WorldWideScience

Sample records for facilitates cellular uptake

  1. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Energy Technology Data Exchange (ETDEWEB)

    Aldossari, Abdullah A.; Shannahan, Jonathan H. [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States); Podila, Ramakrishna [Clemson University, Department of Physics and Astronomy (United States); Brown, Jared M., E-mail: jared.brown@ucdenver.edu [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States)

    2015-07-15

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf-α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  2. Radiopharmaceutical cellular uptake mechanisms

    International Nuclear Information System (INIS)

    Stefanescu, Cipriana; Rusu, V.

    1996-01-01

    Cellular radiopharmaceutical specificity depends mainly of the uptake mechanisms. Usually, this can be one of the classical membrane transport type (a passive or active transport, a receptor mediated one or a combination of them). It can also be an electrochemical gradient dependent membrane transport in relation with Nernst equation, as in case of 99m Tc MIBI, the representative molecule of a widely studied family tracers, with applications in cardiac and oncological scintigraphy. Another mechanism can be an ATP dependent active transport, that results in the most important 201 Tl inflow. 201 Tl inflow is also an example of multiple mechanisms involved in cellular ionic inflow. Over 30% of 201 Tl transport imply other ways, like Na + - K + - Cl - co-transport. For a given tracer, the mechanism may depend also on the cell type. In conclusion, knowledge of the radiotracer uptake mechanisms allows finding the 'ideal' radiotracer with high specificity for the tissue to be visualized. (authors)

  3. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN...

  4. TAT and HA2 Facilitate Cellular Uptake of Gold Nanoparticles but Do Not Lead to Cytosolic Localisation

    Science.gov (United States)

    Free, Paul; Lévy, Raphaël

    2015-01-01

    The methods currently available to deliver functional labels and drugs to the cell cytosol are inefficient and this constitutes a major obstacle to cell biology (delivery of sensors and imaging probes) and therapy (drug access to the cell internal machinery). As cell membranes are impermeable to most molecular cargos, viral peptides have been used to bolster their internalisation through endocytosis and help their release to the cytosol by bursting the endosomal vesicles. However, conflicting results have been reported on the extent of the cytosolic delivery achieved. To evaluate their potential, we used gold nanoparticles as model cargos and systematically assessed how the functionalisation of their surface by either or both of the viral peptides TAT and HA2 influenced their intracellular delivery. We evaluated the number of gold nanoparticles present in cells after internalisation using photothermal microscopy and their subcellular localisation by electron microscopy. While their uptake increased when the TAT and/or HA2 viral peptides were present on their surface, we did not observe a significant cytosolic delivery of the gold nanoparticles. PMID:25836335

  5. Dynamic Fluorescence Microscopy of Cellular Uptake of Intercalating Model Drugs by Ultrasound-Activated Microbubbles

    NARCIS (Netherlands)

    Lammertink, B.H.A.; Deckers, R.; Derieppe, M.; De Cock, I.; Lentacker, I.; Storm, G.; Moonen, C. T.W.; Bos, C.

    2017-01-01

    Purpose: The combination of ultrasound and microbubbles can facilitate cellular uptake of (model) drugs via transient permeabilization of the cell membrane. By using fluorescent molecules, this process can be studied conveniently with confocal fluorescence microscopy. This study aimed to investigate

  6. Tanshinone IIA sodium sulfonate facilitates endocytic HMGB1 uptake.

    Science.gov (United States)

    Zhang, Yusong; Li, Wei; Zhu, Shu; Jundoria, Arvin; Li, Jianhua; Yang, Huan; Fan, Saijun; Wang, Ping; Tracey, Kevin J; Sama, Andrew E; Wang, Haichao

    2012-12-01

    Our seminal discovery of high mobility group box 1 (HMGB1) as a late mediator of lethal systemic inflammation has prompted a new field of investigation for the development of experimental therapeutics. We previously reported that a major Danshen ingredient, tanshinone IIA sodium sulfonate (TSN-SS), selectively inhibited endotoxin-induced HMGB1 release and conferred protection against lethal endotoxemia and sepsis. To investigate the underlying mechanisms by which TSN-SS effectively inhibits HMGB1 release, we examined whether TSN-SS stimulates HMGB1 uptake by macrophages and whether genetic depletion of HMGB1 receptors [e.g., toll-like receptors (TLR)2, TLR4, or the receptor for advanced glycation end product (RAGE)] or pharmacological inhibition of endocytosis impairs TSN-SS-facilitated HMGB1 cellular uptake. TSN-SS stimulated internalization of exogenous HMGB1 protein into macrophage cytoplasmic vesicles that subsequently co-localized with microtubule-associated protein light chain 3 (LC3)-positive punctate structures (likely amphisomes). Meanwhile, it time-dependently elevated cellular levels of internalized HMGB1, leading to elevated LC3-II production and aggregation. Although genetic depletion of TLR2, TLR4, and/or RAGE did not impair TSN-SS-mediated HMGB1 uptake, specific inhibitors of the clathrin- and caveolin-dependent endocytosis significantly impaired TSN-SS-mediated HMGB1 uptake. Co-treatment with a lysosomal inhibitor, bafilomycin A1, led to enhanced accumulation of endogenous LC3-II and internalized exogenous HMGB1 in TSN-SS/rHMGB1-treated macrophages. Taken together, these findings suggest that TSN-SS may facilitate HMGB1 endocytic uptake, and subsequently delivered it to LC3-positive vacuoles (possibly amphisomes) for degradation via a lysosome-dependent pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Barriers and facilitators to the uptake of voluntary medical male ...

    African Journals Online (AJOL)

    VMMC) among adolescent boys in KwaZulu–Natal, South Africa. ... Individual cognitive factors facilitating uptake included the belief that VMMC reduced the risk of HIV infection, led to better hygiene and improvement in sexual desirability and ...

  8. Cellular uptake: lessons from supramolecular organic chemistry.

    Science.gov (United States)

    Gasparini, Giulio; Bang, Eun-Kyoung; Montenegro, Javier; Matile, Stefan

    2015-07-04

    The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.

  9. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    International Nuclear Information System (INIS)

    Eldawud, Reem; Dinu, Cerasela Zoica; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. (paper)

  10. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  11. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    Science.gov (United States)

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  12. Dynamics and mechanisms of quantum dot nanoparticle cellular uptake

    Directory of Open Access Journals (Sweden)

    Telford William G

    2010-06-01

    Full Text Available Abstract Background The rapid growth of the nanotechnology industry and the wide application of various nanomaterials have raised concerns over their impact on the environment and human health. Yet little is known about the mechanism of cellular uptake and cytotoxicity of nanoparticles. An array of nanomaterials has recently been introduced into cancer research promising for remarkable improvements in diagnosis and treatment of the disease. Among them, quantum dots (QDs distinguish themselves in offering many intrinsic photophysical properties that are desirable for targeted imaging and drug delivery. Results We explored the kinetics and mechanism of cellular uptake of QDs with different surface coatings in two human mammary cells. Using fluorescence microscopy and laser scanning cytometry (LSC, we found that both MCF-7 and MCF-10A cells internalized large amount of QD655-COOH, but the percentage of endocytosing cells is slightly higher in MCF-7 cell line than in MCF-10A cell line. Live cell fluorescent imaging showed that QD cellular uptake increases with time over 40 h of incubation. Staining cells with dyes specific to various intracellular organelles indicated that QDs were localized in lysosomes. Transmission electron microscopy (TEM images suggested a potential pathway for QD cellular uptake mechanism involving three major stages: endocytosis, sequestration in early endosomes, and translocation to later endosomes or lysosomes. No cytotoxicity was observed in cells incubated with 0.8 nM of QDs for a period of 72 h. Conclusions The findings presented here provide information on the mechanism of QD endocytosis that could be exploited to reduce non-specific targeting, thereby improving specific targeting of QDs in cancer diagnosis and treatment applications. These findings are also important in understanding the cytotoxicity of nanomaterials and in emphasizing the importance of strict environmental control of nanoparticles.

  13. Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions

    International Nuclear Information System (INIS)

    Jain, Suneil; Coulter, Jonathan A.; Butterworth, Karl T.; Hounsell, Alan R.; McMahon, Stephen J.; Hyland, Wendy B.; Muir, Mark F.; Dickson, Glenn R.; Prise, Kevin M.; Currell, Fred J.; Hirst, David G.; O’Sullivan, Joe M.

    2014-01-01

    Background and purpose: Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored. Materials and methods: GNP uptake, localization, toxicity and radiosensitisation were assessed in vitro under oxic and hypoxic conditions. Results: GNP cellular uptake was significantly lower under hypoxic than oxic conditions. A significant reduction in cell proliferation in hypoxic MDA-MB-231 breast cancer cells exposed to GNPs was observed. In these cells significant radiosensitisation occurred in normoxia and moderate hypoxia. However, in near anoxia no significant sensitisation occurred. Conclusions: GNP uptake occurred in hypoxic conditions, causing radiosensitisation in moderate, but not extreme hypoxia in a breast cancer cell line. These findings may be important for the development of GNPs for cancer therapy

  14. The effect of particle shape and size on cellular uptake.

    Science.gov (United States)

    Zheng, M; Yu, J

    2016-02-01

    Particle shape and size have been well-recognized to exhibit important effect on drug delivery and as an excellent candidate for drug delivery applications. The recent advances in the "top-down" and "bottom-up" approaches make it possible to develop different shaped and sized polymeric nanostructures, which provide a chance to tailor the shape of the nanostructures as a drug carrier. Presently, a large amount of cellular uptake data is available for particle shape and size effect on drug delivery. However, the effect has not been well formulated or described quantitatively. In the present paper, the dynamic process of the effects of particle shape and size on cellular uptake is analyzed, quantitative expression for the influence of particle shape and size on cellular uptake is proposed on the basis of local geometric feature of particle shape and diffusion approach of a particle in a medium rationally, and the relevant parameters in the formulation are determined by the available test data. The results indicate the validity of the present formulations.

  15. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.

    Science.gov (United States)

    He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng

    2017-12-09

    Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cellular uptake of nanoparticles: journey inside the cell.

    Science.gov (United States)

    Behzadi, Shahed; Serpooshan, Vahid; Tao, Wei; Hamaly, Majd A; Alkawareek, Mahmoud Y; Dreaden, Erik C; Brown, Dennis; Alkilany, Alaaldin M; Farokhzad, Omid C; Mahmoudi, Morteza

    2017-07-17

    Nanoscale materials are increasingly found in consumer goods, electronics, and pharmaceuticals. While these particles interact with the body in myriad ways, their beneficial and/or deleterious effects ultimately arise from interactions at the cellular and subcellular level. Nanoparticles (NPs) can modulate cell fate, induce or prevent mutations, initiate cell-cell communication, and modulate cell structure in a manner dictated largely by phenomena at the nano-bio interface. Recent advances in chemical synthesis have yielded new nanoscale materials with precisely defined biochemical features, and emerging analytical techniques have shed light on nuanced and context-dependent nano-bio interactions within cells. In this review, we provide an objective and comprehensive account of our current understanding of the cellular uptake of NPs and the underlying parameters controlling the nano-cellular interactions, along with the available analytical techniques to follow and track these processes.

  17. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    Science.gov (United States)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  18. Cellular uptake of Aib-containing amphipathic helix peptide.

    Science.gov (United States)

    Wada, Shun-ichi; Tsuda, Hirokazu; Okada, Terumi; Urata, Hidehito

    2011-10-01

    Cell-penetrating peptides (CPPs) are useful tools for the delivery of hydrophilic bioactive molecules, such as peptides, proteins, and oligonucleotides, across the cell membrane. To realize the delivery of therapeutic macromolecules by CPPs, the CPPs are required to show resistance to protease and no cytotoxicity. In order to produce potent non-toxic and protease-resistant CPPs with high cellular uptake, we designed an amphipathic helix peptide using α-aminoisobutyric acid (Aib, U) and named it MAP(Aib). In the MAP(Aib) molecule, five Aib residues are aligned on the hydrophobic face of the helix and five lysine (K) residues are aligned on the hydrophilic face. MAP(Aib) showed potent resistance to trypsin and pronase compared with MAP, an amphipathic helix peptide formed by usual amino acids. Fluorescein-labeled MAP(Aib) efficiently traversed the A549 cell membrane, diffusing into the cytoplasm and slightly into the nucleus without exerting any cytotoxicity. In contrast, MAP was poorly taken up by the cell. These results indicate that the incorporation of Aib residues into CPPs markedly improves cellular uptake and MAP(Aib) may be a useful tool for the delivery of hydrophilic macromolecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Investigation and characterization of the cellular uptake of nanoparticles

    Science.gov (United States)

    Siebein, Kerry Norine

    The focus of this study was to determine the effect of surface coatings on the cellular uptake of nanoparticles and their fate inside cells and tissue using correlative microscopy. The nanoparticle properties and cellular uptake, including unique identification of the composition, locations and distribution of nanoparticles in cells, were determined using multiple microscopy techniques. The effect of coatings on the properties of platinum nanoparticles and their uptake by BEAS cells was undertaken to determine their relationship to the expression of heme oxygenease (HO-1) enzyme. The 1.3M PVP platinum nanoparticles produced very fine and well dispersed nanoparticles that were observed in the lysosomes of the BEAS cells and the other nanoparticles studied were present in large agglomerates. The effect of polyethylene glycol (PEG) coating on the circulation time, agglomeration and accumulation of gold nanoparticles in the liver of mice was studied. A new approach to measuring the PEG coating thickness using high resolution TEM and negative staining techniques was introduced. The amount and distribution of gold in sections of the liver was determined using darkfield reflected light microscopy. Image analysis was used to determine the size, number and area fraction of agglomerates in the sections. The three dimensional distribution of gold nanoparticles in a single cell of the liver was obtained using ion abrasion scanning electron microscopy. The uncoated gold nanoparticles were taken up almost immediately by the Kupffer cells while the PEG coated nanoparticles were taken up after 2 hours. The native gold was observed in large, tightly packed agglomerates in lysosomes inside the cells, while the PEG coated nanoparticles were observed lining the inner surfaces of the lysosomes. Differences in the agglomeration of the gold nanoparticles had not been previously observed. The effect of surface charge on the fate of QDs ingested by daphnia magna (water fleas) was explored

  20. Design of a bistable switch to control cellular uptake.

    Science.gov (United States)

    Oyarzún, Diego A; Chaves, Madalena

    2015-12-06

    Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. © 2015 The Author(s).

  1. Cellular Uptake of Tile-Assembled DNA Nanotubes.

    Science.gov (United States)

    Kocabey, Samet; Meinl, Hanna; MacPherson, Iain S; Cassinelli, Valentina; Manetto, Antonio; Rothenfusser, Simon; Liedl, Tim; Lichtenegger, Felix S

    2014-12-30

    DNA-based nanostructures have received great attention as molecular vehicles for cellular delivery of biomolecules and cancer drugs. Here, we report on the cellular uptake of tubule-like DNA tile-assembled nanostructures 27 nm in length and 8 nm in diameter that carry siRNA molecules, folic acid and fluorescent dyes. In our observations, the DNA structures are delivered to the endosome and do not reach the cytosol of the GFP -expressing HeLa cells that were used in the experiments. Consistent with this observation, no elevated silencing of the GFP gene could be detected. Furthermore, the presence of up to six molecules of folic acid on the carrier surface did not alter the uptake behavior and gene silencing. We further observed several challenges that have to be considered when performing in vitro and in vivo experiments with DNA structures: (i) DNA tile tubes consisting of 42 nt-long oligonucleotides and carrying single- or double-stranded extensions degrade within one hour in cell medium at 37 °C, while the same tubes without extensions are stable for up to eight hours. The degradation is caused mainly by the low concentration of divalent ions in the media. The lifetime in cell medium can be increased drastically by employing DNA tiles that are 84 nt long. (ii) Dyes may get cleaved from the oligonucleotides and then accumulate inside the cell close to the mitochondria, which can lead to misinterpretation of data generated by flow cytometry and fluorescence microscopy. (iii) Single-stranded DNA carrying fluorescent dyes are internalized at similar levels as the DNA tile-assembled tubes used here.

  2. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity

    Science.gov (United States)

    Butler, Kimberly S.; Peeler, David J.; Casey, Brendan J.; Dair, Benita J.; Elespuru, Rosalie K.

    2015-01-01

    The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (reverse mutation assay) was assessed in five bacterial strains of Salmonella typhimurium and Echerichia coli, including TA102 that is sensitive to oxidative DNA damage. AgNPs of all sizes tested (10, 20, 50 and 100nm), along with silver nitrate (AgNO3), were negative for mutagenicity in bacteria. No AgNPs could be identified within the bacteria cells using transmission electron microscopy (TEM), indicating these bacteria lack the ability to actively uptake AgNPs 10nm or larger. Clastogenicity (flow cytometry-based micronucleus assay) and intermediate DNA damage (DNA strand breaks as measured in the Comet assay) were assessed in two mammalian white blood cell lines: Jurkat Clone E6-1 and THP-1. It was observed that micronucleus and Comet assay end points were inversely correlated with AgNP size, with smaller NPs inducing a more genotoxic response. TEM results indicated that AgNPs were confined within intracellular vesicles of mammalian cells and did not penetrate the nucleus. The genotoxicity test results and the effect of AgNO3 controls suggest that silver ions may be the primary, and perhaps only, cause of genotoxicity. Furthermore, since AgNO3 was not mutagenic in the gram-negative bacterial Ames strains tested, the lack of bacterial uptake of the AgNPs may not be the major reason for the lack of genotoxicity observed. PMID:25964273

  3. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.

    Science.gov (United States)

    Phuc, Le Thi Minh; Taniguchi, Akiyoshi

    2017-06-19

    The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF-EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  4. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis

    Directory of Open Access Journals (Sweden)

    Le Thi Minh Phuc

    2017-06-01

    Full Text Available The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF on the uptake efficiency of polystyrene nanoparticles (PS NPs by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs indicated that cellular uptake of PS NPs is related to the binding of EGF–EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  5. Importance of Net Hydrophobicity in the Cellular Uptake of All-Hydrocarbon Stapled Peptides.

    Science.gov (United States)

    Sakagami, Koki; Masuda, Toshihiro; Kawano, Kenichi; Futaki, Shiroh

    2018-03-05

    All-hydrocarbon stapled peptides make up a promising class of protein-protein interaction regulators; their potential therapeutic benefit arises because they have a high binding affinity and specificity for intracellular molecules. The cell permeation efficacy of these peptides is a critical determinant of their bioactivity. However, the factors that determine their cellular uptake remain an active area of research. In this study, we evaluated the effect of stapled (or cross-linked) formation on the cellular uptake of six known all-hydrocarbon stapled peptides. We found that the rate of cellular uptake of unstapled peptides (i.e., those bearing olefinic non-natural amino acids that are not subjected to olefin metathesis) was higher than that for the corresponding stapled peptides. Additionally, the insertion of these olefinic non-natural amino acids into peptide sequences significantly increased their rate of cellular uptake. According to the high-performance liquid chromatography retention times, the overall hydrophobicity of unstapled peptides was greater than that of stapled peptides, followed by that of the original peptides without olefinic non-natural amino acids. There was not a close correlation between helical content and the rate of cellular uptake of these peptides. Therefore, the increase in overall hydrophobicity resulting from the introduction of non-natural amino acids, rather than the structural stabilization resulting from staple formation, is the key driver promoting cellular uptake. Macropinocytosis, a form of fluid-phase endocytosis, was involved in the cellular uptake of all six peptides.

  6. Enhancing the cellular uptake of Py–Im polyamides through next-generation aryl turns

    OpenAIRE

    Meier, Jordan L.; Montgomery, David C.; Dervan, Peter B.

    2012-01-01

    Pyrrole–imidazole (Py–Im) hairpin polyamides are a class of programmable, sequence-specific DNA binding oligomers capable of disrupting protein–DNA interactions and modulating gene expression in living cells. Methods to control the cellular uptake and nuclear localization of these compounds are essential to their application as molecular probes or therapeutic agents. Here, we explore modifications of the hairpin γ-aminobutyric acid turn unit as a means to enhance cellular uptake and biologica...

  7. Labile complexes facilitate cadmium uptake by Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Verheyen, L., E-mail: Liesbeth.Verheyen@ees.kuleuven.be [Division of Soil and Water Management, K.U.Leuven, Kasteelpark Arenberg 20, Box 2459, 3001 Heverlee (Belgium); Degryse, F. [Division of Soil and Water Management, K.U.Leuven, Kasteelpark Arenberg 20, Box 2459, 3001 Heverlee (Belgium); Niewold, T. [Division Animal-nutrition-quality, K.U.Leuven, Kasteelpark Arenberg 30, Box 2456, 3001 Heverlee (Belgium); Smolders, E. [Division of Soil and Water Management, K.U.Leuven, Kasteelpark Arenberg 20, Box 2459, 3001 Heverlee (Belgium)

    2012-06-01

    The Free Ion Activity Model (FIAM) predicts that metal uptake in biota is related to the free ion activity in the external solution and that metal complexes do not contribute. However, studies with plants have shown that labile metal complexes enhance metal bioavailability when the uptake is rate-limited by transport of the free ion in solution to the uptake site. Here, the role of labile complexes of Cd on metal bioavailability was assessed using Caco-2 cells, the cell model for intestinal absorption. At low Cd{sup 2+} concentration (1 nM), the CdCl{sub n}{sup 2-n} complexes contributed to the uptake almost to the same extent as the free ion. At large Cd{sup 2+} concentration (10 {mu}M), the contribution of the complexes was much smaller. At constant Cd{sup 2+} concentration, Cd intake in the cells from solutions containing synthetic ligands such as EDTA increased as the dissociation rate of the cadmium complexes increased, and correlated well with the Cd diffusion flux in solution measured with the Diffusive Gradient in Thin Films technique (DGT). The Cd intake fluxes in the cells were well predicted assuming that the specific uptake is limited by diffusion of the free Cd{sup 2+} ion to the cell surface. Our results underline that speciation of Cd has a major effect on its uptake by intestinal cells, but the availability is not simply related to the free ion concentration. Labile complexes of Cd enhance metal bioavailability in these cells, likely by alleviating diffusive limitations. - Highlights: Black-Right-Pointing-Pointer We examined the role of labile complexes on the uptake of Cd and Zn by Caco-2 cells. Black-Right-Pointing-Pointer The availability of Cd and Zn is not simply related to the free ion activity. Black-Right-Pointing-Pointer Labile complexes of Cd enhance metal bioavailability in the Caco-2 cells at low free ion activities. Black-Right-Pointing-Pointer The active uptake is limited by diffusion of the free Cd{sup 2+} ion to the cell surface.

  8. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria

    DEFF Research Database (Denmark)

    Battini, Fabio; Grønlund, Mette; Agnolucci, Monica

    2017-01-01

    availability of soil P. This study investigated whether biofertilizers and bioenhancers, such as arbuscular mycorrhizal fungi (AMF) and their associated bacteria could enhance growth and P uptake in maize. Plants were grown with or without mycorrhizas in compartmented pots with radioactive P tracers and were...

  9. Cellular Uptake of A Taurine-Modified, Ester Bond-Decorated D-Peptide Derivative via Dynamin-Based Endocytosis and Macropinocytosis.

    Science.gov (United States)

    Zhou, Jie; Du, Xuewen; Berciu, Cristina; Del Signore, Steven J; Chen, Xiaoyi; Yamagata, Natsuko; Rodal, Avital A; Nicastro, Daniela; Xu, Bing

    2018-02-07

    Most of the peptides used for promoting cellular uptake bear positive charges. In our previous study, we reported an example of taurine (bearing negative charges in physiological conditions) promoting cellular uptake of D-peptides. Taurine, conjugated to a small D-peptide via an ester bond, promotes the cellular uptake of this D-peptide. Particularly, intracellular carboxylesterase (CES) instructs the D-peptide to self-assemble and to form nanofibers, which largely disfavors efflux and further enhances the intracellular accumulation of the D-peptide, as supported by that the addition of CES inhibitors partially impaired cellular uptake of this molecule in mammalian cell lines. Using dynamin 1, 2, and 3 triple knockout (TKO) mouse fibroblasts, we demonstrated that cells took up this molecule via macropinocytosis and dynamin-dependent endocytosis. Imaging of Drosophila larval blood cells derived from endocytic mutants confirmed the involvement of multiple endocytosis pathways. Electron microscopy (EM) indicated that the precursors can form aggregates on the cell surface to facilitate the cellular uptake via macropinocytosis. EM also revealed significantly increased numbers of vesicles in the cytosol. This work provides new insights into the cellular uptake of taurine derivative for intracellular delivery and self-assembly of D-peptides. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  10. Purification, immunotoxic effects, and cellular uptake of trichothecene mycotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Witt, M.F.

    1989-01-01

    Studies were carried out to better understand how the trichothecenes alter immune function in animals and humans. Deoxynivalenol (DON) was purified for use in animal feeding studies. Dietary exposure to DON for 8 weeks altered the serum immunoglobulin profile in mice and decreased the splenic plaque-forming cell response to the antigen sheep red blood cells. The uptake of ({sup 3}H)T-2 toxin by a murine B-cell hybridoma was studied in order to learn more about the way in which trichothecenes interact with immune cells. A simple procedure was developed for the laboratory production and purification of gram quantities of crystalline DON. When Fusarium graminearum R6576 was grown on rice, concentrations of 600 to 700 ppm DON accumulated after 13 to 18 days of incubation. A DON derivative, 15-acetylDON, was also found at concentrations of 100 to 300 ppm after 7 to 10 days. DON was purified from crude culture extracts by water-saturated silica gel chromatography. Alpha-({sup 3}H)T-2 toxin of 99% chemical and radiochemical purity was prepared for use in uptake studies. Both the rate of uptake of ({sup 3}H)T-2 toxin by hybridomas and the time required for accumulation of ({sup 3}H)T-2 to reach equilibrium were proportional to the concentration of ({sup 3}H)T-2. ({sup 3}H)T-2 toxin accumulated by hybridomas was proportional to the concentration of ({sup 3}H)T-2 between 10{sup {minus}8} and 10{sup {minus}3} M. The rate of uptake of ({sup 3}H)jT-2 toxin by hybridomas was inhibited by the trichothecenes T-2 toxin, DON, verrucarin A, and roridin A, as well as the antibiotic anisomycin. The kinetics and concentration dependence of accumulation, along with the inhibition patterns, suggest that uptake of ({sup 3}H)T-2 toxin by hybridomas is mediated by binding of toxin to ribosomes.

  11. Hydrophobicity drives the cellular uptake of short cationic peptide ligands.

    Science.gov (United States)

    Gupta, Anju; Mandal, Deendayal; Ahmadibeni, Yousef; Parang, Keykavous; Bothun, Geoffrey

    2011-06-01

    Short cationic linear peptide analogs (LPAs, prepared as Arg-C( n )-Arg-C( n )-Lys, where C( n ) represents an alkyl linkage with n = 4, 7 or 11) were synthesized and tested in human breast carcinoma BT-20 and CCRF-CEM leukemia cells for their application as targeting ligands. With constant LPA charge (+4), increasing the alkyl linkage increases the hydrophobic/hydrophilic balance and provides a systematic means of examining combined electrostatic and hydrophobic peptide-membrane interactions. Fluorescently conjugated LPA-C(11) (F-LPA-C(11)) demonstrated significant uptake, whereas there was negligible uptake of the shorter LPAs. By varying temperature (4°C and 37°C) and cell type, the results suggest that LPA-C(11) internalization is nonendocytic and nonspecific. The effect of LPA binding on the phase behavior, structure, and permeability of model membranes composed of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine (DPPC/DPPS, 85/15) was studied using differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), and fluorescence leakage studies to gain insight into the LPA uptake mechanism. While all LPAs led to phase separation, LPA-C(11), possessing the longest alkyl linkage, was able to penetrate into the bilayer and caused holes to form, which led to membrane disintegration. This was confirmed by rapid and complete dye release by LPA-C(11). We propose that LPA-C(11) achieves uptake by anchoring to the membrane via hydrophobicity and forming transient membrane voids. LPAs may be advantageous as drug transporter ligands because they are small, water soluble, and easy to prepare.

  12. Barriers and facilitators associated with HIV testing uptake in South ...

    African Journals Online (AJOL)

    Individuals (n ¼ 489) who had not tested for HIV on the day of the site visit were interviewed on awareness of HCT services, HIV testing history and barriers to HIV testing. Frequencies were run to describe the sample characteristics, barriers and facilitators to HIV testing. Bivariate and multivariate logistic regression was ...

  13. Combined Effect of Cameo2 and CBP on the Cellular Uptake of Lutein in the Silkworm, Bombyx mori

    Science.gov (United States)

    Dong, Xiao-Long; Chai, Chun-Li; Pan, Cai-Xia; Tang, Hui; Chen, Yan-Hong; Dai, Fang-Yin; Pan, Min-Hui; Lu, Cheng

    2014-01-01

    Formation of yellow-red color cocoons in the silkworm, Bombyx mori, occurs as the result of the selective delivery of carotenoids from the midgut to the silk gland via the hemolymph. This process of pigment transport is thought to be mediated by specific cellular carotenoids carrier proteins. Previous studies indicated that two proteins, Cameo2 and CBP, are associated with the selective transport of lutein from the midgut into the silk gland in Bombyx mori. However, the exact roles of Cameo2 and CBP during the uptake and transport of carotenoids are still unknown. In this study, we investigated the respective contributions of these two proteins to lutein and β-carotene transport in Bombyx mori as well as commercial cell-line. We found that tissues, expressed both Cameo2 and CBP, accumulate lutein. Cells, co-expressed Cameo2 and CBP, absorb 2 fold more lutein (Plutein was concentration-dependent and reached saturation. From immunofluorescence staining, confocal microscopy observation and western blot analysis, Cameo2 was localized at the membrane and CBP was expressed in the cytosol. What’s more, bimolecular fluorescence complementation analysis showed that these two proteins directly interacted at cellular level. Therefore, Cameo2 and CBP are necessarily expressed in midguts and silk glands for lutein uptake in Bombyx mori. Cameo2 and CBP, as the membrane protein and the cytosol protein, respectively, have the combined effect to facilitate the cellular uptake of lutein. PMID:24475153

  14. Synthesis, characterisation, cellular uptake and cytotoxicity of functionalised magnetic ruthenium (II) polypyridine complex core-shell nanocomposite.

    Science.gov (United States)

    Kandibanda, Srinivasa Rao; Gundeboina, Narasihmha; Das, Sourav; Sunkara, V Manorama

    2018-01-01

    The development of multifunctional nanoparticles comprising of a magnetic core in conjunction with appropriate molecules with capabilities to impart functionalities like luminescent, specific binding sites to facilitate attachment of moieties. This has attracted increasing attention and enables identification of promising candidates using for applications such as diagnostics and cure through early detection and localized delivery. Many studies have been performed on the synthesis and cellular interactions of core-shell nanoparticles, in which a functional inorganic core is coated with a biocompatible polymer layer that should reduce nonspecific uptake and cytotoxicity Here we report the synthesis and characterisation of multifunctional core-shell magnetic, luminescent nanocomposite (Fe 3 O 4 @SiO 2 @[Ru(Phen) 3 ] 2+ @SiO 2 @NH 2 ). Fe 3 O 4 as core and a luminescent ruthenium (II) complex encapsulated with silica shell, and then it is functionalized by an amine group by APTMS. The magnetic, luminescent, and biological activity of this multifunctional nanocomposite have also been studied to prove the nanocomposite is biocompatible, cellular uptake. The synthesized nanocomposite was completely characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and emission spectroscopy. MTT assay and cellular uptake by flow cytometry results proved that magnetic ruthenium (II) polypyridine complex - core shell nanocomposite has biocompatibility, minimum cytotoxicity and internalized inside B16F10 cells and confirms the potential biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency

    Science.gov (United States)

    Yang, Zhe; Jiang, Zhaozhong; Cao, Zhong; Zhang, Chao; Gao, Di; Luo, Xingen; Zhang, Xiaofang; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2014-08-01

    We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(γ-glutamic acid) (γ-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with γ-PGA promotes cellular uptake of the polyplex particles, particularly by γ-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the γ-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell

  16. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells.

    Directory of Open Access Journals (Sweden)

    John L Chunta

    Full Text Available OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS: R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS: Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003. CONCLUSIONS: MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.

  17. Metallofullerenol Inhibits Cellular Iron Uptake by Inducing Transferrin Tetramerization.

    Science.gov (United States)

    Li, Jinxia; Xing, Xueqing; Sun, Baoyun; Zhao, Yuliang; Wu, Zhonghua

    2017-10-18

    Herein, A549 tumor cell proliferation was confirmed to be positively dependent on the concentration of Fe 3+ or transferrin (Tf). Gd@C 82 (OH) 22 or C 60 (OH) 22 effectively inhibited the iron uptake and the subsequent proliferation of A549 cells. The conformational changes of Tf mixed with FeCl 3 , GdCl 3 , C 60 (OH) 22 or Gd@C 82 (OH) 22 were obtained by SAXS. The results demonstrate that Tf homodimers can be decomposed into monomers in the presence of FeCl 3 , GdCl 3 or C 60 (OH) 22 , but associated into tetramers in the presence of Gd@C 82 (OH) 22 . The larger change of SAXS shapes between Tf+C 60 (OH) 22 and Tf+FeCl 3 implies that C 60 (OH) 22 is bound to Tf, blocking the iron-binding site. The larger deviation of the SAXS shape from a possible crystal structure of Tf tetramer implies that Gd@C 82 (OH) 22 is bound to the Tf tetramer, thus disturbing iron transport. This study well explains the inhibition mechanism of Gd@C 82 (OH) 22 and C 60 (OH) 22 on the iron uptake and the proliferation of A549 tumor cells and highlights the specific interactions of a nanomedicine with the target biomolecules in cancer therapy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cellular uptake and anticancer activity of carboxylated gallium corroles

    Science.gov (United States)

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H.; Gray, Harry B.; Termini, John; Lim, Punnajit

    2016-01-01

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50 values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50 values (cell lines, displayed high efficacy (Emax = 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 >> 3 > 2 >> 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging. PMID:27044076

  19. Enhanced Cellular Uptake of Bowl-like Microcapsules.

    Science.gov (United States)

    Li, Huiying; Zhang, Wenbo; Tong, Weijun; Gao, Changyou

    2016-05-11

    Among several properties of colloidal particles, shape is emerging as an important parameter for tailoring the interactions between particles and cells. In this study, bowl-like multilayer microcapsules were prepared by osmotic-induced invagination of their spherical counterparts in a concentrated polyelectrolyte solution. The internalization behaviors of bowl-like and spherical microcapsules were compared by coincubation with smooth muscle cells (SMCs) and macrophages. The bowl-like capsules tended to attach onto the cell membranes from the bend side and could be enwrapped by the membranes of SMCs, leading to a faster uptake rate and larger accumulation inside cells than those of their spherical counterparts. These results are important for understanding the shape-dependent internalization behavior, providing useful guidance for further materials design especially in biomedical applications.

  20. Cellular adaptation facilitates sparse and reliable coding in sensory pathways.

    Science.gov (United States)

    Farkhooi, Farzad; Froese, Anja; Muller, Eilif; Menzel, Randolf; Nawrot, Martin P

    2013-01-01

    Most neurons in peripheral sensory pathways initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. It is unclear how this phenomenon affects stimulus coding in the later stages of sensory processing. Here, we show that a temporally sparse and reliable stimulus representation develops naturally in sequential stages of a sensory network with adapting neurons. As a modeling framework we employ a mean-field approach together with an adaptive population density treatment, accompanied by numerical simulations of spiking neural networks. We find that cellular adaptation plays a critical role in the dynamic reduction of the trial-by-trial variability of cortical spike responses by transiently suppressing self-generated fast fluctuations in the cortical balanced network. This provides an explanation for a widespread cortical phenomenon by a simple mechanism. We further show that in the insect olfactory system cellular adaptation is sufficient to explain the emergence of the temporally sparse and reliable stimulus representation in the mushroom body. Our results reveal a generic, biophysically plausible mechanism that can explain the emergence of a temporally sparse and reliable stimulus representation within a sequential processing architecture.

  1. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides.

    Science.gov (United States)

    Allred, Benjamin E; Rupert, Peter B; Gauny, Stacey S; An, Dahlia D; Ralston, Corie Y; Sturzbecher-Hoehne, Manuel; Strong, Roland K; Abergel, Rebecca J

    2015-08-18

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.

  2. Facilitated uptake of a bioactive metabolite of maritime pine bark extract (pycnogenol into human erythrocytes.

    Directory of Open Access Journals (Sweden)

    Max Kurlbaum

    Full Text Available Many plant secondary metabolites exhibit some degree of biological activity in humans. It is a common observation that individual plant-derived compounds in vivo are present in the nanomolar concentration range at which they usually fail to display measurable activity in vitro. While it is debatable that compounds detected in plasma are not the key effectors of bioactivity, an alternative hypothesis may take into consideration that measurable concentrations also reside in compartments other than plasma. We analysed the binding of constituents and the metabolite δ-(3,4-dihydroxy-phenyl-γ-valerolactone (M1, that had been previously detected in plasma samples of human consumers of pine bark extract Pycnogenol, to human erythrocytes. We found that caffeic acid, taxifolin, and ferulic acid passively bind to red blood cells, but only the bioactive metabolite M1 revealed pronounced accumulation. The partitioning of M1 into erythrocytes was significantly diminished at higher concentrations of M1 and in the presence of glucose, suggesting a facilitated transport of M1 via GLUT-1 transporter. This concept was further supported by structural similarities between the natural substrate α-D-glucose and the S-isomer of M1. After cellular uptake, M1 underwent further metabolism by conjugation with glutathione. We present strong indication for a transporter-mediated accumulation of a flavonoid metabolite in human erythrocytes and subsequent formation of a novel glutathione adduct. The physiologic role of the adduct remains to be elucidated.

  3. Synthesis of Carbohydrate Capped Silicon Nanoparticles and their Reduced Cytotoxicity, In Vivo Toxicity, and Cellular Uptake.

    Science.gov (United States)

    Ahire, Jayshree H; Behray, Mehrnaz; Webster, Carl A; Wang, Qi; Sherwood, Victoria; Saengkrit, Nattika; Ruktanonchai, Uracha; Woramongkolchai, Noppawan; Chao, Yimin

    2015-08-26

    The development of smart targeted nanoparticles (NPs) that can identify and deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. Obtaining knowledge of the diseases at the molecular level can facilitate the identification of biological targets. In particular, carbohydrate-mediated molecular recognitions using nano-vehicles are likely to increasingly affect cancer treatment methods, opening a new area in biomedical applications. Here, silicon NPs (SiNPs) capped with carbohydrates including galactose, glucose, mannose, and lactose are successfully synthesized from amine terminated SiNPs. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] analysis shows an extensive reduction in toxicity of SiNPs by functionalizing with carbohydrate moiety both in vitro and in vivo. Cellular uptake is investigated with flow cytometry and confocal fluorescence microscope. The results show the carbohydrate capped SiNPs can be internalized in the cells within 24 h of incubation, and can be taken up more readily by cancer cells than noncancerous cells. Moreover, these results reinforce the use of carbohydrates for the internalization of a variety of similar compounds into cancer cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells.

    Science.gov (United States)

    Guo, Dadong; Wu, Chunhui; Li, Xiaomao; Jiang, Hui; Wang, Xuemei; Chen, Baoan

    2008-05-01

    Nickel nanoparticles (Ni NPs) have been applied in a wide range of areas because of their unique structure and properties such as catalysts, high-density magnetic recording media and others. However, little effort has been paid to their biological application and the concrete effect of Ni NPs on biological systems is still unknown. In this study, the possibility of the utilization of the magnetic Ni NPs in cancer cell studies was explored and the effects of the Ni NPs capped with positively charged tetraheptylammonium on leukemia K562 cells in vitro were investigated. Our observations of optical microscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM) studies indicate that the morphological changes of cancer cells induced by Ni NPs could be apparently observed. The results of 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) assay, DNA fragmentation and flow cytometry studies demonstrate that the Ni NPs could exert cytotoxicity to leukemia K562 cells at high concentration, and subsequently induce both apoptosis and necrosis of target cancer cells, whilst it had little impact on target cells when at low concentration. Meanwhile, functionalized Ni NPs with positively charged groups could enhance the permeability of cell membrane and facilitate the cellular uptake of outer target molecules into cancer cells. These findings reveal the potential mechanism of Ni NPs to target cancer cells which could induce the cytotoxicity to leukemia cancer cells and suggest the possibility for applications of the Ni NPs in related clinical and biomedical areas.

  5. Quantification of cellular uptake of DNA nanostructures by qPCR.

    Science.gov (United States)

    Okholm, Anders Hauge; Nielsen, Jesper Sejrup; Vinther, Mathias; Sørensen, Rasmus Schøler; Schaffert, David; Kjems, Jørgen

    2014-05-15

    DNA nanostructures facilitating drug delivery are likely soon to be realized. In the past few decades programmed self-assembly of DNA building blocks have successfully been employed to construct sophisticated nanoscale objects. By conjugating functionalities to DNA, other molecules such as peptides, proteins and polymers can be precisely positioned on DNA nanostructures. This exceptional ability to produce modular nanoscale devices with tunable and controlled behavior has initiated an interest in employing DNA nanostructures for drug delivery. However, to obtain this the relationship between cellular interactions and structural and functional features of the DNA delivery device must be thoroughly investigated. Here, we present a rapid and robust method for the precise quantification of the component materials of DNA origami structures capable of entering cells in vitro. The quantification is performed by quantitative polymerase chain reaction, allowing a linear dynamic range of detection of five orders of magnitude. We demonstrate the use of this method for high-throughput screening, which could prove efficient to identify key features of DNA nanostructures enabling cell penetration. The method described here is suitable for quantification of in vitro uptake studies but should easily be extended to quantify DNA nanostructures in blood or tissue samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment.

    Science.gov (United States)

    Ye, Guihua; Jiang, Yajun; Yang, Xiaoying; Hu, Hongxiang; Wang, Beibei; Sun, Lu; Yang, Victor C; Sun, Duxin; Gao, Wei

    2018-01-10

    Inefficient cellular uptake and intracellular drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. To overcome both problems, we designed a smart nanoparticle that undergoes phase transition in a tumor microenvironment (TME). The smart nanoparticle is generated using a lipid-polypetide hybrid nanoparticle, which comprises a PEGylated lipid monolayer shell and a pH-sensitive hydrophobic poly-l-histidine core and is loaded with the antitumor drug doxorubicin (DOX). The smart nanoparticle undergoes a two-step phase transition at two different pH values in the TME: (i) At the TME (pH e : 7.0-6.5), the smart nanoparticle swells, and its surface potential turns from negative to neutral, facilitating the cellular uptake; (ii) After internalization, at the acid endolysosome (pH endo : 6.5-4.5), the smart nanoparticle dissociates and induces endolysosome escape to release DOX into the cytoplasm. In addition, a tumor-penetrating peptide iNRG was modified on the surface of the smart nanoparticle as a tumor target moiety. The in vitro studies demonstrated that the iNGR-modified smart nanoparticles promoted cellular uptake in the acidic environment (pH 6.8). The in vivo studies showed that the iNGR-modified smart nanoparticles exerted more potent antitumor efficacy against late-stage aggressive breast carcinoma than free DOX. These data suggest that the smart nanoparticles may serve as a promising delivery system for sequential uptake and intracellular drug release of antitumor agents. The easy preparation of these smart nanoparticles may also have advantages in the future manufacture for clinical trials and clinical use.

  7. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles

    Directory of Open Access Journals (Sweden)

    Fröhlich E

    2012-11-01

    Full Text Available Eleonore FröhlichCenter for Medical Research, Medical University of Graz, Graz, AustriaAbstract: Many types of nanoparticles (NPs are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging.Keywords: endocytosis, plasma membrane, lysosomes, polystyrene particles, quantum dots, dendrimers

  8. Cellular fatty acid transport in heart and skeletal muscle as facilitated by proteins

    NARCIS (Netherlands)

    Luiken, J. J.; Schaap, F. G.; van Nieuwenhoven, F. A.; van der Vusse, G. J.; Bonen, A.; Glatz, J. F.

    1999-01-01

    Despite the importance of long-chain fatty acids (FA) as fuels for heart and skeletal muscles, the mechanism of their cellular uptake has not yet been clarified. There is dispute as to whether FA are taken up by the muscle cells via passive diffusion and/or carrier-mediated transport. Kinetic

  9. Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models

    Directory of Open Access Journals (Sweden)

    Hui Guo

    2016-07-01

    Full Text Available Evodiamine (EVO and rutaecarpine (RUT are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids, and compared the results with those obtained from 2D monolayers. The drugs’ IC50 values were significantly increased from the range of 6.4–44.1 μM in 2D monolayers to 21.8–138.0 μM in 3D multicellular spheroids, which may be due to enhanced mass barrier and reduced drug penetration in 3D models. The fluorescence of EVO and RUT was measured via fluorescence spectroscopy and the cellular uptake of both drugs was characterized in 2D tumor models. The results showed that the cellular uptake concentrations of RUT increased with increasing drug concentrations. However, the EVO concentrations uptaken by the cells showed only a small change with increasing drug concentrations, which may be due to the different solubility of EVO and Rut in solvents. Overall, this study provided a new vision of the anti-tumor activity of EVO and RUT via 3D multicellular spheroids and cellular uptake through the fluorescence of compounds.

  10. Epidithiodiketopiperazines: Strain-Promoted Thiol-Mediated Cellular Uptake at the Highest Tension.

    Science.gov (United States)

    Zong, Lili; Bartolami, Eline; Abegg, Daniel; Adibekian, Alexander; Sakai, Naomi; Matile, Stefan

    2017-05-24

    The disulfide dihedral angle in epidithiodiketopiperazines (ETPs) is near 0°. Application of this highest possible ring tension to strain-promoted thiol-mediated uptake results in efficient delivery to the cytosol and nucleus. Compared to the previous best asparagusic acid (AspA), ring-opening disulfide exchange with ETPs occurs more efficiently even with nonactivated thiols, and the resulting thiols exchange rapidly with nonactivated disulfides. ETP-mediated cellular uptake is more than 20 times more efficient compared to AspA, occurs without endosomal capture, depends on temperature, and is "unstoppable" by inhibitors of endocytosis and conventional thiol-mediated uptake, including siRNA against the transferrin receptor. These results suggest that ETP-mediated uptake not only maximizes delivery to the cytosol and nucleus but also opens the door to a new multitarget hopping mode of action.

  11. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    David Stirling

    2013-02-01

    Full Text Available Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake.

  12. Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity.

    Science.gov (United States)

    Pitchaimani, Arunkumar; Nguyen, Tuyen Duong Thanh; Koirala, Mukund; Zhang, Yuntao; Aryal, Santosh

    2017-09-01

    In vitro cell-nanoparticle (NP) studies involve exposure of NPs onto the monolayer cells growing at the bottom of a culture plate, and assumed that the NPs evenly distributed for a dose-responsive effect. However, only a few proportion of the administered dose reaches the cells depending on their size, shape, surface, and density. Often the amount incubated (administered dose) is misled as a responsive dose. Herein, we proposed a cell adhesion-migration (CAM) strategy, where cells incubated with the NP coated cell culture substrate to maximize the cell-NP interaction and investigated the physiological properties of the cells. In the present study, cell adhesion and migration pattern of human breast cancer cell (MCF-7) and mouse melanoma cell (B16-F10) on cell culture substrate decorated with toxic (cetyltrimethylammonium bromide, CTAB) and biocompatible (poly (sodium 4-styrenesulphonate), PSS) gold nanoparticles (AuNPs) of different sizes (5 and 40nm) were investigated and evaluated for cellular uptake efficiency, proliferation, and toxicity. Results showed enhanced cell adhesion, migration, and nanoparticle uptake only on biocompatible PSS coated AuNP, irrespective of its size. Whereas, cytotoxic NP shows retard proliferation with reduced cellular uptake efficiency. Considering the importance of cell adhesion and migration on cellular uptake and cytotoxicity assessment of nanoparticle, CAM strategy would hold great promises in cell-NP interaction studies. Copyright © 2017. Published by Elsevier Ltd.

  13. Quantifying the cellular uptake of semiconductor quantum dot nanoparticles by analytical electron microscopy.

    Science.gov (United States)

    Hondow, Nicole; Brown, M Rowan; Starborg, Tobias; Monteith, Alexander G; Brydson, Rik; Summers, Huw D; Rees, Paul; Brown, Andy

    2016-02-01

    Semiconductor quantum dot nanoparticles are in demand as optical biomarkers yet the cellular uptake process is not fully understood; quantification of numbers and the fate of internalized particles are still to be achieved. We have focussed on the characterization of cellular uptake of quantum dots using a combination of analytical electron microscopies because of the spatial resolution available to examine uptake at the nanoparticle level, using both imaging to locate particles and spectroscopy to confirm identity. In this study, commercially available quantum dots, CdSe/ZnS core/shell particles coated in peptides to target cellular uptake by endocytosis, have been investigated in terms of the agglomeration state in typical cell culture media, the traverse of particle agglomerates across U-2 OS cell membranes during endocytosis, the merging of endosomal vesicles during incubation of cells and in the correlation of imaging flow cytometry and transmission electron microscopy to measure the final nanoparticle dose internalized by the U-2 OS cells. We show that a combination of analytical transmission electron microscopy and serial block face scanning electron microscopy can provide a comprehensive description of the internalization of an initial exposure dose of nanoparticles by an endocytically active cell population and how the internalized, membrane bound nanoparticle load is processed by the cells. We present a stochastic model of an endosome merging process and show that this provides a data-driven modelling framework for the prediction of cellular uptake of engineered nanoparticles in general. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  14. Ketoconazole inhibits the cellular uptake of anandamide via inhibition of FAAH at pharmacologically relevant concentrations.

