flood risk has been defined as the combination of river flood hazard, hotspots exposure and vulnerability to contamination of the area, i.e. the expected severity of the environmental impacts. The assessment was performed on a geographical basis, using geo-referenced open data, available from databases of land management institutions, authorities and agencies. The list of land pollution hotspots included landfills and other waste handling facilities (e.g., temporary storage, treatment and recycling sites), municipal wastewater treatment plants, liquid waste treatment facilities and contaminated sites. The assessment was carried out by combining geo-referenced data of pollution hotspots with flood hazard maps. We derived maps of land pollution risk based on geographical and geological properties and source characteristics available from environmental authorities. These included information about soil particle size, soil hydraulic conductivity, terrain slope, type of stored pollutants, the type of facility, capacity, size of the area, land use, etc. The analysis was carried out at catchment scale. The case study of the Arno river basin in Tuscany (central Italy) is presented.

  11. Land, Environmental Externalities and Tourism Development

    OpenAIRE

    Ibáñez, Javier Lozano; Palmer, Javier Rey-Maquieira; Gómez, Carlos Mario Gómez

    2004-01-01

    In a two sectors dynamic model we analyze the process of tourism development based on the accumulation of capital (building of tourism facilities) and the reallocation of land from traditional activities to the tourism sector. The model incorporates the conflict between occupation of the territory by the tourism facilities, other productive activities and availability of cultural, natural and environmental assets that are valued by residents and visitors. We characterize the process of touris...

  12. Develop Prototype Microwave Interferometry Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Converse, M. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-15

    A prototype microwave interferometer was created at NSTec to characterize moving conductive fronts in upcoming experiments. The interferometer is capable of operation in the ~26-40 GHz band, and interrogating fronts with more than 1 W of power.

  13. Ordered mesoporous silica: microwave synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Fantini, M.C.A. [IF-USP, CP 66318, 05315-970, Sao Paulo, SP (Brazil)]. E-mail: mfantini@if.usp.br; Matos, J.R. [IQ-USP, CP 26077, 05599-970, Sao Paulo, SP (Brazil); Silva, L.C. Cides da [IQ-USP, CP 26077, 05599-970, Sao Paulo, SP (Brazil); Mercuri, L.P. [IQSC-USP, CP 780, 13560-970, Sao Carlos, SP (Brazil); Chiereci, G.O. [IQSC-USP, CP 780, 13560-970, Sao Carlos, SP (Brazil); Celer, E.B. [Department of Chemistry, Kent State University, Kent, OH 44240 (United States); Jaroniec, M. [Department of Chemistry, Kent State University, Kent, OH 44240 (United States)

    2004-09-25

    Ordered mesoporous silicas, FDU-1, synthesized by using triblock copolymer, EO{sub 39}BO{sub 47}EO{sub 39}, as template were hydrothermally treated in a microwave oven at 373 K for different periods of time. The structural and morphological properties of these silicas were investigated by X-ray diffraction and nitrogen adsorption and compared with those for the FDU-1 samples prepared by conventional hydrothermal treatment at 373 K. All samples were calcined at 813 K in N{sub 2} and air. This procedure succeeded in producing ordered cage-like mesoporous structures even after 15 min of the microwave treatment. The best sample was obtained after 60 min of the microwave treatment, which is reflected by narrow pore size distribution, uniform pore size entrances and thick mesopore walls. Longer time of the microwave treatment increased nonuniformity of the pore entrance sizes as evidenced by changes in the hysteresis loops of nitrogen adsorption isotherms.

  14. Microwave transistor oscillator frequency tripling

    OpenAIRE

    B. A. Kotserzhynskyi

    2010-01-01

    The frequency tripler state of the art is consided. The oscillator-frequency tripler design is now at the state of scientific research. Microwave companies release the devices of the such structure: oscillator, buffer, amplifier-tripler.

  15. Microwave transistor oscillator frequency tripling

    Directory of Open Access Journals (Sweden)

    B. A. Kotserzhynskyi

    2010-01-01

    Full Text Available The frequency tripler state of the art is consided. The oscillator-frequency tripler design is now at the state of scientific research. Microwave companies release the devices of the such structure: oscillator, buffer, amplifier-tripler.

  16. 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meachum, Teresa Ray; Lewis, Michael George

    2002-02-01

    The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

  17. 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meachum, T.R.; Lewis, M.G.

    2002-02-15

    The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

  18. Microwave Ferrites for Cryogenic Applications

    OpenAIRE

    G. Dionne

    1997-01-01

    Recent advances in microwave ferrite device technology have seen the introduction of superconductivity that virtually eliminates insertion losses due to electrical conduction in microstrip circuits. The conventional ferrimagnetic spinel and garnet compositions, however, are not generally optimized for temperatures in the vicinity of 77 K and may require chemical redesign in order to realize the full potential of these devices. For microwave transmission, absorption losses may be reduced by a ...

  19. Microwave applications of soft ferrites

    CERN Document Server

    Pardavi-Horvath, M P

    2000-01-01

    Signal processing requires broadband, low-loss, low-cost microwave devices (circulators, isolators, phase shifters, absorbers). Soft ferrites (garnets, spinels, hexaferrites), applied in planar microwave devices, are reviewed from the point of view of device requirements. Magnetic properties, specific to operation in high-frequency electromagnetic fields, are discussed. Recent developments in thick film ferrite technology and device design are reviewed. Magnetic losses related to planar shape and inhomogeneous internal fields are analyzed.

  20. MICROWAVE ASSISTED PREPARATION OF CYCLIC UREAS FROM DIAMINES IN THE PRESENCE OF ZNO

    Science.gov (United States)

    A microwave-assisted facile method for the preparation of various ureas, cyclic ureas, and urethanes has been developed that affords nearly quantitative yield of products at 120 degrees C (150 W), 71 kPa within 10 min using ZnO as a catalyst. The enhanced selectivity in this rea...

  1. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  2. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  3. Rapid and convenient semi-automated microwave-assisted solid-phase synthesis of arylopeptoids

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Ewald; Boccia, Marcello Massimo; Nielsen, John

    2014-01-01

    A facile and expedient route to the synthesis of arylopeptoid oligomers (N-alkylated aminomethyl benz-amides) using semi-automated microwave-assisted solid-phase synthesis is presented. The synthesis was optimized for the incorporation of side chains derived from sterically hindered or unreactive...

  4. Complex land surface phenologies of moisture status

    Science.gov (United States)

    Henebry, G. M.; Doubkova, M.

    2006-12-01

    Making cross-scale linkages from experimental plots or flux tower footprints to regional and continental extents is made difficult by disparate spatial and temporal scales between process and observation. While exchanges between the vegetated land surface and the atmospheric boundary layer are continual, sampling and observations are typically intermittent in time and limited across space. Remote sensing of reflected sunlight has proven useful to track ecological dynamics. These observations are, however, restricted to daytime and often obscured by cloud cover, necessitating production of multi-date composites. The current generation of passive microwave radiometers can observe the land surface both day and night regardless of cloudiness, albeit at a spatial resolution coarser than typically used in ecological remote sensing. Datastreams from the AMSR-E (Advanced Microwave Scanning Radiometer-EOS) onboard NASA's Aqua platform are processed daily at the National Snow and Ice Data Center (NSIDC) into various products, including global retrievals of surficial soil moisture and vegetation water content based on microwave brightness temperatures observed at multiple frequencies. Due to sensor orbit and swath width, gaps occur at the lower latitudes in daily products. We have further processed the product-streams from the descending (01:30) and ascending (13:30) orbits into separate smoothed daily composites using an 8-day retrospective moving average. Of particular interest for synoptic ecology is the diel difference in vegetation water content. When the difference between the pre-dawn and the early afternoon values is positive, it suggests that the supply of moisture from the root zone is not able to keep pace with evapotranspiration during the day, but the soil and canopy moisture equalize overnight. Time series of the diel difference show rapid changes in moisture status in response to precipitation events and dry spells. What constitutes the appropriate baseline

  5. Microwave Drying of Moist Coals

    Science.gov (United States)

    Salomatov, Vl. V.; Karelin, V. A.; Sladkov, S. O.; Salomatov, Vas. V.

    2017-03-01

    Physical principles and examples of practical implementation of drying large bodies of coal by microwave radiation are considered. It is shown that energy consumption in microwave drying of brown coals decreases to 1.5-1.8 (kW·h)/ kg as compared with traditional types of drying, for which the expenditures of energy amount to 3.0 (kW·h)/kg. In using microwave drying, the technological time of drying decreases to 4 h, whereas the time of convective drying, with other things being equal, comes to 8-20 h. Parallel with microwave radiation drying, grinding of a fuel takes place, as well as entrainment of such toxic and ecologically harmful elements as mercury, chlorine, phosphorus, sulfur, and nitrogen. An analysis of the prospects of using a microwave energy for drying coal fuel has shown that microwave radiation makes it possible to considerably economize in energy, increase explosional safety, improve the ecological situation, and reduce the metal content and overall dimensions of the equipment.

  6. Study of federal microwave standards

    Energy Technology Data Exchange (ETDEWEB)

    David, L.

    1980-08-01

    Present and future federal regulatory processes which may impact the permissible levels of microwave radiation emitted by the SPS Microwave Power Transmission (MPTS) were studied. An historical development of US occupational and public microwave standards includes an overview of Western and East European philosophies of environmental protection and neurophysiology which have led to the current widely differing maximum permissible exposure limits to microwaves. The possible convergence of microwave standards is characterized by a lowering of Western exposure levels while Eastern countries consider standard relaxation. A trend toward stricter controls on activities perceived as harmful to public health is under way as is interest in improving the federal regulatory process. Particularly relevant to SPS is the initiation of long-term, low-level microwave exposure programs. Coupled with new developments in instrumentation and dosimetry, the results from chronic exposure program and population exposure studies could be expected within the next five to ten years. Also discussed is the increasing public concern that rf energy is yet another hazardous environmental agent.

  7. Land Use and Land Cover - Montana Land Cover Framework 2013

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This statewide land cover theme is a baseline digital map of Montana's natural and human land cover. The baseline map is adapted from the Northwest ReGAP project...

  8. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Science.gov (United States)

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  9. Land management and development

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    Land management is the process by which the resources of land are put into good effect. Land management encompasses all activities associated with the management of land that are required to achieve sustainable development. The concept of land includes properties and natural resources and thereby...... land related data. It is argued that development of such a model is important or even necessary for facilitating a holistic approach to the management of land as the key asset of any nation or jurisdiction....

