WorldWideScience

Sample records for facilities master plan

  1. Development of Facilities Master Plan and Laboratory Renovation Project

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Andrea D

    2011-10-03

    Funding from this grant has allowed Morehouse School of Medicine to complete its first professionally developed, comprehensive campus master plan that is in alignment with the recently completed strategic plan. In addition to master planning activities, funds were used for programming and designing research renovations, and also to supplement other research facility upgrades by providing lighting and equipment. The activities funded by this grant will provide the catalyst for substantial improvement in the School's overall facilities for biomedical education and research, and will also provide much of the information needed to conduct a successful campaign to raise funds for proposed buildings and renovations.

  2. Straighttalk. The ideal master facility plan begins with business strategy and integrates operational improvement.

    Science.gov (United States)

    Powder, Scott; Brown, Richard E; Haupert, John M; Smith, Ryder

    2007-04-02

    Given the scarcity of capital to meet ever-growing demands for healthcare services, master facility planning has become more important than ever. Executives must align their master facility plans with their overall business strategy, incorporating the best in care- and service-delivery models. In this installment of Straight Talk, executives from two health systems--Advocate Health Care in Oak Brook, Ill. and Parkland Health & Hospital System in Dallas--discuss master facility planning. Modern Healthcare and PricewaterhouseCoopers present Straight Talk. The session on master facility planning was held on March 8, 2007 at Modern Healthcare's Chicago Headquarters. Charles Lauer, former vice president of publishing and editorial director at Modern Healthcare, was the moderator.

  3. Interior design. Mastering the master plan.

    Science.gov (United States)

    Mesbah, C E

    1995-10-01

    Reflecting on the results of the survey, this proposed interior design master planning process addresses the concerns and issues of both CEOs and facility managers in ways that focus on problem-solving strategies and methods. Use of the interior design master plan process further promotes the goals and outcomes expressed in the survey by both groups. These include enhanced facility image, the efficient selection of finishes and furnishings, continuity despite staff changes, and overall savings in both costs and time. The interior design master plan allows administrators and facility managers to anticipate changes resulting from the restructuring of health care delivery. The administrators and facility managers are then able to respond in ways that manage those changes in the flexible and cost-effective manner they are striving for. This framework permits staff members to concentrate their time and energy on the care of their patients--which is, after all, what it's all about.

  4. Radiotherapy facilities: Master planning and concept design considerations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    This publication provides guidelines on how to plan a radiotherapy facility in terms of the strategic master planning process including the legal, technical and infrastructure requirements. It outlines a risk assessment methodology, a typical project work plan and describes the professional expertise required for the implementation of such a project. Generic templates for a block design are suggested, which include possibilities for future expansion. These templates can be overlaid onto the designated site such that the most efficient workflow between the main functional areas can be ensured. A sample checklist is attached to act as a guideline for project management and to indicate the critical stages in the process where technical expert assistance may be needed. The publication is aimed at professionals and administrators involved in infrastructure development, planning and facility management, as well as engineers, building contractors and radiotherapy professionals.

  5. Radiotherapy facilities: Master planning and concept design considerations

    International Nuclear Information System (INIS)

    2014-01-01

    This publication provides guidelines on how to plan a radiotherapy facility in terms of the strategic master planning process including the legal, technical and infrastructure requirements. It outlines a risk assessment methodology, a typical project work plan and describes the professional expertise required for the implementation of such a project. Generic templates for a block design are suggested, which include possibilities for future expansion. These templates can be overlaid onto the designated site such that the most efficient workflow between the main functional areas can be ensured. A sample checklist is attached to act as a guideline for project management and to indicate the critical stages in the process where technical expert assistance may be needed. The publication is aimed at professionals and administrators involved in infrastructure development, planning and facility management, as well as engineers, building contractors and radiotherapy professionals

  6. Radiotherapy Facilities: Master Planning and Concept Design Considerations (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidelines on how to plan a radiotherapy facility in terms of the strategic master planning process including the legal, technical and infrastructure requirements. It outlines a risk assessment methodology and a typical project work plan, and describes the professional expertise required for the implementation of such a project. Generic templates for a block design are suggested, which include possibilities for future expansion. These templates can be overlaid onto the designated site such that the most efficient workflow between the main functional areas can be ensured. A sample checklist is attached to act as a guideline for project management and to indicate the critical stages in the process where technical expert assistance may be needed. The publication is aimed at professionals and administrators involved in infrastructure development, planning and facility management, as well as engineers, building contractors and radiotherapy professionals

  7. Master planning for successful safeguard/security systems engineering

    International Nuclear Information System (INIS)

    Bruckner, D.G.

    1987-01-01

    The development and phased implementation of an overall master plan for weapons systems and facilities engaged in the complexities of high technology provides a logical road map for system accomplishment. An essential factor in such a comprehensive plan is development of an integrated systems security engineering plan. Some DOD programs use new military regulations and policy directives to mandate consideration of the safeguard/security disciplines be considered for weapons systems and facilities during the entire life cycle of the program. The emphasis is to make certain the weapon system and applicable facilities have complementary security features. Together they must meet the needs of the operational mission and, at the same time, provide the security forces practical solutions to their requirements. This paper discusses the process of meshing the safe- guards/security requirements with an overall the master plan and the challenges attendant to this activity

  8. Northeast Oregon Hatchery Spring Chinook Master Plan, Technical Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Ashe, Becky L.; Concannon, Kathleen; Johnson, David B.

    2000-04-01

    Spring chinook salmon populations in the Imnaha and Grande Ronde rivers are listed as threatened under the Endangered Species Act (ESA) and are at high risk of extirpation. The Nez Perce Tribe, the Confederated Tribes of the Umatilla Indian Reservation, and Oregon Department of Fish and Wildlife, are co-managers of conservation/restoration programs for Imnaha and Grande Ronde spring chinook salmon that use hatchery supplementation and conventional and captive broodstock techniques. The immediate goal of these programs is to prevent extirpation and provide the potential for restoration once factors limiting production are addressed. These programs redirect production occurring under the Lower Snake River Compensation Plan (LSRCP) from mitigation to conservation and restoration. Both the Imnaha and Grande Ronde conservation/restoration programs are described in ESA Section 10 permit applications and the co-managers refer to the fish production from these programs as the Currently Permitted Program (CPP). Recently, co-managers have determined that it is impossible to produce the CPP at Lookingglass Hatchery, the LSRCP facility intended for production, and that without additional facilities, production must be cut from these conservation programs. Development of new facilities for these programs through the Columbia Basin Fish and Wildlife Program is considered a new production initiative by the Northwest Power Planning Council (NPPC) and requires a master plan. The master plan provides the NPPC, program proponents and others with the information they need to make sound decisions about whether the proposed facilities to restore salmon populations should move forward to design. This master plan describes alternatives considered to meet the facility needs of the CPP so the conservation program can be fully implemented. Co-managers considered three alternatives: modify Lookingglass Hatchery; use existing facilities elsewhere in the Basin; and use new facilities in

  9. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  10. Low Impact Development Master Plan

    Energy Technology Data Exchange (ETDEWEB)

    Loftin, Samuel R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-02

    This project creates a Low Impact Development (LID) Master Plan to guide and prioritize future development of LID projects at Los Alamos National Laboratory (LANL or the Laboratory). The LID Master Plan applies to developed areas across the Laboratory and focuses on identifying opportunities for storm water quality and hydrological improvements in the heavily urbanized areas of Technical Areas 03, 35 and 53. The LID Master Plan is organized to allow the addition of LID projects for other technical areas as time and funds allow in the future.

  11. Evaluation of the Navy Master Planning Program

    Science.gov (United States)

    1976-05-01

    Navy planning directives, interviews with Navy planning personnel, researc " of applicable literature on planning and program evaluation, and the...master planning has absorbed the additional roles of program management and public relations marketing . The Navy planner is now deeply involved in...master planning 62conducted by NAVFAC headquarters in 1972, various Navy planning directives, a " Market Survey" of NAVFAC services and customer 63

  12. A master plan for the radwaste management

    International Nuclear Information System (INIS)

    Kim, Y.E.; Lee, S.H.; Lee, C.K.; Moon, S.H.; Sung, R.J.; Sung, K.W.

    1983-01-01

    The accumulated total amount of low-level radioactive wastes to be produced from operating power reactors and nuclear installations up until the year 2007 is estimated to 900,000 drum(approximately 200,000M 3 ). An effective master plan for the safe disposal of the wastes is necessary. Among many different disposal methods available for low-and medium-level radwastes, the engineered trench approach was chosen by an extensive feasibility study as the optimum method for Korea. Site selection, construction and commissioning of such a disposal facility are presumed to take two and a half years, beginning in July 1983. The total cost in opening the site and the unit disposal cost per drum were estimated to be 11 billion won and 40,000 won, respectively. An agency(KORDA) managing the operation of the disposal site is recommended to be established by 1987, assuming that the agency's economic feasibility can be justified by that time. When the disposal site is commissioned, a regulatory guide for ground disposal will be available, and supporting R and D work on the disposal site will be complete. Studies on the technology of radwaste treatment will continue through this period. For the longer term, staff training and future planning have been undertaken to ensure that a master plan, which can be expected to be used as a guideline for disposal of all radioactive waste arising, is fully adequate. (Author)

  13. Five Recession-Driven Strategies for Planning and Managing Campus Facilities

    Science.gov (United States)

    Rudden, Michael S.

    2010-01-01

    Colleges and universities continue to face significant fiscal challenges in the current recession. A review of ongoing campus facilities planning projects, coupled with a review of more than 30 recent campus master planning requests for proposals and the relevant literature, indicates that colleges and universities are finding innovative ways to…

  14. Master plan study - District heating Kohtla-Jaerve and Johvi municipalities. Estonia. Final report. Appendices for chapter 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The appendices to chapter 7 of the master plan study on district heating in the municipalities of Kohtla-Jarve and Johvi (Estonia) present technical data on production units, also with regard to new facilities. (ARW)

  15. Housing, health and master planning: rules of engagement.

    Science.gov (United States)

    Harris, P; Haigh, F; Thornell, M; Molloy, L; Sainsbury, P

    2014-04-01

    Knowledge about health focussed policy collaboration to date has been either tactical or technical. This article focusses on both technical and tactical issues to describe the experience of cross-sectoral collaboration between health and housing stakeholders across the life of a housing master plan, including but not limited to a health impact assessment (HIA). A single explanatory case study of collaboration on a master plan to regenerate a deprived housing estate in Western Sydney was developed to explain why and how the collaboration worked or did not work. Data collection included stakeholder interviews, document review, and reflections by the health team. Following a realist approach, data was analysed against established public policy theory dimensions. Tactically we did not know what we were doing. Despite our technical knowledge and skills with health focussed processes, particularly HIA, we failed to appreciate complexities inherent in master planning. This limited our ability to provide information at the right points. Eventually however the HIA did provide substantive connections between the master plan and health. We use our analysis to develop technical and tactical rules of engagement for future cross-sectoral collaboration. This case study from the field provides insight for future health focussed policy collaboration. We demonstrate the technical and tactical requirements for future intersectoral policy and planning collaborations, including HIAs, with the housing sector on master planning. The experience also suggested how HIAs can be conducted flexibly alongside policy development rather than at a specific point after a policy is drafted. Copyright © 2014 The Royal Society for Public Health. All rights reserved.

  16. Measures for Management of Land Use Master Plan Released

    Institute of Scientific and Technical Information of China (English)

    Qian Fang; Li Caige

    2017-01-01

    On May 8,2017,the Measures for Management of Land Use Master Plan was released for enforcement by the Ministry of Land and Resources.The Measures clearly points out that a land use master plan is an essential part of the national spatial planning system and an important basis for implementing land use modes control and management,

  17. Implementing the enterprise master patient index.

    Science.gov (United States)

    Adragna, L

    1998-10-01

    In implementing a cross-facility initiative, the importance of planning and understanding the implications for all facilities can't be overlooked. Here's how one integrated delivery network navigated the challenges of implementing a cross-facility enterprise master patient index.

  18. United States Shipbuilding Standards Master Plan

    National Research Council Canada - National Science Library

    Horsmon, Jr, Albert W

    1992-01-01

    This Shipbuilding Standards Master Plan was developed using extensive surveys, interviews, and an iterative editing process to include the views and opinions of key persons and organizations involved...

  19. SEA effectiveness for landscape and master planning: An investigation in Sardinia

    International Nuclear Information System (INIS)

    De Montis, Andrea; Ledda, Antonio; Caschili, Simone; Ganciu, Amedeo; Barra, Mario

    2014-01-01

    The Italian administrative bodies and planning agencies have embraced with mixed feedbacks the introduction of Strategic Environmental Assessment (SEA) through the European Directive 2001/42/EC. Concurrently, regional and local spatial planning practice have been characterized by a new approach inspired by landscape planning. The Italian region of Sardinia has been one of the pioneering administrative bodies in the Italian and European arena that has adopted landscape principles for the construction of its regional master plan (PPR, Piano Paesaggistico Regionale). Municipalities are now carrying out the review of their master plans to the PPR's prescriptions and indications. Against this background, the aim of this paper is to assess the level of SEA implementation in the municipal master plans of Sardinia, six years after the approval of the PPR. Rooted in the SEA international literature we construct a modular and adaptable on-line survey for officers involved in the review of municipal master plans. The results show that many Sardinian municipalities have not reviewed their master plans to the PPR's regulations yet and only a few municipalities have started this review process according to the SEA procedure. - Highlights: • We study strategic environmental assessment (SEA) effectiveness on land use plans • Four SEA implementation key issues are drawn from international literature • Data collection has included an on-line survey with close and open questions • Results indicate that SEA has been poorly implemented in landscape and master plans • Weak aspects include planning alternatives, financial resources, and monitoring

  20. SEA effectiveness for landscape and master planning: An investigation in Sardinia

    Energy Technology Data Exchange (ETDEWEB)

    De Montis, Andrea, E-mail: andreadm@uniss.it [Dipartimento di Agraria, Sezione Ingegneria del Territorio, Università degli Studi di Sassari, Viale Italia, 39, 07100 Sassari (Italy); Ledda, Antonio, E-mail: antonioledda@gmail.com [Dipartimento di Agraria, Sezione Ingegneria del Territorio, Università degli Studi di Sassari, Viale Italia, 39, 07100 Sassari (Italy); Caschili, Simone, E-mail: s.caschili@ucl.ac.uk [UCL QASER Lab and Centre for Advanced Spatial Analysis, University College London, Gower Street, London WC1E 7HB (United Kingdom); Ganciu, Amedeo, E-mail: dott.amedeoganciu@gmail.com [Dipartimento di Agraria, Sezione Ingegneria del Territorio, Università degli Studi di Sassari, Viale Italia, 39, 07100 Sassari (Italy); Barra, Mario, E-mail: barra@uniss.it [Dipartimento di Agraria, Sezione Ingegneria del Territorio, Università degli Studi di Sassari, Viale Italia, 39, 07100 Sassari (Italy)

    2014-07-01

    The Italian administrative bodies and planning agencies have embraced with mixed feedbacks the introduction of Strategic Environmental Assessment (SEA) through the European Directive 2001/42/EC. Concurrently, regional and local spatial planning practice have been characterized by a new approach inspired by landscape planning. The Italian region of Sardinia has been one of the pioneering administrative bodies in the Italian and European arena that has adopted landscape principles for the construction of its regional master plan (PPR, Piano Paesaggistico Regionale). Municipalities are now carrying out the review of their master plans to the PPR's prescriptions and indications. Against this background, the aim of this paper is to assess the level of SEA implementation in the municipal master plans of Sardinia, six years after the approval of the PPR. Rooted in the SEA international literature we construct a modular and adaptable on-line survey for officers involved in the review of municipal master plans. The results show that many Sardinian municipalities have not reviewed their master plans to the PPR's regulations yet and only a few municipalities have started this review process according to the SEA procedure. - Highlights: • We study strategic environmental assessment (SEA) effectiveness on land use plans • Four SEA implementation key issues are drawn from international literature • Data collection has included an on-line survey with close and open questions • Results indicate that SEA has been poorly implemented in landscape and master plans • Weak aspects include planning alternatives, financial resources, and monitoring.

  1. Review of Current Aircrew Coordination Training Program and Master Plan for Program Enhancement: Aircrew Coordination Training Master Plan

    National Research Council Canada - National Science Library

    Grubb, G

    2001-01-01

    ...) program to develop a master plan of continuous improvement. Research source materials included policies, training courseware, evaluation guides, research papers and reports, and assessment summaries of operational trend data...

  2. Master plans for pedestrian and bicycle transportation: community characteristics.

    Science.gov (United States)

    Steinman, Lesley; Doescher, Mark; Levinger, David; Perry, Cynthia; Carter, Louise; Eyler, Amy; Aytur, Semra; Cradock, Angie L I; Evenson, Kelly R; Heinrich, Katie; Kerr, Jacqueline; Litt, Jill; Severcan, Yucel; Voorhees, Carolyn

    2010-03-01

    Recent research demonstrates the importance of targeting the built environment to support individual physical activity, particularly for people experiencing health disparities. Master plans to promote biking and/or pedestrians (BPMPs) are a potential method for environmental change. This descriptive study aims to provide a snapshot of plan attributes and better understand demographic, social and transportation characteristics of communities with BPMPs. We collected a census sample of BPMPs from 4 states. Population and commuting data were obtained from national statistics. 294 master plans were included, with most plans representing municipalities. 62% of plans targeted biking only, one-fifth targeted biking and walking, and 15% targeted walking only. The sampled locations have a similar demographic profile as the overall U.S. for median age and household income, people of color, high school education, and income inequality. The degree of racial diversity of sampled communities is slightly less than the U.S. average and the percentage of people who walk to work were slightly higher. Given that communities with master plans have a similar profile as the overall U.S., BPMPs could feasibly be spread to communities throughout the country. Further research is planned to describe BPMPs in detail toward informing future plan development.

  3. Perancangan Master Plan Sistem Informasi Akademik STT Dharma Iswara Madiun

    Directory of Open Access Journals (Sweden)

    Hani Atun Mumtahana

    2016-12-01

    Full Text Available Teknologi Informasi dan Sistem Informasi sudah menjadi hal paling mendasar dalam suatu organisasi dalam menjalankan proses bisnis. Perkembangan Teknologi Informasi dan Sistem Informasi (TI/SI yang baik harus direncanakan dengan baik. Master Plan merupakan suatu pedoman jangka pendek, menengah dan jangka panjang dalam pengembangan TI/SI suatu organisasi/perusahaan. Dalam menjalankan proses bisnis yang disesuaikan dengan Visi, Misi dan Tujuannya, STT Dharma Iswara Madiun lebih menitik beratkan pada Pelayanan Bidang Akademik (disesuaikan dengan gambaran Portofolio Aplikasi. Untuk menghasilkan pelayanan yang prima dalam bidang Akademik, perancangan Master Plan Sistem Informasi Akademik merupakan salah satu cara untuk membuat perencanaan jangka panjang pemeliharaan Sistem Informasi Akademik. Pada penelitian ini perancangan Master Plan Sistem Informasi Akademik dilakukan dengan perumusan Rencana Strategis STT Dharma Iswara Madiun, membuat arsitektur Sistem Informasi dengan framework Zachman 4 kolom (data (what, function (how, network (where dan people (who dan 3 baris (planner, owner dan designer. Hasil penelitian ini berupa rencana pengembangan Sistem Infromasi Akademik dalam bentuk Master Plan pada jangka pendek, jangka menengah dan jangka panjang.

  4. Are master plans effective in limiting development in China's disaster-prone areas?

    OpenAIRE

    Kim, Saehoon; Rowe, Peter G.

    2013-01-01

    The effectiveness of urban master plans in limiting development in a disaster-prone area of China was empirically investigated by measuring cities’ land-cover changes against their master plans. If a master plan serves as guidance for urban polices that reduce property loss from earthquakes, floods, landslides,land subsidence, and rises in sea level, it will substantially limit urban development in areas at risk from environmental hazards. An environmental risk map weighted toward valuable...

  5. Master Training in Radiological Protection Facilities Radioactive and Nuclear

    International Nuclear Information System (INIS)

    Verdu, G.; Mayo, P.; Campayo, J. M.

    2011-01-01

    The master includes general aspects of radiation protection in nuclear facilities. also an advanced module to acquire a high level training highlights as nuclear decommissioning, shielding calculation using advanced codes, particle accelerators, international law, etc.

  6. Louisiana's 2017 Master Plan for a Sustainable Coast

    Science.gov (United States)

    Haase, B.

    2017-12-01

    The Coastal Protection and Restoration Authority is charged with coordinating restoration and protection investments through the development and implementation of Louisiana's Comprehensive Master Plan for a Sustainable Coast. The first master plan was submitted to the Louisiana Legislature in 2007 and is mandated to be updated every five years. The plan's objectives are to reduce economic losses from flooding, promote sustainability by harnessing natural processes, provide habitats for commercial and recreational activities, sustain cultural heritage and promote a viable working coast. Two goals drive decision making about the appropriate suite of restoration and protection projects to include in the Plan: restore and maintain Louisiana's wetlands and provide flood protection for coastal Louisiana's citizens. As part of the decision making process, a wide range of additional metrics are used to evaluate the complex, competing needs of communities, industries, navigation and fisheries. The master plan decision making process includes the identification of individual protection and restoration projects that are evaluated with landscape, storm surge, and risk assessment models and then ranked by how well they perform over time across the set of decision drivers and metrics. High performing projects are assembled into alternatives constrained by available funding and river resources. The planning process is grounded not only on extensive scientific analysis but also on interdisciplinary collaboration between scientists, engineers, planners, community advocates, and coastal stakeholders which creates the long-term dialogue needed for complex environmental planning decisions. It is through this collaboration that recommended alternatives are reviewed and modified to develop the final Plan. Keywords:alternative formulation, comprehensive planning, ecosystem restoration, flood risk reduction and stakeholder engagement

  7. Colorado Academic Library Master Plan, Spring 1982.

    Science.gov (United States)

    Breivik, Patricia Senn; And Others

    Based on a need to assess current library strengths and weaknesses and to project potential library roles in supporting higher education, this master plan makes a series of recommendations to Colorado's academic libraries. It is noted that the plan was endorsed by both the Colorado Commission on Higher Education and the Colorado State Department…

  8. Georgia Institute of Technology chilled water system evaluation and master plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-15

    As the host of the Olympic Village for the 1996 Atlanta Olympics, Georgia Tech has experienced a surge in construction activities over the last three years. Over 1.3 million square feet of new buildings have been constructed on the Georgia Tech campus. This growth has placed a strain on the Georgia Tech community and challenged the facilities support staff charged with planning and organizing utility services. In concert with Olympic construction, utility planners have worked to ensure long term benefits for Georgia Tech facilities while meeting the short term requirements of the Olympic Games. The concentration of building construction in the northwest quadrant of the campus allowed planners to construct a satellite chilled water plant to serve the needs of this area and provide the opportunity to integrate this section of the campus with the main campus chilled water system. This assessment and master plan, funded in part by the US Department of Energy, has evaluated the chilled water infrastructure at Georgia Tech, identified ongoing problems and made recommendations for long term chilled water infrastructure development and efficiency improvements. The Georgia Tech office of Facilities and RDA Engineering, Inc. have worked together to assemble relevant information and prepare the recommendations contained in this document.

  9. Experience of Sponge City Master Plan: A Case Study of Nanning City

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Wang Jiazhuo; Che Han; Wang Chen; Zhang Chunyang; Shi Lian; Fan Jin; Li Caige

    2017-01-01

    As a new urban development pattern, the construction of sponge cities has been deeply integrated into the new urbanization and water safety strategy. Nanning City, as one of the first batch of experimental sponge cities in China, has undertaken exploration and practice on sponge city planning, construction, and management. The sponge city master plan of Nanning City establishes an urban ecological spatial pattern in order to protect the security of the sponge base. The sponge city construction strategy has also proposed an overall construction strategy of a sponge city in line with urban development features. Through the systematic analysis and planning, a “23+10+202” pattern of sponge city construction has been formed. “23” represents 23 drainage basins, in which major sponge facilities such as storage facilities, waterfront buffer zones, wetland parks, ecological rainwater corridor and sponge parks are allocated. “10” represents 10 sponge functional zones, which provide important reference for the establishment of sponge city construction index system. “202” represents 202 management units, which decomposes the general objective and provides technical support not only for sponge city construction and management, but also for the implementation of general objectives in the regulatory plan as well.

  10. AUA Program Master Plan. Volume 1: Overview

    Science.gov (United States)

    1997-03-01

    The Office of Air Traffic Systems Development (AUA) Program Master Plan : summarizes the management, development approach, and status of products and : services provided by the AUA organization to fulfill its role in supporting : National Airspace Sy...

  11. Laredo District Coahuila/Nuevo Leon/Tamaulipas border master plan.

    Science.gov (United States)

    2012-06-01

    Border Master Plans document a regions needs and priorities, and recommend a mechanism to ensure coordination on current and planned future port of entry (POE) projects and supporting transportation infrastructure to serve the anticipated demand i...

  12. Homeroom Activities in a College of Technology Based on the Master Plan

    Science.gov (United States)

    Fuchida, Kunihiiko; Murata, Hideaki; Yuji, Junichiro

    Homeroom (HR) activities have an important role in engineering education at technical colleges. Yatsushiro National College of Technology has made a master plan for them and has been putting the plan into practical use since 2002. This plan is comprehensive and has two main categories, social education and career guidance, both being composed of three sub-categories (e.g., self-understanding and making future plans) . Based on the master plan, each HR teacher makes his own plan for HR activities for his classroom at the beginning of the academic year. We have reached a consensus to share our practice and to improve HR activities for years to come. We also recognize that to carry out HR activities based on a master plan that reflects the school's educational goals is essential in order to train students who are well-prepared, both as engineers and as humans.

  13. Master-planned in exurbia: examining the drivers and impacts of master-planned communities at the urban fringe

    Science.gov (United States)

    Jenna H. Tilt; Lee. Cerveny

    2013-01-01

    Smart growth strategies of infill and compact growth in existing suburban cities will most likely not be sufficient to absorb a new US household growth in the future. To meet housing demands and preferences, master-planned communities will continue to be built in outlying exurban areas. However, little is known about the impacts these communities may have on the...

  14. Minimizing Lid Overstows in Master Stowage Plans for Container Vessels is NP-Complete

    DEFF Research Database (Denmark)

    Ajspur, Mai Lise; Jensen, Rune Møller; Guilbert, Nicolas

    Container vessel stowage is a particularly hard combinatorial problem within the shipping industry. The currently most successful approaches decompose the problem hierarchically and first generate a master plan that handle highlevel constraints and objectives such as balance and stress moments...... that it is an NP -complete problem to generate master plans that minimize the number of these lid overstows. Since any efficient approach to container vessel stowage most likely must include a master plan, the implication of this result is that future research must focus and developing good heuristics...

  15. Developing Scientific Index System of Urban Master Planning

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Master plan is the fundamental basis for urban construction and administration, an important public policy of the govern-ments, as well as an overall, comprehen-sive, and strategic task related to politics, economy,

  16. Structural master plan of flood mitigation measures

    OpenAIRE

    A. Heidari

    2009-01-01

    Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possi...

  17. Final work plan : investigation of potential contamination at the former USDA facility in Powhattan, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2007-02-02

    This Work Plan outlines the scope of work to be conducted to investigate the subsurface contaminant conditions at the property formerly leased by the Commodity Credit Corporation (CCC) in Powhattan, Kansas (Figure 1.1). Data obtained during this event will be used to (1) evaluate potential contaminant source areas on the property; (2) determine the vertical and horizontal extent of potential contamination; and (3) provide recommendations for future action, with the ultimate goal of assigning this site No Further Action status. The planned investigation includes groundwater monitoring requested by the Kansas Department of Health and Environment (KDHE), in accordance with Section V of the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the U.S. Department of Agriculture (USDA). The work is being performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. A nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy, Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne issued a Master Work Plan (Argonne 2002) that has been approved by the KDHE. The Master Work Plan describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. It should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Powhattan.

  18. Developing a master plan for hospital solid waste management: A case study

    International Nuclear Information System (INIS)

    Karamouz, Mohammad; Zahraie, Banafsheh; Kerachian, Reza; Jaafarzadeh, Nemat; Mahjouri, Najmeh

    2007-01-01

    Disposal of about 1750 tons of solid wastes per day is the result of a rapid population growth in the province of Khuzestan in the south west of Iran. Most of these wastes, especially hospital solid wastes which have contributed to the pollution of the environment in the study area, are not properly managed considering environmental standards and regulations. In this paper, the framework of a master plan for managing hospital solid wastes is proposed considering different criteria which are usually used for evaluating the pollution of hospital solid waste loads. The effectiveness of the management schemes is also evaluated. In order to rank the hospitals and determine the share of each hospital in the total hospital solid waste pollution load, a multiple criteria decision making technique, namely analytical hierarchy process (AHP), is used. A set of projects are proposed for solid waste pollution control and reduction in the proposed framework. It is partially applied for hospital solid waste management in the province of Khuzestan, Iran. The results have shown that the hospitals located near the capital city of the province, Ahvaz, produce more than 43% of the total hospital solid waste pollution load of the province. The results have also shown the importance of improving management techniques rather than building new facilities. The proposed methodology is used to formulate a master plan for hospital solid waste management

  19. Laredo District Coahuila/Nuevo Leon/Tamaulipas border master plan : executive summary.

    Science.gov (United States)

    2012-06-01

    Border Master Plans, as defined and supported by the U.S./Mexico Joint Working : Committee on Transportation Planning and Programming, the Federal Highway Administration, : and the U.S. Department of State, are comprehensive long range plans to inven...

  20. Integration of Environmental Planning Into the Army Master Planning Process

    Science.gov (United States)

    1992-10-01

    the issues specific to the later assessment (ETL 1110-3-407, pp 1-9 to 1-10). Under the : estructured master planning process discussed in this report...Lisa~m 0111utHars M143 AMW PRO*b LAMM~e 0)3. AMW uaides, Uso ~ow (M Port RJ." 21719 7%s pubhicaton was repfodaaced on moycled V&Mp. /| / 121 DATEI:

  1. Yakima Habitat Improvement Project Master Plan, Technical Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Golder Associates, Inc.

    2003-04-22

    The Yakima Urban Growth Area (UGA) is a developing and growing urban area in south-central Washington. Despite increased development, the Yakima River and its tributaries within the UGA continue to support threatened populations of summer steelhead and bull trout as well as a variety of non-listed salmonid species. In order to provide for the maintenance and recovery of these species, while successfully planning for the continued growth and development within the UGA, the City of Yakima has undertaken the Yakima Habitat Improvement Project. The overall goal of the project is to maintain, preserve, and restore functioning fish and wildlife habitat within and immediately surrounding the Yakima UGA over the long term. Acquisition and protection of the fish and wildlife habitat associated with key properties in the UGA will prevent future subdivision along riparian corridors, reduce further degradation or removal of riparian habitat, and maintain or enhance the long term condition of aquatic habitat. By placing these properties in long-term protection, the threat of development from continued growth in the urban area will be removed. To most effectively implement the multi-year habitat acquisition and protection effort, the City has developed this Master Plan. The Master Plan provides the structure and guidance for future habitat acquisition and restoration activities to be performed within the Yakima Urban Area. The development of this Master Plan also supports several Reasonable and Prudent Alternatives (RPAs) of the NOAA Fisheries 2000 Biological Opinion (BiOp), as well as the Water Investment Action Agenda for the Yakima Basin, local planning efforts, and the Columbia Basin Fish and Wildlife Authority's 2000 Fish and Wildlife Program. This Master Plan also provides the framework for coordination of the Yakima Habitat Improvement Project with other fish and wildlife habitat acquisition and protection activities currently being implemented in the area. As a

  2. The Effect of Modeling Qualities, Tones and Gages in Ceramic Supply Chains' Master Planning

    Directory of Open Access Journals (Sweden)

    Isabel MUNDI

    2012-01-01

    Full Text Available Ceramic production processes are characterized by providing quantities of the same finished goods that differ in qualities, tones and gages. This aspect becomes a problem for ceramic supply chains (SCs that should promise and serve customer orders with homogeneous quantities of the same finished good. In this paper a mathematical programming model for the cen-tralized master planning of ceramic SC is proposed. Inputs to the master plan include demand forecasts in terms of customer order classes based on their order size and splitting percentages of a lot into homogeneous sub-lots. Then, the master plan defines the size and loading of lots to production lines and their distribution with the aim of maximizing the number of customer orders fulfilled with homogeneous quantities in the most efficient manner for the SC. Finally, the effect of modeling qualities, tones and gages in master planning is assessed.

  3. Quality control of brachytherapy system module Oncentra MasterPlan V3.3 planning; Control de calidad del modulo de braquiterapia del sistema de planificacion Oncentra MasterPlan V3.3

    Energy Technology Data Exchange (ETDEWEB)

    Monja Ray, P. de la; Torres Pozas, S.; Sanchez Carrascal, M.; Macias Verde, D.; Martin Oliva, R.

    2011-07-01

    We present the results of quality control carried out the planning system (SP) MasterPlan Oncentra Brachy, version 3.3 (Nucletron), on the occasion of its launch, following the recommendations proposed in the Protocol for quality control in planning systems therapy with ionizing radiation [SEFM, published by the Spanish Society of Medical Physics (SEFM) in 2005].

  4. PNNL Campus Master Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, Whitney LC

    2012-09-07

    The Plan is used as a guide for PNNL in making facility and infrastructure decisions essential to supporting the PNNL vision: to establish a modern, collaborative, flexible, and sustainable campus while optimizing the efficiency of operations in support of courageous discovery and innovation.

  5. "Hospital Master Plan'ist" haiglavõrgu arengukavani / Tarmo Bakler

    Index Scriptorium Estoniae

    Bakler, Tarmo, 1970-

    2003-01-01

    Ülevaade, kuidas Hospital Master Planìs toodud põhimõtteid on kasutatud praeguseni elluviidud muutuste tegemisel ja kuidas on HMPd täiendatud Eesti Tervishoiuprojekt 2015 koostatud haiglavõrgu arengukavas 2002. Kaart. Tabelid

  6. Revised Master Plan for the Hood River Production Program, Technical Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon Department of Fish and Wildlife; Confederated Tribes of the Warm Springs Reservation

    2008-04-28

    The Hood River Production Program (HRPP) is a Bonneville Power Administration (BPA) funded program initiated as a mitigation measure for Columbia River hydrosystem effects on anadromous fish. The HRPP began in the early 1990s with the release of spring Chinook and winter steelhead smolts into the basin. Prior to implementation, co-managers, including the Confederated Tribes of the Warm Springs Reservation and the Oregon Department of Fish and Wildlife drafted the Hood River Production Master Plan (O'Toole and ODFW 1991a; O'Toole and ODFW 1991b) and the Pelton Ladder Master Plan (Smith and CTWSR 1991). Both documents were completed in 1991 and subsequently approved by the Council in 1992 and authorized through a BPA-led Environmental Impact Statement in 1996. In 2003, a 10-year programmatic review was conducted for BPA-funded programs in the Hood River (Underwood et al. 2003). The primary objective of the HRPP Review (Review) was to determine if program goals were being met, and if modifications to program activities would be necessary in order to meet or revise program goals. In 2003, an agreement was signed between PacifiCorp and resource managers to remove the Powerdale Dam (RM 10) and associated adult trapping facility by 2010. The HRPP program has been dependant on the adult trap to collect broodstock for the hatchery programs; therefore, upon the dam's removal, some sort of replacement for the trap would be needed to continue the HRPP. At the same time the Hood River Subbasin Plan (Coccoli 2004) was being written and prompted the co-managers to considered future direction of the program. This included revising the numerical adult fish objectives based on the assimilated data and output from several models run on the Hood River system. In response to the Review as well as the Subbasin Plan, and intensive monitoring and evaluation of the current program, the HRPP co-managers determined the spring Chinook program was not achieving the HRPP

  7. Methodical approaches in the Norwegian Master Plan for Water Resources

    International Nuclear Information System (INIS)

    Bowitz, Einar

    1997-01-01

    The Norwegian Master Plan for Water Resources instructs the management not to consider applications for concession to develop hydroelectric projects in the so called category II of the plan. These are the environmentally most controversial projects or the most expensive projects. This report discusses the methods used in this Master Plan to classify the projects. The question whether the assessments of the environmental disadvantages of hydropower development are reasonable is approached in two ways: (1) Compare the environmental costs imbedded in the Plan with direct assessments, and (2) Discuss the appropriateness of the methodology used for environmental evaluations in the Plan. The report concludes that (1) the environmental costs that can be derived from the ranking in the Plan are significantly greater than those following from direct evaluations, (2) the differences are generally so great that one may ask whether the methods used in the Plan overestimate the real environmental costs, (3) it seems to have been difficult to make a unified assessment of the environmental disadvantages, (4) the Plan has considered the economic impact on agriculture and forestry very roughly and indirectly, which may have contributed to overestimated environmental costs of hydropower development. 20 refs., 6 figs., 7 tabs

  8. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  9. Cooperative Path Planning and Constraints Analysis for Master-Slave Industrial Robots

    Directory of Open Access Journals (Sweden)

    Yahui Gan

    2012-09-01

    Full Text Available A strategy of cooperative path planning for a master-slave multiple robot system is presented in this paper. The path planning method is based on motion constraints between the end-effectors of cooperative robots. Cooperation motions have been classified into three types by relative motions between end-effectors of master and slave robots, which is concurrent cooperation, coupled synchronous cooperation and combined synchronous cooperation. Based on this classification, position /orientation constraints and joint velocity constraints are explored in-depth here. In order to validate the path planning method and the theoretical developments in motion constraints analysis, representative experiments based on two industrial robots, Motoman VA1400 and HP20, are provided at the end of the paper. The experimental results have proved both the effectiveness of the path planning method and the correctness of the constraints analysis.