    Directory of Open Access Journals (Sweden)

    Emmelie Björklund

    Full Text Available The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA.The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 µM, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component of 34 µM.The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer.

  15. From fat to FAT (CD36/SR-B2): Understanding the regulation of cellular fatty acid uptake.

    Science.gov (United States)

    Glatz, Jan F C; Luiken, Joost J F P

    2017-05-01

    The molecular mechanisms underlying the cellular uptake of long-chain fatty acids and the regulation of this process have been elucidated in appreciable detail in the last decades. Two main players in this field, each discovered in the early 1990s, are (i) a membrane-associated protein first identified in adipose ('fat') tissue and referred to as putative fatty acid translocase (FAT)/CD36 (now officially designated as SR-B2) which facilitates the transport of fatty acids across the plasma membrane, and (ii) the family of transcription factors designated peroxisome proliferator-activated receptors (PPARα, PPARγ, and PPARβ/δ) for which fatty acids and fatty acid metabolites are the preferred ligand. CD36/SR-B2 is the predominant membrane protein involved in fatty acid uptake into intestinal enterocytes, adipocytes and cardiac and skeletal myocytes. The rate of cellular fatty acid uptake is regulated by the subcellular vesicular recycling of CD36/SR-B2 from endosomes to the plasma membrane. Fatty acid-induced activation of PPARs results in the upregulation of the expression of genes encoding various proteins and enzymes involved in cellular fatty acid utilization. Both CD36/SR-B2 and the PPARs have been implicated in the derangements in fatty acid and lipid metabolism occurring with the development of pathophysiological conditions, such as high fat diet-induced insulin resistance and diabetic cardiomyopathy, and have been suggested as targets for metabolic intervention. In this brief review we discuss the discovery and current understanding of both CD36/SR-B2 and the PPARs in metabolic homeostasis. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants.

    Science.gov (United States)

    Luo, Bing Fang; Du, Shao Ting; Lu, Kai Xing; Liu, Wen Jing; Lin, Xian Yong; Jin, Chong Wei

    2012-05-01

    Nitrogen (N) management is a promising agronomic strategy to minimize cadmium (Cd) contamination in crops. However, it is unclear how N affects Cd uptake by plants. Wild-type and iron uptake-inefficient tomato (Solanum lycopersicum) mutant (T3238fer) plants were grown in pH-buffered hydroponic culture to investigate the direct effect of N-form on Cd uptake. Wild-type plants fed NO₃⁻ accumulated more Cd than plants fed NH₄⁺. Iron uptake and LeIRT1 expression in roots were also greater in plants fed NO₃⁻. However, in mutant T3238fer which loses FER function, LeIRT1 expression in roots was almost completely terminated, and the difference between NO₃⁻ and NH₄⁺ treatments vanished. As a result, the N-form had no effect on Cd uptake in this mutant. Furthermore, suppression of LeIRT1 expression by NO synthesis inhibition with either tungstate or L-NAME, also substantially inhibited Cd uptake in roots, and the difference between N-form treatments was diminished. Considering all of these findings, it was concluded that the up-regulation of the Fe uptake system was responsible for NO₃⁻-facilitated Cd accumulation in plants.

  17. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Choi, Seon Young; Jang, Soo Hwa; Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su; Lee, Kangtaek; Yang, Sung Ik; Joo, Sang-Woo; Ryu, Pan Dong; Lee, So Yeong

    2012-01-01

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  18. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: sjoo@ssu.ac.kr [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: leeso@snu.ac.kr [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)

    2012-12-15

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  19. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles

    Directory of Open Access Journals (Sweden)

    Li Y

    2012-02-01

    Full Text Available Fang Yang1*, Quanming Tang1,2*, Xueyun Zhong3, Yan Bai1, Tianfeng Chen1, Yibo Zhang1, Yinghua Li1, Wenjie Zheng11Department of Chemistry, Jinan University, Guangzhou, China; 2South China Seas Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; 3Department of Pathology, Jinan University, Guangzhou, China*These authors contributed equally to this workAbstract: A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs with Spirulina polysaccharides (SPS has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50% inhibitory concentration value of 7.94 µM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G1 cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers.Keywords: selenium nanoparticles, Spirulina polysaccharide, cellular uptake, anticancer, apoptosis

  20. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles.

    Science.gov (United States)

    Yang, Fang; Tang, Quanming; Zhong, Xueyun; Bai, Yan; Chen, Tianfeng; Zhang, Yibo; Li, Yinghua; Zheng, Wenjie

    2012-01-01

    A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs) with Spirulina polysaccharides (SPS) has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50%) inhibitory concentration value of 7.94 μM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G(1) cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers.

  1. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting.

    Science.gov (United States)

    Dong, Shuping; Cho, Hyung Joon; Lee, Yong Woo; Roman, Maren

    2014-05-12

    Elongated nanoparticles have recently been shown to have distinct advantages over spherical ones in targeted drug delivery applications. In addition to their oblong geometry, their lack of cytotoxicity and numerous surface hydroxyl groups make cellulose nanocrystals (CNCs) promising drug delivery vectors. Herein we report the synthesis of folic acid-conjugated CNCs for the targeted delivery of chemotherapeutic agents to folate receptor-positive cancer cells. Folate receptor-mediated cellular binding/uptake of the conjugate was demonstrated on human (DBTRG-05MG, H4) and rat (C6) brain tumor cells. Folate receptor expression of the cells was verified by immunofluorescence staining. Cellular binding/uptake of the conjugate by DBTRG-05MG, H4, and C6 cells was 1452, 975, and 46 times higher, respectively, than that of nontargeted CNCs. The uptake mechanism was determined by preincubation of the cells with the uptake inhibitors chlorpromazine or genistein. DBTRG-05MG and C6 cells internalized the conjugate primarily via caveolae-mediated endocytosis, whereas H4 cells internalized the conjugate primarily via clathrin-mediated endocytosis.

  2. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Li, Chung-Leung, E-mail: hcchang@po.sinica.edu.t, E-mail: chungL@gate.sinica.edu.t [Genomics Research Center, Academia Sinica, Taipei 115, Taiwan (China)

    2009-10-21

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  3. Study of the cellular uptake and distribution of 57cobalt bleomycin in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Metelmann, H.R.

    1980-01-01

    We investigated the dependence of the cellular uptake of 57 cobalt-bleomycin on the exposure time and on the dose. In addition we observed the influences due to the incubation temperature, to the growth phase of the tumor cells and due to the composition of the suspensory medium. In supplementary experiments we investigated the binding of the labelled cytostatic agent to erythrocytes, its adsorption to broken Ehrlich ascites tumor cells and the 57 cobalt-bleomycin outflow from pre-loaded intact Ehrlich ascites tumor cells. The 57 cobalt-bleomycin uptake of intact Ehrlich ascites tumor cells is determined by characteristic kinetics. Moreover, the erythrocytes and injured Ehrlich ascites tumor cells show a qualitatively similar graph of the 57 cobalt-bleomycin binding, which can clearly be distinguished from the kinetics found with intact Ehrlich ascites tumor cells. The uptake of this cytostatic agent depends on an unequivocal time-dose-temperature relationship. The transport mechanism of the 57 cobalt-bleomycin uptake was considered as endocytosis. An endocytosis-stimulating inducer could not be detected. However, we obtained indications that the cell-bound cytostatic agent is taken up in two compartments: on the cellular surface and in the interior of the cell. (orig./MG) [de

  4. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    International Nuclear Information System (INIS)

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng; Li, Chung-Leung

    2009-01-01

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  5. Cellular uptake of fluorophore-labeled glyco-DNA-gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witten, Katrin G.; Ruff, Julie [RWTH Aachen University, Institute of Inorganic Chemistry and JARA - Fundamentals of Future Information Technology (Germany); Mohr, Anne; Goertz, Dieter; Recker, Tobias; Rinis, Natalie [RWTH Aachen University, Institute of Biochemistry and Molecular Biology, University Hospital Aachen (Germany); Rech, Claudia; Elling, Lothar [RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering (Germany); Mueller-Newen, Gerhard [RWTH Aachen University, Institute of Biochemistry and Molecular Biology, University Hospital Aachen (Germany); Simon, Ulrich, E-mail: ulrich.simon@ac.rwth-aachen.de [RWTH Aachen University, Institute of Inorganic Chemistry and JARA - Fundamentals of Future Information Technology (Germany)

    2013-10-15

    DNA-functionalized gold nanoparticles (AuNP-DNA) were hybridized with complementary di-N-acetyllactosamine-(di-LacNAc, [3Gal({beta}1-4)GlcNAc({beta}1-]2)-modified oligonucleotides to form glycol-functionalized particles, AuNP-DNA-di-LacNAc. While AuNP-DNA are known to be taken up by cells via scavenger receptors, glycol-functionalized particles have shown to be taken up via asialoglycoprotein receptors (ASGP-R). In this work, the interaction of these new particles with HepG2 cells was analyzed, which express scavenger receptors class B type I (SR-BI) and ASGP-R. To study the contribution of these receptors as potential mediators for cellular uptake, receptor-blocking experiments were performed with d-lactose, a ligand for ASGP-R, Fucoidan, a putative ligand for SR-BI, and a SR-BI blocking antibody. Labeling with Cy5-modified DNA ligands enabled us to monitor the particle uptake by confocal fluorescence microscopy and flow cytometry, in order to discriminate the two putative pathways by competitive binding studies. While SR-BI-antibody and d-lactose had no inhibiting effects on particle uptake Fucoidan led to a complete inhibition. Thus, a receptor-mediated uptake by the two receptors studied could not be proven and therefore other uptake mechanisms have to be considered.

  6. Mechanisms of cellular uptake of nanoparticles and their effect on drug delivery

    Directory of Open Access Journals (Sweden)

    Karmen Teskač Plajnšek

    2012-03-01

    Full Text Available In the field of diagnosis and treatment in contemporary medicine, nanoparticles (NPs are an important novelty. They are drug delivery systems on the nanometer scale, whose uptake mechanisms and routes of internalization differ, depending on their properties. For successful treatment, it is crucially important to understand the interplay between uptake mechanisms and NP properties. In this article mechanisms of NP uptake and the subsequent intracellular events are presented. NPs can enter cells via phagocytotic or non-phagocytotic pathways (clathrin-mediated endocytosis, caveolae- mediated endocytosis, macropinocytosis, other endocytotic pathways. The route of internalization determines the site of drug release, which can be in the acidic and enzyme rich environment of lysosomes, or NPs avoid this compartment and release drug in the cytosol or another organelle. This process can be controlled by a careful selection of NP ingredients and precise design of their physico-chemical properties (size, shape, surface properties. Phagocytosis is generally undesirable, since its main purpose is the elimination of foreign materials from the body, and therefore the drug taken up in this way is usually lost. To avoid this internalization mechanism, the particles should be small showing a hydrophilic surface. However, the most successful approach is to attach ligands to the NP surface, which governs the uptake through non-phagocytotic mechanisms. Knowledge about cellular uptake mechanisms is crucial for predicting drug delivery to the target site in the cell, since it can lead to better stability of NPs and preserved biological activity of labile drugs.

  7. New aspects of cellular thallium uptake: Tl+-Na+-2Cl--cotransport is the central mechanism of ion uptake

    International Nuclear Information System (INIS)

    Sessler, M.J.; Maul, F.D.; Hoer, G.; Munz, D.L.; Geck, P.

    1986-01-01

    Cellular uptake mechanisms of 201 Tl + were studied in Ehrlich mouse ascites tumor cells. 201 Tl + phases the cell membrane of tumor cells using three transport systems: the ATPase, the Tl + -Na + -2Cl - -cotransport, and the Ca ++ -dependent ion channel. In the case of 201 Tl + the main route for entering the cells was the cotransport, its importance increasing with the age of the cells; in parallel, the ATPase activity was reduced. In contrast, the transport capacities of the ATPase and the cotransport were of the same magnitude in the case of 42 K + and 86 Rb + . This change in ion distribution was not brought about by varying velocity relations but by changing the number of transport systems in the cell membrane. There was no relationship between transport rates and diameters of the ions. 201 Tl + distribution is proportional to that of K + with a higher intracellular concentration of about 30%. Under physiological conditions the cotransport was reversible suggesting the ability to regulate steady state during varying extracellular ion concentrations. Cells and medium were two compartments, kinetically seen. Due to the significant difference of transport capacities between the three systems with the respective ions the term ''potassium-thallium-analogy'' may be misleading as it erroneously assumes identical uptake conditions. (orig.) [de

  8. Cellular Uptake Mechanism of Cationic Branched Polypeptides with Poly[l-Lys] Backbone.

    Science.gov (United States)

    Szabó, Rita; Sebestyén, Mónika; Kóczán, György; Orosz, Ádám; Mező, Gábor; Hudecz, Ferenc

    2017-04-10

    Cationic macromolecular carriers can be effective carriers for small molecular compounds, drugs, epitopes, or nucleic acids. Polylysine-based polymeric branched polypeptides have been systematically studied on the level of cells and organisms as well. In the present study, we report our findings on the cellular uptake characteristics of nine structurally related polylysine-based polypeptides with cationic side chains composed of (i) single amino acid (poly[Lys(X i )], X i K) or (ii) oligo[dl-alanine] (poly[Lys(dl-Ala m )], AK) or (iii) oligo[dl-alanine] with an additional amino acid (X) at the terminal position (poly[Lys(X i -dl-Ala m )] (XAK)) or (iv) at the position next to the polylysine backbone (poly[Lys(dl-Ala m -X i )] (AXK)). In vitro cytotoxicity and cellular uptake were characterized on HT-29 human colon carcinoma and HepG2 human hepatocarcinoma cell lines. Data indicate that the polycationic polypeptides studied are essentially nontoxic in the concentration range studied, and their uptake is very much dependent on the side chain structure (length, identity of amino acid X, and distance between the terminal positive charges) and also on the cell lines. Our findings in uptake inhibition studies suggest that predominantly macropinocytosis and caveole/lipid raft mediated endocytosis are involved. The efficacy of their internalization is markedly influenced by the hydrophobicity and charge properties of the amino acid X. Interestingly, the uptake properties of the these polypeptides show certain similarities to the entry pathways of several cell penetrating peptides.

  9. The minute virus of mice exploits different endocytic pathways for cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    2015-08-15

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy and flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake.

  10. The minute virus of mice exploits different endocytic pathways for cellular uptake

    International Nuclear Information System (INIS)

    Garcin, Pierre O.; Panté, Nelly

    2015-01-01

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy and flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake

  11. Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells

    Science.gov (United States)

    Sun, Xin-Yuan; Gan, Qiong-Zhi; Ouyang, Jian-Ming

    2017-02-01

    Urinary crystals with various sizes are present in healthy individuals and patients with kidney stone; however, the cellular uptake mechanism of calcium oxalate of various sizes has not been elucidated. This study aims to compare the internalization of nano-/micron-sized (50 nm, 100 nm, and 1 μm) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals in African green monkey renal epithelial (Vero) cells. The internalization and adhesion of COM and COD crystals to Vero cells were enhanced with decreasing crystal size. Cell death rate was positively related to the amount of adhered and internalized crystals and exhibited higher correlation with internalization than that with adhesion. Vero cells mainly internalized nano-sized COM and COD crystals through clathrin-mediated pathways as well as micron-sized crystals through macropinocytosis. The internalized COM and COD crystals were distributed in the lysosomes and destroyed lysosomal integrity to some extent. The results of this study indicated that the size of crystal affected cellular uptake mechanism, and may provide an enlightenment for finding potential inhibitors of crystal uptake, thereby decreasing cell injury and the occurrence of kidney stones.

  12. A systematic in vitro investigation on poly-arginine modified nanostructured lipid carrier: Pharmaceutical characteristics, cellular uptake, mechanisms and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Mingshuang Sun

    2017-01-01

    Full Text Available The aim of the present study was to develop a poly-arginine modified nanostructured lipid carrier (R-NLC by fusion-emulsification method and to test its pharmaceutical characteristics. The influence of R-NLC on A549 cells like cellular uptake and cytotoxicity was also appraised using unmodified NLC as the controlled group. As the results revealed, R-NLC had an average diameter of about 40 nm and a positive zeta potential of about +17 mv, the entrapment efficiency decreased apparently, and no significant difference on the in vitro drug release was found after R8-modification. The cellular uptake and cytotoxicity increased obviously compared with unmodified NLC. The cellular uptake mechanisms of R-NLC involved energy, macropinocytosis, clathrin-mediated endocytosis, and caveolin-mediated endocytosis. The outcomes of the present study strongly support the theory that cell penetrating peptides have the ability of enhancing the cellular uptake of nanocarriers.

  13. Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles

    Science.gov (United States)

    Santillán-Urquiza, Esmeralda; Arteaga-Cardona, Fernando; Torres-Duarte, Cristina; Cole, Bryan; Wu, Bing; Méndez-Rojas, Miguel A.; Cherr, Gary N.

    2017-09-01

    Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc uptake of different sources of zinc: zinc sulfate, and ZnO and core-shell α-Fe2O3@ZnO nanoparticles, coated or uncoated with inulin, an edible and biocompatible polysaccharide. Using mussel haemocytes, a well-known model system to assess nanomaterial toxicity, we simultaneously assessed zinc accumulation and multiple cellular response endpoints. We found that intracellular zinc uptake was strongly enhanced by inulin coating, in comparison to the uncoated nanoparticles, while no significant effects on cell death, cell viability, mitochondrial membrane integrity, production of reactive oxygen species or lysosome abundance were observed at concentrations up to 20 ppm. Since no significant increments in toxicity were observed, the coated nanomaterials may be useful to increase in vivo zinc uptake for nutritional applications.

  14. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi-Ching; Chang, Fan-Yu [Department of Physiology and Pharmacology & Healthy Aging Research Center, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Tu, Shu-Ju [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Chen, Jyh-Ping [Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Ma, Yunn-Hwa, E-mail: yhma@mail.cgu.edu.tw [Department of Physiology and Pharmacology & Healthy Aging Research Center, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Department of Neurology, Chang Gung Memorial Hospital, Guishan, Taoyuan City 33305, Taiwan, ROC (China)

    2017-04-01

    Magnetic force may greatly enhance uptake of magnetic nanoparticles (MNPs) by cultured cells; however, the effects of non-uniformity of magnetic field/ magnetic gradient on MNP internalization in culture has not been elucidated. Cellular uptake of polyacrylic acid coated-MNP by LN229 cells was measured with cylindrical NdFeB magnets arranged in a staggered pattern. The magnetic field generated by placing a magnet underneath (H-field) elicited a homogenous distribution of MNPs on the cells in culture; whereas the field without magnet underneath (L-field) resulted in MNP distribution along the edge of the wells. Cell-associated MNP (MNP{sub cell}) appeared to be magnetic field- and concentration-dependent. In H-field, MNP{sub cell} reached plateau within one hour of exposure to MNP with only one-min application of the magnetic force in the beginning of incubation; continuous presence of the magnet for 2 h did not further increase MNP{sub cell}, suggesting that magnetic force-induced uptake may be primarily contributed to enhanced MNP sedimentation. Although MNP distribution was much inhomogeneous in L-field, averaged MNP{sub cell} in the L-field may reach as high as 80% of that in H-field during 1–6 h incubation, suggesting high capacity of MNP internalization. In addition, no significant difference was observed in MNP{sub cell} analyzed by flow cytometry with the application of H-field of staggered plate vs. filled magnet plate. Therefore, biological variation may dominate MNP internalization even under relatively uniformed magnetic field; whereas non-uniformed magnetic field may serve as a model for tumor targeting with MNPs in vivo. - Graphical abstract: Averaged MNP uptake by glioma cells in the low and non-uniformed magnetic field reached as high as 80% of that in uniformed magnetic field, which is probably due to both heterogeneous distributions of MNPs in the non-uniformed magnetic field and high capacity of the MNP uptake by these cells. - Highlights:

  15. Point-particle method to compute diffusion-limited cellular uptake

    Science.gov (United States)

    Sozza, A.; Piazza, F.; Cencini, M.; De Lillo, F.; Boffetta, G.

    2018-02-01

    We present an efficient point-particle approach to simulate reaction-diffusion processes of spherical absorbing particles in the diffusion-limited regime, as simple models of cellular uptake. The exact solution for a single absorber is used to calibrate the method, linking the numerical parameters to the physical particle radius and uptake rate. We study the configurations of multiple absorbers of increasing complexity to examine the performance of the method by comparing our simulations with available exact analytical or numerical results. We demonstrate the potential of the method to resolve the complex diffusive interactions, here quantified by the Sherwood number, measuring the uptake rate in terms of that of isolated absorbers. We implement the method in a pseudospectral solver that can be generalized to include fluid motion and fluid-particle interactions. As a test case of the presence of a flow, we consider the uptake rate by a particle in a linear shear flow. Overall, our method represents a powerful and flexible computational tool that can be employed to investigate many complex situations in biology, chemistry, and related sciences.

  16. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis.

    Science.gov (United States)

    Costa Verdera, Helena; Gitz-Francois, Jerney J; Schiffelers, Raymond M; Vader, Pieter

    2017-11-28

    Recent evidence has established that extracellular vesicles (EVs), including exosomes and microvesicles, form an endogenous transport system through which biomolecules, including proteins and RNA, are exchanged between cells. This endows EVs with immense potential for drug delivery and regenerative medicine applications. Understanding the biology underlying EV-based intercellular transfer of cargo is of great importance for the development of EV-based therapeutics. Here, we sought to characterize the cellular mechanisms involved in EV uptake. Internalization of fluorescently-labeled EVs was evaluated in HeLa cells, in 2D (monolayer) cell culture as well as 3D spheroids. Uptake was assessed using flow cytometry and confocal microscopy, using chemical as well as RNA interference-based inhibition of key proteins involved in individual endocytic pathways. Experiments with chemical inhibitors revealed that EV uptake depends on cholesterol and tyrosine kinase activity, which are implicated in clathrin-independent endocytosis, and on Na + /H + exchange and phosphoinositide 3-kinase activity, which are important for macropinocytosis. Furthermore, EV internalization was inhibited by siRNA-mediated knockdown of caveolin-1, flotillin-1, RhoA, Rac1 and PAK1, but not clathrin heavy chain. Together, these results suggest that EVs enter cells predominantly via clathrin-independent endocytosis and macropinocytosis. Identification of EV components that promote their uptake via pathways that lead to functional cargo transfer might allow development of more efficient therapeutics through EV-inspired engineering. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. ZnO nanofluids for the improved cytotoxicity and cellular uptake of doxorubicin

    Directory of Open Access Journals (Sweden)

    Safoura Soleymani

    2018-01-01

    Full Text Available Objective(s: Combination anticancer therapy holds promise for improving the therapeutic efficacy of chemotherapy drugs such as doxorubicin (DOX as well as decreasing their dose-limiting side effects. Overcoming the side effects of doxorubicin (DOX is a major challenge to the effective treatment of cancer. Zinc oxide nanoparticles (ZnO NPs are emerging as potent tools for a wide variety of biomedical applications. The aim of this study was to develop a combinatorial approach for enhancing the anticancer efficacy and cellular uptake of DOX. Materials and Methods: ZnO NPs were synthesized by the solvothermal method and were characterized by X-ray diffraction (XRD, dynamic light scattering (DLS and transmission electron microscopy (TEM. ZnO NPs were dispersed in 10% bovine serum albumin (BSA and the cytotoxic effect of the resulting ZnO nanofluids was evaluated alone and in combination with DOX on DU145 cells. The influence of ZnO nanofluids on the cellular uptake of DOX and DOX-induced catalase mRNA expression were investigated by fluorescence microscopy and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR, respectively. Results: The MTT results revealed that ZnO nanofluids decreased the cell viability of DU145 cells in a timeand dose-dependent manner. Simultaneous combination treatment of DOX and ZnO nanofluid showed a significant increase in anticancer activity and the cellular uptake of DOX compared to DOX alone. Also, a time-dependent reduction of catalase mRNA expression was observed in the cells treated with ZnO nanofluids and DOX, alone and in combination with each other. Conclusion: These results indicate the role of ZnO nanofluid as a growth-inhibitory agent and a drug delivery system for DOX in DU145 cells. Thus, ZnO nanofluid could be a candidate for combination chemotherapy.

  18. Cellular Uptake Properties of the Complex Derived from Quantum Dots and G8 Molecular Transporter

    International Nuclear Information System (INIS)

    Im, Jung Kyun; Maiti, Kaustabh K.; Kim, Wan Il; Kim, Kyong Tai; Chung, Sung Kee

    2011-01-01

    The biotin-attached G8 molecular transporter (5) was synthesized and used together with quantum dots in preparing the complexes (QD-MT). The QD-MT complexes were studied in terms of the cellular uptake and the internalization mechanism in live HeLa cells with the aid of various known endocytosis inhibitors. It has been concluded that the QD-MT complex is internalized largely by macropinocytosis. The mouse tissue distribution of the QD-MT complex by i.p. and i.v. routes showed some organ selectivity and a good ability to cross the BBB

  19. Cellular Uptake Properties of the Complex Derived from Quantum Dots and G8 Molecular Transporter

    Energy Technology Data Exchange (ETDEWEB)

    Im, Jung Kyun; Maiti, Kaustabh K.; Kim, Wan Il; Kim, Kyong Tai; Chung, Sung Kee [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2011-04-15

    The biotin-attached G8 molecular transporter (5) was synthesized and used together with quantum dots in preparing the complexes (QD-MT). The QD-MT complexes were studied in terms of the cellular uptake and the internalization mechanism in live HeLa cells with the aid of various known endocytosis inhibitors. It has been concluded that the QD-MT complex is internalized largely by macropinocytosis. The mouse tissue distribution of the QD-MT complex by i.p. and i.v. routes showed some organ selectivity and a good ability to cross the BBB.

  20. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Arnaud Beduneau

    Full Text Available BACKGROUND: We posit that the same mononuclear phagocytes (MP that serve as target cells and vehicles for a host of microbial infections can be used to improve diagnostics and drug delivery. We also theorize that physical and biological processes such as particle shape, size, coating and opsonization that affect MP clearance of debris and microbes can be harnessed to facilitate uptake of nanoparticles (NP and tissue delivery. METHODS: Monocytes and monocyte-derived macrophages (MDM were used as vehicles of superparamagnetic iron oxide (SPIO NP and immunoglobulin (IgG or albumin coated SPIO for studies of uptake and distribution. IgG coated SPIO was synthesized by covalent linkage and uptake into monocytes and MDM investigated related to size, time, temperature, concentration, and coatings. SPIO and IgG SPIO were infused intravenously into naïve mice. T(2 measures using magnetic resonance imaging (MRI were used to monitor tissue distribution in animals. RESULTS: Oxidation of dextran on the SPIO surface generated reactive aldehyde groups and permitted covalent linkage to amino groups of murine and human IgG and F(ab'(2 fragments and for Alexa Fluor(R 488 hydroxylamine to form a Schiff base. This labile intermediate was immediately reduced with sodium cyanoborohydride in order to stabilize the NP conjugate. Optical density measurements of the oxidized IgG, F(ab'(2, and/or Alexa Fluor(R 488 SPIO demonstrated approximately 50% coupling yield. IgG-SPIO was found stable at 4 degrees C for a period of 1 month during which size and polydispersity index varied little from 175 nm and 200 nm, respectively. In vitro, NP accumulated readily within monocyte and MDM cytoplasm after IgG-SPIO exposure; whereas, the uptake of native SPIO in monocytes and MDM was 10-fold less. No changes in cell viability were noted for the SPIO-containing monocytes and MDM. Cell morphology was not changed as observed by transmission electron microscopy. Compared to unconjugated

  1. Integrin-linked kinase regulates cellular mechanics facilitating the motility in 3D extracellular matrices.

    Science.gov (United States)

    Kunschmann, Tom; Puder, Stefanie; Fischer, Tony; Perez, Jeremy; Wilharm, Nils; Mierke, Claudia Tanja

    2017-03-01

    The motility of cells plays an important role for many processes such as wound healing and malignant progression of cancer. The efficiency of cell motility is affected by the microenvironment. The connection between the cell and its microenvironment is facilitated by cell-matrix adhesion receptors and upon their activation focal adhesion proteins such as integrin-linked kinase (ILK) are recruited to sites of focal adhesion formation. In particular, ILK connects cell-matrix receptors to the actomyosin cytoskeleton. However, ILK's role in cell mechanics regulating cellular motility in 3D collagen matrices is still not well understood. We suggest that ILK facilitates 3D motility by regulating cellular mechanical properties such as stiffness and force transmission. Thus, ILK wild-type and knock-out cells are analyzed for their ability to migrate on 2D substrates serving as control and in dense 3D extracellular matrices. Indeed, ILK wild-type cells migrated faster on 2D substrates and migrated more numerous and deeper in 3D matrices. Hence, we analyzed cellular deformability, Young's modulus (stiffness) and adhesion forces. We found that ILK wild-type cells are less deformable (stiffer) and produce higher cell-matrix adhesion forces compared to ILK knock-out cells. Finally, ILK is essential for providing cellular mechanical stiffness regulating 3D motility. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Mechanism of cellular uptake and impact of ferucarbotran on macrophage physiology.

    Directory of Open Access Journals (Sweden)

    Chung-Yi Yang

    Full Text Available Superparamagnetic iron oxide (SPIO nanoparticles are contrast agents used for magnetic resonance imaging. Ferucarbotran is a clinically approved SPIO-coated carboxydextran with a diameter of about 45-60 nm. We investigated the mechanism of cellular uptake of Ferucarbotran with a cell model using the murine macrophage cell line Raw 264.7. We observed a dose-dependent uptake of these SPIO particles by spectrophotometer analysis and also a dose-dependent increase in the granularity of the macrophages as determined by flow cytometry. There was a linear correlation between the side scattering mean value and iron content (P<0.001, R(2 = 0. 8048. For evaluation of the endocytotic pathway of these ingested SPIO particles, different inhibitors of the endocytotic pathways were employed. There was a significant decrease of side scattering counts in the cells and a less significant change in signal intensity based on magnetic resonance in the phenylarsine oxide-treated macrophages. After labeling with SPIO particles, the macrophages showed an increase in the production of reactive oxygen species at 2, 24, and 48 h; a decrease in mitochondrial membrane potential at 24 h; and an increase in cell proliferation at 24 h. We concluded that Ferucarbotran was internalized into macrophages via the clathrin-mediated pathway and can change the cellular behavior of these cells after labeling.

  3. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes.

    Science.gov (United States)

    Nakase, Ikuhiko; Kobayashi, Nahoko Bailey; Takatani-Nakase, Tomoka; Yoshida, Tetsuhiko

    2015-06-03

    Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems.

  4. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk

    Science.gov (United States)

    Li, Ying; Kröger, Martin; Liu, Wing Kam

    2015-10-01

    The size, shape, surface property and material composition of polymer-coated nanoparticles (NPs) are four important parameters in designing efficient NP-based carriers for targeted drug delivery. However, due to the complex interplay between size, shape and surface property, most studies lead to ambiguous descriptions of the relevance of shape. To clarify its influence on the cellular uptake of PEGylated NPs, large scale molecular simulations have been performed to study differently shaped convex NPs, such as sphere, rod, cube and disk. Comparing systems with identical NP surface area, ligand-receptor interaction strength, and grafting density of the polyethylene glycol, we find that the spherical NPs exhibit the fastest internalization rate, followed by the cubic NPs, then rod- and disk-like NPs. The spherical NPs thus demonstrate the highest uptake among these differently shaped NPs. Based on a detailed free energy analysis, the NP shape effect is found to be mainly induced by the different membrane bending energies during endocytosis. The spherical NPs need to overcome a minimal membrane bending energy barrier, compared with the non-spherical counterparts, while the internalization of disk-like NPs involves a strong membrane deformation, responsible for a large free energy barrier. Besides, the free energy change per tethered chain is about a single kBT regardless of NP shape, as revealed by our self-consistent field theory calculations, where kB and T denote Boltzmann constant and temperature, respectively. Thus, the NP shape only plays the secondary role in the free energy change of grafted PEG polymers during internalization. We also find that star-shaped NPs can be quickly wrapped by the cell membrane, similar to their spherical counterparts, indicating star-shaped NPs can be used for drug delivery with high efficacy. Our findings seem to provide useful guidance in the molecular design of PEGylated NPs for controllable cellular uptake and help establish

  5. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells

    Science.gov (United States)

    Kumar, Dhiraj; Mutreja, Isha; Chitcholtan, Kenny; Sykes, Peter

    2017-11-01

    Nanomedicine has advanced the biomedical field with the availability of multifunctional nanoparticles (NPs) systems that can target a disease site enabling drug delivery and helping to monitor the disease. In this paper, we synthesised the gold nanoparticles (AuNPs) with an average size 18, 40, 60 and 80 nm, and studied the effect of nanoparticles size, concentration and incubation time on ovarian cancer cells namely, OVCAR5, OVCAR8, and SKOV3. The size measured by transmission electron microscopy images was slightly smaller than the hydrodynamic diameter; measured size by ImageJ as 14.55, 38.13, 56.88 and 78.56 nm. The cellular uptake was significantly controlled by the AuNPs size, concentration, and the cell type. The nanoparticles uptake increased with increasing concentration, and 18 and 80 nm AuNPs showed higher uptake ranging from 1.3 to 5.4 μg depending upon the concentration and cell type. The AuNPs were associated with a temporary reduction in metabolic activity, but metabolic activity remained more than 60% for all sample types; NPs significantly affected the cell proliferation activity in first 12 h. The increase in nanoparticle size and concentration induced the production of reactive oxygen species in 24 h.

  6. Quantification of cellular uptake of DNA nanostructures by qPCR

    DEFF Research Database (Denmark)

    Okholm, Anders Hauge; Nielsen, Jesper Sejrup; Vinther, Mathias

    2014-01-01

    interactions and structural and functional features of the DNA delivery device must be thoroughly investigated. Here, we present a rapid and robust method for the precise quantification of the component materials of DNA origami structures capable of entering cells in vitro. The quantification is performed...... is suitable for quantification of in vitro uptake studies but should easily be extended to quantify DNA nanostructures in blood or tissue samples......DNA nanostructures facilitating drug delivery are likely soon to be realized. In the past few decades programmed self-assembly of DNA building blocks have successfully been employed to construct sophisticated nanoscale objects. By conjugating functionalities to DNA, other molecules such as peptides...

  7. Shape Effect on Particle-Lipid Bilayer Membrane Association, Cellular Uptake, and Cytotoxicity.

    Science.gov (United States)

    Tree-Udom, Thapakorn; Seemork, Jiraporn; Shigyou, Kazuki; Hamada, Tsutomu; Sangphech, Naunpun; Palaga, Tanapat; Insin, Numpon; Pan-In, Porntip; Wanichwecharungruang, Supason

    2015-11-04

    Although computer simulation and cell culture experiments have shown that elongated spherical particles can be taken up into cells more efficiently than spherical particles, experimental investigation on effects of these different shapes over the particle-membrane association has never been reported. Therefore, whether the higher cellular uptake of an elongated spherical particles is a result of a better particle-membrane association as suggested by some calculation works or a consequence of its influence on other cellular trans-membrane components involved in particle translocation process, cannot be concluded. Here, we study the effect of particle shape on the particle-membrane interaction by monitoring the association between particles of various shapes and lipid bilayer membrane of artificial cell-sized liposomes. Among the three shaped lanthanide-doped NaYF4 particles, all with high shape purity and uniformity, similar crystal phase, and surface chemistry, the elongated spherical particle shows the highest level of membrane association, followed by the spherical particle with a similar radius, and the hexagonal prism-shaped particle, respectively. The free energy of membrane curvature calculated based on a membrane indentation induced by a particle association indicates that among the three particle shapes, the elongated spherical particle give the most stable membrane curvature. The elongated spherical particles show the highest cellular uptake into cytosol of human melanoma (A-375) and human liver carcinoma (HepG2) cells when observed through a confocal laser scanning fluorescence microscope. Quantitative study using flow cytometry also gives the same result. The elongated spherical particles also possess the highest cytotoxicity in A-375 and normal skin (WI-38) cell lines, comparing to the other two shaped particles.

  8. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake

    Science.gov (United States)

    Lamichhane, Surya P; Arya, Neha; Ojha, Nirdesh; Kohler, Esther; Shastri, V Prasad

    2015-01-01

    The efficient delivery of chemotherapeutics to the tumor via nanoparticle (NP)-based delivery systems remains a significant challenge. This is compounded by the fact that the tumor is highly dynamic and complex environment composed of a plurality of cell types and extracellular matrix. Since glycosaminoglycan (GAG) production is altered in many diseases (or pathologies), NPs bearing GAG moieties on the surface may confer some unique advantages in interrogating the tumor microenvironment. In order to explore this premise, in the study reported here poly-lactide-co-glycolide (PLGA) NPs in the range of 100–150 nm bearing various proteoglycans were synthesized by a single-step nanoprecipitation and characterized. The surface functionalization of the NPs with GAG moieties was verified using zeta potential measurements and X-ray photoelectron spectroscopy. To establish these GAG-bearing NPs as carriers of therapeutics, cellular toxicity assays were undertaken in lung epithelial adenocarcinoma (A549) cells, human pulmonary microvascular endothelial cells (HPMEC), and renal proximal tubular epithelial cells. In general NPs were well tolerated over a wide concentration range (100–600 μg/mL) by all cell types and were taken up to appreciable extents without any adverse cell response in A549 cells and HPMEC. Further, GAG-functionalized PLGA NPs were taken up to different extents in A459 cells and HPMEC. In both cell systems, the uptake of heparin-modified NPs was diminished by 50%–65% in comparison to that of unmodified PLGA. Interestingly, the uptake of chondroitin sulfate NPs was the highest in both cell systems with 40%–60% higher uptake when compared with that of PLGA, and this represented an almost twofold difference over heparin-modified NPs. These findings suggest that GAG modification can be explored as means of changing the uptake behavior of PLGA NPs and these NP systems have potential in cancer therapy. PMID:25632234

  9. Increased Plasma Colloid Osmotic Pressure Facilitates the Uptake of Therapeutic Macromolecules in a Xenograft Tumor Model

    Directory of Open Access Journals (Sweden)

    Matthias Hofmann

    2009-08-01

    Full Text Available Elevated tumor interstitial fluid pressure (TIFP is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin: (20% HSA, used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml and cetuximab (2.0 mg/ml was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20%HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  10. Influence of gold nanoparticle architecture on in vitro bioimaging and cellular uptake

    Science.gov (United States)

    Polat, Ozlem; Karagoz, Aysel; Isık, Sevim; Ozturk, Ramazan

    2014-12-01

    Gold nanoparticles (GNPs) are favorable nanostructures for several biological applications due to their easy synthesis and biocompatible properties. Commonly studied GNP shapes are nanosphere (AuNS), nanorod (AuNR), and nanocage (AuNC). In addition to distinct geometries and structural symmetries, these shapes have different photophysical properties detected by surface plasmon resonances. Therefore, choosing the best shaped GNP for a specific purpose is crucial to the success of the application. In this study, all three shapes of GNP were investigated for their potency to interact with cell surface receptors. Anti-HER2 antibody was conjugated to the surface of nanoparticles. MCF-7 breast adenocarcinoma and hMSC human mesenchymal cell lines were treated with GNPs and analyzed for cellular uptake and bioimaging efficiencies using the UV-vis spectroscopy and dark-field microscopy.

  11. Targeting dendritic cells through gold nanoparticles: A review on the cellular uptake and subsequent immunological properties.

    Science.gov (United States)

    Ahmad, Suhana; Zamry, Anes Ateqah; Tan, Hern-Tze Tina; Wong, Kah Keng; Lim, JitKang; Mohamud, Rohimah

    2017-11-01

    Gold nanoparticles (NPs) have been proposed as a highly potential tool in immunotherapies due to its advantageous properties including customizable size and shapes, surface functionality and biocompatibility. Dendritic cells (DCs), the sentinels of immune response, have been of interest to be manipulated by using gold NPs for targeted delivery of immunotherapeutic agent. Researches done especially in human DCs showed a variation of gold NPs effects on cellular uptake and internalization, DC maturation and subsequent T cells priming as well as cytotoxicity. In this review, we describe the synthesis and physiochemical properties of gold NPs as well as the importance of gold NPs in immunotherapies through their actions on human DCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The effect of PEG-5K grafting level and particle size on tumor accumulation and cellular uptake.

    Science.gov (United States)

    Lo, Chun-Liang; Chou, Meng-Han; Lu, Pei-Lin; Lo, I-Wen; Chiang, Yi-Ting; Hung, Shang-Yu; Yang, Chieh-Yu; Lin, Shuian-Yin; Wey, Shiaw-Pyng; Lo, Jem-Mau; Hsiue, Ging-Ho

    2013-11-18

    PEG-modified gold nanoparticles (PEG-modified GNs) with diameters of 40 nm and 70 nm were prepared to elucidate the effect of extent of PEG (M.W. 5000) grafting and particle size on tumor accumulation and cellular uptake. Flow cytometry reveals that cellular uptake is strongly related to the size of PEG-modified GNs, rather than the extent of PEG-5K grafting level. Cytotoxicity analysis based on the intracellular release of drugs showed that the 70 nm PEG-modified GNs have the higher cytotoxicity, beccause of their greater cellular uptake. Also, particle size, rather than PEG-5K grafting level affects tumor accumulation. However, PEG-5K grafting level significantly affects the accumulation of particles in the liver and spleen. This finding is important in determining the proper PEG-5K grafting level and particle size for designing nano-medicines. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Gold(I)-NHC complexes of antitumoral diarylimidazoles: structures, cellular uptake routes and anticancer activities.

    Science.gov (United States)

    Kaps, Leonard; Biersack, Bernhard; Müller-Bunz, Helge; Mahal, Katharina; Münzner, Julienne; Tacke, Matthias; Mueller, Thomas; Schobert, Rainer

    2012-01-01

    Five new heterocyclic gold carbene complexes were prepared, four chlorido-[1,3-dimethyl-4,5-diarylimidazol-2-ylidene]gold complexes 6a-d and a chlorido-[1,3-dibenzylimidazol-2-ylidene]gold complex 11, and three of them were characterised by X-ray single crystal analyses. They were tested for cytotoxicity against a panel of four human cancer cell lines and non-malignant fibroblasts, for tubulin interaction, and for the pathways of their uptake into 518A2 melanoma cells. All complexes showed cytotoxic activity in the micromolar IC(50) range with distinct selectivities for certain cell lines. In stark contrast to related metal-free 1-methyl-4,5-diarylimidazoles, the complexes 6 and 11 did not noticeably inhibit the polymerisation of tubulin to give microtubules. The cellular uptake of complexes 6 occurred mainly via the copper transporter (Ctr1) and the organic cation transporters (OCT-1/2). Complex 11 was accumulated preferentially via the organic cation transporters and by Na(+)/K(+)-dependent endocytosis. The new gold carbene complexes seem to operate by a mechanism different from that of the parent 1-methylimidazolium ligands. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement

    Science.gov (United States)

    Lu, Yi-Ching; Chang, Fan-Yu; Tu, Shu-Ju; Chen, Jyh-Ping; Ma, Yunn-Hwa

    2017-04-01

    Magnetic force may greatly enhance uptake of magnetic nanoparticles (MNPs) by cultured cells; however, the effects of non-uniformity of magnetic field/ magnetic gradient on MNP internalization in culture has not been elucidated. Cellular uptake of polyacrylic acid coated-MNP by LN229 cells was measured with cylindrical NdFeB magnets arranged in a staggered pattern. The magnetic field generated by placing a magnet underneath (H-field) elicited a homogenous distribution of MNPs on the cells in culture; whereas the field without magnet underneath (L-field) resulted in MNP distribution along the edge of the wells. Cell-associated MNP (MNPcell) appeared to be magnetic field- and concentration-dependent. In H-field, MNPcell reached plateau within one hour of exposure to MNP with only one-min application of the magnetic force in the beginning of incubation; continuous presence of the magnet for 2 h did not further increase MNPcell, suggesting that magnetic force-induced uptake may be primarily contributed to enhanced MNP sedimentation. Although MNP distribution was much inhomogeneous in L-field, averaged MNPcell in the L-field may reach as high as 80% of that in H-field during 1-6 h incubation, suggesting high capacity of MNP internalization. In addition, no significant difference was observed in MNPcell analyzed by flow cytometry with the application of H-field of staggered plate vs. filled magnet plate. Therefore, biological variation may dominate MNP internalization even under relatively uniformed magnetic field; whereas non-uniformed magnetic field may serve as a model for tumor targeting with MNPs in vivo.

  15. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs.

    Science.gov (United States)

    Win, Khin Yin; Feng, Si-Shen

    2005-05-01

    This study evaluated cellular uptake of polymeric nanoparticles by using Caco-2 cells, a human colon adenocarcinoma cell line, as an in vitro model with the aim to apply nanoparticles of biodegradable polymers for oral chemotherapy. The feasibility was demonstrated by showing the localization and quantification of the cell uptake of fluorescent polystyrene nanoparticles of standard size and poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with polyvinyl alcohol (PVA) or vitamin E TPGS. Coumarin-6 loaded PLGA nanoparticles were prepared by a modified solvent extraction/evaporation method and characterized by laser light scattering for size and size distribution, scanning electron microscopy (SEM) for surface morphology, zeta-potential for surface charge, and spectrofluorometry for fluorescent molecule release from the nanoparticles. The effects of particle size and particle surface coating on the cellular uptake of the nanoparticles were quantified by spectrofluorometric measurement. Cellular uptake of vitamin E TPGS-coated PLGA nanoparticles showed 1.4 folds higher than that of PVA-coated PLGA nanoparticles and 4-6 folds higher than that of nude polystyrene nanoparticles. Images of confocal laser scanning microscopy, cryo-SEM and transmission electron microscopy clearly evidenced the internalization of nanoparticles by the Caco-2 cells, showing that surface modification of PLGA nanoparticles with vitamin E TPGS notably improved the cellular uptake. It is highly feasible for nanoparticles of biodegradable polymers to be applied to promote oral chemotherapy.

  16. Enhanced Cellular Uptake and Pharmacokinetic Characteristics of Doxorubicin-Valine Amide Prodrug

    Directory of Open Access Journals (Sweden)

    Yohan Park

    2016-09-01

    Full Text Available In this study, we synthesized the valine (Val-conjugated amide prodrug of doxorubicin (DOX by the formation of amide bonds between DOX and Val. The synthesis of the DOX-Val prodrug was identified by a proton nuclear magnetic resonance (1H-NMR assay. In the MCF-7 cells (human breast adenocarcinoma cell; amino acid transporter–positive cell, the cellular accumulation efficiency of DOX-Val was higher than that of DOX according to the flow cytometry analysis data. Using confocal laser scanning microscopy (CLSM imaging, it was confirmed that DOX-Val as well as DOX was mainly distributed in the nucleus of cancer cells. DOX-Val was intravenously administered to rats at a dose of 4 mg/kg, and the plasma concentrations of DOX-Val (prodrug and DOX (formed metabolite were quantitatively determined. Based on the systemic exposure (represented as area under the curve (AUC values of DOX-Val (prodrug and DOX (formed metabolite, approximately half of DOX-Val seemed to be metabolized into DOX. However, it is expected that the remaining DOX-Val may exert improved cellular uptake efficiency in cancer cells after its delivery to the cancer region.

  17. Design strategy of pH-sensitive triblock copolymer micelles for efficient cellular uptake by computer simulations

    Science.gov (United States)

    Xia, Qiang-sheng; Ding, Hong-ming; Ma, Yu-qiang

    2018-03-01

    Efficient delivery of nanoparticles into specific cell interiors is of great importance in biomedicine. Recently, the pH-responsive micelle has emerged as one potential nanocarrier to realize such purpose since there exist obvious pH differences between normal tissues and tumors. Herein, by using dissipative particle dynamics simulation, we investigate the interaction of the pH-sensitive triblock copolymer micelles composed of ligand (L), hydrophobic block (C) and polyelectrolyte block (P) with cell membrane. It is found that the structure rearrangement of the micelle can facilitate its penetration into the lower leaflet of the bilayer. However, when the ligand-receptor specific interaction is weak, the micelles may just fuse with the upper leaflet of the bilayer. Moreover, the ionization degree of polyelectrolyte block and the length of hydrophobic block also play a vital role in the penetration efficiency. Further, when the sequence of the L, P, C beads in the copolymers is changed, the translocation pathways of the micelles may change from direct penetration to Janus engulfment. The present study reveals the relationship between the molecular structure of the copolymer and the uptake of the pH-sensitive micelles, which may give some significant insights into the experimental design of responsive micellar nanocarriers for highly efficient cellular delivery.