  10. Rainfall monitoring with microwave link networks -state of the art

    Science.gov (United States)

    de Vos, Lotte; Overeem, Aart; Ríos Gaona, Manuel; van Leth, Tommy; Uijlenhoet, Remko

    2017-04-01

    For the purpose of hydrological applications, meteorology, climate monitoring and agriculture, accurate high resolution rainfall monitoring is highly desirable. Often used techniques to measure rainfall include rain gauge networks and radar. However, accurate rainfall information is lacking in large areas in the world, and the number of rain gauges is even severely declining in Europe, South-America and Africa. The investments required for the installation and maintenance of dense sensor networks can form a large obstacle. Over the past decade, various investigations have shown that microwave links from cellular communication networks may be used for rainfall monitoring. These commercial networks are installed for the purpose of cellular communication. These consist of antennas that transmit microwave link signals through the atmosphere over a path of typically several kilometers. Microwave signals are sensitive to rainfall at the frequencies that are typically used. The loss of signal (attenuation) over the link-path, which is logged in real-time by cellular communication companies for quality monitoring, can therefore be interpreted as a rainfall measurement. In recent years, various techniques have been developed to quantitatively determine rainfall from these microwave link attenuations. An overview of error sources in this process, quantitative rainfall determination techniques, as well as the results of various validation studies are provided. These studies show that there is considerable potential in using commercial microwave link networks for rainfall monitoring. This is a promising development, as these networks cover 20% of the land surface of the earth and have high density, especially in urban areas where there is generally a lack of in situ ground measurements.

  11. Selecting reasonable future land use scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Allred, W.E.; Smith, R.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    This paper examines a process to help select the most reasonable future land use scenarios for hazardous waste and/or low-level radioactive waste disposal sites. The process involves evaluating future land use scenarios by applying selected criteria currently used by commercial mortgage companies to determine the feasibility of obtaining a loan for purchasing such land. The basis for the process is that only land use activities for which a loan can be obtained will be considered. To examine the process, a low-level radioactive waste site, the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, is used as an example. The authors suggest that the process is a very precise, comprehensive, and systematic (common sense) approach for determining reasonable future use of land. Implementing such a process will help enhance the planning, decisionmaking, safe management, and cleanup of present and future disposal facilities.

  12. Integrated Land Management

    DEFF Research Database (Denmark)

    Enemark, Stig

    2004-01-01

    for integrated land management includes some educational and professional challenges to be met at the threshold of the third millennium.    In short, it is critical that we prepare the profession as well the educational system to meet the challenges of tomorrow in achieving sustainable urban and rural......This paper aims to build a general understanding and conceptual approach to integrated land management. The conceptual understanding may take the form of a hierarchy of levels. The foundation stone is an overall national land policy. Appropriate cadastral systems support land policies by providing...... identification of the land parcels and a framework for security of tenure, land value and land use. Appropriate cadastral systems support a wider land administration infrastructure within the areas of land tenure, land value and land use. Appropriate land administration systems then form the basic for sound land...

  13. Imaging Techniques for Microwave Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Donne, T. [FOM-Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Luhmann Jr, N.C. [University of California, Davis, CA 95616 (United States); Park, H.K. [POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Tobias, B.

    2011-07-01

    Advances in microwave technology have made it possible to develop a new generation of microwave imaging diagnostics for measuring the parameters of magnetic fusion devices. The most prominent of these diagnostics is electron cyclotron emission imaging (ECE-I). After the first generation of ECE-I diagnostics utilized at the TEXT-U, RTP and TEXTOR tokamaks and the LHD stellarator, new systems have recently come into operation on ASDEX-UG and DIII-D, soon to be followed by a system on KSTAR. The DIII-D and KSTAR systems feature dual imaging arrays that observe different parts of the plasma. The ECE-I diagnostic yields two-dimensional movies of the electron temperature in the plasma and has given already new insights into the physics of sawtooth oscillations, tearing modes and edge localized modes. Microwave Imaging Reflectometry (MIR) is used on LHD to measure electron density fluctuations. A pilot MIR system has been tested at TEXTOR and, based on the promising results, a new system is now under design for KSTAR. The system at TEXTOR was used to measure the plasma rotation velocity. The system at KSTAR and also the one on LHD will be/are used for measuring the profile of the electron density fluctuations in the plasma. Other microwave imaging diagnostics are phase imaging interferometry, and imaging microwave scattering. The emphasis in this paper will be largely focused on ECE-I. First an overview of the advances in microwave technology are discussed, followed by a description of a typical ECE-I system along with some typical experimental results. Also the utilization of imaging techniques in other types of microwave diagnostics will be briefly reviewed. This document is composed of the slides of the presentation. (authors)

  14. Microwave. Instructor's Edition. Louisiana Vocational-Technical Education.

    Science.gov (United States)

    Blanton, William

    This publication contains related study assignments and job sheets for a course in microwave technology. The course is organized into 12 units covering the following topics: introduction to microwave, microwave systems, microwave oscillators, microwave modulators, microwave transmission lines, transmission lines, detectors and mixers, microwave…

  15. Near-field scanning microwave microscopy of microwave devices

    Science.gov (United States)

    Vlahacos, C. P.; Steinhauer, David E.; Dutta, S.; Anlage, S. M.; Wellstood, F. C.; Newman, H.

    1997-03-01

    We have developed a scanning microwave microscope which can presently image features with a spatial resolution of 10-100 μm in the frequency range 5-15 GHz.(C. P. Vlahacos, et al.), Appl. Phys. Lett. 69, 3272 (1996).^,(S. M. Anlage, et al.), IEEE. Trans. Appl. Supercond. (1997). The microscope consists of a resonant section of a coaxial cable which is terminated with a small-diameter open-ended coaxial probe. Images are made by scanning the sample under the probe while recording the induced near-field microwave voltage as a function of sample position. We will present images for several microwave devices, including an X-band microstrip planar ferrite circulator and a high-temperature superconducting microstrip YBa_2Cu_3O_7-δ resonator, and compare them to the calculated field profiles.

  16. Land Cover - Minnesota Land Cover Classification System

    Data.gov (United States)

    Minnesota Department of Natural Resources — Land cover data set based on the Minnesota Land Cover Classification System (MLCCS) coding scheme. This data was produced using a combination of aerial photograph...

  17. Land Competition and Land-Use Change:

    DEFF Research Database (Denmark)

    Vongvisouk, Thoumthone

    are affecting livelihoods in northern Laos. The research engages a range of approaches, theories and concepts, including political ecology, polycentric resource governance, land-change science, regime shifts in land systems, land sparing versus land sharing, and the sustainable livelihood framework. During...... software. Quantitative data was compiled in a Microsoft Access database and analyzed in Excel. Land-use and livelihood changes are taking place rapidly in the study sites. Overall, land-use change underwent transformation away from subsistence shifting cultivation to cash crops, intensive agriculture......, and industrial tree plantations but shifting cultivation still remains an important land-use system. Land conversion from shifting cultivation for subsistence to commercial crops is most clearly seen in areas with good infrastructure (e.g. road network). This conversion is partly in response to market demands...

  18. Global Snow Mass Measurements and the Effect of Stratigraphic Detail on Inversion of Microwave Brightness Temperatures

    Science.gov (United States)

    Richardson, Mark; Davenport, Ian; Gurney, Robert

    2014-05-01

    Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as snow water equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions, but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment and the Helsinki University of Technology microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 and 37 GHz vertically polarised microwaves are consistent with advanced microwave scanning radiometer-earth observing system and special sensor microwave imager retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10-cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method, then it is equivalent to ±13 mm SWE (7 % of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.

  19. Microwave Radiometer for Aviation Safety Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SBIR Phase I Project proposes a new passive microwave airborne sensor for in flight icing hazard detection, Microwave Radiometer for Aviation Safety. A feasibility...

  20. Microwave Plasma System: PVA Tepla 300

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Microwave AsherA tool using microwave oxygen plasma to remove organics on the surfacesSpecifications / Capabilities:Frequency: 2.45 GHzPower:...

  1. Student Microwave Experiments Involving the Doppler Effect.

    Science.gov (United States)

    Weber, F. Neff; And Others

    1980-01-01

    Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)

  2. DMSP SSM/I- Microwave Imager

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/I is a seven-channel, four frequency, linearly-polarized, passive microwave radiometric system which measures atmospheric, ocean and terrain microwave...

  3. Mapping Microwave Fields With Thermal Paper

    Science.gov (United States)

    Watkins, John L.

    1992-01-01

    Simple, inexpensive technique used to map direction and intensity of electric field in microwave resonant cavity. Technique extension of using thermal paper to map intensities (only) of microwave fields.

  4. 25 CFR 170.800 - Who owns IRR transportation facilities?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Who owns IRR transportation facilities? 170.800 Section 170.800 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.800 Who owns IRR transportation facilities? Public...

  5. Digital microwave communication engineering point-to-point microwave systems

    CERN Document Server

    Kizer, George

    2013-01-01

    The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all en

  6. Capo Verde, Land Use Land Cover

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This series of three-period land use land cover (LULC) datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is...

  7. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  8. Microwave Semiconductor Equipment Produced in Poland,

    Science.gov (United States)

    1984-01-20

    lQal signal source in other devices. Microwave Transistors As a result of work in the field of microwave transistors , the technology for pnp ...is now commonly carried out on transistors and microwave subsystems. The results of the labors of the DM section connected with the new devices and...level of employment Illustration 2. Microwave diodes and semiconductor transistors presently produced in the ITE (DM section) The Construction and

  9. On Interactions of Microwave with Lightwave

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper addresses interactions of lightwave with microwave, and is divided into two parts. In part one, the background and the main topics of the research filed are introduced. In part two, some research activities at Shanghai University are reviewed.These include optical control of microwave devices, photoinduced electromagnetic radiation, lightwave interaction with superconductors, microwave control of lightwave, and the microwave approach to highly irregular fiber optics.

  10. Dual Microwave Radiometer Experiment Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, Roger [Univ. of Washington, Seattle, WA (United States)

    2017-09-01

    Passive microwave radiometers (MWRs) are the most commonly used and accurate instruments the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Facility has to retrieve cloud liquid water path (LWP). The MWR measurements (microwave radiances or brightness temperatures) are often used to derive LWP using climatological constraints, but are frequently also combined with measurements from radar and other instruments for cloud microphysical retrievals. Nominally this latter approach improves the retrieval of LWP and other cloud microphysical quantities (such as effective radius or number concentration), but this also means that when MWR data are poor, other cloud microphysical quantities are also negatively affected. Unfortunately, current MWR data is often contaminated by water on the MWR radome. This water makes a substantial contribution to the measured radiance and typically results in retrievals of cloud liquid water and column water vapor that are biased high. While it is obvious when the contamination by standing water is large (and retrieval biases are large), much of the time it is difficult to know with confidence that there is no contamination. At present there is no attempt to estimate or correct for this source of error, and identification of problems is largely left to users. Typically users are advised to simply throw out all data when the MWR “wet-window” resistance-based sensor indicates water is present, but this sensor is adjusted by hand and is known to be temperamental. In order to address this problem, a pair of ARM microwave radiometers was deployed to the University of Washington (UW) in Seattle, Washington, USA. The radiometers were operated such that one radiometer was scanned under a cover that (nominally) prevents this radiometer radome from gathering water and permits measurements away from zenith; while the other radiometer is operated normally – open or uncovered - with the radome exposed to the sky

  11. A Dry-Slip Facility for Fish Terminals on Open Coasts

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Schmidt, Jens- Chr.; Odoom, Daniel Semanu

    The paper describes a low cost facility for landing and shipping of fish and for bringing fishing boats ashore in periods of bad weather. The facility is meant for open coasts and represents an improvement from beach landing. Being a wooden pile structure it is much cheaper to construct than conv...