  10. Comprehensive facilities plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  11. Master plan for remediation of the Sillamaee tailings pond and technical design project

    International Nuclear Information System (INIS)

    Kaasik, T.

    2000-01-01

    Remediation of the Sillamaee radioactive tailings pond is a priority in the Estonian National Environmental Plan. The Sillamaee plant has processed metal ores by hydrometallurgical methods since 1946. Processing continued until 1990, but in the 1970s, production of rare earths and rare metals was introduced and continues today at a smaller scale. The tailings pond contains residues from these operations. The environmental problems associated with the tailings pond are the stability of the dam and the release of contaminants. In order to deal with these two issues effectively, a master plan was drawn up. The master plan covers the period from 1997 to 2008 and was compiled with the cooperation of the Silmet Group and the Sillamaee International Expert Reference Group (SIERG). The master plan sets up a systematic approach for the overall tailings pond remediation, including drying its interior, reshaping and covering the surface, minimizing water flow through the tailings, and ensuring long-term dam stability

  12. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  13. Master plan nurse duty roster using the 0-1 goal programming technique

    Science.gov (United States)

    Ismail, Wan Rosmanira; Jenal, Ruzzakiah

    2013-04-01

    The scheduling of nurses is particularly challenging because of the nature of the work which is around the clock. In addition, inefficient duty roster can have an effect on the nurses well being as well as their job satisfaction. In nurse scheduling problem (NSP), nurses are generally allocated to periods of work over a specified time horizon. A typical length of the schedule varies from a few weeks to a month. The schedule will be consistently rebuilt after the specified time period and will result in a time-consuming task for the administrative staff involved. Moreover, the task becomes overwhelming when the staff needs to consider the previous duty rosters in order to maintain the quality of schedules. Therefore, this study suggests the development of a master plan for a nurse duty roster for approximately one year. The master plan starts with the development of a blue print for the nurse duty roster using a 0-1 goal programming technique. The appropriate working period for this blue print is formulated based on the number of night shifts and the number of required nurses for night shift per schedule. Subsequently, the blue print is repeated to complete the annual nurse duty roster. These newly developed procedures were then tested on several data sets. The test results found that the master plan has successfully distributed the annual workload evenly among nurses. In addition, the master plan allows nurses to arrange their career and social activities in advance.

  14. The relationship between the Municipal Master Plan and local Watershed Plans in water management

    Directory of Open Access Journals (Sweden)

    Denise Gallo Pizella

    2015-07-01

    Full Text Available The National Water Resources Policy has as one of its tools the drafting of local Water Resource Plans. In view of water resources planning and its relationship to land use planning, the aim of this work is to analyze the institutional and legal difficulties and the potential for an integrated system of water resources management. For this, we used the method of documentary and bibliographic research, beginning with the “Estatuto da Cidade”, a law for urban policy in Brazil, and literature on water management at the municipal and watershed levels. At the municipal level, the “Master Plan” (municipal plan of land use planning became the main instrument of territorial and municipal management, defining the parameters for the compliance of social, environmental and economic functions of real property. In this sense, the municipalities have a responsibility to protect water resources and, without local support, territorial and water management cannot be integrated in the context of the river basin. Despite the difficulties of including environmental variable in urban planning, the Master Plan has the potential to shape local water management systems that are environmentally sustainable and that progressively improve water quality and quantity within the watershed. Similarly, with more significant participation of the municipality in the Basin Committee, it is possible that the forms of municipal land use and occupation can be considered during the development and implementation of the Basin Plan. Thus, the management of water resources can occur integrally.

  15. Assessment of Recreational Facilities in Federal Capital City, Abuja, Nigeria

    Directory of Open Access Journals (Sweden)

    Cyril Kanayo Ezeamaka

    2016-06-01

    Full Text Available Abuja Master Plan provided development of adequate Green Areas and other Recreational Facilities within the Federal Capital City (FCC, as part of its sustainability principles and provided for these recreational facilities within each neighborhood (FCDA, 1979. However, there have been several recent foul cries about the negative development of recreational facilities and the abuse of the Master Plan in the FCC.  The motivation for carrying out this study arose from the observation that recreational facilities in Phase 1 of the Federal Capital City Abuja are not clearly developed as intended by the policy makers and thus, the need to identify the recreational facilities in the Phase 1 of FCC and observe their level of development as well as usage. The field survey revealed that the Central Business District and Gazupe have higher numbers of recreational facilities with 45 and 56. While Wuse II (A08 and Wuse II (A07 Districts have lesser recreational facilities with 10 and 17. The field survey further revealed that all the districts in Phase 1 have over 35% cases of land use changes from recreational facilities to other use. The survey shows that over 65% of these recreational facilities are fully developed. The study also shows that just about 11% of the recreational sporting facilities were developed in line with the Abuja Master Plan in Phase 1. The study revealed that recreational facilities in Phase 1 of the FCC, Abuja has not being developed in compliance with the Abuja Master Plan.

  16. Coeur d'Alene Tribe Fish, Water and Wildlife Program : Coeur d'Alene Tribe Trout Production Facility Master Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Ronald L.; Woodward-Lilengreen, Kelly L.; Vitale, Angelo J.

    1999-09-01

    The Northwest Power Planning Council (Council) receives and reviews proposals to mitigate for fish and wildlife losses and refers approved measures to Bonneville Power Administration (BPA) for funding. The Northwest Power Act (Act) calls on the Council to include measures in its Columbia River Basin Fish and Wildlife Program (Program) to address system-wide fish and wildlife losses. The Act further states that the Council may include in its Program measures that provide off-site mitigation--mitigation physically removed from the hydro project(s) that caused the need to mitigate. The Program includes a goal ''to recover and preserve the health of native resident fish injured by the hydropower system, where feasible, and, where appropriate, to use resident fish to mitigate for anadromous fish losses in the system.'' Among those recommended measures are off-site mitigation for losses of anadromous fisheries including the measure under analysis in this Coeur d'Alene Tribe Trout Production Facility Master Plan, proposed by the Coeur d'Alene Tribe. To meet the need for off-site mitigation for anadromous fish losses in the Columbia River Basin in a manner consistent with the objectives of the Council's Fish and Wildlife Program, the Coeur d'Alene Tribe is proposing that the BPA fund the design, construction, operations and maintenance of a trout production facility on the Coeur d'Alene Indian Reservation. Measures for establishing a Coeur d'Alene fish production facility have been a part of the Council's Program since 1987. The Coeur d'Alene Tribe Trout Production Facility is intended to rear and release westslope cutthroat trout into rivers and streams with the express purpose of increasing the numbers of fish spawning, incubating and rearing in the natural environment. It will use the modern technology that hatcheries offer to overcome the mortality resulting from habitat degradation in lakes, rivers, and

  17. Succession, Development and Innovation of the Master Plan of Beijing

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正> The Master Plan of Beijing (2004 - 2020),approved in January 2005 by the State Council, is an important strategic, holistic and comprehensive plan for Beijing to face the new century, to realize the stra-tegic proposition of"New Beijing, Great Olympics", and to fully push forward the harmonious and sustainable development of economy, society, population, resources and environment.

  18. Hanford Facility contingency plan

    International Nuclear Information System (INIS)

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials

  19. Master slave manipulator maintenance at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Lethco, A.J.; Beasley, K.M.

    1991-01-01

    Equipment has been developed and tested to provide transport, installation, removal, decontamination, and repair for the master slave manipulators that are required for thirty-five discrete work locations in the 221-S Vitrification Building of the Defense Waste Processing Facility at the Westinghouse Savannah River Company. This specialized equipment provides a standardized scheme for work locations at different elevations with two types of manipulators

  20. Facility effluent monitoring plan determinations for the 200 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  1. Facility effluent monitoring plan for 242-A Evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1993-03-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility effluent Monitoring Plans, WHC-EP-0438-1**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  2. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  3. TWRS Privatization Phase 1 Master Site Plan

    International Nuclear Information System (INIS)

    PARAZIN, R.J.

    1999-01-01

    The U.S. Department of Energy (DOE) has chosen to accomplish the Tank Waste Remediation System disposal mission via privatization. The disposal mission has been divided into two privatization phases. Phase I, a 'proof of concept' phase, will establish and demonstrate the technical, commercial, and procurement capabilities necessary far privatization to proceed. Once established, privatization will be expanded in the form of a second phase (Phase II) to dispose of the remainder of the tank waste. In conjunction with preparation of the Tank Waste Remediation System (TWRS) Privatization Request for Proposals (RFP)(RL, 1996), a location was selected for the Phase I demonstration facilities (Shord, 1996). The location selected was the area previously developed and characterized for the Grout Disposal Site, adjoining the 200 East Area. The site is of sufficient size for a Private Contractor (PC) to carry out pretreatment, immobilization, and vitrification operations and possesses the required characteristics (e.g., close to feed tanks) to best facilitate the Phase I operations. This overall long-range Master Site Plan (MSP) has been developed to establish a ''baseline'' for the (TWRS) Privatization Phase I (TPPI) PC Site. The MSP depicts the planned layout for the PC Site along with various interfaces between the site and other Hanford utilities and functions. The complete integration of TPPl MSP with overall Hanford Site planning process will assist in establishing the PC site and the necessary priorities to meet the Hanford cleanup mission. The MSP has been developed systematically into a comprehensive, safe, flexible, logical and cost-effective plan. The general philosophy behind the preparation of a MSP for the TPPl program is that it will serve as a single source documentation of the planning for the development of the TPPl complex. The effort will plan temporary and permanent land use, utilities, and traffic flow for the overall program. It will identify needs

  4. Changing Perspectives on the Planning of Ankara (1924-2007 and Lessons for a New Master-Planning Approach to Developing Cities

    Directory of Open Access Journals (Sweden)

    Olgu Çalişkan

    2014-07-01

    Full Text Available As one of the newly planned capitals in the 20th century – like Islamabad, Canberra and Brazil –, Ankara represents an original case in planning history: from shaping a new town under the influence of early European urbanism to the control of a dynamic metropolitan form by structural planning approaches. Forming its urban core according to the initial planning perspectives between the beginning of 1930s and the mid-1970s, the city has entered a rapid phase of space production in its extensions for about the last thirty years.In the current period of development, highly fragmented urban peripheral formation has being occurred in Ankara. Since the existing trend on the dispersion of urban form lacking spatial coherence at different scale-levels causes the dominance of the private domain and a loss of urbanity, this trend might at first glance be considered as a break with the European tradition and the emergence of Anglo-Americanization in Turkish planning system in terms of looser development control approach on urban form.Before, coming to such a critical end-point, the paper prefers a closer look into the changing dynamics of master plans of the city. It is aimed to reveal the developmental logic of the city by means of master plan analysis. The comprehensive outlook – called plan matrix – is integrated into each master plan schema by correlating the basic components like main policy directions, depth of control, settlement typology, and city structure and form. Such a framework has a potential to be utilized for any kind of plan analysis at metropolitan scale for different cases. At the end of the analysis, the paper tends to address an alternative master planning approach for the similar types of developing cities striving for keeping its urban character within a fragmented urban body.

  5. THE NIGERIAN GAS MASTER-PLAN, INVESTMENT OPPORTUNITIES, CHALLENGES, ISSUES AFFECTING POWER SECTOR: AN ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. INGWE

    2014-11-01

    Full Text Available The Nigerian Gas Master-Plan, Investment Opportunities, Challenges, Issues Affecting Power Sector: an Analysis. The objective of this article is to contribute towards understanding of the Nigerian Gas Master Plan (NGMP/Plan and its bifurcations with key socio-economic development factors. I applied the method of discourse to bring to being some points that have hitherto been unknown about the Master-plan and its inter-relationships and bifurcations. Elaborated here are the spectacular gains that have accrued to the Latin American country, Trinidad and Tobago, from its recent development of natural gas resources. This was considered suitable and significant here for highlighting that if such spectacular achievements could be realized from Trinidad and Tobago’s relatively smaller gas deposit (15.3 tcf, probable reserves (8.4 tcf, possible reserves (6.2 tcf would be by far greater considering Nigeria’s larger natural gas reserves (184 tcf wealth as earlier stated. I show that the Plan is well designed relevant to addressing Nigeria’s current development needs generally. It presents potentials for stimulating Nigeria’s economic growth by harnessing the country’s abundant natural gas reserves. The Plan enumerates/ elaborates huge investment opportunities. Some challenges likely to be faced in the implementation/management of the Plan are already being surmounted as recent reports show that some of its key investments have been realized and the required infrastructure are being provided. Regarding the issues in the Master-plan that are likely to affect and are affecting Nigeria’s power sector development, I reckon that they are mostly positive factors due to the way the plan promises to stimulate electricity generation in our country.

  6. Freezing the Master Production Schedule Under Rolling Planning Horizons

    OpenAIRE

    V. Sridharan; William L. Berry; V. Udayabhanu

    1987-01-01

    The stability of the Master Production Schedule (MPS) is a critical issue in managing production operations with a Material Requirements Planning System. One method of achieving stability is to freeze some portion or all of the MPS. While freezing the MPS can limit the number of schedule changes, it can also produce an increase in production and inventory costs. This paper examines three decision variables in freezing the MPS: the freezing method, the freeze interval length, and the planning ...

  7. Facility effluent monitoring plan for 242-A evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years

  8. Nuclear Station Facilities Improvement Planning

    International Nuclear Information System (INIS)

    Hooks, R. W.; Lunardini, A. L.; Zaben, O.

    1991-01-01

    An effective facilities improvement program will include a plan for the temporary relocation of personnel during the construction of an adjoining service building addition. Since the smooth continuation of plant operation is of paramount importance, the phasing plan is established to minimize the disruptions in day-to-day station operation and administration. This plan should consider the final occupancy arrangements and the transition to the new structure; for example, computer hookup and phase-in should be considered. The nuclear industry is placing more emphasis on safety and reliability of nuclear power plants. In order to do this, more emphasis is placed on operations and maintenance. This results in increased size of managerial, technical and maintenance staffs. This in turn requires improved office and service facilities. The facilities that require improvement may include training areas, rad waste processing and storage facilities, and maintenance facilities. This paper discusses an approach for developing an effective program to plan and implement these projects. These improvement projects can range in magnitude from modifying a simple system to building a new structure to allocating space for a future project. This paper addresses the planning required for the new structures with emphasis on site location, space allocation, and internal layout. Since facility planning has recently been completed by Sargent and Leyden at six U. S. nuclear stations, specific examples from some of those plants are presented. Site planning and the establishment of long-range goals are of the utmost importance when undertaking a facilities improvement program for a nuclear station. A plan that considers the total site usage will enhance the value of both the new and existing facilities. Proper planning at the beginning of the program can minimize costs and maximize the benefits of the program

  9. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Geiger, J.L.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified. in. A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  10. California Master Plan for Migrant Education, 1976 Edition (Plan Maestro de California para Educacion Migrante, Edicion de 1976).

    Science.gov (United States)

    California State Dept. of Education, Sacramento. Div. of Compensatory Education.

    Based on the national migrant education plan, California's master plan aims to mobilize the necessary State and Federal resources, and to unify and assist the efforts of local educational agencies to end the migrant child's failure in school. The plan includes provisions for: instructional activities on a regular and extended year basis designed…

  11. Implementation plan for HANDI 2000 TWRS master equipment list

    International Nuclear Information System (INIS)

    BENNION, S.I.

    1999-01-01

    This document presents the implementation plan for an additional deliverable of the HANDI 2000 Project. The PassPort Equipment Data module processes include those portions of the COTS PassPort system required to support tracking and management of the Master Equipment List for Lockheed Martin Hanford Company (LMHC) and custom software created to work with the COTS products

  12. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Frazier, T.P.

    1994-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans

  13. Facility effluent monitoring plan for the fast flux test facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Dahl, N.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  14. Facility effluent monitoring plan for the 327 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  15. Facility effluent monitoring plan for the tank farm facility

    Energy Technology Data Exchange (ETDEWEB)

    Crummel, G.M.

    1998-05-18

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  16. OPS Master

    Data.gov (United States)

    US Agency for International Development — OPS Master is a management tool and database for integrated financial planning and portfolio management in USAID Missions. Using OPS Master, the three principal...

  17. Facility planning and site development

    International Nuclear Information System (INIS)

    Reisman, R.C.; Handmaker, H.

    1986-01-01

    Planning for a magnetic resonance imaging (MRI) facility should provide for the efficient operation of current and future MRI devices and must also take into consideration a broad range of general planning principles. Control of budgeted facility costs and construction schedules is of increasing importance due to the magnitude of expense of MRI facility development as well as the need to protect institutional or entrepreneurial investment. In a competitive environment facility costs may be the determining factor in a project's success

  18. Facility Effluent Monitoring Plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  19. Underground storage tank - Integrated Demonstration Technical Task Plan master schedule

    International Nuclear Information System (INIS)

    Johnson, C.M.

    1994-08-01

    This document provides an integrated programmatic schedule (i.e., Master Schedule) for the U.S. Department of Energy (DOE) Underground Storage Tank-Integrated Demonstration (UST-ID) Program. It includes top-level schedule and related information for the DOE Office of Technology Development (EM-50) UST-ID activities. The information is based upon the fiscal year (FY) 1994 technical task plans (TTPS) and has been prepared as a baseline information resource for program participants. The Master Schedule contains Level 0 and Level 1 program schedules for the UST-ID Program. This document is one of a number of programmatic documents developed to support and manage the UST-ID activities. It is composed of the following sections: Program Overview - provides a summary background of the UST-ID Program. This summary addresses the mission, scope, and organizational structure of the program; Activity Description - provides a programmatic description of UST-ID technology development activities and lists the key milestones for the UST-ID systems. Master Schedules - contains the Level 0 and Level 1 programmatic schedules for the UST-ID systems. References - lists the UST-ID programmatic documents used as a basis for preparing the Master Schedule. The appendixes contain additional details related to site-specific technology applications

  20. Integrated Facilities and Infrastructure Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Reisz Westlund, Jennifer Jill

    2017-03-01

    Our facilities and infrastructure are a key element of our capability-based science and engineering foundation. The focus of the Integrated Facilities and Infrastructure Plan is the development and implementation of a comprehensive plan to sustain the capabilities necessary to meet national research, design, and fabrication needs for Sandia National Laboratories’ (Sandia’s) comprehensive national security missions both now and into the future. A number of Sandia’s facilities have reached the end of their useful lives and many others are not suitable for today’s mission needs. Due to the continued aging and surge in utilization of Sandia’s facilities, deferred maintenance has continued to increase. As part of our planning focus, Sandia is committed to halting the growth of deferred maintenance across its sites through demolition, replacement, and dedicated funding to reduce the backlog of maintenance needs. Sandia will become more agile in adapting existing space and changing how space is utilized in response to the changing requirements. This Integrated Facilities & Infrastructure (F&I) Plan supports the Sandia Strategic Plan’s strategic objectives, specifically Strategic Objective 2: Strengthen our Laboratories’ foundation to maximize mission impact, and Strategic Objective 3: Advance an exceptional work environment that enables and inspires our people in service to our nation. The Integrated F&I Plan is developed through a planning process model to understand the F&I needs, analyze solution options, plan the actions and funding, and then execute projects.

  1. ORCWM test and evaluaton master plan. Revision 00

    International Nuclear Information System (INIS)

    1995-08-01

    The Office of Civilian Radioactive Waste Management (OCRWM) Test and Evaluation Master Plan (TEMP) describes the program Test and Evaluation (T ampersand E) policy, objectives, requirements, general methodology (test flow and description of each T ampersand E phase), responsibilities, and scheduling of test phases for the Civilian Radioactive Waste Management System (CRWMS). This TEMP is a program-level management planning document for al CRWMS T ampersand E activities and will be used in conjunction with Section 11 of the Quality Assurance Requirements and Description (QARD), as appropriate, as a guide for the projects in developing their T ampersand E plans. In the OCRWM document hierarchy, that is described in the OCRWM Systems Engineering Management Plan (SEMP), the TEMP is subordinate to the program SEMP. To ensure CRWMS operates as an integrated system, the plans for verifying the performance and evaluating the operational suitability and effectiveness of the overall system are also described. Test and evaluation is an integral part of the systems engineering process. Key aspects of the systems engineering process, more fully described in the OCRWM SEMP, are discussed in this TEMP to illustrate how T ampersand E supports the overall systems engineering process

  2. Hanford Surplus Facilities Program plan

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  3. 105-C Facility characterization plan

    International Nuclear Information System (INIS)

    Miller, R.L.

    1997-01-01

    This facility characterization plan is a site-specific document that describes how quantification and qualification of the radiological sources and the radioactive contamination in the 105-C Building will be accomplished. Characterization of hazardous materials will be addressed in a separate plan. This plan was developed from review of video tapes, photographs, and records. The purpose of this characterization plan is to provide an efficient and cost-effective method for determining the distribution of radioactive contamination at the 105-C Facility

  4. 340 Facility maintenance implementation plan

    International Nuclear Information System (INIS)

    1995-03-01

    This Maintenance Implementation Plan (MIP) has been developed for maintenance functions associated with the 340 Facility. This plan is developed from the guidelines presented by Department of Energy (DOE) Order 4330.4B, Maintenance Management Program (DOE 1994), Chapter II. The objective of this plan is to provide baseline information for establishing and identifying Westinghouse Hanford Company (WHC) conformance programs and policies applicable to implementation of DOE order 4330.4B guidelines. In addition, this maintenance plan identifies the actions necessary to develop a cost-effective and efficient maintenance program at the 340 Facility. Primary responsibility for the performance and oversight of maintenance activities at the 340 Facility resides with Westinghouse Hanford Company (WHC). Maintenance at the 340 Facility is performed by ICF-Kaiser Hanford (ICF-KH) South Programmatic Services crafts persons. This 340 Facility MIP provides interface requirements and responsibilities as they apply specifically to the 340 Facility. This document provides an implementation schedule which has been developed for items considered to be deficient or in need of improvement. The discussion sections, as applied to implementation at the 340 Facility, have been developed from a review of programs and practices utilizing the graded approach. Biennial review and additional reviews are conducted as significant programmatic and mission changes are made. This document is revised as necessary to maintain compliance with DOE requirements

  5. 340 Facility maintenance implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This Maintenance Implementation Plan (MIP) has been developed for maintenance functions associated with the 340 Facility. This plan is developed from the guidelines presented by Department of Energy (DOE) Order 4330.4B, Maintenance Management Program (DOE 1994), Chapter II. The objective of this plan is to provide baseline information for establishing and identifying Westinghouse Hanford Company (WHC) conformance programs and policies applicable to implementation of DOE order 4330.4B guidelines. In addition, this maintenance plan identifies the actions necessary to develop a cost-effective and efficient maintenance program at the 340 Facility. Primary responsibility for the performance and oversight of maintenance activities at the 340 Facility resides with Westinghouse Hanford Company (WHC). Maintenance at the 340 Facility is performed by ICF-Kaiser Hanford (ICF-KH) South Programmatic Services crafts persons. This 340 Facility MIP provides interface requirements and responsibilities as they apply specifically to the 340 Facility. This document provides an implementation schedule which has been developed for items considered to be deficient or in need of improvement. The discussion sections, as applied to implementation at the 340 Facility, have been developed from a review of programs and practices utilizing the graded approach. Biennial review and additional reviews are conducted as significant programmatic and mission changes are made. This document is revised as necessary to maintain compliance with DOE requirements.

  6. The Challenges of Implementing Sustainable Development: The Case of Sofia’s Master Plan

    Directory of Open Access Journals (Sweden)

    Aleksandar D. Slaev

    2016-12-01

    Full Text Available In this paper, we explore how master planning promotes and implements particular urban development patterns and, more generally, contributes to sustainability. Our goal is to understand the link between urban growth intentions articulated through the master planning process and realisation of its specific forms, e.g., monocentric or polycentric, compact or dispersed. As a case study, we examine the current General Urban Development Plan (GUDP of the Bulgarian capital Sofia against the city’s actual development pattern. We observe that the primary goals of the GUDP are to promote a polycentric urban structure and low-density expansion, as well as preserve green edges. While the question of whether and how these goals reflect the sustainability ideal requires further consideration, there are some indications that Sofia’s GUDP may not be effective in encouraging sustainable forms of growth. Substantial inconsistencies exist between the plan’s overall goals and some of its measures and implementation tools. The results on the ground suggest that, despite the plan’s low-density aspirations, Sofia is becoming more compact and densified, while losing its green edges and failing to redirect growth to its northern territories where ample space and opportunities exist. We conclude that employing the achievements of research on sustainability and developing relevant implementation tools such as more effective zoning regulations and viable suburban transportation infrastructure are necessary for realising both the patterns proposed through master planning and achieving sustainable urban growth.

  7. Voluntary research results for five years along the master plan on nuclear safety research. FY 2001 - 2005

    International Nuclear Information System (INIS)

    Sato, Yoshinori

    2006-05-01

    Safety Research has been conducted from FY 2001 to FY 2005 according to the Master Plan on Nuclear Safety Research (FY 2001-2005) in Japan Atomic Energy Agency which took over former Japan Nuclear Cycle Development Institute. This report shows the voluntary research results for five years conducted from FY 2001 to FY 2005 according to the Master Plan on Nuclear Safety Research (FY 2001-2005). (author)

  8. Facility effluent monitoring plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Lavey, G.H.

    1992-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  9. Structural master plan of flood mitigation measures

    Directory of Open Access Journals (Sweden)

    A. Heidari

    2009-01-01

    Full Text Available Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possibility of flood overtopping. Different flood mitigation alternatives are investigated from various aspects in the Dez and Karun river floodplain areas as a case study in south west of IRAN. The results show that detention dam and flood diversion are the best alternatives of flood mitigation methods as well as enforcing the flood control purpose of upstream multipurpose reservoirs. Dyke and levees are not mostly justifiable because of negative impact on down stream by enhancing routed flood peak discharge magnitude and flood damages as well.

  10. 40 CFR 35.925-1 - Facilities planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Facilities planning. 35.925-1 Section... Facilities planning. That, if the award is for step 2, step 3, or step 2=3 grant assistance, the facilities planning requirements in § 35.917 et seq. have been met. ...

  11. Master Plan for Tennessee Schools: Preparing for the 21st Century.

    Science.gov (United States)

    Tennessee State Board of Education, Nashville.

    The Education Improvement Act (EIA) was passed in Tennessee in 1992. It established the Basic Education Program (BEP) as the funding formula used to provide adequate, equitable, and sustainable school funding. The 1997 master plan is consistent with the national Goals 2000 legislation and addresses each of the eight national goals. The plan…

  12. Improving the effectiveness of planning EIA (PEIA) in China: Integrating planning and assessment during the preparation of Shenzhen's Master Urban Plan

    International Nuclear Information System (INIS)

    Che Xiuzhen; English, Alex; Lu Jia; Chen, Yongqin David

    2011-01-01

    The enactment and implementation of the 2003 EIA Law in China institutionalised the role of plan environmental impact assessment (PEIA). While the philosophy, methodology and mechanisms of PEIA have gradually permeated through the various levels of government with a positive effect on the process and outcome of urban planning, only a few cities in China have so far carried out PEIA as a Strategic Environmental Assessment (SEA)-type procedure. One such case is the southern city of Shenzhen. During the past three decades, Shenzhen has grown from a small town to a large and booming city as China has successfully and rapidly developed its economy by adopting the 'reform and open door' policy. In response to the challenges arising from the generally divergent processes of rapid urbanisation, economic transformation and environment protection, Shenzhen has incrementally adopted the SEA concept in developing the city's Master Urban Plan. As such, this paper reviews the effectiveness of PEIA in three ways: ·as a tool and process for achieving more sustainable and strategic planning; ·to determine the level of integration of SEA within the planning system; and, ·its effectiveness vis-a-vis implementation. The implementation of PEIA within Shenzhen's Master Urban Plan offers important insights into the emergence of innovative practices in undertaking PEIA as well as theoretical contributions to the field, especially in exploring the relationship between PEIA and SEA and highlighting the central role of local governing institutions in SEA development.

  13. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  14. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  15. Facility effluent monitoring plan for the plutonium uranium extraction facility

    International Nuclear Information System (INIS)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  16. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    International Nuclear Information System (INIS)

    Greager, E.M.

    1997-01-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years

  17. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, NM (United States)

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  18. Master plan of Mizunami underground research laboratory

    International Nuclear Information System (INIS)

    1999-04-01

    In June 1994, the Atomic Energy Commission of Japan reformulated the Long-Term Programme for Research, Development and Utilisation of Nuclear Energy (LTP). The LTP (item 7, chapter 3) sets out the guidelines which apply to promoting scientific studies of the deep geological environment, with a view to providing a sound basis for research and development programmes for geological disposal projects. The Japan Nuclear Cycle Development Institute (JNC) has been conducting scientific studies of the deep geological environment as part of its Geoscientific Research Programme. The LTP also emphasised the importance of deep underground research facilities in the following terms: Deep underground research facilities play an important role in research relating to geological disposal. They allow the characteristics and features of the geological environment, which require to be considered in performance assessment of disposal systems, to be investigated in situ and the reliability of the models used for evaluating system performance to be developed and refined. They also provide opportunities for carrying out comprehensive research that will contribute to an improved overall understanding of Japan's deep geological environment. It is recommended that more than one facility should be constructed, considering the range of characteristics and features of Japan's geology and other relevant factors. It is important to plan underground research facilities on the basis of results obtained from research and development work already carried out, particularly the results of scientific studies of the deep geological environment. Such a plan for underground research facilities should be clearly separated from the development of an actual repository. JNC's Mizunami underground research laboratory (MIU) Project will be a deep underground research facility as foreseen by the above provisions of the LTP. (author)

  19. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J.; Yancey, E.F.

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs

  20. Hanford Site Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  1. Path planning of master-slave manipulator using graphic simulator

    International Nuclear Information System (INIS)

    Lee, J. Y.; Kim, S. H.; Song, T. K.; Park, B. S.; Yoon, J. S.

    2002-01-01

    To handle the high level radioactive materials such as spent fuels remotely, the master-slave manipulator is generally used as a remote handling equipment in the hot cell. To analyze the motion and to implement the training system by virtual reality technology, the simulator for M-S manipulator using the computer graphics is developed. The parts are modelled in 3-D graphics, assembled, and kinematics are assigned. The inverse kinematics of the manipulator is defined, and the slave of manipulator is coupled with master by the manipulator's specification. Also, the virtual work cell is implemented in the graphical environment which is the same as the real environment and the path planning method using the function of the collision detection for a manipulator are proposed. This graphic simulator of manipulator can be effectively used in designing of the maintenance processes for the hot cell equipment and enhance the reliability of the spent fuel management

  2. Developing a Robust Strategy for Implementing a Water Resources Master Plan in Lima, Peru

    Science.gov (United States)

    Kalra, N.; Groves, D.; Bonzanigo, L.; Molina-Perez, E.

    2015-12-01

    Lima, the capital of Peru, faces significant water stress. It is the fifth largest metropolitan area in Latin America, and the second largest desert city in the world. The city has developed a Master Plan of major investment projects to improve water reliability until 2040. Yet key questions remain. Is the Master Plan sufficient for ensuring reliability in the face of deeply uncertain future climate change and demand? How do uncertain budget and project feasibility conditions shape Lima's options? How should the investments in the plan be prioritized, and can some be delayed? Lima is not alone in facing these planning challenges. Governments invest billions of dollars annually in long-term projects. Yet deep uncertainties pose formidable challenges to making near-term decisions that make long-term sense. The World Bank has spearheaded a community of practice on methods for Decision Making Under Deep Uncertainty (DMU). This pilot project in Peru is the first in-depth application of DMU techniques to water supply planning in a developing country. It builds on prior analysis done in New York, California, and for the Colorado River, yet shows how these methods can be applied in regions which do not have as advanced data or tools available. The project combines three methods in particular -- Robust Decision Making, Decision Scaling, and Adaptive Pathways -- to help Lima implement its Master Plan in a way that is robust, no-regret, and adaptive. It was done in close partnership with SEDAPAL, the water utility company in Lima, and in coordination with other national WRM and meteorological agencies. This talk will: Present the planning challenges Lima and other cities face, including climate change Describe DMU methodologies and how they were applied in collaboration with SEDAPAL Summarize recommendations for achieving long-term water reliability in Lima Suggest how these methodologies can benefit other investment projects in developing countries.

  3. Integral stormwater management master plan and design in an ecological community.

    Science.gov (United States)

    Che, Wu; Zhao, Yang; Yang, Zheng; Li, Junqi; Shi, Man

    2014-09-01

    Urban stormwater runoff nearly discharges directly into bodies of water through gray infrastructure in China, such as sewers, impermeable ditches, and pump stations. As urban flooding, water shortage, and other environment problems become serious, integrated water environment management is becoming increasingly complex and challenging. At more than 200ha, the Oriental Sun City community is a large retirement community located in the eastern side of Beijing. During the beginning of its construction, the project faced a series of serious water environment crises such as eutrophication, flood risk, water shortage, and high maintenance costs. To address these issues, an integral stormwater management master plan was developed based on the concept of low impact development (LID). A large number of LID and green stormwater infrastructure (GSI) approaches were designed and applied in the community to replace traditional stormwater drainage systems completely. These approaches mainly included bioretention (which captured nearly 85th percentile volume of the annual runoff in the site, nearly 5.4×10(5)m(3) annually), swales (which functioned as a substitute for traditional stormwater pipes), waterscapes, and stormwater wetlands. Finally, a stormwater system plan was proposed by integrating with the gray water system, landscape planning, an architectural master plan, and related consultations that supported the entire construction period. After more than 10 years of planning, designing, construction, and operation, Oriental Sun City has become one of the earliest modern large-scale LID communities in China. Moreover, the project not only addressed the crisis efficiently and effectively, but also yielded economic and ecological benefits. Copyright © 2014. Published by Elsevier B.V.

  4. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontage, S.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  5. Strategic facility planning improves capital decision making.

    Science.gov (United States)

    Reeve, J R

    2001-03-01

    A large, Midwestern IDS undertook a strategic facility-planning process to evaluate its facility portfolio and determine how best to allocate future investments in facility development. The IDS assembled a facility-planning team, which initiated the planning process with a market analysis to determine future market demands and identify service areas that warranted facility expansion. The team then analyzed each of the IDS's facilities from the perspective of uniform capacity measurements, highest and best use compared with needs, building condition and investment-worthiness, and facility growth and site development opportunities. Based on results of the analysis, the strategy adopted entailed, in part, shifting some space from inpatient care to ambulatory care services and demolishing and replacing the 11 percent of facilities deemed to be in the worst condition.

  6. 40 CFR 35.917 - Facilities planning (step 1).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Facilities planning (step 1). 35.917... Facilities planning (step 1). (a) Sections 35.917 through 35.917-9 establish the requirements for facilities... the facilities planning provisions of this subpart before award of step 2 or step 3 grant assistance...

  7. 15 CFR 923.13 - Energy facility planning process.

    Science.gov (United States)

    2010-01-01

    ... facility planning process. The management program must contain a planning process for energy facilities... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Energy facility planning process. 923... affected public and private parties will be involved in the planning process. [61 FR 33806, June 28, 1996...

  8. Facility effluent monitoring plan for the tank farms facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, D.D.; Crummel, G.M.

    1995-05-01

    A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  9. Connecting Systems Model Design to Decision-Maker and Stakeholder Needs: Lessons from Louisiana's Coastal Master Plan

    Science.gov (United States)

    Fischbach, J. R.; Johnson, D.

    2017-12-01

    Louisiana's Comprehensive Master Plan for a Sustainable Coast is a 50-year plan designed to reduce flood risk and minimize land loss while allowing for the continued provision of economic and ecosystem services from this critical coastal region. Conceived in 2007 in response to hurricanes Katrina and Rita in 2005, the master plan is updated on a five-year planning cycle by the state's Coastal Protection and Restoration Authority (CPRA). Under the plan's middle-of-the-road (Medium) environmental scenario, the master plan is projected to reduce expected annual damage from storm surge flooding by approximately 65% relative to a future without action: from 5.3 billion to 2.2 billion in 2040, and from 12.1 billion to 3.7 billion in 2065. The Coastal Louisiana Risk Assessment model (CLARA) is used to estimate the risk reduction impacts of projects that have been considered for implementation as part of the plan. Evaluation of projects involves estimation of cost effectiveness in multiple future time periods and under a range of environmental uncertainties (e.g., the rates of sea level rise and land subsidence, changes in future hurricane intensity and frequency), operational uncertainties (e.g., system fragility), and economic uncertainties (e.g., patterns of population change and asset exposure). Between the 2012 and 2017 planning cycles, many improvements were made to the CLARA model. These included changes to the model's spatial resolution and definition of policy-relevant spatial units, an improved treatment of parametric uncertainty and uncertainty propagation between model components, the addition of a module to consider critical infrastructure exposure, and a new population growth model. CPRA also developed new scenarios for analysis in 2017 that were responsive to new scientific literature and to accommodate a new approach to modeling coastal morphology. In this talk, we discuss how CLARA has evolved over the 2012 and 2017 planning cycles in response to the needs

  10. Master Plan for Tennessee Schools, 1995: Preparing for the 21st Century.

    Science.gov (United States)

    Tennessee State Board of Education, Nashville.