  18. The prototypical proton-coupled oligopeptide transporter YdgR from Escherichia coli facilitates chloramphenicol uptake into bacterial cells

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Aduri, Nanda G; Sharma, Neha

    2018-01-01

    Chloramphenicol (Cam) is a broad-spectrum antibiotic used to combat bacterial infections in humans and animals. Cam export from bacterial cells is one of the mechanisms by which pathogens resist Cam's antibacterial effects, and several different proteins are known to facilitate this process....... However, to date no report exists on any specific transport protein that facilitates Cam uptake. The proton-coupled oligopeptide transporter (POT) YdgR from Escherichia coli is a prototypical member of the POT family, functioning in proton-coupled uptake of di- and tripeptides. By following bacterial...... suggested a binding mode that resembles that of Cam binding to the multidrug resistance transporter MdfA. To our knowledge, this is the first report of Cam uptake into bacterial cells mediated by a specific transporter protein. Our findings suggest a specific bacterial transporter for drug uptake that might...

  19. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Ji P

    2016-03-01

    Full Text Available Peng Ji, Tong Yu, Ying Liu, Jie Jiang, Jie Xu, Ying Zhao, Yanna Hao, Yang Qiu, Wenming Zhao, Chao WuCollege of Pharmacy, Liaoning Medical University, Jinzhou, Liaoning Province, People’s Republic of ChinaAbstract: Naringenin (NRG, a flavonoid compound, had been reported to exhibit extensive pharmacological effects, but its water solubility and oral bioavailability are only ~46±6 µg/mL and 5.8%, respectively. The purpose of this study is to design and develop NRG-loaded solid lipid nanoparticles (NRG-SLNs to provide prolonged and sustained drug release, with improved stability, involving nontoxic nanocarriers, and increase the bioavailability by means of pulmonary administration. Initially, a group contribution method was used to screen the best solid lipid matrix for the preparation of SLNs. NRG-SLNs were prepared by an emulsification and low-temperature solidification method and optimized using an orthogonal experiment approach. The morphology was examined by transmission electron microscopy, and the particle size and zeta potential were determined by photon correlation spectroscopy. The total drug content of NRG-SLNs was measured by high-performance liquid chromatography, and the encapsulation efficiency (EE was determined by Sephadex gel-50 chromatography and high-performance liquid chromatography. The in vitro NRG release studies were carried out using a dialysis bag. The best cryoprotectant to prepare NRG-SLN lyophilized powder for future structural characterization was selected using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The short-term stability, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay, cellular uptake, and pharmacokinetics in rats were studied after pulmonary administration of NRG-SLN lyophilized powder. Glycerol monostearate was selected to prepare SLNs, and the optimal formulation of NRG-SLNs was spherical in shape, with a particle

  20. Tuning the Surface of Nanoparticles: Impact of Poly(2-ethyl-2-oxazoline) on Protein Adsorption in Serum and Cellular Uptake

    NARCIS (Netherlands)

    Koshkina, O.; Westmeier, D.; Lang, T.; Bantz, C.; Hahlbrock, A.; Wurth, C.; Resch-Genger, U.; Braun, U.; Thiermann, R.; Weise, C.; Eravci, M.; Mohr, B.; Schlaad, H.; Stauber, R.H.; Docter, D.; Bertin, A.; Maskos, M.

    2016-01-01

    Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated

  1. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy.

    Science.gov (United States)

    Peters, Tanja; Grunewald, Catrin; Blaickner, Matthias; Ziegner, Markus; Schütz, Christian; Iffland, Dorothee; Hampel, Gabriele; Nawroth, Thomas; Langguth, Peter

    2015-02-22

    Neutron capture therapy for glioblastoma has focused mainly on the use of (10)B as neutron capture isotope. However, (157)Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with (157)Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of

  2. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    Science.gov (United States)

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  3. Coating barium titanate nanoparticles with polyethylenimine improves cellular uptake and allows for coupled imaging and gene delivery.

    Science.gov (United States)

    Dempsey, Christopher; Lee, Isac; Cowan, Katie R; Suh, Junghae

    2013-12-01

    Barium titanate nanoparticles (BT NP) belong to a class of second harmonic generating (SHG) nanoprobes that have recently demonstrated promise in biological imaging. Unfortunately, BT NPs display low cellular uptake efficiencies, which may be a problem if cellular internalization is desired or required for a particular application. To overcome this issue, while concomitantly developing a particle platform that can also deliver nucleic acids into cells, we coated the BT NPs with the cationic polymer polyethylenimine (PEI)-one of the most effective nonviral gene delivery agents. Coating of BT with PEI yielded complexes with positive zeta potentials and resulted in an 8-fold increase in cellular uptake of the BT NPs. Importantly, we were able to achieve high levels of gene delivery with the BT-PEI/DNA complexes, supporting further efforts to generate BT platforms for coupled imaging and gene therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    International Nuclear Information System (INIS)

    Parab, Harshala J; Huang, Jing-Hong; Liu, Ru-Shi; Lai, Tsung-Ching; Jan, Yi-Hua; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan; Hwu, Yeu-Kuang; Tsai, Din Ping; Chuang, Shih-Yi; Pang, Jong-Hwei S

    2011-01-01

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  5. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses

    Science.gov (United States)

    Haase, A.; Tentschert, J.; Jungnickel, H.; Graf, P.; Mantion, A.; Draude, F.; Plendl, J.; Goetz, M. E.; Galla, S.; Mašić, A.; Thuenemann, A. F.; Taubert, A.; Arlinghaus, H. F.; Luch, A.

    2011-07-01

    Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages.

  6. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses

    International Nuclear Information System (INIS)

    Haase, A; Tentschert, J; Jungnickel, H; Goetz, M E; Luch, A; Graf, P; Mantion, A; Thuenemann, A F; Draude, F; Galla, S; Arlinghaus, H F; Plendl, J; Masic, A; Taubert, A

    2011-01-01

    Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages.

  7. Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Shengke; Xie, Ruohan; Wang, Haixin; Hu, Yan; Hou, Dandi; Liao, Xingcheng; Brown, Patrick H.; Yang, Hongxia; Lin, Xianyong; Labavitch, John M.; Lu, Lingli

    2017-04-01

    Sedum alfredii is one of a few plant species known to hyperaccumulate cadmium (Cd). Uptake, localization, and tolerance of Cd at cellular levels in shoots were compared in hyperaccumulating (HE) and non-hyperaccumulating (NHE) ecotypes of Sedum alfredii. X-ray fluorescence images of Cd in stems and leaves showed only a slight Cd signal restricted within vascular bundles in the NHEs, while enhanced localization of Cd, with significant tissue- and age-dependent variations, was detected in HEs. In contrast to the vascular-enriched Cd in young stems, parenchyma cells in leaf mesophyll, stem pith and cortex tissues served as terminal storage sites for Cd sequestration in HEs. Kinetics of Cd transport into individual leaf protoplasts of the two ecotypes showed little difference in Cd accumulation. However, far more efficient storage of Cd in vacuoles was apparent in HEs. Subsequent analysis of cell viability and hydrogen peroxide levels suggested that HE protoplasts exhibited higher resistance to Cd than those of NHE protoplasts. These results suggest that efficient sequestration into vacuoles, as opposed to rapid transport into parenchyma cells, is a pivotal process in Cd accumulation and homeostasis in shoots of HE S. alfredii. This is in addition to its efficient root-to-shoot translocation of Cd.

  8. Cellular uptake and distribution of graphene oxide coated with layer-by-layer assembled polyelectrolytes

    Science.gov (United States)

    Li, Yiye; Lu, Zhenzhen; Li, Zhongjun; Nie, Guangjun; Fang, Ying

    2014-05-01

    We report a facile approach for the fabrication of a new class of graphene oxide (GO)-based nanoassemblies by layer-by-layer (LbL) technique. The single-layer thickness and intrinsic negatively charged carboxyl groups of GO nanosheets provide a natural platform for LbL assembly of polyelectrolyte nanofilms by electrostatic forces at mild and aqueous conditions. The general applicability of our approach is demonstrated by the preparation of GO nanoassemblies with sizes of 100-200 nm using various charged polyelectrolytes, including synthetic polymers, polypeptides, and DNA oligonucleotides. Systemic assessment of cytotoxicity and acute stress response show that no discernable signs of cytotoxicity are associated with exposure of GO and its nanoassemblies [GO/PLL (poly ( l-lysine)), GO/PLL/PSS (poly(sodium-4-styrenesulfonate)), GO/PLL-PEG (PEGlayted PLL), GO/PLL/PLGA-PEG (PEGlayted poly ( l-glutamic acid))] up to 1 μg/mL. Studies on cellular uptake and subcellular localization show that a representative nanoassembly, GO/PLL-PEG, can effectively cross cell membranes and localize mainly in lysosomal compartments, without induction of noticeable harmful effects as confirmed by detection of mitochondrial depolarization and lysosomal pH.

  9. A structural basis for cellular uptake of GST-fold proteins.

    Directory of Open Access Journals (Sweden)

    Melanie J Morris

    Full Text Available It has recently emerged that glutathione transferase enzymes (GSTs and other structurally related molecules can be translocated from the external medium into many different cell types. In this study we aim to explore in detail, the structural features that govern cell translocation and by dissecting the human GST enzyme GSTM2-2 we quantatively demonstrate that the α-helical C-terminal domain (GST-C is responsible for this property. Attempts to further examine the constituent helices within GST-C resulted in a reduction in cell translocation efficiency, indicating that the intrinsic GST-C domain structure is necessary for maximal cell translocation capacity. In particular, it was noted that the α-6 helix of GST-C plays a stabilising role in the fold of this domain. By destabilising the conformation of GST-C, an increase in cell translocation efficiency of up to ∼2-fold was observed. The structural stability profiles of these protein constructs have been investigated by circular dichroism and differential scanning fluorimetry measurements and found to impact upon their cell translocation efficiency. These experiments suggest that the globular, helical domain in the 'GST-fold' structural motif plays a role in influencing cellular uptake, and that changes that affect the conformational stability of GST-C can significantly influence cell translocation efficiency.

  10. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer

    Science.gov (United States)

    Liu, Xiaoxuan; Liu, Cheng; Zhou, Jiehua; Chen, Chao; Qu, Fanqi; Rossi, John J.; Rocchi, Palma; Peng, Ling

    2015-02-01

    RNA interference (RNAi) with small interfering RNA (siRNA) is expected to offer an attractive means to specifically and efficiently silence disease-associated genes for treating various diseases provided that safe and efficient delivery systems are available. In this study, we have established an arginine-decorated amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic PAMAM dendron bearing arginine terminals as nonviral vector for siRNA delivery. Indeed, this dendrimer proved to be very effective at delivering siRNAs in human prostate cancer PC-3 cells and in human hematopoietic CD34+ stem cells, leading to improved gene silencing compared to the corresponding nonarginine decorated dendrimer. Further investigation confirmed that this dendrimer was granted with the capacity to form stable nanoparticles with siRNA and significantly enhance cellular uptake of siRNA. In addition, this dendrimer revealed no discernible cytotoxicity. All these findings demonstrate that decoration of the dendrimer surface with arginine residues is indeed a useful strategy to improve the delivery ability of dendrimers.

  11. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses

    Energy Technology Data Exchange (ETDEWEB)

    Haase, A; Tentschert, J; Jungnickel, H; Goetz, M E; Luch, A [BfR - Federal Institute for Risk Assessment, Department of Product Safety, Thielallee 88-92, 14195 Berlin (Germany); Graf, P [University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056 Basel (Switzerland); Mantion, A; Thuenemann, A F [BAM - Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin (Germany); Draude, F; Galla, S; Arlinghaus, H F [University of Muenster, Institute of Physics, Wilhelm Klemm Strasse 10, 48149 Muenster (Germany); Plendl, J [Free University of Berlin, Department of Veterinary Medicine, Institute of Veterinary Anatomy, Koserstrasse 20, 14195 Berlin (Germany); Masic, A; Taubert, A, E-mail: andrea.haase@bfr.bund.de, E-mail: alexandre.mantion@bam.de [University of Potsdam, Institute of Chemistry, Karl- Liebknecht- Strasse 24-25, 14476 Potsdam-Golm (Germany)

    2011-07-06

    Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages.

  12. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Parab, Harshala J; Huang, Jing-Hong; Liu, Ru-Shi [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Lai, Tsung-Ching; Jan, Yi-Hua; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan [Genomics Research Center, Academia Sinica, Taipei 115, Taiwan (China); Hwu, Yeu-Kuang [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tsai, Din Ping [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Chuang, Shih-Yi; Pang, Jong-Hwei S, E-mail: rsliu@ntu.edu.tw, E-mail: mhsiao@gate.sinica.edu.tw [Graduate Institute of Clinical Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan (China)

    2011-09-30

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  13. Autophagy associated cytotoxicity and cellular uptake mechanisms of bismuth nanoparticles in human kidney cells.

    Science.gov (United States)

    Liu, Yongming; Zhuang, Jing; Zhang, Xihui; Yue, Cong; Zhu, Ning; Yang, Liecheng; Wang, Yong; Chen, Tao; Wang, Yangyun; Zhang, Leshuai W

    2017-06-05

    Bismuth compounds have been used for treatment of bacterial infection, and recently bismuth nanoparticles (BiNP) were synthesized for imaging and diagnostic purpose, while safety concern of bismuth cannot be ignored. Here, we prepared ultrasmall BiNP and showed an enhanced tumor imaging, but BiNP revealed a differentiated cytotoxicity in human embryonic kidney 293 cells (HEK293) compared to other cell types. For the first time, we found that BiNP can induce autophagy, shown as the increase of monodansylcadaverine fluorescence staining and the amount of LC3II that can be inhibited by 3-MA. BiNP were capable of entering cells in a dose and time dependent manner by fluorescence and element detection methods BiNP were found to be localized in the cytoplasm observed by transmission electron microscopy and intracellular bismuth element confirmed by energy dispersive X-ray analysis. Using endocytic inhibitors, BiNP were found to require ATP and endosomal trafficking pathways for their cellular uptake. Internalized BiNP did not co-localize with EEA1, but co-localized with Lysotracker/LAMP1/LAMP2 at late time points, indicating BiNP may be retained in the non-early endosomal vacuoles and late endosomes. With our novel finding of bismuth induced autophagy and endocytic mechanisms, potential approaches may be applied to reduce the toxicity by bismuth. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Krauss, Ulrike; Beck-Sickinger, Annette G

    2004-01-01

    To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers.......To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers....

  15. Comparison of Cellular Uptake and Inflammatory Response via Toll-Like Receptor 4 to Lipopolysaccharide and Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Akiyoshi Taniguchi

    2013-06-01

    Full Text Available The innate immune response is the earliest cellular response to infectious agents and mediates the interactions between microbes and cells. Toll-like receptors (TLRs play an important role in these interactions. We have already shown that TLRs are involved with the uptake of titanium dioxide nanoparticles (TiO2 NPs and promote inflammatory responses. In this paper, we compared role of cellular uptake and inflammatory response via TLR 4 to lipopolysaccharide (LPS and TiO2 NPs. In the case of LPS, LPS binds to LPS binding protein (LBP and CD 14, and then this complex binds to TLR 4. In the case of TiO2 NPs, the necessity of LBP and CD 14 to induce the inflammatory response and for uptake by cells was investigated using over-expression, antibody blocking, and siRNA knockdown experiments. Our results suggested that for cellular uptake of TiO2 NPs, TLR 4 did not form a complex with LBP and CD 14. In the TiO2 NP-mediated inflammatory response, TLR 4 acted as the signaling receptor without protein complex of LPS, LBP and CD 14. The results suggested that character of TiO2 NPs might be similar to the complex of LPS, LBP and CD 14. These results are important for development of safer nanomaterials.

  16. Cellular Uptake and Tissue Biodistribution of Functionalized Gold Nanoparticles and Nanoclusters.

    Science.gov (United States)

    Escudero-Francos, María A; Cepas, Vanesa; González-Menédez, Pedro; Badía-Laíño, Rosana; Díaz-García, Marta E; Sainz, Rosa M; Mayo, Juan C; Hevia, David

    2017-02-01

    In this study, the in vitro uptake by fibroblasts and in vivo biodistribution of 15 nm 11-mercaptoundecanoicacid-protected gold nanoparticles (AuNPs-MUA) and 3 nm glutathione- and 3 nm bovine serum albumin-protected gold nanoclusters (AuNCs@GSH and AuNCs@BSA, respectively) were evaluated. In vitro cell viability was examined after gold nanoparticle treatment for 48 h, based on MTT assays and analyses of morphological structure, the cycle cell, cellular doubling time, and the gold concentration in cells. No potential toxicity was observed at any studied concentration (up to 10 ppm) for AuNCs@GSH and AuNCs@BSA, whereas lower cell viability was observed for AuNPs-MUA at 10 ppm than for other treatments. Neither morphological damage nor modifications to the cell cycle and doubling time were detected after contact with nanoparticles. Associations between cells and AuNPs and AuNCs were demonstrated by inductively coupled plasma mass spectrometry (ICP-MS). AuNCs@GSH exhibited fluorescence emission at 611 nm, whereas AuNCs@BSA showed a band at 640 nm. These properties were employed to confirm their associations with cells by fluorescence confocal microscopy; both clusters were observed in cells and maintained their original fluorescence. In vivo assays were performed using 9 male mice treated with 1.70 μg Au/g body weight gold nanoparticles for 24 h. ICP-MS measurements showed a different biodistribution for each type of nanoparticle; AuNPs-MUA mainly accumulated in the brain, AuNCs@GSH in the kidney, and AuNCs@BSA in the liver and spleen. Spleen indexes were not affected by nanoparticle treatment; however, AuNCs@BSA increased the thymus index significantly from 1.28 to 1.79, indicating an immune response. These nanoparticles have great potential as organ-specific drug carriers and for diagnosis, photothermal therapy, and imaging.

  17. Nanolipoparticles-mediated MDR1 siRNA delivery: preparation, characterization and cellular uptake

    Directory of Open Access Journals (Sweden)

    Mahnaz Nourbakhsh

    2015-01-01

    Full Text Available Objective(s: Lipid-based nanoparticles (NLP are PEGylated carriers composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The presence of PEG in the NLP formulation improves the particle pharmacokinetic behavior. The purpose of this study was to prepare and characterize NLPs containing MDR1 siRNA and evaluate their cytotoxicity and cellular uptake. MDR1 siRNA could be used in multidrug resistance reversal in cancer therapy. Materials and Methods: siRNAs were encapsulated into NLPs consisted of mPEG-DSPE/DOTAP/DOPE (10:50:40 molar ratio by the detergent dialysis method. The particle diameters of NLPs and their surface charge were measured using dynamic light scattering. siRNA encapsulation efficiency was determined by an indirect method via filtration and free siRNA concentration determination. NLPs cytotoxicity was investigated by MTT assay. The ability of NLPs for siRNA delivery checked in two human cell lines (MCF-7/ADR and EPP85-181/RDB by fluorescence microscopy and compared with oligofectamine. Results: NLPs containing MDR1 siRNA were prepared with the stable size of 80-90 nm and the zeta potential near to neutral. The siRNA encapsulation efficacy was more than 80%. These properties are suitable for in vivo siRNA delivery. NLPs cytotoxicity studies demonstrated they were non-toxic at the doses used. NLPs improved siRNA localization in both cell lines. Conclusion: NLPs containing MDR1 siRNA can be a good candidate for in vivo siRNA delivery studies.

  18. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Peng Chen, Koki Kanehira and Akiyoshi Taniguchi

    2013-01-01

    Full Text Available Innate immune response is believed to be among the earliest provisional cellular responses, and mediates the interactions between microbes and cells. Toll-like receptors (TLRs are critical to these interactions. We hypothesize that TLRs also play an important role in interactions between nanoparticles (NPs and cells, although little information has been reported concerning such an interaction. In this study, we investigated the role of TLR3, TLR4 and TLR7 in cellular uptake of titanium dioxide NP (TiO2 NP agglomerates and the resulting inflammatory responses to these NPs. Our data indicate that TLR4 is involved in the uptake of TiO2 NPs and promotes the associated inflammatory responses. The data also suggest that TLR3, which has a subcellular location distinct from that of TLR4, inhibits the denaturation of cellular protein caused by TiO2 NPs. In contrast, the unique cellular localization of TLR7 has middle-ground functional roles in cellular response after TiO2 NP exposure. These findings are important for understanding the molecular interaction mechanisms between NPs and cells.

  19. Cellular Cholesterol Facilitates the Postentry Replication Cycle of Herpes Simplex Virus 1.

    Science.gov (United States)

    Wudiri, George A; Nicola, Anthony V

    2017-07-15

    Cholesterol is an essential component of cell membranes and is required for herpes simplex virus 1 (HSV-1) entry (1-3). Treatment of HSV-1-infected Vero cells with methyl beta-cyclodextrin from 2 to 9 h postentry reduced plaque numbers. Transport of incoming viral capsids to the nuclear periphery was unaffected by the cholesterol reduction, suggesting that cell cholesterol is important for the HSV-1 replicative cycle at a stage(s) beyond entry, after the arrival of capsids at the nucleus. The synthesis and release of infectious HSV-1 and cell-to-cell spread of infection were all impaired in cholesterol-reduced cells. Propagation of HSV-1 on DHCR24 -/- fibroblasts, which lack the desmosterol-to-cholesterol conversion enzyme, resulted in the generation of infectious extracellular virions (HSV des ) that lack cholesterol and likely contain desmosterol. The specific infectivities (PFU per viral genome) of HSV chol and HSV des were similar, suggesting cholesterol and desmosterol in the HSV envelope support similar levels of infectivity. However, infected DHCR24 -/- fibroblasts released ∼1 log less infectious HSV des and ∼1.5 log fewer particles than release of cholesterol-containing particles (HSV chol ) from parental fibroblasts, suggesting that the hydrocarbon tail of cholesterol facilitates viral synthesis. Together, the results suggest multiple roles for cholesterol in the HSV-1 replicative cycle. IMPORTANCE HSV-1 infections are associated with a wide range of clinical manifestations that are of public health importance. Cholesterol is a key player in the complex interaction between viral and cellular factors that allows HSV-1 to enter host cells and establish infection. Previous reports have demonstrated a role for cellular cholesterol in the entry of HSV-1 into target cells. Here, we employed both chemical treatment and cells that were genetically defined to synthesize only desmosterol to demonstrate that cholesterol is important at stages following the

  20. Towards a national sports safety strategy: addressing facilitators and barriers towards safety guideline uptake.

    Science.gov (United States)

    Finch, Caroline F; Gabbe, Belinda J; Lloyd, David G; Cook, Jill; Young, Warren; Nicholson, Matthew; Seward, Hugh; Donaldson, Alex; Doyle, Tim L A

    2011-06-01

    Limited information exists about how best to conduct intervention implementation studies in community sport settings. Research should be directed towards understanding the context within which evidence-based injury prevention interventions are to be implemented, while continuing to build the evidence-base for the effectiveness of sports injury interventions. To identify factors that influence the translation of evidence-based injury prevention interventions into practice in community sport, and to provide specific evidence for the effectiveness of an evidence-based exercise training programme for lower limb injury prevention in community Australian football. Community-level Australian football clubs, teams and players. An exercise-based lower limb injury prevention programme will be developed and evaluated in terms of the implementation context, infrastructure and resources needed for its effective translation into community sport. Analysis of the community sports safety policy context will be undertaken to understand the barriers and facilitators to policy development and uptake. A randomised group-clustered ecological study will be conducted to compare the reach, effectiveness, adoption, implementation and maintenance (RE-AIM) of the intervention over 2 years. The primary outcome will be evidence-based prevention guidelines that are fully supported by a comprehensively evaluated dissemination plan. The plan will detail the support structures and add-ons necessary to ensure sustainability and subsequent national implementation. Research outcomes will include new knowledge about how sports safety policy is set, how consensus is reached among sports safety experts in the community setting and how evidence-based safety guidelines are best developed, packaged and disseminated to community sport.

  1. Glucose transporter 3 and 1 may facilitate high uptake of 18F-FDG in gastric schwannoma.

    Science.gov (United States)

    Shimada, Yutaka; Sawada, Shigeaki; Hojo, Shozo; Okumura, Tomoyuki; Nagata, Takuya; Nomoto, Kazuhiro; Tsukada, Kazuhiro

    2013-11-01

    Recently, some gastric schwannomas have been reported to have high uptake of FDG. However, Glut-1 was reported to be negative in gastric schwannomas tested. A 64-year-old female patient received a laparoscopic partial gastrectomy for a FDG PET-positive submucosal tumor (SUVmax 6.61). The resected tumor was diagnosed as a benign gastric schwannoma. Glut family immunohistochemical examination revealed diffuse positive expression of Glut-3 and partial positive expression of Glut-1. On the other hand, Glut-2 and Glut-4 expression in the tumor were negative. This case suggested that Glut-3 and Glut-1 expression were facilitators of high FDG uptake in the benign gastric schwannoma.

  2. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

    DEFF Research Database (Denmark)

    Engelholm, Lars H; List, Karin; Netzel-Arnett, Sarah

    2003-01-01

    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (uPAR......, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions....

  3. Multilayer Coating of Tetrandrine-loaded PLGA nanoparticles: Effect of surface charges on cellular uptake rate and drug release profile.

    Science.gov (United States)

    Meng, Rui; Li, Ke; Chen, Zhe; Shi, Chen

    2016-02-01

    The effect of surface charges on the cellular uptake rate and drug release profile of tetrandrine-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPNs) was studied. Stabilizer-free nanoprecipitation method was used in this study for the synthesis of TPNs. A typical layer-by-layer approach was applied for multi-coating particles' surface with use of poly(styrene sulfonate) sodium salt (PSS) as anionic layer and poly(allylamine hydrochloride) (PAH) as cationic layer. The modified TPNs were characterized by different physicochemical techniques such as Zeta sizer, scanning electron microscopy and transmission electron microscopy. The drug loading efficiency, release profile and cellular uptake rate were evaluated by high performance liquid chromatography and confocal laser scanning microscopy, respectively. The resultant PSS/PAH/PSS/PAH/TPNs (4 layers) exhibited spherical-shaped morphology with the average size of 160.3±5.165 nm and zeta potential of-57.8 mV. The encapsulation efficiency and drug loading efficiency were 57.88% and 1.73%, respectively. Multi-layer coating of polymeric materials with different charges on particles' surface could dramatically influence the drug release profile of TPNs (4 layers vs. 3 layers). In addition, variable layers of surface coating could also greatly affect the cellular uptake rate of TPNs in A549 cells within 8 h. Overall, by coating particles' surface with those different charged polymers, precise control of drug release as well as cellular uptake rate can be achieved simultaneously. Thus, this approach provides a new strategy for controllable drug delivery.

  4. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type.

    Science.gov (United States)

    Kettler, Katja; Veltman, Karin; van de Meent, Dik; van Wezel, Annemarie; Hendriks, A Jan

    2014-03-01

    The increased application of nanoparticles (NPs) is increasing the risk of their release into the environment. Although many toxicity studies have been conducted, the environmental risk is difficult to estimate, because uptake mechanisms are often not determined in toxicity studies. In the present study, the authors review dominant uptake mechanisms of NPs in cells, as well as the effect of NP properties, experimental conditions, and cell type on NP uptake. Knowledge of NP uptake is crucial for risk assessment and is essential to predict the behavior of NPs based on their physical-chemical properties. Important uptake mechanisms for eukaryotic cells are macropinocytosis, receptor-mediated endocytosis, and phagocytosis in specialized mammalian cells. The studies reviewed demonstrate that uptake into nonphagocytic cells depends strongly on NP size, with an uptake optimum at an NP diameter of approximately 50 nm. Increasing surface charges, either positive or negative, have been shown to increase particle uptake in comparison with uncharged NPs. Another important factor is the degree of (homo-) aggregation. Results regarding shape have been ambiguous. Difficulties in the production of NPs, with 1 property changed at a time, call for a full characterization of NP properties. Only then will it be possible to draw conclusions as to which property affected the uptake. © 2013 SETAC.

  5. Physicochemical, morphological and cellular uptake properties of lutein nanodispersions prepared by using surfactants with different stabilizing mechanisms.

    Science.gov (United States)

    Tan, Tai Boon; Chu, Wern Cui; Yussof, Nor Shariffa; Abas, Faridah; Mirhosseini, Hamed; Cheah, Yoke Kqueen; Nehdi, Imededdine Arbi; Tan, Chin Ping

    2016-04-01

    In this study, we prepared a series of lutein nanodispersions via the solvent displacement method, by using surfactants with different stabilizing mechanisms. The surfactants used include Tween 80 (steric stabilization), sodium dodecyl sulfate (SDS; electrostatic stabilization), sodium caseinate (electrosteric stabilization) and SDS-Tween 80 (electrostatic-steric stabilization). We then characterized the resulting lutein nanodispersions in terms of their particle size, particle size distribution, zeta potential, lutein content, flow behavior, apparent viscosity, transmittance, color, morphological properties and their effects on cell viability and cellular uptake. The type of surfactant used significantly (p lutein content) remained unaffected. Transmission electron microscopy (TEM) images obtained from this study demonstrated that the solvent displacement method was capable of producing lutein nanodispersions containing spherical particles with sizes ranging from 66.20-125.25 nm, depending on the type of surfactant used. SDS and SDS-Tween 80 surfactants negatively affected the viability of the HT-29 cells used in this study. Thus, for the cellular uptake determination, only Tween 80 and sodium caseinate surfactants were used. The cellular uptake of the lutein nanodispersion stabilized by sodium caseinate was higher than that which was stabilized by Tween 80. All things considered, the type of surfactant with different stabilizing mechanisms did produce lutein nanodispersions with different characteristics. These findings would aid in future selection of surfactants in order to produce nanodispersions with desirable properties.

  6. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake

    Science.gov (United States)

    Poller, Johanna M; Zaloga, Jan; Schreiber, Eveline; Unterweger, Harald; Janko, Christina; Radon, Patricia; Eberbeck, Dietmar; Trahms, Lutz; Alexiou, Christoph; Friedrich, Ralf P

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are promising tools for the treatment of different diseases. Their magnetic properties enable therapies involving magnetic drug targeting (MDT), hyperthermia or imaging. Depending on the intended treatment, specific characteristics of SPIONs are required. While particles used for imaging should circulate for extended periods of time in the vascular system, SPIONs intended for MDT or hyperthermia should be accumulated in the target area to come into close proximity of, or to be incorporated into, specific tumor cells. In this study, we determined the impact of several accurately characterized SPION types varying in size, zeta potential and surface coating on various human breast cancer cell lines and endothelial cells to identify the most suitable particle for future breast cancer therapy. We analyzed cellular SPION uptake, magnetic properties, cell proliferation and toxicity using atomic emission spectroscopy, magnetic susceptometry, flow cytometry and microscopy. The results demonstrated that treatment with dextran-coated SPIONs (SPIONDex) and lauric acid-coated SPIONs (SPIONLA) with an additional protein corona formed by human serum albumin (SPIONLA-HSA) resulted in very moderate particle uptake and low cytotoxicity, whereas SPIONLA had in part much stronger effects on cellular uptake and cellular toxicity. In summary, our data show significant dose-dependent and particle type-related response differences between various breast cancer and endothelial cells, indicating the utility of these particle types for distinct medical applications. PMID:28458541

  7. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro.

    Science.gov (United States)

    Ge, Yuqing; Zhang, Yu; Xia, Jingguang; Ma, Ming; He, Shiying; Nie, Fang; Gu, Ning

    2009-10-15

    We synthesized three types of magnetic iron oxide nanoparticles (MNPs), which were meso-2,3-dimercaptosuccinic acid (DMSA) coated MNPs (DMSA@MNPs, 17.3+/-4.8 nm, negative charge), chitosan (CS) coated MNPs (CS@MNPs, 16.5+/-6.1 nm, positive charge) and magnetic nanoparticles agglomerates, formed by electronic aggregation between DMSA@MNPs and CS (CS-DMSA@MNPs, 85.7+/-72.9 nm, positive charge) respectively. The interactions of these MNPs with Oral Squamous Carcinoma Cell KB were investigated. The results showed that cellular uptakes of MNPs were on the dependence of incubation time, nanoparticles concentration and nanoparticles properties such as surface charge, size, etc. The cellular uptake was enhanced with the increase of incubation time and nanoparticles concentration. Although all MNPs could enter to cells, we observed apparent differences in the magnitude of nanoparticles uptaken. The cellular uptake of CS-DMSA@MNPs by KB cells was the highest and that of DMSA@MNPs was the lowest among the three types of MNPs. The same conclusions were drawn via the reduction of water proton relaxation times T(2)(*), resulting from the different iron load of labeled cells using a 1.5T clinical MR imager. The finding of this study will have implications in the chemical design of nanomaterials for biomedical applications.

  8. Enhanced Cellular Uptake of Silica-Coated Magnetite Nanoparticles Compared with PEG-Coated Ones in Stem Cells.

    Science.gov (United States)

    Lee, Dong Heon; Kang, Myunggoo; Lee, Hong Jai; Kim, Jeong Ah; Choi, Yun-Kyong; Cho, Hyunjin; Park, Jung-Keug; Park, Tai Hyun; Jung, Hyun

    2015-08-01

    Monodispersed magnetite (Fe3O4) nanoparticles (NPs) were prepared through the thermal decomposition method. The obtained NPs were surface modified with silica (SiO2) and polyethylene glycol (PEG), to enhance their stability in aqueous environment and their cellular uptake efficiency for biomedical applications. The NPs were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FT-IR) spectroscopy, and dynamic light scattering (DLS). The cytotoxicity of these NPs on bone marrow mesenchymal stem cells (BM-MSCs) was measured by MTT assay (cell viability test) at various concentrations (2, 5, 12.5, 25, and 50 µg/mL). The cells remained more than 90% viable at concentrations as high as 50 µg/mL. To compare the cellular uptake efficiency, these NPs were treated in BM-MSCs and the Fe concentration within the cells was measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis. The uptake process displayed a time- and dose-dependency. The uptake amount of SiO2-coated Fe3O4 (Fe3O4@SiO2) NPs was about 10 times higher than that of the PEG-coated ones (Fe3O4@PEG).

  9. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    Science.gov (United States)

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  10. Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells.

    Science.gov (United States)

    Lichtenstein, Dajana; Ebmeyer, Johanna; Knappe, Patrick; Juling, Sabine; Böhmert, Linda; Selve, Sören; Niemann, Birgit; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2015-11-01

    Because of the rising application of nanoparticles in food and food-related products, we investigated the influence of the digestion process on the toxicity and cellular uptake of silver nanoparticles for intestinal cells. The main food components--carbohydrates, proteins and fatty acids--were implemented in an in vitro digestion process to simulate realistic conditions. Digested and undigested silver nanoparticle suspensions were used for uptake studies in the well-established Caco-2 model. Small-angle X-ray scattering was used to estimate particle core size, size distribution and stability in cell culture medium. Particles proved to be stable and showed radii from 3.6 to 16.0 nm. Undigested particles and particles digested in the presence of food components were comparably taken up by Caco-2 cells, whereas the uptake of particles digested without food components was decreased by 60%. Overall, these findings suggest that in vivo ingested poly (acrylic acid)-coated silver nanoparticles may reach the intestine in a nanoscaled form even if enclosed in a food matrix. While appropriate for studies on the uptake into intestinal cells, the Caco-2 model might be less suited for translocation studies. Moreover, we show that nanoparticle digestion protocols lacking food components may lead to misinterpretation of uptake studies and inconclusive results.

  11. Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction

    Science.gov (United States)

    Lu, Yi-Ching; Luo, Pei-Chun; Huang, Chun-Wan; Leu, Yann-Lii; Wang, Tzu-Hao; Wei, Kuo-Chen; Wang, Hsin-Ell; Ma, Yunn-Hwa

    2014-08-01

    Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 μM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.

  12. Hypersonic Poration: A New Versatile Cell Poration Method to Enhance Cellular Uptake Using a Piezoelectric Nano-Electromechanical Device.

    Science.gov (United States)

    Zhang, Zhixin; Wang, Yanyan; Zhang, Hongxiang; Tang, Zifan; Liu, Wenpeng; Lu, Yao; Wang, Zefang; Yang, Haitao; Pang, Wei; Zhang, Hao; Zhang, Daihua; Duan, Xuexin

    2017-05-01

    Efficient delivery of genes and therapeutic agents to the interior of the cell is critical for modern biotechnology. Herein, a new type of chemical-free cell poration method-hypersonic poration-is developed to improve the cellular uptake, especially the nucleus uptake. The hypersound (≈GHz) is generated by a designed piezoelectric nano-electromechanical resonator, which directly induces normal/shear stress and "molecular bombardment" effects on the bilayer membranes, and creates reversible temporal nanopores improving the membrane permeability. Both theory analysis and cellular uptake experiments of exogenous compounds prove the high delivery efficiency of hypersonic poration. Since target molecules in cells are accumulated with the treatment, the delivered amount can be controlled by tuning the treatment time. Furthermore, owing to the intrinsic miniature of the resonator, localized drug delivery at a confined spatial location and tunable arrays of the resonators that are compatible with multiwell plate can be achieved. The hypersonic poration method shows great delivery efficacy combined with advantage of scalability, tunable throughput, and simplification in operation and provides a potentially powerful strategy in the field of molecule delivery, cell transfection, and gene therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells

    Science.gov (United States)

    Rashidi, Ladan; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Atashi, Amir; Rostami, Khosrow; Gangi, Fariba; Fallahpour, Masoud; Tahouri, Mohammad Taher

    2014-03-01

    In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0-500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.

  14. Bioaccessibility, Cellular Uptake, and Transport of Astaxanthin Isomers and their Antioxidative Effects in Human Intestinal Epithelial Caco-2 Cells.

    Science.gov (United States)

    Yang, Cheng; Zhang, Hua; Liu, Ronghua; Zhu, Honghui; Zhang, Lianfu; Tsao, Rong

    2017-11-29

    The bioaccessibility, bioavailability, and antioxidative activities of three astaxanthin geometric isomers were investigated using an in vitro digestion model and human intestinal Caco-2 cells. This study demonstrated that the trans-cis isomerization of all-E-astaxanthin and the cis-trans isomerization of Z-astaxanthins could happen both during in vitro gastrointestinal digestion and cellular uptake processes. 13Z-Astaxanthin showed higher bioaccessibility than 9Z- and all-E-astaxanthins during in vitro digestion, and 9Z-astaxanthin exhibited higher transport efficiency than all-E- and 13Z-astaxanthins. These might explain why 13Z- and 9Z-astaxanthins are found at higher concentrations in human plasma than all-E-astaxanthin in reported studies. All three astaxanthin isomers were effective in maintaining cellular redox homeostasis as seen in the antioxidant enzyme (CAT, SOD) activities ; 9Z- and 13Z- astaxanthins exhibited a higher protective effect than all-E-astaxanthin against oxidative stress as demonstrated by the lower cellular uptake of Z-astaxanthins and lower secretion and gene expression of the pro-inflammatory cytokine IL-8 in Caco-2 cells treated with H 2 O 2 . We conclude, for the first time, that Z-astaxanthin isomers may play a more important role in preventing oxidative stress induced intestinal diseases.

  15. Cellular Origin of [18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons.

    Science.gov (United States)

    Dienel, Gerald A; Behar, Kevin L; Rothman, Douglas L

    2017-12-01

    Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [ 18 F]fluorodeoxyglucose-positron emission tomographic ([ 18 F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [ 18 F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [ 18 F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.

  16. Cellular uptake of lipoproteins and Persistent Organic Compounds - An update and new data

    DEFF Research Database (Denmark)

    Hjelmborg, Philip Sebastian; Andreassen, Thomas Kjærgaard; Bonefeld-Jørgensen, Eva Cecilie

    2008-01-01

     There are a number of interactions related to transport of lipophilic xenobiotic compounds in the blood stream of mammals. This paper will focus on the interactions between lipoproteins and persistent organic pollutants (POPs) and how these particles are taken up by cells. A number of POPs...... study was to determine the role of lipoprotein receptors in mouse embryonic fibroblast (MEF) cells in conjunction with uptake of DDT-lipoprotein complexes from supplemented media in vitro. Uptake of DDT by MEF cells was investigated using MEF1 cells carrying the receptors LRP (low-density lipoprotein...

  17. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type

    NARCIS (Netherlands)

    Kettler, Katja; Veltman, Karin; van de Meent, Dik; van Wezel, Annemarie|info:eu-repo/dai/nl/141376074; Hendriks, A. Jan

    2014-01-01

    The increased application of nanoparticles (NPs) is increasing the risk of their release into the environment. Although many toxicity studies have been conducted, the environmental risk is difficult to estimate, because uptake mechanisms are often not determined in toxicity studies. In the present

  18. The Role of Extracellular Binding Proteins in the Cellular Uptake of Drugs: Impact on Quantitative In Vitro-to-In Vivo Extrapolations of Toxicity and Efficacy in Physiologically Based Pharmacokinetic-Pharmacodynamic Research.

    Science.gov (United States)

    Poulin, Patrick; Burczynski, Frank J; Haddad, Sami

    2016-02-01

    A critical component in the development of physiologically based pharmacokinetic-pharmacodynamic (PBPK/PD) models for estimating target organ dosimetry in pharmacology and toxicology studies is the understanding of the uptake kinetics and accumulation of drugs and chemicals at the cellular level. Therefore, predicting free drug concentrations in intracellular fluid will contribute to our understanding of concentrations at the site of action in cells in PBPK/PD research. Some investigators believe that uptake of drugs in cells is solely driven by the unbound fraction; conversely, others argue that the protein-bound fraction contributes a significant portion of the total amount delivered to cells. Accordingly, the current literature suggests the existence of a so-called albumin-mediated uptake mechanism(s) for the protein-bound fraction (i.e., extracellular protein-facilitated uptake mechanisms) at least in hepatocytes and cardiac myocytes; however, such mechanism(s) and cells from other organs deserve further exploration. Therefore, the main objective of this present study was to discuss further the implication of potential protein-facilitated uptake mechanism(s) on drug distribution in cells under in vivo conditions. The interplay between the protein-facilitated uptake mechanism(s) and the effects of a pH gradient, metabolism, transport, and permeation limitation potentially occurring in cells was also discussed, as this should violate the basic assumption on similar free drug concentration in cells and plasma. This was made because the published equations used to calculate drug concentrations in cells in a PBPK/PD model did not consider potential protein-facilitated uptake mechanism(s). Consequently, we corrected some published equations for calculating the free drug concentrations in cells compared with plasma in PBPK/PD modeling studies, and we proposed a refined strategy for potentially performing more accurate quantitative in vitro-to-in vivo extrapolations

  19. Barriers and facilitators associated with HIV testing uptake in South African health facilities offering HIV Counselling and Testing

    Directory of Open Access Journals (Sweden)

    Neo Mohlabane

    2016-10-01

    Objective: An HCT survey was carried out to ascertain barriers and facilitators for HIV testing in South Africa. Methods: A cross-sectional survey of 67 HCT-offering health facilities in 8 South African provinces was undertaken. Individuals (n = 489 who had not tested for HIV on the day of the site visit were interviewed on awareness of HCT services, HIV testing history and barriers to HIV testing. Frequencies were run to describe the sample characteristics, barriers and facilitators to HIV testing. Bivariate and multivariate logistic regression was usedt o identify the association between never tested for HIV with socio-demographics, awareness of HCT services and type of HCT facilities. Results: In all 18.1% participants never had an HIV test. Major barriers to HCT uptake comprise being scared of finding out one's HIV test result or what people may say, shyness or embarrassment, avoidance of divulging personal information to health workers and fear of death. In multivariate analysis the age group 55 years and older, and not being recommended to have an HIV test were associated with never had an HIV test. Potential facilitators for HIV testing include community or household HIV testing, providing incentives for those who test for HIV, mandatory HIV testing and disclosure of HIV status by those who test HIV positive. Conclusion: The benefits of HCT which include the reduction of HIV transmission, the availability of HIV care and treatment needs to be emphasized to enhance HCT uptake.

  20. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  1. Water uptake can occur through woody portions of roots and facilitates localized embolism repair in grapevine.

    Science.gov (United States)

    Cuneo, Italo F; Knipfer, Thorsten; Mandal, Pratiti; Brodersen, Craig R; McElrone, Andrew J

    2018-02-20

    Water acquisition is thought to be limited to the unsuberized surface located close to root tips. However, there are recurring periods when the unsuberized surfaces are limited in woody root systems, and radial water uptake across the bark of woody roots might play an important physiological role in hydraulic functioning. Using X-ray microcomputed tomography (microCT) and hydraulic conductivity measurements (Lp r ), we examined water uptake capacity of suberized woody roots in vivo and in excised samples. Bark hydration in grapevine woody roots occurred quickly upon exposure to water (c. 4 h). Lp r measurements through the bark of woody roots showed that it is permeable to water and becomes more so upon wetting. After bark hydration, microCT analysis showed that absorbed water was utilized to remove embolism locally, where c. 20% of root xylem vessels refilled completely within 15 h. Embolism removal did not occur in control roots without water. Water uptake through the bark of woody roots probably plays an important role when unsuberized tissue is scarce/absent, and would be particularly relevant following large irrigation events or in late winter when soils are saturated, re-establishing hydraulic functionality before bud break. No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  2. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake.

    Science.gov (United States)

    Luo, Yangchao; Teng, Zi; Li, Ying; Wang, Qin

    2015-05-20

    The poor stability of solid lipid nanoparticles (SLN) under acidic condition resulted in large aggregation in gastric environment, limiting their application as oral delivery systems. In this study, a series of SLN was prepared to investigate the effects of surfactant/cosurfactant and chitosan coating on their physicochemical properties as well as cellular uptake. SLN was prepared from Compritol 888 ATO using a low-energy method combining the solvent-diffusion and hot homogenization technique. Poloxamer 188 and polyethylene glycol (PEG) were effective emulsifiers to produce SLN with better physicochemical properties than SLN control. Chitosan-coated SLN exhibited the best stability under acidic condition by forming a thick layer around the lipid core, as clearly observed by transmission electron microscope. The intermolecular interactions in different formulations were monitored by Fourier transform infrared spectroscopy. Chitosan coating also significantly improved the mucoadhesive property of SLN as determined by Quartz Crystal Microbalance. In vitro drug delivery assays, cytotoxicity, and cellular uptake of SLN were studied by incorporating coumarin 6 as a fluorescence probe. Overall, chitosan-coated SLN was superior to other formulations and held promising features for its application as a potential oral drug delivery system for hydrophobic drugs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of N-terminal and C-terminal modification on cytotoxicity and cellular uptake of amphiphilic cell penetrating peptides.

    Science.gov (United States)

    Soleymani-Goloujeh, Mehdi; Nokhodchi, Ali; Niazi, Mehri; Najafi-Hajivar, Saeedeh; Shahbazi-Mojarrad, Javid; Zarghami, Nosratollah; Zakeri-Milani, Parvin; Mohammadi, Ali; Karimi, Mohammad; Valizadeh, Hadi

    2017-12-19

    To assess the effect of "N-Acetylation and C-Amidation" on the cellular uptake, cytotoxicity and performance of amphiphilic cell penetrating peptides (CPP) loaded with methotrexate (MTX). Several CPPs were synthesized by solid phase peptide synthesis method. Some of these sequences were modified with pyroglutamic acid at N-terminus and benzylamine or memantine at C-terminus. The resultant nanomaterials were prepared due to the physical linkage between CPPs and MTX. The internalization and cytotoxicity of both CPP-MTX bioconjugates and unmodified CPPs against MCF-7 human breast adenocarcinoma cells was evaluated. N-l and C-terminal modification did not alter the toxicity of CPPs. Physical linkage of CPPs with MTX resulted in a lower drug loading efficiency in comparison with chemically conjugated CPP-MTX bio-conjugates. Both nano-complexes increase the toxic effect of MTX on MCF-7 cells. Furthermore, N- and C-terminal modification may cause a tangible reduction in cellular uptake of CPPs. In conclusion, it was shown that cytotoxicity of modified peptides which were physically linked with MTX, considerably higher than both physically loaded unmodified peptides and chemically conjugated peptides with MTX. Also, cell internalization was reduced after peptide end-protection. These findings confirmed the effectiveness of N- and C-terminal modifications on cell viability and CPPs internalization.

  4. Managing magnetic nanoparticle aggregation and cellular uptake: a precondition for efficient stem-cell differentiation and MRI tracking.

    Science.gov (United States)

    Fayol, Delphine; Luciani, Nathalie; Lartigue, Lenaic; Gazeau, Florence; Wilhelm, Claire

    2013-02-01

    The labeling of stem cells with iron oxide nanoparticles is increasingly used to enable MRI cell tracking and magnetic cell manipulation, stimulating the fields of tissue engineering and cell therapy. However, the impact of magnetic labeling on stem-cell differentiation is still controversial. One compromising factor for successful differentiation may arise from early interactions of nanoparticles with cells during the labeling procedure. It is hypothesized that the lack of control over nanoparticle colloidal stability in biological media may lead to undesirable nanoparticle localization, overestimation of cellular uptake, misleading MRI cell tracking, and further impairment of differentiation. Herein a method is described for labeling mesenchymal stem cells (MSC), in which the physical state of citrate-coated nanoparticles (dispersed versus aggregated) can be kinetically tuned through electrostatic and magnetic triggers, as monitored by diffusion light scattering in the extracellular medium and by optical and electronic microscopy in cells. A set of statistical cell-by-cell measurements (flow cytometry, single-cell magnetophoresis, and high-resolution MRI cellular detection) is used to independently quantify the nanoparticle cell uptake and the effects of nanoparticle aggregation. Such aggregation confounds MRI cell detection as well as global iron quantification and has adverse effects on chondrogenetic differentiation. Magnetic labeling conditions with perfectly stable nanoparticles-suitable for obtaining differentiation-capable magnetic stem cells for use in cell therapy-are subsequently identified. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid).