  12. Advances In Microwave Metamaterials

    Science.gov (United States)

    Wigle, James A.

    2011-12-01

    Metamaterials are a new area of research showing significant promise for an entirely new set of materials, and material properties. Only recently has three-fourths of the entire electromagnetic material space been made available for discoveries, research, and applications. This thesis is a culmination of microwave metamaterial research that has transpired over numerous years at the University of Colorado. New work is presented; some is complete while other work has yet to be finished. Given the significant work efforts, and potential for new and interesting results, I have included some of my partial work to be completed in the future. This thesis begins with background theory to assist readers in fully understanding the mechanisms that drove my research and results obtained. I illustrate the design and manufacture of a metamaterial that can operate within quadrants I and II of the electromagnetic material space (epsilon r > 0 and mur > 0 or epsilonr 0, respectively). Another metamaterial design is presented for operation within quadrant III of the electromagnetic material space (epsilonr thesis also presents two related, but different, novel tests intended to be used to definitively illustrate the negative angle of refraction for indices of refraction less than zero. It will be shown how these tests can be used to determine most bulk electromagnetic material properties of the material under test, for both right handed and left handed materials, such as epsilonr, mur, deltaloss, and n. The work concluding this thesis is an attempt to derive modified Fresnel Coefficients, for which I actually believe to be incorrect. Though, in transposing I have corrected a few mistakes, and now I can no longer find the conundrum. I have included this work to illuminate the need for modified Fresnel coefficients for cases of negative indices of refraction, identifying all disparate cases requiring a new set of equations, as well as to assist others in their efforts through

  13. Sentinel-3 For Land Applications

    Science.gov (United States)

    Goryl, Philippe; Gobron, Nadine; Mecklenburg, Susanne; Donlon, Craig; Bouvet, Marc; Buongiorno, Alessandra; Wilson, Hilary

    2016-07-01

    The Copernicus Programme, being Europe's Earth Observation and Monitoring Programme led by the European Union, aims to provide, on a sustainable basis, reliable and timely services related to environmental and security issues. The Sentinel-3 mission forms part of the Copernicus Space Component. Its main objectives, building on the heritage and experience of the European Space Agency's (ESA) ERS and ENVISAT missions, are to measure sea-surface topography, sea- and land-surface temperature and ocean- and land-surface colour in support of ocean forecasting systems, and for environmental and climate monitoring. The series of Sentinel-3 satellites will ensure global, frequent and near-real time ocean, ice and land monitoring, with the provision of observation data in a routine, long-term (up to 20 years of operations) and continuous fashion, with a consistent quality and a high level of reliability and availability. The launch of Sentinel-3 was successful last February 2016. The Sentinel-3 missions are jointly operated by ESA and EUMETSAT. ESA will be responsible for the operations, maintenance and evolution of the Sentinel-3 ground segment on land related products and EUMETSAT on the marine products and the satellite monitoring and control. All facilities supporting the Sentinel-3 operations are in place. The Sentinel-3 ground segment systematically acquires, processes and distributes a set of pre-defined core data products to the users. For a detailed description of the core data products please see https://earth.esa.int/web/sentinel/missions/sentinel-3/data-products. On request from the European Commission, ESA and EUMETSAT are presently assessing the possibility to include further core data products, in particular on aerosol optical depth, fire monitoring and synergistic products over land. This paper will provide an update on the status of the mission operations after the initial months in orbit and provide in particular an overview on the status of the Sentinel-3

  14. Microwave Activation of Drug Release

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór

    Due to current limitations in control of pharmaceutical drug release in the body along with increasing medicine use, methods of externally-controlled drug release are of high interest. In this thesis, the use of microwaves is proposed as a technique with the purpose of externally activating...... setup, called the microwave activation system has been developed and tested on a body phantom that emulates the human torso. The system presented in this thesis, operates unobtrusively, i.e. without physically interfering with the target (patient). The torso phantom is a simple dual-layered cylindrical...... the phantom is of interest for disclosing essential information about the limitations of the concept, the phantom and the system. For these purposes, a twofold operation of the microwave activation system was performed, which are reciprocal of each other. In the first operation phase, named mapping...

  15. High power ferrite microwave switch

    Science.gov (United States)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  16. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  17. Microwave assisted centrifuge and related methods

    Science.gov (United States)

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  18. Microwave heat treating of manufactured components

    Science.gov (United States)

    Ripley, Edward B.

    2007-01-09

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  19. Microwave Hydrothermal Synthesis PZT of Nanometer Crystal

    Institute of Scientific and Technical Information of China (English)

    Hongxing LIU; Hong DENG; Yan LI; Yanrong LI

    2004-01-01

    It was focused on the applications and developments of microwave hydrothermal synthesis piezoelectric ceramic powder. The microwave hydrothermal vessel was designed and manufactured. The microwave hydrothermal synthesis system was established and the PZT piezoelectric ceramic powder was synthesized. XRD and TEM have been used to characterize the products in detail. The diameter of the PZT powder particle is from 40 to 60 nm.

  20. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Teresa R. Meachum

    2004-02-01

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  1. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meachum, T.R.; Lewis, M.G.

    2003-02-20

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  2. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  3. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  4. Microwave torch. Physics and applications.

    Science.gov (United States)

    Gritsinin, Sergei; Knyazev, Vitalii; Kossyi, Igor

    2004-09-01

    New construction of a coaxial microwave torch (CMT) has been developed, tested and investigated. CMT provides a means for plasma stream production virtually in all gases and gaseous mixture flow at atmospheric pressure. A broad spectrum of diagnostics has been applied including microwave and laser interferometry, optical active and absorptive spectroscopy, laser holographic interferometry, microwave radiation detection, high-speed photography, etc. The time evolution of the torch operating in the pulsed mode is considered. It has been revealed that the evolution is different in noble and molecular gases. The characteristic feature of torches in noble gases is a dense core with plasma density no less than 1016 cm-3. Plasma bunches with density of 1014-1015 cm-3 successively propagate downstream from this core, which are seen as glow bursts. In molecular gases, the core is absent and the torch is formed by propagating plasma bunches. By optical diagnostics application temperature of neutral component of microwave torch has been determined. With high efficiency energy of microwave radiation comes into gas heating. Gas temperature is maximal near the nozzle (4,5 - 5,0 kK) and falls down in axial direction (to 2,5 - 3,0 kK). Torch is thermally-non-equilibrium plasma formation capable of significant change of working and surrounding gaseous state. Peculiarities of discharge development and maintenance are under discussion as well as possibilities to use microwave torch as a spaceborne plasma source, combustion ignitor, mean for nanoparticles production, different plasmachemical applications etc. Contact information: Mailing address: Prof. I.A.Kossyi General Physics Institute, 119991, Vavilov Street 38 Moscow, Russia Tel.: 7(095)135-41-65; Fax: 7(095)135-80-11 E-mail: kossyi@fpl.gpi.ru

  5. Modeling Microwave Emission from Short Vegetation-Covered Surfaces

    Directory of Open Access Journals (Sweden)

    Yanhui Xie

    2015-10-01

    Full Text Available Owing to the temporal and spatial variability of the emissivity spectra, problems remain in the interpretation and application of satellite passive microwave data over vegetation-covered surfaces. The commonly used microwave land emissivity model, developed by Weng et al. (2001 and implemented into the community radiative transfer model (CRTM, treats vegetation-covered surfaces as a three-layer medium. This simplification comes at the cost of accuracy. In this study, to reduce bias in the modeling of microwave emissions from short vegetation-covered surfaces, two modifications are made. First, vegetation was considered as a multilayered medium including leaves and stems to simulate volumetric absorption and scattering. The results suggest that the calculated brightness temperatures well agree with field experiments under different incidence angles for low soil moisture and sparse crop cover. On the other hand, large errors from the measurements are found for high soil moisture content and dense crop cover. Second, the advanced integral equation model (AIEM was also used to improve the simulation of reflectivity from rough soil surfaces. Comparisons with field experimental data show that the determination coefficient between the calculated and measured brightness temperatures significantly increased and the root-mean-square errors remarkably decreased. The average improvement using the proposed approach is about 80% and 59% in accuracy for the vertical and horizontal polarization, respectively.

  6. Microwave materials for wireless applications

    CERN Document Server

    Cruickshank, David B

    2011-01-01

    This practical resource offers you an in-depth, up-to-date understanding of the use of microwave magnetic materials for cutting-edge wireless applications. The book discusses device applications used in wireless infrastructure base stations, point-to-point radio links, and a range of more specialized microwave systems. You find detailed discussions on the attributes of each family of magnetic materials with respect to specific wireless applications. Moreover, the book addresses two of the hottest topics in the field today - insertion loss and intermodulation. This comprehensive reference also

  7. Passive microwave soil moisture research

    Science.gov (United States)

    Schmugge, T.; Oneill, P. E.; Wang, J. R.

    1986-01-01

    During the four years of the AgRISTARS Program, significant progress was made in quantifying the capabilities of microwave sensors for the remote sensing of soil moisture. In this paper, a discussion is provided of the results of numerous field and aircraft experiments, analysis of spacecraft data, and modeling activities which examined the various noise factors such as roughness and vegetation that affect the interpretability of microwave emission measurements. While determining that a 21-cm wavelength radiometer was the best single sensor for soil moisture research, these studies demonstrated that a multisensor approach will provide more accurate soil moisture information for a wider range of naturally occurring conditions.

  8. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    V Subramanian

    2008-04-01

    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are formed by removing the substrate material in a periodic manner. This paper also demonstrates that these structures can serve as a non-destructive characterization tool for materials, a duplexor and frequency selective coupler. The paper presents both experimental results and theoretical simulation based on a commercially available finite element methodology for comparison.

  9. General Land Office_GLO_Vegetation from the Years 1832 to 1859 of the State of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The Goverment Land Office (GLO) conducted the orginal public land survey of Iowa during the period 1832 to 1859. Deputy Surveyors and their assistants produced both...

  10. CONDENSATION OF 1,2-DIAMINES AND CARBOXYLICACIDS UNDER MICROWAVE IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    孟庆华; 黄德音; 田丰涛; 刘阳

    2001-01-01

    A facile method of preparation of benzimidazoles by microwave irradiation was described. The mixtures of o-phenylenediamine and carboxylic acids were heated by microwave irradiation, to give 2-substituted benzimidazoles with yields of 49%~93%. The reaction time was shortened to 3~6 min. However, the reaction of ethylenediamine with carboxylic acids did not give imidazoles but the N,N-diacyl ethylenediamines. The alphatic diamines lacked the activity to form imidazole ring. With adipic acid, intermolecular acylation took place to afford poly(ethylene adipamide).