    The Tennessee State Legislature passed the Education Improvement Act (EIA) in 1992, which established the Basic Education Program (BEP) as the funding formula for providing adequate, equitable, and sustainable school funding. This document presents the 1995 Master Plan for Tennessee Schools, which focuses on the priority issues that must be…

  11. Master plan: Guntersville Reservoir Aquatic Plant Management. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    In 1989, Congress provided funding to start a five-year comprehensive project to manage aquatic plants in Guntersville Reservoir, to be jointly implemented by the US Army Corps of Engineers (Corps) and Tennessee Valley Authority (TVA). TVA serves as the overall project coordinator and is the lead agency for this project. Known as the Joint Agency Guntersville Project (JAGP), the project will test and demonstrate innovative management technologies, and incorporate the most effective technologies into a comprehensive aquatic plant management plan for Guntersville Reservoir. The JAGP is intended to serve as a National Demonstration Project for aquatic plant management. As part of this JAGP, the Master Plan for Aquatic Plant Management for the Guntersville Reservoir Project, Alabama-Tennessee is authorized by Corps Contract Number DACW62-90-C-0067.

  12. Facility effluent monitoring plan for the tank farms facilities

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.; Kenoyer, J.L.; Moeller, M.P.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum three years. A variety of liquid wastes are generated in processing treatment, and disposal operations throughout the Hanford Site. The Tank Farms Project serves a major role in Hanford Site waste management activities as the temporary repository for these wastes. Stored wastes include hazardous components regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and as by-product material regulated under the Atomic Energy Act of 1954. A total of 177 single- and double-shell tanks (SST and DST) have been constructed in the 200 East and 200 West Areas of the Hanford Site. These facilities were constructed to various designs from 1943 to 1986. The Tank Farms Project is comprised of these tanks along with various transfer, receiving, and treatment facilities

  13. Facility effluent monitoring plan for the 324 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  14. Emergency planning for fuel cycle facilities

    International Nuclear Information System (INIS)

    Lacey, L.R.

    1991-01-01

    In April 1989, NRC published new emergency planning regulations which apply to certain by-product, source, and special nuclear materials licensees including most fuel cycle facilities. In addition to these NRC regulations, other regulatory agencies such as EPA, OSHA, and DOT have regulations concerning emergency planning or notification that may apply to fuel cycle facilities. Emergency planning requirements address such areas as emergency classification, organization, notification and activation, assessment, corrective and protective measures, emergency facilities and equipment, maintaining preparedness, records and reports, and recovery. This article reviews applicable regulatory requirements and guidance, then concentrates on implementation strategies to produce an effective emergency response capability

  15. The Dutch Bicycle Master Plan and road safety : measures to be taken.

    NARCIS (Netherlands)

    Noordzij, P.C. & Blokpoel, A.

    1998-01-01

    The Bicycle Master Plan was launched in 1990 and concluded in 1996. To mark its conclusion, a study was carried out to assess developments in road safety for cyclists. An overview of future measures was also compiled. Since 1950, there have been three broad periods: (1) 1950-1975: an increase in the

  16. Facility effluent monitoring plan for the 325 Facility

    International Nuclear Information System (INIS)

    1998-01-01

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  17. 202-S Hexone Facility supplemental information to the Hanford Facility Contingency Plan

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-03-01

    This document is a unit-specific contingency plan for the 202-S Hexone Facility and is intended to be used as a supplement to the Hanford Facility Contingency Plan. This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of WAC 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units. The 202-S Hexone Facility is not used to process radioactive or nonradioactive hazardous material. Radioactive, dangerous waste material is contained in two underground storage tanks, 276-S-141 and 276-S-142. These tanks do not present a significant hazard to adjacent facilities, personnel, or the environment. Currently, dangerous waste management activities are not being applied at the tanks. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the 202-S Hexone Facility

  18. Facility effluent monitoring plan for the 300 Area Fuels Fabrication Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Brendel, D.F.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring system by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The Fuel Fabrication Facility in the Hanford 300 Area supported the production reactors from the 1940's until they were shut down in 1987. Prior to 1987 the Fuel Fabrication Facility released both airborne and liquid radioactive effluents. In January 1987 the emission of airborne radioactive effluents ceased with the shutdown of the fuels facility. The release of liquid radioactive effluents have continued although decreasing significantly from 1987 to 1990

  19. Master environmental plan for Fort Devens, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Biang, C.A.; Peters, R.W.; Pearl, R.H.; Tsai, S.Y. (Argonne National Lab., IL (United States). Energy Systems Div.)

    1991-11-01

    Argonne National Laboratory has prepared a master environmental plan (MEP) for Fort Devens, Massachusetts, for the US Army Toxic and Hazardous Materials Agency. The MEP is an assessment based on environmental laws and regulations of both the federal government and the Commonwealth of Massachusetts. The MEP assess the physical and environmental status of 58 potential hazardous waste sites, including 54 study areas (SAs) that pose a potential for releasing contamination into the environment and 4 areas of concern (AOCs) that are known to have substantial contamination. For each SA or AOC, this MEP describes the known history and environment, identifies additional data needs, and proposes possible response actions. Most recommended response actions consist of environmental sampling and monitoring and other characterization studies. 74 refs., 63 figs., 50 tabs.

  20. Final master work plan : environmental investigations at former CCC/USDA facilities in Kansas, 2002 revision.

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J. C.; Environmental Research

    2003-01-23

    The Commodity Credit Corporation (CCC) of the U.S. Department of Agriculture (USDA) has entered into an interagency agreement with the U.S. Department of Energy (DOE) under which Argonne National Laboratory provides technical assistance for hazardous waste site characterization and remediation for the CCC/USDA. Carbon tetrachloride is the contaminant of primary concern at sites in Kansas where former CCC/USDA grain storage facilities were located. Argonne applies its QuickSite(reg sign) Expedited Site Characterization (ESC) approach to these former facilities. The QuickSite environmental site characterization methodology is Argonne's proprietary implementation of the ESC process (ASTM 1998). Argonne has used this approach at several former CCC/USDA facilities in Kansas, including Agenda, Agra, Everest, and Frankfort. The Argonne ESC approach revolves around a multidisciplinary, team-oriented approach to problem solving. The basic features and steps of the QuickSite methodology are as follows: (1) A team of scientists with diverse expertise and strong field experience is required to make the process work. The Argonne team is composed of geologists, geochemists, geophysicists, hydrogeologists, chemists, biologists, engineers, computer scientists, health and safety personnel, and regulatory staff, as well as technical support staff. Most of the staff scientists are at the Ph.D. level; each has on average, more than 15 years of experience. The technical team works together throughout the process. In other words, the team that plans the program also implements the program in the field and writes the reports. More experienced scientists do not remain in the office while individuals with lesser degrees or experience carry out the field work. (2) The technical team reviews, evaluates, and interprets existing data for the site and the contaminants there to determine which data sets are technically valid and can be used in initially designing the field program. A basic

  1. Stability measures for rolling schedules with applications to capacity expansion planning, master production scheduling, and lot sizing

    OpenAIRE

    Kimms, Alf

    1996-01-01

    This contribution discusses the measurement of (in-)stability of finite horizon production planning when done on a rolling horizon basis. As examples we review strategic capacity expansion planning, tactical master production schedulng, and operational capacitated lot sizing.

  2. Site and facility transportation services planning documents

    Energy Technology Data Exchange (ETDEWEB)

    Ratledge, J.E. (Oak Ridge National Lab., TN (USA)); Danese, L.; Schmid, S. (Science Applications International Corp., Oak Ridge, TN (USA))

    1990-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab.

  3. Site and facility transportation services planning documents

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Danese, L.; Schmid, S.

    1990-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab

  4. PUREX facility preclosure work plan

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    This preclosure work plan presents a description of the PUREX Facility, the history of the waste managed, and addresses transition phase activities that position the PUREX Facility into a safe and environmentally secure configuration. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels (DOE/RL-90/24). Information concerning solid waste management units is discussed in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Appendix 2D)

  5. Master plan study - District heating Sillamaee municipality. Estonia. Final report. Appendices for chapter 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The appendices to the final report on the master plan study on district heating in the municipality in Estonia, chapter nine, gives data related to general economic assumptions for financial and economic calculations, fuel consumption, financing, prices, fuel consumption. (ARW)

  6. Developing standardized facility contingency plans

    International Nuclear Information System (INIS)

    Davidson, D.A.

    1993-01-01

    Texaco consists of several operating departments that are, in effect, independent companies. Each of these departments is responsible for complying with all environmental laws and regulations. This includes the preparation by each facility to respond to an oil spill at that location. For larger spills, however, management of the response will rest with corporate regional response teams. Personnel from all departments make up the regional teams. In 1990, Congress passed the Oil Pollution Act. In 1991, the US Coast Guard began developing oil spill response contingency plan regulations, which they are still working on. Meanwhile, four of the five west coast states have also passed laws requiring contingency plans. (Only Hawaii has chosen to wait and see what the federal regulations will entail). Three of the states have already adopted regulations. Given these laws and regulations, along with its corporate structure, Texaco addressed the need to standardize local facility plans as well as its response organization. This paper discusses how, by working together, the Texaco corporate international oil spill response staff and the Texaco western region on-scene commander developed: A standard contingency plan format crossing corporate boundaries and meeting federal and state requirements. A response organization applicable to any size facility or spill. A strategy to sell the standard contingency plan and response organization to the operating units

  7. Final work plan : Phase I investigation of potential contamination at the former CCC/USDA grain storage facility in Savannah, Missouri.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2007-10-12

    . This work will be performed in accord with the Intergovernmental Agreement established between the Farm Service Agency of the USDA and MoDNR, to address carbon tetrachloride contamination potentially associated with a number of former CCC/USDA grain storage facilities in Missouri. The investigative activities at Savannah will be conducted on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an agreement with the DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. The site characterization at Savannah will take place in phases. This approach is recommended by the CCC/USDA and Argonne, so that information obtained and interpretations developed during each incremental stage of the investigation can be used most effectively to guide subsequent phases of the program. This site-specific Work Plan outlines the specific technical objectives and scope of work proposed for Phase I of the Savannah investigation. This Work Plan also includes the community relations plan to be followed throughout the CCC/USDA program at the Savannah site. Argonne is developing a Master Work Plan specific to operations in the state of Missouri. In the meantime, Argonne will issue a Provisional Master Work Plan (PMWP; Argonne 2007) that will be submitted to the MoDNR for review and approval. The agency has already reviewed and approved (with minor changes) the present Master Work Plan (Argonne 2002) under which Argonne currently operates in Kansas. The PMWP (Argonne 2007) will provide detailed information and guidance on the investigative technologies, analytical methodologies, quality assurance-quality control measures, and general health and safety policies to be employed by

  8. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Juan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Anderson, Art [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-02

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations. This plan is a living document that will be updated and refined throughout the lifetime of the facility.

  9. Planning Tool for Strategic Evaluation of Facility Plans - 13570

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, Virginia; Cercy, Michael [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Hall, Irin [Newport News Shipbuilding, 4101 Washington Ave., Newport News, VA 23607 (United States)

    2013-07-01

    Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility was needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)

  10. Planning Tool for Strategic Evaluation of Facility Plans - 13570

    International Nuclear Information System (INIS)

    Magoulas, Virginia; Cercy, Michael; Hall, Irin

    2013-01-01

    Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility was needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)

  11. Development of a master plan for industrial solid waste management

    International Nuclear Information System (INIS)

    Karamouz, M.; Zahraie, B.; Kerachian, R.; Mahjouri, N.; Moridi, A.

    2006-01-01

    Rapid industrial growth in the province of Khuzestan in the south west of Iran has resulted in disposal of about 1750 tons of solid waste per day. Most of these industrial solid wastes including hazardous wastes are disposed without considering environmental issues. This has contributed considerably to the pollution of the environment. This paper introduces a framework in which to develop a master plan for industrial solid waste management. There are usually different criteria for evaluating the existing solid waste pollution loads and how effective the management schemes are. A multiple criteria decision making technique, namely Analytical Hierarchy Process, is used for ranking the industrial units based on their share in solid waste related environmental pollution and determining the share of each unit in total solid waste pollution load. In this framework, a comprehensive set of direct, indirect, and supporting projects are proposed for solid waste pollution control. The proposed framework is applied for industrial solid waste management in the province of Khuzestan in Iran and a databank including GIS based maps of the study area is also developed. The results have shown that the industries located near the capital city of the province, Ahwaz, produce more than 32 percent of the total solid waste pollution load of the province. Application of the methodology also has shown that it can be effectively used for development of the master plan and management of industrial solid wastes

  12. Facility Effluent Monitoring Plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Carter, G.J.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updates as a minimum every three years

  13. A Master Plan for the Development of Vocational-Technical Education In New Mexico.

    Science.gov (United States)

    Sterling Inst., Washington, DC.

    This master plan for vocational education in New Mexico is the result of a study conducted by professional education consultants. The following areas were examined during the study: (1) New Mexico's present manpower problems, (2) market trends of future industrial potential, (3) state resources capable of attracting new industry, (4) adequacy of…

  14. Implementation of the Master Plan Activities in Serayu River Voyage (SRV Within the Framework of Tourism Development in Banyumas Regency

    Directory of Open Access Journals (Sweden)

    Imam Pamungkas

    2015-02-01

    Full Text Available The Master Plan Activity of Serayu River Voyage (SRV for tourism development in Banyumas Regency were expected to be completed within five years from 2008 to 2012, but during the period until 2013, most programs and activities have not been implemented. The results showed that the Master Plan of SRV in the framework of tourism development in Banyumas Regency has not been implemented properly. The cause is the absence of good coordination between agencies, the lack programs and activities integration, supporting documents have not been revised, absence of good socialization, and the lack of private sector contribution. The factors that constrain and support implementation of the Master Plan is described as follows. Supporting factors: competent human resources (implementor already available at the managerial level and have intellectual tourism, it is only need to add personnel in the sector of culture; the availability of adequate budget; institutions that have been effective and efficient; High community response; High commitment of Banyumas Regent and cooperation related parties (stakeholders; and natural conditions of Serayu tend to calm and the river slope condition is small. The constrain factors: regulatory policies; integration of programs and activities; coordination and socialization implied sectoral ego that need to be addressed. Keywords : implementation, master plan, Serayu River Voyage, human resources, regulation

  15. The timing master for the FAIR accelerator facility

    International Nuclear Information System (INIS)

    Baer, R.C.; Fleck, T.; Kreider, M.; Mauro, S.

    2012-01-01

    One central design feature of the FAIR accelerator complex is a high level of parallel beam operation, imposing ambitious demands on the timing and management of accelerator cycles. Several linear accelerators, synchrotrons, storage rings and beam lines have to be controlled and reconfigured for each beam production chain on a pulse-to-pulse basis, with cycle lengths ranging from 20 ms to several hours. This implies initialization, synchronization of equipment on the time scale down to the ns level, inter-dependencies, multiple paths and contingency actions like emergency beam dump scenarios. The FAIR timing system will be based on White Rabbit (WR) network technology, implementing a central Timing Master (TM) unit to orchestrate all machines. The TM is subdivided into separate functional blocks: the Clock Master, which deals with time and clock sources and their distribution over WR, the Management Master, which administrates all WR timing receivers, and the Data Master, which schedules and coordinates machine instructions and broadcasts them over the WR network. The TM triggers equipment actions based on the transmitted execution time. Since latencies in the low μs range are required, this paper investigates the possibilities of parallelization in programmable hardware and discusses the benefits to either a distributed or monolithic timing master architecture. The proposed FPGA based TM will meet said timing requirements while providing fast reaction to interlocks and internal events and offers parallel processing of multiple signals and state machines. (authors)

  16. Sites Requiring Facility Response Plans, Geographic NAD83, EPA (2006) [facility_response_plan_sites_la_EPA_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — Locations of facilities in Louisiana requiring Oil Pollution Act (OPA) Facility Response Plans (FRP). The dataset was provided by the Region 6 OSCARS program....

  17. Facility effluent monitoring plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontag, S.

    1991-11-01

    A facility effluent monitoring plant is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The UO 3 Plant is located in the south-central portion of the 200 West Area of the Hanford Site. The plant consists of two primary processing buildings and several ancillary facilities. The purpose of the UO 3 Plant is to receive uranyl nitrate hexahydrate (UNH) from the Plutonium-Uranium Extraction (PUREX) Plant, concentrate it, convert the UNH to uranium trioxide (UO 3 ) powder by calcination and package it for offsite shipment. The UO 3 Plant has been placed in a standby mode. There are two liquid discharges, and three gaseous exhaust stacks, and seven building exhausters that are active during standby conditions

  18. The Perspective of the Staff Regarding Facility Revitalization at Walter Reed Army Medical Center

    National Research Council Canada - National Science Library

    Baker, Jimmy G

    2004-01-01

    ...). The response rate for the questionnaire was 40.69%, Analysis of collected data revealed that most respondents believe major facility revitalization must occur at WRAMC, staff awareness of the Master Facility Plan is lacking and staff education...

  19. A Case Study in Master Planning the Learning Landscape Hub Concepts for the University at Buffalo

    Science.gov (United States)

    Dugdale, Shirley; Torino, Roger; Felix, Elliot

    2009-01-01

    This case study describes concepts for three types of learning spaces that grew out of a Learning Landscape planning process. The process was part of a master plan study for the three campuses of the University at Buffalo. It involved research into user needs and aspirations about future pedagogy, development of learning space strategy,…

  20. Site and facility waste transportation services planning documents

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Schmid, S.; Danese, L.

    1991-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and maintenance of Site- and Facility-Specific Transportation Services Planning Documents (SPDs) and Site-Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities, with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations

  1. National Ignition Facility (NIF) FY2015 Facility Use Plan

    Energy Technology Data Exchange (ETDEWEB)

    Folta, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wisoff, Jeff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-18

    Major features of the FY2015 NIF Use Plan include: • Performing a record number of layered DT experiments with 28 planned compared with 15 in FY2014. Executing the first plutonium experiments on the NIF in support of the Science Campaigns. • Over 300 targets shots, a 57% increase compared to FY14. This is a stretch goal defined in the 120-Day Study document, and relies upon the success of many shot-rate improvement actions, as well as on the distribution of shot type selected by the users. While the Plan is consistent with this goal, the increased proportion of layered DT experiments described above reduces the margin against this goal. • Commissioning of initial ARC capability, which will support both SSP-HED and SSPICF programs. • Increase in days allocated to Discovery Science to a level that supports an ongoing program for academic use of NIF and an annual solicitation for new proposals. • Six Facility Maintenance and Reconfiguration (FM&R) periods totaling 30 days dedicated to major facility maintenance and modifications. • Utilization of the NIF Facility Advisory Schedule Committee (FASC) to provide stakeholder review and feedback on the NIF schedule. The Use Plan assumes a total FY2015 LLNL NIF Operations funding in MTE 10.7 of $229.465M and in MTE 10.3 of 47.0M. This Use Plan will be revised in the event of significant changes to the FY2015 funding or if NNSA provides FY2016 budget guidance significantly reduced compared to FY2015.

  2. Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1

    International Nuclear Information System (INIS)

    Lewis, C.J.

    1995-10-01

    A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  3. National Ignition Facility project acquisition plan revision 1

    International Nuclear Information System (INIS)

    Clobes, A.R.

    1996-01-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager

  4. Appendix E - Sample Production Facility Plan

    Science.gov (United States)

    This sample Spill Prevention, Control and Countermeasure (SPCC) Plan in Appendix E is intended to provide examples and illustrations of how a production facility could address a variety of scenarios in its SPCC Plan.

  5. ORNL Isotopes Facilities Shutdown Program Plan

    International Nuclear Information System (INIS)

    Gibson, S.M.; Patton, B.D.; Sears, M.B.

    1990-10-01

    This plan presents the results of a technical and economic assessment for shutdown of the Oak Ridge National Laboratory (ORNL) isotopes production and distribution facilities. On December 11, 1989, the Department of Energy (DOE), Headquarters, in a memorandum addressed to DOE Oak Ridge Operations Office (DOE-ORO), gave instructions to prepare the ORNL isotopes production and distribution facilities, with the exception of immediate facility needs for krypton-85, tritium, and yttrium-90, for safe shutdown. In response to the memorandum, ORNL identified 17 facilities for shutdown. Each of these facilities is located within the ORNL complex with the exception of Building 9204-3, which is located at the Y-12 Weapons Production Plant. These facilities have been used extensively for the production of radioactive materials by the DOE Isotopes Program. They currently house a large inventory of radioactive materials. Over the years, these aging facilities have inherited the problems associated with storing and processing highly radioactive materials (i.e., facilities' materials degradation and contamination). During FY 1990, ORNL is addressing the requirements for placing these facilities into safe shutdown while maintaining the facilities under the existing maintenance and surveillance plan. The day-to-day operations associated with the surveillance and maintenance of a facility include building checks to ensure that building parameters are meeting the required operational safety requirements, performance of contamination control measures, and preventative maintenance on the facility and facility equipment. Shutdown implementation will begin in FY 1993, and shutdown completion will occur by the end of FY 1994

  6. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS, W.E.

    2000-03-08

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

  7. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    DAVIS, W.E.

    2000-01-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years

  8. Master Environmental Plan: Fort Wingate Depot Activity, Gallup, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Biang, C.A.; Yuen, C.R.; Biang, R.P.; Antonopoulos, A.A.; Ditmars, J.D.

    1990-12-01

    The master environmental plan is based on an environmental assessment of the areas requiring environmental evaluation (AREEs) at Fort Wingate Depot Activity near Gallup, New Mexico. The Fort Wingate Depot Activity is slated for closure under the Base Closure and Realignment Act, Public Law 100--526. The MEP assesses the current status, describes additional data requirements, recommends actions for the sites, and establishes a priority order for actions. The plan was developed so that actions comply with hazardous waste and water quality regulations of the State of New Mexico and applicable federal regulations. It contains a brief history of the site, relevant geological and hydrological information, and a description of the current status for each AREE along with a discussion of the available site-specific data that pertain to existing or potential contamination and the impact on the environment. 35 refs., 27 figs., 23 tabs.

  9. Istra district heating system. Specific technical report. Appendix 2 to the master plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The objective of the master plan project is to improve heat supply in Istra. The considerable system losses from the fuel supplied to the end-users are one subject for improvement. At the same time, the current system operation results in poor quality heat for the consumers. Due to the inflexibility of the system, the dwellings/premises of the consumers are either overheated or insufficiently heated. The financial situation in Istra, the legal ownership of the district heating system and consumers ability to pay limit the possibilities for system improvements. The Master Plan and Feasibility Study evaluates four different development scenarios. Each of the scenarios is compared to the current situation in Istra, where nothing is done to change the system, but only to operate the present system in a sustainable way. The sustainable operation of the district heating system includes all necessary renovations and component replacements necessary. The project does not take into account the present financial situation in Istra, which has resulted in less maintenance than necessary. This situation is not a comparable parameter, as it is not sustainable and will lead to a breakdown of the heat supply within a short time horizon. (EHS)

  10. MIDAS [Master Information and Data Acquisition System

    International Nuclear Information System (INIS)

    Ball, D.L.

    1986-01-01

    The Master Information and Data Acquisition System (MIDAS) is a computerized work control system that provides 24-hour, real-time access to plant equipment information and work package status. It is used in the 400 Area of the Department of Energy (DOE) Hanford Site in Richland, Washington. MIDAS was originally created to aid in the release and control of work at the Fast Flux Test Facility (FFTF), which is operated by the Westinghouse Hanford Company for the DOE. After MIDAS performed that function at FFTF successfully for over two years, its role was expanded to provide similar functions for other facilities supporting the LMR mission. Through its ability to provide online, accurate information on plant components, safety criteria, and work package status, MIDAS reinforces Operations functions and the control and authorization of maintenance activities in the FFTF plant and in other related facilities. Thus, MIDAS enhances the operational safety, as well as the planning and scheduling process for these facilities. MIDAS consists of three parts: The Plant Tracking System (PTS), the Work Control Log (WCL), and the MIDAS Component Indices

  11. Improving operational effectiveness of tactical master plans for emergency and elective patients under stochastic demand and capacitated resources

    NARCIS (Netherlands)

    Adan, I.J.B.F.; Bekkers, J.A.; Dellaert, N.P.; Jeunet, J.; Vissers, J.M.H.

    2009-01-01

    This paper develops a two-stage planning procedure for master planning of elective and emergency patients while allocating at best the available hospital resources. Four types of resources are considered: operating theatre, beds in the medium and in the intensive care units, and nursing hours in the

  12. Improving operational effectiveness of tactical master plans for emergency and elective patients under stochastic demand and capacitated resources

    NARCIS (Netherlands)

    Adan, I.J.B.F.; Bekkers, J.A.; Dellaert, N.P.; Jeunet, J.; Vissers, Jan

    2011-01-01

    This paper develops a two-stage planning procedure for master planning of elective and emergency patients while allocating at best the available hospital resources. Four types of resources are considered: operating theatre, beds in the medium and in the intensive care units, and nursing hours in the

  13. A guide for preparing Hanford Site facility effluent monitoring plans

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1992-06-01

    This document provides guidance on the format and content of effluent monitoring plans for facilities at the Hanford Site. The guidance provided in this document is designed to ensure compliance with US Department of Energy (DOE) Orders 5400.1 (DOE 1988a), 5400.3 (DOE 1989a), 5400.4 (DOE 1989b), 5400.5 (DOE 1990a), 5480.1 (DOE 1982), 5480.11 (DOE 1988b), and 5484.1 (DOE 1981). These require environmental monitoring plans for each site, facility, or process that uses, generates, releases, or manages significant pollutants of radioactive or hazardous materials. In support of DOE Orders 5400.5 (Radiation Protection of the Public and the Environment) and 5400.1 (General Environmental Protection Program), the DOE Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE 1991) should be used to establish elements of a radiological effluent monitoring program in the Facility Effluent Monitoring Plan. Evaluation of facilities for compliance with the US Environmental Protection Agency Clean Air Act of 1977 requirements also is included in the airborne emissions section of the Facility Effluent Monitoring Plans. Sampling Analysis Plans for Liquid Effluents, as required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), also are included in the Facility Effluent Monitoring Plans. The Facility Effluent Monitoring Plans shall include complete documentation of gaseous and liquid effluent sampling and monitoring systems

  14. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: I-Master Plan and Executive Summary

    Science.gov (United States)

    Ohnuki, Akira; Kureta, Masatoshi; Yoshida, Hiroyuki; Tamai, Hidesada; Liu, Wei; Misawa, Takeharu; Takase, Kazuyuki; Akimoto, Hajime

    R&D project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Innovative Water Reactor for Flexible Fuel Cycle has been progressed at Japan Atomic Energy Agency in collaboration with power utilities, reactor vendors and universities since 2002. In this series-study, we will summarize the R&D achievements using large-scale test facility (37-rod bundle with full-height and full-pressure), model experiments and advanced numerical simulation technology. This first paper described the master plan for the development of design technology and showed an executive summary for this project up to FY2005. The thermal-hydraulic characteristics in the tight-lattice configuration were investigated and the feasibility was confirmed based on the experiments. We have developed the design technology including 3-D numerical simulation one to evaluate the effects of geometry/scale on the thermal-hydraulic behaviors.

  15. National Ignition Facility project acquisition plan

    International Nuclear Information System (INIS)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF

  16. The Architect Carlos Contreras and the master plan of Aguascalientes, 1948. Modern city planning and influence on urban morphology

    Directory of Open Access Journals (Sweden)

    Alejandro Acosta Collazo

    2015-04-01

    Full Text Available This paper aims to analyze the ordering interest related to industry in the city, workers' housing needs, the impact on the phenomenon of the city shape of the moment and building complex urban morphology consistent, positive or negative, with a planning practice. The labor colonies and Industrial guild were the product of a social response to the demands of the manufacturing city in the first half of the twentieth century. Thanks to the Master Plan by architect Carlos Contreras Elizondo for the city of Aguascalientes in 1948. Also, this article seeks to address the impact of the Plan in the historic centreof Aguascalientes, which was modified over the years to meet the needs that arose.

  17. Coeur d'Alene Tribal Production Facility, Volume I of III, 2002-2003 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Paul

    2003-01-01

    In fulfillment of the NWPPC's 3-Step Process for the implementation of new hatcheries in the Columbia Basin, this Step 1 submission package to the Council includes four items: (1) Cover letter from the Coeur d'Alene Tribe, Interdisciplinary Team Chair, and the USFWS; (2) References to key information (Attachments 1-4); (3) The updated Master Plan for the Tribe's native cutthroat restoration project; and (4) Appendices. In support of the Master Plan submitted by the Coeur d'Alene Tribe the reference chart (Item 2) was developed to allow reviewers to quickly access information necessary for accurate peer review. The Northwest Power Planning Council identified pertinent issues to be addressed in the master planning process for new artificial production facilities. References to this key information are provided in three attachments: (1) NWPPC Program language regarding the Master Planning Process, (2) Questions Identified in the September 1997 Council Policy, and (3) Program language identified by the Council's Independent Scientific Review Panel (ISRP). To meet the need for off-site mitigation for fish losses on the mainstem Columbia River, in a manner consistent with the objectives of the Council's Program, the Coeur d'Alene Tribe is proposing that the BPA fund the design, construction, operation, and maintenance of a trout production facility located adjacent to Coeur d'Alene Lake on the Coeur d'Alene Indian Reservation. The updated Master Plan (Item 3) represents the needs associated with the re-evaluation of the Coeur d'Alene Tribe's Trout Production Facility (No.199004402). This plan addresses issues and concerns expressed by the NWPPC as part of the issue summary for the Mountain Columbia provincial review, and the 3-step hatchery review process. Finally, item 4 (Appendices) documents the 3-Step process correspondence to date between the Coeur d'Alene Tribe and additional relevant entities. Item 4

  18. Sport Facility Planning and Management. Sport Management Library.

    Science.gov (United States)

    Farmer, Peter J.; Mulrooney, Aaron L.; Ammon, Rob, Jr.

    Students of sports facilities management will need to acquire a wide variety of managerial skills and knowledge in order to be adequately prepared to plan and manage these facilities. This textbook offers students a mix of practical examples and recognized theory to help them in the planning, constructing, promoting, and managing of sports…

  19. Information security management system planning for CBRN facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lenaeu, Joseph D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Neil, Lori Ross [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leitch, Rosalyn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glantz, Clifford S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Landine, Guy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryant, Janet L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, John [National Nuclear Lab., Workington (United Kingdom); Mathers, Gemma [National Nuclear Lab., Workington (United Kingdom); Rodger, Robert [National Nuclear Lab., Workington (United Kingdom); Johnson, Christopher [National Nuclear Lab., Workington (United Kingdom)

    2015-12-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  20. Information security management system planning for CBRN facilities

    International Nuclear Information System (INIS)

    Lenaeu, Joseph D.; O'Neil, Lori Ross; Leitch, Rosalyn M.; Glantz, Clifford S.; Landine, Guy P.; Bryant, Janet L.; Lewis, John; Mathers, Gemma; Rodger, Robert; Johnson, Christopher

    2015-01-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  1. Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for Single-Shell Tank (SST) Waste Management Areas

    International Nuclear Information System (INIS)

    MCCARTHY, M.M.

    1999-01-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly

  2. Facility Effluent Monitoring Plan for the 222-S Laboratory

    International Nuclear Information System (INIS)

    Robinson, A.V.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems against applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. The current operation of the 222-S facilities includes the provision of analytical and radiological chemistry services in support of Hanford Site processing plants. The emphasis is on waste management, chemical processing, environmental monitoring effluent programs at B Plant, the Uranium Oxide Plant, Tank Farms, the 242-A Evaporator, the Waste Encapsulation and Storage Facility, the Plutonium-Uranium Extraction Facility, the Plutonium Finishing Plant, process development/impact activities, and essential materials. The laboratory also supplies analytical services in support of ongoing waste tank characterization

  3. Facility effluent monitoring plan for the B plant

    International Nuclear Information System (INIS)

    Lesser, J.E.

    1994-09-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plant assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated every three years

  4. A review on salt lake city, Kolkata, India: Master planning and realization

    Directory of Open Access Journals (Sweden)

    Tošković Dobrivoje

    2008-01-01

    Full Text Available Motivation for construction of Salt Lake City comes from the circumstances characterizing life in Calcutta known by its social, political and cultural activities. Among many problems, the City was faced with poverty and overcrowding. West Bengal Government realized that serious steps have to be taken to resolve the situation. One of the biggest actions of the Government was creation of so called 'NEDECO' Plan for reclamation certain area of the Salted Lakes, followed by the tender for urban planning. The enterprise for water ways Ivan Milutinović was considered the most convenient for both: reclamation and planning. The Conceptualization covers the Main Aims and interests forming plan basis where three factors were selected: urban character, new vs old town, inhabitants and town growth. Follows Existing Land Use Pattern of the Municipal Area. The realization of the Salt Lake Master Plan, as a part of the Municipal Area, is shown through an Overview of Achieved Infrastructure covering Roads, Water Supply, Sewerage, Area Level Storm Water Drainage, Solid Waste Management and, finally, through the Other Municipal Services, such as: Administrative Infrastructure, Health Infrastructure, Greeneries, Water bodies, Socio-Cultural Infrastructure. .

  5. Power facility plan and power supply plan of Japan in 1988

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Shoji; Makino, Masao

    1988-06-01

    The power facility plan and the power supply plan for 1988 are described. The demand by non-industrial use will grow at an average of 3.8% for the 1986-97 period due to changes in the life style, construction and extension of buildings and increasing use of OA equipment although the power conservation is promoted. The industrial consumption will increase at only 1.2% a year due to the slowed growth and energy saving. As a result, the total demand will be 778,200 million kWh in 1997 with annual growth of 2.4%. The maximum demand will be 151,210 kW in 1997 with annual growth of 2.9%. The annual load rate will decrease to 56.9%, showing a continuously worsening utilization efficiency of power facilities. The development of 29 power units with total capacity of 2,760 MW is planned in 1988 for a stable power supply with a sufficient margin regarding maximum demand. The plan requires the investment of 3,700 billion yen, including the power transmission systems and substations. The power supply plan in 1988 is aimed at the effective operation of facilities and cost reduction by regional management under proper recognition of local characteristics of each power source, while maintaining a stable power supply with specified margins. (1 fig, 11 tabs)

  6. WIPP Facility Work Plan for Solid Waste Management Units

    International Nuclear Information System (INIS)

    2000-01-01

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility's's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A

  7. 20 years of power station master training

    International Nuclear Information System (INIS)

    Schwarz, O.

    1977-01-01

    In the early fifties, the VGB working group 'Power station master training' elaborated plans for systematic and uniform training of power station operating personnel. In 1957, the first power station master course was held. In the meantime, 1.720 power station masters are in possession of a master's certificate of a chamber of commerce and trade. Furthermore, 53 power station masters have recently obtained in courses of the 'Kraftwerksschule e.V.' the know-how which enables them to also carry out their duty as a master in nuclear power stations. (orig.) [de

  8. Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTHY, M.M.

    1999-08-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

  9. LMFBR safety experiment facility planning and analysis

    International Nuclear Information System (INIS)

    Stevenson, M.G.; Scott, J.H.

    1976-01-01

    In the past two years considerable effort has been placed on the planning and design of new facilities for the resolution of LMFBR safety issues. The paper reviews the key issues, the experiments needed to resolve them, and the design aspects of proposed new facilities. In addition, it presents a decision theory approach to selecting an optimal combination of modified and new facilities

  10. 304 Concretion facility closure plan

    International Nuclear Information System (INIS)

    1990-04-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium Zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets in the 304 Concretion Facility, located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Concretion Facility (304 Facility). Clean closure of the 304 Facility is the proposed method for closure of the facility. Justification for this proposal is presented. 15 refs., 22 figs., 4 tabs

  11. The establishment of master plan for developing advanced I and C technology -The development of advanced instrumentation and control technology-

    International Nuclear Information System (INIS)

    Ham, Chang Shik; Lee, Byung Sun; Kwon, Kee Choon; Lee, Dong Young; Hwang, In Koo; Lee, Jang Soo; Kim, Jung Soo; Kim, Chang Hwoi; Jung, Chul Hwan; Na, Nan Ju; Dong, In Sook; Kang, Soon Gu; Lyu, Chan Ho; Song, Soon Ja

    1994-07-01

    Although several organizations are performing their tasks making efforts to develop new digital technology for application to existing nuclear power plants as well as new plants of the future, their projects are similar to each other and have possibilities of redundant investment. Therefore, KAERI have established a Master Plan to define the suitable work-scope of each Instrumentation and Control (I and C) development project and proceed its development items continuously. Furthermore, in the project, several kinds of advanced technology for application of computer science and digital electronics were studied to obtain better reliability of the I and C systems and reduce opertor's burden. For establishing the Master Plan, functions of I and C system of NPPs were surveyed. Especially EPRI URD was deeply analyzed for setting up a basis of the foreign countries were referred for the Master Plan. For the new technology survey, fault-tolerant control technology and control system performance analysis methods were studied. Requirements of alarm and information system as well as technology of I and C network system of NPPs were also established to introduce the advantages of commercial distributed control system. (Author)

  12. Near-facility environmental monitoring quality assurance project plan

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1997-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site

  13. Outline of electric power facility plan in fiscal year 1988

    International Nuclear Information System (INIS)

    1988-01-01

    As to the electric power facility plan in fiscal year 1988, 15 designated electric power enterprises made the notification to the Minister of International Trade and Industry in March, 1988. This outline of the facility plan summarized the plans of 66 enterprises in total, including the plans of municipally operated, joint thermal power and other enterprises in addition to the above 15. In order to ensure the stable supply of electric power, the Ministry of International Trade and Industry considers that it is indispensable to purposefully develop electric power sources and the facilities for distribution along this facility plan. The forecast for fiscal year 1997 is : total electric power demand 778.2 billion kWh, maximum power demand 151.21 million kW, and yearly load factor 56.9 %. This is equivalent to the yearly growth of 2.4 %. In fiscal year 1988, it is planned to present 29 plants of 2760 MW to the Power Source Development Coordination Council. The breakdown is : hydroelectricity 140 MW, thermal power 2010 MW, and nuclear power 610 MW. The Ministry guides electric power enterprises so as to realize the diversification of electric power sources. Also the increase of transmission and transformation facilities, the plan of equipment investment and others are reported. (Kako, I.)