    Science.gov (United States)

    Jeon, Young Ok; Lee, Ji-Soo; Lee, Hyeon Gyu

    2016-11-01

    Resveratrol (RES), a polyphenolic compound found in grape skins, is a potent antioxidant with broad health benefits. However, its utilization in food has been limited by its poor water solubility, instability, and low bioavailability. The purpose of this study is to improve the solubility, stability, and cellular uptake of RES by nanoencapsulation using chitosan (CS) and γ-poly (glutamic acid) (γ-PGA). The size of nanoparticles significantly decreases with a decrease in the CS/γ-PGA ratio (psolubility of RES increases 3.2 and 4.2 times before and after lyophilization by nanoencapsulation, respectively. Compared with non-nanoencapsulated RES, the nanoencapsulated RES tends to maintain its solubility and antioxidant activity during storage. CS/γ-PGA nanoencapsulation was able to significantly enhance the transport of RES across a Caco-2 cell monolayer (psolubility and antioxidant activity during storage. Therefore, CS/γ-PGA nanoencapsulation is found to be a potentially valuable technique for improving the solubility, stability, and cellular uptake of RES. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Facilitering

    DEFF Research Database (Denmark)

    Ravn, Ib

    2012-01-01

    Facilitering (af latin facilis: gørbart, let at gøre) er den teknik at gøre det lettere for en forsamlet gruppe mennesker at udrette det, den ønsker. Facilitator er en slags mødeleder eller ordstyrer, der bistår gruppen ved at styre formen på deltagernes samtale og interaktion snarere end indholdet...

  7. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kralj, Slavko, E-mail: slavko.kralj@ijs.si [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia); Rojnik, Matija [University of Ljubljana, Faculty of Pharmacy (Slovenia); Romih, Rok [University of Ljubljana, Faculty of Medicine, Institute of Cell Biology (Slovenia); Jagodic, Marko [Institute of Mathematics, Physics and Mechanics (Slovenia); Kos, Janko [University of Ljubljana, Faculty of Pharmacy (Slovenia); Makovec, Darko [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia)

    2012-10-15

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 {mu}g/cm{sup 3} in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  8. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Science.gov (United States)

    Kralj, Slavko; Rojnik, Matija; Romih, Rok; Jagodič, Marko; Kos, Janko; Makovec, Darko

    2012-10-01

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 μg/cm3 in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  9. Coupled elasticity–diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles

    Science.gov (United States)

    Wang, Jizeng; Li, Long

    2015-01-01

    Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity–diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand–receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand–receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake. PMID:25411410

  10. Coupled elasticity-diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles.

    Science.gov (United States)

    Wang, Jizeng; Li, Long

    2015-01-06

    Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity-diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand-receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand-receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Ultrasound Targeted Microbubble Destruction Stimulates Cellular Endocytosis in Facilitation of Adeno-Associated Virus Delivery

    Directory of Open Access Journals (Sweden)

    Lian-Fang Du

    2013-05-01

    Full Text Available The generally accepted mechanism for ultrasound targeted microbubble destruction (UTMD to enhance drug and gene delivery is through sonoporation. However, passive uptake of adeno-associated virus (AAV into cells following sonoporation does not adequately explain observations of enhanced transduction by UTMD. This study investigated alternative mechanisms of UTMD enhancement in AAV delivery. UTMD significantly enhanced transduction efficiency of AAV in a dose-dependent manner. UTMD stimulated a persistent uptake of AAV into the cytoplasm and nucleus. This phenomenon occurred over several hours, suggesting that some viral particles are endocytosed by cells rather than exclusively passing through pores created by sonoporation. Additionally, UTMD enhanced clathrin expression and accumulation at the plasma membrane suggesting greater clathrin-mediated endocytosis following UTMD. Transmission electron microscopy (TEM revealed that UTMD stimulated formation of clathrin-coated pits (CPs and uncoated pits (nCPs. Furthermore, inhibition of clathrin-mediated endocytosis partially blocked the enhancement of AAV uptake following UTMD. The results of this study implicate endocytosis as a mechanism that contributes to UTMD-enhanced AAV delivery.

  12. Cellular uptake of misonidazole and analogues with acidic or basic functions

    International Nuclear Information System (INIS)

    Dennis, M.F.; Stratford, M.R.L.; Wardman, P.; Watts, M.E.

    1985-01-01

    Average intracellular concentrations of five radiosensitizers in hamster fibroblast-like V79-379A cells in vitro were measured by high performance liquid chromatography, varying the extracellular pH(pHsub(e)) and estimating the apparent intracellular pH from the distribution of 5,5-dimethyloxazolidine-2,4-dione. The intracellular: extracellular concentration ratio for the 2-nitroimidazole, misonidazole was constant at about 0.7 for pHsub(e)=6.6-7.6, whereas the weak base, Ro 03-8799 (1-(2-nitro-1-imidazolyl)-3-N-piperidino-2-propanol) was concentrated intracellularly at pHsub(e)=7.3-7.4 by a factor of 3.3, the factor increasing from about 0.8 at pHsub(e)=6.0, to 7.5 at pHsub(e)=7.85. The weak acid, azomycin (2-nitroimidazole) showed approximately constant uptake (factor 1.1) between pHsub(e)=6.0-7.0, decreasing to 0.8 at pHsub(e)=7.3 and 0.4 at pHsub(e)=7.8. Measurements of intracellular uptake of Ro 31-0052 (the more hydrophilic and less basic 3'-hydroxypiperidino analogue of Ro 03-8799) and of Ro 31-0258 (3-(2-nitro-1-imidazolyl)propionic acid, a stronger acid than azomycin) were made for comparison. The results were compared with theoretical calculations of pH-induced concentration gradients; the time dependence of the uptake of the bases is not at present clearly understood. (author)

  13. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles

    Science.gov (United States)

    Mahmoudi, Morteza; Shokrgozar, Mohammad A.; Behzadi, Shahed

    2013-03-01

    It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular/organ temperature.It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular

  14. Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity.

    Science.gov (United States)

    Deng, Jun; Gao, Changyou

    2016-10-14

    The unique features of nanomaterials have led to their rapid development in the biomedical field. In particular, functionalized nanoparticles (NPs) are extensively used in the delivery of drugs and genes, bio-imaging and diagnosis. Hence, the interaction between NPs and cells is one of the most important issues towards understanding the true nature of the NP-mediated biological effects. Moreover, the intracellular safety concern of the NPs as a result of intracellular NP degradation remains to be clarified in detail. This review presents recent advances in the interactions of designed NPs and cells. The focus includes the governing factors on cellular uptake and the intracellular fate of NPs, and the degradation of NPs and its influence on nanotoxicity. Some basic consideration is proposed for optimizing the NP-cell interaction and designing NPs of better biocompatiblity for biomedical application.

  15. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity

    DEFF Research Database (Denmark)

    Jiang, Xiumei; Miclaus, Teodora; Wang, Liming

    2015-01-01

    Toxicity of silver nanoparticles (Ag NPs) has been reported both in vitro and in vivo. However, the intracellular stability and chemical state of Ag NPs are still not very well studied. In this work, we systematically investigated the cellular uptake pathways, intracellular dissolution and chemic...... is related to the intracellular release of silver ions, followed by their binding to SH-groups, presumably coming from amino acids or proteins, and affecting protein functions and the antioxidant defense system of cells....... lipid-raft-mediated endocytosis and energy-independent diffusion. The degradation study shows that Ag NPs taken up into cells dissolved quickly and XANES results directly indicated that the internalized Ag was oxidized to Ag−O− species and then stabilized in silver−sulfur (Ag−S−) bonds within the cells...

  16. Chirality-dependent cellular uptake of chiral nanocarriers and intracellular delivery of different amounts of guest molecules

    Science.gov (United States)

    Kehr, Nermin Seda; Jose, Joachim

    2017-12-01

    We demonstrate the organic molecules loaded and chiral polymers coated periodic mesoporous organosilica (PMO) to generate chiral nanocarriers that we used to study chirality-dependent cellular uptake in serum and serum-free media and the subsequent delivery of different amounts of organic molecules into cells. Our results show that the amount of internalized PMO and thus the transported amount of organic molecules by nanocarrier PMO into cells was chirality dependent and controlled by hard/soft protein corona formation on the PMO surfaces. Therefore, this study demonstrate that chiral porous nanocarriers could potentially be used as advanced drug delivery systems which are able to use the specific chiral surface-protein interactions to influence/control the amount of (bio)active molecules delivered to cells in drug delivery and/or imaging applications.

  17. Measuring in vitro cellular uptake of nanoparticles by transmission electron microscopy

    International Nuclear Information System (INIS)

    Brown, A P; Brydson, R M D; Hondow, N S

    2014-01-01

    Biomedical application of engineered nanoparticles (NPs) is a growing area of research and development. Uncertainty remains as to the mode of action of many NP types and TEM is a tool capable of addressing this if used in conjunction with standard cellular response assays. We will demonstrate imaging of thin sections of fixed, plastic embedded cells by analytical TEM to identify: superparamagnetic iron oxide NP translocation into cell compartments such as endosomes; amorphous silica NP penetration through a cell membrane without membrane encapsulation and zinc oxide NP degradation in cell compartments. We will then discuss how the in vitro cellular responses to a dose of NPs exposed to cell lines can be correlated to the internalized dose per cell section noting however that quantification of the latter requires random sampling procedures or correlation to higher throughout techniques to measure a population of whole cells. Similarly, analytical TEM measures of NP degradation within intracellular compartments will require a more appropriate sample preparation such as cryo-fixation

  18. The cellular uptake of meta-tetra(hydroxyphenyl)chlorin entrapped in organically modified silica nanoparticles is mediated by serum proteins

    Science.gov (United States)

    Compagnin, Chiara; Baù, Luca; Mognato, Maddalena; Celotti, Lucia; Miotto, Giovanni; Arduini, Maria; Moret, Francesca; Fede, Caterina; Selvestrel, Francesco; Rio Echevarria, Iria M.; Mancin, Fabrizio; Reddi, Elena

    2009-08-01

    Nanosized objects made of various materials are gaining increasing attention as promising vehicles for the delivery of therapeutic and diagnostic agents for cancer. Photodynamic therapy (PDT) appears to offer a very attractive opportunity to implement drug delivery systems since no release of the sensitizer is needed to obtain the therapeutic effect and the design of the nanovehicle should be much easier. The aim of our study was to investigate the use of organic-modified silica nanoparticles (NPs) for the delivery of the second-generation photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC) to cancer cells in vitro. mTHPC was entrapped in NPs (~33 nm diameter) in a monomeric form which produced singlet oxygen with a high efficiency. In aqueous media with high salt concentrations, the NPs underwent aggregation and precipitation but their stability could be preserved in the presence of foetal bovine serum. The cellular uptake, localization and phototoxic activity of mTHPC was determined comparatively in human oesophageal cancer cells after its delivery by the NPs and the standard solvent ethanol/poly(ethylene glycol) 400/water (20:30:50, by vol). The NP formulation reduced the cellular uptake of mTHPC by about 50% in comparison to standard solvent while it did not affect the concentration-dependent photokilling activity of mTHPC and its intracellular localization. Fluorescence resonance energy transfer measurements, using NPs with mTHPC physically entrapped and a cyanine covalently linked, and ultracentrifugation experiments indicated that mTHPC is transferred from NPs to serum proteins when present in the medium. However, the coating of the NP surface with poly(ethylene glycol) largely prevented the transfer to proteins. In conclusion, mTHPC is rapidly transferred from the uncoated nanoparticles to the serum proteins and then internalized by the cells as a protein complex, irrespective of its modality of delivery.

  19. Dual purpose secondary compounds: phytotoxin of Centaurea diffusa also facilitates nutrient uptake.

    Science.gov (United States)

    Tharayil, Nishanth; Bhowmik, Prasanta; Alpert, Peter; Walker, Elsbeth; Amarasiriwardena, Dulasiri; Xing, Baoshan

    2009-01-01

    Traits that allow more efficient foraging for a deficient resource could increase the competitiveness of a species in resource-poor habitats. Considering the metal-nutrient mobilization ability of many allelochemicals, it is hypothesized that, along with the reported toxic effect on the neighbors, these compounds could be directly involved in resource acquisition by the allelopathic plant. Using nutrient manipulation treatments in hydroponic culture, this hypothesis was tested using Centaurea diffusa, an invasive species that produces the putative phytotoxin 8-hydroxyquinoline (8HQ). The exudation of 8HQ by C. diffusa was very limited and transient. It was further shown that: C. diffusa utilizes 8HQ for its own acquisition of iron, a nutrient deficient in many of its alkaline, invaded habitats; there possibly exists a unique mechanism for the uptake of the 8HQ-complexed iron (Fe) in C. diffusa, which is novel to the nongraminaceous species; although phytotoxic at very low concentrations, the toxic effect of 8HQ showed a conditional response in the presence of metals, and was significantly reduced when 8HQ was complexed with copper (Cu) and Fe. This study, in addition to elucidating one of the possible adaptive mechanisms conferring competitive advantage to C. diffusa, also outlines measures to negate the phytotoxicity of its putative allelochemical. The results indicate that the exudation of 8HQ by C. diffusa could be primarily for nutrient acquisition.

  20. Cellular uptake and degradation behaviour of biodegradable poly(ethylene glycol-graft-methyl methacrylate) nanoparticles crosslinked with dimethacryloyl hydroxylamine.

    Science.gov (United States)

    Scheler, Stefan; Kitzan, Martina; Fahr, Alfred

    2011-01-17

    Crosslinked polymers with hydrolytically cleavable linkages are highly interesting materials for the design of biodegradable drug carriers. The aim of this study was to investigate if nanoparticles made of such polymers have the potential to be used also for intracellular drug delivery. PEGylated nanoparticles were prepared by copolymerization of methacrylic acid esters and N,O-dimethacryloylhydroxylamine (DMHA). The particles were stable at pH 5.0. At pH 7.4 and 9.0 the degradation covered a time span of about 14 days, following first-order kinetics with higher crosslinked particles degrading slower. Cellular particle uptake and cytotoxicity were tested with L929 mouse fibroblasts. The particle uptake rate was found to correlate linearly with the surface charge and to increase as the zeta potential becomes less negative. Coating of the particle surface with polysorbate 80 drops the internalization rate close to zero and the charge dependence disappears. This indicates the existence of a second effect apart from surface charge. A similar pattern of correlation with zeta potential and coating was also found for the degree of membrane damage while there was no effect of polysorbate on the cell metabolism which increased as the negative charge decreased. It is discussed whether exocytotic processes may explain this behaviour. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Shock wave-induced ATP release from osteosarcoma U2OS cells promotes cellular uptake and cytotoxicity of methotrexate.

    Science.gov (United States)

    Qi, Baochang; Yu, Tiecheng; Wang, Chengxue; Wang, Tiejun; Yao, Jihang; Zhang, Xiaomeng; Deng, Pengfei; Xia, Yongning; Junger, Wolfgang G; Sun, Dahui

    2016-10-03

    Osteosarcoma is the most prevalent primary malignant bone tumor, but treatment is difficult and prognosis remains poor. Recently, large-dose chemotherapy has been shown to improve outcome but this approach can cause many side effects. Minimizing the dose of chemotherapeutic drugs and optimizing their curative effects is a current goal in the management of osteosarcoma patients. In our study, trypan blue dye exclusion assay was performed to investigate the optimal conditions for the sensitization of osteosarcoma U2OS cells. Cellular uptake of the fluorophores Lucifer Yellow CH dilithium salt and Calcein was measured by qualitative and quantitative methods. Human MTX ELISA Kit and MTT assay were used to assess the outcome for osteosarcoma U2OS cells in the present of shock wave and methotrexate. To explore the mechanism, P2X7 receptor in U2OS cells was detected by immunofluorescence and the extracellular ATP levels was detected by ATP assay kit. All data were analyzed using SPSS17.0 statistical software. Comparisons were made with t test between two groups. Treatment of human osteosarcoma U2OS cells with up to 450 shock wave pulses at 7 kV or up to 200 shock wave pulses at 14 kV had little effect on cell viability. However, this shock wave treatment significantly promoted the uptake of Calcein and Lucifer Yellow CH by osteosarcoma U2OS cells. Importantly, shock wave treatment also significantly enhanced the uptake of the chemotherapy drug methotrexate and increased the rate of methotrexate-induced apoptosis. We found that shock wave treatment increased the extracellular concentration of ATP and that KN62, an inhibitor of P2X7 receptor reduced the capacity methotrexate-induced apoptosis. Our results suggest that shock wave treatment promotes methotrexate-induced apoptosis by altering cell membrane permeability in a P2X7 receptor-dependent manner. Shock wave treatment may thus represent a possible adjuvant therapy for osteosarcoma.

  2. A DEAD box protein facilitates HIV-1 replication as a cellular co-factor of Rev

    International Nuclear Information System (INIS)

    HIV-1 Rev escorts unspliced viral mRNAs out of the nucleus of infected cells, which allows formation of infectious HIV-1 virions. We have identified a putative DEAD box (Asp-Glu-Ala-Asp) RNA helicase, DDX1, as a cellular co-factor of Rev, through yeast and mammalian two-hybrid systems using the N-terminal motif of Rev as 'bait'. DDX1 is not a functional homolog of HIV-1 Rev, but down-regulation of DDX1 resulted in an alternative splicing pattern of Rev-responsive element (RRE)-containing mRNA, and attenuation of Gag p24 antigen production from HLfb rev(-) cells rescued by exogenous Rev. Co-transfection of a DDX1 expression vector with HIV-1 significantly increased viral production. DDX1 binding to Rev, as well as to the RRE, strongly suggest that DDX1 affects Rev function through the Rev-RRE axis. Moreover, down-regulation of DDX1 altered the steady state subcellular distribution of Rev, from nuclear/nucleolar to cytoplasmic dominance. These findings indicate that DDX1 is a critical cellular co-factor for Rev function, which maintains the proper subcellular distribution of this lentiviral regulatory protein. Therefore, alterations in DDX1-Rev interactions could induce HIV-1 persistence and targeting DDX1 may lead to rationally designed and novel anti-HIV-1 strategies and therapeutics

  3. RGS6 Suppresses Ras-induced Cellular Transformation by Facilitating Tip60-mediated Dnmt1 Degradation and Promoting Apoptosis

    Science.gov (United States)

    Huang, Jie; Stewart, Adele; Maity, Biswanath; Hagen, Jussara; Fagan, Rebecca L.; Yang, Jianqi; Quelle, Dawn E.; Brenner, Charles; Fisher, Rory A.

    2014-01-01

    The RAS protooncogene plays a central role in regulation of cell proliferation, and point mutations leading to oncogenic activation of Ras occur in a large number of human cancers. Silencing of tumor suppressor genes by DNA methyltransferase 1 (Dnmt1) is essential for oncogenic cellular transformation by Ras, and Dnmt1 is over-expressed in numerous human cancers. Here we provide new evidence that the pleiotropic Regulator of G protein Signaling (RGS) family member RGS6 suppresses Ras-induced cellular transformation by facilitating Tip60-mediated degradation of Dmnt1 and promoting apoptosis. Employing mouse embryonic fibroblasts (MEFs) from wild type (WT) and RGS6−/− mice, we found that oncogenic Ras induced up-regulation of RGS6, which in turn blocked Ras-induced cellular transformation. RGS6 functions to suppress cellular transformation in response to oncogenic Ras by down regulating Dnmt1 protein expression leading to inhibition of Dnmt1-mediated anti-apoptotic activity. Further experiments showed that RGS6 functions as a scaffolding protein for both Dnmt1 and Tip60 and is required for Tip60-mediated acetylation of Dnmt1 and subsequent Dnmt1 ubiquitylation and degradation. The RGS domain of RGS6, known only for its GAP activity toward Gα subunits, was sufficient to mediate Tip60 association with RGS6. This work demonstrates a novel signaling action for RGS6 in negative regulation of oncogene-induced transformation and provides new insights into our understanding of the mechanisms underlying Ras-induced oncogenic transformation and regulation of Dnmt1 expression. Importantly, these findings identify RGS6 as an essential cellular defender against oncogenic stress and a potential therapeutic target for developing new cancer treatments. PMID:23995786

  4. Uptake and cellular actions of mycolactone, a virulence determinant for Mycobacterium ulcerans.

    Science.gov (United States)

    Snyder, D Scott; Small, P L C

    2003-02-01

    Mycolactone is a macrolide secreted by Mycobacterium ulcerans. Experimental evidence suggests that mycolactone plays a prominent role in the pathogenesis of Buruli ulcer by causing both tissue destruction and immunosuppression. To understand the cell biology of mycolactone activity, we have synthesized the fluorescent mycolactone derivativebodipymycolactone. Although derivatization resulted in a modest decrease in cytopathic activity, the derivatized and native molecules produce identical phenotypes in cultured cells. Confocal microscopy of bodipymycolactone added to cultured fibroblasts, shows that it is localized to the cytosol. Bodipymycolactone fails to bind to the cell membrane and is excluded from the nucleus. Uptake is both nonsaturable and noncompetitive with excess mycolactone, consistent with passive diffusion of this toxin through the cell membrane. These facts, combined with the inability of signal transduction inhibitors to inhibit mycolactone cytopathicity point towards the presence of an cytosolic target for mycolactone.A dose dependent increase in intracellular calcium levels at occurs upon mycolactone exposure, but chelation of intracellular calcium alters neither the cytopathicity nor the caspase induction profile of treated cells. Mitochondrial polarization is maintained in treated cells for up to 3 days arguing that the rise in intracellular calcium levels may be a result of cytoskeletal remodeling.

  5. Synthesis of diethylenetriaminepentaacetic acid conjugated inulin and utility for cellular uptake of liposomes

    International Nuclear Information System (INIS)

    Essien, H.; Lai, J.Y.; Hwang, K.J.

    1988-01-01

    The synthesis, binding of radioactive cations, liposomal encapsulation, and biodistribution of the oxidized-inulin reaction product with ethylenediamine and diethylenetriaminepentaacetic acid (4) are described. The four-step synthesis of the inulin derivative proceeded in a good overall yield of 72%. The complex of the inulin derivative with either 67 Ga3+ or 111 In3+ was stable in vivo and did not readily distribute into tissues, being excreted primarily in urine after intravenous administration to mice. The liposome-entrapped inulin derivative can be loaded with radioactive heavy metal cations by mobile ionophores in high radiochemical yields of 80-91%. Following the intravenous administration of the liposomal encapsulation of the indium-111-labeled inulin derivative, the entrapped compound had a biodistribution characteristic of liposomes and allowed an estimation of the extent of the intracellular uptake of liposomes. The ability of the inulin derivative to chelate many different types of metals will allow the use of this probe for studying subtle differences in tissue distribution resulting from different drug targeting or delivery protocols in the same animal by multiple labeling techniques. Moreover, the chelate-conjugated inulin permits studies of the applications of drug delivery systems in primates or human subjects by noninvasive techniques such as gamma-scintigraphic or nuclear magnetic resonance imaging methods

  6. In-vitro cytotoxicity and cellular uptake studies of luminescent functionalized core-shell nanospheres

    Directory of Open Access Journals (Sweden)

    Anees A. Ansari

    2017-09-01

    Full Text Available Monodispersed luminescent functionalized core-shell nanospheres (LFCSNs were successfully synthesized and investigated for their cyto-toxic effect on human liver hepatocellular carcinoma cell line (HepG2 cells by adopting MTT, DNA Ladder, TUNEL assay and qPCR based gene expressions through mRNA quantifications. The TUNEL and DNA ladder assays suggested an insignificant apoptosis in HepG2 cells due to the LFCSNs treatment. Further, the qPCR results also show that the mRNA expressions of cell cycle checkpoint gene p53 and apoptosis related gene (caspase-9 was up-regulated, while the antiapoptotic gene BCl-2 and apoptosis related genes FADD and CAS-3 (apoptosis effecter gene were down-regulated in the LFCSNs treated cells. The nanospheres that were loaded into the cells confirm their intracellular uptake by light and fluorescent spectro-photometry and microscopy imaging analysis. The loaded nanospheres demonstrate an absolute resistance to photo-bleaching, which were applied for dynamic imaging to real-time tracking in-vitro cell migratory activity for continuous 24 and 48 h durations using a time-lapsed fluorescent microscope. These properties of LFCSNs could therefore promote applications in the area of fluorescent protein biolabeling and drug-delivery.

  7. Anticancer cationic ruthenium nanovectors: from rational molecular design to cellular uptake and bioactivity.

    Science.gov (United States)

    Mangiapia, Gaetano; Vitiello, Giuseppe; Irace, Carlo; Santamaria, Rita; Colonna, Alfredo; Angelico, Ruggero; Radulescu, Aurel; D'Errico, Gerardino; Montesarchio, Daniela; Paduano, Luigi

    2013-08-12

    An efficient drug delivery strategy is presented for novel anticancer amphiphilic ruthenium anionic complexes, based on the formation of stable nanoparticles with the cationic lipid 1,2-dioleyl-3-trimethylammoniumpropane chloride (DOTAP). This strategy is aimed at ensuring high ruthenium content within the formulation, long half-life in physiological media, and enhanced cell uptake. An in-depth microstructural characterization of the aggregates obtained mixing the ruthenium complex and the phospholipid carrier at 50/50 molar ratio is realized by combining a variety of techniques, including dynamic light scattering (DLS), small angle neutron scattering (SANS), neutron reflectivity (NR), electron paramagnetic resonance (EPR), and zeta potential measurements. The in vitro bioactivity profile of the Ru-loaded nanoparticles is investigated on human and non-human cancer cell lines, showing IC(50) values in the low μM range against MCF-7 and WiDr cells, that is, proving to be 10-20-fold more active than AziRu, a previously synthesized NAMI-A analog, used for control. Fluorescence microscopy studies demonstrate that the amphiphilic Ru-complex/DOTAP formulations, added with rhodamine-B, are efficiently and rapidly incorporated in human MCF-7 breast adenocarcinoma cells. The intracellular fate of the amphiphilic Ru-complexes was investigated in the same in vitro model by means of an ad hoc designed fluorescently tagged analog, which exhibited a marked tendency to accumulate within or in proximity of the nuclei.

  8. Cellular uptake and processing of surfactant lipids and apoprotein SP-A by rat lung

    International Nuclear Information System (INIS)

    Young, S.L.; Wright, J.R.; Clements, J.A.

    1989-01-01

    The intracellular pathways and the kinetics of metabolism of surfactant apoprotein and lipid, which may be recycled from the alveolar space, are largely unknown. We used a lipid-apoprotein complex made from liposomes of pure lipids in a ratio found in mammalian pulmonary surfactant plus surfactant apoprotein (SP-A, Mr = 26,000-36,000) to test some possible relationships in the recycling of these major surfactant components between intrapulmonary compartments. After intratracheal instillation of 80 microliters of an apoprotein-liposome mixture with separate radiolabels in the lipid and the apoprotein, rats were killed at times from 8 min to 4 h later. The lungs were lavaged with saline, and subcellular fractions were isolated on discontinuous sucrose density gradients. Both the [ 14 C]lipid radiolabel and the 125 I-apoprotein radiolabel demonstrated a time-dependent increase in radioactivity recovered in a lamellar body-enriched fraction. Uptake of the radiolabels into other subcellular fractions did not exhibit a clear-cut time dependence; more of the protein than the lipid radiolabel was found in the Golgi-rich and microsomal fractions. We conclude that both the lipid and apoprotein portions of lung surfactant are taken up by lung cells and are incorporated into secretory granules of the cells

  9. Cyclic RGD peptide-modified liposomal drug delivery system: enhanced cellular uptake in vitro and improved pharmacokinetics in rats

    Directory of Open Access Journals (Sweden)

    Chen Z

    2012-07-01

    Full Text Available Zhongya Chen,1,2 Jiaxin Deng,1,2 Yan Zhao,1,2 Tao Tao1,21National Pharmaceutical Engineering Research Center, 2Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of ChinaBackground: Integrins αvβ3 and αvβ5, both of which specifically recognize the Arg-Gly-Asp (RGD motif, are overexpressed on many solid tumors and in tumor neovasculature. Thus, coupling the RGD motif to the liposomal surface for achieving active targeting can be a promising strategy for the treatment of tumors.Methods: Cyclo(Arg-Gly-Asp-D-Phe-Cys (cRGD was covalently coupled with the liposomal membrane surface, followed by coating with poly(ethylene glycol (PEG using the post-insertion technique. The coupling efficiency of cRGD was determined. Doxorubicin as a model anticancer drug was loaded into liposomes using an ammonium sulfate gradient method to investigate the encapsulation efficiency, cellular uptake by the integrin-overexpressing human glioma cell line U87MG in vitro, and pharmacokinetic properties in Sprague-Dawley rats.Results: cRGD was conjugated to the liposomal surface by a thiol-maleimide coupling reaction. The coupling efficiency reached 98%. The encapsulation efficiency of doxorubicin in liposomes was more than 98%. The flow cytometry test result showed that cRGD-modified liposomes (RGD-DXRL-PEG had higher cell uptake by U87MG cells, compared with nontargeted liposomes (DXRL-PEG. The cellular uptake was significantly inhibited in the presence of excess free cRGD. Both the targeted (t1/2 = 24.10 hours and non-targeted (t1/2 = 25.32 hours liposomes showed long circulating properties in rat plasma. The area under the curve of the targeted and nontargeted liposomes was 6.4-fold and 8.3-fold higher than that of doxorubicin solution, respectively.Conclusion: This study indicates preferential targeting and long circulating properties for cRGD-modified liposomes in vivo, which could be used as

  10. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Dong-Myung [Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoo, Tae Hyeon [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Yong-Sung, E-mail: kimys@ajou.ac.kr [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.

  11. Molybdate uptake by Agrobacterium tumefaciens correlates with the cellular molybdenum cofactor status.

    Science.gov (United States)

    Hoffmann, Marie-Christine; Ali, Koral; Sonnenschein, Marleen; Robrahn, Laura; Strauss, Daria; Narberhaus, Franz; Masepohl, Bernd

    2016-09-01

    Many enzymes require the molybdenum cofactor, Moco. Under Mo-limiting conditions, the high-affinity ABC transporter ModABC permits molybdate uptake and Moco biosynthesis in bacteria. Under Mo-replete conditions, Escherichia coli represses modABC transcription by the one-component regulator, ModE, consisting of a DNA-binding and a molybdate-sensing domain. Instead of a full-length ModE protein, many bacteria have a shorter ModE protein, ModE(S) , consisting of a DNA-binding domain only. Here, we asked how such proteins sense the intracellular molybdenum status. We show that the Agrobacterium tumefaciens ModE(S) protein Atu2564 is essential for modABC repression. ModE(S) binds two Mo-boxes in the modA promoter as shown by electrophoretic mobility shift assays. Northern analysis revealed cotranscription of modE(S) with the upstream gene, atu2565, which was dispensable for ModE(S) activity. To identify genes controlling ModE(S) function, we performed transposon mutagenesis. Tn5 insertions resulting in derepressed modA transcription mapped to the atu2565-modE(S) operon and several Moco biosynthesis genes. We conclude that A. tumefaciens ModE(S) activity responds to Moco availability rather than to molybdate concentration directly, as is the case for E. coli ModE. Similar results in Sinorhizobium meliloti suggest that Moco dependence is a common feature of ModE(S) regulators. © 2016 John Wiley & Sons Ltd.

  12. Cytotoxicity and cellular uptake of ZnS:Mn nanocrystals biofunctionalized with chitosan and aminoacids

    Science.gov (United States)

    Sajimol Augustine, M.; Anas, Abdulaziz; Das, Ani V.; Sreekanth, S.; Jayalekshmi, S.

    2015-02-01

    Highly luminescent, manganese doped, zinc sulphide (ZnS:Mn) nanocrystals biofunctionalized with chitosan and various aminoacids such as L-citrulline, L-lysine, L-arginine, L-serine, L-histidine and glycine were synthesized by chemical capping co-precipitation method at room temperature, which is a simple and cost effective technique. The synthesized nanocrystals were structurally characterized by TEM, XRD, EDXS and FT-IR spectroscopy techniques. They possess high colloidal stability with strong orange red photoluminescence emission at 598 nm. The intensity of orange red emission has been observed to be maximum in L-citrulline capped ZnS:Mn nanocrystals in which the emission at 420 nm is effectively quenched by surface passivation due to capping. Taking into consideration the prospects of these highly luminescent, bio-compatible ZnS:Mn nanocrystals in bio-imaging applications, cytotoxicity studies were conducted to identify the capping combination which would accomplish minimum toxic effects. ZnS:Mn nanocrystals biofunctionalized with chitosan, L-citrulline, glycine, L-artginine, L-serine and L-histidine showed least toxicity up to 10 nM concentrations in mouse fibroblast L929 cells, which further confirms their cytocompatibility. Also the ZnS:Mn nanocrystals biofunctionalized with L-arginine showed maximum uptake in in vitro studies carried out in human embryonic kidney cells, HEK-293T, which shows the significant role of this particular amino acid in fetoplacental nutrition. The present study highlights the suitability of aminoacid conjugated ZnS:Mn nanocrystals, as promising candidates for biomedical applications.

  13. Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.

    Energy Technology Data Exchange (ETDEWEB)

    Hakim Boukhalfa

    2006-03-28

    Microorganisms influence the natural cycle of major elements, including C, N, P, S, and transition metals such as Mn and Fe. Bacterial processes can also influence the behavior of actinides in soil and ground water. While radionuclides have no known biological utility, they have the potential to interact with microorganisms and to interfere with processes involving other elements such as Fe and Mn. These interactions can transform radionuclides and affect their fate and transport. Organic acids, extruded by-products of cell metabolism, can solubilize radionuclides and facilitate their transport. The soluble complexes formed can be taken up by the cells and incorporated into biofilm structures. We have examined the interactions of Pu species with bacterial metabolites, studied Pu uptake by microorganisms and examined the toxicity of Pu and other toxic metals to environmentally relevant bacteria. We have also studied the speciation of Pu(IV) in the presence of natural and synthetic chelators.

  14. Arginine residues are more effective than lysine residues in eliciting the cellular uptake of onconase.

    Science.gov (United States)

    Sundlass, Nadia K; Raines, Ronald T

    2011-11-29

    Onconase is an amphibian member of the pancreatic ribonuclease family of enzymes that is in clinical trials for the treatment of cancer. Onconase, which has an abundance of lysine residues, is internalized by cancer cells through endocytosis in a mechanism similar to that of cell-penetrating peptides. Here, we compare the effect of lysine versus arginine residues on the biochemical attributes necessary for Onconase to elicit its cytotoxic activity. In the variant R-Onconase, 10 of the 12 lysine residues in Onconase are replaced with arginine, leaving only the two active-site lysines intact. Cytometric assays quantifying internalization showed a 3-fold increase in the internalization of R-Onconase compared with Onconase. R-Onconase also showed greater affinity for heparin and a 2-fold increase in ribonucleolytic activity. Nonetheless, arginine substitution endowed only a slight increase in toxicity toward human cancer cells. Analysis of denaturation induced with guanidine-HCl showed that R-Onconase has less conformational stability than does the wild-type enzyme; moreover, R-Onconase is more susceptible to proteolytic degradation. These data indicate that arginine residues are more effective than lysine in eliciting cellular internalization but can compromise other aspects of protein structure and function.

  15. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    Science.gov (United States)

    Chen, Gao; Lianqin, Zhu; Fenghua, Zhu; Fang, Zheng; Mingming, Song; Kai, Huang

    2015-04-01

    Different concentrations of CuSO4, micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10-20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient ( P app) of CuSO4 and nano-CuO increased with the Cu concentration in the culture medium ( p Caco-2 cells ( p > 0.05). When the Cu concentration in the culture medium was in the range 31.25-500 μM, the P app value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO4. The latter was also significantly higher than that when cells were incubated with micro-CuO ( p Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways.

  16. Cellular uptake and intracellular fate of engineered nanoparticles: a review on the application of imaging techniques.

    Science.gov (United States)

    Tantra, Ratna; Knight, Alex

    2011-09-01

    The use of imaging tools to probe nanoparticle-cell interactions will be crucial to elucidating the mechanisms of nanoparticle-induced toxicity. Of particular interest are mechanisms associated with cell penetration, translocation and subsequent accumulation inside the cell, or in cellular compartments. The objective of the present paper is to review imaging techniques that have been previously used in order to assess such interactions, and new techniques with the potential to be useful in this area. In order to identify the most suitable techniques, they were evaluated and matched against a list of evaluation criteria. We conclude that limitations exist with all of the techniques and the ultimate choice will thus depend on the needs of end users, and their particular application. The state-of-the-art techniques appear to have the least limitations, despite the fact that they are not so well established and still far from being routine. For example, super-resolution microscopy techniques appear to have many advantages for understanding the details of the interactions between nanoparticles and cells. Future research should concentrate on further developing or improving such novel techniques, to include the development of standardized methods and appropriate reference materials.

  17. Cellular activation of hypothalamic hypocretin/orexin neurons facilitates short-term spatial memory in mice.

    Science.gov (United States)

    Aitta-Aho, Teemu; Pappa, Elpiniki; Burdakov, Denis; Apergis-Schoute, John

    2016-12-01

    The hypothalamic hypocretin/orexin (HO) system holds a central role in the regulation of several physiological functions critical for food-seeking behavior including mnemonic processes for effective foraging behavior. It is unclear however whether physiological increases in HO neuronal activity can support such processes. Using a designer rM3Ds receptor activation approach increasing HO neuronal activity resulted in improved short-term memory for novel locations. When tested on a non-spatial novelty object recognition task no significant difference was detected between groups indicating that hypothalamic HO neuronal activation can selectively facilitate short-term spatial memory for potentially supporting memory for locations during active exploration. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Evaluating Cytotoxicity and Cellular Uptake from the Presence of Variously Processed Ti02 Nanostructured Morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Wong, S.; Zhou, H.; Santull, A.C.

    2010-05-01

    We evaluated the cytotoxicity of various morphological classes of TiO{sub 2} nanostructures (including 0-D nanoparticles, 1-D nanorods, and 3-D assemblies) toward living cells. These TiO{sub 2} nanostructures were modified with fluorescent dye molecules, mediated via a dopamine linkage, in order to facilitate a confocal study of their internalization. Specifically, we noted that both TiO{sub 2} 1-D nanorods and 0-D nanoparticles could internalize into cells after 24 h of incubation time. However, only incubation with TiO{sub 2} 1-D nanorods and 3-D micrometer-scale sea urchin-like assemblies at concentrations of up to 125 {mu}g/mL yielded data suggestive of cell viabilities of close to 100%. Moreover, upon irradiation with UV light for periods of a few minutes at energy densities of up to 1 J/cm{sub 2}, we observed up to 60% mortality rates, indicative of the cytotoxic potential of photoirradiated TiO{sub 2} nanostructures due to the generation of reactive oxygen species.

  19. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gao; Lianqin, Zhu, E-mail: lianqinz1963@163.com; Fenghua, Zhu [Qingdao Agricultural University, College of Animal Science and Veterinary Medicine (China); Fang, Zheng [Dezhou University, College of Agriculture (China); Mingming, Song; Kai, Huang [Qingdao Agricultural University, College of Animal Science and Veterinary Medicine (China)

    2015-04-15

    Different concentrations of CuSO{sub 4}, micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10–20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient (P{sub app}) of CuSO{sub 4} and nano-CuO increased with the Cu concentration in the culture medium (p < 0.05). The micro-CuO of different concentrations had no significant impact on the P{sub app} value of Caco-2 cells (p > 0.05). When the Cu concentration in the culture medium was in the range 31.25–500 μM, the P{sub app} value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO{sub 4}. The latter was also significantly higher than that when cells were incubated with micro-CuO (p < 0.05). The amount of Cu transport increased with the increase of CuSO{sub 4} concentration in the culture medium. After 90 min, the amount of transport began to saturate, and the transport rate of Cu declined with the increase of CuSO{sub 4} concentration. For the cells incubated with nano-CuO, the amount of Cu transport increased with the increase of nano-CuO concentration, but did not show an obvious saturation with the extension of transport time. Nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways.

  20. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    International Nuclear Information System (INIS)

    Chen, Gao; Lianqin, Zhu; Fenghua, Zhu; Fang, Zheng; Mingming, Song; Kai, Huang

    2015-01-01

    Different concentrations of CuSO 4 , micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10–20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient (P app ) of CuSO 4 and nano-CuO increased with the Cu concentration in the culture medium (p < 0.05). The micro-CuO of different concentrations had no significant impact on the P app value of Caco-2 cells (p > 0.05). When the Cu concentration in the culture medium was in the range 31.25–500 μM, the P app value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO 4 . The latter was also significantly higher than that when cells were incubated with micro-CuO (p < 0.05). The amount of Cu transport increased with the increase of CuSO 4 concentration in the culture medium. After 90 min, the amount of transport began to saturate, and the transport rate of Cu declined with the increase of CuSO 4 concentration. For the cells incubated with nano-CuO, the amount of Cu transport increased with the increase of nano-CuO concentration, but did not show an obvious saturation with the extension of transport time. Nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways

  1. Design of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting in a synergistic effect on selectivity and cellular uptake.

    Science.gov (United States)

    Takara, Kazuhiro; Hatakeyama, Hiroto; Ohga, Noritaka; Hida, Kyoko; Harashima, Hideyoshi

    2010-08-30

    In this study, a dual-ligand liposomal system comprised of a specific ligand and a cell penetrating peptide (CPP) is described to enhance selectivity and cellular uptake. Dual-ligand PEGylated liposomes were prepared by modifying the end of the PEG with an NGR motif peptide, followed by a surface coating of the liposomes with stearylated oligoarginine (STR-RX). The NGR motif recognizes CD13, a marker protein located on tumor endothelial cells. A suitable number of RX units was determined to be R4, since it can be masked by the PEG aqueous layer. Although no enhanced cellular uptake was observed when a single modification of PEGylated liposomes with either NGR- or STR-R4 was used, the dual-modification with NGR and STR-R4 stimulated uptake of PEGylated liposomes by CD13 positive cells, and this uptake was superior to that obtained by PEG-unmodified liposomes modified with STR-R4. The dual-ligand system shows a synergistic effect on cellular uptake. Collectively, the dual-ligand system promises to be useful in the development efficient and specific drug delivery systems. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Evidence for increased cellular uptake of glutamate and aspartate in the rat hippocampus during kainic acid seizures. A microdialysis study using the "indicator diffusion' method

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    1997-01-01

    Using a newly developed technique, based on microdialysis, which allows cellular uptake of glutamate and aspartate to be studied in awake animals, we investigated uptake of glutamate and aspartate in the hippocampal formation of rats during limbic seizures induced by systemical administration of ....... The results indicate that during KA-induced seizures, uptake of glutamate and aspartate is increased, possibly aimed at maintaining the extracellular homeostasis of these two excitatory amino acids.......Using a newly developed technique, based on microdialysis, which allows cellular uptake of glutamate and aspartate to be studied in awake animals, we investigated uptake of glutamate and aspartate in the hippocampal formation of rats during limbic seizures induced by systemical administration...... of kainic acid (KA). With [14C]mannitol as an extracellular reference substance, the cellular extraction of the test substance [3H]D-aspartate was measured at different stages of seizure-activity. The results were compared to those obtained in a sham operated control group. During severe generalized clonic...

  3. Bioaccessibility and Cellular Uptake of β-Carotene Encapsulated in Model O/W Emulsions: Influence of Initial Droplet Size and Emulsifiers

    Directory of Open Access Journals (Sweden)

    Wei Lu

    2017-09-01

    Full Text Available The effects of the initial emulsion structure (droplet size and emulsifier on the properties of β-carotene-loaded emulsions and the bioavailability of β-carotene after passing through simulated gastrointestinal tract (GIT digestion were investigated. Exposure to GIT significantly changed the droplet size, surface charge and composition of all emulsions, and these changes were dependent on their initial droplet size and the emulsifiers used. Whey protein isolate (WPI-stabilized emulsion showed the highest β-carotene bioaccessibility, while sodium caseinate (SCN-stabilized emulsion showed the highest cellular uptake of β-carotene. The bioavailability of emulsion-encapsulated β-carotene based on the results of bioaccessibility and cellular uptake showed the same order with the results of cellular uptake being SCN > TW80 > WPI. An inconsistency between the results of bioaccessibility and bioavailability was observed, indicating that the cellular uptake assay is necessary for a reliable evaluation of the bioavailability of emulsion-encapsulated compounds. The findings in this study contribute to a better understanding of the correlation between emulsion structure and the digestive fate of emulsion-encapsulated nutrients, which make it possible to achieve controlled or potential targeted delivery of nutrients by designing the structure of emulsion-based carriers.

  4. Enhanced cellular uptake of albumin-based lyophilisomes when functionalized with cell-penetrating peptide TAT in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Etienne van Bracht

    Full Text Available Lyophilisomes are a novel class of biodegradable proteinaceous nano/micrometer capsules with potential use as drug delivery carrier. Cell-penetrating peptides (CPPs including the TAT peptide have been successfully implemented for intracellular delivery of a broad variety of cargos including various nanoparticulate pharmaceutical carriers. In the present study, lyophilisomes were modified using CPPs in order to achieve enhanced cellular uptake. Lyophilisomes were prepared by a freezing, annealing, and lyophilization method and a cystein-elongated TAT peptide was conjugated to the lyophilisomes using a heterobifunctional linker. Fluorescent-activated cell sorting (FACS was utilized to acquire a lyophilisome population with a particle diameter smaller than 1000 nm. Cultured HeLa, OVCAR-3, Caco-2 and SKOV-3 cells were exposed to unmodified lyophilisomes and TAT-conjugated lyophilisomes and examined with FACS. HeLa cells were investigated in more detail using a trypan blue quenching assay, confocal microscopy, and transmission electron microscopy. TAT-conjugation strongly increased binding and cellular uptake of lyophilisomes in a time-dependent manner in vitro, as assessed by FACS. These results were confirmed by confocal microscopy. Transmission electron microscopy indicated rapid cellular uptake of TAT-conjugated lyophilisomes via phagocytosis and/or macropinocytosis. In conclusion, TAT-peptides conjugated to albumin-based lyophilisomes are able to enhance cellular uptake of lyophilisomes in HeLa cells.

  5. Detecting carbon uptake and cellular allocation by individual algae in multispecies assemblages: Tracking carbon into single algal cells

    Energy Technology Data Exchange (ETDEWEB)

    Murdock, Justin N. [USDA Agricultural Research Service, National Sedimentation Laboratory, Oxford Mississippi; Department of Biology, Tennessee Technological University, Cookeville Tennessee

    2015-11-03

    Algal species vary in carbon (C) need and uptake rates. Understanding differences in C uptake and cellular allocation among species from natural communities will bring new insight into many ecosystem process questions including how species changes will alter energy availability and C sequestration in aquatic ecosystems. A major limitation of current methods that measure algal C incorporation is the inability to separate the response of individual species from mixed-species assemblages. I used Fourier-transform infrared microspectroscopy to qualitatively measure inorganic 13C isotope incorporation into individual algal cells in single species, two species, and natural phytoplankton assemblages. Lateral shifts in spectral peaks from 13C treatments were observed in all species. Comparison of peaks associated with carbohydrates, proteins, and lipids allowed for the detection of which individuals took in C, and which macromolecules the C was used to make. For example, shifts in Spirogyra spectral peaks showed substantial C incorporation in carbohydrates. Further, shifts in peaks at 1160 cm-1, 1108 cm-1, 1080 cm-1, 1048 cm-1, and 1030 cm-1 suggested C was being allocated into cellulose. The natural phytoplankton assemblage demonstrated how C could be tracked into co-occurring species. A diatom had large shifts in protein and carbohydrate peaks, while a green alga and euglenoid had only a few shifts in protein related peaks. Fourier-transform infrared microspectroscopy is an established, label free method for measuring the chemical composition of algal cells. However, adding a label such as 13C isotope can greatly expand the technique's capabilities by qualitatively tracking C movement between inorganic and organic states within single cells.

  6. Specific Reagent for Cr(III): Imaging Cellular Uptake of Cr(III) in Hct116 Cells and Theoretical Rationalization.

    Science.gov (United States)

    Ali, Firoj; Saha, Sukdeb; Maity, Arunava; Taye, Nandaraj; Si, Mrinal Kanti; Suresh, E; Ganguly, Bishwajit; Chattopadhyay, Samit; Das, Amitava

    2015-10-15

    A new rhodamine-based reagent (L1), trapped inside the micellar structure of biologically benign Triton-X 100, could be used for specific recognition of Cr(III) in aqueous buffer medium having physiological pH. This visible light excitable reagent on selective binding to Cr(III) resulted in a strong fluorescence turn-on response with a maximum at ∼583 nm and tail of that luminescence band extended until 650 nm, an optical response that is desired for avoiding the cellular autofluorescence. Interference studies confirm that other metal ions do not interfere with the detection process of Cr(III) in aqueous buffer medium having pH 7.2. To examine the nature of binding of Cr(III) to L1, various spectroscopic studies are performed with the model reagent L2, which tend to support Cr(III)-η(2)-olefin π-interactions involving two olefin bonds in molecular probe L1. Computational studies are also performed with another model reagent LM to examine the possibility of such Cr(III)-η(2)-olefin π-interactions. Presumably, polar functional groups of the model reagent LM upon coordination to the Cr(III) center effectively reduce the formal charge on the metal ion and this is further substantiated by results of the theoretical studies. This assembly is found to be cell membrane permeable and shows insignificant toxicity toward live colon cancer cells (Hct116). Confocal laser scanning microscopic studies further revealed that the reagent L1 could be used as an imaging reagent for detection of cellular uptake of Cr(III) in pure aqueous buffer medium by Hct116 cells. Examples of a specific reagent for paramagnetic Cr(III) with luminescence ON response are scanty in the contemporary literature. This ligand design helped us in achieving the turn on response by utilizing the conversion from spirolactam to an acyclic xanthene form on coordination to Cr(III).