  11. Land Competition and Land-Use Change:

    DEFF Research Database (Denmark)

    Vongvisouk, Thoumthone

    software. Quantitative data was compiled in a Microsoft Access database and analyzed in Excel. Land-use and livelihood changes are taking place rapidly in the study sites. Overall, land-use change underwent transformation away from subsistence shifting cultivation to cash crops, intensive agriculture......Land competition and land-use changes are taking place in many developing countries as the demand for land increases. These changes are leading to changes in the livelihood conditions of rural people. The Government of Laos (GoL), on the one hand, aims to increase forest protection. On the other......, and industrial tree plantations but shifting cultivation still remains an important land-use system. Land conversion from shifting cultivation for subsistence to commercial crops is most clearly seen in areas with good infrastructure (e.g. road network). This conversion is partly in response to market demands...

  12. Idaho National Laboratory Comprehensive Land Use and Environmental Stewardship Report

    Energy Technology Data Exchange (ETDEWEB)

    No name listed on publication

    2011-08-01

    Land and facility use planning and decisions at the Idaho National Laboratory (INL) Site are guided by a comprehensive site planning process in accordance with Department of Energy Policy 430.1, 'Land and Facility Use Policy,' that integrates mission, economic, ecologic, social, and cultural factors. The INL Ten-Year Site Plan, prepared in accordance with Department of Energy Order 430.1B, 'Real Property Asset Management,' outlines the vision and strategy to transform INL to deliver world-leading capabilities that will enable the Department of Energy to accomplish its mission. Land use planning is the overarching function within real property asset management that integrates the other functions of acquisition, recapitalization, maintenance, disposition, real property utilization, and long-term stewardship into a coordinated effort to ensure current and future mission needs are met. All land and facility use projects planned at the INL Site are considered through a formal planning process that supports the Ten-Year Site Plan. This Comprehensive Land Use and Environmental Stewardship Report describes that process. The land use planning process identifies the current condition of existing land and facility assets and the scope of constraints across INL and in the surrounding region. Current land use conditions are included in the Comprehensive Land Use and Environmental Stewardship Report and facility assets and scope of constraints are discussed in the Ten-Year Site Plan. This report also presents the past, present, and future uses of land at the INL Site that are considered during the planning process, as well as outlining the future of the INL Site for the 10, 30, and 100-year timeframes.

  13. Facility Registry Service (FRS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Facility Registry Service (FRS) provides an integrated source of comprehensive (air, water, and waste) environmental information about facilities across EPA,...

  14. Licensed Healthcare Facilities

    Data.gov (United States)

    California Department of Resources — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  15. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  16. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  17. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology research The Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  18. Licensed Healthcare Facilities

    Data.gov (United States)

    California Department of Resources — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  19. Deletion of groundwater from a disposal facility in Laxemar. Description of the consequences for nature values and production land; Bortledande av grundvatten fraan en slutfoervarsanlaeggning i Laxemar. Beskrivning av konsekvenser foer naturvaerden och produktionsmark

    Energy Technology Data Exchange (ETDEWEB)

    Hamren, Ulrika; Collinder, Per; Allmer, Johan (Ekologigruppen AB, Stockholm (Sweden))

    2010-10-15

    SKB has chosen Forsmark in the municipality of Oesthammar as site for the repository for spent nuclear fuel. This report describes consequences for nature values, agriculture and forestry due to groundwater diversion from a repository at the non-chosen Laxemar site in the municipality of Oskarshamn. The report concerns nature values that depend on, or are favoured by, a groundwater table close to or above the ground surface. Laxemar is a valuable area from a nature conservation point of view, primarily associated to the cultural- and forest landscape and its prior use for pasture and hay-making. Hence, these values depend on factors other than the level of the groundwater table. Except for old pastures and haymaking areas, many high nature values consist of hardwood-forest groves and old solitary deciduous trees. 67 groundwater-dependent or groundwater-favoured nature objects (wetlands, pieces of forest and surface water) are identified in the investigated area. No nature object is judged to have national value (class 1). 15 nature objects (pieces of forest) are judged to have regional value (class 2), 18 have municipal value (class 3) and 34 local value (class 4). It is judged that a drawdown of the groundwater table only would result in small consequences for the nature values of the area in its entirety. The nature objects that would be affected by the largest groundwater-table drawdown have relatively low nature values and consist of small wetlands with local value (class 4). The low nature values of these objects imply that the consequences of the groundwater diversion would be small. Nature objects with higher nature values (regional or municipal value) consist of forest key habitats and ancient pastures on previously argued land. The nature values of these objects are hence dependent on factors other than the level of the groundwater table, which implies that the consequences would be small also for these objects. The consequences would be largest

  20. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics on building construction floor area from the Ministry of Land, Infrastructure, Transport and Tourism, the total floor area of building construction started in Japan in 2007 was 160,991 thousand square meters, or 14.8% less than the area of the previous year, and the reduction was the first reduction in the past five years. The office markets in Tokyo and Nagoya were active, as represented by the supplies of skyscrapers, and energy saving measures, such as the adoption of high efficiency lighting equipment, the control for initial stage illuminance, daylight harvesting, and the use of occupancy sensors, were well established. In the field of public construction, including museums, multi-purpose halls, and religious buildings, the total area of the new construction was 10.8% less than the total for the previous year, and this reduction was a continuation of an eleven-year trend. In spaces with high ceiling, the innovation for easy replacement of light sources used with reflection mirror systems and optical fibers was noted. Hospitals adapted to the expectation for improved services in their selection of lighting facilities to improve the residential environment for patients while taking into consideration the needs of the aging population, by their use of devices in corridors to help maintain a continuity of light. In libraries, a pendant system was developed to illuminate both ceilings and book shelves. In the field of theaters and halls, the time limit for repairing existing systems had come for the large facilities that were opened during the theater and hall construction boom of the 1960s through 1980s, and around 26 renovations were done. Almost all the renovations were conversions to intelligent dimming systems and lighting control desks. In the field of stores and commercial facilities, the atmosphere and glitter of the selling floor was produced by new light sources, such as ceramic metal halide lamps and LEDs, which have high

  1. Modeling microwave/electron-cloud interaction

    CERN Document Server

    Mattes, M; Zimmermann, F

    2013-01-01

    Starting from the separate codes BI-RME and ECLOUD or PyECLOUD, we are developing a novel joint simulation tool, which models the combined effect of a charged particle beam and of microwaves on an electron cloud. Possible applications include the degradation of microwave transmission in tele-communication satellites by electron clouds; the microwave-transmission tecchniques being used in particle accelerators for the purpose of electroncloud diagnostics; the microwave emission by the electron cloud itself in the presence of a magnetic field; and the possible suppression of electron-cloud formation in an accelerator by injecting microwaves of suitable amplitude and frequency. A few early simulation results are presented.

  2. Microwave plasmatrons for giant integrated circuit processing

    Energy Technology Data Exchange (ETDEWEB)

    Petrin, A.B.

    2000-02-01

    A method for calculating the interaction of a powerful microwave with a plane layer of magnetoactive low-pressure plasma under conditions of electron cyclotron resonance is presented. In this paper, the plasma layer is situated between a plane dielectric layer and a plane metal screen. The calculation model contains the microwave energy balance, particle balance, and electron energy balance. The equation that expressed microwave properties of nonuniform magnetoactive plasma is found. The numerical calculations of the microwave-plasma interaction for a one-dimensional model of the problem are considered. Applications of the results for microwave plasmatrons designed for processing giant integrated circuits are suggested.

  3. Recent Advancements in Microwave Imaging Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  4. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  5. Prospects of microwave processing: An overview

    Indian Academy of Sciences (India)

    S Das; A K Mukhopadhyay; S Datta; D Basu

    2008-12-01

    Microwave processing has been emerging as an innovative sintering method for many traditional ceramics, advanced ceramics, specialty ceramics and ceramic composites as well as polymer and polymer composites. Development of functionally gradient materials, joining, melting, fibre drawing, reaction synthesis of ceramics, synthesis of ceramic powder, phosphor materials, whiskers, microtubes and nanotubes, sintering of zinc oxide varistors, glazing of coating surface and coating development have been performed using microwave heating. In addition, microwave energy is being explored for the sintering of metal powders also. Ceramic and metal nanopowders have been sintered in microwave. Furthermore, initiatives have been taken to process the amorphous materials (e.g. glass) by microwave heating. Besides this, an attempt has been made to study the heating behaviour of materials in the electric and magnetic fields at microwave frequencies. The research is now focused on the use of microwave processing for industrial applications.

  6. Prospects of microwave processing: An overview

    Indian Academy of Sciences (India)

    S Das; A K Mukhopadhyay; S Datta; D Basu

    2009-02-01

    Microwave processing has been emerging as an innovative sintering method for many traditional ceramics, advanced ceramics, specialty ceramics and ceramic composites as well as polymer and polymer composites. Development of functionally gradient materials: joining; melting; fibre drawing; reaction synthesis of ceramics; synthesis of ceramic powder, phosphor materials, whiskers, microtubes and nanotubes; sintering of zinc oxide varistors; glazing of coating surface and coating development have been performed using microwave heating. In addition, microwave energy is being explored for the sintering of metal powders also. Ceramic and metal nanopowders have been sintered in microwave. Furthermore, initiatives have been taken to process the amorphous materials (e.g. glass) by microwave heating. Besides this, attempt has been made to study the heating behaviour of materials in the electric and magnetic fields at microwave frequencies. The research is now focused on the use of microwave processing for industrial applications.

  7. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  8. ULTRARAPID VACUUM-MICROWAVE HISTOPROCESSING

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    1995-01-01

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at relati

  9. Microwave Oven Repair. Teacher Edition.

    Science.gov (United States)

    Smreker, Eugene

    This competency-based curriculum guide for teachers addresses the skills a technician will need to service microwave ovens and to provide customer relations to help retain the customer's confidence in the product and trust in the service company that performs the repair. The guide begins with a task analysis, listing 20 cognitive tasks and 5…

  10. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc bias...

  11. Microwave Treatment for Cardiac Arrhythmias

    Science.gov (United States)

    Hernandez-Moya, Sonia

    2009-01-01

    NASA seeks to transfer the NASA developed microwave ablation technology, designed for the treatment of ventricular tachycardia (irregular heart beat), to industry. After a heart attack, many cells surrounding the resulting scar continue to live but are abnormal electrically; they may conduct impulses unusually slowly or fire when they would typically be silent. These diseased areas might disturb smooth signaling by forming a reentrant circuit in the muscle. The objective of microwave ablation is to heat and kill these diseased cells to restore appropriate electrical activity in the heart. This technology is a method and apparatus that provides for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In comparison with other methods that involve direct-current pulses or radio frequencies below 1 GHz, this method may prove more effective in treating ventricular tachycardia. This is because the present method provides for greater control of the location, cross-sectional area, and depth of a lesion via selection of the location and design of the antenna and the choice of microwave power and frequency.