  14. Standard Guide for Preparing Characterization Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This standard guide applies to developing nuclear facility characterization plans to define the type, magnitude, location, and extent of radiological and chemical contamination within the facility to allow decommissioning planning. This guide amplifies guidance regarding facility characterization indicated in ASTM Standard E 1281 on Nuclear Facility Decommissioning Plans. This guide does not address the methodology necessary to release a facility or site for unconditional use. This guide specifically addresses: 1.1.1 the data quality objective for characterization as an initial step in decommissioning planning. 1.1.2 sampling methods, 1.1.3 the logic involved (statistical design) to ensure adequate characterization for decommissioning purposes; and 1.1.4 essential documentation of the characterization information. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate saf...

  15. Minimum dose method for walking-path planning of nuclear facilities

    International Nuclear Information System (INIS)

    Liu, Yong-kuo; Li, Meng-kun; Xie, Chun-li; Peng, Min-jun; Wang, Shuang-yu; Chao, Nan; Liu, Zhong-kun

    2015-01-01

    Highlights: • For radiation environment, the environment model is proposed. • For the least dose walking path problem, a path-planning method is designed. • The path-planning virtual–real mixed simulation program is developed. • The program can plan walking path and simulate. - Abstract: A minimum dose method based on staff walking road network model was proposed for the walking-path planning in nuclear facilities. A virtual–reality simulation program was developed using C# programming language and Direct X engine. The simulation program was used in simulations dealing with virtual nuclear facilities. Simulation results indicated that the walking-path planning method was effective in providing safety for people walking in nuclear facilities

  16. Computer-Assisted School Facility Planning with ONPASS.

    Science.gov (United States)

    Urban Decision Systems, Inc., Los Angeles, CA.

    The analytical capabilities of ONPASS, an on-line computer-aided school facility planning system, are described by its developers. This report describes how, using the Canoga Park-Winnetka-Woodland Hills Planning Area as a test case, the Department of City Planning of the city of Los Angeles employed ONPASS to demonstrate how an on-line system can…

  17. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    International Nuclear Information System (INIS)

    Ballinger, M.Y.; Shields, K.D.

    1999-01-01

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP

  18. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, M.Y.; Shields, K.D.

    1999-04-02

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

  19. The Composition of the Master Schedule

    Science.gov (United States)

    Thomas, Cynthia C.; Behrend, Dirk; MacMillan, Daniel S.

    2010-01-01

    Over a period of about four months, the IVS Coordinating Center (IVSCC) each year composes the Master Schedule for the IVS observing program of the next calendar year. The process begins in early July when the IVSCC contacts the IVS Network Stations to request information about available station time as well as holiday and maintenance schedules for the upcoming year. Going through various planning stages and a review process with the IVS Observing Program Committee (OPC), the final version of the Master Schedule is posted by early November. We describe the general steps of the composition and illustrate them with the example of the planning for the Master Schedule of the 2010 observing year.

  20. 304 Concretion Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with Zircaloy-2 and copper silicon allo , uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets (7.5-gal containers) in the 304 Concretion Facility (304 Facility), located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA) and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040 (Ecology 1991). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Facility. The strategy for closure of the 304 Facility is presented in Section 6.0

  1. Planning Facilities for Athletics, Physical Education and Recreation. Revised.

    Science.gov (United States)

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This revised edition includes new material recommended by a panel of experts in the field of recreational planning. The following topics are covered: (1) the planning process; (2) indoor facilities; (3) outdoor facilities; (4) indoor and outdoor swimming pools; (5) encapsulated spaces and stadiums; (6) service areas; (7) recreation and park…

  2. Waste Encapsulation and Storage Facility (WESF) Design Reconstitution Plan

    International Nuclear Information System (INIS)

    HERNANDEZ, R.

    1999-01-01

    The purpose of Design Reconstitution is to establish a Design Baseline appropriate to the current facility mission. The scope of this plan is to ensure that Systems, Structures and Components (SSC) identified in the WESF Basis for Interim Operation (HNF-SDWM-BIO-002) are adequately described and documented, in order to support facility operations. In addition the plan addresses the adequacy of selected Design Topics which are also crucial for support of the facility Basis for Interim Operation (BIO)

  3. Impact of Urban Heat Island under the Hanoi Master Plan 2030 on Cooling Loads in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Tran Hoang Hai Nam

    2015-01-01

    Full Text Available This study aims to evaluate the influence of urban heat island (UHI under the Hanoi Master Plan 2030 on the energy consumption for space cooling in residential buildings. The weather conditions under the current and future status (master plan condition simulated in the previous study (Trihamdani et al., 2014 were used and cooling loads in all the residential buildings in Hanoi over the hottest month were estimated under the simulated current and future conditions by using the building simulation program, TRNSYS (v17. Three most typical housing types in the city were selected for the simulation. The cooling loads of respective housing types were obtained in each of the districts in Hanoi. The results show that the total cooling loads over June 2010 is approximately 683 Terajoule (TJ under the current status, but it is predicted to increase to 903 TJ under the master plan condition. The increment is largely due to the increase in number of households (203 TJ or 92%, but partially due to the increase in urban temperature, i.e. UHI effect (17 TJ or 8%. The increments in new built-up areas were found to be larger than those in existing built-up areas. The cooling load in apartment is approximately half of that in detached house, which is approximately half of that in row house. Moreover, it was seen that although sensible cooling loads increased with the increase in outdoor temperature, the latent cooling loads decreased due to the decrease in absolute humidity and the increase in air temperature.

  4. Facility Effluent Monitoring Plan for the N Reactor

    International Nuclear Information System (INIS)

    Watson, D.J.; Brendel, D.F.; Shields, K.D.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The primary purpose of the N Reactor Facility Effluent Monitoring Plan (FEMP), during standby, is to ensure that the radioactive effluents are properly monitored and evaluated for compliance with the applicable DOE orders and regulatory agencies at the federal, state, and local levels. A secondary purpose of the FEMP is to ensure that hazardous wastes are not released, in liquid effluents, to the environment even though the potential to do so is extremely low. The FEMP is to provide a monitoring system that collects representative samples in accordance with industry standards, performs analyses within stringent quality control (QC) requirements, and evaluates the data through the use of comparative analysis with the standards and acceptable environmental models

  5. Master plan envisions multi-billion-dollar expansion of Vietnam's electricity monopoly

    International Nuclear Information System (INIS)

    2001-12-01

    Massive investment in Vietnam's electricity monopoly by Western aid and export credit agencies form part of the ten-year master plan developed for Vietnam. Central planning and political patronage, instead of market assessments and customer choice form the basis for monopoly investments in a centralized grid linking big hydro, gas, coal, and nuclear power projects. Western aid agencies might effectively crowd out viable private-sector energy investments by financing power projects considered too large and risky by the private sector. These investments by Western aid agencies would assist in winning contracts for favoured exporters of engineering services and equipment. It would be a breeding ground for corruption in Vietnam if market discipline, public oversight, and enforceable property rights are not present in the face of power sector aid. There is a real possibility that damages to the environment could result from electricity investments, and some communities might be victimized, electricity costs might increase, the indebtedness level of the population might increase

  6. Near-Facility Environmental Monitoring Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    MCKINNEY, S.M.

    2000-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards

  7. Planetary Sciences practical experiences at the Master level with small telescopes

    Science.gov (United States)

    Sanchez-Lavega, A.; Perez-Hoyos, S.; del Rio-Gaztelurrutia, T.; Hueso, R.; Ordonez Etxeberria, I.; Rojas, J. F.

    2016-12-01

    The Master in Space Science and Technology of the Basque Country University UPV/EHU in Bilbao (Spain) has been taught during 7 years (A. Sanchez-Lavega et al., Eur. J. of Eng. Education. 2014). Along the different courses, a series of practical observations and studies of planetary sciences have been conducted with Master students, using telescopes with diameters in the range 28-50 cm pertaining to the Aula EspaZio Gela Observatory (http://www.ehu.eus/aula-espazio/presentacion.html). Simple instrumentation (cameras and a spectrograph) have been employed to study planetary atmospheres (dynamics and cloud structure) and orbital mechanics using the Galilean satellites. Here we present a sample of these studies, which have lead to publications in refereed journals and have been presented at different meetings with the coauthoring of the students. Plans for the future include involving the master students in high-resolution observations of Solar System planets using a remote controlled 36 cm telescope at the Calar Alto observatory in Southern Spain (separated 1000 km from the teaching facilities in Bilbao).

  8. Master plan study - District heating Kohtla-Jaerve and Johvi municipalities. Estonia. Final report. Appendices for chapter 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The appendices to chapter nine of the final report of the master plan study on district heating in the municipalities of Kohtla-Jarve and Johvi municipalities (Estonia) present extensive data relating to economic, financial and environmental calculations, fuel consumption, energy balance and prices. (ARW)

  9. And the Sky Is Grey: The Ambivalent Outcomes of the California Master Plan for Higher Education

    Science.gov (United States)

    Marginson, Simon

    2018-01-01

    In the 1960 Master Plan for Higher Education, California in the United States famously combined the principles of excellence and access within a steep three-tiered system of Higher Education. It fashioned the world's strongest system of public research universities, while creating an open access system that brought college to millions of American…

  10. WIPP facility representative program plan

    International Nuclear Information System (INIS)

    1994-01-01

    This plan describes the Department of Energy (DOE), Carlsbad Area Office (CAO) facility representative (FR) program at the Waste Isolation Pilot Plant (WIPP). It provides the following information: (1) FR and support organization authorities and responsibilities; (2) FR program requirements; and (3) FR training and qualification requirements

  11. SURF II: Characteristics, facilities, and plans

    International Nuclear Information System (INIS)

    Madden, R.P.; Canfield, R.; Furst, M.; Hamilton, A.; Hughey, L.

    1992-01-01

    This facility report describes the Synchrotron Ultraviolet Radiation Facility (SURF II) operated by the National Institute of Standards and Technology, Gaithersburg, Maryland. SURF II is a 300-MeV electron storage ring which provides well characterized continuum radiation from the far infrared to the soft x-ray region with the critical wavelength at 17.4 nm. Brief descriptions are given of the user facilities, the characteristics of the synchrotron radiation, the main storage ring, the injector system and each of the operating beam lines, and associated instruments. Further description is given of expansion plans for additional beam lines

  12. Waste analysis plan for the 200 area effluent treatment facility and liquid effluent retention facility

    International Nuclear Information System (INIS)

    Ballantyne, N.A.

    1995-01-01

    This waste analysis plan (WAP) has been prepared for startup of the 200 Area Effluent Treatment Facility (ETF) and operation of the Liquid Effluent Retention Facility (LERF), which are located on the Hanford Facility, Richland, Washington. This WAP documents the methods used to obtain and analyze representative samples of dangerous waste managed in these units, and of the nondangerous treated effluent that is discharged to the State-Approved Land Disposal System (SALDS). Groundwater Monitoring at the SALDS will be addressed in a separate plan

  13. A Methodology for Conducting Space Utilization Studies within Department of Defense Medical Facilities

    Science.gov (United States)

    1992-07-01

    database programs, such as dBase or Microsoft Excell, to yield statistical reports that can profile the health care facility . Ladeen (1989) feels that the...service specific space status report would be beneficial to the specific service(s) under study, it would not provide sufficient data for facility -wide...change in the Master Space Plan. The revised methodology also provides a mechanism and forum for spuce management education within the facility . The

  14. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    FRAZIER, T.P.

    1999-01-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years

  15. Istra district heating system. General technical report. Appendix 1 to the master plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The objective of the master plan project is to improve the heat supply in Istra. The considerable system losses from the fuel supplied to the end-users are one issue for improvement. At the same time, the current system operation results in poor quality heat for the consumers. Due to the inflexibility of the system the dwellings/premises of the consumers are either overheated or insufficiently heated. The financial situation in Istra, the legal ownership of the district heating system and consumers' lacking ability to pay limit the possibilities for system improvements. The Master Plan and Feasibility Study evaluates four different development scenarios. Each of the scenarios is compared to the current situation in Istra, where nothing is done to change the system, but only to operate the present system in a sustainable way. The sustainable operation of the district heating system includes all necessary renovations and component replacements necessary. The project does not take into account the present financial situation in Istra, which has resulted in less maintenance than necessary. This situation is not a comparable parameter, as it is not sustainable and will lead to a breakdown of the heat supply within a short time horizon. The General Technical Report evaluates the technical situation and describes system improvements at a general level. The intention with this report is to provide important information useful to other district heating companies in Russia. (au)

  16. Development and use of a master health facility list: Haiti's experience during the 2010 earthquake response.

    Science.gov (United States)

    Rose-Wood, Alyson; Heard, Nathan; Thermidor, Roody; Chan, Jessica; Joseph, Fanor; Lerebours, Gerald; Zugaldia, Antonio; Konkel, Kimberly; Edwards, Michael; Lang, Bill; Torres, Carmen-Rosa

    2014-08-01

    Master health facility lists (MHFLs) are gaining attention as a standards-based means to uniquely identify health facilities and to link facility-level data. The ability to reliably communicate information about specific health facilities can support an array of health system functions, such as routine reporting and emergency response operations. MHFLs support the alignment of donor-supported health information systems with county-owned systems. Recent World Health Organization draft guidance promotes the utility of MHFLs and outlines a process for list development and governance. Although the potential benefits of MHFLs are numerous and may seem obvious, there are few documented cases of MHFL construction and use. The international response to the 2010 Haiti earthquake provides an example of how governments, nongovernmental organizations, and others can collaborate within a framework of standards to build a more complete and accurate list of health facilities. Prior to the earthquake, the Haitian Ministry of Health (Ministère de la Santé Publique et de la Population [MSPP]) maintained a list of public-sector health facilities but lacked information on privately managed facilities. Following the earthquake, the MSPP worked with a multinational group to expand the completeness and accuracy of the list of health facilities, including information on post-quake operational status. This list later proved useful in the response to the cholera epidemic and is now incorporated into the MSPP's routine health information system. Haiti's experience demonstrates the utility of MHFL formation and use in crisis as well as in the routine function of the health information system.

  17. Gas supply planning for new gas-fired electricity generation facilities

    International Nuclear Information System (INIS)

    Slocum, J.C.

    1990-01-01

    This paper explores several key issues in gas supply planning for new gas fired electric generation facilities. This paper will have two main sections, as follows: developing the gas supply plan for a gas-fired electricity generation facility and exploring key gas supply contract pricing issues

  18. WIPP Facility Work Plan for Solid Waste Management Units

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2001-02-25

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  19. Hanford Site waste tank farm facilities design reconstitution program plan

    International Nuclear Information System (INIS)

    Vollert, F.R.

    1994-01-01

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980's has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan

  20. WIPP Facility Work Plan for Solid Waste Management Units

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2000-02-25

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED’s guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA

  1. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  2. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  3. 105-DR Large Sodium Fire Facility decontamination, sampling, and analysis plan

    International Nuclear Information System (INIS)

    Knaus, Z.C.

    1995-01-01

    This is the decontamination, sampling, and analysis plan for the closure activities at the 105-DR Large Sodium Fire Facility at Hanford Reservation. This document supports the 105-DR Large Sodium Fire Facility Closure Plan, DOE-RL-90-25. The 105-DR LSFF, which operated from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility in the 100-D Area of the Hanford Site. The LSFF was established to investigate fire fighting and safety associated with alkali metal fires in the liquid metal fast breeder reactor facilities. The decontamination, sampling, and analysis plan identifies the decontamination procedures, sampling locations, any special handling requirements, quality control samples, required chemical analysis, and data validation needed to meet the requirements of the 105-DR Large Sodium Fire Facility Closure Plan in compliance with the Resource Conservation and Recovery Act

  4. NIF conventional facilities construction health and safety plan

    International Nuclear Information System (INIS)

    Benjamin, D W

    1998-01-01

    The purpose of this Plan is to outline the minimum health and safety requirements to which all participating Lawrence Livermore National Laboratory (LLNL) and non-LLNL employees (excluding National Ignition Facility [NIF] specific contractors and subcontractors covered under the construction subcontract packages (e.g., CSP-9)-see Construction Safety Program for the National Ignition Facility [CSP] Section I.B. ''NIF Construction Contractors and Subcontractors'' for specifics) shall adhere to for preventing job-related injuries and illnesses during Conventional Facilities construction activities at the NIF Project. For the purpose of this Plan, the term ''LLNL and non-LLNL employees'' includes LLNL employees, LLNL Plant Operations staff and their contractors, supplemental labor, contract labor, labor-only contractors, vendors, DOE representatives, personnel matrixed/assigned from other National Laboratories, participating guests, and others such as visitors, students, consultants etc., performing on-site work or services in support of the NIF Project. Based upon an activity level determination explained in Section 1.2.18, in this document, these organizations or individuals may be required by site management to prepare their own NIF site-specific safety plan. LLNL employees will normally not be expected to prepare a site-specific safety plan. This Plan also outlines job-specific exposures and construction site safety activities with which LLNL and non-LLNL employees shall comply

  5. Facility Effluent Monitoring Plan for the 3720 Building

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the Environmental Science Laboratory (3720 Facility) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs'' This FEMP has been prepared for the 3720 Facility primarily because it has a major (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The 3720 Facility provides office and laboratory space for PNNL scientific and engineering staff conducting multidisciplinary research in the areas of materials characterization and testing and waste management. The facility is designed to accommodate the use of radioactive and hazardous materials to conduct these activities. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, and dispersible particulate. The facility is in the process of being vacated for shutdown, but is considered a Major Emission Point as of the date of this document approval.

  6. Particular intervention plan of the Areva La Hague facility - 2012 edition

    International Nuclear Information System (INIS)

    2012-01-01

    The Particular intervention plan (PPI in French) is an emergency plan which foresees the measures and means to be implemented to address the potential risks of the presence and operation of a nuclear facility. This plan is implemented and developed by the Prefect in case of nuclear accident (or incident leading to a potential accident), the impact of which extending beyond the facility perimeter. It represents a special section of the organisation plan for civil protection response (ORSEC plan). The PPI foresees the necessary measures and means for crisis management during the first hours following the accident and is triggered by the Department Prefect according to the information provided by the facility operator. Its aim is to protect the populations leaving within 10 km of the facility against a potential radiological hazard. The PPI describes: the facility, the intervention area, the protection measures for the population, the conditions of emergency plan triggering, the crisis organisation, the action forms of the different services, and the post-accident stage. This document is the public version of the Particular intervention plan of the Areva NC La Hague fuel reprocessing plant (located on the territories of Beaumont-Hague, Digulleville, Herqueville, Jobourg and Omonville-la-Petite towns, Manche, France) which comprises the totally decommissioned UP2 400 unit, and the UP2 800 production unit still in operation

  7. Plan for 3-D full-scale earthquake testing facility

    International Nuclear Information System (INIS)

    Ohtani, K.

    2001-01-01

    Based on the lessons learnt from the Great Hanshin-Awaji Earthquake, National Research Institute for Earth Science and Disaster Prevention plan to construct the 3-D Full-Scale Earthquake Testing Facility. This will be the world's largest and strongest shaking table facility. This paper describes the outline of the project for this facility. This facility will be completed in early 2005. (author)

  8. Construction plan of ion irradiation facility in JAERI

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi

    1987-01-01

    The Takasaki Radiation Chemistry Research Establishment of Japan Atomic Energy Research Institute (JAERI) started the construction of an ion irradiation facility to apply ion beam to the research and development of radiation resistant materials for severe environment, the research on biotechnology and new functional materials. This project was planned as ion beam irradiation becomes an effective means for the research on fundamental physics and advanced technology, and the national guideline recently emphasizes the basic and pioneering field in research and development. This facility comprises an AVF cyclotron with an ECR ion source (maximum proton energy: 90 MeV), a 3 MV tandem accelerator, a 3 MV single end type Van de Graaf accelerator and a 400 kV ion implanter. In this report, the present status of planning the accelerators and the facility to be constructed, the outline of research plan, the features of the accelerators, and the beam characteristics are described. In this project, the research items are divided into the materials for space environment, the materials for nuclear fusion reactors, biotechnology, new functional materials, and ion beam technology. The ion beams required for the facility are microbeam, pulsed beam, multiple beam, neutron beam and an expanded irradiation field. (Kako, I.)

  9. The emergency plan implementing procedures for HANARO facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Tai; Khang, Byung Oui; Lee, Goan Yup; Lee, Moon [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    The radiological emergency plan implementing procedures of HANARO (High-flux Advanced Neutron Application Reactor) facility is prepared based on the Korea Atomic Law, the Civil Defence Law, Disaster Protection Law and the emergency related regulatory guides such as Guidance for Evolution of Radiation Emergency Plans in Nuclear Research Facilities (KAERI/TR-956/98, Feb.1998) and the emergency plan of HANARO. These procedures is also prepared to ensure adequate response activities to the rediological events which would cause a significant risk to the KAERI staffs and the public nea to the site. Periodic trainning and exercise for the reactor operators and emergency staffs will reduce accident risks and the release of radioactivities to the environment. 61 refs., 81 tabs. (Author)

  10. 303-K Radioactive Mixed-Waste Storage Facility closure plan

    International Nuclear Information System (INIS)

    1991-11-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors chemical-separation systems, and related facilities used for the production o special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 303-K Radioactive Mixed-Waste Storage Facility (303-K Facility) has been used since 1943 to store various radioactive,and dangerous process materials and wastes generated by the fuel manufacturing processes in the 300 Area. The mixed wastes are stored in US Department of Transportation (DOT)-specification containers (DOT 1988). The north end of the building was used for storage of containers of liquid waste and the outside storage areas were used for containers of solid waste. Because only the north end of the building was used, this plan does not include the southern end of the building. This closure plan presents a description of the facility, the history of materials and wastes managed, and a description of the procedures that will be followed to chose the 303-K Facility as a greater than 90-day storage facility. The strategy for closure of the 303-K Facility is presented in Chapter 6.0

  11. Double Star project - master science operations plan

    Science.gov (United States)

    Shen, C.; Liu, Z.

    2005-11-01

    For Double Star Project (DSP) exploration, the scientific operations are very important and essential for achieving its scientific objectives. Two years before the launch of the DSP satellites (TC-1 and TC-2) and during the mission operating phase, the long-term and short-term master science operations plans (MSOP) were produced. MSOP is composed of the operation schedules of all the scientific instruments, the modes and timelines of the Payload Service System on TC-1 and TC-2, and the data receiving schedules of the three ground stations. The MSOP of TC-1 and TC-2 have been generated according to the scientific objectives of DSP, the orbits of DSP, the near-Earth space environments and the coordination with Cluster, etc., so as to make full use of the exploration resources provided by DSP and to acquire as much quality scientific data as possible for the scientific communities. This paper has summarized the observation resources of DSP, the states of DSP and its evolution since the launch, the strategies and rules followed for operating the payload and utilizing the ground stations, and the production of MSOP. Until now, the generation and execution of MSOP is smooth and successful, the operating of DSP is satisfactory, and most of the scientific objectives of DSP have been fulfilled.

  12. Double Star project - master science operations plan

    Directory of Open Access Journals (Sweden)

    C. Shen

    2005-11-01

    Full Text Available For Double Star Project (DSP exploration, the scientific operations are very important and essential for achieving its scientific objectives. Two years before the launch of the DSP satellites (TC-1 and TC-2 and during the mission operating phase, the long-term and short-term master science operations plans (MSOP were produced. MSOP is composed of the operation schedules of all the scientific instruments, the modes and timelines of the Payload Service System on TC-1 and TC-2, and the data receiving schedules of the three ground stations. The MSOP of TC-1 and TC-2 have been generated according to the scientific objectives of DSP, the orbits of DSP, the near-Earth space environments and the coordination with Cluster, etc., so as to make full use of the exploration resources provided by DSP and to acquire as much quality scientific data as possible for the scientific communities. This paper has summarized the observation resources of DSP, the states of DSP and its evolution since the launch, the strategies and rules followed for operating the payload and utilizing the ground stations, and the production of MSOP. Until now, the generation and execution of MSOP is smooth and successful, the operating of DSP is satisfactory, and most of the scientific objectives of DSP have been fulfilled.

  13. Facility effluent monitoring plan for the 284-E and 284-W power plants

    International Nuclear Information System (INIS)

    Nickels, J.M.; Herman, D.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  14. Final work plan : phase I investigation of potential contamination at the former CCC/USDA grain storage facility in Montgomery City, Missouri.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2010-08-16

    former grain storage facility, the CCC/USDA will conduct investigations to (1) characterize the source(s), extent, and factors controlling the possible subsurface distribution and movement of carbon tetrachloride at the Montgomery City site and (2) evaluate the health and environmental threats potentially represented by the contamination. This work will be performed in accord with the Intergovernmental Agreement established between the Farm Service Agency of the USDA and the MoDNR, to address carbon tetrachloride contamination potentially associated with a number of former CCC/USDA grain storage facilities in Missouri. The investigations at Montgomery City will be conducted on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. The site characterization at Montgomery City will take place in phases. This approach is recommended by the CCC/USDA and Argonne, so that information obtained and interpretations developed during each incremental stage of the investigation can be used most effectively to guide subsequent phases of the program. This site-specific Work Plan outlines the specific technical objectives and scope of work proposed for Phase I of the Montgomery City investigation. This Work Plan also includes the community relations plan to be followed throughout the CCC/USDA program at the Montgomery City site. Argonne is developing a Master Work Plan specific to operations in the state of Missouri. In the meantime, Argonne has issued a Provisional Master Work Plan (PMWP; Argonne 2007) that has been reviewed and approved by the MoDNR for current use. The PMWP (Argonne 2007) provides

  15. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Poderis, Reed J. [NSTec; King, Rebecca A. [NSTec

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or

  16. EXPLORATION ON TECHNICAL REFORM OF STRATEGIC PLANNING AND URBAN MASTER PLANNING THROUGH THE ANALYSIS ON THEIR RELATIONSHIP%从战略规划与总体规划关系探讨两者技术改革

    Institute of Scientific and Technical Information of China (English)

    赵艳莉; 郑声轩; 张卓如

    2012-01-01

    Through the comparative analysis on the concept features and technical contents of strategic planning and master planning, this paper analyzes the types of urban strategic planning and clarifies the status and role of strategic planning in the planning system of China. Through the case study on the interaction between strategic planning and master planning, the paper elaborates their mutual supporting and complementary relationship, and points out that emphasizing the differentiated development of these two kinds of planning is favorable for the technical progress of planning, and that strategic planning should focus on goal guidance and master planning should strengthen the comprehensive control.%比较分析了战略规划与总体规划的概念特征及技术内容,并梳理城市发展战略规划的几种类型,认识战略规划在我国规划体系中的地位、作用.通过战略规划与总体规划互动的规划案例阐明两者互为支撑、互为补充的关系,提出强调两者的差异化发展有利于规划技术进步,战略规划应突出目标引导性,总体规划应加强综合控制性.

  17. Planning the School Food Service Facilities. Revised 1967.

    Science.gov (United States)

    Utah State Board of Education, Salt Lake City.

    Evaluations of food service equipment, kitchen design and food service facilities are comprehensively reviewed for those concerned with the planning and equipping of new school lunchrooms or the remodeling of existing facilities. Information is presented in the form of general guides adaptable to specific local situations and needs, and is…

  18. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  19. Risk evaluation system for facility safeguards and security planning

    International Nuclear Information System (INIS)

    Udell, C.J.; Carlson, R.L.

    1987-01-01

    The Risk Evaluation System (RES) is an integrated approach to determining safeguards and security effectiveness and risk. RES combines the planning and technical analysis into a format that promotes an orderly development of protection strategies, planning assumptions, facility targets, vulnerability and risk determination, enhancement planning, and implementation. In addition, the RES computer database program enhances the capability of the analyst to perform a risk evaluation of the facility. The computer database is menu driven using data input screens and contains an algorithm for determining the probability of adversary defeat and risk. Also, base case and adjusted risk data records can be maintained and accessed easily

  20. Master Robotic Net

    Directory of Open Access Journals (Sweden)

    Vladimir Lipunov

    2010-01-01

    Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

  1. Decommissioning plan depleted uranium manufacturing facility

    International Nuclear Information System (INIS)

    Bernhardt, D.E.; Pittman, J.D.; Prewett, S.V.

    1987-01-01

    Aerojet Ordnance Tennessee, Inc. (Aerojet) is decommissioning its California depleted uranium (DU) manufacturing facility. Aerojet has conducted manufacturing and research and development activities at the facility since 1977 under a State of California Source Materials License. The decontamination is being performed by a contractor selector for technical competence through competitive bid. Since the facility will be released for uncontrolled use it will be decontaminated to levels as low as reasonably achievable (ALARA). In order to fully apply the principles of ALARA, and ensure the decontamination is in full compliance with appropriate guides, Aerojet has retained Rogers and Associaties Engineering Corporation (RAE) to assist in the decommissioning. RAE has assisted in characterizing the facility and preparing contract bid documents and technical specifications to obtain a qualified decontamination contractor. RAE will monitor the decontamination work effort to assure the contractor's performance complies with the contract specifications and the decontamination plan. The specifications require a thorough cleaning and decontamination of the facility, not just sufficient cleaning to meet the numeric cleanup criteria

  2. 200 area liquid effluent facility quality assurance program plan. Revision 1

    International Nuclear Information System (INIS)

    Sullivan, N.J.

    1995-01-01

    Direct revision of Supporting Document WHC-SD-LEF-QAPP-001, Rev. 0. 200 Area Liquid Effluent Facilities Quality Assurance Program Plan. Incorporates changes to references in tables. Revises test to incorporate WHC-SD-LEF-CSCM-001, Computer Software Configuration Management Plan for 200 East/West Liquid Effluent Facilities

  3. 190-C Facility <90 Day Storage Pad training plan

    International Nuclear Information System (INIS)

    Little, N.C.

    1996-12-01

    This is the Environmental Restoration Contractor (ERC) team training plan for the 190-C Facility <90 Day Storage Pad of Hazardous Waste. It is intended to meet the requirements of Washington Administrative Code (WAC) 173-303-330 and the Hanford Dangerous Waste Permit. Training unrelated to compliance with WAC 173-303-330 is not addressed in this training plan. WAC 173-303-330(1)(d)(ii, v, vi) requires that personnel be familiarized, where applicable, with waste feed cut-off systems, response to ground-water contamination incidents, and shutdown of operations. These are not applicable to 190-C Facility <90 Day Storage Pad, and are therefore not covered in this training plan

  4. Double-shell tank waste transfer facilities integrity assessment plan

    International Nuclear Information System (INIS)

    Hundal, T.S.

    1998-01-01

    This document presents the integrity assessment plan for the existing double-shell tank waste transfer facilities system in the 200 East and 200 West Areas of Hanford Site. This plan identifies and proposes the integrity assessment elements and techniques to be performed for each facility. The integrity assessments of existing tank systems that stores or treats dangerous waste is required to be performed to be in compliance with the Washington State Department of Ecology Dangerous Waste Regulations, Washington Administrative Code WAC-173-303-640 requirements

  5. Emergency preparedness and response plan for nuclear facilities in Indonesia

    International Nuclear Information System (INIS)

    Nur Rahmah Hidayati; Pande Made Udiyani

    2009-01-01

    All nuclear facilities in Indonesia are owned and operated by the National Nuclear Energy Agency (BATAN). The programs and activities of emergency planning and preparedness in Indonesia are based on the existing nuclear facilities, i.e. research reactors, research reactor fuel fabrication plant, radioactive waste treatment installation and radioisotopes production installation. The assessment is conducted to learn of status of emergency preparedness and response plan for nuclear facilities in Indonesia and to support the preparation of future Nuclear Power Plant. The assessment is conducted by comparing the emergency preparedness and response system in Indonesia to the system in other countries such as Japan and Republic of Korea, since the countries have many Nuclear Power Plants and other nuclear facilities. As a result, emergency preparedness response plan for existing nuclear facility in Indonesia has been implemented in many activities such as environmental monitoring program, facility monitoring equipment, and the continuous exercise of emergency preparedness and response. However, the implementation need law enforcement for imposing the responsibility of the coordinators in National Emergency Preparedness Plan. It also needs some additional technical support systems which refer to the system in Japan or Republic of Korea. The systems must be completed with some real time monitors which will support the emergency preparedness and response organization. The system should be built in NPP site before the first NPP will be operated. The system should be connected to an Off Site Emergency Center under coordination of BAPETEN as the regulatory body which has responsibility to control of nuclear energy in Indonesia. (Author)

  6. Master Plan UMKM Berbasis Perikanan untuk Meningkatkan Pengolahan Produk Ikan yang Memiliki Nilai Tambah Tinggi

    OpenAIRE

    Meydianawathi, Luh Gede; Wiagustini, Ni Luh Putu; Riana, I Gede

    2014-01-01

    This research aims to generate a Master plan of fisheries-based SME development concept in Bali region, in order to build Bali as the centre for production and processing of fishery products in the Coridor of Bali-Nusa Tenggara. In Year-1 of the study period, the research activities carried out includes three processes, including analysis of the potensial of SMEs, analyzes the business cycle, and identification of barriers and chalenges. By using the method of linear regression analysis, Geog...

  7. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    International Nuclear Information System (INIS)

    Fernandez, L.

    1995-01-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements

  8. Energy secretary Spencer Abraham announces department of energy 20-year science facility plan

    CERN Multimedia

    2003-01-01

    "In a speech at the National Press Club today, U.S. Energy Secretary Spencer Abraham outlined the Department of Energy's Office of Science 20-year science facility plan, a roadmap for future scientific facilities to support the department's basic science and research missions. The plan prioritizes new, major scientific facilities and upgrades to current facilities" (1 page).

  9. Master-slave control with trajectory planning and Bouc-Wen model for tracking control of piezo-driven stage

    Science.gov (United States)

    Lu, Xiaojun; Liu, Changli; Chen, Lei

    2018-04-01

    In this paper, a redundant Piezo-driven stage having 3RRR compliant mechanism is introduced, we propose the master-slave control with trajectory planning (MSCTP) strategy and Bouc-Wen model to improve its micro-motion tracking performance. The advantage of the proposed controller lies in that its implementation only requires a simple control strategy without the complexity of modeling to avoid the master PEA's tracking error. The dynamic model of slave PEA system with Bouc-Wen hysteresis is established and identified via particle swarm optimization (PSO) approach. The Piezo-driven stage with operating period T=1s and 2s is implemented to track a prescribed circle. The simulation results show that MSCTP with Bouc-Wen model reduces the trajectory tracking errors to the range of the accuracy of our available measurement.

  10. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  11. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  12. Federal Facilities Compliance Act, Draft Site Treatment Plan: Compliance Plan Volume. Part 2, Volume 2

    International Nuclear Information System (INIS)

    1994-01-01

    This document presents the details of the implementation of the Site Treatment Plan developed by Ames Laboratory in compliance with the Federal Facilities Compliance Act. Topics discussed in this document include: implementation of the plan; milestones; annual updates to the plan; inclusion of new waste streams; modifications of the plan; funding considerations; low-level mixed waste treatment plan and schedules; and TRU mixed waste streams

  13. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  14. Optimal Pricing and Production Master Planning in a Multiperiod Horizon Considering Capacity and Inventory Constraints

    Directory of Open Access Journals (Sweden)

    Neale R. Smith

    2009-01-01

    Full Text Available We formulate and solve a single-item joint pricing and master planning optimization problem with capacity and inventory constrains. The objective is to maximize profits over a discrete-time multiperiod horizon. The solution process consists of two steps. First, we solve the single-period problem exactly. Second, using the exact solution of the single-period problem, we solve the multiperiod problem using a dynamic programming approach. The solution process and the importance of considering both capacity and inventory constraints are illustrated with numerical examples.

  15. National Ignition Facility Configuration Management Plan

    International Nuclear Information System (INIS)

    Cabral, S G; Moore, T L

    2002-01-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  16. National Ignition Facility Cryogenic Target Systems Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety and Health (ES and H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for

  17. The Benefits of Incorporating Shipping Containers into the Climate Change Adaption Plans at NASA Wallops Flight Facility

    Science.gov (United States)

    Hamilton, Carl Kenneth Gonzaga

    2017-01-01

    transport them to the site, and multiple ISBUs are needed. However, the benefits of shipping container buildings could be utilized at NASA centers or facilities near the coast such as Wallops Island on new buildings that are designed to adapt to the impending effects of climate change. Thus, this Masters Research Project will explore how those benefits can be incorporated into the climate change adaptation plans at Wallops Island and make recommendations for policy guidelines and shipping container buildings specific to Wallops Island.

  18. Facility Effluent Monitoring Plan for the Spent Nuclear Fuel (SNF) Project

    International Nuclear Information System (INIS)

    HUNACEK, G.S.

    2000-01-01

    A facility effluent monitoring plan is required by the US. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in Westinghouse Hanford Company (WHC)-EP-0438-1, ''A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans'', and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the third revision to the original annual report. This document is reviewed annually even if there are no operational changes, and it is updated as necessary

  19. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant (PFP); FINAL

    International Nuclear Information System (INIS)

    FRAZIER, T.P.

    1999-01-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years

  20. Grout Facilities standby plan

    Energy Technology Data Exchange (ETDEWEB)

    Claghorn, R.D.; Kison, P.F.; Nunamaker, D.R.; Yoakum, A.K.

    1994-09-29

    This plan defines how the Grout Facilities will be deactivated to meet the intent of the recently renegotiated Tri-Party Agreement (TPA). The TPA calls for the use of the grout process as an emergency option only in the event that tank space is not available to resolve tank safety issues. The availability of new tanks is expected by 1997. Since a grout startup effort would take an estimated two years, a complete termination of the Grout Disposal Program is expected in December 1995. The former Tank Waste Remediation (TWRS) Strategy, adopted in 1988, called for the contents of Hanford`s 28 newer double-shell waste tanks to be separated into high-level radioactive material to be vitrified and disposed of in a geologic repository; low-level wastes were to be sent to the Grout Facility to be made into a cement-like-mixture and poured into underground vaults at Hanford for disposal. The waste in the 149 older single-shell tanks (SST) were to undergo further study and analysis before a disposal decision was made.