  7. Uptake of human papillomavirus (HPV) vaccination in Hong Kong: Facilitators and barriers among adolescent girls and their parents.

    Science.gov (United States)

    Yuen, Winnie Wing Yan; Lee, Albert; Chan, Paul K S; Tran, Lynn; Sayko, Erica

    2018-01-01

    The present study is aimed at assessing the feasibility of delivering the HPV (human papillomavirus) vaccine to girls through a school-based program in Hong Kong, as well as to examine the facilitators and barriers associated with their participation. We approached 1,229 eligible girls aged 9 to 14 at eight schools in Hong Kong to join the program and then delivered the bivalent HPV vaccine at 0 and 6 months over the course of one school year. The students and their parents completed separate questionnaires to indicate their decision on whether or not to participate, and to assess their knowledge of cervical cancer and the HPV vaccine. The overall vaccine uptake was 81.4% (1,000/1,229) for the first dose and 80.8% (993/1,229) for the second dose. Parents and students were given separate questionnaires and asked whether or not they would like to participate in the vaccination program. 87.1% (1,010/1,160) of parents and 84.9% (974/1,147) of students indicated that they would join the program. The reasons associated with parents' decision not to vaccinate their daughters primarily included concerns around side effects and safety. Multivariate regression analysis showed that parents who thought that the vaccine would protect their daughter from getting cervical cancer (OR = 3.16, 95% CI = 1.39-7.15, p parents who had never heard of the vaccine (OR = .15, 95% CI = .03-.71, p vaccine (OR = .39, 95% CI = .19-.81, p HPV vaccine with high uptake rate in a school setting is feasible in Hong Kong. Engaging key stakeholders including school administrators, teachers and community physicians, and providing relevant information on safety and vaccine effectiveness to parents were important to the success of the program.

  8. Reconciling the Krogh and Ussing interpretations of epithelial chloride transport - presenting a novel hypothesis for the physiological significance of the passive cellular chloride uptake

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid

    2011-01-01

    In 1937, August Krogh discovered a powerful active Cl- uptake mechanism in frog skin. After WWII, Hans Ussing continued the studies on the isolated skin and discovered the passive nature of the chloride uptake. The review concludes that the two modes of transport are associated with a minority ce...... is in the pond. With the passive fluxes eliminated, the Cl- flux is governed by active transport and evidence is discussed that this is brought about by an exchange of cellular HCO3- with Cl- of the outside bath driven by an apical H+ V-ATPase.......In 1937, August Krogh discovered a powerful active Cl- uptake mechanism in frog skin. After WWII, Hans Ussing continued the studies on the isolated skin and discovered the passive nature of the chloride uptake. The review concludes that the two modes of transport are associated with a minority cell...

  9. Binding Affinity, Cellular Uptake, and Subsequent Intracellular Trafficking of the Nano-Gene Vector P123-PEI-R13

    Directory of Open Access Journals (Sweden)

    Yaguang Zhang

    2016-01-01

    Full Text Available A nano-gene vector PEI-P123-R13 was synthesized by cross-linking low molecular weight PEI with P123 and further coupling bifunctional peptide R13 to the polymer for targeting tumor and increasing cellular uptake. The binding assessment of R13 to αvβ3 positive cells was performed by HRP labeling. The internalization pathways of P123-PEI-R13/DNA complexes were investigated based on the effect of specific endocytic inhibitors on transfection efficiency. The mechanism of intracellular trafficking was investigated based on the effect of endosome-lysosome acidification inhibitors, cytoskeleton, and dynein inhibitors on transfection efficiency. The results indicated that the bifunctional peptide R13 had the ability of binding to αvβ3 positive cells in vitro. The modification of P123-PEI-R13 with R13 made it display new property of internalization. P123-PEI-R13/DNA complexes were conducted simultaneously via clathrin-mediated endocytosis, caveolin-mediated endocytosis, macropinocytosis, and possible energy-independent route. After internalization, P123-PEI-R13/DNA complexes could escape from the endosome-lysosome system because of its acidification and further took microtubule as the track and dynein as the dynamic source to be transported toward the microtubule (+ end, to wit nucleus, under the action of microfilament, and with the aid of intermediate filament.

  10. Mannosylated Chitosan Nanoparticles Based Macrophage-Targeting Gene Delivery System Enhanced Cellular Uptake and Improved Transfection Efficiency.

    Science.gov (United States)

    Peng, Yixing; Yao, Wenjun; Wang, Bo; Zong, Li

    2015-04-01

    Gene transfer mediated by mannosylated chitosan (MCS) is a safe and promising approach for gene and vaccine delivery. MCS nanoparticles based gene delivery system showed high in vivo delivery efficiency and elicited strong immune responses in mice. However, little knowledge about the cell binding, transfection efficiency and intracellular trafficking of MCS nanoparticles had been acquired. In this study, using gastrin-releasing peptide as a model plasmid (pGRP), the binding of MCS/pGRP nanoparticles to macrophages and the intracellular trafficking of MCS/pGRP nanoparticles in macrophages were investigated. MCS-mediated transfection efficiency in macrophages was also evaluated using pGL-3 as a reporter gene. The results showed that the binding and transfection efficiency of MCS nanoparticles in macrophages was higher than that of CS, which was attributed to the interaction between mannose ligands in MCS and mannose receptors on the surface of macrophages. Observation with a confocal laser scanning microscope indicated the cellular uptake of MCS/pGRP nanoparticles were more than that of CS/pGRP nanoparticles in macrophages. MCS/pGRP nanoparticles were taken up by macrophages and most of them were entrapped in endosomal/lysosomal compartments. After the nanoparticles escaping from endosomal/lysosomal compartments, naked pGRP entered the nucleus, and a few MCS might enter the nucleus in terms of nanoparticles. Overall, MCS has the potential to be an excellent macrophage-targeting gene delivery carrier.

  11. Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro.

    Science.gov (United States)

    Lankoff, Anna; Arabski, Michal; Wegierek-Ciuk, Aneta; Kruszewski, Marcin; Lisowska, Halina; Banasik-Nowak, Anna; Rozga-Wijas, Krystyna; Wojewodzka, Maria; Slomkowski, Stanislaw

    2013-05-01

    Silica nanoparticles have an interesting potential in drug delivery, gene therapy and molecular imaging due to the possibility of tailoring their surface reactivity that can be obtained by surface modification. Despite these potential benefits, there is concern that exposure of humans to certain types of silica nanomaterials may lead to significant adverse health effects. The motivation of this study was to determine the kinetics of cellular binding/uptake of the vinyl- and the aminopropyl/vinyl-modified silica nanoparticles into peripheral blood lymphocytes in vitro, to explore their genotoxic and cytotoxic properties and to compare the biological properties of modified silica nanoparticles with those of the unmodified ones. Size of nanoparticles determined by SEM varied from 10 to 50 nm. The average hydrodynamic diameter and zeta potential also varied from 176.7 nm (+18.16 mV) [aminopropyl/vinyl-modified] and 235.4 nm (-9.49 mV) [vinyl-modified] to 266.3 (-13.32 mV) [unmodified]. Surface-modified silica particles were internalized by lymphocytes with varying efficiency and expressed no cytotoxic nor genotoxic effects, as determined by various methods (cell viability, apoptosis/necrosis, oxidative DNA damage, chromosome aberrations). However, they affected the proliferation of the lymphocytes as indicated by a decrease in mitotic index value and cell cycle progression. In contrast, unmodified silica nanoparticles exhibited cytotoxic and genotoxic properties at high doses as well as interfered with cell cycle.

  12. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation

    Directory of Open Access Journals (Sweden)

    Kubota K

    2017-07-01

    Full Text Available Kohei Kubota,1,2 Kohei Onishi,3 Kazuaki Sawaki,3 Tianshu Li,4 Kaoru Mitsuoka,5 Takaaki Sato,6 Shinji Takeoka1,3,4 1Cooperative Major in Advanced Biomedical Sciences, Graduate School of Advanced Sciences and Engineering, Waseda University (TWIns, Tokyo, Japan; 2Formulation Research and Phramaceutical Process Group, CMC R&D Center, Kyowa Hakko Kirin Co., Ltd, Shizuoka, Japan; 3Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering,Waseda University (TWIns, Tokyo, Japan; 4Research Organization for Nano and Life Innovation, Waseda University (TWIns, Tokyo, Japan; 5Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan; 6Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan Abstract: Two lipid-based nanoformulations have been used to date in clinical studies: lipoplexes and lipid nanoparticles (LNPs. In this study, we prepared small interfering RNA (siRNA-loaded carriers using lipid components of the same composition to form molecular assemblies of differing structures, and evaluated the impact of structure on cellular uptake and immune stimulation. Lipoplexes are electrostatic complexes formed by mixing preformed cationic lipid liposomes with anionic siRNA in an aqueous environment, whereas LNPs are nanoparticles embedding siRNA prepared by mixing an alcoholic lipid solution with an aqueous siRNA solution in one step. Although the physicochemical properties of lipoplexes and LNPs were similar except for small increases in apparent size of lipoplexes and zeta potential of LNPs, siRNA uptake efficiency of LNPs was significantly higher than that of lipoplexes. Furthermore, in the case of LNPs, both siRNA and lipid were effectively incorporated into cells in a co-assembled state; however, in the case of lipoplexes, the amount of siRNA internalized into cells was small in comparison with lipid. siRNAs in

  13. Calcium-sensing receptors signal constitutive macropinocytosis and facilitate the uptake of NOD2 ligands in macrophages.

    Science.gov (United States)

    Canton, Johnathan; Schlam, Daniel; Breuer, Christian; Gütschow, Michael; Glogauer, Michael; Grinstein, Sergio

    2016-04-06

    Macropinocytosis can be induced in several cell types by stimulation with growth factors. In selected cell types, notably macrophages and dendritic cells, macropinocytosis occurs constitutively, supporting the uptake of antigens for subsequent presentation. Despite their different mode of initiation and contrasting physiological roles, it is tacitly assumed that both types of macropinocytosis are mechanistically identical. We report that constitutive macropinocytosis is stringently calcium dependent, while stimulus-induced macropinocytosis is not. Extracellular calcium is sensed by G-protein-coupled calcium-sensing receptors (CaSR) that signal macropinocytosis through Gα-, phosphatidylinositol 3-kinase and phospholipase C. These pathways promote the recruitment of exchange factors that stimulate Rac and/or Cdc42, driving actin-dependent formation of ruffles and macropinosomes. In addition, the heterologous expression of CaSR in HEK293 cells confers on them the ability to perform constitutive macropinocytosis. Finally, we show that CaSR-induced constitutive macropinocytosis facilitates the sentinel function of macrophages, promoting the efficient delivery of ligands to cytosolic pattern-recognition receptors.

  14. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: In Vitro Cellular Uptake

    Directory of Open Access Journals (Sweden)

    Min Wu

    2017-12-01

    Full Text Available Iron deficiency anemia is a common clinical consequence for people who suffer from chronic kidney disease, especially those requiring dialysis. Intravenous (IV iron therapy is a widely accepted safe and efficacious treatment for iron deficiency anemia. Numerous IV iron drugs have been approved by U.S. Food and Drug Administration (FDA, including a single generic product, sodium ferric gluconate complex in sucrose. In this study, we compared the cellular iron uptake profiles of the brand (Ferrlecit® and generic sodium ferric gluconate (SFG products. We used a colorimetric assay to examine the amount of iron uptake by three human macrophage cell lines. This is the first published study to provide a parallel evaluation of the cellular uptake of a brand and a generic IV iron drug in a mononuclear phagocyte system. The results showed no difference in iron uptake across all cell lines, tested doses, and time points. The matching iron uptake profiles of Ferrlecit® and its generic product support the FDA’s present position detailed in the draft guidance on development of SFG complex products that bioequivalence can be based on qualitative (Q1 and quantitative (Q2 formulation sameness, similar physiochemical characterization, and pharmacokinetic bioequivalence studies.

  15. Cellular uptake of 99mTcN-NOET in human leukaemic HL-60 cells is related to calcium channel activation and cell proliferation

    International Nuclear Information System (INIS)

    Guillermet, Stephanie; Vuillez, Jean-Philippe; Caravel, Jean-Pierre; Marti-Batlle, Daniele; Fagret, Daniel; Fontaine, Eric; Pasqualini, Roberto

    2006-01-01

    A major goal of nuclear oncology is the development of new radiolabelled tracers as proliferation markers. Intracellular calcium waves play a fundamental role in the course of the cell cycle. These waves occur in non-excitable tumour cells via store-operated calcium channels (SOCCs). Bis(N-ethoxy, N-ethyldithiocarbamato) nitrido technetium (V)-99m ( 99m TcN-NOET) has been shown to interact with L-type voltage-operated calcium channels (VOCCs) in cultured cardiomyocytes. Considering the analogy between VOCCs and SOCCs, we sought to determine whether 99m TcN-NOET also binds to activated SOCCs in tumour cells in order to clarify the potential value of this tracer as a proliferation marker. Uptake kinetics of 99m TcN-NOET were measured in human leukaemic HL-60 cells over 60 min and the effect of several calcium channel modulators on 1-min tracer uptake was studied. The uptake kinetics of 99m TcN-NOET were compared both with the variations of cytosolic free calcium concentration measured by indo-1/AM and with the variations in the SG 2 M cellular proliferation index. All calcium channel inhibitors significantly decreased the cellular uptake of 99m TcN-NOET whereas the activator thapsigargin induced a significant 10% increase. In parallel, SOCC activation by thapsigargin, as measured using the indo-1/AM probe, was inhibited by nicardipine. These results indicate that the uptake of 99m TcN-NOET is related to the activation of SOCCs. Finally, a correlation was observed between the tracer uptake and variations in the proliferation index SG 2 M. The uptake of 99m TcN-NOET seems to be related to SOCC activation and to cell proliferation in HL-60 cells. These results indicate that 99m TcN-NOET might be a marker of cell proliferation. (orig.)

  16. Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xinhui [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Liang, Tong [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, Changsheng [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Yuan, Yuan, E-mail: yyuan@ecust.edu.cn [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Qian, Jiangchao, E-mail: jiangchaoqian@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-10-01

    Three types of hydroxyapatite nanoparticles (HAPNs) were synthesized employing a sonochemistry-assisted microwave method by changing microwave power (from 200 to 300 W) or using calcination treatment: L200 (200 W, lyophilization), L300 (300 W, lyophilization) and C200 (200 W, lyophilization & calcination). Their physiochemical properties were characterized and correlated with cytotoxicity to human gastric cancer cells (MGC80-3). The major differences among these HAPN preparations were their size and specific surface area, with the L200 showing a smaller size and higher specific surface area. Although all HAPNs inhibited cell proliferation and induced apoptosis of cancer cells, L200 exhibited the greatest toxicity. All types of HAPNs were internalized through energy-dependent pathways, but the L200 nanoparticles were more efficiently uptaken by MGC80-3 cells. Inhibitor studies with dynasore and methyl-β-cyclodextrin suggested that caveolae-mediated endocytosis and, to a much lesser extent, clathrin-mediated endocytosis, were involved in cellular uptake of the various preparations, whereas the inhibition of endocytosis was more obvious for L200. Using fluorescein isothiocyanate-labeled HAPNs and laser-scanning confocal microscopy, we found that all forms of nanoparticles were present in the cytoplasm, and some L200 HAPNs were even found within nuclei. Treatment with all HAPN preparations led to the increase in the intracellular calcium level with the highest level detected for L200. - Highlights: • Three types of HAPNs (L200, L300 and C200) were synthesized employing a sonochemistry-assisted microwave method. • L200 exhibited the greatest cytotoxicity to human gastric cancer (MGC80-3) cells. • L200 showed a smaller size and higher specific surface area. • The L200 nanoparticles were more efficiently uptaken by MGC80-3 cells through energy-dependent pathways. • L200 caused the most significant increase in the intracellular calcium level.

  17. Stimulatory (insulin-mimetic) and inhibitory (ouabain-like) action of vanadate on potassium uptake and cellular sodium and potassium in heart cells in culture.

    Science.gov (United States)

    Werdan, K; Bauriedel, G; Fischer, B; Krawietz, W; Erdmann, E; Schmitz, W; Scholz, H

    1982-04-23

    (1) The influence of vanadate (Na3VO4) on sodium and potassium uptake as well as on cellular ion contents of sodium and potassium has been studied in heart muscle and non-muscle cells obtained from various species. An ouabain-like inhibition of potassium uptake (up to 50%), combined with a decrease of cellular potassium (up to 20%) has been observed by vanadate (10(-4)-10(-3) M) in heart non-muscle cells obtained from neonatal guinea pigs and chick embryos. In heart muscle and non-muscle cells prepared from neonatal rats, as well as in Girardi human heart cells, a vanadate-induced stimulation of potassium uptake (up to 100%), combined with a rise in cellular potassium (up to 20%) and without significant alteration of cellular sodium, has been found. A slight increase of 22Na+ influx can be measured in rat heart muscle cells and in Girardi human heart cells in the presence of vanadate (10(-4)--10(-3) M). (2) In beating rat heart muscle cells in culture, detrimental effects of serum deprivation--concerning beating properties, potassium uptake and cellular potassium--can at least in part be overcome by addition of vanadate. Furthermore, this compound prevents ouabain-induced signs of toxicity (contractures) in these cells. (3) The stimulatory effects of vanadate on potassium can be mimicked by insulin (1-10 mU/ml). Furthermore, vanadate produces an insulin-like stimulation of 2-deoxy-D-glucose uptake in rat heart muscle and non-muscle cells as well as in Girardi human heart cells. (4) The experimental data demonstrate an ouabain-like inhibition as well as an insulin-mimetic stimulation of potassium-uptake in various heart cells. The reason for this antagonistic mode of action may be due to the different capabilities of the heart cell types to reduce vanadium in the V-valence state of vanadium in the IV-valence state, thereby favouring either ouabain-like inhibition (vanadium V) or insulin-mimetic stimulation (vanadium IV) of potassium transport.

  18. Surface Chemistry Manipulation of Gold Nanorods Displays High Cellular Uptake In Vitro While Preserving Optical Properties for Bio-Imaging and Photo-Thermal Applications

    Science.gov (United States)

    2016-03-28

    its analytical applications. TrAC Trends in Analytical Chemistry , 37(0), 32-47. doi: http://dx.doi.org/10.1016/j.trac.2012.03.015 Livak, K. J...SURFACE CHEMISTRY MANIPULATION OF GOLD NANORODS DISPLAYS HIGH CELLULAR UPTAKE IN VITRO WHILE PRESERVING OPTICAL...2. REPORT TYPE Final 3. DATES COVERED (From - To) 7/2012 –1/2016 4. TITLE AND SUBTITLE SURFACE CHEMISTRY MANIPULATION OF GOLD NANORODS DISPLAYS

  19. Portal Vein Glucose Entry Triggers a Coordinated Cellular Response That Potentiates Hepatic Glucose Uptake and Storage in Normal but Not High-Fat/High-Fructose–Fed Dogs

    OpenAIRE

    Coate, Katie C.; Kraft, Guillaume; Irimia, Jose M.; Smith, Marta S.; Farmer, Ben; Neal, Doss W.; Roach, Peter J.; Shiota, Masakazu; Cherrington, Alan D.

    2013-01-01

    The cellular events mediating the pleiotropic actions of portal vein glucose (PoG) delivery on hepatic glucose disposition have not been clearly defined. Likewise, the molecular defects associated with postprandial hyperglycemia and impaired hepatic glucose uptake (HGU) following consumption of a high-fat, high-fructose diet (HFFD) are unknown. Our goal was to identify hepatocellular changes elicited by hyperinsulinemia, hyperglycemia, and PoG signaling in normal chow-fed (CTR) and HFFD-fed d...

  20. Multivalent adhesion molecule 7 clusters act as signaling platform for host cellular GTPase activation and facilitate epithelial barrier dysfunction.

    Directory of Open Access Journals (Sweden)

    Jenson Lim

    2014-09-01

    Full Text Available Vibrio parahaemolyticus is an emerging bacterial pathogen which colonizes the gastrointestinal tract and can cause severe enteritis and bacteraemia. During infection, V. parahaemolyticus primarily attaches to the small intestine, where it causes extensive tissue damage and compromises epithelial barrier integrity. We have previously described that Multivalent Adhesion Molecule (MAM 7 contributes to initial attachment of V. parahaemolyticus to epithelial cells. Here we show that the bacterial adhesin, through multivalent interactions between surface-induced adhesin clusters and phosphatidic acid lipids in the host cell membrane, induces activation of the small GTPase RhoA and actin rearrangements in host cells. In infection studies with V. parahaemolyticus we further demonstrate that adhesin-triggered activation of the ROCK/LIMK signaling axis is sufficient to redistribute tight junction proteins, leading to a loss of epithelial barrier function. Taken together, these findings show an unprecedented mechanism by which an adhesin acts as assembly platform for a host cellular signaling pathway, which ultimately facilitates breaching of the epithelial barrier by a bacterial pathogen.

  1. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake.

    Science.gov (United States)

    Azevedo, Cláudia; Correia-Branco, Ana; Araújo, João R; Guimarães, João T; Keating, Elisa; Martel, Fátima

    2015-01-01

    Our aim was to investigate the effect of several dietary polyphenols on glucose uptake by breast cancer cells. Uptake of (3)H-deoxy-D-glucose ((3)H-DG) by MCF-7 cells was time-dependent, saturable, and inhibited by cytochalasin B plus phloridzin. In the short-term (26 min), myricetin, chrysin, genistein, resveratrol, kaempferol, and xanthohumol (10-100 µM) inhibited (3)H-DG uptake. Kaempferol was found to be the most potent inhibitor of (3)H-DG uptake [IC50 of 4 µM (1.6-9.8)], behaving as a mixed-type inhibitor. In the long-term (24 h), kaempferol (30 µM) was also able to inhibit (3)H-DG uptake, associated with a 40% decrease in GLUT1 mRNA levels. Interestingly enough, kaempferol (100 µM) revealed antiproliferative (sulforhodamine B and (3)H-thymidine incorporation assays) and cytotoxic (extracellular lactate dehydrogenase activity determination) properties, which were mimicked by low extracellular (1 mM) glucose conditions and reversed by high extracellular (20 mM) glucose conditions. Finally, exposure of cells to kaempferol (30 µM) induced an increase in extracellular lactate levels over time (to 731 ± 32% of control after a 24 h exposure), due to inhibition of MCT1-mediated lactate cellular uptake. In conclusion, kaempferol potently inhibits glucose uptake by MCF-7 cells, apparently by decreasing GLUT1-mediated glucose uptake. The antiproliferative and cytotoxic effect of kaempferol in these cells appears to be dependent on this effect.

  2. Approaching the cellular processes involved in the positive effect of glycosaminoglycans on Fe uptake to Caco-2 cells

    Science.gov (United States)

    This study constitutes an approach to understand the enhancing effect of glycosaminoglycans (GAGs) on Fe uptake to Caco-2 cells. The high-sulfated GAGs fraction was isolated and purified from cooked haddock. An in vitro digestion/Caco-2 cell culture model was used to monitor Fe uptake (cell ferritin...

  3. In vivo cellular uptake of glutamate is impaired in the rat hippocampus during and after transient cerebral ischemia

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    2001-01-01

    . The present study is the first to investigate uptake of glutamate in the intact rat brain in relation to cerebral ischemia. Evidence is provided that uptake of Glu is restrained during ischemia, and that in the hours after ischemia, the extracellular turnover of glutamate is decreased. In the course...

  4. Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted

    Science.gov (United States)

    Li, Chunjie; Dong, Yan; Li, Haigang; Shen, Jianbo; Zhang, Fusuo

    2016-01-01

    Rhizosphere processes stimulate overyielding and facilitative phosphorus (P) uptake in cereal/legume intercropping systems. However, little is known about when and how rhizosphere alteration of legumes plays a role in improving P uptake by cereals. Wheat was grown isolated, monocropped or intercropped with faba bean in pots with low-P soil. The biomass, P content, carboxylates and phosphatases activity were measured in 15 destructive samplings. Intraspecific competition of the biomass and P uptake of monocropped wheat was not significant before 40 and 36 days after sowing (DAS), whereas there was interspecific competition of biomass of intercropped wheat before 66 DAS. However, afterwards, the increments of the biomass and P uptake of the intercropped wheat were 1.3-1.9 and 1.9-2.3 times of increment of monocropped wheat. Meanwhile, the concentrations of malate and citrate and the acid phosphatase activity in the rhizospheres of intercropped wheat were significantly increased, which suggested that wheat/faba bean intercropping is efficient in P utilization due to complementary P uptake in the early growth stage and the positive interactions of the rhizosphere processes when the soil P was depleted.

  5. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles

    Science.gov (United States)

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-08-01

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.

  6. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation

    International Nuclear Information System (INIS)

    Song, Han; Zheng, Gang; Liu, Yang; Shen, Xue-Feng; Zhao, Zai-Hua; Aschner, Michael; Luo, Wen-Jing; Chen, Jing-Yuan

    2016-01-01

    As the structural basis of blood-cerebrospinal fluid barrier (BCB), epithelial cells in the choroid plexus (CP) are targets for lead (Pb). Pb is known to accumulate in the CP; however, the mechanism of Pb uptake in the choroidal epithelial cells remains unknown. Recently, hemichannels of Connexin 43 (Cx43), the most ubiquitously expressed gap junction proteins in the CP, were found to be important pathways for many substances. This study was designed to investigate the roles of Cx43 in Pb uptake in the epithelial cells. Autometallography was used to outline Pb's subcellular location, and the characteristics of Pb transport into CP cells, including concentration- and time-dependence were analyzed by atomic absorption spectroscopy. Knockdown/overexpression of Cx43 with transient siRNA/plasmids transfections before Pb exposure diminished/increased the Pb accumulation. In the Z310 cell-based doxycycline-inducible Cx43 expression cell line (iZCx43), doxycycline induced a significant increase (3-fold) in Pb uptake, corresponding to the increased Cx43 levels. Activation of Cx43 hemichannels by reduced serum conditions caused an increase of Pb concentrations. Cx43-induced Pb uptake was attenuated after blockage of Cx43 hemichannels with its inhibitor, carbenoxolone. Additionally, down-regulation of Cx43 protein levels by Pb exposure paralleled cellular Pb concentrations in the time study. Concomitantly, expressions of phosphor-Src and phosphor-Erk were both significantly increased by Pb. However, inactivation of Erk, not Src pathway, reversed Pb-induced downregulation of Cx43. Taken together, these data establish that Pb can accumulate in the BCB and validate the role of Cx43 hemichannel in Pb uptake and its regulations through Erk phosphorylation. - Highlights: • Pb is sequestrated in choroid plexus both in vivo and in vitro. • Cx43 knockdown/overexpression prevents/increases Pb accumulations. • Cx43 hemichannels are required for Pb uptake. • Pb-induced Erk

  7. Effect of thyroxine on cellular oxygen-consumption and glucose uptake: evidence of an effect of total T4 and not "free T4"

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    in human mononuclear blood cells. Cells were incubated in protein free medium and in human serum totally depleted of thyroid hormones by resin treatment and fixed amounts of T4 (total T4 = 0-50-100-5000 nmol/l; free T4 = 0-5-11-5600 pmol/l) were added. Thyroxine stimulated glucose uptake and oxygen......Recent studies of cellular T4 and T3 uptake have indicated active transport of the hormones into the cell rather than passive diffusion of the non-protein bound fraction. In order to study the significance of the extracellular environment, oxygen consumption and glucose uptake were examined......K-ATPase by addition of ouabain (9-72 mg/l) did not inhibit T4 stimulation, thus indicating that the ouabain sensitive NaK-ATPase is not a major component of the processes which initiate the intracellular effects of T4. Therefore the stimulation of uptake of oxygen and glucose in human mononuclear blood cells seems...

  8. Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques.

    Science.gov (United States)

    Hsiao, I-Lun; Bierkandt, Frank S; Reichardt, Philipp; Luch, Andreas; Huang, Yuh-Jeen; Jakubowski, Norbert; Tentschert, Jutta; Haase, Andrea

    2016-06-22

    Safety assessment of nanoparticles (NPs) requires techniques that are suitable to quantify tissue and cellular uptake of NPs. The most commonly applied techniques for this purpose are based on inductively coupled plasma mass spectrometry (ICP-MS). Here we apply and compare three different ICP-MS methods to investigate the cellular uptake of TiO2 (diameter 7 or 20 nm, respectively) and Ag (diameter 50 or 75 nm, respectively) NPs into differentiated mouse neuroblastoma cells (Neuro-2a cells). Cells were incubated with different amounts of the NPs. Thereafter they were either directly analyzed by laser ablation ICP-MS (LA-ICP-MS) or were lysed and lysates were analyzed by ICP-MS and by single particle ICP-MS (SP-ICP-MS). All techniques confirmed that smaller particles were taken up to a higher extent when values were converted in an NP number-based dose metric. In contrast to ICP-MS and LA-ICP-MS, this measure is already directly provided through SP-ICP-MS. Analysis of NP size distribution in cell lysates by SP-ICP-MS indicates the formation of NP agglomerates inside cells. LA-ICP-MS imaging shows that some of the 75 nm Ag NPs seemed to be adsorbed onto the cell membranes and were not penetrating into the cells, while most of the 50 nm Ag NPs were internalized. LA-ICP-MS confirms high cell-to-cell variability for NP uptake. Based on our data we propose to combine different ICP-MS techniques in order to reliably determine the average NP mass and number concentrations, NP sizes and size distribution patterns as well as cell-to-cell variations in NP uptake and intracellular localization.

  9. Barriers and facilitators associated with HIV testing uptake in South African health facilities offering HIV Counselling and Testing

    Directory of Open Access Journals (Sweden)

    Neo Mohlabane

    2016-12-01

    Conclusion: The benefits of HCT which include the reduction of HIV transmission, the availability of HIV care and treatment needs to be emphasized to enhance HCT uptake. Health workers also need to recommend HCT to all individuals attending health facilities offering this service.

  10. Calcium-sensing receptors signal constitutive macropinocytosis and facilitate the uptake of NOD2 ligands in macrophages

    OpenAIRE

    Canton, Johnathan; Schlam, Daniel; Breuer, Christian; G?tschow, Michael; Glogauer, Michael; Grinstein, Sergio

    2016-01-01

    Macropinocytosis can be induced in several cell types by stimulation with growth factors. In selected cell types, notably macrophages and dendritic cells, macropinocytosis occurs constitutively, supporting the uptake of antigens for subsequent presentation. Despite their different mode of initiation and contrasting physiological roles, it is tacitly assumed that both types of macropinocytosis are mechanistically identical. We report that constitutive macropinocytosis is stringently calcium de...

  11. Barriers and facilitators to uptake of the school-based HPV vaccination programme in an ethnically diverse group of young women.

    Science.gov (United States)

    Batista Ferrer, Harriet; Trotter, Caroline L; Hickman, Matthew; Audrey, Suzanne

    2016-09-01

    To identify the barriers and facilitators to uptake of the HPV vaccine in an ethnically diverse group of young women in the south west of England. Three school-based vaccination sessions were observed. Twenty-three young women aged 12 to 13 years, and six key informants, were interviewed between October 2012 and July 2013. Data were analysed using thematic analysis and the Framework method for data management. The priority given to preventing cervical cancer in this age group influenced whether young women received the HPV vaccine. Access could be affected by differing levels of commitment by school staff, school nurses, parents and young women to ensure parental consent forms were returned. Beliefs and values, particularly relevant to minority ethnic groups, in relation to adolescent sexual activity may affect uptake. Literacy and language difficulties undermine informed consent and may prevent vaccination. The school-based HPV vaccination programme successfully reaches the majority of young women. However, responsibility for key aspects remain unresolved which can affect delivery and prevent uptake for some groups. A multi-faceted approach, targeting appropriate levels of the socio-ecological model, is required to address procedures for consent and cultural and literacy barriers faced by minority ethnic groups, increase uptake and reduce inequalities. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health.

  12. Fob1 and Fob2 Proteins Are Virulence Determinants of Rhizopus oryzae via Facilitating Iron Uptake from Ferrioxamine

    Science.gov (United States)

    Liu, Mingfu; Lin, Lin; Gebremariam, Teclegiorgis; Luo, Guanpingsheng; Skory, Christopher D.; French, Samuel W.; Chou, Tsui-Fen; Edwards, John E.; Ibrahim, Ashraf S.

    2015-01-01

    Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis, which is most often caused by Rhizopus oryzae. Although the deferoxamine siderophore is not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine). Here we determined that the CBS domain proteins of Fob1 and Fob2 act as receptors on the cell surface of R. oryzae during iron uptake from ferrioxamine. Fob1 and Fob2 cell surface expression was induced in the presence of ferrioxamine and bound radiolabeled ferrioxamine. A R. oryzae strain with targeted reduced Fob1/Fob2 expression was impaired for iron uptake, germinating, and growing on medium with ferrioxamine as the sole source of iron. This strain also exhibited reduced virulence in a deferoxamine-treated, but not the diabetic ketoacidotic (DKA), mouse model of mucormycosis. The mechanism by which R. oryzae obtains iron from ferrioxamine involves the reductase/permease uptake system since the growth on ferrioxamine supplemented medium is associated with elevated reductase activity and the use of the ferrous chelator bathophenanthroline disulfonate abrogates iron uptake and growth on medium supplemented with ferrioxamine as a sole source of iron. Finally, R. oryzae mutants with reduced copies of the high affinity iron permease (FTR1) or with decreased FTR1 expression had an impaired iron uptake from ferrioxamine in vitro and reduced virulence in the deferoxamine-treated mouse model of mucormycosis. These two receptors appear to be conserved in Mucorales, and can be the subject of future novel therapy to maintain the use of deferoxamine for treating iron-overload. PMID:25974051

  13. The involvement of selected membrane transport mechanisms in the cellular uptake of 177Lu-labeled bombesin, somatostatin and gastrin analogues

    International Nuclear Information System (INIS)

    Volková, M.; Mandíková, J.; Lázníčková, A.; Lázníček, M.; Bárta, P.; Trejtnar, F.

    2015-01-01

    Introduction: Radiolabeled receptor-targeting peptides are a useful tool for the diagnostic imaging and radiotherapy of some malignancies. However, the retention of radioactivity in the kidney may result in renal radiotoxic injury. This study seeks to evaluate the role of endocytic receptor megalin, renal SLC influx transporters and fluid phase endocytosis (FPE) in the cellular accumulation of radiolabeled peptides. Methods: In vitro transport cellular studies using megalin ligands (RAP, albumin), fluid phase endocytosis (FPE) inhibitor rottlerin and low temperature were employed to evaluate the transport mechanisms of the peptides. Cells transfected with hOAT1 or hOCT2 were used to analyze the role of these SLC transporters. Somatostatin ( 177 Lu-DOTA-[Tyr 3 ]octreotate, 177 Lu-DOTA-[1-Nal 3 ]octreotide), gastrin ( 177 Lu-DOTA-sargastrin) and bombesin ( 177 Lu-DOTA-[Pro 1 ,Tyr 4 ]bombesin, 177 Lu-DOTA-[Lys 3 ]bombesin, 177 Lu-PCTA-[Lys 3 ]bombesin) analogues were involved in the study. Results: RAP, albumin and low temperature decreased the accumulation of all the studied peptides significantly. With one exception, rottlerin caused the concentration dependent inhibition of the cellular accumulation of the radiopeptides. No significant differences in the uptake of the peptides between the control cells and those transfected with hOAT1 or hOCT2 were observed. Conclusion: The study showed that active transport mechanisms are decisive for the cellular accumulation in all tested 177 Lu-labeled somatostatin, gastrin and bombesin analogues. Besides receptor-mediated endocytosis by megalin, FPE participates significantly in the uptake. The tested types of renal SLC transporters are not involved in this process

  14. The involvement of selected membrane transport mechanisms in the cellular uptake of (177)Lu-labeled bombesin, somatostatin and gastrin analogues.

    Science.gov (United States)

    Volková, M; Mandíková, J; Lázníčková, A; Lázníček, M; Bárta, P; Trejtnar, F

    2015-01-01

    Radiolabeled receptor-targeting peptides are a useful tool for the diagnostic imaging and radiotherapy of some malignancies. However, the retention of radioactivity in the kidney may result in renal radiotoxic injury. This study seeks to evaluate the role of endocytic receptor megalin, renal SLC influx transporters and fluid phase endocytosis (FPE) in the cellular accumulation of radiolabeled peptides. In vitro transport cellular studies using megalin ligands (RAP, albumin), fluid phase endocytosis (FPE) inhibitor rottlerin and low temperature were employed to evaluate the transport mechanisms of the peptides. Cells transfected with hOAT1 or hOCT2 were used to analyze the role of these SLC transporters. Somatostatin ((177)Lu-DOTA-[Tyr(3)]octreotate, (177)Lu-DOTA-[1-Nal(3)]octreotide), gastrin ((177)Lu-DOTA-sargastrin) and bombesin ((177)Lu-DOTA-[Pro(1),Tyr(4)]bombesin, (177)Lu-DOTA-[Lys(3)]bombesin, (177)Lu-PCTA-[Lys(3)]bombesin) analogues were involved in the study. RAP, albumin and low temperature decreased the accumulation of all the studied peptides significantly. With one exception, rottlerin caused the concentration dependent inhibition of the cellular accumulation of the radiopeptides. No significant differences in the uptake of the peptides between the control cells and those transfected with hOAT1 or hOCT2 were observed. The study showed that active transport mechanisms are decisive for the cellular accumulation in all tested (177)Lu-labeled somatostatin, gastrin and bombesin analogues. Besides receptor-mediated endocytosis by megalin, FPE participates significantly in the uptake. The tested types of renal SLC transporters are not involved in this process. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Divalent folate modification on PEG: an effective strategy for improving the cellular uptake and targetability of PEGylated polyamidoamine-polyethylenimine copolymer.

    Science.gov (United States)

    Cao, Duanwen; Tian, Shouqin; Huang, Huan; Chen, Jianhai; Pan, Shirong

    2015-01-05

    The stability and targeting ability of nanocarrier gene delivery systems are necessary conditions to ensure the good therapeutic effect and low nonspecific toxicity of cancer treatment. Poly(ethylene glycol) (PEG) has been widely applied for improving stability and as a spacer for linking ligands and nanocarriers to improve targetability. However, the cellular uptake and endosomal escape capacity of nanocarriers has been seriously harmed due to the introduction of PEG. In the present study, we synthesized a new gene delivery vector by coupling divalent folate-PEG (PEG3.4k-FA2) onto polyamidoamine-polyethylenimine (PME) copolymer (PME-(PEG3.4k-FA2)1.72). Both PEG and monovalent folate-PEG (PEG3.4k-FA1) modified PME were prepared as control polymers, which were named as PME-(PEG3.5k)1.69 and PME-(PEG3.4k-FA1)1.66, respectively. PME-(PEG3.4k-FA2)1.72 exhibited strong DNA condensation capacity like parent polymer PME which was not significantly influenced by PEG. PME-(PEG3.4k-FA2)1.72/DNA complexes at N/P = 10 had a diameter ∼143 nm and zeta potential ∼13 mV and showed the lowest cytotoxicity and hemolysis and the highest transfection efficiency among all tested polymers. In folate receptor positive (FR-positive) cells, the cellular uptake and transfection efficiency were increased with the increase in the number of folates coupled on PEG; the order was PME-(PEG3.4k-FA2)1.72 > PME-(PEG3.4k-FA1)1.66 > PME-(PEG3.5k)1.69. Folate competition assays showed that PME-(PEG3.4k-FA2)1.72 complexes had stronger targeting ability than PME-(PEG3.5k)1.69 and PME-(PEG3.4k-FA1)1.66 complexes due to their higher folate density per PEG molecule. Cellular uptake mechanism study showed that the folate density on PEG could change the endocytosis pathway of PME-(PEG3.5k)1.69 from clathrin-mediated endocytosis to caveolae-mediated endocytosis, leading to less lysosomal degradation. Distribution and uptake in 3D multicellular spheroid assays showed that divalent folate could offer PME

  16. Effect of free fatty acids and lysolipids on cellular uptake of doxorubicin in human breast cancer cell lines

    DEFF Research Database (Denmark)

    Rasmussen, Nicolaj; Andersen, Jonas; Jespersen, Henrik

    2010-01-01

    , the liposome could deliver membrane permeability enhancers in addition to the drug to increase the targeted anticancer effect. In this study, we examined the effect on Dox uptake in the breast cancer cell lines MDA-MB-231, MCF7, and MCF7-MDR when incubated with a large panel of different free fatty acids...

  17. Ca2+ uptake and cellular integrity in rat EDL muscle exposed to electrostimulation, electroporation, or A23187

    DEFF Research Database (Denmark)

    Gissel, Hanne; Clausen, Torben

    2003-01-01

    We tested the hypothesis that increased Ca2+ uptake in rat extensor digitorum longus (EDL) muscle elicits cell membrane damage as assessed from release of the intracellular enzyme lactate dehydrogenase (LDH). This was done by using 1) electrostimulation, 2) electroporation, and 3) the Ca2+ ionoph...

  18. In vivo cellular uptake of glutamate is impaired in the rat hippocampus during and after transient cerebral ischemia

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    2001-01-01

    Using microdialysis in CA1 of the rat hippocampus, we studied the effect of transient cerebral ischemia on in vivo uptake and on extracellular levels of glutamate during, and at different time points after ischemia. (3)H-D-aspartate (test substance), and (14)C-mannitol (reference substance), were...

  19. Evaluation of cellular viability by quantitative autoradiographic study of myocardial uptake of a fatty acid analogue in isoproterenol-induced focal rat heart necrosis

    International Nuclear Information System (INIS)

    Humbert, T.; Luu-Duc, C.; Comet, M.; Demenge, P.

    1991-01-01

    Previous studies led us to hypothesize that a fatty acid analogue, 15-p-iodophenyl-β-methyl pentadecanoic acid (IMPPA or BMIPP), which is taken up but not quickly metabolized by heart cells, would be a more suitable tracer of cellular viability that 201 Tl. Biodistribution studies of 1- 14 C-IMPPA in conscious, freely moving rats showed that the concentration ratio of radioactivity in the heart with respect to the blood was about 8 for at least 60 min after intravenous administration, permitting its use as a putative tracer in these conscious, freely moving rats. Thereafter, the myocardial uptake of 14 C-IMPPA was studied in isoproterenol-treated rats (daily treatment for 10 days in order to induce cardiac hypertrophy and necrotic foci) with respect to control ones. Comparison of myocardial localizations by quantitative autoradiography of the uptake of 201 Tl and 14 C-IMPPA with that of triphenyltetrazolium chloride (TTC) staining enabled comparative evaluation of nutritional blood flow, localization and uptake of 14 C-IMPPA and necrotic foci size. Distributions of 14 C-IMPPA and 201 Tl in control rats' hearts were homogenous, like TTC staining. In infarcted hearts, areas of decreased 14 C-IMPPA uptake were nearly the same (100%±5%) as those unstained by TTC. These areas were larger than those showing a decrease in thallium uptake (about 70%±5% of the total scar size). Therefore, IMPPA seems to be a more accurate and sensitive indicator of necrosis localization compared with thallium. It may be a useful agent for assessment of myocardial viability by single photon emission tomography (SPET) imaging. (orig.)

  20. Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method.

    Science.gov (United States)

    Teo, Anges; Lee, Sung Je; Goh, Kelvin K T; Wolber, Frances M

    2017-04-15

    The particle size and lutein encapsulation efficiency of nanoemulsions prepared by emulsification and solvent evaporation method were 68.8±0.3nm and 80.7±0.8%, respectively, whereas they were 147.3±0.6nm and 86.3±0.3% for conventional emulsions. All the emulsions had no change in their particle size during storage (28days at 5, 20 and 40°C) but their lutein content and emulsion colour decreased, especially at 40°C. The lutein emulsions were analysed using MTT assay on the gut enterocyte cell line Caco-2 and they showed no toxicity as the cell viability was more than 80% at 10times or higher dilution after 24h of incubation. However, there was a higher cellular uptake of lutein by Caco-2 cells in nanoemulsions (872.9±88.3pmol/mgprotein) than conventional emulsions (329.5±214.6pmol/mgprotein). The results of this study indicated that nanoemulsions can be used as a delivery system to improve the cellular uptake of lutein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Science.gov (United States)

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  2. Bone marrow involvement in diffuse large B-cell lymphoma: correlation between FDG-PET uptake and type of cellular infiltrate

    Energy Technology Data Exchange (ETDEWEB)

    Paone, Gaetano; Itti, Emmanuel; Lin, Chieh; Meignan, Michel [Universite Paris 12, Department of Nuclear Medicine, Hopital Henri Mondor, Assistance Publique-Hopitaux de Paris (AP-HP), Creteil (France); Haioun, Corinne; Dupuis, Jehan [Universite Paris 12, Department of Clinical Haematology, Hopital Henri Mondor, Assistance Publique-Hopitaux de Paris (AP-HP), Creteil (France); Gaulard, Philippe [Universite Paris 12, Department of Pathology, Hopital Henri Mondor, Assistance Publique-Hopitaux de Paris (AP-HP), Creteil (France); Universite Paris 12, INSERM U841, Hopital Henri Mondor, Assistance Publique-Hopitaux de Paris (AP-HP), Creteil (France)

    2009-05-15

    To assess, in patients with diffuse large B-cell lymphoma (DLBCL), whether the low sensitivity of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) for bone marrow assessment may be explained by histological characteristics of the cellular infiltrate. From a prospective cohort of 110 patients with newly diagnosed aggressive lymphoma, 21 patients with DLBCL had bone marrow involvement. Pretherapeutic FDG-PET images were interpreted visually and semiquantitatively, then correlated with the type of cellular infiltrate and known prognostic factors. Of these 21 patients, 7 (33%) had lymphoid infiltrates with a prominent component of large transformed lymphoid cells (concordant bone marrow involvement, CBMI) and 14 (67%) had lymphoid infiltrates composed of small cells (discordant bone marrow involvement, DBMI). Only 10 patients (48%) had abnormal bone marrow FDG uptake, 6 of the 7 with CBMI and 4 of the 14 with DBMI. Therefore, FDG-PET positivity in the bone marrow was significantly associated with CBMI, while FDG-PET negativity was associated with DBMI (Fisher's exact test, p=0.024). There were no significant differences in gender, age and overall survival between patients with CBMI and DBMI, while the international prognostic index was significantly higher in patients with CBMI. Our study suggests that in patients with DLBCL with bone marrow involvement bone marrow FDG uptake depends on two types of infiltrate, comprising small (DBMI) or large (CBMI) cells. This may explain the apparent low sensitivity of FDG-PET previously reported for detecting bone marrow involvement. (orig.)

  3. Andrographolide Suppresses MV4-11 Cell Proliferation through the Inhibition of FLT3 Signaling, Fatty Acid Synthesis and Cellular Iron Uptake

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-08-01

    Full Text Available Background: Andrographolide (ADR, the main active component of Andrographis paniculata, displays anticancer activity in various cancer cell lines, among which leukemia cell lines exhibit the highest sensitivity to ADR. In particular, ADR was also reported to have reduced drug resistance in multidrug resistant cell lines. However, the mechanism of action (MOA of ADR’s anticancer and anti-drug-resistance activities remain elusive. Methods: In this study, we used the MV4-11 cell line, a FLT3 positive acute myeloid leukemia (AML cell line that displays multidrug resistance, as our experimental system. We first evaluated the effect of ADR on MV4-11 cell proliferation. Then, a quantitative proteomics approach was applied to identify differentially expressed proteins in ADR-treated MV4-11 cells. Finally, cellular processes and signal pathways affected by ADR in MV4-11 cell were predicted with proteomic analysis and validated with in vitro assays. Results: ADR inhibits MV4-11 cell proliferation in a dose- and time-dependent manner. With a proteomic approach, we discovered that ADR inhibited fatty acid synthesis, cellular iron uptake and FLT3 signaling pathway in MV4-11 cells. Conclusions: ADR inhibits MV4-11 cell proliferation through inhibition of fatty acid synthesis, iron uptake and protein synthesis. Furthermore, ADR reduces drug resistance by blocking FLT3 signaling.