  12. Wireless Power Transmission Using Microwaves

    Directory of Open Access Journals (Sweden)

    Nikhil B. Dhake

    2012-04-01

    Full Text Available In this paper, we present the concept of wireless power transmission to cut the clutter or lead to clean sources of electricity. It will eradicate the hazardous usage of electrical wires which involve lot of confusion in particularly organizing them. The plan is transmitting power as microwaves from one place to another in order to reduce the use of clumsy wires

  13. ULTRARAPID VACUUM-MICROWAVE HISTOPROCESSING

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at

  14. Central Facilities Area Sewage Lagoon Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Mark R. Cole

    2013-12-01

    The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and “cracking.” The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

  15. Recreation users fees on federal lands: a test of structural change between 1995 and 2003

    Science.gov (United States)

    J.M. Bowker; Gary Green; Dan MuCullom; Ken Cordell

    2008-01-01

    Federal lands provide many recreation facilities and services. On some of these lands, fees have been and are currently being charged for certain recreational services. This study examined the attitudes of users, between 1995 and 2003, towards recreation user fees on public lands. Data from the National Survey on Recreation and the Environment on recreational...

  16. Intense high-frequency gyrotron-based microwave beams for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  17. Rapid and Efficient Synthesis of Diaryl Carbazones using Microwave Technology

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; PAN Feng; WANG Yu-lu

    2004-01-01

    Diaryl carbazone is an important organic analytical reagent normally prepared by the oxidation of diaryl carbazine, but in literatures' methods, the yields were low and the procedures were trouble1,2. Recently, our laboratory reported some new methods for the preparation of diaryl carbazone from diaryl carbazine3,4. Generally, these methods have drawbacks such as tedious operation3, using large amounts of volatile and poisonous solvent which will pollute the environment inevitably3, long reaction time and complicated oxidation system4. In continuation of our studies on the synthesis of azo compounds, we decided to develop a new method to overcome the limitation.As we know, the application of microwave techniques for organic synthesis has attracted considerable interests in recent years5. Using microwave technology can enhance the selectivity and reactivity, increase the chemical yields and shorten the reaction time6. It has been widely used in a variety of organic reactions7,8. However, the synthesis of diaryl carbazones using microwave has not been reported so far.In this paper, a rapid and efficient synthesis of diaryl carbazones with NaBrO3/H2SO4 as oxidation system using microwave technology is reported for the first time. By this method, in short time (0.5 rmin), we have synthesized ten diaryl carbazones in good yields.In the oxidation study, we found that the acidic condition is necessary in these reactions.This method only needs cheap and easily available oxidants, simple instruments and easy work-up.In conclusion, It is a facile and rapid method for the preparation of diaryl carbazones from diaryl carbazines with NaBrO3/H2SO4.

  18. Reliable Facility Location Problem with Facility Protection.

    Science.gov (United States)

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed.

  19. Magnetic gold nanotriangles by microwave-assisted polyol synthesis

    Science.gov (United States)

    Yu, Siming; Hachtel, Jordan A.; Chisholm, Matthew F.; Pantelides, Sokrates T.; Laromaine, Anna; Roig, Anna

    2015-08-01

    Simple approaches to synthesize hybrid nanoparticles with magnetic and plasmonic functionalities, with high control of their shape and avoiding cytotoxic reactants, to target biomedical applications remain a huge challenge. Here, we report a facile, fast and bio-friendly microwave-assisted polyol route for the synthesis of a complex multi-material consisting of monodisperse gold nanotriangles around 280 nm in size uniformly decorated by superparamagnetic iron oxide nanoparticles of 5 nm. These nanotriangles are readily dispersible in water, display a strong magnetic response (10 wt% magnetic fraction) and exhibit a localized surface plasmon resonance band in the NIR region (800 nm). Moreover, these hybrid particles can be easily self-assembled at the liquid-air interfaces.Simple approaches to synthesize hybrid nanoparticles with magnetic and plasmonic functionalities, with high control of their shape and avoiding cytotoxic reactants, to target biomedical applications remain a huge challenge. Here, we report a facile, fast and bio-friendly microwave-assisted polyol route for the synthesis of a complex multi-material consisting of monodisperse gold nanotriangles around 280 nm in size uniformly decorated by superparamagnetic iron oxide nanoparticles of 5 nm. These nanotriangles are readily dispersible in water, display a strong magnetic response (10 wt% magnetic fraction) and exhibit a localized surface plasmon resonance band in the NIR region (800 nm). Moreover, these hybrid particles can be easily self-assembled at the liquid-air interfaces. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03113c

  20. Microwave-induced formation of platinum nanostructured networks with superior electrochemical activity and stability.

    Science.gov (United States)

    Jia, Falong; Wang, Fangfang; Lin, Yun; Zhang, Lizhi

    2011-12-16

    Platinum nanostructured networks (PNNs) can be synthesized through the chemical reduction of H(2)PtCl(6) by benzyl alcohol under microwave irradiation without the introduction of any surfactants, templates, or seeds. The synthesis route utilizes benzyl alcohol as both the reductant and the structure-directing agent, and thus, the process is particularly simple and highly repeatable. The formation of the PNN structure was ascribed to the collision-induced fusion of Pt nanocrystals owing to the cooperative functions of microwave irradiation and benzyl alcohol. Compared with a commercial Pt/C catalyst, the as-prepared PNNs possessed superior electrochemical activity and stability on the oxidation of methanol because of the unique 3D nanostructured networks and abundant defects formed during the assembly process. This study may provide a facile microwave-induced approach for the synthesis of other 3D nanostructured noble metals or their alloys.

  1. High-spatial-resolution microwave and related observations as diagnostics of coronal loops

    Science.gov (United States)

    Holman, Gordon D.

    1986-01-01

    High spatial resolution microwave observations of coronal loops, together with theoretical models for the loop emission, can provide detailed information about the temperature, density, and magnetic field within the loop, as well as the environment around the loop. The capability for studying magnetic fields is particularly important, since there is no comparable method for obtaining direct information about coronal magnetic fields. Knowledge of the magnetic field strength and structure in coronal loops is important for understanding both coronal heating and flares. With arc-second-resolution microwave observations from the Very Large Array (VLA), supplemental high-spectral-resolution microwave data from a facility such as the Owens Valley frequency-agile interferometer, and the ability to obtain second-of-arc resolution EUV aor soft X ray images, the capability already exists for obtaining much more detailed information about coronal plasma and magnetic structures than is presently available. This capability is discussed.

  2. Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. I - Observations

    Science.gov (United States)

    Adler, Robert F.; Mack, Robert A.; Prasad, N.; Hakkarinen, Ida M.; Yeh, H.-Y. M.

    1990-01-01

    Aircraft passive microwave observations of deep atmospheric convection at frequencies between 18 and 183 GHz are presented in conjunction with visible and infrared satellite and aircraft observations and ground-based radar observations. Deep convective cores are indicated in the microwave data by negative brightness temperature, T/(B) deviations from the land background (270 K) to extreme T(B) values below 100 K at 37, 92, and 183 GHz and below 200 K at 18 GHz. These T(B) minima, due to scattering by ice held aloft by the intense updrafts, are well correlated with areas of high radar reflectivity. For this land background case, T(B) is inversely correlated with rain rate at all frequencies due to T(B)-ice-rain correlations. Mean Delta-T between vertically polarized and horizontally polarized radiance in precipitation areas is approximately 6 K at both 18 GHz and 37 GHz, indicating nonspherical precipitation-size ice particles with a preferred horizontal orientation. Convective cores not observed in the visible and infrared data are clearly defined in the microwave observations, and borders of convective rain areas are well defined using the high-frequency (90 GHz and greater) microwave observations.

  3. Building Land Information Policies

    DEFF Research Database (Denmark)

    Enemark, Stig

    2004-01-01

    The paper presents a conceptual understanding in the areas of Cadastre, Land Administration, and Land Management as a basis for building adequate land information policies. To develop this understanding the paper looks at each area as a system or an infrastructure designed for handling specific...... tasks and serving specific needs in society. The paper analyzes the function and the basic elements of the systems and looks at the interaction between the four key areas: land tenure, land value, land-use, and land development. Basically such systems are embedded in the historical, cultural...... of measurement science, spatial information, management, and land management. (2) To establish national professional associations which accommodate a modern interdisciplinary profile. (3) To assess the capacity needs in land administration and to develop the capacity needed at societal, institutional...

  4. Understanding land administration systems

    DEFF Research Database (Denmark)

    P. Williamson, Ian; Enemark, Stig; Wallace, Judy

    2008-01-01

    in contributing to sustainable development, thirdly the changing nature of ownership and the role of land markets, and lastly a land management vision that promotes land administration in support of sustainable development and spatial enablement of society. We present here the first part of the paper. The second...... part focuses on the changing  role of ownership and the role of land markets, and a land management vision will be published in November issue of Coordinates. Udgivelsesdato: Oktober......This paper introduces basic land administration theory and highlights four key concepts that are fundamental to understanding modern land administration systems - firstly the land management paradigm and its influence on the land administration framework, secondly the role that the cadastre plays...

  5. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lv Tian [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Pan Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Liu Xinjuan; Lu Ting; Zhu Guang; Sun Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China)

    2011-10-13

    Highlights: > ZnO-reduced graphene oxide composite is synthesized via microwave assisted reaction. > The method allows a facile, safe and rapid reaction in aqueous media. > A high dye degradation efficiency is achieved under UV light irradiation. - Abstract: A quick and facile microwave-assisted reaction is used to synthesize ZnO-reduced graphene oxide (RGO) hybrid composites by reducing graphite oxide dispersion with zinc nitrate using a microwave synthesis system. Their photocatalytic performance in degradation of methylene blue is investigated and the results show that the RGO plays an important role in the enhancement of photocatalytic performance and the ZnO-RGO composite with 1.1 wt. % RGO achieves a maximum degradation efficiency of 88% in a neutral solution under UV light irradiation for 260 min as compared with pure ZnO (68%) due to the increased light absorption, the reduced charge recombination with the introduction of RGO.

  6. Microwave retrievals of terrestrial precipitation over snow-covered surfaces: A lesson from the GPM satellite

    Science.gov (United States)

    Ebtehaj, A. M.; Kummerow, C. D.