  1. Grout Facilities standby plan

    International Nuclear Information System (INIS)

    Claghorn, R.D.; Kison, P.F.; Nunamaker, D.R.; Yoakum, A.K.

    1994-01-01

    This plan defines how the Grout Facilities will be deactivated to meet the intent of the recently renegotiated Tri-Party Agreement (TPA). The TPA calls for the use of the grout process as an emergency option only in the event that tank space is not available to resolve tank safety issues. The availability of new tanks is expected by 1997. Since a grout startup effort would take an estimated two years, a complete termination of the Grout Disposal Program is expected in December 1995. The former Tank Waste Remediation (TWRS) Strategy, adopted in 1988, called for the contents of Hanford's 28 newer double-shell waste tanks to be separated into high-level radioactive material to be vitrified and disposed of in a geologic repository; low-level wastes were to be sent to the Grout Facility to be made into a cement-like-mixture and poured into underground vaults at Hanford for disposal. The waste in the 149 older single-shell tanks (SST) were to undergo further study and analysis before a disposal decision was made

  2. Certification plan transuranic waste: Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1992-06-01

    The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification

  3. Project summary plan for HTGR recycle reference facility

    International Nuclear Information System (INIS)

    Baxter, B.J.

    1979-11-01

    A summary plan is introduced for completing conceptual definition of an HTGR Recycle Reference Facility (HRRF). The plan describes a generic project management concept, often referred to as the requirements approach to systems engineering. The plan begins with reference flow sheets and provides for the progressive evolution of HRRF requirements and definition through feasibility, preconceptual, and conceptual phases. The plan lays end-to-end all the important activities and elements to be treated during each phase of design. Identified activities and elements are further supported by technical guideline documents, which describe methodology, needed terminology, and where relevant a worked example

  4. National Ignition Facility Site Management Plan

    International Nuclear Information System (INIS)

    Roberts, V.

    1997-01-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1 degree C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  5. National Ignition Facility Site Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, V.

    1997-09-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1{degree}C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  6. ORNL Surplus Facilities Management Program maintenance and surveillance plan for fiscal year 1984

    International Nuclear Information System (INIS)

    Coobs, J.H.; Myrick, T.E.

    1986-10-01

    The Surplus Facilities Management Program (SFMP) at Oak Ridge National Laboratory (ORNL) is part of the Department of Energy's (DOE) National SFMP, administered by the Richland Operations Office. The purpose and objectives of the national program are set forth in the current SFMP Program Plan and include (1) the maintenance and surveillance of facilities awaiting decommissioning, (2) planning for the orderly decommissioning of these facilities, and (3) implementation of a program to accomplish the facility disposition in a safe, cost-effective, and timely manner. As outlined in the national program plan, participating SFMP contractors are required to prepare a formal plan that documents the maintenance and surveillance (M and S) programs established for each site. This report has been prepared to provide this documentation for those facilties included in the ORNL SFMP

  7. Major issues on establishing an emergency plan in nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Zhu-zhou

    1988-03-01

    Several major issues on emergency planning and preparation in nuclear facilities were discussed -- such as the importance of emergency planning and preparation, basic principles of intervention and implementation of emergency plan and emergency training and drills to insure the effectiveness of the emergency plan. It is emphasized that the major key point of emergency planning and response is to avoid the occurrence of serious nonrandom effect. 12 refs., 3 tabs

  8. Evolution of strategic risks under future scenarios for improved utility master plans.

    Science.gov (United States)

    Luís, Ana; Lickorish, Fiona; Pollard, Simon

    2016-01-01

    Integrated, long-term risk management in the water sector is poorly developed. Whilst scenario planning has been applied to singular issues (e.g. climate change), it often misses a link to risk management because the likelihood of impacts in the long-term are frequently unaccounted for in these analyses. Here we apply the morphological approach to scenario development for a case study utility, Empresa Portuguesa das Águas Livres (EPAL). A baseline portfolio of strategic risks threatening the achievement of EPAL's corporate objectives was evolved through the lens of three future scenarios, 'water scarcity', 'financial resource scarcity' and 'strong economic growth', built on drivers such as climate, demographic, economic, regulatory and technological changes and validated through a set of expert workshops. The results represent how the baseline set of risks might develop over a 30 year period, allowing threats and opportunities to be identified and enabling strategies for master plans to be devised. We believe this to be the first combined use of risk and futures methods applied to a portfolio of strategic risks in the water utility sector. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Smart facility location planning for Smart Cities: using GIS technology and facility provision standards for pro-active planning of social facilities to support smart growth

    CSIR Research Space (South Africa)

    Green, Chéri

    2016-08-01

    Full Text Available step toward “smart” planning processes to support smart cities of the future. A case study application in Cape Town is used to illustrate the application of the methodology of spatially matching supply and demand for facilities using GIS tools...

  10. 303-K Storage Facility closure plan

    International Nuclear Information System (INIS)

    1993-01-01

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5

  11. Closure Plan for the E-Area Low-Level Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    2000-10-30

    A closure plan has been developed to comply with the applicable requirements of the U.S. Department of Energy Order 435.2 Manual and Guidance. The plan is organized according to the specifications of the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans.

  12. Closure Plan for the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2000-01-01

    A closure plan has been developed to comply with the applicable requirements of the U.S. Department of Energy Order 435.2 Manual and Guidance. The plan is organized according to the specifications of the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans

  13. Risk evaluation system for facility safeguards and security planning

    International Nuclear Information System (INIS)

    Udell, C.J.; Carlson, R.L.

    1987-01-01

    The Risk Evaluation System (RES) is an integrated approach to determining safeguards and security effectiveness and risk. RES combines the planning and technical analysis into a format that promotes an orderly development of protection strategies, planing assumptions, facility targets, vulnerability and risk determination, enhancement planning, and implementation. In addition, the RES computer database program enhances the capability of the analyst to perform a risk evaluation of the facility. The computer database is menu driven using data input screens and contains an algorithm for determining the probability of adversary defeat and risk. Also, base case and adjusted risk data records can be maintained and accessed easily

  14. Planning for off-site response to radiation accidents in nuclear facilities

    International Nuclear Information System (INIS)

    1981-01-01

    The purpose of this publication is to give guidance to those who are responsible for the protection of the public in the event of an accident occurring at a land-based nuclear facility. This guidance should assist in the advance preparation of emergency response plans and implementing procedures. Basic principles of protective measures along with their advantages and disadvantages are discussed. Other principles related to emergency planning and the operational response to an emergency are outlined. Although the guidance is primarily oriented towards land-based nuclear power facilities, the guidance does have general application to other types of nuclear facility

  15. Planning for off-site response to radiation accidents in nuclear facilities

    International Nuclear Information System (INIS)

    1979-01-01

    The purpose of this manual is to give guidance to those who are responsible for the protection of the public in the event of an accident occurring at a land-based nuclear facility. This guidance should assist in the advance preparation of emergency response plans and implementing procedures. Basic principles of protective measures along with their advantages and disadvantages are discussed. Other principles related to emergency planning and the operational response to an emergency are outlined. Although the guidance is primarily oriented toward land-based nuclear power facilities, the guidance does have general application to other types of nuclear facilities

  16. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Marcel Y.; Gervais, Todd L.

    2004-11-15

    The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are

  17. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Operational Area Monitoring Plan for environmental monitoring, is for EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) which operates several offsite facilities in support of activities at the Nevada Test Site (NTS). These facilities include: (1) Amador Valley Operations (AVO), Pleasanton, California; (2) Kirtland Operations (KO), Kirtland Air Force base, Albuquerque, New Mexico (KAFB); (3) Las Vegas Area Operations (LVAO), Remote Sensing Laboratory (RSL), and North Las Vegas (NLV) Complex at Nellis Air Force Base (NAFB), North Las Vegas, Nevada; (4) Los Alamos Operations (LAO), Los Alamos, New Mexico; (5) Santa Barbara Operations (SBO), Goleta, California; (6) Special Technologies Laboratory (STL), Santa Barbara, California; (7) Washington Aerial Measurements Department (WAMD), Andrews Air Force Base, Maryland; and, (8) Woburn Cathode Ray Tube Operations (WCO), Woburn, Massachusetts. Each of these facilities has an individual Operational Area Monitoring Plan, but they have been consolidated herein to reduce redundancy

  18. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    International Nuclear Information System (INIS)

    Haagenstad, T.

    1999-01-01

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility

  19. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, T.

    1999-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

  20. 2727-S Nonradioactive Dangerous Waste Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Wilczek, T.A.; Laws, J.R.; Izatt, R.D.

    1992-01-01

    This closure plan describes the activities for final closure of the 2727-S Nonradioactive Dangerous Waste Storage (NRDWS) Facility at the Hanford Site. The 2727-S NRDWS Facility provided container storage for nonradioactive dangerous and extremely hazardous wastes generated in the research and development laboratories, process operations, and maintenance and transportation functions throughout the Hanford Site. Storage operations began at the 2727-S NRDWS Facility March 14, 1983, and continued until December 30, 1986, when the last shipment of materials from the facility took place. These storage operations have been moved to the new 616 NRDWS Facility, which is an interim status unit located between the 200 East and 200 West Areas of the Hanford Site

  1. Energy-Integrating Master Plan for the City of Atlantic City, New Jersey: energy conservation element. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    The Master Plan describes a coordinated energy-conservation effort for the City, the effective application and ultimate success of which depend primarily on the active involvement of the City government and its functional departments. Following an introductory section, Section XXI, Community Energy Determinants, describes the natural and man-made environment, growth and energy profiles, and the institutional environment. Additional sections are entitled: Energy-Conservation Options (passive energy options and active energy-conservation options); Energy Integration; Community Energy Management; Energy-Conservation Implementation Plan; and an appendix containing an energy-related glossary, a directory to various sources of information on energy conservation, various technical documents, a copy of the National Energy Act, and a bibliography. (MCW)

  2. Momentum: "Developing Masterful Marketing Plans."

    Science.gov (United States)

    Meservey, Lynne D.

    1988-01-01

    Describes how directors can plan and develop a written marketing plan which can increase enrollment at child care centers. Components of successful marketing plans include parent retention; program merchandising; staff and director training; sales promotions; networking; and enrichment programs/fundraising. (NH)

  3. Surveillance and Maintenance Plan for the Plutonium Uranium Extraction (PUREX) Facility

    International Nuclear Information System (INIS)

    Woods, P.J.

    1998-05-01

    This document provides a plan for implementing surveillance and maintenance (S ampersand M) activities to ensure the Plutonium Uranium Extraction (PUREX) Facility is maintained in a safe, environmentally secure, and cost-effective manner until subsequent closure during the final disposition phase of decommissioning. This plan has been prepared in accordance with the guidelines provided in the U.S. Department of Energy (DOE), Office of Environmental Management (EM) Decommissioning Resource Manual (DOE/EM-0246) (DOE 1995), and Section 8.6 of TPA change form P-08-97-01 to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology, et al. 1996). Specific objectives of the S ampersand M program are: Ensure adequate containment of remaining radioactive and hazardous material. Provide security control for access into the facility and physical safety to surveillance personnel. Maintain the facility in a manner that will minimize potential hazards to the public, the environment, and surveillance personnel. Provide a plan for the identification and compliance with applicable environmental, safety, health, safeguards, and security requirements

  4. Hanford Facility Resource Conservation and Recovery Act Permit General Inspection Plan

    International Nuclear Information System (INIS)

    Beagles, D.S.

    1995-02-01

    This inspection plan describes the activities that shall be conducted for a general inspection of the Hanford Facility. RCRA includes a requirement that general facility inspections be conducted of the 100, 200 East, 200 West, 300, 400, and 1100 areas and the banks of the Columbia River. This plan meets the RCRA requirements and also provides for scheduling of inspections and defines general and specific items to be noted during the inspections

  5. Fast Flux Test Facility project plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  6. Fast Flux Test Facility project plan. Revision 2

    International Nuclear Information System (INIS)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  7. Environmental Control Plan for the Industrial Hygiene Field Services Facility

    International Nuclear Information System (INIS)

    Donnelly, J.W.

    2000-01-01

    This environmental control plan is for the Hanford Site's Industrial Hygiene Field Services Facility, located in the 100-N Area. This facility is used for the maintenance and storage of respirators, respiratory equipment and testing, calibration and testing of industrial hygiene equipment, and asbestos fiber counting

  8. Mastering VMware vSphere 5

    CERN Document Server

    Lowe, Scott

    2011-01-01

    A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the

  9. Planning of emergency medical treatment in nuclear power plant

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1989-01-01

    Medical staffs and health physicists have shown deep concerning at the emergency plans of nuclear power plants after the TMI nuclear accident. The most important and basic countermeasure for accidents was preparing appropriate and concrete organization and plans for treatment. We have planed emergency medical treatment for radiation workers in a nuclear power plant institute. The emergency medical treatment at institute consisted of two stages, that is on-site emergency treatment at facility medical service. In first step of planning in each stage, we selected and treatment at facility medical service. In first step of planning in each stage, we selected and analyzed all possible accidents in the institute and discussed on practical treatments for some possible accidents. The manuals of concrete procedure of emergency treatment for some accidents were prepared following discussion and facilities and equipment for medical treatment and decontamination were provided. All workers in the institute had periodical training and drilling of on-site emergency treatment and mastered technique of first aid. Decontamination and operation rooms were provided in the facillity medical service. The main functions at the facility medical service have been carried out by industrial nurses. Industrial nurses have been in close co-operation with radiation safety officers and medical doctors in regional hospital. (author)

  10. Grout Treatment Facility Land Disposal Restriction Management Plan

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1991-01-01

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig

  11. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  12. Private sector's role in public school facility planning.

    Science.gov (United States)

    2009-03-01

    This report explores the role of private consultants in the school facility planning process. : It focuses on such issues as school siting and local government and school district collaboration. : As such, it seeks to demonstrate the importance of th...

  13. Family and Consumer Sciences: A Facility Planning and Design Guide for School Systems.

    Science.gov (United States)

    Maryland State Dept. of Education, Baltimore.

    This document presents design concepts and considerations for planning and developing middle and high school family and consumer sciences education facilities. It includes discussions on family and consumer sciences education trends and the facility planning process. Design concepts explore multipurpose laboratories and spaces for food/nutrition…

  14. Overview of planning process at FFTF [Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Gadeken, A.D.

    1986-03-01

    The planning process at the Fast Flux Test Facility (FFTF) is controlled through a hierarchy of documents ranging from a ten-year strategic plan to a weekly schedule. Within the hierarchy are a Near-Term (three-year) Operating Plan, a Cycle (six-month) Plan, and an Outage/Operating Phase Schedule. Coordination of the planning process is accomplished by a dedicated preparation team that also provides an overview of the formal planning timetable which identifies key action items required to be completed before an outage/operating phase can begin

  15. Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities

    International Nuclear Information System (INIS)

    Ulmer, F.J.

    1995-01-01

    This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments

  16. Integrated social facility location planning for decision support: Accessibility studies provide support to facility location and integration of social service provision

    CSIR Research Space (South Africa)

    Green, Cheri A

    2012-09-01

    Full Text Available for two or more facilities to create an integrated plan for development Step 6 Costing of development plan Case Study Access norms and thresholds guidelines in accessibility analysis Appropriate norms/provision guidelines facilitate both service... access norms and threshold standards ?Test the relationship between service demand and the supply (service capacity) of the facility provision points within a defined catchment area ?Promote the ?right?sizing? of facilities relative to the demand...

  17. Plan for reevaluation of NRC policy on decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1978-12-01

    The present decommissioning regulations contained in Sections 50.33(f) and 50.82 of 10 CFR part 50 require applicants for power reactor operating licenses to demonstrate that they can obtain the funds needed to meet both operating costs and estimated costs of shutdown and decommissioning. The development of detailed, specific decommissioning plans for nuclear power plants is not currently required until the licensee seeks to terminate his operating license. Recognizing that the current generation of large commercial reactors and supporting nuclear facilities would substantially increase the need for future decommissionings, the NRC staff began an in-depth review and reevaluation of NRC's regulatory approach to decommissioning in 1975. The Nuclear Regulatory Commission is now considering development of a more explicit overall policy for nuclear facility decommissioning and amending its regulations in 10 CFR Parts 30, 40, 50, and 70 to include more specific guidance on decommissioning criteria for production and utilization facility licensees and byproduct, source, and special nuclear material licensees. In response to comments from the public and states, and to information gained during the initial stage of execution of the plan, several modifications of the plan are now required. The revised overall report sets forth in detail the current NRC staff plan for the development of an overall NRC policy on decommissioning of nuclear facilities

  18. Hanford Facility resource conservation and recovery act permit general inspection plan

    International Nuclear Information System (INIS)

    Beagles, D.B.

    1995-12-01

    The Hanford Facility Resource Conservation and Recovery Act Permit, General Inspection Requirements, includes a requirement that general facility inspections be conducted of the 100, 200 East, 200 West, 300, 400, and 1100 Areas and the banks of the Columbia River. This inspection plan describes the activities that shall be conducted for a general inspection of the Hanford Facility

  19. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Nuclear installations are designed, constructed and operated in such a way that the probability for an incident or accident is very low and the probability for a severe accident with catastrophic consequences is extremely small. These accidents represent the residual risk of the nuclear installation, and this residual risk can be decreased on one hand by a better design, construction and operation and on the other hand by planning and taking emergency measures inside the facility and in the environment of the facility. By way of introduction and definition it may be indicated to define some terms pertaining to the subject in order to make for more uniform understanding. (orig./DG)

  20. On new methodological and other standards in planning: The case of the Master Plan of Belgrade 2021

    Directory of Open Access Journals (Sweden)

    Vujošević Miodrag L.

    2002-01-01

    changed structure of stakeholders and concomitant institutional arrangements. This also applies to 'educators' in general, because the prolonged international isolation of the FR Yugoslavia has caused the gross of their knowledge and capabilities irrelevant. In sum, it seems that many planners would not be able to assume new roles that they are expected to on the part of the society at large. (8The planning/policy information, research, institutional and other support provided by the state and other agents often does not satisfy even the most basic needs in this fields, partly for a general scarcity of resources concomitant to the overall and deep social, economic and political crisis the society found itself in the 1990s. (9 Most frightfully, manipulation, paternalism and clientelism still represent dominant forms of power, which is a problem by itself in Yugoslavia being one of the most corruptive countries in the world. What is now most missing is a non-manipulative persuasion, as well as the authority of professional values, as the communication and interaction forms that seem only promising for and supportive to developing of a democratic, emancipatory and transformative planning mode. A number of attempts during the last decade to embark upon the preparation of the new 'Master Plan of the City Belgrade' (in the sequel: MP came into realization not before the democratic political changes of October 2000 took place in Serbia. However, the so far undertaken steps do not seem promising, as they failed to satisfy a number of methodological and other standards, as well as to introduce necessary innovations. Unfortunately, the MP was commissioned to the Bureau of Urban Planning of the City of Belgrade (otherwise a 'faithful ally' of all non-democratic regimes in the City's urban planning and related matters over the last more than ten years now, during which there has been a so far unrecorded squandering and illegal privatization of public urban assets, mostly uncontrolled

  1. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  2. National Ignition Facility Title II Design Plan

    International Nuclear Information System (INIS)

    Kumpan, S

    1997-01-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed

  3. Ensuring Sustainable Development through Urban Planning in Pakistan

    Directory of Open Access Journals (Sweden)

    Mohammad Qasim

    2013-04-01

    Full Text Available Urban planning includes land use management and environmental change. It makes arrangement for community facilities and services. Since, sustainable development has been included as a vital end product of all planning goals it also provides for balanced use of land, housing and transportation and better quality of life. Present urban planning in Pakistan is not ensuring sustainable development in Pakistan. This is tested through the case study of master planning in Rawalpindi and its implementation through housing schemes in Rawalpindi, Pakistan. Large portions of provisions of master plans are not implemented. This paper explains how the urban planning will be made enabled to ensure sustainable development in Pakistan. Six numbers of housing schemes and two squatter settlements have been surveyed through questionnaires, secondary data, the opinions of the experts from related fields and site observations. Amenities and social services at far distance, very less green area, Less quantity and bad quality of water, absence of comprehensive solid waste management and sewage disposal system and nontreatment of solid waste, effluent and sewage, prevalent unhygienic conditions and air and water pollution are the existing factors effecting the sustainability. There is a need to revisit the urban planning and a comprehensive Urban and Environment Planning Law at national level and at provincial level is recommended to enable the urban planning to ensure the sustainable development in Pakistan

  4. Federal Facility Compliance Act, Proposed Site Treatment Plan: Background Volume. Executive Summary

    International Nuclear Information System (INIS)

    1995-01-01

    This Federal Facility Compliance Act Site Treatment Plan discusses the options of radioactive waste management for Ames Laboratory. This is the background volume which discusses: site history and mission; framework for developing site treatment plans; proposed plan organization and related activities; characterization of mixed waste and waste minimization; low level mixed waste streams and the proposed treatment approach; future generation of TRU and mixed wastes; the adequacy of mixed waste storage facilities; and a summary of the overall DOE activity in the area of disposal of mixed waste treatment residuals

  5. Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

  6. Design verification and validation plan for the cold vacuum drying facility

    International Nuclear Information System (INIS)

    NISHIKAWA, L.D.

    1999-01-01

    The Cold Vacuum Drying Facility (CVDF) provides the required process systems, supporting equipment, and facilities needed for drying spent nuclear fuel removed from the K Basins. This document presents the both completed and planned design verification and validation activities

  7. A conceptual model for barrier free facilities planning.

    Science.gov (United States)

    Bittencourt, R S; de M Guimarães, L B

    2012-01-01

    This paper presents the proposal of a model for planning a barrier free industrial facilities, considering the demands that inclusion requires, ranging from outside the factory (social environment), to the needs of the production system and the workstation. Along with literature review, the demands were identified in a shoe manufacturer that employs people with disabilities, and organized taxonomically in agreement with the structure for planning facilities. The results show that the problems are not primarily related to eliminating architectural barriers and factors aimed at preventing risks to people's health and safety but, rather, are related to the company's cultural environment, because the main hazards are managerial. In special cases, it is suggested there is a need to adjust those parts of tasks that the worker cannot do, or even to re-schedule work so as to make it possible for employees with disabilities to perform their tasks.

  8. An integrated approach for facilities planning by ELECTRE method

    Science.gov (United States)

    Elbishari, E. M. Y.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Rahman, Nur Salihah Binti Abdul

    2018-01-01

    Facility planning is concerned with the design, layout, and accommodation of people, machines and activities of a system. Most of the researchers try to investigate the production area layout and the related facilities. However, few of them try to investigate the relationship between the production space and its relationship with service departments. The aim of this research to is to integrate different approaches in order to evaluate, analyse and select the best facilities planning method that able to explain the relationship between the production area and other supporting departments and its effect on human efforts. To achieve the objective of this research two different approaches have been integrated: Apple’s layout procedure as one of the effective tools in planning factories, ELECTRE method as one of the Multi Criteria Decision Making methods (MCDM) to minimize the risk of getting poor facilities planning. Dalia industries have been selected as a case study to implement our integration the factory have been divided two main different area: the whole facility (layout A), and the manufacturing area (layout B). This article will be concerned with the manufacturing area layout (Layout B). After analysing the data gathered, the manufacturing area was divided into 10 activities. There are five factors that the alternative were compared upon which are: Inter department satisfactory level, total distance travelled for workers, total distance travelled for the product, total time travelled for the workers, and total time travelled for the product. Three different layout alternatives have been developed in addition to the original layouts. Apple’s layout procedure was used to study and evaluate the different alternatives layouts, the study and evaluation of the layouts was done by calculating scores for each of the factors. After obtaining the scores from evaluating the layouts, ELECTRE method was used to compare the proposed alternatives with each other and with

  9. Expanding Nuclear Power Programmes - Romanian experience: Master - Nuclear Materials and Technologies Educational Plan

    International Nuclear Information System (INIS)

    Valeca, S.; Valeca, M.

    2012-01-01

    The main objectives of the Master Nuclear Materials and Technologies Educational Plan are: 1. To deliver higher education and training in the following specific domains, such as: Powders Technology and Ceramic Materials, Techniques of Structural Analysis, Composite Materials, Semiconductor Materials and Components, Metals and Metallic Alloys, Optoelectronic Materials and Devices, Nuclear Materials, The Engineering of Special Nuclear Materials, 2. To train managers of the Nuclear Waste Products and Nuclear Safety, 3. To qualify in ICT Systems for Nuclear Process Guidance, 4. To qualify in Environmental Protection System at the Level of Nuclear Power Stations, 5. To train managers for Quality Assurance of Nuclear Energetic Processes, 6. To deliver higher education and training regarding the International Treatises, Conventions and Settlements in force in the field of nuclear related activities. (author)

  10. Environmental restoration plan for the transfer of surplus facilities to the Facility Transition Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-08-01

    This report will provide guidance on management, coordination, and integration of plans to transition facilities to the Facility Transition Program and activities as related to the Oak Ridge National Laboratory (ORNL) Environmental Restoration Program facilities. This report gives (1) guidance on the steps necessary for identifying ORNL surplus facilities, (2) interfaces of Surveillance and Maintenance (S and M) and Isotope Facility Deactivation program managers, (3) roles and responsibilities of the facility managers, and (4) initial S and M requirements upon acceptance into the Facility Transition Program

  11. Facility effluent monitoring plan for K area spent fuel storage basin

    International Nuclear Information System (INIS)

    Hunacek, G.S.

    1996-01-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400. 1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in WHC-EP-0438-1, A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the second revision to the original annual report. Long-range integrity of the effluent monitoring system shall be ensured with updates of this report whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  12. Planning for maintenance in radiochemical facilities [Paper No.: VB-2

    International Nuclear Information System (INIS)

    Balasubramanian, G.R.

    1981-01-01

    Reprocessing facilities in the earlier stages of development were planned mainly based on the concept of direct maintenance in view of the inherent advantage of man-machine interface and initial savings in the investment costs. With the mechanical processes finding a firm place in head-end operation and increase in down time necessary for elaborate decontamination efforts even for a minor modification has led to the review of the concept. For the same reason, the recent plants are based on the concept of harmonious blend of both direct and remote maintenance. The paper describes the planning needed from consideration of various aspects related to such concepts of maintenance during different phases of such type of facilities, highlighting some of the tools and special equipments to be developed for this purpose. A brief description of recent development in the field of remote maintenance is also given. Though the basic hot facility of reference is the one of reprocessing fast reactor fuels, the concepts and systems discussed are equally applicable to other radiochemical and radiometallurgical facilities also. (author)

  13. Evaluation of Plan Implementation: Peri-urban Development and the Shanghai Master Plan 1999-2020

    Directory of Open Access Journals (Sweden)

    Jinghuan He

    2015-01-01

    Full Text Available Since the 1980s China has experienced unprecedented urbanisation as a result of a series of reforms promoting rapid economic development. Shanghai, like the other big cities along China’s coastline, has witnessed extraordinary growth in its economy and population with industrial development and rural-to-urban migration generating extensive urban expansion. Shanghai’s GDP growth rate has been over 10 per cent for more than 15 years. Its population in 2013 was estimated at 23.47 million, which is double its size in 1979. The urban area enlarged by four times from 644 to 2,860 km2 between 1977 and 2010. Such demanding growth and dramatic changes present big challenges for urban planning practice in Shanghai. Plans have not kept up with development and the mismatch between the proposals in plans and the actual spatial development has gradually increased, reaching a critical level since 2000. The mismatch in the periurban areas is more notable than that in the existing urban area, but there has not been a systematic review of the relationship between plan and implementation. Indeed, there are few studies on the evaluation of plan implementation in China generally. Although many plans at numerous spatial levels are successively prepared and revised, only few of them have been evaluated in terms of their effectiveness and implementation.  This particularly demanding context for planning where spatial development becomes increasingly unpredictable and more difficult to influence presents an opportunity to investigate the role of plans under conditions of rapid urbanisation. The research project asks to what extent have spatial plans influenced the actual spatial development in the peri-urban areas of Shanghai? The research pays particular attention to the role of the Shanghai Master Plan 1999-2020 (Plan 1999. By answering the main research question this study seeks to contribute to a better understanding of present planning practice in Shanghai

  14. Standard format and content for emergency plans for fuel cycle and materials facilities

    International Nuclear Information System (INIS)

    1990-09-01

    This regulatory guides is being developed to provide guidance acceptable to the NRC staff on the information to be included in emergency plans and to establish a format for presenting the information. Use of a standard format will help ensure uniformity and completeness in the preparation of emergency plans. An acceptable emergency plan should describe the licensed activities conducted at the facility and the types of accidents that might occur. It should provide information on classifying postulated accidents and the licensee's procedures for notifying and coordinating with offsite authorities. The plan should provide information on emergency response measures that might be necessary, the equipment and facilities available to respond to an emergency, and how the licensee will maintain emergency preparedness capability. It should describe the records and reports that will be maintained. There should also be a section on recovery after an accident and plans for restoring the facility to a safe condition. 4 refs

  15. Chemical Hygiene Plan for Onsite Measurement and Sample Shipping Facility Activities

    International Nuclear Information System (INIS)

    Price, W.H.

    1998-01-01

    This chemical hygiene plan presents the requirements established to ensure the protection of employee health while performing work in mobile laboratories, the sample shipping facility, and at the onsite radiological counting facility. This document presents the measures to be taken to promote safe work practices and to minimize worker exposure to hazardous chemicals. Specific hazardous chemicals present in the mobile laboratories, the sample shipping facility, and in the radiological counting facility are presented in Appendices A through G

  16. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    International Nuclear Information System (INIS)

    2001-01-01

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  17. The Development of an Information System Master Plan for the Pacific Missile Range Facility, Barking Sands, Hawaii

    Science.gov (United States)

    1992-03-01

    sites and support facilities are located on the islands of Niihau and Oahu. Figure 1 depicts the overall layout of PMRF. [Ref. 4: p. 2] In addition...the HIANG facility at Kokee: • a wideband microwave system serving Niihau Island remotely controls operation of the AN/APS-134 surveillance radar, and...provides relay of digitized radar data, control data and voice between the remotely operated, unmanned radar on Niihau Island and Barking Sands

  18. Experimental area plans for an advanced hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs. (LEW)

  19. Experimental area plans for an advanced hadron facility

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs

  20. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    International Nuclear Information System (INIS)

    Fritz, R.L.

    1995-01-01

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities

  1. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, R.L.

    1995-01-11

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

  2. Decontamination and Decommissioning at Small Nuclear Facilities: Facilitating the Submission of Decommissioning Funding Plans

    International Nuclear Information System (INIS)

    Minor, D.A.; Grumbles, A.

    2009-01-01

    This paper describes the efforts of the Washington State Department of Health to ensure that small nuclear facilities have the tools each needs to submit Decommissioning Funding Plans. These Plans are required by both the U.S. Nuclear Regulatory Commission (NRC) and in some states - in the case of Washington state, the Washington State Department of Health is the regulator of radioactive materials. Unfortunately, the guidance documents provided by the U.S. NRC pertain to large nuclear facilities, such as nuclear fuel fabrication plants, not the small nuclear laboratory nor small nuclear laundry that may also be required to submit such Plans. These small facilities are required to submit Decommissioning Funding Plans by dint of their nuclear materials inventory, but have only a small staff, such as a Radiation Safety Officer and few authorized users. The Washington State Department of Health and Attenuation Environmental Company have been working on certain tools, such as templates and spreadsheets, that are intended to assist these small nuclear facilities prepare compliant Decommissioning Funding Plans with a minimum of experience and effort. (authors)

  3. Facility Response Plan (FRP) Points, Region 9, 2014, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Facility Response Plan (FRP) demonstrates a facility's preparedness to respond to a worst case oil discharge. Under the Clean Water Act, as amended by the Oil...

  4. Facility Response Plan (FRP) Points, Region 9, 2013, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Facility Response Plan (FRP) demonstrates a facility's preparedness to respond to a worst case oil discharge. Under the Clean Water Act, as amended by the Oil...

  5. Facility Response Plan (FRP) Points, Region 9, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Facility Response Plan (FRP) demonstrates a facility's preparedness to respond to a worst case oil discharge. Under the Clean Water Act, as amended by the Oil...

  6. Environmental Control Plan for the Industrial Hygiene Field Services Facility; TOPICAL

    International Nuclear Information System (INIS)

    J. W. Donnelly

    2001-01-01

    This environmental control plan is for the Hanford Site's industrial hygiene field services facility, located in the 100-N Area. The facility is used for the maintenance and storage of respirators, respiratory equipment and testing, calibration and testing of industrial hygiene equipment, and asbestos fiber counting

  7. CPP-603 Underwater Fuel Storage Facility Site Integrated Stabilization Management Plan (SISMP), Volume I

    International Nuclear Information System (INIS)

    Denney, R.D.

    1995-10-01

    The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been constructed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 to the Secretary of Energy regarding an improved schedule for remediation in the Defense Nuclear Facilities Complex. As described in the DNFSB Recommendation 94-1 Implementation Plan, issued February 28, 1995, an INEL Spent Nuclear Fuel Management Plan is currently under development to direct the placement of SNF currently in existing INEL facilities into interim storage, and to address the coordination of intrasite SNF movements with new receipts and intersite transfers that were identified in the DOE SNF Programmatic and INEL Environmental Restoration and Waste Management Environmental Impact Statement Record, of Decision. This SISMP will be a subset of the INEL Spent Nuclear Fuel Management Plan and the activities described are being coordinated with other INEL SNF management activities. The CPP-603 relocation activities have been assigned a high priority so that established milestones will be meet, but there will be some cases where other activities will take precedence in utilization of available resources. The Draft INEL Site Integrated Stabilization Management Plan (SISMP), INEL-94/0279, Draft Rev. 2, dated March 10, 1995, is being superseded by the INEL Spent Nuclear Fuel Management Plan and this CPP-603 specific SISMP

  8. Planning, Management and Organizational Aspects of the Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    2013-08-01

    Many old reactors and other nuclear facilities worldwide are being actively dismantled or are candidates for decommissioning in the near term. A significant number of these facilities are located in Member States having little experience or expertise in planning and implementing state of the art decommissioning projects. Planning, management and organization are critical for the success of such projects. The main objective of IAEA technical activities related to decommissioning is to promote the exchange of lessons learned, thereby contributing to successful planning and implementation of decommissioning projects. Imperative for success is a better understanding of the decision making process, the comparison and selection of decommissioning plans and organizational provisions, and relevant issues affecting the entire decommissioning process. Topics addressed in this publication include details on development of the decommissioning plan, structuring of key project tasks, organizing the project management team, identifying key staffing positions and determining required workforce skills, and managing the transition from an operational phase to the decommissioning phase. It is expected that this project, and in particular the papers collected in this publication, will draw Member States' attention to the practicality and achievability of timely planning and smooth management of decommissioning projects, especially for smaller projects. Concluding reports summarizing the work undertaken under the aegis of a coordinated research project (CRP) on planning, management and organizational aspects in the decommissioning of nuclear facilities, and presented at the third and final research coordination meeting (RCM) held in Da Lat, Vietnam, 5-9 September 2011, are included in this publication. Operating experience and lessons learned during full scale applications, as well as national programmes and plans, are among the most significant achievements of the CRP and have been

  9. Planning, Management and Organizational Aspects of the Decommissioning of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Many old reactors and other nuclear facilities worldwide are being actively dismantled or are candidates for decommissioning in the near term. A significant number of these facilities are located in Member States having little experience or expertise in planning and implementing state of the art decommissioning projects. Planning, management and organization are critical for the success of such projects. The main objective of IAEA technical activities related to decommissioning is to promote the exchange of lessons learned, thereby contributing to successful planning and implementation of decommissioning projects. Imperative for success is a better understanding of the decision making process, the comparison and selection of decommissioning plans and organizational provisions, and relevant issues affecting the entire decommissioning process. Topics addressed in this publication include details on development of the decommissioning plan, structuring of key project tasks, organizing the project management team, identifying key staffing positions and determining required workforce skills, and managing the transition from an operational phase to the decommissioning phase. It is expected that this project, and in particular the papers collected in this publication, will draw Member States' attention to the practicality and achievability of timely planning and smooth management of decommissioning projects, especially for smaller projects. Concluding reports summarizing the work undertaken under the aegis of a coordinated research project (CRP) on planning, management and organizational aspects in the decommissioning of nuclear facilities, and presented at the third and final research coordination meeting (RCM) held in Da Lat, Vietnam, 5-9 September 2011, are included in this publication. Operating experience and lessons learned during full scale applications, as well as national programmes and plans, are among the most significant achievements of the CRP and have been

  10. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs.