  4. Bone marrow involvement in diffuse large B-cell lymphoma: correlation between FDG-PET uptake and type of cellular infiltrate

    International Nuclear Information System (INIS)

    Paone, Gaetano; Itti, Emmanuel; Lin, Chieh; Meignan, Michel; Haioun, Corinne; Dupuis, Jehan; Gaulard, Philippe

    2009-01-01

    To assess, in patients with diffuse large B-cell lymphoma (DLBCL), whether the low sensitivity of 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) for bone marrow assessment may be explained by histological characteristics of the cellular infiltrate. From a prospective cohort of 110 patients with newly diagnosed aggressive lymphoma, 21 patients with DLBCL had bone marrow involvement. Pretherapeutic FDG-PET images were interpreted visually and semiquantitatively, then correlated with the type of cellular infiltrate and known prognostic factors. Of these 21 patients, 7 (33%) had lymphoid infiltrates with a prominent component of large transformed lymphoid cells (concordant bone marrow involvement, CBMI) and 14 (67%) had lymphoid infiltrates composed of small cells (discordant bone marrow involvement, DBMI). Only 10 patients (48%) had abnormal bone marrow FDG uptake, 6 of the 7 with CBMI and 4 of the 14 with DBMI. Therefore, FDG-PET positivity in the bone marrow was significantly associated with CBMI, while FDG-PET negativity was associated with DBMI (Fisher's exact test, p=0.024). There were no significant differences in gender, age and overall survival between patients with CBMI and DBMI, while the international prognostic index was significantly higher in patients with CBMI. Our study suggests that in patients with DLBCL with bone marrow involvement bone marrow FDG uptake depends on two types of infiltrate, comprising small (DBMI) or large (CBMI) cells. This may explain the apparent low sensitivity of FDG-PET previously reported for detecting bone marrow involvement. (orig.)

  5. Synthesis, characterization, cellular uptake and apoptosis-inducing properties of two highly cytotoxic cyclometalated ruthenium(II) β-carboline complexes.

    Science.gov (United States)

    Chen, Jincan; Peng, Fa; Zhang, Yao; Li, Baojun; She, Ji; Jie, Xinming; Zou, Zhilin; Chen, Man; Chen, Lanmei

    2017-11-10

    Two new cyclometalated Ru(II) complexes of the general formula [Ru(N-N) 2 (1-Ph-βC)](PF 6 ), where N-N = 4,4'-dimethyl-2,2'-bipyridine (dmb, Ru1), 2,2'-bipyridine (bpy, Ru2), and 1-Ph-βC (1-phenyl-9H-pyrido[3,4-b]indole) is a β-carboline alkaloids derivatives, have been synthesized and characterized. The in vitro cytotoxicities, cellular uptake and localization, cell cycle arrest and apoptosis-inducing mechanisms of these complexes have been extensively explored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, inductively coupled plasma mass spectrometry (ICP-MS), flow cytometry, comet assay, inverted fluorescence microscope as well as western blotting experimental techniques. Notably, Ru1 and Ru2 exhibit potent antiproliferative activities against selected human cancer cell lines with IC 50 values lower than those of cisplatin and other non-cyclometalated Ru(II) β-carboline complexes. The cellular uptake and localization exhibit that these complexes can accumulate in the cell nuclei. Further antitumor mechanism studies show that Ru1 and Ru2 can cause cell cycle arrest in the G0/G1 phase by regulating cell cycle relative proteins and induce apoptosis through mitochondrial dysfunction, reactive oxygen species (ROS) accumulation and ROS-mediated DNA damage. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Cadmium uptake in Elodea canadensis leaves and its interference with extra- and intra-cellular pH.

    Science.gov (United States)

    Javed, M T; Lindberg, S; Greger, M

    2014-05-01

    This study investigated cadmium (Cd) uptake in Elodea canadensis shoots under different photosynthetic conditions, and its effects on internal (cytosolic) and external pH. The plants were grown under photosynthetic (light) or non-photosynthetic (dark or in the presence of a photosynthetic inhibitor) conditions in the presence or absence of CdCl2 (0.5 μm) in a medium with a starting pH of 5.0. The pH-sensitive dye BCECF-AM was used to monitor cytosolic pH changes in the leaves. Cadmium uptake in protoplasts and leaves was detected with a Cd-specific fluorescent dye, Leadmium Green AM, and with atomic absorption spectrophotometry. During cultivation for 3 days without Cd, shoots of E. canadensis increased the pH of the surrounding water, irrespective of the photosynthetic conditions. This medium alkalisation was higher in the presence of CdCl2 . Moreover, the presence of Cd also increased the cation exchange capacity of the shoots. The total Cd uptake by E. canadensis shoots was independent of photosynthetic conditions. Protoplasts from plants exposed to 0.5 μm CdCl2 for 3 days did not exhibit significant change in cytosolic [Cd(2+)] or pH. However, exposure to CdCl2 for 7 days resulted in increased cytosolic [Cd(2+) ] as well as pH. The results suggest that E. canadensis subjected to a low CdCl2 concentration initially sequesters Cd into the apoplasm, but under prolonged exposure, Cd is transported into the cytosol and subsequently alters cytosolic pH. In contrast, addition of 10-50 μm CdCl2 directly to protoplasts resulted in immediate uptake of Cd into the cytosol. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    Science.gov (United States)

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad F Saeed

    2010-09-01

    Full Text Available Zaire ebolavirus (ZEBOV, a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new

  9. Functionalization of osmium arene anticancer complexes with (poly)arginine: Effect on cellular uptake, internalization, and cytotoxicity

    Czech Academy of Sciences Publication Activity Database

    van Rijt, S.H.; Kostrhunová, Hana; Brabec, Viktor; Sadler, P.J.

    2011-01-01

    Roč. 22, č. 2 (2011), s. 218-226 ISSN 1043-1802 R&D Projects: GA ČR(CZ) GAP301/10/0598 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : osmium * arginine * cellular accumulation Subject RIV: BO - Biophysics Impact factor: 4.930, year: 2011

  10. Factors influencing the transfection efficiency and cellular uptake mechanisms of Pluronic P123-modified polypropyleneimine/pDNA polyplexes in multidrug resistant breast cancer cells.

    Science.gov (United States)

    Gu, Jijin; Hao, Junguo; Fang, Xiaoling; Sha, Xianyi

    2016-04-01

    Generally, the major obstacles for efficient gene delivery are cellular internalization and endosomal escape of nucleic acid such as plasmid DNA (pDNA) or small interfering RNA (siRNA). We previously developed Pluronic P123 modified polypropyleneimine (PPI)/pDNA (P123-PPI/pDNA) polyplexes as a gene delivery system. The results showed that P123-PPI/pDNA polyplexes revealed higher transfection efficiency than PPI/pDNA polyplexes in multidrug resistant breast cancer cells. As a continued effort, the present investigation on the factors influencing the transfection efficiency, cellular uptake mechanisms, and intracellular fate of P123-PPI/pDNA polyplexes is reported. The presence of P123 was the main factor influencing the transfection efficiency of P123-PPI/pDNA polyplexes in MCF-7/ADR cells, but other parameters, such as N/P ratio, FBS concentration, incubation time and temperature were important as well. The endocytic inhibitors against clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis (CvME), and macropinocytosis were involved in the internalization to investigate their effects on the cellular uptake and transfection efficiency of P123-PPI/pDNA polyplexes in vitro. The data showed that the internalization of P123-PPI/pDNA polyplexes was obtained from both CME and CvME. Colocalization experiments with TRITC-transferrin (CME indicator), Alexa Fluor 555-CTB (CvME indicator), monoclonal anti-α-tubulin (microtubule indicator), and LysoTracker Green (Endosome/lysosome indicator) were carried out to confirm the internalization routes. The results showed that both CME and CvME played vital roles in the effective transfection of P123-PPI/pDNA polyplexes. Endosome/lysosome system and skeleton, including actin filament and microtubule, were necessary for the transportation after internalization. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Extraction protocol and liquid chromatography/tandem mass spectrometry method for determining micelle-entrapped paclitaxel at the cellular and subcellular levels: Application to a cellular uptake and distribution study.

    Science.gov (United States)

    Zheng, Nan; Lian, Bin; Du, Wenwen; Xu, Guobing; Ji, Jiafu

    2018-01-01

    Paclitaxel-loaded polymeric micelles (PTX-PM) are commonly used as tumor-targeted nanocarriers and display outstanding antitumor features in clinic, but its accumulation and distribution in vitro are lack of investigation. It is probably due to the complex micellar system and its low concentration at the cellular or subcellular levels. In this study, we developed an improved extraction method, which was a combination of mechanical disruption and liquid-liquid extraction (LLE), to extract the total PTX from micelles in the cell lysate and subcellular compartments. An ultra-performance liquid chromatography tandem mass spectroscopy (UPLC-MS/MS) method was optimized to detect the low concentration of PTX at cellular and subcellular levels simultaneously, using docetaxel as internal standard (IS). The method was proved to release PTX totally from micelles (≥95.93%) with a consistent and reproducible extraction recovery (≥75.04%). Good linearity was obtained at concentrations ranging from 0.2 to 20ng/mL. The relative error (RE%) for accuracy varied from 0.68 to 7.56%, and the intra- and inter-precision (relative standard deviation, RSD%) was less than 8.64% and 13.14%, respectively. This method was fully validated and successfully applied to the cellular uptake and distribution study of PTX-loaded PLGA-PEG micelles in human breast cancer cells (MCF-7). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Joshy, K.S. [Department of Chemistry, CMS College Kottayam, Kerala (India); International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sharma, Chandra P. [Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala (India); Kalarikkal, Nandakumar [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sandeep, K. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Thomas, Sabu, E-mail: sabuchathukulam@yahoo.co.uk [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Pothen, Laly A. [Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala (India)

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake.

  13. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    International Nuclear Information System (INIS)

    Joshy, K.S.; Sharma, Chandra P.; Kalarikkal, Nandakumar; Sandeep, K.; Thomas, Sabu; Pothen, Laly A.

    2016-01-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake

  14. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells.

    Science.gov (United States)

    Chandran, Parwathy; Riviere, Jim E; Monteiro-Riviere, Nancy A

    2017-05-01

    This study investigated the role of nanoparticle size and surface chemistry on biocorona composition and its effect on uptake, toxicity and cellular responses in human umbilical vein endothelial cells (HUVEC), employing 40 and 80 nm gold nanoparticles (AuNP) with branched polyethyleneimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings. Proteomic analysis identified 59 hard corona proteins among the various AuNP, revealing largely surface chemistry-dependent signature adsorbomes exhibiting human serum albumin (HSA) abundance. Size distribution analysis revealed the relative instability and aggregation inducing potential of bare and corona-bound BPEI-AuNP, over LA- and PEG-AuNP. Circular dichroism analysis showed surface chemistry-dependent conformational changes of proteins binding to AuNP. Time-dependent uptake of bare, plasma corona (PC) and HSA corona-bound AuNP (HSA-AuNP) showed significant reduction in uptake with PC formation. Cell viability studies demonstrated dose-dependent toxicity of BPEI-AuNP. Transcriptional profiling studies revealed 126 genes, from 13 biological pathways, to be differentially regulated by 40 nm bare and PC-bound BPEI-AuNP (PC-BPEI-AuNP). Furthermore, PC formation relieved the toxicity of cationic BPEI-AuNP by modulating expression of genes involved in DNA damage and repair, heat shock response, mitochondrial energy metabolism, oxidative stress and antioxidant response, and ER stress and unfolded protein response cascades, which were aberrantly expressed in bare BPEI-AuNP-treated cells. NP surface chemistry is shown to play the dominant role over size in determining the biocorona composition, which in turn modulates cell uptake, and biological responses, consequently defining the potential safety and efficacy of nanoformulations.

  15. Membrane adsorption and binding, cellular uptake and cytotoxicity of cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone

    DEFF Research Database (Denmark)

    Jing, Xiaona; Yang, Mingjun; Kasimova, Marina Robertovna

    2012-01-01

    Cell-penetrating peptides (CPPs) provide a promising approach for enhancing intracellular delivery of therapeutic biomacromolecules by increasing transport through membrane barriers. Here, proteolytically stable cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone were studied....... The presence of guanidinium groups and α-chiral β-peptoid residues was also found to have a significant positive effect on uptake in living cells. Together, the findings provide an improved understanding on the behavior of cell-penetrating peptidomimetics in the presence of lipid bilayers and live cells....

  16. Targeting Cells With MR Imaging Probes: Cellular Interaction And Intracellular Magnetic Iron Oxide Nanoparticles Uptake In Brain Capillary Endothelial and Choroidal Plexus Epithelial Cells

    Science.gov (United States)

    Cambianica, I.; Bossi, M.; Gasco, P.; Gonzalez, W.; Idee, J. M.; Miserocchi, G.; Rigolio, R.; Chanana, M.; Morjan, I.; Wang, D.; Sancini, G.

    2010-10-01

    Magnetic iron oxide nanoparticles (NPs) are considered for various diagnostic and therapeutic applications in brain including their use as contrast agent for magnetic resonance imaging. In delivery application, the critical step is the transport across cell layers and the internalization of NPs into specific cells, a process often limited by poor targeting specificity and low internalization efficiency. The development of the models of brain endothelial cells and choroidal plexus epithelial cells in culture has allowed us to investigate into these mechanisms. Our strategy is aimed at exploring different routes to the entrapment of iron oxide NPs in these brain related cells. Here we demonstrated that not only cells endowed with a good phagocytic activity like activated macrophages but also endothelial brain capillary and choroidal plexus epithelial cells do internalize iron oxide NPs. Our study of the intracellular trafficking of NPs by TEM, and confocal microscopy revealed that NPs are mainly internalized by the endocytic pathway. Iron oxide NPs were dispersed in water and coated with 3,4-dihydroxyl-L-phenylalanine (L-DOPA) using standard procedures. Magnetic lipid NPs were prepared by NANOVECTOR: water in oil in water (W/O/W) microemulsion process has been applied to directly coat different iron based NPs by lipid layer or to encapsulate them into Solid Lipid Nanoparticles (SLNs). By these coating/loading the colloidal stability was improved without strong alteration of the particle size distribution. Magnetic lipid NPs could be reconstituted after freeze drying without appreciable changes in stability. L-DOPA coated NPs are stable in PBS and in MEM (Modified Eagle Medium) medium. The magnetic properties of these NPs were not altered by the coating processes. We investigated the cellular uptake, cytotoxicity, and interaction of these NPs with rat brain capillary endothelial (REB4) and choroidal plexus epithelial (Z310) cells. By means of widefield, confocal

  17. Reduction-sensitive liposomes from a multifunctional lipid conjugate and natural phospholipids: reduction and release kinetics and cellular uptake.

    Science.gov (United States)

    Goldenbogen, Björn; Brodersen, Nicolai; Gramatica, Andrea; Loew, Martin; Liebscher, Jürgen; Herrmann, Andreas; Egger, Holger; Budde, Bastian; Arbuzova, Anna

    2011-09-06

    The development of targeted and triggerable delivery systems is of high relevance for anticancer therapies. We report here on reduction-sensitive liposomes composed of a novel multifunctional lipidlike conjugate, containing a disulfide bond and a biotin moiety, and natural phospholipids. The incorporation of the disulfide conjugate into vesicles and the kinetics of their reduction were studied using dansyl-labeled conjugate 1 in using the dansyl fluorescence environmental sensitivity and the Förster resonance energy transfer from dansyl to rhodamine-labeled phospholipids. Cleavage of the disulfide bridge (e.g., by tris(2-carboxyethyl)phosphine (TCEP), dithiothreitol (DTT), l-cysteine, or glutathione (GSH)) removed the hydrophilic headgroup of the conjugate and thus changed the membrane organization leading to the release of entrapped molecules. Upon nonspecific uptake of vesicles by macrophages, calcein release from reduction-sensitive liposomes consisting of the disulfide conjugate and phospholipids was more efficient than from reduction-insensitive liposomes composed only of phospholipids. The binding of streptavidin to the conjugates did not interfere with either the subsequent reduction of the disulfide bond of the conjugate or the release of entrapped molecules. Breast cancer cell line BT-474, overexpressing the HER2 receptor, showed a high uptake of the reduction-sensitive doxorubicin-loaded liposomes functionalized with the biotin-tagged anti-HER2 antibody. The release of the entrapped cargo inside the cells was observed, implying the potential of using our system for active targeting and delivery. © 2011 American Chemical Society

  18. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel–cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ye J

    2016-08-01

    Full Text Available Jun Ye,1,2 Xuejun Xia,1,2 Wujun Dong,1,2 Huazhen Hao,1,2 Luhua Meng,1,2 Yanfang Yang,1,2 Renyun Wang,1,2 Yuanfeng Lyu,3 Yuling Liu1,2 1State Key Laboratory of Bioactive Substance and Function of Natural Medicines, 2Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 3School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China Abstract: There is no effective clinical therapy for triple-negative breast cancers (TNBCs, which have high low-density lipoprotein (LDL requirements and express relatively high levels of LDL receptors (LDLRs on their membranes. In our previous study, a novel lipid emulsion based on a paclitaxel–cholesterol complex (PTX-CH Emul was developed, which exhibited improved safety and efficacy for the treatment of TNBC. To date, however, the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul have not been investigated. In order to offer powerful proof for the therapeutic effects of PTX-CH Emul, we systematically studied the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul and made a comparative evaluation of antineoplastic effects on TNBC (MDA-MB-231 and non-TNBC (MCF7 cell lines through in vitro and in vivo experiments. The in vitro antineoplastic effects and in vivo tumor-targeting efficiency of PTX-CH Emul were significantly more enhanced in MDA-MB-231-based models than those in MCF7-based models, which was associated with the more abundant expression profile of LDLR in MDA-MB-231 cells. The results of the cellular uptake mechanism indicated that PTX-CH Emul was internalized into breast cancer cells through the LDLR-mediated internalization pathway via clathrin-coated pits, localized in lysosomes, and then released into the cytoplasm, which was consistent with the internalization pathway and intracellular trafficking of native

  19. Industrial grade 2D molybdenum disulphide (MoS2): an in vitro exploration of the impact on cellular uptake, cytotoxicity, and inflammation

    Science.gov (United States)

    Moore, Caroline; Movia, Dania; Smith, Ronan J.; Hanlon, Damien; Lebre, Filipa; Lavelle, Ed C.; Byrne, Hugh J.; Coleman, Jonathan N.; Volkov, Yuri; McIntyre, Jennifer

    2017-06-01

    The recent surge in graphene research, since its liquid phase monolayer isolation and characterization in 2004, has led to advancements which are accelerating the exploration of alternative 2D materials such as molybdenum disulphide (MoS2), whose unique physico-chemical properties can be exploited in applications ranging from cutting edge electronic devices to nanomedicine. However, to assess any potential impact on human health and the environment, the need to understand the bio-interaction of MoS2 at a cellular and sub-cellular level is critical. Notably, it is important to assess such potential impacts of materials which are produced by large scale production techniques, rather than research grade materials. The aim of this study was to explore cytotoxicity, cellular uptake and inflammatory responses in established cell-lines that mimic different potential exposure routes (inhalation, A549; ingestion, AGS; monocyte, THP-1) following incubation with MoS2 flakes of varying sizes (50 nm, 117 nm and 177 nm), produced by liquid phase exfoliation. Using high content screening (HCS) and Live/Dead assays, it was established that 1 µg ml-1 (for the three different MoS2 sizes) did not induce toxic effects on any of the cell-lines. Confocal microscopy images revealed a normal cellular morphology in all cases. Transmission electron microscopy (TEM) confirmed the uptake of all MoS2 nanomaterials in all the cell-lines, the MoS2 ultimately locating in single membrane vesicles. At such sub-lethal doses, inflammatory responses are observed, however, associated, at least partially, with the presence of lipopolysaccharide endotoxin in nanomaterial suspensions and surfactant samples. Therefore, the inflammatory response of the cells to the MoS2 or endotoxin contamination was interrogated using a 10-plex ELISA which illustrates cytokine production. The experiments carried out using wild-type and endotoxin hyporesponsive bone marrow derived dendritic cells confirmed that the

  20. Endocrine Disrupters in Human Blood and Breast Milk: Extraction Methodologies, Cellular Uptake and Effect on Key Nuclear Receptor Functions

    DEFF Research Database (Denmark)

    Hjelmborg, Philip Sebastian

    2010-01-01

    antiestrogenic activity in the hormone free fractions, while the subsequent fractions containing endogenous hormones showed estrogenic activity. Paper III: Agonistic estrogenic activity was predominantly seen in European serum extracts. Contrary to this elicited the major part of Inuit samples antiestrogenic...... to uptake of lipophilic compounds. Paper II: Inuit EDC fractions contain high levels of PCBs that are antiestrogenic. These results were comparable with PCB spiked control samples supporting those results. Upon analysis of the hormone fractions, estrogenic activity was seen with large differences between...... men and women indicating that estradiol was not present in the EDC fraction. Paper III: The chosen POP-biomarkers of exposure and receptor effects alone cannot be used to describe body burden of EDCs because the serum mixture profile differs geographically. Paper IV: The breast milk extraction method...

  1. The perlecan heparan sulfate proteoglycan mediates cellular uptake of HIV-1 Tat through a pathway responsible for biological activity

    International Nuclear Information System (INIS)

    Cell surface heparan sulfate proteoglycans (HSPGs) mediate internalization of HIV-1 Tat. Herein, we report that human WiDr cells, which express perlecan but no other HSPGs, can internalize 125 I-labeled Tat with minimal lysosomal degradation. Pre-treatment of cells with heparitinase almost completely abolished 125 I-Tat surface binding, while the use of an HIV-1 long terminal repeat (LTR) promoter-reporter construct demonstrated that transactivation was potently blocked by pretreatment of cells with heparitinase, indicating an essential role for perlecan in the biologic effects of Tat. We conclude that the perlecan mediates Tat uptake and is required for HIV-1 LTR-directed transactivation in this human cell type

  2. Cellular Internalization of Rod-Like Nanoparticles with Various Surface Patterns: Novel Entry Pathway and Controllable Uptake Capacity.

    Science.gov (United States)

    Xue, Jiaxiao; Guan, Zhou; Lin, Jiaping; Cai, Chunhua; Zhang, Wenjie; Jiang, Xinquan

    2017-06-01

    The cellular internalization of rod-like nanoparticles (NPs) is investigated in a combined experimental and simulation study. These rod-like nanoparticles with smooth, abacus-like (i.e., beads-on-wires), and helical surface patterns are prepared by the cooperative self-assembly of poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) block copolymers and PBLG homopolymers. All three types of NPs can be internalized via endocytosis. Helical NPs exhibit the best endocytic efficacy, followed by smooth NPs and abacus-like NPs. Coarse-grained molecular dynamics simulations are used to examine the endocytic efficiency of these NPs. The NPs with helical and abacus-like surfaces can be endocytosed via novel "standing up" (tip entry) and "gyroscope-like" (precession) pathways, respectively, which are distinct from the pathway of traditional NPs with smooth surfaces. This finding indicates that the cellular internalization capacity and pathways can be regulated by introducing stripe patterns (helical and abacus-like) onto the surface of rod-like NPs. The results of this study may lead to novel applications of biomaterials, such as advanced drug delivery systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Yoshiyuki, E-mail: imura@brs.nihon-u.ac.jp; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D., E-mail: pdnagy2@uky.edu

    2015-10-15

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase.

  4. The integrin alphav beta3 increases cellular stiffness and cytoskeletal remodeling dynamics to facilitate cancer cell invasion

    International Nuclear Information System (INIS)

    Mierke, Claudia Tanja

    2013-01-01

    The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3 high or αvβ3 low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3 high cells showed a threefold increased cell invasion compared to αvβ3 low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3 high cells but not in αvβ3 low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3 low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3 high cells, whereas the invasiveness of β3 specific knock

  5. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Chi H

    2017-02-01

    Full Text Available Huibo Chi,1,2,* Yan Gu,1,* Tingting Xu,1 Feng Cao1 1Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 2State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH nanosheets with active targeting to peptide transporter-1 (PepT-1 were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC and retinal pigment epithelial (ARPE-19 cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. Keywords: LDH nanoparticles, LDH nanosheets, ocular drug delivery, human corneal epithelial primary cell, retinal pigment cell, ARPE-19, active targeting

  6. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    Science.gov (United States)

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  7. Needles, Jabs and Jags: a qualitative exploration of barriers and facilitators to child and adult immunisation uptake among Gypsies, Travellers and Roma.

    Science.gov (United States)

    Jackson, Cath; Bedford, Helen; Cheater, Francine M; Condon, Louise; Emslie, Carol; Ireland, Lana; Kemsley, Philippa; Kerr, Susan; Lewis, Helen J; Mytton, Julie; Overend, Karen; Redsell, Sarah; Richardson, Zoe; Shepherd, Christine; Smith, Lesley; Dyson, Lisa

    2017-03-14

    Gypsies, Travellers and Roma (referred to as Travellers) are less likely to access health services including immunisation. To improve immunisation rates, it is necessary to understand what helps and hinders individuals in these communities in taking up immunisations. This study had two aims. 1. Investigate the views of Travellers in the UK on the barriers and facilitators to acceptability and uptake of immunisations and explore their ideas for improving immunisation uptake; 2. Examine whether and how these responses vary across and within communities, and for different vaccines (childhood and adult). This was a qualitative, cross-sectional interview study informed by the Social Ecological Model. Semi-structured interviews were conducted with 174 Travellers from six communities: Romanian Roma, English Gypsy/Irish Travellers (Bristol), English Gypsy (York), Romanian/Slovakian Roma, Scottish Show people (Glasgow) and Irish Traveller (London). The focus was childhood and selected adult vaccines. Data were analysed using the Framework approach. Common accounts of barriers and facilitators were identified across all six Traveller communities, similar to those documented for the general population. All Roma communities experienced additional barriers of language and being in a new country. Men and women described similar barriers and facilitators although women spoke more of discrimination and low literacy. There was broad acceptance of childhood and adult immunisation across and within communities, with current parents perceived as more positive than their elders. A minority of English-speaking Travellers worried about multiple/combined childhood vaccines, adult flu and whooping cough and described barriers to booking and attending immunisation. Cultural concerns about antenatal vaccines and HPV vaccination were most evident in the Bristol English Gypsy/Irish Traveller community. Language, literacy, discrimination, poor school attendance, poverty and housing were

  8. Needles, Jabs and Jags: a qualitative exploration of barriers and facilitators to child and adult immunisation uptake among Gypsies, Travellers and Roma

    Directory of Open Access Journals (Sweden)

    Cath Jackson

    2017-03-01

    Full Text Available Abstract Background Gypsies, Travellers and Roma (referred to as Travellers are less likely to access health services including immunisation. To improve immunisation rates, it is necessary to understand what helps and hinders individuals in these communities in taking up immunisations. This study had two aims. 1. Investigate the views of Travellers in the UK on the barriers and facilitators to acceptability and uptake of immunisations and explore their ideas for improving immunisation uptake; 2. Examine whether and how these responses vary across and within communities, and for different vaccines (childhood and adult. Methods This was a qualitative, cross-sectional interview study informed by the Social Ecological Model. Semi-structured interviews were conducted with 174 Travellers from six communities: Romanian Roma, English Gypsy/Irish Travellers (Bristol, English Gypsy (York, Romanian/Slovakian Roma, Scottish Show people (Glasgow and Irish Traveller (London. The focus was childhood and selected adult vaccines. Data were analysed using the Framework approach. Results Common accounts of barriers and facilitators were identified across all six Traveller communities, similar to those documented for the general population. All Roma communities experienced additional barriers of language and being in a new country. Men and women described similar barriers and facilitators although women spoke more of discrimination and low literacy. There was broad acceptance of childhood and adult immunisation across and within communities, with current parents perceived as more positive than their elders. A minority of English-speaking Travellers worried about multiple/combined childhood vaccines, adult flu and whooping cough and described barriers to booking and attending immunisation. Cultural concerns about antenatal vaccines and HPV vaccination were most evident in the Bristol English Gypsy/Irish Traveller community. Language, literacy, discrimination, poor

  9. Cytotoxicity assessment, inflammatory properties, and cellular uptake of Neutraplex lipid-based nanoparticles in THP-1 monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    Eric Berger

    2017-12-01

    Full Text Available Current antiretroviral drugs used to prevent or treat human immunodeficiency virus type 1 (HIV-1 infection are not able to eliminate the virus within tissues or cells where HIV establishes reservoirs. Hence, there is an urgent need to develop targeted delivery systems to enhance drug concentrations in these viral sanctuary sites. Macrophages are key players in HIV infection and contribute significantly to the cellular reservoirs of HIV because the virus can survive for prolonged periods in these cells. In the present work, we investigated the potential of the lipid-based Neutraplex nanosystem to deliver anti-HIV therapeutics in human macrophages using the human monocyte/macrophage cell line THP-1. Neutraplex nanoparticles as well as cationic and anionic Neutraplex nanolipoplexes (Neutraplex/small interfering RNA were prepared and characterized by dynamic light scattering. Neutraplex nanoparticles showed low cytotoxicity in CellTiter-Blue reduction and lactate dehydrogenase release assays and were not found to have pro-inflammatory effects. In addition, confocal studies showed that the Neutraplex nanoparticles and nanolipoplexes are rapidly internalized into THP-1 macrophages and that they can escape the late endosome/lysosome compartment allowing the delivery of small interfering RNAs in the cytoplasm. Furthermore, HIV replication was inhibited in the in vitro TZM-bl infectivity assay when small interfering RNAs targeting CXCR4 co-receptor was delivered by Neutraplex nanoparticles compared to a random small interfering RNA sequence. This study demonstrates that the Neutraplex nanosystem has potential for further development as a delivery strategy to efficiently and safely enhance the transport of therapeutic molecules into human monocyte-derived macrophages in the aim of targeting HIV-1 in this cellular reservoir.

  10. Template free synthesis of silver-gold alloy nanoparticles and cellular uptake of gold nanoparticles in Chinese Hamster Ovary cell

    International Nuclear Information System (INIS)

    Pal, Angshuman; Shah, Sunil; Kulkarni, Vijay; Murthy, R.S.R.; Devi, Surekha

    2009-01-01

    Gold-silver alloy nanoparticles were synthesized by simultaneous reduction of varying mole fractions of HAuCl 4 and AgNO 3 by sodium citrate in aqueous solution without using stabilizing agents such as surfactant or polymer. Appearance of single absorption peak in visible spectrum indicated formation of homogeneous gold-silver alloy nanoparticles. Transmission electron micrographs also support formation of alloy nanoparticles rather than core-shell particles. The plasmon absorption bands for Au-Ag nanoparticles show linear bathochromic shift with increasing Au content. No significant change in surface plasmon band was observed on storage of samples at 25 ± 2 deg. C for 6 months, indicating stability of the particles. Particle size distribution, zeta-potential and conduction of these colloidal suspensions were measured by dynamic light scattering along with Zetasizer. Gold and Au-Ag alloy nanoparticles exhibited fluorescence at 600 nm and in between 600 and 486 nm respectively depending on alloy composition. Gold nanoparticles were used for cell line study using liposome as a carrier. This liposome entrapped gold nanoparticles showed enhanced uptake by Chinese Hamster Ovary (CHO) cells compared to gold nanoparticles

  11. Effects of starch-coating of magnetite nanoparticles on cellular uptake, toxicity and gene expression profiles in adult zebrafish.

    Science.gov (United States)

    Zheng, Min; Lu, Jianguo; Zhao, Dongye

    2018-05-01

    Engineered magnetite nanoparticles (Fe 3 O 4 NPs) have been used in many fields. To prevent particle agglomeration, stabilizers or coatings are often required. While such coatings have been shown to enhance performances, the environmental impact or toxicity of stabilized or coated Fe 3 O 4 NPs remain poorly understood. In an effort to understand the impacts of such coatings on the toxicity of Fe 3 O 4 NPs, we used the transcriptome sequencing (RNA-seq) technique to characterize the gill and liver transcriptomes from adult zebrafish when exposed to bare and starch-stabilized Fe 3 O 4 NPs for 7days, demonstrating remarkable differences in gene expression profiles, also known as differentially expressed genes (DEGs) profiles, in both tissues. Bare Fe 3 O 4 NPs exerted greater toxicity than starch-coated Fe 3 O 4 NPs in gill; in contrast, starch-Fe 3 O 4 NPs triggered more severe damage on liver, though both bare and stabilized NPs appeared to share similar regulatory mechanisms. Quantitative real-time polymerase chain reactions using six genes each for the two tissues verified the RNA-seq results. The surface coatings play an important role in determining the nanoparticle toxicity, which in turn modulate cell uptake and biological responses, consequently impacting the potential safety and efficacy of nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells.

    Science.gov (United States)

    Soni, Naina; Jyoti, Kiran; Jain, Upendra Kumar; Katyal, Anju; Chandra, Ramesh; Madan, Jitender

    2017-06-01

    Noscapine (Nos) and reduced brominated analogue of noscapine (Red-Br-Nos) prevent cellular proliferation and induce apoptosis in cancer cells either alone or in combination with other chemotherapeutic drugs. However, owing to poor physicochemical properties, Nos and Red-Br-Nos have demonstrated their anticancer activity at higher and multiple doses. Therefore, in present investigation, silver nanocrystals of noscapinoids (Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals) were customized to augment drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1 mouse melanoma cancer cells. Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals were prepared separately by precipitation method. The mean particle size of Nos-Ag 2+ nanocrystals was measured to be 25.33±3.52nm, insignificantly (P>0.05) different from 27.43±4.51nm of Red-Br-Nos-Ag 2+ nanocrystals. Furthermore, zeta-potential of Nos-Ag 2+ nanocrystals was determined to be -25.3±3.11mV significantly (Pmelanoma cancer cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Impact of anatase titanium dioxide nanoparticles on mutagenic and genotoxic response in Chinese hamster lung fibroblast cells (V-79): The role of cellular uptake.

    Science.gov (United States)

    Jain, Abhishek Kumar; Senapati, Violet Aileen; Singh, Divya; Dubey, Kavita; Maurya, Renuka; Pandey, Alok Kumar

    2017-07-01

    The unique physico-chemical properties of nano crystalline anatase titanium dioxide nanoparticles (TiO 2 NPs) render them with different biological and chemical activities. Hence, it is widely used in industrial and consumer applications. Previous studies have shown the genotoxicity of TiO 2 NPs. However, there is a paucity of data regarding mutagenicity of these NPs. In the present study, the cellular uptake, sub-cellular localization, cytotoxicity and short term DNA interaction of TiO 2 NPs (1-100 μgmL -1 ) of diameter ranging from 12 to 25 nm on mammalian lung fibroblast cells (V-79) has been studied. The flow cytometric analysis and electron micrographs of V-79 monolayer showed the internalization of TiO 2 NPs in the cytoplasm with the confirmation of elemental composition through SEM/EDX analysis. TEM analysis also showed TiO 2 NPs induced ultra-structural changes such as swollen mitochondria and nuclear membrane disruption in V-79 cells. TiO 2 NPs generated free radicals, which induced indirect mutagenic and genotoxic responses. Apart from measuring the genotoxicity by Comet assay, the mutagenic potential of TiO 2 NPs in V-79 cells was evaluated by mammalian HGPRT gene forward mutation assay, showing a 2.98- fold increase in 6TG R HGPRT mutant frequency (*p disposal of NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fosmidomycin uptake into Plasmodium and Babesia-infected erythrocytes is facilitated by parasite-induced new permeability pathways.

    Directory of Open Access Journals (Sweden)

    Stefan Baumeister

    Full Text Available BACKGROUND: Highly charged compounds typically suffer from low membrane permeability and thus are generally regarded as sub-optimal drug candidates. Nonetheless, the highly charged drug fosmidomycin and its more active methyl-derivative FR900098 have proven parasiticidal activity against erythrocytic stages of the malaria parasite Plasmodium falciparum. Both compounds target the isoprenoid biosynthesis pathway present in bacteria and plastid-bearing organisms, like apicomplexan parasites. Surprisingly, the compounds are inactive against a range of apicomplexans replicating in nucleated cells, including Toxoplasma gondii. METHODOLOGY/PRINCIPAL FINDINGS: Since non-infected erythrocytes are impermeable for FR90098, we hypothesized that these drugs are taken up only by erythrocytes infected with Plasmodium. We provide evidence that radiolabeled FR900098 accumulates in theses cells as a consequence of parasite-induced new properties of the host cell, which coincide with an increased permeability of the erythrocyte membrane. Babesia divergens, a related parasite that also infects human erythrocytes and is also known to induce an increase in membrane permeability, displays a similar susceptibility and uptake behavior with regard to the drug. In contrast, Toxoplasma gondii-infected cells do apparently not take up the compounds, and the drugs are inactive against the liver stages of Plasmodium berghei, a mouse malaria parasite. CONCLUSIONS/SIGNIFICANCE: Our findings provide an explanation for the observed differences in activity of fosmidomycin and FR900098 against different Apicomplexa. These results have important implications for future screens aimed at finding new and safe molecular entities active against P. falciparum and related parasites. Our data provide further evidence that parasite-induced new permeability pathways may be exploited as routes for drug delivery.

  15. Dopamine in human follicular fluid is associated with cellular uptake and metabolism-dependent generation of reactive oxygen species in granulosa cells: implications for physiology and pathology.

    Science.gov (United States)

    Saller, S; Kunz, L; Berg, D; Berg, U; Lara, H; Urra, J; Hecht, S; Pavlik, R; Thaler, C J; Mayerhofer, A

    2014-03-01

    Is the neurotransmitter dopamine (DA) in the human ovary involved in the generation of reactive oxygen species (ROS)? Human ovarian follicular fluid contains DA, which causes the generation of ROS in cultured human granulosa cells (GCs), and alterations of DA levels in follicular fluid and DA uptake/metabolism in GCs in patients with polycystic ovary syndrome (PCOS) are linked to increased levels of ROS. DA is an important neurotransmitter in the brain, and the metabolism of DA results in the generation of ROS. DA was detected in human ovarian homogenates, but whether it is present in follicular fluid and plays a role in the follicle is not known. We used human follicular fluid from patients undergoing in vitro fertilization (IVF), GCs from patients with or without PCOS and also employed mathematical modeling to investigate the presence of DA and its effects on ROS. DA in follicular fluid and GCs was determined by enzyme-linked immunosorbent assay. GC viability, apoptosis and generation of ROS were monitored in GCs upon addition of DA. Inhibitors of DA uptake and metabolism, an antioxidant and DA receptor agonists, were used to study cellular uptake and the mechanism of DA-induced ROS generation. Human GCs were examined for the presence and abundance of transcripts of the DA transporter (DAT; SLC6A3), the DA-metabolizing enzymes monoamine oxidases A/B (MAO-A/B) and catechol-O-methyltransferase and the vesicular monoamine transporter. A computational model was developed to describe and predict DA-induced ROS generation in human GCs. We found DA in follicular fluid of ovulatory follicles of the human ovary and in GCs. DAT and MAO-A/B, which are expressed by GCs, are prerequisites for a DA receptor-independent generation of ROS in GCs. Blockers of DAT and MAO-A/B, as well as an antioxidant, prevented the generation of ROS (P human follicular compartment, functions of DA could only be studied in IVF-derived GCs, which can be viewed as a cellular model for the

  16. Barriers and Facilitators to the Uptake and Maintenance of Healthy Behaviours by People at Mid-Life: A Rapid Systematic Review.

    Directory of Open Access Journals (Sweden)

    Sarah Kelly

    Full Text Available With an ageing population, there is an increasing societal impact of ill health in later life. People who adopt healthy behaviours are more likely to age successfully. To engage people in health promotion initiatives in mid-life, a good understanding is needed of why people do not undertake healthy behaviours or engage in unhealthy ones.Searches were conducted to identify systematic reviews and qualitative or longitudinal cohort studies that reported mid-life barriers and facilitators to healthy behaviours. Mid-life ranged from 40 to 64 years, but younger adults in disadvantaged or minority groups were also eligible to reflect potential earlier disease onset. Two reviewers independently conducted reference screening and study inclusion. Included studies were assessed for quality. Barriers and facilitators were identified and synthesised into broader themes to allow comparisons across behavioural risks.From 16,426 titles reviewed, 28 qualitative studies, 11 longitudinal cohort studies and 46 systematic reviews were included. Evidence was found relating to uptake and maintenance of physical activity, diet and eating behaviours, smoking, alcohol, eye care, and other health promoting behaviours and grouped into six themes: health and quality of life, sociocultural factors, the physical environment, access, psychological factors, evidence relating to health inequalities. Most of the available evidence was from developed countries. Barriers that recur across different health behaviours include lack of time (due to family, household and occupational responsibilities, access issues (to transport, facilities and resources, financial costs, entrenched attitudes and behaviours, restrictions in the physical environment, low socioeconomic status, lack of knowledge. Facilitators include a focus on enjoyment, health benefits including healthy ageing, social support, clear messages, and integration of behaviours into lifestyle. Specific issues relating to

  17. Barriers and Facilitators to the Uptake and Maintenance of Healthy Behaviours by People at Mid-Life: A Rapid Systematic Review.

    Science.gov (United States)

    Kelly, Sarah; Martin, Steven; Kuhn, Isla; Cowan, Andy; Brayne, Carol; Lafortune, Louise

    2016-01-01

    With an ageing population, there is an increasing societal impact of ill health in later life. People who adopt healthy behaviours are more likely to age successfully. To engage people in health promotion initiatives in mid-life, a good understanding is needed of why people do not undertake healthy behaviours or engage in unhealthy ones. Searches were conducted to identify systematic reviews and qualitative or longitudinal cohort studies that reported mid-life barriers and facilitators to healthy behaviours. Mid-life ranged from 40 to 64 years, but younger adults in disadvantaged or minority groups were also eligible to reflect potential earlier disease onset. Two reviewers independently conducted reference screening and study inclusion. Included studies were assessed for quality. Barriers and facilitators were identified and synthesised into broader themes to allow comparisons across behavioural risks. From 16,426 titles reviewed, 28 qualitative studies, 11 longitudinal cohort studies and 46 systematic reviews were included. Evidence was found relating to uptake and maintenance of physical activity, diet and eating behaviours, smoking, alcohol, eye care, and other health promoting behaviours and grouped into six themes: health and quality of life, sociocultural factors, the physical environment, access, psychological factors, evidence relating to health inequalities. Most of the available evidence was from developed countries. Barriers that recur across different health behaviours include lack of time (due to family, household and occupational responsibilities), access issues (to transport, facilities and resources), financial costs, entrenched attitudes and behaviours, restrictions in the physical environment, low socioeconomic status, lack of knowledge. Facilitators include a focus on enjoyment, health benefits including healthy ageing, social support, clear messages, and integration of behaviours into lifestyle. Specific issues relating to population and

  18. Mathematical model of uptake and metabolism of arsenic(III) in human hepatocytes - Incorporation of cellular antioxidant response and threshold-dependent behavior.

    Science.gov (United States)

    Stamatelos, Spyros K; Brinkerhoff, Christopher J; Isukapalli, Sastry S; Georgopoulos, Panos G

    2011-01-25

    Arsenic is an environmental pollutant, potent human toxicant, and oxidative stress agent with a multiplicity of health effects associated with both acute and chronic exposures. A semi-mechanistic cellular-level toxicokinetic (TK) model was developed in order to describe the uptake, biotransformation and clearance of arsenical species in human hepatocytes. Notable features of this model are the incorporation of arsenic-glutathione complex formation and a "switch-like" formulation to describe the antioxidant response of hepatocytes to arsenic exposure. The cellular-level TK model applies mass action kinetics in order to predict the concentrations of trivalent and pentavalent arsenicals in hepatocytes. The model simulates uptake of arsenite (iAsIII) via aquaporin isozymes 9 (AQP9s), glutathione (GSH) conjugation, methylation by arsenic methyltransferase (AS3MT), efflux through multidrug resistant proteins (MRPs) and the induced antioxidant response via thioredoxin reductase (TR) activity. The model was parameterized by optimization of model estimates for arsenite (iAsIII), monomethylated (MMA) and dimethylated (DMA) arsenicals concentrations with time-course experimental data in human hepatocytes for a time span of 48 hours, and dose-response data at 24 hours for a range of arsenite concentrations from 0.1 to 10 μM. Global sensitivity analysis of the model showed that at low doses the transport parameters had a dominant role, whereas at higher doses the biotransformation parameters were the most significant. A parametric comparison of the TK model with an analogous model developed for rat hepatocytes from the literature demonstrated that the biotransformation of arsenite (e.g. GSH conjugation) has a large role in explaining the variation in methylation between rats and humans. The cellular-level TK model captures the temporal modes of arsenical accumulation in human hepatocytes. It highlighted the key biological processes that influence arsenic metabolism by

  19. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application.

    Science.gov (United States)

    Alwani, Saniya; Kaur, Randeep; Michel, Deborah; Chitanda, Jackson M; Verrall, Ronald E; Karunakaran, Chithra; Badea, Ildiko

    2016-01-01

    Nanodiamonds (NDs) are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND) in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA) was also analyzed using flow cytometry. Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed good stability, remaining under 100 nm throughout the testing period. A positive zeta potential of >+20 mV indicated a preservation of surface charges. Size distribution and zeta potential changed for lys-NDs after incubation with blood serum, suggesting an interaction with biomolecules, mainly proteins, and a possible formation of a protein corona. Cellular internalization of lys-NDs was confirmed

  20. Lipoprotein Lipase Is a Feature of Alternatively-Activated Microglia and May Facilitate Lipid Uptake in the CNS During Demyelination.

    Science.gov (United States)

    Bruce, Kimberley D; Gorkhali, Sachi; Given, Katherine; Coates, Alison M; Boyle, Kristen E; Macklin, Wendy B; Eckel, Robert H

    2018-01-01

    Severe demyelinating disorders of the central nervous system (CNS) such as multiple sclerosis (MS), can be devastating for many young lives. To date, the factors resulting in poor remyelination and repair are not well understood, and reparative therapies that benefit MS patients have yet to be developed. We have previously shown that the activity and abundance of Lipoprotein Lipase (LPL)-the rate-limiting enzyme in the hydrolysis of triglyceride-rich lipoproteins-is increased in Schwann cells and macrophages following nerve crush injury in the peripheral nervous system (PNS), suggesting that LPL may help scavenge myelin-derived lipids. We hypothesized that LPL may play a similar role in the CNS. To test this, mice were immunized with MOG 35-55 peptide to induce experimental allergic encephalomyelitis (EAE). LPL activity was increased ( p < 0.05) in the brain at 30 days post-injection, coinciding with partial remission of clinical symptoms. Furthermore, LPL abundance and activity was up-regulated ( p < 0.05) at the transition between de- and re-myelination in lysolecithin-treated ex vivo cerebellar slices. Since microglia are the key immune effector cells of the CNS we determined the role of LPL in microglia. Lipid uptake was decreased ( p < 0.001) in LPL-deficient BV-2 microglial cells compared to WT. In addition, LPL-deficient cells showed dramatically reduced expression of anti-inflammatory markers, YM1 (-22 fold, p < 0.001), and arginase 1 (Arg1; -265 fold, p < 0.001) and increased expression of pro-inflammatory markers, such as iNOS compared to WT cells (+53 fold, p < 0.001). This suggests that LPL is a feature of reparative microglia, further supported by the metabolic and inflammatory profile of LPL-deficient microglia. Taken together, our data strongly suggest that LPL expression is a novel feature of a microglial phenotype that supports remyelination and repair through the clearance of lipid debris. This mechanism may be exploited to develop future

  1. Study protocol: Addressing evidence and context to facilitate transfer and uptake of consultation recording use in oncology: A knowledge translation implementation study

    Directory of Open Access Journals (Sweden)

    Ruether J Dean

    2011-03-01

    Full Text Available Abstract Background The time period from diagnosis to the end of treatment is challenging for newly diagnosed cancer patients. Patients have a substantial need for information, decision aids, and psychosocial support. Recordings of initial oncology consultations improve information recall, reduce anxiety, enhance patient satisfaction with communication, and increase patients' perceptions that the essential aspects of their disease and treatment have been addressed during the consultation. Despite the research evidence supporting the provision of consultation recordings, uptake of this intervention into oncology practice has been slow. The primary aim of this project is to conduct an implementation study to explicate the contextual factors, including use of evidence, that facilitate and impede the transfer and uptake of consultation-recording use in a sample of patients newly diagnosed with breast or prostate cancer. Methods Sixteen oncologists from cancer centres in three Canadian cities will participate in this three-phase study. The preimplementation phase will be used to identify and address those factors that are fundamental to facilitating the smooth adoption and delivery of the intervention during the implementation phase. During the implementation phase, breast and prostate cancer patients will receive a recording of their initial oncology consultation to take home. Patient interviews will be conducted in the days following the consultation to gather feedback on the benefits of the intervention. Patients will complete the Digital Recording Use Semi-Structured Interview (DRUSSI and be invited to participate in focus groups in which their experiences with the consultation recording will be explored. Oncologists will receive a summary letter detailing the benefits voiced by their patients. The postimplementation phase includes a conceptual framework development meeting and a seven-point dissemination strategy. Discussion Consultation

  2. Droplet aerodynamics, cellular uptake, and efficacy of a nebulizable corticosteroid nanosuspension are superior to a micronized dosage form.

    Science.gov (United States)

    Britland, Stephen; Finter, Wayne; Chrystyn, Henry; Eagland, Donald; Abdelrahim, Mohamed E

    2012-01-01

    Inhaled corticosteroids are considered to be an effective prophylactic against the morbid symptoms of several lung diseases, but scope remains for improvement in drug delivery technology to benefit bioavailability and treatment compliance. To ascertain whether dosage form might influence bioavailability, the emission characteristics and efficacy of a nanoparticulate budesonide formulation (Nanagel®) were compared with those of a proprietary micronized suspension (Pulmicort®) when delivered as a nebulized aerosol to human airway epithelial cells in a culture model. Having the visual appearance of a clear solution, Nanagel® was delivered by both jet and vibrating mesh nebulizers as an increased fine particle fraction and with a smaller mass median aerodynamic diameter (MMAD) compared to the micronized suspension. Quantitative high performance liquid chromatography (HPLC) analysis of cultured epithelia one hour after treatment with Nanagel® revealed a significantly greater cellular accumulation of budesonide when compared with Pulmicort® for an equivalent dose, a differential which persisted 24 and 48 h later. A quantitative in vitro assay measuring the activity of enzymes involved in superoxide production revealed that stressed HaCaT cells (a long-lived, spontaneously immortalized human keratinocyte line) treated with Nanagel® continued to show significantly greater attenuation of inflammatory response compared with Pulmicort®-treated cells 24 h after the application of an equivalent budesonide dose. The present in vitro findings suggest that formulation of inhalable drugs such as budesonide as aerosolized nanoparticulate, rather than microparticulate, suspensions can enhance bioavailability with concomitant improvements in efficacy. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  3. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs.