    2017-06-01

    Satellites are playing an ever-increasing role in estimating precipitation over remote areas. Improving satellite retrievals of precipitation requires increased understanding of its passive microwave signatures over different land surfaces. Snow-covered surfaces are notoriously difficult to interpret because they exhibit both emission from the land below and scattering from the ice crystals. Using data from the Global Precipitation Measurement (GPM) satellite, we demonstrate that microwave brightness temperatures of rain and snowfall transition from a scattering to an emission regime from summer to winter, due to expansion of less emissive snow cover. Evidence suggests that the combination of low- (10-19 GHz) and high-frequency (89-166 GHz) channels provides the maximum amount of information for snowfall detection. The results demonstrate that, using a multifrequency matching method, the probability of snowfall detection can even be higher than rainfall—chiefly because of the information content of the low-frequency channels that respond to the (near) surface temperature.

  7. Application of satellite microwave remote sensed brightness temperature in the regional soil moisture simulation

    Directory of Open Access Journals (Sweden)

    X. K. Shi

    2009-02-01

    Full Text Available As the satellite microwave remote sensed brightness temperature is sensitive to land surface soil moisture (SM and SM is a basic output variable in model simulation, it is of great significance to use the brightness temperature data to improve SM numerical simulation. In this paper, the theory developed by Yan et al. (2004 about the relationship between satellite microwave remote sensing polarization index and SM was used to estimate the land surface SM from AMSR-E (Advanced Microwave Scanning Radiometer – Earth Observing System brightness temperature data. With consideration of land surface soil texture, surface roughness, vegetation optical thickness, and the AMSR-E monthly SM products, the regional daily land surface SM was estimated over the eastern part of the Qinghai-Tibet Plateau. The results show that the estimated SM is lower than the ground measurements and the NCEP (American National Centers for Environmental Prediction reanalysis data at the Maqu Station (33.85° N, 102.57° E and the Tanglha Station (33.07° N, 91.94° E, but its regional distribution is reasonable and somewhat better than that from the daily AMSR-E SM product, and its temporal variation shows a quick response to the ground daily precipitations. Furthermore, in order to improve the simulating ability of the WRF (Weather Research and Forecasting model to land surface SM, the estimated SM was assimilated into the Noah land surface model by the Newtonian relaxation (NR method. The results indicate that, by fine tuning of the quality factor in NR method, the simulated SM values are improved most in desert area, followed by grassland, shrub and grass mixed zone. At temporal scale, Root Mean Square Error (RMSE values between simulated and observed SM are decreased 0.03 and 0.07 m3/m3 by using the NR method in the Maqu Station and the Tanglha Station, respectively.

  8. Landing spot selection for UAV emergency landing

    NARCIS (Netherlands)

    Eendebak, P.T.; Eekeren, A.W.M. van; Hollander, R.J.M. den

    2013-01-01

    We present a robust method for landing zone selection using obstacle detection to be used for UAV emergency landings. The method is simple enough to allow real-time implementation on a UAV system. The method is able to detect objects in the presence of camera movement and motion parallax. Using the

  9. Aligning land use with land potential

    Science.gov (United States)

    Current agricultural land use is dominated by an emphasis on provisioning services by applying energy-intensive inputs through relatively uniform production systems across variable landscapes. This approach to agricultural land use is not sustainable. Integrated agricultural systems (IAS) are uphe...

  10. Landing spot selection for UAV emergency landing

    NARCIS (Netherlands)

    Eendebak, P.T.; Eekeren, A.W.M. van; Hollander, R.J.M. den

    2013-01-01

    We present a robust method for landing zone selection using obstacle detection to be used for UAV emergency landings. The method is simple enough to allow real-time implementation on a UAV system. The method is able to detect objects in the presence of camera movement and motion parallax. Using the

  11. Effects of microwave power and microwave irradiation time on pretreatment efficiency and characteristics of corn stover using combination of steam explosion and microwave irradiation (SE-MI) pretreatment.

    Science.gov (United States)

    Pang, Feng; Xue, Shulin; Yu, Shengshuan; Zhang, Chao; Li, Bing; Kang, Yong

    2012-08-01

    The effects of microwave power and microwave irradiation time on pretreatment efficiency and characteristics of corn stover were investigated based on a new process named combination of steam explosion and microwave irradiation (SE-MI) pretreatment. Results showed that with microwave power and microwave irradiation time increasing, glucose and xylose that released into hydrolyzate, as well as enzymatic hydrolysis yields and sugar yields of glucose and xylose were all slightly increased after SE-MI pretreatment. The maximum sugar yield was 72.1 g per 100 g glucose and xylose in feedstock, achieved at 540 W microwave power and 5 min microwave irradiation time. XRD analysis showed that the crystallinity of biomass was 15.6-19.9% lower for SE-MI pretreatment with microwave effect than that without microwave effect. However, low microwave power and short microwave irradiation time were favorable for SE-MI pretreatment considering energy consumption.

  12. LandSat-Based Land Use-Land Cover (Raster)

    Data.gov (United States)

    Minnesota Department of Natural Resources — Raster-based land cover data set derived from 30 meter resolution Thematic Mapper satellite imagery. Classification is divided into 16 classes with source imagery...

  13. LandSat-Based Land Use-Land Cover (Vector)

    Data.gov (United States)

    Minnesota Department of Natural Resources — Vector-based land cover data set derived from classified 30 meter resolution Thematic Mapper satellite imagery. Classification is divided into 16 classes with source...

  14. Sandia National Laboratories shock thermodynamics applied research (STAR) facility

    Energy Technology Data Exchange (ETDEWEB)

    Asay, J.R.

    1981-08-01

    The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

  15. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  16. Handbook of microwave integrated circuits

    Science.gov (United States)

    Hoffmann, Reinmut K.

    The design and operation of ICs for use in the 0.5-20-GHz range are described in an introductory and reference work for industrial engineers. Chapters are devoted to an overview of microwave IC (MIC) technology, general stripline characteristics, microwave transmission line (MTL) parameters for microstrips with isotropic dielectric substrates, higher-order modes on a microstrip, the effects of metallic enclosure on MTL transmission parameters, losses in microstrips, the measurement of MTL parameters, and MTLs on anisotropic dielectric substrates. Consideration is given to coupled microstrips on dielectric substrates, microstrip discontinuities, radiation from microstrip circuits, MTL variations, coplanar MTLs, slotlines, and spurious modes in MTL circuits. Diagrams, drawings, graphs, and a glossary of symbols are provided.

  17. Detecting itinerant single microwave photons

    Science.gov (United States)

    Sathyamoorthy, Sankar Raman; Stace, Thomas M.; Johansson, Göran

    2016-08-01

    Single-photon detectors are fundamental tools of investigation in quantum optics and play a central role in measurement theory and quantum informatics. Photodetectors based on different technologies exist at optical frequencies and much effort is currently being spent on pushing their efficiencies to meet the demands coming from the quantum computing and quantum communication proposals. In the microwave regime, however, a single-photon detector has remained elusive, although several theoretical proposals have been put forth. In this article, we review these recent proposals, especially focusing on non-destructive detectors of propagating microwave photons. These detection schemes using superconducting artificial atoms can reach detection efficiencies of 90% with the existing technologies and are ripe for experimental investigations.

  18. Microwave Imaging under Oblique Illumination

    Directory of Open Access Journals (Sweden)

    Qingyang Meng

    2016-07-01

    Full Text Available Microwave imaging based on inverse scattering problem has been attracting many interests in the microwave society. Among some major technical challenges, the ill-posed, multi-dimensional inversion algorithm and the complicated measurement setup are critical ones that prevent it from practical applications. In this paper, we experimentally investigate the performance of the subspace-based optimization method (SOM for two-dimensional objects when it was applied to a setup designed for oblique incidence. Analytical, simulation, and experimental results show that, for 2D objects, neglecting the cross-polarization scattering will not cause a notable loss of information. Our method can be potentially used in practical imaging applications for 2D-like objects, such as human limbs.

  19. First results from the microwave air yield beam experiment (MAYBE: Measurement of GHz radiation for ultra-high energy cosmic ray detection

    Directory of Open Access Journals (Sweden)

    Verzi V.

    2013-06-01

    Full Text Available We present measurements of microwave emission from an electron-beam induced air plasma performed at the 3 MeV electron Van de Graaff facility of the Argonne National Laboratory. Results include the emission spectrum between 1 and 15 GHz, the polarization of the microwave radiation and the scaling of the emitted power with respect to beam intensity. MAYBE measurements provide further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.

  20. Microwave processing of ceramic oxide filaments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  1. Microwave chemistry for inorganic nanomaterials synthesis.

    Science.gov (United States)

    Bilecka, Idalia; Niederberger, Markus

    2010-08-01

    This Feature Article gives an overview of microwave-assisted liquid phase routes to inorganic nanomaterials. Whereas microwave chemistry is a well-established technique in organic synthesis, its use in inorganic nanomaterials' synthesis is still at the beginning and far away from having reached its full potential. However, the rapidly growing number of publications in this field suggests that microwave chemistry will play an outstanding role in the broad field of Nanoscience and Nanotechnology. This article is not meant to give an exhaustive overview of all nanomaterials synthesized by the microwave technique, but to discuss the new opportunities that arise as a result of the unique features of microwave chemistry. Principles, advantages and limitations of microwave chemistry are introduced, its application in the synthesis of different classes of functional nanomaterials is discussed, and finally expected benefits for nanomaterials' synthesis are elaborated.

  2. US State Submerged Lands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submerged Lands Act (43 U.S.C. Section 1301 et seq.) grants coastal states title to natural resources located within their coastal submerged lands and navigable...

  3. Land Type Inventory

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is an inventory of the number of acres of various land types found at Kenai National Moose Range. Forestlands are the predominant land type, followed by tundra,...

  4. The land management perspective

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    paradigm. In many countries, and especially developing countries and countries in transition, the national capacity to manage land rights, restrictions and responsibilities is not well developed in terms of mature institutions and the necessary human resources and skills. In this regard, the capacity......Land management is the process by which the resources of land are put into good effect. Land management encompasses all activities associated with the management of land that are required to achieve sustainable development. The concept of land includes properties and natural resources and thereby...... encompasses the total natural and built environment. Land Administration Systems (LAS) are institutional frameworks complicated by the tasks they must perform, by national cultural, political and judicial settings, and by technology. This paper facilitates an overall understanding of the land management...

  5. Land management and development

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    Land management is the process by which the resources of land are put into good effect. Land management encompasses all activities associated with the management of land that are required to achieve sustainable development. The concept of land includes properties and natural resources and thereby...... encompasses the total natural and built environment. Land Administration Systems (LAS) are institutional frameworks complicated by the tasks they must perform, by national cultural, political and judicial settings, and by technology. This paper facilitates an overall understanding of the land management......, responsibilities, restrictions and risks in relation to land in support of sustainable development. The model is designed for developed economies but allows incremental adoption of the model by countries at transitional stages of economic development. The model reflects drivers of globalisation and technology...