  11. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    International Nuclear Information System (INIS)

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs

  12. Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities

    International Nuclear Information System (INIS)

    1994-10-01

    The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition

  13. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    Energy Technology Data Exchange (ETDEWEB)

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement

  14. Facility Effluent Monitoring Plan for the 284-E and 284-W power plants

    International Nuclear Information System (INIS)

    Herman, D.R.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The 284-E and 284-W Power Plants are coal-fired plants used to generate steam. Electricity is not generated at these facilities. The maximum production of steam is approximately 159 t (175 tons)/h at 101 kg (225 lb)/in 2 . Steam generated at these facilities is used in other process facilities (i. e., the B Plant, Plutonium-Uranium Extraction Plant, 242-A Evaporator) for heating and process operations. The functions or processes associated with these facilities do not have the potential to generate radioactive airborne effluents or radioactive liquid effluents, therefore, radiation monitoring equipment is not used on the discharge of these streams. The functions or processes associated with the production of steam result in the use, storage, management and disposal of hazardous materials

  15. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-29

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  16. Emergency planning and preparedness for nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Because of their inventories of radioactive materials nuclear facilities represent a hazard potential which, though comparable with that posed by other large technical facilities, demands particular protective measures to be taken. As a consequence of the extreme safety provisions, made, accidents with major impacts on the environment of nuclear facilities are excluded to the best human knowledge. However, as there are distinct limits to human planning and recognition, a residual risk remains despite all these precautions. In order to reduce that risk, recommendations for emergency protection in the environment of nuclear facilities have been drafted. To the extent in which measures are required outside the specific emergency protection plans apply which contain non-object related planning preparations. The recommendation also omits potential repercussions of nuclear accidents which might require measures in the sector of preventive health protection under the Radiation Protection Provisions act or the government measures to be taken. The recommendation is applied to German nuclear installations and those foreign installations whose proximity to the border requires planning measures to be taken on German territory in the sense of this recommendation. (author) [pt

  17. Surveillance and Maintenance Plan for the Uranium Trioxide(UO3) Facility

    International Nuclear Information System (INIS)

    McGuire, J.J.

    1999-01-01

    This document provides a plan for implementing surveillance and maintenance (S and M) activities to ensure the Uranium Oxide(UO3) Facility is maintained in a safe, environmentally secure, and cost effective manner until subsequent closure during the final disposition phase of decommissioning. This plan has been prepared in accordance with the guidelines provided in the U.S. Department of Energy (DOE) Office of Environmental Management (EM) Decommissioning Resource Manual (DOE 1995) and Section 8.6 of TPA change form P-08-97-01 to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology, et al. 1996)

  18. The Remote Handled Immobilization Low-Activity Waste Disposal Facility Environmental Permits and Approval Plan

    International Nuclear Information System (INIS)

    DEFFENBAUGH, M.L.

    2000-01-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  19. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    International Nuclear Information System (INIS)

    2002-01-01

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable

  20. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    International Nuclear Information System (INIS)

    Shields, K.D.; Ballinger, M.Y.

    1999-03-01

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities

  1. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  2. Acceptance test procedure for the master equipment list (MEL)database system -- phase I

    International Nuclear Information System (INIS)

    Jech, J.B.

    1997-01-01

    The Waste Remediation System/.../Facilities Configuration Management Integration group has requested development of a system to help resolve many of the difficulties associated with management of master equipment list information. This project has been identified as Master Equipment List (MEL) database system. Further definition is contained in the system requirements specification (SRS), reference 7

  3. Analysis Methods for Extracting Knowledge from Large-Scale WiFi Monitoring to Inform Building Facility Planning

    DEFF Research Database (Denmark)

    Ruiz-Ruiz, Antonio; Blunck, Henrik; Prentow, Thor Siiger

    2014-01-01

    realistic data to inform facility planning. In this paper, we propose analysis methods to extract knowledge from large sets of network collected WiFi traces to better inform facility management and planning in large building complexes. The analysis methods, which build on a rich set of temporal and spatial......The optimization of logistics in large building com- plexes with many resources, such as hospitals, require realistic facility management and planning. Current planning practices rely foremost on manual observations or coarse unverified as- sumptions and therefore do not properly scale or provide....... Spatio-temporal visualization tools built on top of these methods enable planners to inspect and explore extracted information to inform facility-planning activities. To evaluate the methods, we present results for a large hospital complex covering more than 10 hectares. The evaluation is based on Wi...

  4. Master of engineering program for Westinghouse Electric Corporation

    International Nuclear Information System (INIS)

    Klevans, E.H.; Diethorn, W.S.

    1991-01-01

    In August of 1985, Westinghouse Corporation, via a grant to the nuclear engineering department at Pennsylvania State University, provided its professional employees the opportunity to earn a master of engineering (M. Eng.) degree in nuclear engineering in a program of evening study in the Pittsburgh area. Faculty members from the nuclear engineering department, which is 135 miles from Westinghouse, and adjunct faculty from the professional ranks of Westinghouse provided the instruction at the Westinghouse training center facility in Monroeville, Pennsylvania, A 3-yr 30-credit program was originally planned, but this was extended to a fourth year to accommodate the actual student progress toward the degree. A fifth year was added for students to complete their engineering paper. There have been benefits to both Westinghouse and Penn State from this program. Advanced education for its employees has met a Westinghouse need. For Penn State, there has been an increase in interaction with Westinghouse personnel, and this has now led to cooperative research programs with them

  5. Network master planning for a global manufacturing company

    OpenAIRE

    Heinz, Michael Pierre

    2006-01-01

    Production in global, intra-organisational networks is becoming more common. In this context, the allocation of production quantities to constrained manufacturing capacity is a challenging process. Due to a volatile environment it is argued to be impossible to achieve a ‘clean’ system design with dedicated resources which exactly meets future demand. Thus, recursive ‘Network Master Planning’ (NMP) becomes necessary. The aim of this research is to generate an understanding of th...

  6. An Examination of the Structure of Sustainable Facilities Planning Scale for User Satisfaction in Nigerian Universities

    Directory of Open Access Journals (Sweden)

    Abayomi Ibiyemi

    2014-09-01

    Full Text Available Universities are under increasing pressure to demonstrate that continuous performance improvement is being delivered for user satisfaction, but the importance of facilities planning as a student-staff focused tool needs to be emphasised. This research sought answers to questions relating to the underlying structure of sustainable facilities planning and user satisfaction, and the number of factors that make up the facilities planning scale. Three universities from the south-western part of Nigeria were selected randomly using ownership structure to define the cases: University of Lagos, Akoka, Lagos, Ladoke Akintola University of Technology, Ogbomoso and Joseph Ayo Babalola University, Ikeji Arakeji, each representing the Federal, State, and Private ownership. A questionnaire survey was used on a random sample of 651 staff and students from the three universities. Six hundred questionnaires were retrieved (response rate of 92.2%. An exploratory factor analysis was used to understand the responses and the interrelationships. The results showed a two-factor solution of ‘locational advantages and user needs’ and ‘adequacy of facilities/functional connection and four core determinants for acceptance. It is concluded that universities should factor student-staff focus points into their facilities planning schemes to optimise their service deliveries. The study contributes to the discussion on factor structure of sustainable facilities planning scale with a focus on students and staff of universities.   Keywords: Facilities planning, universities, data structure, factors, Nigeria.

  7. An Examination of the Structure of Sustainable Facilities Planning Scale for User Satisfaction in Nigerian Universities

    Directory of Open Access Journals (Sweden)

    Abayomi Ibiyemi

    2014-09-01

    Full Text Available Universities are under increasing pressure to demonstrate that continuous performance improvement is being delivered for user satisfaction, but the importance of facilities planning as a student-staff focused tool needs to be emphasised. This research sought answers to questions relating to the underlying structure of sustainable facilities planning and user satisfaction, and the number of factors that make up the facilities planning scale. Three universities from the south-western part of Nigeria were selected randomly using ownership structure to define the cases: University of Lagos, Akoka, Lagos, Ladoke Akintola University of Technology, Ogbomoso and Joseph Ayo Babalola University, Ikeji Arakeji, each representing the Federal, State, and Private ownership. A questionnaire survey was used on a random sample of 651 staff and students from the three universities. Six hundred questionnaires were retrieved (response rate of 92.2%. An exploratory factor analysis was used to understand the responses and the interrelationships. The results showed a two-factor solution of ‘locational advantages and user needs’ and ‘adequacy of facilities/functional connection and four core determinants for acceptance. It is concluded that universities should factor student-staff focus points into their facilities planning schemes to optimise their service deliveries. The study contributes to the discussion on factor structure of sustainable facilities planning scale with a focus on students and staff of universities. Keywords: Facilities planning, universities, data structure, factors, Nigeria.

  8. Provision of family planning services in Tanzania: a comparative analysis of public and private facilities

    NARCIS (Netherlands)

    Kakoko, D.C.; Ketting, E.; Kamazima, S.R.; Ruben, R.

    2012-01-01

    Adherence to the policy guidelines and standards is necessary for family planning services. We compared public and private facilities in terms of provision of family planning services. We analyzed data from health facility questionnaire of the 2006 Tanzania Service Provision Assessment survey, based

  9. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  10. Nuclear fuel cycle facilities in the world (excluding the centrally planned economies)

    International Nuclear Information System (INIS)

    1979-01-01

    Information on the existing, under construction and planned fuel cycle facilities in the various countries is presented. Some thirty countries have activities related to different nuclear fuel cycle steps and the information covers the capacity, status, location, and the names of owners of the facilities

  11. Sampling and Analysis Plan for the 221-U Facility

    International Nuclear Information System (INIS)

    Rugg, J.E.

    1998-02-01

    This sampling and analysis plan (SAP) presents the rationale and strategy for the sampling and analysis activities proposed to be conducted to support the evaluation of alternatives for the final disposition of the 221-U Facility. This SAP will describe general sample locations and the minimum number of samples required. It will also identify the specific contaminants of potential concern (COPCs) and the required analysis. This SAP does not define the exact sample locations and equipment to be used in the field due to the nature of unknowns associated with the 221-U Facility

  12. Innovative Stormwater Quality Tools by SARA for Holistic Watershed Master Planning

    Science.gov (United States)

    Thomas, S. M.; Su, Y. C.; Hummel, P. R.

    2016-12-01

    Stormwater management strategies such as Best Management Practices (BMP) and Low-Impact Development (LID) have increasingly gained attention in urban runoff control, becoming vital to holistic watershed master plans. These strategies can help address existing water quality impairments and support regulatory compliance, as well as guide planning and management of future development when substantial population growth and urbanization is projected to occur. However, past efforts have been limited to qualitative planning due to the lack of suitable tools to conduct quantitative assessment. The San Antonio River Authority (SARA), with the assistance of Lockwood, Andrews & Newnam, Inc. (LAN) and AQUA TERRA Consultants (a division of RESPEC), developed comprehensive hydrodynamic and water quality models using the Hydrological Simulation Program-FORTRAN (HSPF) for several urban watersheds in the San Antonio River Basin. These models enabled watershed management to look at water quality issues on a more refined temporal and spatial scale than the limited monitoring data. They also provided a means to locate and quantify potential water quality impairments and evaluate the effects of mitigation measures. To support the models, a suite of software tools were developed. including: 1) SARA Timeseries Utility Tool for managing and processing of large model timeseries files, 2) SARA Load Reduction Tool to determine load reductions needed to achieve screening levels for each modeled constituent on a sub-basin basis, and 3) SARA Enhanced BMP Tool to determine the optimal combination of BMP types and units needed to achieve the required load reductions. Using these SARA models and tools, water quality agencies and stormwater professionals can determine the optimal combinations of BMP/LID to accomplish their goals and save substantial stormwater infrastructure and management costs. The tools can also help regulators and permittees evaluate the feasibility of achieving compliance

  13. Facility Response Plan (FRP) Inspected Points, Region 9, 2014, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Facility Response Plan (FRP) demonstrates a facility's preparedness to respond to a worst case oil discharge. Under the Clean Water Act, as amended by the Oil...

  14. Sampling and Analysis Plan for the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    Mihalic, M.A.

    1998-02-01

    This Sampling and Analysis Plan (SAP) provides the information and instructions to be used for sampling and analysis activities in the 233-S Plutonium Concentration Facility. The information and instructions herein are separated into three parts and address the Data Quality Objective (DQO) Summary Report, Quality Assurance Project Plan (QAP), and SAP

  15. Risk management plan for the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.; Lane, M.; Smith, C.; Yatabe, J.

    1998-01-01

    The National Ignition Facility (NIF) is a U.S. Department of Energy inertial confinement laser fusion facility, currently under construction at the Lawrence Livermore National Laboratory (LLNL). NIF is a critical tool for the Department of Energy (DOE) science- based Stockpile Stewardship and Management Program. In addition, it represents a major step towards realizing inertial confinement fusion as a source of energy. The NIF will focus 192 laser beams onto spherical targets containing a mixture of deuterium and tritium, causing them to implode. This will create the high temperatures and pressures necessary for these targets to undergo fusion. The plan is for NIF to achieve ignition (i.e., self-heating of the fuel) and energy gain (i.e., more fusion energy produced than laser energy deposited) in the laboratory for the first time. A Risk Management Plan was prepared for the NIF design and construction Project. The plan was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide. The objectives of the plan were to: (1) identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule, (2) assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES ampersand H (environment, safety and health), costs, and schedule, and (3) address each risk in terms of suitable risk management measures. Major risk elements were identified for the NIF Project. A risk assessment methodology was developed, which was utilized to rank the Project risks with respect to one another. Those elements presenting greater risk were readily identified by this process. This paper describes that methodology and the results

  16. 324 Facility B-Cell quality process plan

    International Nuclear Information System (INIS)

    Carlson, J.L.

    1998-01-01

    This report documents the quality process plan for the restart of a hot cell in the B Plant, originally a bismuth phosphate processing facility, but later converted to a waste fractionation plant. B-Cell is currently being cleaned out and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/1999. This report describes the major activities that remain for completion of the TPA milestone

  17. Environmental restoration contractor facility safety plan -- MO-561 100-D site remediation project

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1996-11-01

    This safety plan is applicable to Environmental Restoration Contractor personnel who are permanently assigned to MO-561 or regularly work in the facility. The MO-561 Facility is located in the 100-D Area at the Hanford Site in Richland, Washington. This plan will: (a) identify hazards potentially to be encountered by occupants of MO-561; (b) provide requirements and safeguards to ensure personnel safety and regulatory compliance; (c) provide information and actions necessary for proper emergency response

  18. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  19. Radiological planning and implementation for nuclear-facility decommissioning

    International Nuclear Information System (INIS)

    Valentine, A.M.

    1982-01-01

    The need and scope of radiological planning required to support nuclear facility decommissioning are issues addressed in this paper. The role of radiation protection engineering and monitoring professionals during project implementation and closeout is also addressed. Most of the discussion focuses on worker protection considerations; however, project support, environmental protection and site release certification considerations are also covered. One objective is to identify radiological safety issues that must be addressed. The importance of the issues will vary depending on the type of facility being decommissioned; however, by giving appropriate attention to these issues difficult decommissioning projects can be accomplished in a safer manner with workers and the public receiving minimal radiation exposures

  20. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    International Nuclear Information System (INIS)

    ROGERS, P.M.

    2000-01-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted

  1. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, P.M.

    2000-06-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted.

  2. Surplus Facilities and Resource Conservation and Recovery Act Closure program plan, fiscal year 1992

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1991-10-01

    The Surplus Facilities and Resource Conservation and Recovery Act Closure program is responsible to US Department of Energy Field Office, Richland for the safe, cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The Surplus Facilities and Resource Conservation and Recovery Act Closure program is also responsible to US Department of Energy Field Office, Richland for the program management of specific Resource Conservation and Recovery Act closures at the Hanford Site. This program plan addresses only the surplus facilities. The criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy Field Office, Richland, Environmental Restoration Division. The guidelines are consistent with the Westinghouse Hanford Company commitment to decommission Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities until disposal

  3. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    In order to review the advances made over the past seven years in the area of emergency planning and preparedness supporting nuclear facilities and consider developments which are on the horizon, the IAEA at the invitation of the Government of Italy, organized this International Symposium in co-operation with the Italian Commission for Nuclear and Alternative Energy Sources, Directorate of Nuclear Safety and Health Protection (ENEA-DISP). There were over 250 designated participants and some 70 observers from 37 Member States and four international organizations in attendance at the Symposium. The Symposium presentations were divided into sessions devoted to the following topics: emergency planning (20 papers), accident assessment (30 papers), protective measures and recovery operations (10 papers) and emergency preparedness (16 papers). A separate abstract was prepared for each of these papers

  4. 105-DR Large Sodium Fire Facility Supplemental Information to the Hanford Facility Contingency Plan (DOE/RL-93-75)

    International Nuclear Information System (INIS)

    Edens, V.G.

    1998-05-01

    This document is a unit-specific contingency plan for the 105-DR Large Sodium Fire Facility and is intended to be used as a supplement to DOE/RL-93-75, Hanford Facility Contingency Plan (DOE-RL 1993). This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of Washington Administrative Code (WAC) 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units.The LSFF occupied the former ventilation supply fan room and was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires. The unit was used to conduct experiments for studying the behavior of molten alkali metals and alkali metal fires. This unit had also been used for the storage and treatment of alkali metal dangerous waste. Additionally, the Fusion Safety Support Studies programs sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium-lead compounds. The LSFF, which is a RCRA site, was partially clean closed in 1995 and is documented in 'Transfer of the 105-DR Large Sodium Fire Facility to Bechtel Hanford, Inc.' (BHI 1998). In summary, the 105-DR supply fan room (1720-DR) has been demolished, and a majority of the surrounding soils were clean-closed. The 117-DR Filter Building, 116-DR Exhaust Stack, 119- DR Sampling Building, and associated ducting/tunnels were not covered under this closure

  5. 105-DR Large Sodium Fire Facility closure plan

    International Nuclear Information System (INIS)

    1993-05-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, and activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950's and is located in the 100-D Area of the Hanford Site. The building housed the 105-DR defense reactor, which was shut down in 1964. The LSFF was initially used only for engineering-scale alkali metal reaction studies. In addition, the Fusion Safety Support Studies program sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium lead compounds. The facility has also been used to store and treat alkali metal waste, therefore the LSFF is subject to the regulatory requirements for the storage and treatment of dangerous waste. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610. This closure plan presents a description of the facility, the history of waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected

  6. 303-K Storage Facility closure plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-15

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  7. 105-DR large sodium fire facility closure Plan. Revision 2

    International Nuclear Information System (INIS)

    Ruck, F.A. III.

    1995-03-01

    The 105-DR Large Sodium Fire Facility (LSFF), which was operated 1972-1986, was a research laboratory that occupied the former ventilation supply room on the SW side of the 105-DR Reactor Facility. (The 105-DR defense reactor was shut down in 1964.) LSFF was used to investigate fire and safety aspects of large sodium or other metal alkali fires in the LMFBR facilities; it was also used to store and treat alkali metal waste. This closure plan presents a description of the unit, the history of the waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of LSFF is expected. It is located within the 100-DR-2 (source) and 100-HR-3 (groundwater) operable units, which will be addressed through the RCRA facility investigation/corrective measures study process

  8. Monitoring and evaluation plan for the Nez Perce Tribal Hatchery

    Energy Technology Data Exchange (ETDEWEB)

    Steward, C.R.

    1996-08-01

    The Nez Perce Tribe has proposed to build and operate the Nez Perce Tribal Hatchery (NPTH) in the Clearwater River subbasin of Idaho for the purpose of restoring self-sustaining populations of spring, summer, and fall chinook salmon to their native habitats. The project comprises a combination of incubation and rearing facilities, satellite rearing facilities, juvenile and adult collection sites, and associated production and harvest management activities. As currently conceived, the NPTH program will produce approximately 768,000 spring chinook parr, 800,000 summer chinook fry, and 2,000,000 fall chinook fry on an annual basis. Hatchery fish would be spawned, reared, and released under conditions that promote wild-type characteristics, minimize genetic changes in both hatchery and wild chinook populations, and minimize undesirable ecological interactions. The primary objective is to enable hatchery-produced fish to return to reproduce naturally in the streams in which they are released. These and other characteristics of the project are described in further detail in the Nez Perce Tribal Hatchery Master Plan, the 1995 Supplement to the Master Plan, and the Nez Perce Tribal Hatchery Program Environmental Impact Statement. The report in hand is referred to in project literature as the NPTH Monitoring and Evaluation (M&E) Plan. This report describes monitoring and evaluation activities that will help NPTH managers determine whether they were successful in restoring chinook salmon populations and avoiding adverse ecological impacts.

  9. Facility layout planning for educational systems: An application of fuzzy GIS and AHP

    Directory of Open Access Journals (Sweden)

    Hossein Ebrhaimzadeh Asmin

    2014-06-01

    Full Text Available One of the most important issues in urban planning programs is to allocate necessary spaces for educational applications. Selecting appropriate locations for training centers increases students' mental capabilities. Suitable location for the establishment of educational facilities is the first fundamental step for development of educational systems. The selection of optimal sites for educational facilities involves numerous parameters and it is essential to use multiple criteria decision making approaches to make wise decisions. This paper presents an empirical investigation on facility layout planning for educational systems in city of Birjand, Iran. Using fuzzy GIS as well as analytical hierarchy process (AHP, the study determines the most appropriate candidates for training centers.

  10. Seismic qualification program plan for continued operation at DOE-SRS nuclear material processing facilities

    International Nuclear Information System (INIS)

    Talukdar, B.K.; Kennedy, W.N.

    1991-01-01

    The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.IA requirements. In addition, many of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) his developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards,for existing NMP facility structures to continue operation Professionals involved in similar effort at other DOE facilities may find the program useful

  11. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  12. Oil and gas field code master list 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  13. Data quality maintenance of the Patient Master Index (PMI): a "snap-shot" of public healthcare facility PMI data quality and linkage activities.

    Science.gov (United States)

    Williams, Kelly; Robinson, Kerin; Toth, Alexandra

    Patient (or person) master index (PMI) data quality activities in public, acute healthcare facilities in the state of Victoria, Australia were evaluated in terms of health information management-information technology best practice including data standards and practice guidelines. The findings indicate that, whilst data quality and linkage activities are undertaken, many are limited in scope or effectiveness. In view of published evidence that: (i) duplicate patient files pose significant risks by reducing information available for clinical decision-making; and (ii) quality and clinical risk management require, as a measurable outcome, continuous monitoring of duplicate files, improvements to PMI data quality practices are recommended.

  14. Development of a unified federal/state coastal/inland oil and hazardous substance contingency plan for the state of Alaska

    International Nuclear Information System (INIS)

    Lautenberger, C.; Pearson, L.

    1993-01-01

    Passage of the US Oil Pollution Act (OPA) of 1990 expanded the existing federal planning and response framework in several ways. The OPA created a new requirement for facility and tank vessel response plans and creates an area-level planning and coordination structure to help supplement federal, regional, and local planning efforts. The OPA amended the existing Clean Water Act's section 311(j)(4), which establishes area committees and area contingency plans as primary components of this structure. In 1980, the Alaska legislature enacted legislation which defines the state's policies regarding oil spills. Following the 1989 Exxon Valdez spill, additional legislation was passed to expand and strengthen the state's oil spill program. Specifically, in 1989 the Senate Bill 261 required the Alaska Department of Environmental Conservation to develop, annually review, and revise the State Oil and Hazardous Substance Contingency Plans (State Master and Regional Plans). State regional plans serve as annexes to the State Master Plan. The coordinated and cooperative efforts by government agencies and local entities toward creating a unified federal/state, coastal/inland Oil and Hazardous Substance Contingency Plan are presented, along with the development and progress of unified area/regional contingency plans for Alaska. 3 figs

  15. Capacity Planning for Batch and Perfusion Bioprocesses Across Multiple Biopharmaceutical Facilities

    OpenAIRE

    Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S

    2014-01-01

    Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fe...

  16. Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  17. Involvement of the Public Health Authority in emergency planning and preparedness for nuclear facilities in Hungary

    International Nuclear Information System (INIS)

    Sztanyik, L.B.

    1986-01-01

    It is required by the Hungarian Atomic Energy Act and its enacting clause of 1980 that facilities established for the application of atomic energy be designed, constructed and operated in such a manner that abnormal operational occurrences can be avoided and unplanned exposures to radiation and radioactive substances can be prevented. The primary responsibility for planning and implementing emergency actions rests with the management of the operating organization. Thus one of the prerequisites of licensing the first nuclear power plant in Hungary was the preparation and submission for approval of an emergency plan by the operating organization. In addition to this, the council of the county where the power plant is located has also been obliged to prepare a complementary emergency plan, in co-operation with other regional and national authorities, for the prevention of consequences from an emergency that may extend beyond the site boundary of the plant. In preparing the complementary plan, the emergency plan of the facility had to be taken into account. Unlike most national authorities involved in nuclear matters, the Public Health Authority is involved in the preparation of plans for every kind of emergency in a nuclear facility, including even those whose consequences can probably be confined to the plant site. The paper discusses in detail the role and responsibility of the Public Health Authority in emergency planning and preparedness for nuclear facilities. (author)

  18. Field Investigation Plan for 1301-N and 1325-N Facilities Sampling to Support Remedial Design

    International Nuclear Information System (INIS)

    Weiss, S. G.

    1998-01-01

    This field investigation plan (FIP) provides for the sampling and analysis activities supporting the remedial design planning for the planned removal action for the 1301-N and 1325-N Liquid Waste Disposal Facilities (LWDFs), which are treatment, storage,and disposal (TSD) units (cribs/trenches). The planned removal action involves excavation, transportation, and disposal of contaminated material at the Environmental Restoration Disposal Facility (ERDF).An engineering study (BHI 1997) was performed to develop and evaluate various options that are predominantly influenced by the volume of high- and low-activity contaminated soil requiring removal. The study recommended that additional sampling be performed to supplement historical data for use in the remedial design

  19. 14 CFR 152.109 - Project eligibility: Airport planning.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Project eligibility: Airport planning. 152....109 Project eligibility: Airport planning. (a) Airport master planning. A proposed project for airport master planning is not approved unless— (1) The location of the existing or proposed airport is included...

  20. Capacity planning for batch and perfusion bioprocesses across multiple biopharmaceutical facilities.

    Science.gov (United States)

    Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S

    2014-01-01

    Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered. © 2014 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  1. Considerations in setting up and planning a graft processing facility.

    Science.gov (United States)

    Koh, Mickey B C

    2017-12-01

    The graft processing facility forms one of the core components of a clinical haematopoietic stem cell transplant program. The quality of a graft is instrumental in leading to consistent and reproducible outcomes of engraftment and other parameters. As such, meticulous planning and consideration is required and will include core elements including physical design and clinical correlates. The successful running of such a facility depends on an overarching quality program and adherence to local and international regulatory guidelines. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  2. Groundwater monitoring plan: 200 Areas treated effluent disposal facility (Project W-049H)

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-04-01

    This groundwater monitoring plan provides information that supports the US Department of Energy's application (DOE-RL 1994) for waste water discharge permit No. WA-ST-4502 from the State of Washington, under the auspices of Washington Administrative Code 173-216. The monitoring plan has two functions: (1) to summarize the results of a 3-yr characterization of the current hydrogeology and groundwater quality of the discharge site and (2) to provide plans for evaluating the effects of the facility's operation on groundwater quality and document compliance with applicable groundwater quality standards. Three wells were drilled to define the stratigraphy, evaluate sediment characteristics, and establish a groundwater monitoring net work for the discharge facility. These wells monitor groundwater quality upgradient and downgradient in the uppermost aquifer. This report proposes plans for continuing the monitoring of groundwater quality and aquifer characteristics after waste water discharges begin

  3. Robins Air Force Base Solar Cogeneration Facility design

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, B.L.; Bodenschatz, C.A.

    1982-06-01

    A conceptual design and a cost estimate have been developed for a Solar Cogeneration Facility at Robins Air Force Base. This demonstration solar facility was designed to generate and deliver electrical power and process steam to the existing base distribution systems. The facility was to have the potential for construction and operation by 1986 and make use of existing technology. Specific objectives during the DOE funded conceptual design program were to: prepare a Solar Cogeneration Facility (overall System) Specification, select a preferred configuration and develop a conceptual design, establish the performance and economic characteristics of the facility, and prepare a development plan for the demonstration program. The Westinghouse team, comprised of the Westinghouse Advanced Energy Systems Division, Heery and Heery, Inc., and Foster Wheeler Solar Development Corporation, in conjunction with the U.S. Air Force Logistics Command and Georgia Power Company, has selected a conceptual design for the facility that will utilize the latest DOE central receiver technology, effectively utilize the energy collected in the application, operate base-loaded every sunny day of the year, and be applicable to a large number of military and industrial facilities throughout the country. The design of the facility incorporates the use of a Collector System, a Receiver System, an Electrical Power Generating System, a Balance of Facility - Steam and Feedwater System, and a Master Control System.

  4. Status of U.S. Plans for an Advanced ISOL Facility. A Brief Report

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1998-01-01

    A brief discussion is provided of the current status of plans to build an advanced ISOL radioactive ion beam facility in the US. Designs for this new facility, which was recommended as the next major construction project of the DOE Nuclear Physics Program Office, have been proposed by two US national laboratories, Argonne National Laboratory and Oak Ridge National Laboratory. The new facility will provide orders-of-magnitude higher radioactive beam currents than existing facilities of this type and will cost in the range of $250 million

  5. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Alcohol Production Facilities Planning, Performing... of Part 1980—Alcohol Production Facilities Planning, Performing, Development and Project Control (I..., without recourse to the Government, for the settlement and satisfaction of all contractual and...

  6. Formulation for less master production schedule instability under rolling horizon

    OpenAIRE

    Herrera , Carlos; Thomas , André

    2009-01-01

    International audience; In Manufacturing Planning and Control Systems, the Master Production Schedule (MPS) makes a link between tactical and operational levels, taking into account information provided by end items, demand forecast as well as Sales and Operations Planning (S&OP) suggestions. Therefore, MPS plays an important role to maintain an adequate customers service level and an efficient production system. In a rolling planning horizon, MPS is periodically computed over whole operation...

  7. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  8. Present status of refining and conversion facility dismantling. Progress in first half of 2010FY

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Tanaka, Yoshio; Takahashi, Nobuo; Tokuyasu, Takashi

    2011-06-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center had the natural uranium conversion process and reprocessed uranium conversion process. The construction of this facility was started in 1979 and completed in October 1981. Dismantling of equipments in radiation controlled area of this facility was started from 2008, and all equipments in radiation controlled area will be dismantled by the 2011 fiscal year. This report describes the master plan of this decommissioning and shows as the progress in first half year of 2010FY, the actual time schedule, the method of decommissioning, the decommissioning progress appearance with photographs, work rates of each room / each worker class, and the quantity of dismantled materials and secondary wastes. (author)

  9. Present status of refining and conversion facility dismantling. Progress in first half of 2009FY

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Tanaka, Yoshio; Takahashi, Nobuo; Tokuyasu, Takashi

    2010-03-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center had the natural uranium conversion process and reprocessed uranium conversion process. The construction of this facility was started in 1979 and completed in October 1981. Dismantling of equipments in radiation controlled area of this facility was started from 2008, and all equipments in radiation controlled area will be dismantled by the 2011 fiscal year. This report describes the master plan of this decommissioning and shows as the progress in first half year of 2009FY, the actual time schedule, the method of decommissioning, the decommissioning progress appearance with photographs, work rates of each room / each worker class, and the quantity of dismantled materials and secondary wastes. (author)

  10. Present status of refining and conversion facility dismantling. Progress in latter half of 2008FY

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Takahashi, Nobuo; Tokuyasu, Takashi

    2010-01-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center had the natural uranium conversion process and reprocessed uranium conversion process. The construction of this facility was started in 1979 and completed in October 1981. Dismantling of equipments in radiation controlled area of this facility was started from 2008, and all equipments in radiation controlled area will be dismantled by the 2011 fiscal year. This report describes the master plan of this decommissioning and shows as the progress in latter half year of 2008FY, the actual time schedule, the method of decommissioning, the decommissioning progress appearance with photographs, work rates of each room/each worker class, and the quantity of dismantled materials and secondary wastes. (author)

  11. Quality Assurance Program Plan (QAPP) Waste Encapsulation and Storage Facility (WESF)

    International Nuclear Information System (INIS)

    ROBINSON, P.A.

    2000-01-01

    This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD

  12. Strategic sizing of energy storage facilities in electricity markets

    DEFF Research Database (Denmark)

    Nasrolahpour, Ehsan; Kazempour, Seyyedjalal; Zareipour, Hamidreza

    2016-01-01

    This paper proposes a model to determine the optimasize of an energy storage facility from a strategic investor’s perspective. This investor seeks to maximize its profit through making strategic planning, i.e., storage sizing, and strategic operational, i.e., offering and bidding, decisions. We...... consider the uncertainties associated with rival generators’ offering strategies and future load levels in the proposed model. The strategic investment decisions include the sizes of charging device, discharging device and energy reservoir. The proposed model is a stochastic bi-level optimization problem......; the planning and operation decisions are made in the upper-level, and market clearing is modeled in the lower-level under different operating scenarios. To make the proposed model computationally tractable, an iterative solution technique based on Benders’ decomposition is implemented. This provides a master...

  13. Groundwater Monitoring Plan for the 1301-N, 1324-N/NA, and 1325-N RCRA Facilities

    International Nuclear Information System (INIS)

    Hartman, Mary J.

    2001-01-01

    The 1301-N and 1325-N Liquid Waste Disposal Facilities, the 1324-N Surface Impoundment, and the 1324-NA Percolation Pond, located in the 100 N Area of the Hanford Site, are regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The closure plans for these facilities stipulate that groundwater is monitored according to the 100-N Pilot Project: Proposed Consolidated Groundwater Monitoring Program (BHI-00725). This document supplements the consolidated plan by providing information on sampling and analysis protocols, quality assurance, data management, and a conceptual model for the RCRA sites. Monitoring well networks, constituents, and sampling frequency remain the same as in the consolidated plan or the previous groundwater monitoring plan (Hartman 1996)

  14. Pre-Project planning of Capital Facilities at NASA

    OpenAIRE

    Barrow, Benjamin John

    1999-01-01

    This thesis details the development of a NASA specific Project Definition Rating Index (PDRI) tool. This tool is to be used as a checklist for determining the necessary steps to follow in defining project scope and as a means to monitor progress and assess scope definition completeness at various stages during the NASA Pre-Project Planning process. This thesis also describes and identifies specific points in the NASA Capital Facility Programming Cycle for the performance of PDRI assessments ...

  15. 200 Area effluent treatment facility process control plan 98-02

    International Nuclear Information System (INIS)

    Le, E.Q.

    1998-01-01

    This Process Control Plan (PCP) provides a description of the background information, key objectives, and operating criteria defining Effluent Treatment Facility (ETF) Campaign 98-02 as required per HNF-IP-0931 Section 37, Process Control Plans. Campaign 98-62 is expected to process approximately 18 millions gallons of groundwater with an assumption that the UP-1 groundwater pump will be shut down on June 30, 1998. This campaign will resume the UP-1 groundwater treatment operation from Campaign 97-01. The Campaign 97-01 was suspended in November 1997 to allow RCRA waste in LERF Basin 42 to be treated to meet the Land Disposal Restriction Clean Out requirements. The decision to utilize ETF as part of the selected interim remedial action of the 200-UP-1 Operable Unit is documented by the Declaration of the Record of Decision, (Ecology, EPA and DOE 1997). The treatment method was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Hanford Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement or TPA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP)

  16. Capacity Planning for Batch and Perfusion Bioprocesses Across Multiple Biopharmaceutical Facilities

    Science.gov (United States)

    Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S

    2014-01-01

    Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered. © 2013 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:594–606, 2014 PMID:24376262

  17. Calculation of parameters for inspection planning and evaluation: mixed-oxide fuel fabrication facilities

    International Nuclear Information System (INIS)

    Reardon, P.T.; Mullen, M.F.

    1982-08-01

    As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities for mixed-oxide fuel fabrication facilities. There were four distinct efforts involved in this task. These were as follows: show the effect on a material balance verification of using two variables measurement methods in some strata; perform additional calculations for the reference facility described in STR-89; modify the INSPECT computer programs to be used as an after-inspection analysis tool, as well as a preinspection planning tool; provide written comments and explantations of text and graphs of the first draft of STR-89, Safeguards Considerations for Mixed-Oxide Fuel Element Fabrication Facilities, by W. Bahm, T. Shea, and D. Tolchenkov, System Studies Section, IAEA

  18. Use of information systems in Air Force medical treatment facilities in strategic planning and decision-making.

    Science.gov (United States)

    Yap, Glenn A; Platonova, Elena A; Musa, Philip F

    2006-02-01

    An exploratory study used Ansoff's strategic planning model as a framework to assess perceived effectiveness of information systems in supporting strategic business plan development at Air Force medical treatment facilities (MTFs). Results showed information systems were most effective in supporting historical trend analysis, strategic business plans appeared to be a balance of operational and strategic plans, and facilities perceived a greater need for new clinical, vice administrative, information systems to support strategic planning processes. Administrators believed information systems should not be developed at the local level and perceived information systems have the greatest impact on improving clinical quality outcomes, followed by ability to deliver cost effective care and finally, ability to increase market share.

  19. 241-CX-70, 241-CX-71, and 241-CX-72 underground storage tanks at the strontium semiworks facility supplemental information to the Hanford Facility Contingency Plan

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-03-01

    This document is a unit-specific contingency plan for the underground storage tanks at the Strontium Semiworks Facility and is intended to be used as a supplement to the Hanford Facility Contingency Plan. This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of WAC 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units. Radioactive material is contained in three underground storage tanks: 241-CX-70, 241-CX-71, and 241-CX-72. Tank 241-CX-70 has been emptied, except for residual quantities of waste, and has been classified as an elementary neutralization tank under the RCRA. Tanks 241-CX-71 and 241-CX-72 contain radioactive and Washington State-only dangerous waste material, but do not present a significant hazard to adjacent facilities, personnel, or the environment. Currently, dangerous waste management activities are not being applied at the tanks. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the Strontium Semiworks Facility

  20. Site 300 City Water Master Plan

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Jeff [Stantec Consulting Services Inc., Irvine, CA (United States)

    2017-03-13

    Lawrence Livermore National Laboratory (LLNL), a scientific research facility, operates an experimental test site known as Site 300. The site is located in a remote area of southeastern Alameda County, California, and consists of about 100 facilities spread across 7,000-acres. The Site 300 water system includes groundwater wells and a system of storage tanks, booster pumps, and underground piping to distribute water to buildings and significant areas throughout the site. Site 300, which is classified as a non-transient non-community (NTNC) water system, serves approximately 110 employees through 109 service connections. The distribution system includes approximately 76,500-feet of water mains varying from 4- to 10-inches in diameter, mostly asbestos cement (AC) pipe, and eleven water storage tanks. The water system is divided into four pressure zones fed by three booster pump stations to tanks in each zone.