    Science.gov (United States)

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Zaręba, Magdalena; Wałajtys-Rode, Elżbieta; Wołowiec, Stanisław

    2017-01-15

    In search for soluble derivatives of PAMAM dendrimers as potential carriers for hydrophobic drugs, the conjugates of PAMAM G3 with biotin, further converted into glycodendrimer with d-glucoheptono-1,4-lactone, were prepared. Polyamidoamine dendrimer (PAMAM) of third generation, G3 was functionalized with four biotin equivalents covalently attached to terminal amine nitrogens via amide bond G3 4B . The remaining 28 amine groups were blocked by glucoheptoamide substituents (gh) to give G3 4B28gh or with one fluorescein equivalent (attached by reaction of G3 4B with fluorescein isothiocyanate, FITC) via thiourea bond as FITC followed by exhaustive glucoheptoamidation to get G3 4B27gh1F . As a control the G3 substituted totally with 32 glucoheptoamide residues, G3 gh and its fluorescein labeled analogue G3 31gh1F were synthesized. The glucoheptoamidation of PAMAM G0 dendrimer with glucoheptono-1,4-lactone was performed in order to fully characterize the 1 H NMR spectra of glucoheptoamidated PAMAM dendrimers and to control the derivatization of G3 with glucoheptono-1,4-lactone. Another two derivatives of G3, namely G3 4B28gh1F' and G3 32ghF' , with ester bonded fluorescein were also obtained. Biological properties of obtained dendrimer conjugates were estimated in vitro with human cell lines: normal fibroblast (BJ) and two cancer glioblastoma (U-118 MG) and squamous carcinoma (SCC-15), including cytotoxicity by reduction of XTT and neutral red (NR) assays. Cellular uptake of dendrimer conjugates was evaluated with confocal microscopy. Obtained results confirmed, that biotinylated bioconjugates have always lower cytotoxicity and 3-4 times higher cellular uptake than non-biotinylated dendrimer conjugates in all cell lines. Comparison of various cell lines revealed different dose-dependent cell responses and the lower cytotoxicity of examined dendrimer conjugates for normal fibroblasts and squamous carcinoma, as compared with much higher cytotoxic effects seen in

  4. Synthesis and characterization of Her2-NLP peptide conjugates targeting circulating breast cancer cells: cellular uptake and localization by fluorescent microscopic imaging.

    Science.gov (United States)

    Cai, Huawei; Singh, Ajay N; Sun, Xiankai; Peng, Fangyu

    2015-01-01

    To synthesize a fluorescent Her2-NLP peptide conjugate consisting of Her2/neu targeting peptide and nuclear localization sequence peptide (NLP) and assess its cellular uptake and intracellular localization for radionuclide cancer therapy targeting Her2/neu-positive circulating breast cancer cells (CBCC). Fluorescent Cy5.5 Her2-NLP peptide conjugate was synthesized by coupling a bivalent peptide sequence, which consisted of a Her2-binding peptide (NH2-GSGKCCYSL) and an NLP peptide (CGYGPKKKRKVGG) linked by a polyethylene glycol (PEG) chain with 6 repeating units, with an activated Cy5.5 ester. The conjugate was separated and purified by HPLC and then characterized by Maldi-MS. The intracellular localization of fluorescent Cy5.5 Her2-NLP peptide conjugate was assessed by fluorescent microscopic imaging using a confocal microscope after incubation of Cy5.5-Her2-NLP with Her2/neu positive breast cancer cells and Her2/neu negative control breast cancer cells, respectively. Fluorescent signals were detected in cytoplasm of Her2/neu positive breast cancer cells (SKBR-3 and BT474 cell lines), but not or little in cytoplasm of Her2/neu negative breast cancer cells (MDA-MB-231), after incubation of the breast cancer cells with Cy5.5-Her2-NLP conjugates in vitro. No fluorescent signals were detected within the nuclei of Her2/neu positive SKBR-3 and BT474 breast cancer cells, neither Her2/neu negative MDA-MB-231 cells, incubated with the Cy5.5-Her2-NLP peptide conjugates, suggesting poor nuclear localization of the Cy5.5-Her2-NLP conjugates localized within the cytoplasm after their cellular uptake and internalization by the Her2/neu positive breast cancer cells. Her2-binding peptide (KCCYSL) is a promising agent for radionuclide therapy of Her2/neu positive breast cancer using a β(-) or α emitting radionuclide, but poor nuclear localization of the Her2-NLP peptide conjugates may limit its use for eradication of Her2/neu-positive CBCC using I-125 or other Auger electron

  5. Barriers and facilitators to implementation, uptake and sustainability of community-based health insurance schemes in low- and middle-income countries: a systematic review.

    Science.gov (United States)

    Fadlallah, Racha; El-Jardali, Fadi; Hemadi, Nour; Morsi, Rami Z; Abou Samra, Clara Abou; Ahmad, Ali; Arif, Khurram; Hishi, Lama; Honein-AbouHaidar, Gladys; Akl, Elie A

    2018-01-29

    Community-based health insurance (CBHI) has evolved as an alternative health financing mechanism to out of pocket payments in low- and middle-income countries (LMICs), particularly in areas where government or employer-based health insurance is minimal. This systematic review aimed to assess the barriers and facilitators to implementation, uptake and sustainability of CHBI schemes in LMICs. We searched six electronic databases and grey literature. We included both quantitative and qualitative studies written in English language and published after year 1992. Two reviewers worked in duplicate and independently to complete study selection, data abstraction, and assessment of methodological features. We synthesized the findings based on thematic analysis and categorized according to the ecological model into individual, interpersonal, community and systems levels. Of 15,510 citations, 51 met the eligibility criteria. Individual factors included awareness and understanding of the concept of CBHI, trust in scheme and scheme managers, perceived service quality, and demographic characteristics, which influenced enrollment and sustainability. Interpersonal factors such as household dynamics, other family members enrolled in the scheme, and social solidarity influenced enrollment and renewal of membership. Community-level factors such as culture and community involvement in scheme development influenced enrollment and sustainability of scheme. Systems-level factors encompassed governance, financial and delivery arrangement. Government involvement, accountability of scheme management, and strong policymaker-implementer relation facilitated implementation and sustainability of scheme. Packages that covered outpatient and inpatient care and those tailored to community needs contributed to increased enrollment. Amount and timing of premium collection was reported to negatively influence enrollment while factors reported as threats to sustainability included facility

  6. Magnetic Particle Spectroscopy Reveals Dynamic Changes in the Magnetic Behavior of Very Small Superparamagnetic Iron Oxide Nanoparticles During Cellular Uptake and Enables Determination of Cell-Labeling Efficacy.

    Science.gov (United States)

    Poller, Wolfram C; Löwa, Norbert; Wiekhorst, Frank; Taupitz, Matthias; Wagner, Susanne; Möller, Konstantin; Baumann, Gert; Stangl, Verena; Trahms, Lutz; Ludwig, Antje

    2016-02-01

    In vivo tracking of nanoparticle-labeled cells by magnetic resonance imaging (MRI) crucially depends on accurate determination of cell-labeling efficacy prior to transplantation. Here, we analyzed the feasibility and accuracy of magnetic particle spectroscopy (MPS) for estimation of cell-labeling efficacy in living THP-1 cells incubated with very small superparamagnetic iron oxide nanoparticles (VSOP). Cell viability and proliferation capacity were not affected by the MPS measurement procedure. In VSOP samples without cell contact, MPS enabled highly accurate quantification. In contrast, MPS constantly overestimated the amount of cell associated and internalized VSOP. Analyses of the MPS spectrum shape expressed as harmonic ratio A₅/A₃ revealed distinct changes in the magnetic behavior of VSOP in response to cellular uptake. These changes were proportional to the deviation between MPS and actual iron amount, therefore allowing for adjusted iron quantification. Transmission electron microscopy provided visual evidence that changes in the magnetic properties correlated with cell surface interaction of VSOP as well as with alterations of particle structure and arrangement during the phagocytic process. Altogether, A₅/A₃-adjusted MPS enables highly accurate, cell-preserving VSOP quantification and furthermore provides information on the magnetic characteristics of internalized VSOP.

  7. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology.

    Science.gov (United States)

    Zhang, Wenji; Li, Xuedong; Ye, Tiantian; Chen, Fen; Sun, Xiao; Kong, Jun; Yang, Xinggang; Pan, Weisan; Li, Sanming

    2013-09-15

    This study was to design an innovative nanostructured lipid carrier (NLC) for drug delivery of genistein applied after cataract surgery for the prevention of posterior capsular opacification. NLC loaded with genistein (GEN-NLC) was produced with Compritol 888 ATO, Gelucire 44/14 and Miglyol 812N, stabilized by Solutol(®) HS15 by melt emulsification method. A 2(4) central composite design of 4 independent variables was performed for optimization. Effects of drug concentration, Gelucire 44/14 concentration in total solid lipid, liquid lipid concentration, and surfactant concentration on the mean particle size, polydispersity index, zeta potential and encapsulation efficiency were investigated. Analysis of variance (ANOVA) statistical test was used to assess the optimization. The optimized GEN-NLC showed a homogeneous particle size of 90.16 nm (with PI=0.33) of negatively charged surface (-25.08 mv) and high encapsulation efficiency (91.14%). Particle morphology assessed by TEM revealed a spherical shape. DSC analyses confirmed that GEN was mostly entrapped in amorphous state. In vitro release experiments indicated a prolonged and controlled genistein release for 72 h. In vitro growth inhibition assay showed an effective growth inhibition of GEN-NLCs on human lens epithelial cells (HLECs). Preliminary cellular uptake test proved a enhanced penetration of genistein into HLECs when delivered in NLC. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Methyl 6-Amino-6-deoxy-d-pyranoside-Conjugated Platinum(II) Complexes for Glucose Transporter (GLUT)-Mediated Tumor Targeting: Synthesis, Cytotoxicity, and Cellular Uptake Mechanism.

    Science.gov (United States)

    Li, Taoli; Gao, Xiangqian; Yang, Liu; Shi, Yunli; Gao, Qingzhi

    2016-05-19

    Methyl 6-aminodeoxy-d-pyranoside-derived platinum(II) glycoconjugates were designed and synthesized based on the clinical drug oxaliplatin for glucose transporter (GLUT)-mediated tumor targeting. In addition to a substantial improvement in water solubility, the conjugates exhibited cytotoxicity similar to or higher than that of oxaliplatin in six different human cancer cell lines. GLUT-mediated transport of the complexes was investigated with a cell-based fluorescence competition assay and GLUT-inhibitor-mediated cytotoxicity analysis in a GLUT-overexpressing human colorectal adenocarcinoma (HT29) cell line. The antitumor effect of the aminodeoxypyranoside-conjugated platinum(II) complexes was found to depend significantly on the GLUT inhibitor, and the cellular uptake of the molecules was regulated by GLUT-mediated transport. The results from this study demonstrate the potential advantages of aminodeoxypyranosides as sugar motifs for glycoconjugation for Warburg-effect-targeted drug design. These fundamental results also support the potential of aminodeoxypyranoside-conjugated platinum(II) complexes as lead compounds for further preclinical evaluation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application

    Directory of Open Access Journals (Sweden)

    Alwani S

    2016-02-01

    Full Text Available Saniya Alwani,1 Randeep Kaur,1 Deborah Michel,1 Jackson M Chitanda,2 Ronald E Verrall,3 Chithra Karunakaran,4 Ildiko Badea1 1Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, 2Department of Chemical & Biological Engineering, 3Department of Chemistry, University of Saskatchewan, 4Canadian Light Source, Saskatoon, SK, Canada Purpose: Nanodiamonds (NDs are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. Methods: lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA was also analyzed using flow cytometry. Results: Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed

  10. Enhanced cellular uptake and phototoxicity of Verteporfin-conjugated gold nanoparticles as theranostic nanocarriers for targeted photodynamic therapy and imaging of cancers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Linlin [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384 (China); Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Tae-Hyun; Kim, Hae-Won [Department of Nanobiomedical Science, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN) & College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Ahn, Jin-Chul [Department of Biomedical Science, College of Medicine, Dankook University, Cheonan, 330-714 (Korea, Republic of); Kim, So Yeon, E-mail: kimsy@cnu.ac.kr [Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Chemical Engineering Education, College of Education, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2016-10-01

    Activatable theranostics with the capacity to respond to a given stimulus have recently been intensively explored to develop more specific, individualized therapies for various diseases, and to combine diagnostic and therapeutic capabilities into a single agent. In this work, we designed tumor-targeting ligand-conjugated block copolymer-gold nanoparticle (AuNP) conjugates as multifunctional nanocarriers of the hydrophobic photosensitizer (PS), verteporfin (Verte), for simultaneous photodynamic therapy and imaging of cancers. Folic acid (FA)-conjugated block copolymers composed of polyethylene glycol (PEG) and poly-β-benzyl-L-aspartate (PBLA) were attached to citrate-stabilized AuNPs through a bidentate dihydrolipoic acid (DHLA) linker. The resulting AuNP conjugates (FA-PEG-P(Asp-Hyd)-DHLA-AuNPs) were significantly more stable than unmodified AuNPs, and their optical properties were not affected by pH. The hydrophobic PS, Verte, was covalently incorporated onto the surfaces of the AuNP conjugates through a pH-sensitive linkage, which increased the water solubility of Verte from < 1 μg/ml to > 2000 μg/ml. The size of FA-PEG-P(Asp-Hyd)-DHLA-AuNPs-Verte as determined by light-scattering measurements was about 110.3 nm, and FE-SEM and FE-TEM images showed that these nanoparticles were spherical and showed adequate dispersivity after modification. In particular, an in vitro cell study revealed high intracellular uptake of FA-PEG-P(Asp-Hyd)-DHLA-AuNPs-Verte (about 98.62%) and marked phototoxicity after laser irradiation compared with free Verte. These results suggest that FA-PEG-P(Asp-Hyd)-DHLA-AuNPs-Verte has great potential as an effective nanocarrier for dual imaging and photodynamic therapy. - Highlights: • We designed theranostic nanocarriers for photodynamic therapy and imaging of cancers. • AuNP conjugates had a spherical shape and a narrow size distribution with a mean diameter of 110.3 nm. • Cellular uptake of free Verte was 18.86%, whereas that of Au

  11. Barriers and facilitating factors to the uptake of antiretroviral drugs for prevention of mother-to-child transmission of HIV in sub-Saharan Africa: a systematic review

    Science.gov (United States)

    Gourlay, Annabelle; Birdthistle, Isolde; Mburu, Gitau; Iorpenda, Kate; Wringe, Alison

    2013-01-01

    Objectives To investigate and synthesize reasons for low access, initiation and adherence to antiretroviral drugs by mothers and exposed babies for prevention of mother-to-child transmission (PMTCT) of HIV in sub-Saharan Africa. Methods A systematic literature review was conducted. Four databases were searched (Medline, Embase, Global Health and Web of Science) for studies conducted in sub-Saharan Africa from January 2000 to September 2012. Quantitative and qualitative studies were included that met pre-defined criteria. Antiretroviral (ARV) prophylaxis (maternal/infant) and combination antiretroviral therapy (ART) usage/registration at HIV care and treatment during pregnancy were included as outcomes. Results Of 574 references identified, 40 met the inclusion criteria. Four references were added after searching reference lists of included articles. Twenty studies were quantitative, 16 were qualitative and eight were mixed methods. Forty-one studies were conducted in Southern and East Africa, two in West Africa, none in Central Africa and one was multi-regional. The majority (n=25) were conducted before combination ART for PMTCT was emphasized in 2006. At the individual-level, poor knowledge of HIV/ART/vertical transmission, lower maternal educational level and psychological issues following HIV diagnosis were the key barriers identified. Stigma and fear of status disclosure to partners, family or community members (community-level factors) were the most frequently cited barriers overall and across time. The extent of partner/community support was another major factor impeding or facilitating the uptake of PMTCT ARVs, while cultural traditions including preferences for traditional healers and birth attendants were also common. Key health-systems issues included poor staff-client interactions, staff shortages, service accessibility and non-facility deliveries. Conclusions Long-standing health-systems issues (such as staffing and service accessibility) and community

  12. Receptor-independent, vacuolar ATPase-mediated cellular uptake of histamine receptor-1 ligands: Possible origin of pharmacological distortions and side effects

    International Nuclear Information System (INIS)

    Morissette, Guillaume; Lodge, Robert; Bouthillier, Johanne; Marceau, Francois

    2008-01-01

    The aims of this study were to investigate whether several histamine receptor agonists and antagonists are subjected to receptor-independent ion trapping into acidic organelles, and whether this sequestration influences their pharmacological or toxicological properties. Vacuolar (V)-ATPase-dependent intracellular sequestration of agonists was recognized as morphological alterations (large fluid-filled vacuoles for betahistine and 1-methylhistamine, granular uptake for fluorescent BODIPY FL histamine) prevented by the specific V-ATPase inhibitor bafilomycin A1 in rabbit vascular smooth muscle cells. Lipophilicity was the major determinant of these cellular effects (order of potency: BODIPY FL histamine > betahistine > 1-methylhistamine > histamine) that occurred at high concentrations. This ranking was dissociable from the potency order for H 1 receptor-mediated contraction of the rabbit aorta, a response uninfluenced by bafilomycin. Antihistamines are inherently more lipophilic and caused vacuolization of a proportion of cells at 5-500 μM. Agonist or antagonist-induced vacuoles were of macroautophagic nature (labeled with GFP-conjugated LC3, Rab7 and CD63; detection of LC3 II). Further, the 2 most lipophilic antihistamines tested, astemizole and terfenadine, were potentiated by V-ATPase blockade in the aortic contractility assay (13- and 3.6-fold more potent, respectively, pA 2 scale), suggesting that V-ATPase-mediated cation trapping sequesters these antagonists from the vicinity of H 1 receptors in the therapeutic concentration range. This potentiation did not apply to less lipophilic antagonists (pyrilamine, diphenhydramine). While some agonists and all tested antagonists of the histamine H 1 receptors induce the V-ATPase-dependent vacuolar and autophagic cytopathology, sequestration affects the pharmacology of only the most lipophilic antagonists, the ones prone to off-target arrhythmogenic side effects

  13. Differential uptake and oxidative stress response in zebrafish fed a single dose of the principal copper and zinc enriched sub-cellular fractions of Gammarus pulex

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Farhan R., E-mail: f.khan@nhm.ac.uk [Nutritional Sciences Division, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Bury, Nicolas R.; Hogstrand, Christer [Nutritional Sciences Division, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom)

    2010-09-15

    The sub-cellular compartmentalisation of trace metals and its effect on trophic transfer and toxicity in the aquatic food chain has been a subject of growing interest. In the present study, the crustacean Gammarus pulex was exposed to either 11 {mu}g Cu l{sup -1}, added solely as the enriched stable isotope {sup 65}Cu, or 660 {mu}g Zn l{sup -1}, radiolabeled with 2MBq {sup 65}Zn, for 16 days. Post-exposure the heat stable cytosol containing metallothionein-like proteins (MTLP) and a combined granular and exoskeletal (MRG + exo) fractions were isolated by differential centrifugation, incorporated into gelatin and fed to zebrafish as a single meal. Assimilation efficiency (AE) and intestinal lipid peroxidation, as malondialdehyde (MDA) were measured. There was a significant difference (p < 0.05) between the retention of the MTLP-Zn (39.0 {+-} 6.4%) and MRG + exo-Zn (17.2 {+-} 3.7%) and of this zinc retained by the zebrafish a significantly greater proportion of the MTLP-Zn feed had been transported away from the site of uptake. For {sup 65}Cu, although the results pointed towards greater bioavailability of the MTLP fraction compared to MRG + exo during the slow elimination phase (24-72 h) these results were not significant (p = 0.155). Neither zinc feed provoked a lipid peroxidation response in the intestinal tissue of zebrafish compared to control fish (gelatin fed), but both {sup 65}Cu labeled feeds did. The greater effect was exerted by the MRG + exo (2.96 {+-} 0.29 nmol MDA mg protein{sup -1}) feed which three-fold greater than control (p < 0.01) and almost twice the MDA concentration of the MTLP feed (1.76 {+-} 0.21 nmol MDA mg protein{sup -1}, p < 0.05). The oxidative stress response produced by Zn and Cu is in keeping with their respective redox potentials; Zn being oxidatively inert and Cu being redox active. These results are similar, in terms of bioavailability and stress response of each feed, to those in our previous study in which {sup 109}Cd labeled G

  14. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine-b-poly(2-(diisopropylaminoethyl methacrylate (MPC-DPA polymeric nanoparticle micelles for nanomedicine applications

    Directory of Open Access Journals (Sweden)

    Jonathan P. Salvage

    2016-01-01

    Full Text Available Abstract Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine-b-poly(2-(diisopropylaminoethyl methacrylate (MPC-DPA. Atom transfer radical polymerisation (ATRP, and gel permeation chromatography (GPC were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64–69 nm, and increased upon hydrophobic compound loading, circa 65–71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system

  15. Novel theranostic zinc phthalocyanine-phospholipid complex self-assembled nanoparticles for imaging-guided targeted photodynamic treatment with controllable ROS production and shape-assisted enhanced cellular uptake.

    Science.gov (United States)

    Ma, Jinyuan; Li, Yang; Liu, Guihua; Li, Ai; Chen, Yilin; Zhou, Xinyi; Chen, Dengyue; Hou, Zhenqing; Zhu, Xuan

    2018-02-01

    The novel drug delivery system based on self-assembly of zinc phthalocyanine-soybean phosphatidylcholine (ZnPc-SPC) complex was developed by a co-solvent method followed by a nanoprecipitaion technique. DSPE-PEG-methotrexate (DSPE-PEG-MTX) was introduced on the surface of ZnPc-SPC self-assembled nanoparticles (ZS) to endow them with folate receptor-targeting property. NMR, XRD, FTIR, and UV-vis-NIR analysis demonstrated the weak molecular interaction between ZnPc and SPC. The ZS functionalized with DSPE-PEG-MTX (ZSPM) was successfully constructed with an average particle size of ∼170nm, a narrow size distribution, and could remain physiologically stable for at least 7days. In vitro cellular uptake and cytotoxicity studies demonstrated that ZSPM exhibited stronger cellular uptake efficacy and photodynamic cytotoxicity against HeLa and MCF-7 cells than ZS functionalized with DSPE-mPEG (ZSP) and free ZnPc. More importantly, ZSPM showed the enhanced accumulation effect at the tumor region compared with ZSP by the active-plus-passive targeting via enhanced permeability and retention (EPR) effect and folate receptor-mediated endocytosis. Furthermore, in vivo antitumor effect and histological analysis demonstrated the superior tumor growth inhibition effect of ZSPM. In addition, the needle-shape ZSP (ZSPN) exhibited better in vitro cellular uptake and in vivo tumor accumulation compared with ZSP due to the shape-assisted effect. Moreover, the interesting off-on switch effect of reactive oxygen species (ROS) production of ZnPc-SPC complex-based nanoparticles was discovered to achieve photodynamic treatment in a controllable way. These findings suggested that the ZnPc-SPC complex-based self-assembled nanoparticles could serve as a promising and effective formulation to achieve tumor-targeting fluorescence imaging and enhanced photodynamic treatment. Copyright © 2017. Published by Elsevier B.V.

  16. Fermentation of sugar beet waste by ¤Aspergillus niger¤ facilitates growth and P uptake of external mycelium of mixed populations of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Medina, A.; Jakobsen, Iver; Vassilev, N.

    2007-01-01

    Sugar beet waste has potential value as a soil amendment and this work studied whether fermentation of the waste by Aspergillus niger would influence the growth and P uptake of arbuscular mycorrhizal (AM) fungi. Plants were grown in compartmentalised growth units, each with a root compartment (RC......) and two lateral root-free compartments (RFC). One RFC contained untreated soil while the other RFC contained soil, which was uniformly mixed with sugar beet waste, either untreated (SB) or degraded by A. niger (ASB) in a rock phosphate (RP)-supplied medium. The soil in each pair of RFC was labelled with P...... of exudates by A. niger, as a consequence of fermentation process of sugar beet waste, could possibly explain the increase of AM growth in ASB treatments. On the other hand, the highest P uptake was a result of the solubilisation of rock phosphate by A. niger during the fermentation. (c) 2006 Elsevier Ltd...

  17. The Ag85B protein of the BCG vaccine facilitates macrophage uptake but is dispensable for protection against aerosol Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Prendergast, Kelly A; Counoupas, Claudio; Leotta, Lisa; Eto, Carolina; Bitter, Wilbert; Winter, Nathalie; Triccas, James A

    2016-05-17

    Defining the function and protective capacity of mycobacterial antigens is crucial for progression of tuberculosis (TB) vaccine candidates to clinical trials. The Ag85B protein is expressed by all pathogenic mycobacteria and is a component of multiple TB vaccines under evaluation in humans. In this report we examined the role of the BCG Ag85B protein in host cell interaction and vaccine-induced protection against virulent Mycobacterium tuberculosis infection. Ag85B was required for macrophage infection in vitro, as BCG deficient in Ag85B expression (BCG:(Δ85B)) was less able to infect RAW 264.7 macrophages compared to parental BCG, while an Ag85B-overexpressing BCG strain (BCG:(oex85B)) demonstrated improved uptake. A similar pattern was observed in vivo after intradermal delivery to mice, with significantly less BCG:(Δ85B) present in CD64(hi)CD11b(hi) macrophages compared to BCG or BCG:(oex85B). After vaccination of mice with BCG:(Δ85B) or parental BCG and subsequent aerosol M. tuberculosis challenge, similar numbers of activated CD4(+) and CD8(+) T cells were detected in the lungs of infected mice for both groups, suggesting the reduced macrophage uptake observed by BCG:(Δ85B) did not alter host immunity. Further, vaccination with both BCG:(Δ85B) and parental BCG resulted in a comparable reduction in pulmonary M. tuberculosis load. These data reveal an unappreciated role for Ag85B in the interaction of mycobacteria with host cells and indicates that single protective antigens are dispensable for protective immunity induced by BCG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Targeting of Mitochondria by 10-N-Alkyl Acridine Orange Analogues: Role of Alkyl Chain Length in Determining Cellular Uptake and Localization

    Science.gov (United States)

    Rodriguez, Myriam E.; Azizuddin, Kashif; Zhang, Ping; Chiu, Song-mao; Lam, Minh; Kenney, Malcolm E.; Burda, Clemens; Oleinick, Nancy L.

    2008-01-01

    10-N-nonyl acridine orange (NAO) is used as a mitochondrial probe because of its high affinity for cardiolipin (CL). Targeting of NAO may also depend on mitochondrial membrane potential. As the nonyl group has been considered essential for targeting, a systematic study of alkyl chain length was undertaken; three analogues (10-methyl-, 10-hexyl-, and 10-hexadecyl-acridine orange) were synthesized and their properties studied in phospholipid monolayers and breast cancer cells. The shortest and longest alkyl chains reduced targeting, whereas the hexyl group was superior to the nonyl group, allowing very clear and specific targeting to mitochondria at concentrations of 20–100 nM, where no evidence of toxicity was apparent. Additional studies in wild-type and cardiolipin-deficient yeast cells suggested that cellular binding was not absolutely dependent upon cardiolipin. PMID:18514589

  19. Near-infrared activatable phthalocyanine-poly-L-glutamic acid conjugate: increased cellular uptake and light-dark toxicity ratio toward an effective photodynamic cancer therapy.

    Science.gov (United States)

    Kiew, Lik Voon; Cheah, Hoay Yan; Voon, Siew Hui; Gallon, Elena; Movellan, Julie; Ng, Kia Hui; Alpugan, Serkan; Lee, Hong Boon; Dumoulin, Fabienne; Vicent, María J; Chung, Lip Yong

    2017-05-01

    In photodynamic therapy (PDT), the low absorptivity of photosensitizers in an aqueous environment reduces singlet oxygen generation efficiency and thereby decreases photosensitizing efficacy in biological conditions. To circumvent this problem, we designed a phthalocyanine-poly-L-glutamic acid conjugate (1-PG) made from a new phthalocyanine (Pc 1) monofunctionalized to allow adequate conjugation to PGA. The resulting 1-PG conjugate retained high absorptivity in the near-infrared (NIR) region at its λ max 675nm in an aqueous environment. The 1-PG conjugate demonstrated good singlet oxygen generation efficiency, increased uptake by 4 T1 breast cancer cells via clathrin-mediated endocytosis, and enhanced photocytotoxic efficacy. The conjugate also displayed a high light-dark toxicity ratio, approximately 1.5-fold greater than zinc phthalocyanine at higher concentration (10 μM), an important feature for the reduction of dark toxicity and unwanted side effects. These results suggest that the 1-PG conjugate could be a useful alternative for deep tissue treatment with enhanced anti-cancer (PDT) efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects.

    Science.gov (United States)

    Song, Zhiwang; Lin, Yun; Zhang, Xia; Feng, Chan; Lu, Yonglin; Gao, Yong; Dong, Chunyan

    2017-01-01

    Apatinib is an oral tyrosine kinase inhibitor, which selectively targets vascular endothelial growth factor receptor 2 and has the potential to treat many tumors therapeutically. Cyclic arginylglycylaspartic acid (cRGD)- and polyethylene glycol (PEG)-modified liposomes (cRGD-Lipo-PEG) were constructed to act as a targeted delivery system for the delivery of apatinib to the human colonic cancer cell line, HCT116. These cRGD-modified liposomes specifically recognized integrin α v β 3 and exhibited greater uptake efficiency with respect to delivering liposomes into HCT116 cells when compared to nontargeted liposomes (Lipo-PEG), as well as greater death of tumor cells and apoptosis. The mechanism by which cRGD-Lipo-PEG targets cells was elucidated further with competition assays. To determine the anticancer efficacy in vivo, nude mice were implanted with HCT116 xenografts and treated with apatinib-loaded liposomes or free apatinib intravenously or via intragastric administration. The active and passive targeting of cRGD-Lipo-PEG led to significant tumor treatment targeting ability, better inhibition of tumor growth, and less toxicity when compared with treatments using uncombined apatinib. The results presented strongly support the case for cRGD-Lipo-PEG representing a targeted delivery system for apatinib in the treatment of colonic cancer.

  1. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Yan M

    2016-02-01

    Full Text Available Ming Yan,1,* Yun Zhang,2,* Haiyan Qin,3 Kezhou Liu,1 Miao Guo,1 Yakun Ge,1 Mingen Xu,1 Yonghong Sun,4 Xiaoxiang Zheng4 1Department of Biomedical Engineering, College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 2Basic Medical Sciences, College of Medicine, Shaoxing University, Shaoxing, 3Department of Chemistry, Zhejiang University, 4Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Cadmium telluride quantum dots (CdTe QDs have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs. However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (–21.63±0.91 mV, with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature. The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and

  2. Awareness of Pre-exposure Prophylaxis for HIV, Willingness to Use It and Potential Barriers or Facilitators to Uptake Among Men Who Have Sex with Men in Spain.

    Science.gov (United States)

    Ferrer, L; Folch, C; Fernandez-Davila, P; Garcia, A; Morales, A; Belda, J; Susperregui, A R; Casabona, J

    2016-07-01

    There is a lack of data on pre-exposure prophylaxis (PrEP) effectiveness in Spain. We described the awareness of and willingness to use PrEP and examined potential barriers and facilitators to their use among men who have sex with men recruited either online or in voluntary HIV testing centers in Spain. Nearly a third of men (28.7 %) were aware of PrEP and 57.6 % said they would be willing to use it if available, 16.6 % saying they would be unwilling to use PrEP and 25.8 % not being sure. Men who had heard of PrEP were more forceful in their opinions on willingness to use PrEP (willing/not willing: 29.8 %/32.6 % vs. don't know: 21.8 %). The greatest consensus regarding more acceptable PrEP attributes was in the mode of delivery and its cost. Doctors (91 %) or pharmacists (85.3 %) were the preferred providers. The results confirm the need to inform and educate on PrEP and define implementation strategies.

  3. CD23 surface density on B cells is associated with IgE levels and determines IgE-facilitated allergen uptake, as well as activation of allergen-specific T cells.

    Science.gov (United States)

    Selb, Regina; Eckl-Dorna, Julia; Neunkirchner, Alina; Schmetterer, Klaus; Marth, Katharina; Gamper, Jutta; Jahn-Schmid, Beatrice; Pickl, Winfried F; Valenta, Rudolf; Niederberger, Verena

    2017-01-01

    Increasing evidence suggests that the low-affinity receptor for IgE, CD23, plays an important role in controlling the activity of allergen-specific T cells through IgE-facilitated allergen presentation. We sought to determine the number of CD23 molecules on immune cells in allergic patients and to investigate whether the number of CD23 molecules on antigen-presenting cells is associated with IgE levels and influences allergen uptake and allergen-specific T-cell activation. Numbers of CD23 molecules on immune cells of allergic patients were quantified by using flow cytometry with QuantiBRITE beads and compared with total and allergen-specific IgE levels, as well as with allergen-induced immediate skin reactivity. Allergen uptake and allergen-specific T-cell activation in relation to CD23 surface density were determined by using flow cytometry in combination with confocal microscopy and T cells transfected with the T-cell receptor specific for the birch pollen allergen Bet v 1, respectively. Defined IgE-allergen immune complexes were formed with human monoclonal allergen-specific IgE and Bet v 1. In allergic patients the vast majority of CD23 molecules were expressed on naive IgD + B cells. The density of CD23 molecules on B cells but not the number of CD23 + cells correlated with total IgE levels (R S  = 0.53, P = .03) and allergen-induced skin reactions (R S  = 0.63, P = .008). Uptake of allergen-IgE complexes into B cells and activation of allergen-specific T cells depended on IgE binding to CD23 and were associated with CD23 surface density. Addition of monoclonal IgE to cultured PBMCs significantly (P = .04) increased CD23 expression on B cells. CD23 surface density on B cells of allergic patients is correlated with allergen-specific IgE levels and determines allergen uptake and subsequent activation of T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Altered composition of bone as triggered by irradiation facilitates the rapid erosion of the matrix by both cellular and physicochemical processes.

    Directory of Open Access Journals (Sweden)

    Danielle E Green

    Full Text Available Radiation rapidly undermines trabecular architecture, a destructive process which proceeds despite a devastated cell population. In addition to the 'biologically orchestrated' resorption of the matrix by osteoclasts, physicochemical processes enabled by a damaged matrix may contribute to the rapid erosion of bone quality. 8w male C57BL/6 mice exposed to 5 Gy of Cs(137 γ-irradiation were compared to age-matched control at 2d, 10d, or 8w following exposure. By 10d, irradiation had led to significant loss of trabecular bone volume fraction. Assessed by reflection-based Fourier transform infrared imaging (FTIRI, chemical composition of the irradiated matrix indicated that mineralization had diminished at 2d by -4.3±4.8%, and at 10d by -5.8±3.2%. These data suggest that irradiation facilitates the dissolution of the matrix through a change in the material itself, a conclusion supported by a 13.7±4.5% increase in the elastic modulus as measured by nanoindentation. The decline in viable cells within the marrow of irradiated mice at 2d implies that the immediate collapse of bone quality and inherent increased risk of fracture is not solely a result of an overly-active biologic process, but one fostered by alterations in the material matrix that predisposes the material to erosion.

  5. New palladium(II) and platinum(II) 5,5-diethylbarbiturate complexes with 2-phenylpyridine, 2,2'-bipyridine and 2,2'-dipyridylamine: synthesis, structures, DNA binding, molecular docking, cellular uptake, antioxidant activity and cytotoxicity.

    Science.gov (United States)

    Icsel, Ceyda; Yilmaz, Veysel T; Kaya, Yunus; Samli, Hale; Harrison, William T A; Buyukgungor, Orhan

    2015-04-21

    Novel palladium(ii) and platinum(ii) complexes of 5,5-diethylbarbiturate (barb) with 2-phenylpyridine (Hppy), 2,2'-bipyridine (bpy) and 2,2'-dipyridylamine (dpya) have been prepared and characterized by elemental analysis, IR, UV-Vis, NMR and ESI-MS. Single-crystal diffraction measurements show that complex consists of binuclear [Pd2(μ-barb-κN,O)2(ppy-κN,C)2] moieties, while complexes are mononuclear, [M(barb-κN)2(L-κN,N')] (L = bpy or dpya). has a composition of [Pt(dpya-κN,N')2][Ag(barb-κN)2]2·4H2O and was assumed to have a structure of [Pt(barb-κN)(Hppy-κN)(ppy-κN,C)]·3H2O. The complexes were found to exhibit significant DNA binding affinity by a non-covalent binding mode, in accordance with molecular docking studies. In addition, complexes and displayed strong binding with supercoiled pUC19 plasmid DNA. Cellular uptake studies were performed to assess the subcellular localization of the selected complexes. A moderate radical scavenging activity of and was confirmed by DPPH and ABTS tests. Complexes , , and showed selectivity against HT-29 (colon) cell line.

  6. FDG uptake in the stomach

    International Nuclear Information System (INIS)

    Yun, M. J.; Cho, H. J.; Cho, E. H.; Kim, T. S.; Kang, W. J.; Lee, J. D.

    2007-01-01

    This study was performed to evaluate histopathologic features of advanced gastric cancer (AGC) to predict FDG uptake on PET. 153 patients(102 men; mean age, 55 y) were diagnosed with AGC by surgery were included in this study. PET images were evaluated by visual and semi-quantitative analysis of FDG uptake in primary tumors. Primary tumors size were measured and divided according to Borrmann classification. Tumor histology was classified under WHO classification, depth of invasion and Iymphovascular invasion. The tumors were also grouped by high cellular(cellularity = 50%) and low cellular group (<50%). Microscopic growth type was based on Lauren classification. Stromal fibrosis degree and inflammatory cell infiltration amount was graded as low(none∼mild), or high(moderate∼severe). Lymph node metastases was assessed in all patients. Statistical analyses were performed to evaluate differences in SUV as to histopathologic factors. Of the 153 patients, 21 patients(14%) had primary tumor invisible on initial whole body images. After water ingestion, the tumors became visible in 15 of the 21 patients due to disappearance of physiologic stomach uptake. Polypoid or ulcerofungating tumors, high cellularity, intestinal growth pattern, and larger tumors significantly predicted increased tumor SUVs. Well or moderately differentiated adenocarcinoma tended to show high cellularity and intestinal growth pattern. Poorly differentiated adenocarcinoma had diverse spectrum of histopathology. Signet ring cell carcinomas were mostly ulceroinfiltrative or diffusely infiltrative in macroscopic type and diffuse in microscopic tumor growth. Mucinous adenocarcinomas were mostly low in cellularity. FDG uptake patterns are useful in representing histopathologic characteristics of the entire tumor in gastric cancers. The degree of FDG uptake depends on tumor size, macroscopic type, cellularity, and microscopic growth pattern and it shows no association with well known important prognostic

  7. Development and validation of an antigen-binding capture ELISA for native and putrescine-modified anti-tetanus F(ab')2 fragments for the assessment of the cellular uptake and plasma kinetics of the antibodies.

    Science.gov (United States)

    Welfringer, Frédéric; d'Athis, Philippe; Scherrmann, Jean-Michel; Hervé, Françoise

    2005-12-20

    Cationization is a strategy to enhance the permeability of antibodies to physiological membranes for potential therapeutic and diagnostic applications of these proteins, with one of its crucial points being the retention of antigen binding activity. Here, we describe the cationization of horse polyclonal anti-tetanus F(ab')(2) fragments and the development and validation of an ELISA for quantitative measurements of the binding activity of the native and cationized F(ab')(2) in cell lysates and rat plasma samples, assessing the cellular uptake and plasma kinetics of these antibodies, respectively. The method used tetanus anatoxin coated on microtitre plates as capture antigen to bind sample or standard F(ab')(2), the amount of antibody binding being quantified using, first, a secondary biotinylated anti-horse antibody/streptavidin-alkaline phosphatase complex in situ and then a measurement of the substrate product. Cationization of the F(ab')(2) was performed with putrescine at pH 4.5 using soluble carbodiimide as carboxyl activator. The average substitution ratio was determined at 3 putrescine molecules per F(ab')(2) molecule. The cationized F(ab')(2) retained roughly 80% of the initial antigen binding activity and was stable over a 1 year period of storage at -20 degrees C. The ELISA validation data showed that the method was linear for both the native and cationized F(ab')(2) using Hanks' balanced saline solution with 0.2% bovine serum albumin as assay diluent for the cell lysate samples. The useful F(ab')(2) concentration range was 2.5-25 ng/ml and the limit of quantification was 2.5 ng/ml. With rat blank plasma used as assay diluent for the rat plasma samples the useful F(ab')(2) concentration range was 3.5-25 ng/ml and the limit of quantification was 3.5 ng/ml. Specific requirements for the limits of quantification were fulfilled: precision tetanus F(ab')(2) in an HL 60 cell model, and of plasma kinetics after i.v. administration to rats.

  8. Nanomicelle drug with acid-triggered doxorubicin release and enhanced cellular uptake ability based on mPEG-graft-poly(N-(2-aminoethyl)-L-aspartamide)-hexahydrophthalic acid copolymers.

    Science.gov (United States)

    Cao, Li; Xiao, Yi; Lu, Wei; Liu, Shiyuan; Gan, Lin; Yu, Jiahui; Huang, Jin

    2018-01-01

    In order to achieve the passive tumor targeting and acid-triggered drugs release in lysosomes, optimized delivery system for doxorubicin based on pH-sensitive complex nanomicelles with suitable particle size was developed in this research. Particularly, poly(L-succinimide) was thoroughly ring-opened by ethylenediamine to give the poly(N-(2-aminoethyl)-L-aspartamide). Then, graft copolymer mPEG-graft-poly(N-(2-aminoethyl)-L-aspartamide)-hexahydrophthalic acid (mPEG-g-P(ae-Asp)-Hap) was synthesized by grafting mPEG-2000 and hexahydrophthalic anhydride onto poly(N-(2-aminoethyl)-L-aspartamide). In vitro studies revealed that mPEG-g-P(ae-Asp)-Hap copolymer was stable in neutral solutions but tend to be hydrolyzed under acidic condition, which was attributed to the acid-sensitive properties of hexahydrophthalic amides (β-carboxylic amides). MPEG-g-P(ae-Asp)-Hap copolymer with critical aggregation concentration of 0.166 mg·mL -1 could self-assemble into stable blank nanomicelles with an average particle hydrodynamic diameter of 98.1 nm, but the hydrodynamic diameter of doxorubicin-loaded nanomicelles (mPEG-g-P(ae-Asp)-Hap·Dox) was smaller and approximately 77.5 nm. MPEG-g-P(ae-Asp)-Hap·Dox nanomicelles showed sustained drug release profiles over 34 h, and the cumulative drug release showed a tendency to increase from 25% to 62% with the pH value decreasing from 7.4 to 5.0 due to the acid-triggered disassembly of nanomicelles. The cytotoxicity of mPEG-g-P(ae-Asp)-Hap·Dox nanomicelles against A549 treated with 40 mM NH 4 Cl (lysosomotropic weak bases) was decreased significantly than that without NH 4 Cl treatment, further confirmed the drug release from the nanomicelles was triggered by the low pH value of lysosome (pH 5.0). Compared with doxorubicin HCl, mPEG-g-P(ae-Asp)-Hap·Dox nanomicelle drug showed enhanced cellular uptake ability during 2 or 4 h of incubation due to the endocytosis mechanism of nanomicelle drug. In summary, the cleavage of p

  9. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  10. Silicate reduces cadmium uptake into cells of wheat

    International Nuclear Information System (INIS)

    Greger, Maria; Kabir, Ahmad H.; Landberg, Tommy; Maity, Pooja J.; Lindberg, Sylvia

    2016-01-01

    Cadmium (Cd) is a health threat all over the world and high Cd content in wheat causes high Cd intake. Silicon (Si) decreases cadmium content in wheat grains and shoot. This work investigates whether and how silicate (Si) influences cadmium (Cd) uptake at the cellular level in wheat. Wheat seedlings were grown in the presence or absence of Si with or without Cd. Cadmium, Si, and iron (Fe) accumulation in roots and shoots was analysed. Leaf protoplasts from plants grown without Cd were investigated for Cd uptake in the presence or absence of Si using the fluorescent dye, Leadmium Green AM. Roots and shoots of plants subjected to all four treatments were investigated regarding the expression of genes involved in the Cd uptake across the plasma membrane (i.e. LCT1) and efflux of Cd into apoplasm or vacuole from the cytosol (i.e. HMA2). In addition, phytochelatin (PC) content and PC gene (PCS1) expression were analysed. Expression of iron and metal transporter genes (IRT1 and NRAMP1) were also analysed. Results indicated that Si reduced Cd accumulation in plants, especially in shoot. Si reduced Cd transport into the cytoplasm when Si was added both directly during the uptake measurements and to the growth medium. Silicate downregulated LCT1 and HMA2 and upregulated PCS1. In addition, Si enhanced PC formation when Cd was present. The IRT1 gene, which was downregulated by Cd was upregulated by Si in root and shoot facilitating Fe transport in wheat. NRAMP1 was similarly expressed, though the effect was limited to roots. This work is the first to show how Si influences Cd uptake on the cellular level. - Highlights: • Si decreases accumulation and translocation of Cd in plants at tissue level. • This work is the first to show how Si influences Cd uptake. • Si decreases Cd uptake into cell and downregulates heavy metal transporter LCT1. • Si downregulates HMA2 transporter, which regulates Cd transport from root to shoot. • Si increases phytochelatin formation

  11. Effects of different transferrin forms on transferrin receptor expression, iron uptake, and cellular proliferation of human leukemic HL60 cells. Mechanisms responsible for the specific cytotoxicity of transferrin-gallium.

    OpenAIRE

    Chitambar, C R; Seligman, P A

    1986-01-01

    We have previously shown that human leukemic cells proliferate normally in serum-free media containing various transferrin forms, but the addition of transferrin-gallium leads to inhibition of cellular proliferation. Because gallium has therapeutic potential, the effects of transferrin-gallium on leukemic cell proliferation, transferrin receptor expression, and cellular iron utilization were studied. The cytotoxicity of gallium is considerably enhanced by its binding to transferrin and cytoto...

  12. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  13. Cellular communication through light.

    Science.gov (United States)

    Fels, Daniel

    2009-01-01

    Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source) as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials) allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more) frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ... the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is a ...

  15. Facilitating innovations

    NARCIS (Netherlands)

    Buurma, J.S.; Visser, A.J.; Migchels, G.

    2011-01-01

    Many innovations involve changes which transcend the individual business or are only achievable when various businesses and/or interested parties take up the challenge together. In System Innovation Programmes, the necessary innovations are facilitated by means of workshops related to specific areas

  16. Fluorescent derivatives of σ receptor ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) as a tool for uptake and cellular localization studies in pancreatic tumor cells.

    Science.gov (United States)

    Abate, Carmen; Hornick, John R; Spitzer, Dirk; Hawkins, William G; Niso, Mauro; Perrone, Roberto; Berardi, Francesco

    2011-08-25

    Fluorescent derivatives of σ(2) high affinity ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine 1 (PB28) were synthesized. NBD or dansyl fluorescent tags were connected through a 5- or 6-atom linker in two diverse positions of 1 structure. Good σ(2) affinities were obtained when the fluorescent tag was linked to 5-methoxytetralin nucleus replacing the methyl function. NBD-bearing compound 16 displayed high σ(2) affinity (K(i) = 10.8 nM) and optimal fluorescent properties. Its uptake in pancreatic tumor cells was evaluated by flow cytometry, showing that it partially occurs through endocytosis. In proliferating cells, the uptake was higher supporting that σ(2) receptors are markers of cell proliferation and that the higher the proliferation is, the stronger the antiproliferative effect of σ(2) agonists is. Colocalization of 16 with subcellular organelles was studied by confocal microscopy: the greatest was in endoplasmic reticulum and lysosomes. Fluorescent σ(2) ligands show their potential in clarifying the mechanisms of action of σ(2) receptors. © 2011 American Chemical Society

  17. Playing facilitator

    DEFF Research Database (Denmark)

    Houmøller, Ellen; Marchetti, Emanuela

    2015-01-01

    workshops based on two classic role-play games: The Silent Game (Brandt, 2006) and The Six Thinking Hats (de Bono, 1985). These games were created to support students in learning design thinking in groups and are assigned positive values in literature, hence we expected a smooth process. However, our......t: This paper presents reflections on the role of teachers as facilitators, in a context of role-play targeting learning of design thinking skills. Our study was conducted according to the method of visual ethnography. We acted as facilitators for 50 students through the yearly six-day competitive...... event called InnoEvent, addressed to students in the fields of multimedia and healthcare. Being interested in studying games and role-play as tools to support independent learning in the field of design thinking and team-building, following Dewey’s (1938) theory of learning experience, we ran two...