  6. Land Cover Characterization Program

    Science.gov (United States)

    ,

    1997-01-01

    The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover mapping. The USGS Anderson system defined the principles for land use and land cover mapping that have been the model both nationally and internationally for more than 20 years. The Land Cover Characterization Program (LCCP) is founded on the premise that the Nation's needs for land cover and land use data are diverse and increasingly sophisticated. The range of projects, programs, and organizations that use land cover data to meet their planning, management, development, and assessment objectives has expanded significantly. The reasons for this are numerous, and include the improved capabilities provided by geographic information systems, better and more data-intensive analytic models, and increasing requirements for improved information for decision making. The overall goals of the LCCP are to:

  7. Agriculture: Land Use

    Science.gov (United States)

    Land Use and agriculture. Information about land use restrictions and incentive programs.Agricultural operations sometimes involve activities regulated by laws designed to protect water supplies, threatened or endangered plants and animals, or wetlands.

  8. Focus on land reclamation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Various aspects of land reclamation, i.e. returning disturbed land to a state where, at minimum, it is at least capable of supporting the same kinds of land uses as before the disturbance, are discussed. Activities which disturb the land such as surface mining of coal, surface mining and extraction of oil sands, drilling for oil and natural gas, waste disposal sites, including sanitary landfills, clearing timber for forestry, excavating for pipelines and transportation are described, along with land reclamation legislation in Alberta, and indications of future developments in land reclamation research, legislation and regulation. Practical guidelines for individuals are provided on how they might contribute to land reclamation through judicious and informed consumerism, and through practicing good land management, inclusive of reduced use of herbicides, composting of household wastes, and planting of native species or ground cover in place of traditional lawns.

  9. The land management perspective

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    Land management is the process by which the resources of land are put into good effect. Land management encompasses all activities associated with the management of land that are required to achieve sustainable development. The concept of land includes properties and natural resources and thereby...... encompasses the total natural and built environment. Land Administration Systems (LAS) are institutional frameworks complicated by the tasks they must perform, by national cultural, political and judicial settings, and by technology. This paper facilitates an overall understanding of the land management...... paradigm. In many countries, and especially developing countries and countries in transition, the national capacity to manage land rights, restrictions and responsibilities is not well developed in terms of mature institutions and the necessary human resources and skills. In this regard, the capacity...

  10. Modelling Microwave Devices Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Andrius Katkevičius

    2012-04-01

    Full Text Available Artificial neural networks (ANN have recently gained attention as fast and flexible equipment for modelling and designing microwave devices. The paper reviews the opportunities to use them for undertaking the tasks on the analysis and synthesis. The article focuses on what tasks might be solved using neural networks, what challenges might rise when using artificial neural networks for carrying out tasks on microwave devices and discusses problem-solving techniques for microwave devices with intermittent characteristics.Article in Lithuanian

  11. Harmonic distortion in microwave photonic filters.

    Science.gov (United States)

    Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José

    2012-04-09

    We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.

  12. Electrodeless microwave source of UV radiation

    Science.gov (United States)

    Barkhudarov, E. M.; Kozlov, Yu. N.; Kossyi, I. A.; Malykh, N. I.; Misakyan, M. A.; Taktakishvili, I. M.; Khomichenko, A. A.

    2012-06-01

    The parameters of an electrodeless microwave low-pressure discharge in an Ar + Hg vapor mixture are studied, the design of a UV radiation source for water disinfection is suggested, and its main characteristics are presented. The domestic microwave oven ( f = 2.45 GHz; N = kW) is used as a microwave radiation source. The maximal UV power at wavelength λ = 254 nm amounts to 120-130 W.

  13. Cloud tolerance of remote sensing technologies to measure land surface temperature

    Science.gov (United States)

    Conventional means to estimate land surface temperature (LST) from space relies on the thermal infrared (TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive microwave (MW) obse...

  14. NASA Cold Land Processes Experiment (CLPX 2002/03): Airborne remote sensing

    Science.gov (United States)

    Don Cline; Simon Yueh; Bruce Chapman; Boba Stankov; Al Gasiewski; Dallas Masters; Kelly Elder; Richard Kelly; Thomas H. Painter; Steve Miller; Steve Katzberg; Larry. Mahrt

    2009-01-01

    This paper describes the airborne data collected during the 2002 and 2003 Cold Land Processes Experiment (CLPX). These data include gamma radiation observations, multi- and hyperspectral optical imaging, optical altimetry, and passive and active microwave observations of the test areas. The gamma observations were collected with the NOAA/National Weather Service Gamma...

  15. NASA Cold Land Processes Experiment (CLPX 2002/03): Spaceborne remote sensing

    Science.gov (United States)

    Robert E. Davis; Thomas H. Painter; Don Cline; Richard Armstrong; Terry Haran; Kyle McDonald; Rick Forster; Kelly Elder

    2008-01-01

    This paper describes satellite data collected as part of the 2002/03 Cold Land Processes Experiment (CLPX). These data include multispectral and hyperspectral optical imaging, and passive and active microwave observations of the test areas. The CLPX multispectral optical data include the Advanced Very High Resolution Radiometer (AVHRR), the Landsat Thematic Mapper/...

  16. Overview of IRS Plasma Wind Tunnel Facilities

    Science.gov (United States)

    2000-04-01

    Saturn system with the 80- 30, 40, Cassini spacecraft, which was designed, built and 120 h launched by NASA [30]. During the entry into Titan’s i 60...launched in 1995, a ring reentry for landing in Cayenne and the re- first experiment was conducted to determine whether quired mass flow within the PWK... formation . In the IRS MPG facility continuous The operating times range typically from several operation with methane components up to 10%, as minutes to

  17. Microwave Absorption in Electron Cyclotron Resonance Plasma

    Institute of Scientific and Technical Information of China (English)

    LIU Ming-Hai; HU Xi-Wei; WU Qin-Chong; YU Guo-Yang

    2000-01-01

    The microwave power absorption in electron cyclotron resonance plasma reactor was investigated with a twodimensional hybrid-code. Simulation results indicated that there are two typical power deposition profiles over the entire parameter region: (1) microwave power deposition peaks on the axis and decreases in radial direction,(2) microwave power deposition has its maximum at some radial position, i.e., a hollow distribution. The spatial distribution of electron temperature resembles always to the microwave power absorption profile. The dependence of plasma parameter on the gas pressure is discussed also.

  18. Advanced Microwave Electrothermal Thruster (AMET) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) and the University of Alabama at Huntsville (UAH) propose to develop the Advanced Microwave Electrothermal Thruster...

  19. Imaging of microwave fields using ultracold atoms

    CERN Document Server

    Boehi, Pascal; Haensch, Theodor W; Treutlein, Philipp; 10.1063/1.3470591

    2010-01-01

    We report a technique that uses clouds of ultracold atoms as sensitive, tunable, and non-invasive probes for microwave field imaging with micrometer spatial resolution. The microwave magnetic field components drive Rabi oscillations on atomic hyperfine transitions whose frequency can be tuned with a static magnetic field. Readout is accomplished using state-selective absorption imaging. Quantitative data extraction is simple and it is possible to reconstruct the distribution of microwave magnetic field amplitudes and phases. While we demonstrate 2d imaging, an extension to 3d imaging is straightforward. We use the method to determine the microwave near-field distribution around a coplanar waveguide integrated on an atom chip.

  20. Compact superconducting coplanar microwave beam splitters

    Energy Technology Data Exchange (ETDEWEB)

    Baust, Alexander; Haeberlein, Max; Goetz, Jan; Hoffmann, Elisabeth; Menzel, Edwin P.; Schwarz, Manuel J.; Wulschner, Friedrich; Zhong, Ling; Deppe, Frank; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TUM, Garching (Germany); Kalb, Norbert; Losinger, Thomas [Physik-Department, TUM, Garching (Germany)

    2012-07-01

    The recent evolution of circuit quantum electrodynamics systems making use of standing-wave microwave modes towards setups for propagating quantum microwaves has triggered the need for low-loss superconducting microwave beam splitters. Such a device should have ports compatible with the coplanar geometry relevant for circuit QED and, at the same time, be compact allowing for scalability. This combination presents fundamental and technological challenges. In this work, we present the fabrication and characterization of various compact superconducting coplanar microwave beam splitters. In addition, we discuss efforts towards a tunable beam splitter.

  1. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  2. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Directory of Open Access Journals (Sweden)

    Takeo Yoshimura

    Full Text Available Rolling circle amplification (RCA generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  3. Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Fhager, Andreas; Jensen, Peter Damsgaard

    2011-01-01

    Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity and condu......Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity...

  4. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  5. The Annular Microwave Dryer Design and Study on Honeysuckle

    Directory of Open Access Journals (Sweden)

    Geng Yuefeng

    2014-03-01

    Full Text Available In order to dry fresh honeysuckle, microwave drying process were studied on fresh honeysuckle; and microwave drying apparatus on fresh honeysuckle is designed according to the drying process. The designed microwave dryer contains microwave generator, microwave dryer, dehumidifying systems, control system, transmission systems, microwave leakage inhibited mechanism and other components. The drying experiment is carried by the designed dryer, from the setting-to-work test, the design was success.

  6. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  7. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  8. Dialysis Facility Compare

    Data.gov (United States)

    U.S. Department of Health & Human Services — Dialysis Facility Compare helps you find detailed information about Medicare-certified dialysis facilities. You can compare the services and the quality of care that...

  9. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  10. Materiel Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CRREL's Materiel Evaluation Facility (MEF) is a large cold-room facility that can be set up at temperatures ranging from −20°F to 120°F with a temperature change...

  11. Armament Technology Facility (ATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Armament Technology Facility is a 52,000 square foot, secure and environmentally-safe, integrated small arms and cannon caliber design and evaluation facility....

  12. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  13. Facilities for US Radioastronomy.

    Science.gov (United States)

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  14. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  15. Facility Response Plan (FRP)

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Facility Response Plan (FRP) demonstrates a facility's preparedness to respond to a worst case oil discharge. Under the Clean Water Act, as amended by the Oil...

  16. Financing Professional Sports Facilities

    OpenAIRE

    Baade, Robert A.; Victor A. Matheson

    2011-01-01

    This paper examines public financing of professional sports facilities with a focus on both early and recent developments in taxpayer subsidization of spectator sports. The paper explores both the magnitude and the sources of public funding for professional sports facilities.

  17. FDA Certified Mammography Facilities

    Science.gov (United States)

    ... Program Consumer Information (MQSA) Search for a Certified Facility Share Tweet Linkedin Pin it More sharing options ... Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on Search ...

  18. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  19. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  20. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  1. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to: Evaluate and characterize the effect of flame and thermal...

  2. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  3. Microwave Michelson Interferometer system report of first use on a railgun, Green Farm, San Diego, CA

    Energy Technology Data Exchange (ETDEWEB)

    Hawke, R.S.; Greenwood, D.; Morrison, J.; Schildmeyer, F.