  1. Plan for reevaluation of NRC policy on decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1978-03-01

    Recognizing that the current generation of large commercial reactors and supporting nuclear facilities would substantially increase future decommissioning needs, the NRC staff began an in-depth review and re-evaluation of NRC's regulatory approach to decommissioning in 1975. Major technical studies on decommissioning have been initiated at Battelle Pacific Northwest Laboratory in order to provide a firm information base on the engineering methodology, radiation risks, and estimated costs of decommissioning light water reactors and associated fuel cycle facilities. The Nuclear Regulatory Commission is now considering development of a more explicit overall policy for nuclear facility decommissioning and amending its regulations in 10 CFR Parts 30, 40, 50, and 70 to include more specific guidance on decommissioning criteria for production and utilization facility licensees and byproduct, source, and special nuclear material licensees. The report sets forth in detail the NRC staff plan for the development of an overall NRC policy on decommissioning of nuclear facilities

  2. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO)

  3. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  4. Comprehensive development plans for the low- and intermediate-level radioactive waste disposal facility in Korea and preliminary safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kang Il; Kim, Jin Hyeong; Kwon, Mi Jin; Jeong, Mi Seon; Hong, Sung Wook; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    The disposal facility in Gyeongju is planning to dispose of 800,000 packages of low- and intermediate- level radioactive waste. This facility will be developed as a complex disposal facility that has various types of disposal facilities and accompanying management. In this study, based on the comprehensive development plan of the disposal facility, a preliminary post-closure safety assessment is performed to predict the phase development of the total capacity for the 800,000 packages to be disposed of at the site. The results for each scenario meet the performance target of the disposal facility. The assessment revealed that there is a significant impact of the inventory of intermediate-level radionuclide waste on the safety evaluation. Due to this finding, we introduce a disposal limit value for intermediate-level radioactive waste. With stepwise development of safety case, this development plan will increase the safety of disposal facilities by reducing uncertainties within the future development of the underground silo disposal facilities.

  5. Engineering Task Plan for the Integrity Assessment Examination of Double-Contained Receiver Tanks (DCRT), Catch Tanks and Ancillary facilities

    International Nuclear Information System (INIS)

    BECKER, D.L.

    2000-01-01

    This Engineering Task Plan (ETP) presents the integrity assessment examination of three DCRTs, seven catch tanks, and two ancillary facilities located in the 200 East and West Areas of the Hanford Site. The integrity assessment examinations, as described in this ETP, will provide the necessary information to enable the independently qualified registered professional engineer (IQRPE) to assess the condition and integrity of these facilities. The plan is consistent with the Double-Shell Tank Waste Transfer Facilities Integrity Assessment Plan

  6. Fast Flux Test Facility (FFTF) standby plan

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1997-03-06

    The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

  7. Fast Flux Test Facility (FFTF) standby plan

    International Nuclear Information System (INIS)

    Hulvey, R.K.

    1997-01-01

    The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy's dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode

  8. Salt Repository Project: FY 85 technical project plan

    International Nuclear Information System (INIS)

    1985-07-01

    The FY 85 technical plan for the Salt Repository Project is briefly presented. The objectives of the project in relation to the Civilian Radioactive Waste Management Program are discussed, and the technical activities directed toward accomplishing these objectives are detailed. A budget is presented for each of the Level 2 work breakdown structure tasks (Systems, Waste Package, Site, Repository, Regulatory and Institutional, Exploratory Shaft, Test Facilities, Land Acquisition, and Project Management) in the various sections. An overall description, current status, and planned activities are presented for each of the subtasks which make up the above-mentioned Level 2 tasks. A strategy diagram and a master schedule are included and each of the milestones is also listed chronologically in the sections

  9. Final work plan : environmental site investigation at Sylvan Grove, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2012-07-15

    what future CCC/USDA actions may be necessary, with the ultimate goal of achieving classification of the Sylvan Grove site at no further action status. The proposed activities are to be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory, a nonprofit, multidisciplinary research center operated by the UChicago Argonne, LLC, for the U.S. Department of Energy. Argonne provides technical assistance to the CCC/USDA concerning environmental site characterization and remediation at former grain storage facilities. Argonne issued a Master Work Plan (Argonne 2002) that has been approved by the KDHE. The Master Work Plan describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. That document should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Sylvan Grove.

  10. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  11. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  12. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Graf, F.A. Jr.

    1995-02-27

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System`s pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System.

  13. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    International Nuclear Information System (INIS)

    Graf, F.A. Jr.

    1995-01-01

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System's pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System

  14. KSC facilities status and planned management operations. [for Shuttle launches

    Science.gov (United States)

    Gray, R. H.; Omalley, T. J.

    1979-01-01

    A status report is presented on facilities and planned operations at the Kennedy Space Center with reference to Space Shuttle launch activities. The facilities are essentially complete, with all new construction and modifications to existing buildings almost finished. Some activity is still in progress at Pad A and on the Mobile Launcher due to changes in requirements but is not expected to affect the launch schedule. The installation and testing of the ground checkout equipment that will be used to test the flight hardware is now in operation. The Launch Processing System is currently supporting the development of the applications software that will perform the testing of this flight hardware.

  15. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    International Nuclear Information System (INIS)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Etnier, E.L.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Greeley, M.S.; Halbrook, R.S.; Harris, R.A.; Holladay, S.K.; Hook, L.A.; Howell, P.L.; Kszos, L.A.; Levine, D.A.; Skiles, J.L.; Suter, G.W.

    1992-12-01

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1 of this document is the plan for sampling and analysis (S ampersand A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S ampersand A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI

  16. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Etnier, E.L.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Greeley, M.S.; Halbrook, R.S.; Harris, R.A.; Holladay, S.K.; Hook, L.A.; Howell, P.L.; Kszos, L.A.; Levine, D.A.; Skiles, J.L.; Suter, G.W.

    1992-12-01

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1 of this document is the plan for sampling and analysis (S A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI.

  17. MOECSW trains master trainers and supervisors.

    Science.gov (United States)

    1995-01-01

    The Ministry of Education, Culture and Social Welfare (MOECSW), as part of the Population Education Programs (formal and informal), undertook a series of training programs to upgrade the knowledge and skills of master trainers, supervisors, and resource persons. As part of the Population Education in the Formal School Sector Project (NEP/93/P01), under the Curriculum Development Centre five training courses were organized to train 220 master trainers. Under the "Three Steps Training Strategy," these 220 master trainers would teach 825 secondary school headmasters who would reach 2025 secondary school teachers. The training courses were held in Dhangadi, April 23-27, 1995; in Pokhara, April 2-7; and in Biratnagar, February 20-24. The areas covered included: 1) the pedagogical aspect of population education (content, scope, objectives, nature, teaching methodologies); 2) demography and population dynamics (composition, distribution and density, sources of population data, demographic transition, consequences and determinants of population growth); 3) family life and adolescence and human sexuality education, including acquired immunodeficiency syndrome (AIDS) education; 4) maternal and child health, and family planning; 5) environment; and 6) population policy and programs. As part of the Population Education Programme (NEP/93/P08), a Master Trainers Training Workshop was held in Makwanpur, March 26-28, 1995. These master trainers would train trainers who would train the facilitators and teachers at learning centers for adult learners under the literacy and post literacy programs. This course focused on the approaches and strategies for integrating population education in development programs, and non-formal education, adult literacy, post literacy, and out-of-school children programs. Dr. D. de Rebello and Mr. S. Hutabarat, CST Advisors on Population Education, organized the training courses and served as resource persons.

  18. Flexible high-speed FASTBUS master for data read-out and preprocessing

    International Nuclear Information System (INIS)

    Wurz, A.; Manner, R.

    1990-01-01

    This paper describes a single slot FASTBUS master module. It can be used for read-out and preprocessing of data that are read out from FASTBUS modules, e.g., and ADC system. The module consists of a 25 MHz, 32-bit processor MC 68030 with cache memory and memory management, a floating point coprocessor MC68882, 4 MBytes of main memory, and FASTBUS master and slave interfaces. In addition, a DMA controller for read-out of FASTBUS data is provided. The processor allows I/O via serial ports, a 16-bit parallel port, and a transputer link. Additional interfaces are planned. The main memory is multi-ported and can be accessed directly by the CPU, the FASTBUS, and external masters via the high-speed local bus that is accessible by way of a connector. The FASTBUS interface supports most of the standard operations in master and slave mode

  19. Local Authorities Participation in the Tourism Planning Process

    Directory of Open Access Journals (Sweden)

    Ali SELCUK CAN

    2014-02-01

    Full Text Available The aim of this article is to explore the weaknesses and strengths of local authorities in terms of their participation in the tourism planning process in Turkey. A two-page questionnaire was applied, along with structured interviews with 71 administrators of metropolitan, provincial, and district authorities, between January 1 and September 31, 2011. The findings of the survey suggest that tourism planning responsibilities should be devolved to local authorities. Local authorities do not extensively participate in tourism planning at present because of inadequate budgeting and tourism allocation facilities, insufficient cooperation among stakeholders, and a domination of central administration traditions. Causes of insufficient participation in tourism planning statistically differ among local authorities, in terms of insufficient realizations of the importance of tourism planning by stakeholders, and public land allocation for the purpose of tourism. On the other hand, there is a statistically significant difference between local authorities that have a tourism master plan and those who do not, in terms of a lack of educational opportunities for planners.

  20. Project management plan for the isotopes facilities deactivation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    Purpose of the deactivation project is to place former isotopes production facilities at ORNL in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance. This management plan was prepared to document project objectives, define organizational relationships and responsibilities, and outline the management control systems. The project has adopted the strategy of deactivating the simple facilities first. The plan provides a road map for the quality assurance program and identifies other documents supporting the Isotopes Facilities Deactivation Project

  1. Vulnerability Assessments and Resilience Planning at Federal Facilities. Preliminary Synthesis of Project

    Energy Technology Data Exchange (ETDEWEB)

    Moss, R. H. [Pacific Northwest National Lab. (PNNL)/Univ. of Maryland, College Park, MD (United States). Joint Global Change Research Inst.; Blohm, A. J. [Univ. of Maryland, College Park, MD (United States); Delgado, A. [Pacific Northwest National Lab. (PNNL)/Univ. of Maryland, College Park, MD (United States). Joint Global Change Research Inst.; Henriques, J. J. [James Madison Univ., Harrisonburg, VA (United States); Malone, E L. [Pacific Northwest National Lab. (PNNL)/Univ. of Maryland, College Park, MD (United States). Joint Global Change Research Inst.

    2015-08-15

    U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. Agencies have been experimenting with these frameworks and approaches. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Department of Energy and the Department of Defense. The purpose of the paper is to solicit comments and feedback from interested program managers and analysts before final conclusions are published. The paper describes the characteristics of a systematic process for prioritizing needs for adaptation planning at individual facilities and examines requirements and methods needed. It then suggests a framework of steps for vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. In a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change. The case studies point to several preliminary conclusions; (1) Vulnerability assessments are needed to translate potential changes in climate exposure to estimates of impacts and evaluation of their significance for operations and mission attainment, in other words into information that is related to and useful in ongoing planning, management, and decision-making processes; (2) To increase the relevance and utility of vulnerability assessments to site personnel, the assessment process needs to emphasize the characteristics of the site infrastructure, not just climate change; (3) A multi-tiered framework that includes screening, vulnerability assessments at the most vulnerable installations, and adaptation design will efficiently target high-risk sites and infrastructure

  2. Penataan Menara BTS (Cell Planning)

    OpenAIRE

    Prijono, Wahyu Adi

    2010-01-01

    Penataan menara/BTS merupakan proses master plan penataan menara telekomunikasi seluler berdasarkan estetika dan kesesuaian dengan KKOP ( Kawasan Keselamatan Operasional Penerbangan ) dan tata ruang wilayah suatu daerah guna mendapatkan jumlah menara yang optimal di suatu wilayah.Penataan Menara Master plan meliputi, analisis potensi pengguna telepon seluler sampai 5 tahun ke depan, Prediksi deman BTS, perhitungan kapasitas BTS 5 tahun kedepan, pemetaan pola penataan pemakaian menara / tower ...

  3. Institutional Repositories: The Experience of Master's and Baccalaureate Institutions

    Science.gov (United States)

    Markey, Karen; St. Jean, Beth; Soo, Young Rieh; Yakel, Elizabeth; Kim, Jihyun

    2008-01-01

    In 2006, MIRACLE Project investigators censused library directors at all U.S. academic institutions about their activities planning, pilot testing, and implementing the institutional repositories on their campuses. Out of 446 respondents, 289 (64.8 percent) were from master's and baccalaureate institutions (M&BIs) where few operational…

  4. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  5. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cells 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas

  6. Monitoring and Evaluation Plan for the Nez Perce Tribal Hatchery, 1996 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Steward, Cleveland R.

    1996-08-01

    The Nez Perce Tribe has proposed to build and operate the Nez Perce Tribal Hatchery (NPTH) in the Clearwater River subbasin of Idaho for the purpose of restoring self-sustaining populations of spring, summer, and fall chinook salmon to their native habitats. The project comprises a combination of incubation and rearing facilities, satellite rearing facilities, juvenile and adult collection sites, and associated production and harvest management activities. As currently conceived, the NPTH program will produce approximately 768,000 spring chinook parr, 800,000 summer chinook fry, and 2,000,000 fall chinook fry on an annual basis. Hatchery fish would be spawned, reared, and released under conditions that promote wild-type characteristics, minimize genetic changes in both hatchery and wild chinook populations, and minimize undesirable ecological interactions. The primary objective is to enable hatchery-produced fish to return to reproduce naturally in the streams in which they are released. These and other characteristics of the project are described in further detail in the Nez Perce Tribal Hatchery Master Plan (Larson and Mobrand 1992), the 1995 Supplement to the Master Plan (Johnson et al. 1995), and the Nez Perce Tribal Hatchery Program Environmental Impact Statement (Bonneville Power Administration et al. 1996). The report in hand is referred to in project literature as the NPTH Monitoring and Evaluation (M&E) Plan. This report describes monitoring and evaluation activities that will help NPTH managers determine. whether they were successful in restoring chinook salmon populations and avoiding adverse ecological impacts. Program success will be gauged primarily by changes in the abundance and distribution of supplemented chinook populations. The evaluation of project-related impacts will focus on the biological effects of constructing and operating NPTH hatchery facilities, introducing hatchery fish into the natural environment, and removing or displacing wild

  7. Strategic planning and marketing research for older, inner-city health care facilities: a case study.

    Science.gov (United States)

    Wood, V R; Robertson, K R

    1992-01-01

    Numerous health care facilities, located in downtown metropolitan areas, now find themselves surrounded by a decaying inner-city environment. Consumers may perceive these facilities as "old," and catering to an "urban poor" consumer. These same consumers may, therefore, prefer to patronize more modern facilities located in suburban areas. This paper presents a case study of such a health care facility and how strategic planning and marketing research were conducted in order to identify market opportunities and new strategic directions.

  8. Mastering the Master Space

    CERN Document Server

    Forcella, Davide; He, Yang-Hui; Zaffaroni, Alberto

    2008-01-01

    Supersymmetric gauge theories have an important but perhaps under-appreciated notion of a master space, which controls the full moduli space. For world-volume theories of D-branes probing a Calabi-Yau singularity X the situation is particularly illustrative. In the case of one physical brane, the master space F is the space of F-terms and a particular quotient thereof is X itself. We study various properties of F which encode such physical quantities as Higgsing, BPS spectra, hidden global symmetries, etc. Using the plethystic program we also discuss what happens at higher number N of branes. This letter is a summary and some extensions of the key points of a longer companion paper arXiv:0801.1585.

  9. Groundwater protection plan for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Weekes, D.C.; Jaeger, G.K.; McMahon, W.J.; Ford, B.H.

    1996-01-01

    This document is the groundwater protection plan for the Environmental Restoration Disposal Facility (ERDF) Project. This plan is prepared based on the assumption that the ERDF will receive waste containing hazardous/dangerous constituents, radioactive constituents, and combinations of both. The purpose of this plan is to establish a groundwater monitoring program that (1) meets the intent of the applicable or relevant and appropriate requirements, (2) documents baseline groundwater conditions, (3) monitors those conditions for change, and (4) allows for modifications to groundwater sampling if required by the leachate management program. Groundwater samples indicate the occurrence of preexisting groundwater contamination in the uppermost unconfined aquifer below the ERDF Project site, as a result of past waste-water discharges in the 200 West Area. Therefore, it is necessary for the ERDF to establish baseline groundwater quality conditions and to monitor changes in the baseline over time. The groundwater monitoring program presented in this plan will provide the means to assess onsite and offsite impacts to the groundwater. In addition, a separate leachate management program will provide an indication of whether the liners are performing within design standards

  10. Radiation safety during remediation of the SevRAO facilities: 10 years of regulatory experience.

    Science.gov (United States)

    Sneve, M K; Shandala, N; Kiselev, S; Simakov, A; Titov, A; Seregin, V; Kryuchkov, V; Shcheblanov, V; Bogdanova, L; Grachev, M; Smith, G M

    2015-09-01

    In compliance with the fundamentals of the government's policy in the field of nuclear and radiation safety approved by the President of the Russian Federation, Russia has developed a national program for decommissioning of its nuclear legacy. Under this program, the State Atomic Energy Corporation 'Rosatom' is carrying out remediation of a Site for Temporary Storage of spent nuclear fuel (SNF) and radioactive waste (RW) at Andreeva Bay located in Northwest Russia. The short term plan includes implementation of the most critical stage of remediation, which involves the recovery of SNF from what have historically been poorly maintained storage facilities. SNF and RW are stored in non-standard conditions in tanks designed in some cases for other purposes. It is planned to transport recovered SNF to PA 'Mayak' in the southern Urals. This article analyses the current state of the radiation safety supervision of workers and the public in terms of the regulatory preparedness to implement effective supervision of radiation safety during radiation-hazardous operations. It presents the results of long-term radiation monitoring, which serve as informative indicators of the effectiveness of the site remediation and describes the evolving radiation situation. The state of radiation protection and health care service support for emergency preparedness is characterized by the need to further study the issues of the regulator-operator interactions to prevent and mitigate consequences of a radiological accident at the facility. Having in mind the continuing intensification of practical management activities related to SNF and RW in the whole of northwest Russia, it is reasonable to coordinate the activities of the supervision bodies within a strategic master plan. Arrangements for this master plan are discussed, including a proposed programme of actions to enhance the regulatory supervision in order to support accelerated mitigation of threats related to the nuclear legacy in the

  11. 105-DR Large Sodium Fire Facility closure plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, and activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950`s and is located in the 100-D Area of the Hanford Site. The building housed the 105-DR defense reactor, which was shut down in 1964. The LSFF was initially used only for engineering-scale alkali metal reaction studies. In addition, the Fusion Safety Support Studies program sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium lead compounds. The facility has also been used to store and treat alkali metal waste, therefore the LSFF is subject to the regulatory requirements for the storage and treatment of dangerous waste. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610. This closure plan presents a description of the facility, the history of waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

  12. Participative Facility Planning for Obstetrical and Neonatal Care Processes: Beginning of Life Process

    Directory of Open Access Journals (Sweden)

    Jori Reijula

    2016-01-01

    Full Text Available Introduction. Old hospitals may promote inefficient patient care processes and safety. A new, functionally planned hospital presents a chance to create an environment that supports streamlined, patient-centered healthcare processes and adapts to users’ needs. This study depicts the phases of a facility planning project for pregnant women and newborn care processes (beginning of life process at Turku University Hospital. Materials and Methods. Project design reports and meeting documents were utilized to assess the beginning of life process as well as the work processes of the Women’s and Children’s Hospital. Results. The main elements of the facility design (FD project included rigorous preparation for the FD phase, functional planning throughout the FD process, and setting key values: (1 family-centered care, (2 Lean thinking and Lean tools as the framework for the FD process, (3 safety, and (4 cooperation. Conclusions. A well-prepared FD project with sufficient insight into functional planning, Lean thinking, and user-centricity seemed to facilitate the actual FD process. Although challenges occurred, the key values were not forgone and were successfully incorporated into the new hospital building.

  13. Hazardous Waste Cerification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22

  14. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    International Nuclear Information System (INIS)

    Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Leibfritz, J.R.; Martinez, A.; Nagaitsev, S.; Nobrega, L.E.

    2012-01-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  15. Waste sampling and characterization facility (WSCF) maintenance implementation plan

    International Nuclear Information System (INIS)

    Heinemann, J.L.; Millard, G.E.

    1997-08-01

    This Maintenance Implementation Plan (MIP) is written to satisfy the requirements of the US Department of Energy (DOE) Order 4330.4B, Maintenance Management Program that specifies the general policy and objectives for the establishment of the DOE controlled maintenance programs. These programs provide for the management and performance of cost effective maintenance and repair of the DOE property, which includes facilities. This document outlines maintenance activities associated with the facilities operated by Waste Management Hanford, Inc. (WMH). The objective of this MIP is to provide baseline information for the control and execution of WMH Facility Maintenance activities relative to the requirements of Order 4330.4B, assessment of the WMH maintenance programs, and actions necessary to maintain compliance with the Order. Section 2.0 summarizes the history, mission and description of the WMH facilities. Section 3.0 describes maintenance scope and requirements, and outlines the overall strategy for implementing the maintenance program. Specific elements of DOE Order 4330.4B are addressed in Section 4.0, listing the objective of each element, a discussion of the WMH compliance methodology, and current implementation requirements with references to WMH and HNF policies and procedures. Section 5.0 addresses deviations from policy requirements, and Section 6.0 is a schedule for specific improvements in support of this MIP

  16. Strain Rate Effects, Transition Behaviour and Master Curve Concept

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Pluvinage, G.; Holzmann, Miloslav

    č. 8 (2004), s. IV 16-IV 22 ISSN 1291-8199 R&D Projects: GA AV ČR IAA2041003; GA ČR GA106/01/0342 Institutional research plan: CEZ:AV0Z2041904 Keywords : ferritic steel * pressure vessel steel * master curve Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. National Ignition Facility quality assurance plan for laser materials and optical technology

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, C.R.

    1996-05-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This subtier Quality Assurance Plan (QAP) applies to activities of the Laser Materials & Optical Technology (LM&OT) organization and its subcontractors. It responds to the NIF Quality Assurance Program Plan (QAPP, L-15958-2, NIF-95-499) and Department of Energy (DOE) Order 5700.6C. This Plan is organized according to 10 Quality Assurance (QA) criteria and subelements of a management system as outlined in the NIF QAPP. This Plan describes how those QA requirements are met. This Plan is authorized by the Associate Project Leader for the LM&OT organization, who has assigned responsibility to the Optics QA engineer to maintain this plan, with the assistance of the NIF QA organization. This Plan governs quality-affecting activities associated with: design; procurement; fabrication; testing and acceptance; handling and storage; and installation of NIF Project optical components into mounts and subassemblies.

  18. National Ignition Facility quality assurance plan for laser materials and optical technology

    International Nuclear Information System (INIS)

    Wolfe, C.R.

    1996-05-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This subtier Quality Assurance Plan (QAP) applies to activities of the Laser Materials ampersand Optical Technology (LM ampersand OT) organization and its subcontractors. It responds to the NIF Quality Assurance Program Plan (QAPP, L-15958-2, NIF-95-499) and Department of Energy (DOE) Order 5700.6C. This Plan is organized according to 10 Quality Assurance (QA) criteria and subelements of a management system as outlined in the NIF QAPP. This Plan describes how those QA requirements are met. This Plan is authorized by the Associate Project Leader for the LM ampersand OT organization, who has assigned responsibility to the Optics QA engineer to maintain this plan, with the assistance of the NIF QA organization. This Plan governs quality-affecting activities associated with: design; procurement; fabrication; testing and acceptance; handling and storage; and installation of NIF Project optical components into mounts and subassemblies

  19. Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-04-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  20. Present status of refining and conversion facility dismantling. Progress in latter half of 2010FY

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Tanaka, Yoshio; Takahashi, Nobuo; Tokuyasu, Takashi

    2011-09-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center had the natural uranium conversion process and reprocessed uranium conversion process. The construction of this facility was started in 1979 and completed in October 1981. Dismantling of equipments in radiation controlled area of this facility was started from 2008. Equipments in radiation controlled area (excluding ventilating equipment and liquid waste treatment equipment) will be dismantled by the 2011 fiscal year, and ventilating equipment and liquid waste treatment equipment will be dismantled by the 2014 fiscal year. This report describes the master plan of this decommissioning and shows as the progress in latter half year of 2010FY, the actual time schedule, the method of decommissioning, the decommissioning progress appearance with photographs, work rates of each room / each worker class, and the quantity of dismantled materials and secondary wastes. (author)

  1. Federal Facilities Compliance Act, Draft Site Treatment Plan: Background Volume, Part 2, Volume 1

    International Nuclear Information System (INIS)

    1994-01-01

    This Draft Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed include: purpose and scope of the plan; site history and mission; draft plant organization; waste minimization; waste characterization; preferred option selection process; technology for treating low-level radioactive wastes and TRU wastes; future generation of mixed waste streams; funding; and process for evaluating disposal issues in support of the site treatment plan

  2. Implementation plan for deployment of Federal Interim Storage facilities for commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1985-01-01

    This document is the second annual report on plans for providing Federal Interim Storage (FIS) capacity. References are made to the first annual report as necessary (DOE/RW-0003, 1984). Background factors and aspects that were considered in the development of this deployment plan and activities and interactions considered to be required to implement an FIS program are discussed. The generic approach that the Department plans to follow in deploying FIS facilities is also described

  3. Impact of the Urban Reproductive Health Initiative on family planning uptake at facilities in Kenya, Nigeria, and Senegal.

    Science.gov (United States)

    Winston, Jennifer; Calhoun, Lisa M; Corroon, Meghan; Guilkey, David; Speizer, Ilene

    2018-01-05

    The 2012 London Summit on Family Planning set ambitious goals to enable 120 million more women and adolescent girls to use modern contraceptives by 2020. The Urban Reproductive Health Initiative (URHI) was a Bill & Melinda Gates Foundation funded program designed to help contribute to these goals in urban areas in India, Kenya, Nigeria, and Senegal. URHI implemented a range of country-specific demand and supply side interventions, with supply interventions generally focused on improved service quality, provider training, outreach to patients, and commodity stock management. This study uses data collected by the Measurement, Learning & Evaluation (MLE) Project to examine the effectiveness of these supply-side interventions by considering URHI's influence on the number of family planning clients at health facilities over a four-year period in Kenya, Nigeria, and Senegal. The analysis used facility audits and provider surveys. Principal-components analysis was used to create country-specific program exposure variables for health facilities. Fixed-effects regression was used to determine whether family planning uptake increased at facilities with higher exposure. Outcomes of interest were the number of new family planning acceptors and the total number of family planning clients per reproductive health care provider in the last year. Higher program component scores were associated with an increase in new family planning acceptors per provider in Kenya (β = 18, 95% CI = 7-29), Nigeria (β = 14, 95% CI = 8-20), and Senegal (β = 7, 95% CI = 3-12). Higher scores were also associated with more family planning clients per provider in Kenya (β = 31, 95% CI = 7-56) and Nigeria (β = 26, 95% CI = 15-38), but not in Senegal. Supply-side interventions have increased the number of new family planning acceptors at facilities in urban Nigeria, Kenya, and Senegal and the overall number of clients in urban Nigeria and Kenya. While tailoring

  4. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year

  5. Implementation plan for deployment of Federal Interim Storage facilities for commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1986-12-01

    This document is the third annual report on plans for providing Federal Interim Storage (FIS) capacity. References are made to the first and second annual reports, as necessary. Background factors and aspects that were considered in the development of this deployment plan and activities and interactions considered to be required to implement an FIS program are discussed. A generic description of the approach that the Department plans to follow in deploying FIS facilities is also described

  6. Potencialidade do Planejamento Participativo no Brasil / Potentiality of Participative Planning in Brazil

    Directory of Open Access Journals (Sweden)

    Ideni Terezinha Antonello

    2013-10-01

    Full Text Available The main objective in this essay is making a reflection upon the potentialities presented by the recentmunicipal master plans in Brazil compared to the traditional plans, because the City Statute (2001brought a new meaning to these plans when designating them “participative master plans”, in the orientationof formulation of plans on the perspective of an effective popular participation. In order to reachthis goal, the concrete experience of two study objects will be developed: the Participative Master Planand the Participative Budget. The city of Londrina/Paraná will be taken to check the application of theassumptions of popular participation on the production of the municipal master plan, and the city ofPorto Alegre/Rio Grande do Sul, as an example of the participative budget application.

  7. Provocative Opinion: Let's Master Our Graduate Programs, Not Doctor Them Up

    Science.gov (United States)

    Pilar, Frank

    1974-01-01

    Criticizes recent Ph.D. programs carried out in many universities after World War II. Suggests university departments re-institute high quality two-year master's programs designed to train those who plan to make careers in chemistry at an applied level. (CC)

  8. Regional Master on Medical Physics

    International Nuclear Information System (INIS)

    Gutt, F.

    2001-01-01

    It points out: the master project; the master objective; the medical physicist profile and tasks; the requirements to be a master student; the master programmatic contents and the investigation priorities [es

  9. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    International Nuclear Information System (INIS)

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA reg-sign canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA reg-sign, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities

  10. Implementation plan for the Defense Nuclear Facilities Safety Board Recommendation 90-7

    International Nuclear Information System (INIS)

    Borsheim, G.L.; Cash, R.J.; Dukelow, G.T.

    1992-12-01

    This document revises the original plan submitted in March 1991 for implementing the recommendations made by the Defense Nuclear Facilities Safety Board in their Recommendation 90-7 to the US Department of Energy. Recommendation 90-7 addresses safety issues of concern for 24 single-shell, high-level radioactive waste tanks containing ferrocyanide compounds at the Hanford Site. The waste in these tanks is a potential safety concern because, under certain conditions involving elevated temperatures and low concentrations of nonparticipating diluents, ferrocyanide compounds in the presence of oxidizing materials can undergo a runaway (propagating) chemical reaction. This document describes those activities underway by the Hanford Site contractor responsible for waste tank safety that address each of the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7. This document also identifies the progress made on these activities since the beginning of the ferrocyanide safety program in September 1990. Revised schedules for planned activities are also included

  11. Implementation plan for deployment of Federal Interim Storage facilities for commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1989-01-01

    This document is the sixth annual report on plans for providing FIS capacity. References are made to the first, second, third, fourth, and fifth annual reports, as necessary. Background factors and aspects that were considered in the development of this deployment plan and activities and interactions considered to be required to implement an FIS program are discussed. A generic description of the approach that the Department plans to follow in deploying FIS facilities is also described. 21 refs., 1 fig., 1 tab

  12. Laboratory services series: a master-slave manipulator maintenance program

    International Nuclear Information System (INIS)

    Jenness, R.G.; Hicks, R.E.; Wicker, C.D.

    1976-12-01

    The volume of master slave manipulator maintenance at Oak Ridge National Laboratory has necessitated the establishment of a repair facility and organization of a specially trained group of craftsmen. Emphasis on cell containment requires the use of manipulator boots and development of precise procedures for accomplishing the maintenance of 287 installed units. A very satisfactory computer programmed maintenance system has been established at the Laboratory to provide an economical approach to preventive maintenance

  13. Teaching Talented Teenagers at the Interlochen Arts Academy: An Interview with Three Master Teachers: Crispin Campbell, Hal Grossman, and T. J. Lymenstull.

    Science.gov (United States)

    Haroutounian, Joanne

    2000-01-01

    This interview with three performing master teachers at the Interlochen Arts Academy features personal teaching approaches that develop the problem solving skills that are essential for advanced musical study. A positive master teacher-student dynamic is revealed that nurtures technical facility, as well as interpretive decision-making. The role…

  14. Stormwater Pollution Prevention Plan - TA-60 Material Recycling Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Leonard Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA- 60 Material Recycling Facility at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60 Material Recycling Facility. The current permit expires at midnight on June 4, 2020.

  15. A spatial national health facility database for public health sector planning in Kenya in 2008

    Directory of Open Access Journals (Sweden)

    Gething Peter W

    2009-03-01

    Full Text Available Abstract Background Efforts to tackle the enormous burden of ill-health in low-income countries are hampered by weak health information infrastructures that do not support appropriate planning and resource allocation. For health information systems to function well, a reliable inventory of health service providers is critical. The spatial referencing of service providers to allow their representation in a geographic information system is vital if the full planning potential of such data is to be realized. Methods A disparate series of contemporary lists of health service providers were used to update a public health facility database of Kenya last compiled in 2003. These new lists were derived primarily through the national distribution of antimalarial and antiretroviral commodities since 2006. A combination of methods, including global positioning systems, was used to map service providers. These spatially-referenced data were combined with high-resolution population maps to analyze disparity in geographic access to public health care. Findings The updated 2008 database contained 5,334 public health facilities (67% ministry of health; 28% mission and nongovernmental organizations; 2% local authorities; and 3% employers and other ministries. This represented an overall increase of 1,862 facilities compared to 2003. Most of the additional facilities belonged to the ministry of health (79% and the majority were dispensaries (91%. 93% of the health facilities were spatially referenced, 38% using global positioning systems compared to 21% in 2003. 89% of the population was within 5 km Euclidean distance to a public health facility in 2008 compared to 71% in 2003. Over 80% of the population outside 5 km of public health service providers was in the sparsely settled pastoralist areas of the country. Conclusion We have shown that, with concerted effort, a relatively complete inventory of mapped health services is possible with enormous potential for

  16. A spatial national health facility database for public health sector planning in Kenya in 2008.

    Science.gov (United States)

    Noor, Abdisalan M; Alegana, Victor A; Gething, Peter W; Snow, Robert W

    2009-03-06

    Efforts to tackle the enormous burden of ill-health in low-income countries are hampered by weak health information infrastructures that do not support appropriate planning and resource allocation. For health information systems to function well, a reliable inventory of health service providers is critical. The spatial referencing of service providers to allow their representation in a geographic information system is vital if the full planning potential of such data is to be realized. A disparate series of contemporary lists of health service providers were used to update a public health facility database of Kenya last compiled in 2003. These new lists were derived primarily through the national distribution of antimalarial and antiretroviral commodities since 2006. A combination of methods, including global positioning systems, was used to map service providers. These spatially-referenced data were combined with high-resolution population maps to analyze disparity in geographic access to public health care. The updated 2008 database contained 5,334 public health facilities (67% ministry of health; 28% mission and nongovernmental organizations; 2% local authorities; and 3% employers and other ministries). This represented an overall increase of 1,862 facilities compared to 2003. Most of the additional facilities belonged to the ministry of health (79%) and the majority were dispensaries (91%). 93% of the health facilities were spatially referenced, 38% using global positioning systems compared to 21% in 2003. 89% of the population was within 5 km Euclidean distance to a public health facility in 2008 compared to 71% in 2003. Over 80% of the population outside 5 km of public health service providers was in the sparsely settled pastoralist areas of the country. We have shown that, with concerted effort, a relatively complete inventory of mapped health services is possible with enormous potential for improving planning. Expansion in public health care in Kenya has

  17. Interfaces entre a política habitacional e o Plano Diretor Participativo na metrópole Fortaleza-CE / Relations between the housing policy and participatory master plan in metropolis Fortaleza, Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Elizete de Oliveira Santos

    2013-12-01

    Full Text Available The housing question appears as essential element to understanding the production, consumption and appropriation processes of urban space, illuminating the relationship between sociospatial segregation and real state speculation that govern the brazilians' cities structuring. This paper proposes to discuss the relations between the Participatory Master Plan of Fortaleza (PDPFor and the Municipal Housing Policy (PHIS, aiming to contribute to the reflection of the importance of the urban and housing policies integration. The text is divided into three parts: the first discusses the context of the emergence of the master plans "new generation" in Brazil; the second reconstructs the preparation process of the PDPFor and PHIS; and the third proposes a questioning about the dialogue between the urban and housing political, based on the analysis of the content of PHIS and housing policy chapter in PDPFor.

  18. Strategic planning and security analysis

    International Nuclear Information System (INIS)

    DePasquale, S.

    1991-01-01

    Nuclear security master planning is a deliberative process, founded on the premise that the broad scope of security must be analyzed before any meaningful determinations may be reached on an individual security aspect. This paper examines the analytical process required in developing a Security Master Plan. It defines a four stage process concluding with the selection of security measures encompassing physical security, policy and procedure considerations and guard force deployment. The final product orchestrates each security measure in a complementary and supportive configuration

  19. West Valley Demonstration Project facilities utilization plan for the existing facilities at the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    Skillern, C.G.