    1993-10-20

    This report summarizes the successful first attempt to use a Michelson microwave interferometer to measure the position of a projectile throughout its acceleration by a railgun. The test was performed at the DNA Green Farm facility operated by Maxwell Labs Inc. The test was performed using the ARDEC-ACB gun to accelerate a 1.1 kg polycarbonate projectile-to about 2.5 km/s. The projectile had an initial injection velocity of about 490 m/s.

  4. Catalyst-free and solvent-free method for the synthesis of quinoxalines under microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    Jian Feng Zhou; Gui Xia Gong; Kun Bao Shi; San Jun Zhi

    2009-01-01

    A facile procedure for the synthesis.of quinoxalines is being reported starting from benzil and 1,2-diaminobenzene. Thereactions were carried out catalyst-free, solvent-free and under microwave irradiation conditions in high yield (84-98%) with short time (3-6 rain) and environmental benign, as well as convenient operation. The structures of all the compounds have been confirmed on the basis of their IR, 1H NMR, and/or 13C NMR, mass spectral data.

  5. Medical gamma processing facility in Riyadh, Saudi Arabia, and radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Grecz, N.; Hahn, E.W.; Jouris, W.E.

    1985-09-01

    A medical cobalt-60 facility was opened at King Faisal Specialist Hospital and Research Center in 1984. Features of the facility are that it can be heated to 120-190F during irradiation and has an on-line 30 kw microwave oven. It can be used for small scale batch irradiation or large scale conveyor irradiation. Programs under development are the sterilization of hospital supplies, radiation processing of Saudi foods and radiation of infectious hospital wastes.

  6. Towards Space Solar Power - Examining Atmospheric Interactions of Power Beams with the HAARP Facility

    CERN Document Server

    Leitgab, M

    2014-01-01

    In the most common space solar power (SSP) system architectures, solar energy harvested by large satellites in geostationary orbit is transmitted to Earth via microwave radiation. Currently, only limited information about the interactions of microwave beams with energy densities of several tens to hundreds of W/m$^2$ with the different layers of the atmosphere is available. Governmental bodies will likely require detailed investigations of safety and atmospheric effects of microwave power beams before issuing launch licenses for SSP satellite systems. This paper proposes to collect representative and comprehensive data of the interaction of power beams with the atmosphere by extending the infrastructure of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. Estimates of the transmission infrastructure performance as well as measurement devices and scientific capabilities of possible upgrade scenarios will be discussed. The proposed upgrade of the HAARP facility is expected to d...

  7. Circuit realization microwave antennas-oscillator on strip antennas

    OpenAIRE

    Golynskyy, V. D.; Prudyus, I. N.

    2009-01-01

    Showing special feature of development circuitries microwave transistors antennasoscillator on strip dielectric-resonator-antennas. Showing circuitries and technical characteristics of developed microwave antennasoscillator on strip.

  8. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  9. Land Treatment Digital Library

    Science.gov (United States)

    Pilliod, David S.; Welty, Justin L.

    2013-01-01

    The Land Treatment Digital Library (LTDL) was created by the U.S. Geological Survey to catalog legacy land treatment information on Bureau of Land Management lands in the western United States. The LTDL can be used by federal managers and scientists for compiling information for data-calls, producing maps, generating reports, and conducting analyses at varying spatial and temporal scales. The LTDL currently houses thousands of treatments from BLM lands across 10 states. Users can browse a map to find information on individual treatments, perform more complex queries to identify a set of treatments, and view graphs of treatment summary statistics.

  10. Probing the Light Speed Anisotropy with respect to the Cosmic Microwave Background Radiation Dipole

    CERN Document Server

    Gurzadyan, V G; Kashin, A L; Margarian, A T; Bartalini, O; Bellini, V; Castoldi, M; D'Angelo, A; Didelez, J P; Salvo, R D; Fantini, A; Gervino, G; Ghio, F; Girolami, B; Giusa, A; Hourany, E; Knyazyan, S; Kuznetsov, V E; Lapik, A; Levi-Sandri, P; Llères, A; Mehrabyan, S S; Moricciani, D; Nedorezov, V; Perrin, C; Rebreyend, D; Russo, G; Rudnev, N; Schärf, C; Sperduto, M L; Sutera, M C; Turinge, A

    2005-01-01

    We have studied the angular fluctuations in the speed of light with respect to the apex of the dipole of Cosmic Microwave Background (CMB) radiation using the experimental data obtained with GRAAL facility, located at the European Synchrotron Radiation Facility (ESRF) in Grenoble. The measurements were based on the stability of the Compton edge of laser photons scattered on the 6 GeV monochromatic electron beam. The results enable to obtain a conservative constraint on the anisotropy in the light speed variations \\Delta c(\\theta)/c < 3 10^{-12}, i.e. with higher precision than from previous experiments.

  11. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory and Associated Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Meachum, Teresa Ray; Michael G. Lewis

    2003-02-01

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  12. Bureau of Land Management Land Grant Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data has been collected by the U.S. Bureau of Land Management (BLM) in New Mexico at the New Mexico State Office. The initial data source is the statewide...

  13. International Coalition Land Use/Land Cover

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set is a product of an effort to update Minnesota's 1969 land use inventory. The project was funded in 1989 by the State Legislature per recommendation...

  14. Behaviors of young children around microwave ovens.

    Science.gov (United States)

    Robinson, Marla R; O'Connor, Annemarie; Wallace, Lindsay; Connell, Kristen; Tucker, Katherine; Strickland, Joseph; Taylor, Jennifer; Quinlan, Kyran P; Gottlieb, Lawrence J

    2011-11-01

    Scald burn injuries are the leading cause of burn-related emergency room visits and hospitalizations for young children. A portion of these injuries occur when children are removing items from microwave ovens. This study assessed the ability of typically developing children aged 15 months to 5 years to operate, open, and remove the contents from a microwave oven. The Denver Developmental Screening Test II was administered to confirm typical development of the 40 subjects recruited. All children recruited and enrolled in this study showed no developmental delays in any domain in the Denver Developmental Screening Test II. Children were observed for the ability to open both a push and pull microwave oven door, to start the microwave oven, and to remove a cup from the microwave oven. All children aged 4 years were able to open the microwaves, turn on the microwave, and remove the contents. Of the children aged 3 years, 87.5% were able to perform all study tasks. For children aged 2 years, 90% were able to open both microwaves, turn on the microwave, and remove the contents. In this study, children as young as 17 months could start a microwave oven, open the door, and remove the contents putting them at significant risk for scald burn injury. Prevention efforts to improve supervision and caregiver education have not lead to a significant reduction in scald injuries in young children. A redesign of microwave ovens might prevent young children from being able to open them thereby reducing risk of scald injury by this mechanism.

  15. Sensing land pollution.

    Science.gov (United States)

    Bowden, L. W.

    1971-01-01

    Land pollution is described in numerous ways by various societies. Pollutants of land are material by-products of human activity and range from environmentally ineffective to positively toxic. The pollution of land by man is centuries old and correlates directly with economy, technology and population. In order to remotely sense land pollution, standards or thresholds must be established. Examples of the potential for sensing land pollution and quality are presented. The technological capabilities for remotely sensed land quality is far advanced over the judgment on how to use the sensed data. Until authoritative and directive decisions on land pollution policy are made, sensing of pollutants will be a random, local and academic affair.

  16. Changing local land systems

    DEFF Research Database (Denmark)

    Friis, Cecilie; Reenberg, Anette; Heinimann, Andreas

    2016-01-01

    This paper investigates the direct and cascading land system consequences of a Chinese company's land acquisition for rubber cultivation in northern Laos. Transnational land acquisitions are increasingly acknowledged as an important driver of direct land use conversion with implications for local....... Combining the conceptual lenses of land systems and livelihood approaches, this paper demonstrates how the land use system has changed substantially because of the establishment of the rubber plantation by the company, notably in the linkages between livestock rearing, upland shifting cultivation...... and lowland paddy rice cultivation. The changes go beyond the immediate competition for land caused by the rubber plantation: a penalty scheme introduced by the rubber company for damage to rubber trees caused by browsing animals has led the villagers to abandon livestock rearing, causing a cascade...

  17. Pressurized burner test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Norton, T.S.; Hadley, M.A. [Morgantown Energy Technology Center, WV (United States)

    1993-06-01

    The Morgantown Energy Technology Center (METC) is currently fabricating a high-pressure burner test facility. The facility was designed to support the development of gas turbine combustion systems fired on natural gas and coal-derived gaseous fuels containing fuel-bound nitrogen. Upon completion of fabrication and shake-down testing in October 1993, the facility will be available for use by industrial and university partners through Cooperative Research and Development Agreements (CRADAs) or through other cooperative arrangements. This paper describes the burner test facility and associated operating parameter ranges and informs interested parties of the availability of the facility.

  18. Central Facilities Area Sewage Lagoon Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Giesbrecht, Alan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose of this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.

  19. Subnanosecond microwave-assisted magnetization switching in a circularly polarized microwave magnetic field

    Science.gov (United States)

    Suto, Hirofumi; Kanao, Taro; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2017-06-01

    We study microwave-assisted magnetization switching (MAS) of a perpendicularly magnetized nanomagnet with a diameter of 50 nm in a circularly polarized microwave magnetic field. The MAS effect appears when the rotation direction of the microwave field matches that of the ferromagnetic resonance excitation, and a large switching field decrease from 7.1 kOe to 1.5 kOe is demonstrated. In comparison with a linearly polarized microwave magnetic field, the circularly polarized microwave field induces the same MAS effect at half the microwave field amplitude, thereby showing its efficiency. We also examine MAS in the subnanosecond region and show that the magnetization switching can be induced by a microwave field with the duration of 0.2 ns.

  20. Assessment of Recreational Facilities in Federal Capital City, Abuja, Nigeria

    Directory of Open Access Journals (Sweden)

    Cyril Kanayo Ezeamaka

    2016-06-01

    Full Text Available Abuja Master Plan provided development of adequate Green Areas and other Recreational Facilities within the Federal Capital City (FCC, as part of its sustainability principles and provided for these recreational facilities within each neighborhood (FCDA, 1979. However, there have been several recent foul cries about the negative development of recreational facilities and the abuse of the Master Plan in the FCC.  The motivation for carrying out this study arose from the observation that recreational facilities in Phase 1 of the Federal Capital City Abuja are not clearly developed as intended by the policy makers and thus, the need to identify the recreational facilities in the Phase 1 of FCC and observe their level of development as well as usage. The field survey revealed that the Central Business District and Gazupe have higher numbers of recreational facilities with 45 and 56. While Wuse II (A08 and Wuse II (A07 Districts have lesser recreational facilities with 10 and 17. The field survey further revealed that all the districts in Phase 1 have over 35% cases of land use changes from recreational facilities to other use. The survey shows that over 65% of these recreational facilities are fully developed. The study also shows that just about 11% of the recreational sporting facilities were developed in line with the Abuja Master Plan in Phase 1. The study revealed that recreational facilities in Phase 1 of the FCC, Abuja has not being developed in compliance with the Abuja Master Plan.