    1986-05-01

    In 1980, Congress passed Public Law 96-368, the West Valley Demonstration Project (WVDP) Act. As a primary objective, the Act authorized the US Department of Energy (DOE) to solidify the high-level waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC) into a form suitable for transportation and disposal in a federal repository. This report will describe how WVDP proposes to use the existing WNYNSC Facilities in an efficient and technically effective manner to comply with Public Law 96-368. In support of the above cited law, the DOE has entered into a ''Cooperative agreement between the United States Department of Energy and the New York State Energy Research and Development Authority on the Western New York Nuclear Service Center at West Valley, New York.'' The state-owned areas turned over to the DOE for use are as follows: Process Plant, Waste Storage, Low-Level Waste Treatment Facility, Service Facilities, Plant Security, and Additional Facilities. The Facilities Utilization Plan (FUP) describes how the state-owned facilities will be utilized to complete the Project; it is divided into five sections as follows: Executive Summary - an overview; Introduction - the WVDP approach to utilizing the WNYNSC Facilities; WVDP Systems - a brief functional description of the system, list of equipment and components to be used and decontamination and decommissioning (D and D) support; WVDP Support Facilities; and Caveats that could effect or change the potential usage of a particular area

  20. 77 FR 3389 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Science.gov (United States)

    2012-01-24

    ... Promulgation of State Air Quality Plans for Designated Facilities and Pollutants, State of West Virginia; Control of Emissions From Existing Hospital/Medical/Infectious Waste Incinerator Units, Plan Revision... final action to approve a revision to the West Virginia hospital/medical/infectious waste incinerator...

  1. 77 FR 3422 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Science.gov (United States)

    2012-01-24

    ... Promulgation of State Air Quality Plans for Designated Facilities and Pollutants; State of West Virginia; Control of Emissions From Existing Hospital/Medical/Infectious Waste Incinerator Units, Plan Revision... revision to the West Virginia hospital/medical/infectious waste incinerator (HMIWI) Section 111(d)/ 129...

  2. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    TRINER, G.C.

    1999-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  3. Monte Carlo studies for irradiation process planning at the Portuguese gamma irradiation facility

    International Nuclear Information System (INIS)

    Oliveira, C.; Salgado, J.; Botelho, M.L.M. Luisa; Ferreira, L.M.

    2000-01-01

    The paper describes a Monte Carlo study for planning the irradiation of test samples for microbiological validation of distinct products in the Portuguese Gamma Irradiation Facility. Three different irradiation geometries have been used. Simulated and experimental results are compared and good agreement is observed. It is shown that Monte Carlo simulation improves process understanding, predicts absorbed dose distributions and calculates dose uniformity in different products. Based on these results, irradiation planning of the product can be performed

  4. Transition plan: Project C-018H, 200-E Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Connor, M.D.

    1994-01-01

    The purpose of this transition plan is to ensure an orderly transfer of project information to operations to satisfy Westinghouse Hanford Company (WHC) operational requirements and objectives, and ensure safe and efficient operation of Project C-018H, the 200-E Area Effluent Treatment Facility (ETF). This plan identifies the deliverables for Project C-018H upon completion of construction and turnover to WHC for operations, and includes acceptance criteria to objectively assess the adequacy of the contract deliverables in relation to present requirements. The scope of this plan includes a general discussion of the need for complete and accurate design basis documentation and design documents as project deliverables. This plan also proposes that a configuration management plan be prepared to protect and control the transferred design documents and reconstitute the design basis and design requirements, in the event that the deliverables and project documentation received from the contractor are less than adequate at turnover

  5. McMaster Accelerator Laboratory annual report, 1980

    International Nuclear Information System (INIS)

    1980-01-01

    This Annual Report covers research carried out on the laboratory's three accelerators during the period November 1979 to October 1980. The contents include reports of the research completed or in progress during the year, a summary of the operation and development of the facilities, a list of persons associated with the laboratory and a list of publications for the last two years. A major new development during the year has been the development and use of a new multiplicity filter. This consists of a detector array built on the Lotus beam line together with the associated electronics to allow detection of mulitple gamma-ray coincidences. This allows study of high-spin states of rotational bands in nuclei. Measurements have allowed identification of bands in 159 Tm. A large part of the research programme has been based on reaction studies with beams of both polarized and unpolarized protons and deuterons. A short period of operation with a tritium beam took place in order to implant tritium in both Si(Li) and Ge(Li) detectors for further studies of the β-decay spectrum but no other experimental work took place with this beam. A major run with tritium is planned for early in 1981. There has been considerable collaboration with colleagues in other institutions with experiments being carried out at both McMaster and other institutions

  6. Mobilization plan for the Y-12 9409-5 tank storage facility RCRA closure plan. Final report. Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    This mobilization plan identifies the activities and equipment necessary to begin the field sampling for the Oak Ridge Y-12 9409-5 Diked Tank Storage Facility (DTSF) Resource Conservation and Recovery Act (RCRA) closure. Elements of the plan outline the necessary components of each mobilization task and identify whether SAIC or the Martin Marietta Energy Systems, Inc. Y-12 Environmental Restoration Division will be responsible for task coordination. Field work will be conducted in two phases: mobilization phase and soil sampling phase. Training and medical monitoring, access, permits and passes, decontamination/staging area, equipment, and management are covered in this document

  7. 78 FR 34973 - Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana

    Science.gov (United States)

    2013-06-11

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 62 [EPA-R05-OAR-2013-0372; FRL-9820-9] Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY... direct final rulemaking, Indiana's State Plan to control air pollutants from Sewage Sludge Incinerators...

  8. Planning and management for the decommissioning of research reactors and other small nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    Many research reactors and other small nuclear facilities throughout the world date from the original nuclear research programmes in the Member States. Consequently, a large number of these plants have either been retired from service or will soon reach the end of their useful lives and are likely to become significant decommissioning tasks for those Members States. In recognition of this situation and in response to considerable interest shown by Member States, the IAEA has produced this document on planning and management for the decommissioning of research reactors and other small nuclear facilities. While not directed specifically at large nuclear installations, it is likely that much of the information presented will also be of interest to those involved in the decommissioning of such facilities. Current views, information and experience on the planning and management of decommissioning projects in Member States were collected and assessed during a Technical Committee Meeting held by the IAEA in Vienna from 29 July to 2 August 1991. It was attended by 22 participants from 14 Member States and one international organization. 28 refs, 2 figs, 3 tabs

  9. Software quality assurance plan for the National Ignition Facility integrated computer control system

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, J.

    1996-11-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project`s controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy`s (DOE`s) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project.

  10. Software quality assurance plan for the National Ignition Facility integrated computer control system

    International Nuclear Information System (INIS)

    Woodruff, J.

    1996-11-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project's controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy's (DOE's) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project

  11. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    Lombard, K.H.

    1994-01-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays

  12. Antares facility for inertial-fusion experiments: status and plans

    International Nuclear Information System (INIS)

    Goldstone, P.D.; Allen, G.; Jansen, H.; Saxman, A.; Singer, S.; Thuot, M.

    1982-01-01

    Antares is a large, 30 to 40 kJ CO 2 laser system which will provide a base for experiments to determine the efficiency with which 10 μm light can be used to drive target implosions while maintaining an acceptable level of preheat. Construction of the facility is in the final stages and diagnostics for initial experiments are being designed and constructed with operations scheduled to begin early in FY-84. After an initial shakedown period, we expect to perform a series of measurements to determine the energy scaling of hot electron temperature and target coupling efficiency in selected set of targets including simple spheres. We also expect to continue experiments, now planned for Helios, to determine whether CO 2 -produced ions are appropriate for driving inertial fusion targets with acceptable efficiency (Helios experiments have demonstrated that as much as 40% of the incident light can be converted to fast ions). Details of these experiments, as well as plans for further experiments, are still being defined

  13. Liquid effluent retention facility final-status groundwater monitoring plan

    International Nuclear Information System (INIS)

    Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

    1997-09-01

    The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the open-quotes Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967close quotes, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure

  14. Readiness plan, Hanford 300 Area Treated Effluent Disposal Facility: Revision 1

    International Nuclear Information System (INIS)

    Storm, S.J.

    1994-01-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is designed for the collection, treatment, and eventual disposal of liquid waste from the 300 Area Process Sewer (PS) system. The PS currently discharges water to the 300 Area Process Trenches. Facilities supported total 54 buildings, including site laboratories, inactive buildings, and support facilities. Effluent discharges to the process sewer from within these facilities include heating, ventilation, and air conditioning systems, heat exchangers, floor drains, sinks, and process equipment. The wastewaters go through treatment processes that include iron coprecipitation, ion exchange and ultraviolet oxidation. The iron coprecipitation process is designed to remove general heavy metals. A series of gravity filters then complete the clarification process by removing suspended solids. Following the iron coprecipitation process is the ion exchange process, where a specific resin is utilized for the removal of mercury. The final main unit operation is the ultraviolet destruction process, which uses high power ultraviolet light and hydrogen peroxide to destroy organic molecules. The objective of this readiness plan is to provide the method by which line management will prepare for a Readiness Assessment (RA) of the TEDF. The self-assessment and RA will assess safety, health, environmental compliance and management readiness of the TEDF. This assessment will provide assurances to both WHC and DOE that the facility is ready to start-up and begin operation

  15. Readiness assessment plan for the Radioactive Mixed Waste Land Disposal Facility (Trench 31)

    International Nuclear Information System (INIS)

    Irons, L.G.

    1994-01-01

    This document provides the Readiness Assessment Plan (RAP) for the Project W-025 (Radioactive Mixed Waste Land Disposal Facility) Readiness Assessment (RA). The RAP documents prerequisites to be met by the operating organization prior to the RA. The RAP is to be implemented by the RA Team identified in the RAP. The RA Team is to verify the facility's compliance with criteria identified in the RAP. The criteria are based upon the open-quotes Core Requirementsclose quotes listed in DOE Order 5480.31, open-quotes Startup and Restart of Nuclear Facilitiesclose quotes

  16. An alternative format for Category I fuel cycle facility physical protection plans

    International Nuclear Information System (INIS)

    Dwyer, P.A.

    1992-06-01

    This document provides an alternative format for physical protection plans designed to meet the requirements of Title 10 of the Code of Federal Regulations, Sections 73.20, 73.45, and 73.46. These requirements apply to licensees who operate Category I fuel cycle facilities. Such licensees are authorized to use or possess a formula quantity of strategic special nuclear material. The format described is an alternative to that found under Regulatory Guide 5.52, Rev. 2 ''Standard Format and Content of a Licensee Physical Protection Plan for Strategic Special Nuclear Material at Fixed Sites (Other than Nuclear Power Plants).''

  17. Chapter 8: Planning Tools to Simulate and Optimize Neighborhood Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhivov, Alexander Michael; Case, Michael Patrick; Jank, Reinhard; Eicker, Ursula; Booth, Samuel

    2017-03-15

    This section introduces different energy modeling tools available in Europe and the USA for community energy master planning process varying from strategic Urban Energy Planning to more detailed Local Energy Planning. Two modeling tools used for Energy Master Planning of primarily residential communities, the 3D city model with CityGML, and the Net Zero Planner tool developed for the US Department of Defense installations are described in more details.

  18. SNL Five-Year Facilities & Infrastructure Plan FY2015-2019

    Energy Technology Data Exchange (ETDEWEB)

    Cipriani, Ralph J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    Sandia’s development vision is to provide an agile, flexible, safer, more secure, and efficient enterprise that leverages the scientific and technical capabilities of the workforce and supports national security requirements in multiple areas. Sandia’s Five-Year Facilities & Infrastructure Planning program represents a tool to budget and prioritize immediate and short-term actions from indirect funding sources in light of the bigger picture of proposed investments from direct-funded, Work for Others and other funding sources. As a complementary F&I investment program, Sandia’s indirect investment program supports incremental achievement of the development vision within a constrained resource environment.

  19. A Study on the Optimum Bucket Size for Master Scheduling : For the Case of Hierarchically tured Products

    OpenAIRE

    木内, 正光

    2010-01-01

    The function of master scheduling is to plan the flow of order from its arrival to its completion. In this study, the problem of bucket size for master scheduling is taken up. The bucket size for master scheduling has much influence on the lead time of the order. However, to date there is no clear method for how to set the optimum bucket size. The purpose of this study is to propose a method to set the optimum bucket size. In this paper, an equation to estimate the optimum bucket size is prop...

  20. Planning of public healthcare facility using a location allocation modelling: A case study

    Science.gov (United States)

    Shariff, S. Sarifah Radiah; Moin, Noor Hasnah; Omar, Mohd

    2014-09-01

    Finding the correct location of any facility and determining the demands which are to be assigned to it is very crucial in public health service. This is to ensure that the public gain maximum benefits. This article analyzes the previous location decisions of public primary healthcare (PHC) facilities in the district of Kuala Langat, Malaysia. With total population of 220214 (in 2010), the PHC in the district is currently served by 28 facilities. The percentages of total population covered (in 2007) within the maximum allowable distance of 3km and 5km are 69.7 percent and 77.8 percent respectively. This is very low compared to the Malaysian National Health Policy of Health for All or 100 percent coverage. The determination of health facility location should be planned carefully to further increase effective primary health service to the nation that is required for economic sustainability.

  1. Transparency masters for mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1980-01-01

    Transparency Masters for Mathematics Revealed focuses on master diagrams that can be used for transparencies for an overhead projector or duplicator masters for worksheets. The book offers information on a compilation of master diagrams prepared by John R. Stafford, Jr., audiovisual supervisor at the University of Missouri at Kansas City. Some of the transparencies are designed to be shown horizontally. The initial three masters are number lines and grids that can be used in a mathematics course, while the others are adaptations of text figures which are slightly altered in some instances. The

  2. Master plan for renewable energies + Summary for policy makers + Presentation to the Council of Ministers

    International Nuclear Information System (INIS)

    Blanc, Julien; Bitot, Stephane

    2012-01-01

    This document reports a study which aimed at determining a master plan which would allow a mix with 50 per cent of renewable energies for electricity production to be reached by 2020 in the specific case of French Polynesia. It proposes a comprehensive analysis of of the present energetic situation in Tahiti and in eleven islands of the French Polynesia. After a presentation of the social and economic context, the report proposes a diagnosis of energy and electricity consumption in Polynesia, an analysis of electricity demand and of its possible evolutions (scenarios), and an analysis of the present production (fossil thermal, hydroelectric, photovoltaic, and wind energy, quality and requirements for an island grid). It reports the analysis the potential of development of renewable energies (hydroelectricity, photovoltaic, other solar production, wind, biomass, marine renewable energies, seawater air conditioning), and the analysis of the supply-demand balance in the different scenarios for Tahiti and the other islands. Short term perspectives are discussed, and an overview of installed renewable powers is provided. A second document proposes a summary of this study under the form of a Power Point presentation illustrated by many graphs

  3. Master Plan UMKM Berbasis Perikanan untuk Meningkatkan Pengolahan Produk Ikan yang Memiliki Nilai Tambah Tinggi

    Directory of Open Access Journals (Sweden)

    I Gede Riana

    2015-11-01

    Full Text Available This research aims to generate a Master plan of fisheries-based SME development concept in Bali region, in order to build Bali as the centre for production and processing of fishery products in the Coridor of Bali-Nusa Tenggara. In Year-1 of the study period, the research activities carried out includes three processes, including analysis of the potensial of SMEs, analyzes the business cycle, and identification of barriers and chalenges. By using the method of linear regression analysis, Geographic Information System (GIS and Analytical Hierarchy Process (AHP, the study result in Year-1, obtained some information about characteristics of fisheries based SMEs Bali, consisting of: 1 there is positive effect between GDP growth and energy work on the level of productivity (output value of SMEs; 2 the need for development of fisheries-based SMEs in Bali include some operational, capital, and market access aspects. To the Bali Provincial Government, SMEs and the poblic are expected to synergize themselves, in term of institutionally, improving the quality of human recources, empowering financial institutions at the local level, as well as active participation in marketing access to the international level.

  4. D-Side: A Facility and Workforce Planning Group Multi-criteria Decision Support System for Johnson Space Center

    Science.gov (United States)

    Tavana, Madjid

    2005-01-01

    "To understand and protect our home planet, to explore the universe and search for life, and to inspire the next generation of explorers" is NASA's mission. The Systems Management Office at Johnson Space Center (JSC) is searching for methods to effectively manage the Center's resources to meet NASA's mission. D-Side is a group multi-criteria decision support system (GMDSS) developed to support facility decisions at JSC. D-Side uses a series of sequential and structured processes to plot facilities in a three-dimensional (3-D) graph on the basis of each facility alignment with NASA's mission and goals, the extent to which other facilities are dependent on the facility, and the dollar value of capital investments that have been postponed at the facility relative to the facility replacement value. A similarity factor rank orders facilities based on their Euclidean distance from Ideal and Nadir points. These similarity factors are then used to allocate capital improvement resources across facilities. We also present a parallel model that can be used to support decisions concerning allocation of human resources investments across workforce units. Finally, we present results from a pilot study where 12 experienced facility managers from NASA used D-Side and the organization's current approach to rank order and allocate funds for capital improvement across 20 facilities. Users evaluated D-Side favorably in terms of ease of use, the quality of the decision-making process, decision quality, and overall value-added. Their evaluations of D-Side were significantly more favorable than their evaluations of the current approach. Keywords: NASA, Multi-Criteria Decision Making, Decision Support System, AHP, Euclidean Distance, 3-D Modeling, Facility Planning, Workforce Planning.

  5. National Ignition Facility risk management plan, rev. 1

    International Nuclear Information System (INIS)

    Brereton, S J; Lane, M A

    1998-01-01

    The initial release of the National Ignition Facility (AUF) Risk Management Plan (LLNL, 1997a) was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide (DOE, 1996a) and supported Critical Decision 3 (CD3), Approval to Initiate Construction (DOE, 1997a). The objectives of the plan were to: (1) Identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule. (2) Assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES and H (environmental, safety and health), costs, and schedule. (3) Address suitable risk mitigation measures for each identified risk. This revision of the Risk Management Plan considers project risks and vulnerabilities after CD3 (DOE, 1997a) was approved by the Secretary of Energy. During the one-year period since the initial release, the vulnerabilities of greatest concern have been the litigation of the Programmatic Environmental Impact Statement (PEIS) (DOE, 1996b) by a group of environmental organizations led by the Natural Resources Defense Council; the finding and successful clean-up of polychlorinated biphenyl (PCB)-filled electrical capacitors at the NIF site excavation; the FY98 congressional budget authorization and request for the FY99 budget authorization; funding for Inertial Confinement Fusion (ICF)/NIF programmatic activities (including French and other sources of funding); and finally, progress in the core science and technology, and optics program that form the basis for the NIF design

  6. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    International Nuclear Information System (INIS)

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO's quality standards during the software maintenance phase. 8 refs., 1 tab

  7. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO`s quality standards during the software maintenance phase. 8 refs., 1 tab.

  8. Hybrid quantum-classical master equations

    International Nuclear Information System (INIS)

    Diósi, Lajos

    2014-01-01

    We discuss hybrid master equations of composite systems, which are hybrids of classical and quantum subsystems. A fairly general form of hybrid master equations is suggested. Its consistency is derived from the consistency of Lindblad quantum master equations. We emphasize that quantum measurement is a natural example of exact hybrid systems. We derive a heuristic hybrid master equation of time-continuous position measurement (monitoring). (paper)

  9. Production planning and control for semiconductor wafer fabrication facilities modeling, analysis, and systems

    CERN Document Server

    Mönch, Lars; Mason, Scott J

    2012-01-01

    Over the last fifty-plus years, the increased complexity and speed of integrated circuits have radically changed our world. Today, semiconductor manufacturing is perhaps the most important segment of the global manufacturing sector. As the semiconductor industry has become more competitive, improving planning and control has become a key factor for business success. This book is devoted to production planning and control problems in semiconductor wafer fabrication facilities. It is the first book that takes a comprehensive look at the role of modeling, analysis, and related information systems

  10. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  11. Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, S.

    1997-04-01

    This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration of site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.

  12. The integration of expert knowledge in decision support systems for facility location planning

    NARCIS (Netherlands)

    Arentze, T.A.; Borgers, A.W.J.; Timmermans, H.J.P.

    1995-01-01

    The integration of expert systems in DSS has led to a new generation of systems commonly referred to as knowledge-based or intelligent DSS. This paper investigates the use of expert system technology for the development of a knowledge-based DSS for the planning of retail and service facilities. The

  13. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    International Nuclear Information System (INIS)

    Simiele, G.A.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  14. 216-U-12 Crib supplemental information to the Hanford Facility Contingency Plan (DOE/RL-93-75)

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-05-01

    This document is a unit-specific contingency plan for the 216-U-12 Crib and is intended to be used as a supplement to DOE/RL-93-75, Hanford Facility Contingency Plan (DOE-RL 1993). This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of the Washington Administrative Code, Chapter 173- 303 for certain Resource Conservation and Recovery Act of 1976 waste management units. The 216-U-12 Crib is a landfill that received waste from the 291-U-1 Stack, 244-WR Vault, 244-U via tank C-5, and the UO 3 Plant. The crib pipeline was cut and permanently capped in 1988, and the crib has been backfilled. The unit will be closed under final facility standards. Waste management activities are no longer required at the unit. The crib does not present a significant hazard to adjacent units, personnel, or the environment. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the 216-U-12 Crib

  15. MASTER-ICATE constraints on the outburst time of OGLE-2012-NOVA-002

    Science.gov (United States)

    Levato, H.; Saffe, C.; Mallamaci, C.; Lopez, C.; Denisenko, F. Podest D.; Gorbovskoy, E.; Lipunov, V.; Balanutsa, P.; Tiurina, N.; Kornilov, V.; Belinski, A.; Shatskiy, N.; Chazov, V.; Kuznetsov, A.; Zimnukhov, D.; Krushinsky, V.; Zalozhnih, I.; Popov, A.; Bourdanov, A.; Punanova, A.; Ivanov, K.; Yazev, S.; Budnev, N.; Konstantinov, E.; Chuvalaev, O.; Poleshchuk, V.; Gress, O.; Parkhomenko, A.; Tlatov, A.; Dormidontov, D.; Senik, V.; Yurkov, V.; Sergienko, Y.; Varda, D.; Sinyakov, E.; Shumkov, V.; Shurpakov, S.; Podvorotny, P.

    2012-10-01

    MASTER-ICATE very wide field camera (72-mm f/1.2 lens + 11 Mpx CCD) located at Observatorio Astronomico Felix Aguilar (OAFA) near San Juan, Argentina, has observed the position of possible Nova OGLE-2012-NOVA-002 reported by L. Wyrzykowski et al. (ATel #4483) several times before 2012 May 20 and then again after 2012 July 03. MASTER-WFC is continuously imaging the areas of sky (24x16 sq. deg. field of view) with 5-sec unfiltered exposures.

  16. 190-C Facility <90 Day Storage Pad supplemental information to the Hanford facility contingency plan

    International Nuclear Information System (INIS)

    Little, N.C.

    1996-12-01

    The 190-C Facility <90 Day Storage Pad stores waste oils primarily contaminated with lead generated while draining equipment within the building of residual lubricating oils. Waste oils are packaged and stored in fifty-five gallon drums, or other containers permitted by the Site Specific Waste Management Instruction. Bechtel Hanford, Inc. (BHI) manual BHI-EE-02, Environmental Requirements Procedures, references this document. This document is to be used to demonstrate compliance with the contingency plan requirements in Washington Administrative Code, Chapter 173-303, Dangerous Waste Regulations, for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units (units). Refer to BHI-EE-02, for additional information

  17. A European Master's Programme in Public Health Nutrition.

    Science.gov (United States)

    Yngve, A; Warm, D; Landman, J; Sjöström, M

    2001-12-01

    Effective population-based strategies require people trained and competent in the discipline of Public Health Nutrition. Since 1997, a European Master's Programme in Public Health Nutrition has been undergoing planning and implementation, by establishing initial quality assurance systems with the aid of funding from the European Commission (DG SANCO/F3). Partners from 17 European countries have been involved in the process. A European Network of Public Health Nutrition has been developed and accredited by the European Commission.

  18. Suggestions and comments about preliminary plans of ABNT 20:04.002-001 standard 'Seismic actions for nuclear facilities project'

    International Nuclear Information System (INIS)

    Soares, W.A.

    1984-01-01

    This paper presents an analysis of preliminary plans of standard 'seismic actions for nuclear facilities project'. This document presents since seismic event characterization up to details of structural project of nuclear facilities construction. (C.M.)

  19. Identification and selection of initiating events for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    This paper describes the current approaches used in probabilistic risk assessment (PRA) to identify and select accident initiating events for study in either probabilistic safety analysis or PRA. Current methods directly apply to fusion facilities as well as other types of industries, such as chemical processing and nuclear fission. These identification and selection methods include the Master Logic Diagram, historical document review, system level Failure Modes and Effects Analysis, and others. A combination of the historical document review, such as Safety Analysis Reports and fusion safety studies, and the Master Logic Diagram with appropriate quality assurance reviews, is suggested for standardizing US fusion PRA effects. A preliminary set of generalized initiating events applicable to fusion facilities derived from safety document review is presented as a framework to start from for the historical document review and Master Logic Diagram approach. Fusion designers should find this list useful for their design reviews. 29 refs., 2 tabs

  20. Identification and selection of initiating events for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    This paper describes the current approaches used in probabilistic risk assessment (PRA) to identify and select accident initiating events for study in either probabilistic safety analysis or PRA. Current methods directly apply to fusion facilities as well as other types of industries, such as chemical processing and nuclear fission. These identification and selection methods include the Master Logic Diagram, historical document review, system level Failure Modes and Effects Analysis, and others. A combination of the historical document review, such as Safety Analysis Reports and fusion safety studies, and the Master Logic Diagram with appropriate quality assurance reviews, is suggested for standardizing U.S. fusion PRA efforts. A preliminary set of generalized initiating events applicable to fusion facilities derived from safety document review is presented as a framework to start from for the historical document review and Master Logic Diagram approach. Fusion designers should find this list useful for their design reviews. 29 refs., 1 tab

  1. Acceptance criteria for the evaluation of Category 1 fuel cycle facility physical security plans

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, P.A.

    1991-10-01

    This NUREG document presents criteria developed from US Nuclear Regulatory Commission regulations for the evaluation of physical security plans submitted by Category 1 fuel facility licensees. Category 1 refers to those licensees who use or possess a formula quantity of strategic special nuclear material.

  2. Acceptance criteria for the evaluation of Category 1 fuel cycle facility physical security plans

    International Nuclear Information System (INIS)

    Dwyer, P.A.

    1991-10-01

    This NUREG document presents criteria developed from US Nuclear Regulatory Commission regulations for the evaluation of physical security plans submitted by Category 1 fuel facility licensees. Category 1 refers to those licensees who use or possess a formula quantity of strategic special nuclear material

  3. Planning, Management and Organizational Aspects of the Decommissioning of a Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    Strufe, N. [Danish Decommissioning, Roskilde (Denmark)

    2013-08-15

    This CRP project document ''Planning, Management and Organizational Aspects in Decommissioning of a Hot Cell Facility'' aims to describe the establishment of a management organization that ensures that the DD Hot Cell Project is properly and safely conducted and that staff members, who are seconded to the project, have a strong feeling of ownership and being an integral part of the project. The objectives of the decommissioning project of the hot cell facility is to decontaminate the facility and to remove items that cannot be decontaminated on site, in order for the entire hot cell building to become useable for other purposes without any radiological restrictions. The project requires proper communication and coordination with all stakeholders on-site, comprehensive work plans and strict control of the individual working areas and operations. A project of this type obviously requires a strong and well managed and coordinated project organization. DD has established a management system - KMS. The purposes of the KMS are twofold. The system aims to secure the fulfilment of the conditions and requirements of quality set by the nuclear authorities. The system also aims to provide the basis for a rational and economically feasible operation with a high level of safety. One of the main lessons learned in this project is clear that is to ensure that the necessary resources are available and the required expertise is allocated timely for the performance of the project(s) a strong coordination and great flexibility within the DD organization is required. This document describes the approach and considerations from the project management point of view. The document initially gives an introduction to the hot cell decommissioning project followed by issues of the general considerations and planning of the project within the DD, including aspects on organisation, quality assurance and coordination. (author)

  4. Master-slave manipulator

    International Nuclear Information System (INIS)

    Haaker, L.W.; Jelatis, D.G.

    1981-01-01

    A remote control master-slave manipulator for performing work on the opposite side of a barrier wall, is described. The manipulator consists of a rotatable horizontal support adapted to extend through the wall and two longitudinally extensible arms, a master and a slave, pivotally connected one to each end of the support. (U.K.)

  5. Design, implementation and testing of master slave robotic surgical system

    International Nuclear Information System (INIS)

    Ali, S.A.

    2015-01-01

    The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom) haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system. (author)

  6. Design, Implementation and Testing of Master Slave Robotic Surgical System

    Directory of Open Access Journals (Sweden)

    Syed Amjad Ali

    2015-01-01

    Full Text Available The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system

  7. Master Veteran Index (MVI)

    Data.gov (United States)

    Department of Veterans Affairs — As of June 28, 2010, the Master Veteran Index (MVI) database based on the enhanced Master Patient Index (MPI) is the authoritative identity service within the VA,...

  8. Commercial Space Port Planning in Texas

    Science.gov (United States)

    Bell, L.; Looke, B.

    2002-01-01

    The Texas Legislature is providing funding to support research and planning activities aimed at creating a commercial spaceport in the state. These monies have been allocated to regional Spaceport Development Corporations that have been established in three countries containing candidate site locations: Willacy County (in South Texas); Brazoria County (East Texas); and Pecos County (West Texas). This program is being sponsored and coordinated by the Texas Aerospace Commission (TAC). The Sasakawa International Center for Space Architecture (SICSA) at the University of Houston is providing research, planning and design support to TAC and is a member of each of the three regional development teams. Planning must carefully consider special support requirements and operational characteristics of all prospective launch systems along with geographic, infrastructure and environmental factors at each site. Two of the candidate sites are in coastal areas; a priority for certain launch service providers; whereas the third inland site is more attractive to others. Candidate launch systems include winged horizontal takeoff air-launch vehicles, vertical multi-stage reusable launch vehicles, and expendable sub-orbital surrounding rockets. Important research and planning activities include environmental impact assessments, analyses of overflight hazards, investigations of economic impacts and business plan development. The results of these activities will guide master plan development for each site, including: a physical plan (site layout, infrastructure improvements and facility construction); and a strategic plan (user agreements, licenses, finance sources and participants). Commercial spaceport development demands compliance with stringent FAA regulations established by the Office of Commercial Space Transportation (OCST) which exceed minimum standards allowed for U.S. Government spaceport facilities. Key among these requirements are 15,000 ft. radius on-site clear zones

  9. Master classes - What do they offer?

    OpenAIRE

    Hanken, Ingrid Maria; Long, Marion

    2012-01-01

    Master classes are a common way to teach music performance, but how useful are they in helping young musicians in their musical development? Based on his experiences of master classes Lali (2003:24) states that “For better or for worse, master classes can be life-changing events.” Anecdotal evidence confirm that master classes can provide vital learning opportunities, but also that they can be of little use to the student, or worse, detrimental. Since master classes are a common component in ...

  10. MOOCs to internationalize Masters. A case study at the University of Salamanca

    Science.gov (United States)

    Pereira, Dolores; Recio, Marian; Perez, Ana Victoria; López, Santiago; Palacios, Esther

    2015-04-01

    Current major objectives of Master's degrees taught at the University of Salamanca are to incorporate multidisciplinary skills and to address international issues. It is important to ensure that students and early career scientists have all of the necessary skills to deal with professional development before career planning whether in academic research, professional practices or alternative careers, whether in Spain or elsewhere. However, many students choose a Master's programme without sufficient understanding of what they might need to deal with. A multidisciplinary degree course at the University of Salamanca, linked to the Institute of Social Studies for Science and Technology, focuses on training potential experts equipped to mediate between participants in science and technology and the wider public. Students participating in this course currently come from Spanish speaking countries. Because the course is taught mainly in Spanish, subsequent outreach might also be confined to Spanish speaking communities. Even so, it is essential to properly explain, at the outset, the aims of the Master's programme and the international potential of the qualification to attract more. Here we propose the use of MOOCs (Massive Open Online Courses) both to help students to know about the content and other details of the Master program before they join in and to internationalize the course to reach more potential interested students in the subject. This will be the first experience implementing MOOCs in the teaching of masters at the University of Salamanca and, if successful, the experience can be applied to other masters and courses in need of students and internationalization.

  11. Facilities Programming.

    Science.gov (United States)

    Bullis, Robert V.

    1992-01-01

    A procedure for physical facilities management written 17 years ago is still worth following today. Each of the steps outlined for planning, organizing, directing, controlling, and evaluating must be accomplished if school facilities are to be properly planned and constructed. However, lessons have been learned about energy consumption and proper…

  12. Very Bright CV discovered by MASTER-ICATE (Argentina)

    Science.gov (United States)

    Saffe, C.; Levato, H.; Mallamaci, C.; Lopez, C.; Lipunov, F. Podest V.; Denisenko, D.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kornilov, V.; Belinski, A.; Shatskiy, N.; Chazov, V.; Kuznetsov, A.; Yecheistov, V.; Yurkov, V.; Sergienko, Y.; Varda, D.; Sinyakov, E.; Gabovich, A.; Ivanov, K.; Yazev, S.; Budnev, N.; Konstantinov, E.; Chuvalaev, O.; Poleshchuk, V.; Gress, O.; Frolova, A.; Krushinsky, V.; Zalozhnih, I.; Popov, A.; Bourdanov, A.; Parkhomenko, A.; Tlatov, A.; Dormidontov, D.; Senik, V.; Podvorotny, P.; Shumkov, V.; Shurpakov, S.

    2013-06-01

    MASTER-ICATE very wide-field camera (d=72mm f/1.2 lens + 11 Mpix CCD) located near San Juan, Argentina has discovered OT source at (RA, Dec) = 14h 20m 23.5s -48d 55m 40s on the combined image (exposure 275 sec) taken on 2013-06-08.048 UT. The OT unfiltered magnitude is 12.1m (limit 13.1m). There is no minor planet at this place. The OT is seen in more than 10 images starting from 2013-06-02.967 UT (275 sec exposure) when it was first detected at 12.4m.

  13. Planning, managing and organizing the decommissioning of nuclear facilities: Lessons learned

    International Nuclear Information System (INIS)

    2004-05-01

    This publication is intended to encourage the development and improvement of decommissioning planning and management techniques, with the focus on organizational aspects, reduce the duplication of efforts by different parties by transfer of experience and know-how, and provide useful results for those Member States planning or implementing decommissioning projects. In general it can be stated that any decommissioning project can be completed without any deleterious effects on the safety of the workforce and the public or any identifiable impact on the environment. However, timeliness and cost-effectiveness are not always optimal. It has been noted on several occasions that the major weakness in decommissioning projects (as well as in other industrial projects) is often not the lack of technologies, but rather poor planning and management. This publication intends to stimulate awareness of the need for early and efficient planning and to foster developments in management and organization in association with planned or ongoing decommissioning projects. A companion report on Organization and Management for Decommissioning of Large Nuclear Facilities was published by the IAEA in 2000 (Technical Report Series (TRS) No. 399). That TRS provides generic guidance on organizational and management aspects. This TECDOC is complementary to the existing report in that it highlights practical experience - in particular, typical issues, evidence of poor management, undue delays, and lack of timely funding - and distils lessons learned from this experience

  14. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  15. Savannah River Site plan for performing maintenance in Federal Facility Agreement areas (O and M Plan)

    International Nuclear Information System (INIS)

    Morris, D.R.

    1996-01-01

    The Savannah River Site was placed on the National Priority List (NPL) in December 1989 and became subject to comprehensive remediation in accordance with CERCLA. The FFA, effective August 16, 1993, establishes the requirements for Site investigation and remediation of releases and potential releases of hazardous substances, and interim status corrective action for releases of hazardous wastes or hazardous constituents. It was determined that further direction was needed for the Operating Departments regarding operation and maintenance activities within those areas listed in the FFA. The Plan for Performing Maintenance (O and M Plan) provides this additional direction. Section 4.0 addresses the operation and maintenance activities necessary for continued operation of the facilities in areas identified as RCRA/CERCLA Units or Site Evaluation Areas. Certain types of the O and M activity could be construed as a remedial or removal action. The intent of this Plan is to provide direction for conducting operation and maintenance activities that are not intended to be remedial or removal actions. The Plan identifies the locations of the units and areas, defines intrusive O and M activities, classifies the intrusive activity as either minor or major, and identifies the requirements, approvals, and documentation necessary to perform the activity in a manner that is protective of human health and the environment; and minimizes any potential impact to any future removal and remedial actions

  16. Investigation of development and management of treatment planning systems for BNCT at foreign facilities

    International Nuclear Information System (INIS)

    2001-03-01

    A new computational dosimetry system for BNCT: JCDS is developed by JAERI in order to carry out BNCT with epithermal neutron beam at present. The development and management situation of computational dosimetry system, which are developed and are used in BNCT facilities in foreign countries, were investigated in order to accurately grasp functions necessary for preparation of the treatment planning and its future subjects. In present state, 'SERA', which are developed by Idaho National Engineering and Environmental Laboratory (INEEL), is used in many BNCT facilities. Followings are necessary for development and management of the treatment planning system. (1) Reliability confirmation of system performance by verification as comparison examination of calculated value with actual experimental measured value. (2) Confirmation systems such as periodic maintenance for retention of the system quality. (3) The improvement system, which always considered relative merits and demerits with other computational dosimetry system. (4) The development of integrated system with patient setting. (author)

  17. Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shoman, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generate performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.

  18. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.

    1998-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment

  19. The preliminary planning for decommissioning nuclear facilities in Taiwan

    International Nuclear Information System (INIS)

    Li, K.K.

    1993-01-01

    During the congressional hearing in 1992 for a $7 billion project for approval of the fourth nuclear power plant, the public was concerned about the decommissioning of the operating plants. In order to facilitate the public acceptance of nuclear energy and to secure the local capability for appropriate nuclear backend management, both technologically and financially, it is important to have preliminary planning for decommissioning the nuclear facilities. This paper attempted to investigate the possible scope of decommissioning activities and addressed the important regulatory, financial, and technological aspects. More research and development works regarding the issue of decommissioning are needed to carry out the government's will of decent management of nuclear energy from the cradle to the grave

  20. Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project