  18. Dependence of FDG uptake on tumor microenvironment

    International Nuclear Information System (INIS)

    Pugachev, Andrei; Ruan, Shutian; Carlin, Sean; Larson, Steven M.; Campa, Jose; Ling, C. Clifton; Humm, John L.

    2005-01-01

    Purpose: To investigate the factors affecting the 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake in tumors at a microscopic level, by correlating it with tumor hypoxia, cellular proliferation, and blood perfusion. Methods and Materials: Nude mice bearing Dunning prostate tumors (R3327-AT) were injected with 18 F-FDG and pimonidazole, bromodeoxyuridine, and, 1 min before sacrifice, with Hoechst 33342. Selected tumor sections were imaged by phosphor plate autoradiography, while adjacent sections were used to obtain the images of the spatial distribution of Hoechst 33342, pimonidazole, and bromodeoxyuridine. The images were co-registered and analyzed on a pixel-by-pixel basis. Results: Statistical analysis of the data obtained from these tumors demonstrated that 18 F-FDG uptake was positively correlated with pimonidazole staining intensity in each data set studied. Correlation of FDG uptake with bromodeoxyuridine staining intensity was always negative. In addition, FDG uptake was always negatively correlated with the staining intensity of Hoechst 33342. Conclusions: For the Dunning prostate tumors studied, FDG uptake was always positively correlated with hypoxia and negatively correlated with both cellular proliferation and blood flow. Therefore, for the tumor model studied, higher FDG uptake is indicative of tumor hypoxia, but neither blood flow nor cellular proliferation

  19. The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1

    DEFF Research Database (Denmark)

    Saaby, Lasse; Tfelt-Hansen, Peer; Brodin, Birger

    2015-01-01

    of verapamil. Fluxes of radiolabelled verapamil across MDCK II MDR1 monolayers were measured in the absence and presence of the putative P-gp inhibitor telmisartan (a clinically approved drug compound). Verapamil displayed a vectorial basolateral-to-apical transepithelial efflux across the MDCK II MDR1...... monolayers with a permeability of 5.7 × 10−5 cm sec−1 compared to an apical to basolateral permeability of 1.3 × 10−5 cm sec-1. The efflux could be inhibited with the P-gp inhibitor zosuquidar. Zosuquidar (0.4 μmol/L) reduced the efflux ratio (PB-A/PA-B) for verapamil 4.6–1.6. The presence of telmisartan......, however, only caused a slight reduction in P-gp-mediated verapamil transport to an efflux ratio of 3.4. Overall, the results of the present in vitro approach indicate, that clinical use of telmisartan as a P-gp inhibitor may not be an effective strategy for increasing brain uptake of verapamil by co...

  20. Study of [18F]FLT and [123I]IaraU for cellular imaging in HSV1 tk-transfected murine fibrosarcoma cells: evaluation of the tracer uptake using 5-fluoro, 5-iodo and 5-iodovinyl arabinosyl uridines as competitive probes.

    Science.gov (United States)

    Huang, Ho-Lien; Chiang, Li-Wu; Chen, Jia-Rong; Yang, Wen K; Jeng, Kee-Ching; Chen, Jenn-Tzong; Duh, Ting-Shien; Lin, Wuu-Jyh; Farn, Shiou-Shiow; Chiang, Chi-Shiun; Huang, Chia-Wen; Lin, Kun-I; Yu, Chung-Shan

    2012-04-01

    As one of the most intensively studied probes for imaging of the cellular proliferation, [(18)F]FLT was investigated whether the targeting specificity of thymidine kinase 1 (TK1) dependency could be enhanced through a synergistic effect mediated by herpes simplex type 1 virus (HSV1) tk gene in terms of the TK1 or TK2 expression. 5-[(123)I]Iodo arabinosyl uridine ([(123)I]IaraU) was prepared in a radiochemical yield of 8% and specific activity of 21 GBq/μmol, respectively. Inhibition of the cellular uptake of these two tracers was compared by using the arabinosyl uridine analogs such as 5-iodo, 5-fluoro and 5-(E)-iodovinyl arabinosyl uridine along with 2'-fluoro-5-iodo arabinosyl uridine (FIAU). Due to potential instability of the iodo group, accumulation index of 1.6 for [(123)I]IaraU by HSV1-TK vs. control cells could virtually be achieved at 1.5 h, but dropped to 0.2 compared to 2.0 for [(18)F]FLT at 5 h. The results from competitive inhibition by these nucleosides against the accumulation of [(18)F]FLT implied that FLT exerted a mixed TK1- and TK2-dependent inhibition with HSV1-tk gene transfection because of the shifting of thymidine kinase status. Taken together, the combination of [(18)F]FLT and HSV1-TK provides a synergistic imaging potency. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. In vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine PET

    International Nuclear Information System (INIS)

    Wong, Peter K.; Lee, Sze Ting; Murone, Carmel; Eng, John; Lawrentschuk, Nathan; Berlangieri, Salvatore University; Pathmaraj, Kunthi; O’Keefe, Graeme J.; Sachinidis, John; Byrne, Amanda J.; Bolton, Damien M.; Davis, Ian D.; Scott, Andrew M.

    2014-01-01

    The ability to measure cellular proliferation non-invasively in renal cell carcinoma may allow prediction of tumour aggressiveness and response to therapy. The aim of this study was to evaluate the uptake of 18F-fluorothymidine (FLT) PET in renal cell carcinoma (RCC), and to compare this to 18F-fluorodeoxyglucose (FDG), and to an immunohistochemical measure of cellular proliferation (Ki-67). Twenty seven patients (16 male, 11 females; age 42-77) with newly diagnosed renal cell carcinoma suitable for resection were prospectively enrolled. All patients had preoperative FLT and FDG PET scans. Visual identification of tumour using FLT PET compared to normal kidney was facilitated by the use of a pre-operative contrast enhanced CT scan. After surgery tumour was taken for histologic analysis and immunohistochemical staining by Ki-67. The SUVmax (maximum standardized uptake value) mean±SD for FLT in tumour was 2.59±1.27, compared to normal kidney (2.47±0.34). The mean SUVmax for FDG in tumour was similar to FLT (2.60±1.08). There was a significant correlation between FLT uptake and the immunohistochemical marker Ki-67 (r=0.72, P<0.0001) in RCC. Ki-67 proliferative index was mean ± SD of 13.3%±9.2 (range 2.2% - 36.3%). There is detectable uptake of FLT in primary renal cell carcinoma, which correlates with cellular proliferation as assessed by Ki-67 labelling index. This finding has relevance to the use of FLT PET in molecular imaging studies of renal cell carcinoma biology

  2. Serotonin uptake and serotonin uptake inhibition.

    Science.gov (United States)

    Fuller, R W; Wong, D T

    1990-01-01

    Serotonin uptake carriers occur on serotonin neurons, on glial cells and on blood platelets. The uptake carrier on serotonin neurons inactivates serotonin that has been released into the synaptic cleft by transporting it back into the nerve terminal. The serotonin uptake carrier is the means by which blood platelets acquire serotonin, since they do not synthesize it. The function of the serotonin uptake carrier on glial cells is poorly understood. Selective inhibitors of serotonin uptake enhance neurotransmission via serotonergic neurons and have been useful pharmacologic tools for studying physiologic roles of serotonin neurons. Some serotonin uptake inhibitors are finding therapeutic uses in mental depression and other psychiatric disorders and in treating obesity and bulimia; other therapeutic applications continue to be evaluated.

  3. Cellular dosimetry

    International Nuclear Information System (INIS)

    Humm, J.L.; Chin, L.M.

    1989-01-01

    Radiation dose is a useful predictive parameter for describing radiation toxicity in conventional radiotherapy. Traditionally, in vitro radiation biology dose-effect relations are expressed in the form of cell survival curves, a semilog plot of cell survival versus dose. However, the characteristic linear or linear quadratic survival curve shape, for high- and low-LET radiations respectively, is only strictly valid when the radiation dose is uniform across the entire target population. With an external beam of 60 Co gamma rays or x-rays, a uniform field may be readily achievable. When radionuclides are incorporated into a cell milieu, several new problems emerge which can result in a departure from uniformity in energy deposition throughout a cell population. This nonuniformity can have very important consequences for the shape of the survival curve. Cases in which perturbations of source uniformity may arise include: 1. Elemental sources may equilibrate in the cell medium with partition coefficients between the extracellular, cytosol, and nuclear compartments. The effect of preferential cell internalization or binding to cell membrane of some radionuclides can increase or decrease the slope of the survival curve. 2. Radionuclides bound to antibodies, hormones, metabolite precursors, etc., may result in a source localization pattern characteristic of the carrier agent, i.e., the sources may bind to cell surface receptors or antigens, be internalized, bind to secreted antigen concentrated around a fraction of the cell population, or become directly incorporated into the cell DNA. We propose to relate the distribution of energy deposition in cell nuclei to biological correlates of cellular inactivation. The probability of each cell's survival is weighted by its individual radiation burden, and the summation of these probabilities for the cell population can be used to predict the number or fraction of cell survivors

  4. Energetic funnel facilitates facilitated diffusion.

    Science.gov (United States)

    Cencini, Massimo; Pigolotti, Simone

    2018-01-25

    Transcription factors (TFs) are able to associate to their binding sites on DNA faster than the physical limit posed by diffusion. Such high association rates can be achieved by alternating between three-dimensional diffusion and one-dimensional sliding along the DNA chain, a mechanism-dubbed facilitated diffusion. By studying a collection of TF binding sites of Escherichia coli from the RegulonDB database and of Bacillus subtilis from DBTBS, we reveal a funnel in the binding energy landscape around the target sequences. We show that such a funnel is linked to the presence of gradients of AT in the base composition of the DNA region around the binding sites. An extensive computational study of the stochastic sliding process along the energetic landscapes obtained from the database shows that the funnel can significantly enhance the probability of TFs to find their target sequences when sliding in their proximity. We demonstrate that this enhancement leads to a speed-up of the association process. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Improving the uptake of systematic reviews: a systematic review of intervention effectiveness and relevance.

    LENUS (Irish Health Repository)

    Wallace, John

    2014-01-01

    Little is known about the barriers, facilitators and interventions that impact on systematic review uptake. The objective of this study was to identify how uptake of systematic reviews can be improved.

  6. Mechanisms of DNA uptake by cells

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1977-01-01

    Three categories of cellular uptake of DNA can be distinguished. First, in the highly transformable bacteria, such as Diplococcus pneumoniae, Haemophilus influenzae and Bacillus subtilis, elaborate mechanisms of DNA transport have evolved, presumably for the purpose of genetic exchange. These mechanisms can introduce substantial amounts of DNA into the cell. Second, methods have been devised for the forced introduction of DNA by manipulation of bacterial cells under nonphysiological conditions. By such means small but significant amounts of DNA have been introduced into various bacteria, including Escherichia coli. Third, mammalian cells are able to take up biologically active DNA. This has been most clearly demonstrated with viral DNA, although the mechanism of uptake is not well understood. The intention, here, is to survey current understanding of the various mechanisms of DNA uptake. A review of experience with the bacterial systems may throw some light on the mammalian system and lead to suggestions for enhancing DNA uptake by mammalian cells.

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan ... for several hours before your exam because eating can affect the accuracy of the uptake measurement. Jewelry ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the limitations of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid ... body converts food to energy. top of page What are some common uses of the procedure? The ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Scan and Uptake Thyroid scan and uptake uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... capturing images of the thyroid gland from three different angles. You will need to remain still for ... Often, two separate uptake measurements are obtained at different times. For example, you may have uptake measurements ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... uptake measurements are obtained at different times. For example, you may have uptake measurements at four to ... medicine procedures can be time consuming. It can take several hours to days for the radiotracer to ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... taking our brief survey: Survey Do you have a personal story about radiology? Share your patient story ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  15. Decreased cisplatin uptake by resistant L1210 leukemia cells

    International Nuclear Information System (INIS)

    Hromas, R.A.; North, J.A.; Burns, C.P.

    1987-01-01

    Cisplatin resistance remains poorly understood compared to other forms of anti-neoplastic drug resistance. In this report radiolabelled cisplatin and rapid separation techniques were used to compare drug uptake by L1210 leukemia cells that are sensitive (K25) or resistant (SCR9) to cisplatin. Uptake of cisplatin by both cell lines was linear without saturation kinetics up to 100 μM. The resistant ZCR9 cells had 36-60% reduced drug uptake as compared to its sensitive parent line, K25. In contrast, there was no difference in the rate of efflux. We conclude that a decreased rate of uptake is one possible mechanism of cellular cisplatin resistance. (Author)

  16. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...

  17. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Liliana, E-mail: lilianam87@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Araújo, Isabel, E-mail: isa.araujo013@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Costa, Tito, E-mail: tito.fmup16@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Correia-Branco, Ana, E-mail: ana.clmc.branco@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Faria, Ana, E-mail: anafaria@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Chemistry Investigation Centre (CIQ), Faculty of Sciences of University of Porto, Rua Campo Alegre, 4169-007 Porto (Portugal); Faculty of Nutrition and Food Sciences of University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Martel, Fátima, E-mail: fmartel@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Keating, Elisa, E-mail: keating@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal)

    2013-07-15

    In this study we characterized {sup 3}H-2-deoxy-D-glucose ({sup 3}H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon {sup 3}H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells {sup 3}H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V{sub max}) and affinity (K{sub m}), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that {sup 3}H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited {sup 3}H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling.

  18. Cellular: Toward personal communications

    Science.gov (United States)

    Heffernan, Stuart

    1991-09-01

    The cellular industry is one of the fastest growing segment of the telecommunications industry. With an estimated penetration rate of 20 percent in the near future, cellular is becoming an ubiquitous telecommunications service in the U.S. In this paper we will examine the major advancements in the cellular industry: customer equipment, cellular networks, engineering tools, customer support, and nationwide seamless service.

  19. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis.

    Science.gov (United States)

    Xiao, Qingli; Yan, Ping; Ma, Xiucui; Liu, Haiyan; Perez, Ronaldo; Zhu, Alec; Gonzales, Ernesto; Burchett, Jack M; Schuler, Dorothy R; Cirrito, John R; Diwan, Abhinav; Lee, Jin-Moo

    2014-07-16

    In sporadic Alzheimer's disease (AD), impaired Aβ removal contributes to elevated extracellular Aβ levels that drive amyloid plaque pathogenesis. Extracellular proteolysis, export across the blood-brain barrier, and cellular uptake facilitate physiologic Aβ clearance. Astrocytes can take up and degrade Aβ, but it remains unclear whether this function is insufficient in AD or can be enhanced to accelerate Aβ removal. Additionally, age-related dysfunction of lysosomes, the major degradative organelles wherein Aβ localizes after uptake, has been implicated in amyloid plaque pathogenesis. We tested the hypothesis that enhancing lysosomal function in astrocytes with transcription factor EB (TFEB), a master regulator of lysosome biogenesis, would promote Aβ uptake and catabolism and attenuate plaque pathogenesis. Exogenous TFEB localized to the nucleus with transcriptional induction of lysosomal biogenesis and function in vitro. This resulted in significantly accelerated uptake of exogenously applied Aβ42, with increased localization to and degradation within lysosomes in C17.2 cells and primary astrocytes, indicating that TFEB is sufficient to coordinately enhance uptake, trafficking, and degradation of Aβ. Stereotactic injection of adeno-associated viral particles carrying TFEB driven by a glial fibrillary acidic protein promoter was used to achieve astrocyte-specific expression in the hippocampus of APP/PS1 transgenic mice. Exogenous TFEB localized to astrocyte nuclei and enhanced lysosome function, resulting in reduced Aβ levels and shortened half-life in the brain interstitial fluid and reduced amyloid plaque load in the hippocampus compared with control virus-injected mice. Therefore, activation of TFEB in astrocytes is an effective strategy to restore adequate Aβ removal and counter amyloid plaque pathogenesis in AD. Copyright © 2014 the authors 0270-6474/14/349607-14$15.00/0.

  20. Neuregulin 1 Promotes Glutathione-Dependent Neuronal Cobalamin Metabolism by Stimulating Cysteine Uptake

    Directory of Open Access Journals (Sweden)

    Yiting Zhang

    2016-01-01

    Full Text Available Neuregulin 1 (NRG-1 is a key neurotrophic factor involved in energy homeostasis and CNS development, and impaired NRG-1 signaling is associated with neurological disorders. Cobalamin (Cbl, also known as vitamin B12, is an essential micronutrient which mammals must acquire through diet, and neurologic dysfunction is a primary clinical manifestation of Cbl deficiency. Here we show that NRG-1 stimulates synthesis of the two bioactive Cbl species adenosylcobalamin (AdoCbl and methylcobalamin (MeCbl in human neuroblastoma cells by both promoting conversion of inactive to active Cbl species and increasing neuronal Cbl uptake. Formation of active Cbls is glutathione- (GSH- dependent and the NRG-1-initiated increase is dependent upon its stimulation of cysteine uptake by excitatory amino acid transporter 3 (EAAT3, leading to increased GSH. The stimulatory effect of NRG-1 on cellular Cbl uptake is associated with increased expression of megalin, which is known to facilitate Cbl transport in ileum and kidney. MeCbl is a required cofactor for methionine synthase (MS and we demonstrate the ability of NRG-1 to increase MS activity, and affect levels of methionine methylation cycle metabolites. Our results identify novel neuroprotective roles of NRG-1 including stimulating antioxidant synthesis and promoting active Cbl formation.

  1. Super absorbent conjugated microporous polymers: a synergistic structural effect on the exceptional uptake of amines.

    Science.gov (United States)

    Liu, Xiaoming; Xu, Yanhong; Guo, Zhaoqi; Nagai, Atsushi; Jiang, Donglin

    2013-04-21

    Conjugated microporous polymers exhibit a synergistic structural effect on the exceptional uptake of amines, whereas the dense porphyrin units facilitate uptake, the high porosity offers a large interface and the swellability boosts capacity. They are efficient in the uptake of both vapor and liquid amines, are applicable to various types of amines, and are excellent for cycle use.

  2. Uranium uptake of Vetiveria zizanioides (L.) Nash

    International Nuclear Information System (INIS)

    Luu Viet Hung; Maslov, O.D.; Trinh Thi Thu My; Phung Khac Nam Ho; Dang Duc Nhan

    2010-01-01

    Uranium uptake of vetiver grass (Vetiveria zizanioides (L.) Nash) from Eutric Fluvisols (AK), Albic Acrisols (BG), Dystric Fluvisols (HP) and Ferralic Acrisols (TC) in northern Vietnam is assessed. The soils were mixed with aqueous solution of uranyl nitrate to make soils contaminated with uranium at 0, 50, 100, 250 mg/kg before planting the grass. The efficiency of uranium uptake by the grass was assessed based on the soil-to-plant transfer factor (TF U , kg·kg -1 ). It was found that the TF U values are dependent upon the soils properties. CEC facilitates the uptake and the increased soil pH could reduce the uptake and translocation of uranium in the plant. Organic matter content, as well as iron and potassium, inhibits the uranium uptake of the grass. It was revealed that the lower fertile soil, the higher uranium uptake. The translocation of uranium in root for all the soil types studied is almost higher than that in its shoot. It seems that vetiver grass could potentially be used for the purpose of phytoremediation of soils contaminated with uranium

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a thyroid uptake. ...

  5. Dietary Factors Modulate Iron Uptake in Caco-2 Cells from an Iron Ingot Used as a Home Fortificant to Prevent Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Ildefonso Rodriguez-Ramiro

    2017-09-01

    Full Text Available Iron deficiency is a major public health concern and nutritional approaches are required to reduce its prevalence. The aim of this study was to examine the iron bioavailability of a novel home fortificant, the “Lucky Iron Fish™” (LIF (www.luckyironfish.com/shop, Guelph, Canada and the impact of dietary factors and a food matrix on iron uptake from LIF in Caco-2 cells. LIF released a substantial quantity of iron (about 1.2 mM at pH 2 but this iron was only slightly soluble at pH 7 and not taken up by cells. The addition of ascorbic acid (AA maintained the solubility of iron released from LIF (LIF-iron at pH 7 and facilitated iron uptake by the cells in a concentration-dependent manner. In vitro digestion of LIF-iron in the presence of peas increased iron uptake 10-fold. However, the addition of tannic acid to the digestion reduced the cellular iron uptake 7.5-fold. Additionally, LIF-iron induced an overproduction of reactive oxygen species (ROS, similar to ferrous sulfate, but this effect was counteracted by the addition of AA. Overall, our data illustrate the major influence of dietary factors on iron solubility and bioavailability from LIF, and demonstrate that the addition of AA enhances iron uptake and reduces ROS in the intestinal lumen.

  6. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, Sape J.; Polakos, P.; Rittenhouse, G.

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective

  7. GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, P; Frølund, B; Frydenvang, Karla Andrea

    2000-01-01

    GABAA receptor agonists. The availability of these compounds made it possible to study the pharmacology of the GABA uptake systems and the GABAA receptors separately. Based on extensive cellular and molecular pharmacological studies using 23, 24, and a number of mono- and bicyclic analogues, it has been...... as well as glial GABA uptake in order to enhance the inhibitory effects of synaptically released GABA, or (2) selective blockade of glial GABA uptake in order to increase the amount of GABA taken up into, and subsequently released from, nerve terminals. The bicyclic compound (R)-N-Me-exo-THPO (17) has...

  8. Impact of ocean phytoplankton diversity on phosphate uptake.

    Science.gov (United States)

    Lomas, Michael W; Bonachela, Juan A; Levin, Simon A; Martiny, Adam C

    2014-12-09

    We have a limited understanding of the consequences of variations in microbial biodiversity on ocean ecosystem functioning and global biogeochemical cycles. A core process is macronutrient uptake by microorganisms, as the uptake of nutrients controls ocean CO2 fixation rates in many regions. Here, we ask whether variations in ocean phytoplankton biodiversity lead to novel functional relationships between environmental variability and phosphate (Pi) uptake. We analyzed Pi uptake capabilities and cellular allocations among phytoplankton groups and the whole community throughout the extremely Pi-depleted western North Atlantic Ocean. Pi uptake capabilities of individual populations were well described by a classic uptake function but displayed adaptive differences in uptake capabilities that depend on cell size and nutrient availability. Using an eco-evolutionary model as well as observations of in situ uptake across the region, we confirmed that differences among populations lead to previously uncharacterized relationships between ambient Pi concentrations and uptake. Supported by novel theory, this work provides a robust empirical basis for describing and understanding assimilation of limiting nutrients in the oceans. Thus, it demonstrates that microbial biodiversity, beyond cell size, is important for understanding the global cycling of nutrients.

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... When radiotracer is taken by mouth, in either liquid or capsule form, it is typically swallowed up ... radioactive iodine (I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... is taken by mouth, in either liquid or capsule form, it is typically swallowed up to 24 ... I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake will begin ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... which are encased in metal and plastic and most often shaped like a box, attached to a ... will I experience during and after the procedure? Most thyroid scan and thyroid uptake procedures are painless. ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... of any allergies you may have or other problems that may have occurred during a previous nuclear ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Most thyroid scan and thyroid uptake ... you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special instructions ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. The thyroid scan and thyroid uptake provide ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and uptake uses small amounts of radioactive materials called radiotracers, a special camera and a computer ... last two months that used iodine-based contrast material. Your doctor will instruct you on how to ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... its radioactivity over time. It may also pass out of your body through your urine or stool ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... procedures within the last two months that used iodine-based contrast material. Your doctor will instruct you ... a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a ...

  1. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

    Directory of Open Access Journals (Sweden)

    Annette R. Rowe

    2018-02-01

    Full Text Available While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2 pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited.

  2. Effects of motexafin gadolinium on tumor oxygenation and cellular oxygen consumption

    International Nuclear Information System (INIS)

    Donnelly, E.T.; Liu, Y.; Rockwell, S.; Magda, D.

    2003-01-01

    Full text: Recent work in our laboratory showed that motexafin gadolinium (MGd, Xcytrin), a drug currently in Phase III clinical trials as an adjuvant to radiation therapy, modulates the oxygen tensions in EMT6 tumors. The median pO 2 increased from the control value of 1.5±0.4 mmHg to 7.4 ± 3.8 mmHg six hours after treatment with 40 μmol/kg MGd and the percentage of severely hypoxic readings in the tumors ( 7 plateau phase EMT6 cells in 3 mL Dulbecco's Modified Eagle's Medium supplemented with 10% dialyzed fetal bovine serum, which contains no ascorbic acid. In the absence of ascorbic acid, 100 μM MGd did not alter the cellular oxygen consumption rate for EMT6 cells significantly. Marked inhibition of cellular oxygen consumption was observed when cells were incubated with 100 μM MGd in medium supplemented with equimolar ascorbic acid (a 31.5% decrease in consumption was observed after 6 hours of treatment). The 5% mannitol vehicle solution with equimolar ascorbic acid had no discernible effect on cellular oxygen consumption. Ascorbic acid may facilitate cellular uptake of MGd via the intermediate formation of a MGd-oxalate complex. These studies suggest that changes in cellular oxygen consumption could contribute to the changes in tumor oxygenation seen after administration of MGd. These experiments were supported by Pharmacyclics and training grant T32CA09085 from the NIH (E.T.D.). We thank Dr. Raymond Russell for allowing us to use his oxygen electrode apparatus

  3. Interplay of drug metabolizing enzymes with cellular transporters.

    Science.gov (United States)

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  4. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan

    2005-01-01

    to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is inhibited...... to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known...

  5. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Pallab [School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai 400076 (India); Giri, Jyotsnendu [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai 400076 (India); Banerjee, Rinti [School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai 400076 (India); Bellare, Jayesh [School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai 400076 (India); Bahadur, Dhirendra [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai 400076 (India)]. E-mail: dhirenb@iitb.ac.in

    2007-04-15

    In vitro cytocompatibility and cellular interactions of lauric acid and dextran-coated magnetite nanoparticles were evaluated with two different cell lines (mouse fibroblast and human cervical carcinoma). Lauric acid-coated magnetite nanoparticles were less cytocompatible than dextran-coated magnetite nanoparticles and cellular uptake of lauric acid-coated magnetic nanoparticles was more than that of dextran-coated magnetite nanoparticles. Lesser cytocompatibility and higher uptake of lauric acid-coated magnetite nanoparticles as compared to dextran-coated magnetic nanoparticles may be due to different cellular interactions by coating material. Thus, coating plays an important role in modulation of biocompatibility and cellular interaction of magnetic nanoparticles.

  6. Enhanced cellular delivery of cell-penetrating peptide-peptide nucleic acid conjugates by photochemical internalization

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    )) or tetraphenylporphyrin tetrasulfonic acid (TPPS). Cellular uptake of the PNA conjugates were evaluated by using a sensitive cellular method with HeLa pLuc705 cells based on the splicing correction of luciferase gene by targeting antisense oligonucleotides to a cryptic splice site of the mutated luciferase gene......Cell-penetrating peptides (CPPs) have been widely used for a cellular delivery of biologically relevant cargoes including antisense peptide nucleic acids (PNAs). Although chemical conjugation of PNA to a variety of CPPs significantly improves the cellular uptake of the PNAs, bioavailability...

  7. Cell Type-Specific Modulation of Cobalamin Uptake by Bovine Serum.

    Directory of Open Access Journals (Sweden)

    Hua Zhao

    Full Text Available Tracking cellular 57Co-labelled cobalamin (57Co-Cbl uptake is a well-established method for studying Cbl homeostasis. Previous studies established that bovine serum is not generally permissive for cellular Cbl uptake when used as a supplement in cell culture medium, whereas supplementation with human serum promotes cellular Cbl uptake. The underlying reasons for these differences are not fully defined. In the current study we address this question. We extend earlier observations by showing that fetal calf serum inhibits cellular 57Co-Cbl uptake by HT1080 cells (a fibrosarcoma-derived fibroblast cell line. Furthermore, we discovered that a simple heat-treatment protocol (95°C for 10 min ameliorates this inhibitory activity for HT1080 cell 57Co-Cbl uptake. We provide evidence that the very high level of haptocorrin in bovine serum (as compared to human serum is responsible for this inhibitory activity. We suggest that bovine haptocorrin competes with cell-derived transcobalamin for Cbl binding, and that cellular Cbl uptake may be minimised in the presence of large amounts of bovine haptocorrin that are present under routine in vitro cell culture conditions. In experiments conducted with AG01518 cells (a neonatal foreskin-derived fibroblast cell line, overall cellular 57Co-Cbl uptake was 86% lower than for HT1080 cells, cellular TC production was below levels detectable by western blotting, and heat treatment of fetal calf serum resulted in only a modest increase in cellular 57Co-Cbl uptake. We recommend a careful assessment of cell culture protocols should be conducted in order to determine the potential benefits that heat-treated bovine serum may provide for in vitro studies of mammalian cell lines.

  8. Linearizable cellular automata

    International Nuclear Information System (INIS)

    Nobe, Atsushi; Yura, Fumitaka

    2007-01-01

    The initial value problem for a class of reversible elementary cellular automata with periodic boundaries is reduced to an initial-boundary value problem for a class of linear systems on a finite commutative ring Z 2 . Moreover, a family of such linearizable cellular automata is given

  9. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons

    Science.gov (United States)

    Mohamed, Habib A.; Mosier, Dennis R.; Zou, Ling L.; Siklos, Laszlo; Alexianu, Maria E.; Engelhardt, Jozsef I.; Beers, David R.; Le, Wei-dong; Appel, Stanley H.

    2002-01-01

    Receptors for the Fc portion of immunoglobulin G (IgG; FcgammaRs) facilitate IgG uptake by effector cells as well as cellular responses initiated by IgG binding. In earlier studies, we demonstrated that amyotrophic lateral sclerosis (ALS) patient IgG can be taken up by motor neuron terminals and transported retrogradely to the cell body and can alter the function of neuromuscular synapses, such as increasing intracellular calcium and spontaneous transmitter release from motor axon terminals after passive transfer. In the present study, we examined whether FcgammaR-mediated processes can contribute to these effects of ALS patient immunoglobulins. F(ab')(2) fragments (which lack the Fc portion) of ALS patient IgG were not taken up by motor axon terminals and were not retrogradely transported. Furthermore, in a genetically modified mouse lacking the gamma subunit of the FcR, the uptake of whole ALS IgG and its ability to enhance intracellular calcium and acetylcholine release were markedly attenuated. These data suggest that FcgammaRs appear to participate in IgG uptake into motor neurons as well as IgG-mediated increases in intracellular calcium and acetylcholine release from motor axon terminals. Copyright 2002 Wiley-Liss, Inc.

  10. Nanoparticles for Applications in Cellular Imaging

    Science.gov (United States)

    Thurn, K. Ted; Brown, Eric M. B.; Wu, Aiguo; Vogt, Stefan; Lai, Barry; Maser, Jörg; Paunesku, Tatjana; Woloschak, Gayle E.

    2007-09-01

    In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous advantages over traditional dyes and proteins. For example, the photostability, narrow emission peak, and ability to rationally modify both the size and surface chemistry of Quantum Dots allow for simultaneous analyses of multiple targets within the same cell. On the other hand, the surface characteristics of nanometer sized TiO2 allow efficient conjugation to nucleic acids which enables their retention in specific subcellular compartments. We discuss cellular uptake mechanisms for the internalization of nanoparticles and studies showing the influence of nanoparticle size and charge and the cell type targeted on nanoparticle uptake. The predominant nanoparticle uptake mechanisms include clathrin-dependent mechanisms, macropinocytosis, and phagocytosis.

  11. Visual explorer facilitator's guide

    CERN Document Server

    Palus, Charles J

    2010-01-01

    Grounded in research and practice, the Visual Explorer™ Facilitator's Guide provides a method for supporting collaborative, creative conversations about complex issues through the power of images. The guide is available as a component in the Visual Explorer Facilitator's Letter-sized Set, Visual Explorer Facilitator's Post card-sized Set, Visual Explorer Playing Card-sized Set, and is also available as a stand-alone title for purchase to assist multiple tool users in an organization.

  12. Plasmonic Nanostructured Cellular Automata

    Science.gov (United States)

    Alkhazraji, Emad; Ghalib, A.; Manzoor, K.; Alsunaidi, M. A.

    2017-03-01

    In this work, we have investigated the scattering plasmonic resonance characteristics of silver nanospheres with a geometrical distribution that is modelled by Cellular Automata using time-domain numerical analysis. Cellular Automata are discrete mathematical structures that model different natural phenomena. Two binary one-dimensional Cellular Automata rules are considered to model the nanostructure, namely rule 30 and rule 33. The analysis produces three-dimensional scattering profiles of the entire plasmonic nanostructure. For the Cellular Automaton rule 33, the introduction of more Cellular Automata generations resulted only in slight red and blue shifts in the plasmonic modes with respect to the first generation. On the other hand, while rule 30 introduced significant red shifts in the resonance peaks at early generations, at later generations however, a peculiar effect is witnessed in the scattering profile as new peaks emerge as a feature of the overall Cellular Automata structure rather than the sum of the smaller parts that compose it. We strongly believe that these features that emerge as a result adopting the different 256 Cellular Automata rules as configuration models of nanostructures in different applications and systems might possess a great potential in enhancing their capability, sensitivity, efficiency, and power utilization.

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: ... of a typical probe counter used for thyroid uptake exams. The patient sits with the camera directed at the neck for five minutes, and then the leg for ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page Additional Information and Resources RTAnswers.org Radiation Therapy for Head and Neck Cancer top of page ... and Neck Cancer Treatment Radioactive Iodine (I-131) Therapy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear ... to Thyroid Scan and Uptake ...

  16. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  17. Improved tumor tissue penetration and tumor cell uptake achieved by delayed charge reversal nanoparticles.

    Science.gov (United States)

    Gou, Jingxin; Liang, Yuheng; Miao, Linlin; Guo, Wei; Chao, Yanhui; He, Haibing; Zhang, Yu; Yang, Jingyu; Wu, Chunfu; Yin, Tian; Wang, Yanjiao; Tang, Xing

    2017-10-15

    The high affinity of positively charged nanoparticles to biological interfaces makes them easily taken up by tumor cells but limits their tumor permeation due to non-specific electrostatic interactions. In this study, polyion complex coated nanoparticles with different charge reversal profiles were developed to study the influence of charge reversal profile on tumor penetration. The system was constructed by polyion complex coating using micelles composed of poly (lysine)-b-polycaprolactone (PLys-b-PCL) as the cationic core and poly (glutamic acid)-g- methoxyl poly (ethylene glycol) (PGlu-g-mPEG) as the anionic coating material. Manipulation of charge reversal profile was achieved by controlling the polymer chain entanglement and electrostatic interaction in the polyion complex layer through glutaraldehyde-induced shell-crosslinking. The delayed charge reversal nanoparticles (CTCL30) could maintain negatively charged in pH 6.5 PBS for at least 2h and exhibit pH-responsive cytotoxicity and cellular uptake in an extended time scale. Compared with a faster charge reversal counterpart (CTCL70) with similar pharmacokinetic profile, CTCL30 showed deeper penetration, higher in vivo tumor cell uptake and stronger antitumor activity in vivo (tumor inhibition rate: 72.3% vs 60.2%, compared with CTCL70). These results indicate that the delayed charge reversal strategy could improve therapeutic effect via facilitating tumor penetration. Here, the high tumor penetration capability of PEG-coated nanoparticles and the high cellular uptake of cationic nanoparticles were combined by a delayed charge reversal drug delivery system. This drug delivery system was composed of a drug-loading cationic inner core and a polyion complex coating. Manipulation of charge reversal profile was realized by varying the crosslinking degree of the shell of the cationic inner core, through which changed the strength of the polyion complex layer. Nanoparticles with delayed charge reversal profile

  18. Thyroid hormone induced oxygen consumption and glucose-uptake in human mononuclear cells

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1989-01-01

    Cellular oxygen consumption and glucose metabolism were examined in human mononuclear blood cells. The cellular oxygen consumption and glucose uptake were dependent on the number of cells, the temperature and the duration of incubation. Stimulation of the cells by T4 and T3 led to a dose dependen...... thyroid hormones and insulin exerted an additive effect on glucose uptake. Our study indicates a direct intracellular effect of T4 independent of its conversion to T3 and a different mechanism for insulin dependent and thyroid hormone glucose uptake....

  19. Physiological and pathological consequences of cellular senescence.

    Science.gov (United States)

    Burton, Dominick G A; Krizhanovsky, Valery

    2014-11-01

    Cellular senescence, a permanent state of cell cycle arrest accompanied by a complex phenotype, is an essential mechanism that limits tumorigenesis and tissue damage. In physiological conditions, senescent cells can be removed by the immune system, facilitating tumor suppression and wound healing. However, as we age, senescent cells accumulate in tissues, either because an aging immune system fails to remove them, the rate of senescent cell formation is elevated, or both. If senescent cells persist in tissues, they have the potential to paradoxically promote pathological conditions. Cellular senescence is associated with an enhanced pro-survival phenotype, which most likely promotes persistence of senescent cells in vivo. This phenotype may have evolved to favor facilitation of a short-term wound healing, followed by the elimination of senescent cells by the immune system. In this review, we provide a perspective on the triggers, mechanisms and physiological as well as pathological consequences of senescent cells.

  20. Training facilitators and supervisors

    DEFF Research Database (Denmark)

    Kjær, Louise Binow; O Connor, Maja; Krogh, Kristian

    At the Master’s program in Medicine at Aarhus University, Denmark, we have developed a faculty development program for facilitators and supervisors in 4 progressing student modules in communication, cooperation, and leadership. 1) A course for module 1 and 3 facilitators inspired by the apprentic...

  1. Trade Facilitation in Ethiopia:

    African Journals Online (AJOL)

    Tilahun_EK

    (UNCTAD), “Trade and transport facilitation … addresses a wide agenda in economic development and trade that may include improving transport infrastructure and services, reducing customs tariffs, and removing non-tariff trade barriers including administrative and regulatory barriers.”24. The definition of trade facilitation ...

  2. Alterations of serum concentrations of thyroid hormones and sex hormone-binding globulin, nuclear binding of tri-iodothyronine and thyroid hormone-stimulated cellular uptake of oxygen and glucose in mononuclear blood cells from patients with non-thyroidal illness

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L

    1990-01-01

    Nuclear tri-iodothyronine (T3) binding and thyroid hormone-stimulated oxygen consumption and glucose uptake were examined in mononuclear blood cells from patients with non-thyroidal illness (NTI) in which serum T3 was significantly (P less than 0.05) depressed (0.62 +/- 0.12 (S.D.) nmol/l) compared...

  3. Learning facilitating leadership

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2016-01-01

    deployed for this paper is empirical and conceptual. A specific facilitation project carried out by six international engineering students is presented. The importance of combining cognitive, emotional and synergistic skills is highlighted on the basis of this example, the authors’ extensive experience......This paper explains how engineering students at a Danish university acquired the necessary skills to become emergent facilitators of organisational development. The implications of this approach are discussed and related to relevant viewpoints and findings in the literature. The methodology...... in teaching facilitation and the literature. These types of skills are most effectively acquired by combining conceptual lectures, classroom exercises and the facilitation of groups in a real-life context. The paper also reflects certain ‘shadow sides’ related to facilitation observed by the students...

  4. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  5. Cellular MR Imaging

    OpenAIRE

    Michel Modo; Mathias Hoehn; Jeff W.M. Bulte

    2005-01-01

    Cellular MR imaging is a young field that aims to visualize targeted cells in living organisms. In order to provide a different signal intensity of the targeted cell, they are either labeled with MR contrast agents in vivo or prelabeled in vitro. Either (ultrasmall) superparamagnetic iron oxide [(U)SPIO] particles or (polymeric) paramagnetic chelates can be used for this purpose. For in vivo cellular labeling, Gd3+- and Mn2+- chelates have mainly been used for targeted hepatobiliary imaging, ...

  6. Magnetohydrodynamic cellular automata

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu

    1990-01-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  7. Physiological and pathological consequences of cellular senescence

    OpenAIRE

    Burton, Dominick G. A.; Krizhanovsky, Valery

    2014-01-01

    Cellular senescence, a permanent state of cell cycle arrest accompanied by a complex phenotype, is an essential mechanism that limits tumorigenesis and tissue damage. In physiological conditions, senescent cells can be removed by the immune system, facilitating tumor suppression and wound healing. However, as we age, senescent cells accumulate in tissues, either because an aging immune system fails to remove them, the rate of senescent cell formation is elevated, or both. If senescent cells p...

  8. Incidence and characteristics of uterine leiomyomas with FDG uptake

    International Nuclear Information System (INIS)

    Nishizawa, Sadahiko; Inubushi, Masayuki; Kido, Aki; Miyagawa, Masao; Inoue, Takeshi; Shinohara, Katsura; Kajihara, Makoto

    2008-01-01

    Uterine leiomyomas sometimes show focal 18 F-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) images that may result in a false-positive diagnosis for malignant lesions. This study was conducted to investigate the incidence and characteristics of uterine leiomyomas that showed FDG uptake. We reviewed FDG-PET and pelvic magnetic resonance (MR) images of 477 pre-menopausal (pre-MP, age 42.1±7.3 years) and 880 post-MP (age 59.9±6.8 years) healthy women who underwent these tests as parts of cancer screening. Of 1357, 323 underwent annual cancer screening four times, 97 did three times, 191 did twice, and the rest were screened once. Focal FDG uptake (maximal standardized uptake value >3.0) in the pelvis was localized and characterized on co-registered PET/MR images. Uterine leiomyomas were found in 164 pre-MP and 338 post-MP women. FDG uptake was observed in 18 leiomyomas of 17 of the 164 (10.4%) pre-MP women and in 4 leiomyomas of 4 of the 338 (1.2%) post-MP women. The incidence was significantly higher in pre-MP women than in post-MP women (chi-square, P<0.001). Of the 22, 13 showed signal intensity equal to or higher than that of the myometrium on T2-weighted MR images, which suggested abundant cellularity, whereas the majority of leiomyomas without FDG uptake showed low signal intensity. Of the 13 women, 12 examined more than twice showed substantial changes in the level of FDG uptake in leiomyomas each year with FDG uptake disappearing or newly appearing. These changes were observed frequently in relation with menopause or menstrual phases. Leiomyomas with focal FDG uptake were seen in both pre- and post-MP women with a higher incidence in pre-MP women. Abundant cellularity and hormonal dependency may explain a part of the mechanisms of FDG uptake in leiomyomas. It is important to know that the level of FDG uptake in leiomyomas can change and newly appearing FDG uptake does not necessarily mean malignant transformation. (author)

  9. Uptake and partitioning of epipodophyllotoxins in Ehrlich cells and liposomes

    International Nuclear Information System (INIS)

    Wright, S.E.; White, J.C.

    1987-01-01

    Teniposide (VM-26) and Etoposide (VP-16) have been shown to alter the biochemical and physical properties of biological and artificial membranes in addition to their effects on DNA synthesis. These actions presumably result from interaction of these amphipathic compounds with membrane lipids. Uptake of [ 3 H]VM-26 was concentrative with intracellular levels equilibrating at 12-16 fold above the extracellular level. The more hydrophilic congener, [ 3 H]VP-16 was taken up at a slower rate and only to levels which equaled the extracellular concentration. [ 3 H]VM-26 had large partition coefficients for octanol or phosphatidylcholine liposomes. Thus, VM-26 had a much higher affinity for the ordered lipids than for the organic solvent. Both cellular uptake and partitioning of VM-26 into octanol or phospholipid declined as the temperature was increased from 22 to 37 0 C. Based on a cellular phospholipid content of 80 fmol/cell, a lipid partition coefficient of only 350 would have been sufficient to account for the apparent concentrative uptake. The difference between observed and predicted uptake may be due to effects of proteins and cholesterol in the cellular membranes. They conclude that the high steady-state level of VM-26 achieved in tumor cells as compared to VP-16 may be due to its greater ability to partition into membrane lipids

  10. A Computational Model to Investigate Astrocytic Glutamate Uptake Influence on Synaptic Transmission and Neuronal Spiking

    Directory of Open Access Journals (Sweden)

    Sushmita Lakshmi Allam

    2012-10-01

    Full Text Available Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy.

  11. Radio metal (169Yb) uptake in normal and tumour cells in vitro. Influence of metabolic cell activity and complex structure

    International Nuclear Information System (INIS)

    Franke, W.G.; Kampf, G.

    1996-01-01

    Trivalent radio metal tracers have been used for tumour imaging and metastatic pain palliation. For better understanding their tumour accumulation, basic model studies of uptake of different 169 Yb complexes into cultured normal and tumour cells were performed. Whereas the uptake of 169 Yb citrate is strongly dependent on the metabolic activity and is not tumour-cell pacific, the uptake of 169 Yb complexed with amino carbonic acid (NTA, EDTA, DTPA) does not correlate to the metabolic activities. These complexes are taken up to a greater amount by the tumour cells (by a factor of about 2). Uptake of both complex types leads to a stable association to cellular compounds, 169 Yb is not releasable by the strong complexing agent DTPA. Protein binding of the 169 Yb complexes shows great influence on their cellular uptake. The bound proportion is no more available,for cellular uptake. The results indicate that i 0 uptake of 169 Yb citrate is an active cellular transport process which i not tumor-specific, ii) the 169 Yb amino carbonic acid complexes show a weak favouring by the tumour cells, iii) different from earlier acceptions the Yb complexes studied are not taken up by the cells in protein-bound form. The structure of the Yb complex is decisive for its protein binding and cellular uptake. (author). 13 refs., 6 figs

  12. The Morphology of Self-Assembled Lipid-Based Nanoparticles Affects Their Uptake by Cancer Cells.

    Science.gov (United States)

    Aresh, Wafa; Liu, Ying; Sine, Jessica; Thayer, Derek; Puri, Anu; Huang, Yike; Wang, Yong; Nieh, Mu-Ping

    2016-10-01

    The morphology of nanoparticles (NPs) has been presumed to play an important role in cellular uptake and in vivo stability. This report experimentally demonstrates such dependence by using two types of uniform-sized self-assembled lipid-based NPs, namely nanodiscs and nanovesicles, composed of identical lipid composition. The morphology is characterized by small angle neutron scattering, dynamic light scattering and transmission electron microscopy. Both NPs have similar bio-stability in serum and cellular cytotoxicity. However, cellular uptake of the nanodiscs at 37 °C is consistently and significantly higher than that of the vesicles according to the uptake results of several human cancer cell lines, i.e., CCRFCEM, KB, and OVCAR-8, indicating a strong morphological dependence of cellular internalization. Further studies on such morphological dependence using CCRF-CEM reveals that vesicles only use Clathrin- and caveolae-mediated endocytic pathways, while nanodiscs also take the additional routes of macropinocytosis and microtubule-mediated endocytosis.

  13. Theorizing Uptake and Knowledge Mobilization: A Case for Intermediary Genre

    Science.gov (United States)

    Tachino, Tosh

    2012-01-01

    Recent scholarship in genre studies has extended its focus from studying single genres to multiple genres, as well as how these genres interact with one another. This essay seeks to contribute to this growing scholarship by adding a new concept, "intermediary genre". That is, a genre that facilitates the "uptake" of a genre by…

  14. Facilitating Knowledge Sharing

    DEFF Research Database (Denmark)

    Holdt Christensen, Peter

    Abstract This paper argues that knowledge sharing can be conceptualized as different situations of exchange in which individuals relate to each other in different ways, involving different rules, norms and traditions of reciprocity regulating the exchange. The main challenge for facilitating...... and the intermediaries regulating the exchange, and facilitating knowledge sharing should therefore be viewed as a continuum of practices under the influence of opportunistic behaviour, obedience or organizational citizenship behaviour. Keywords: Knowledge sharing, motivation, organizational settings, situations...

  15. An audit of the uptake of key PMTCT interventions in the pre and ...

    African Journals Online (AJOL)

    Prevention of vertical transmission of HIV may require the uptake of the culturally unacceptable options of cesarean delivery and formula feeding. The successful use of HAART, as enumerated by the WHO 2009 rapid advice, has the potential for facilitating the uptake of the more culturally acceptable vaginal delivery and ...

  16. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  17. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  18. The New Cellular Immunology

    Science.gov (United States)

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  19. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Inositol uptake in rat aorta

    International Nuclear Information System (INIS)

    Rapoport, R.M.; Van Gorp, C.; Chang, Ki-Churl

    1990-01-01

    3 H-inositol uptake into deendothelialized aorta was linear for at least 2 h and was composed of both a saturable, Na + -dependent, and a nonsaturable, Na + -independent component. The Na + -dependent component of inositol uptake had a K m of 50 μM and a V max of 289 pmol/mg prot/h. Exposure to LiCl, ouabain, or Ca 2+ - free Krebs-Ringer bicarbonate solution inhibited uptake. Metabolic poisoning with dinitrophenol, as well as incubation with phloretin, an inhibitor of carrier-mediated hexose transport, also inhibited uptake. Exposure to norepinephrine decreased inositol uptake, while phorbol myristate acetate was without effect. Isobutylmethylxanthine significantly increased inositol uptake, while the increased uptake due to dibutyryl cyclic AMP and forskolin were not statistically significant. Sodium nitroprusside, and activator of guanylate cyclase, and 8-bromo cyclic GMP, were without effect on uptake, as was methylene blue, an inhibitor of guanylate cyclase. Inositol uptake into the aorta was increased when the endothelium was allowed to remain intact, although this effect was likely due to uptake in both the endothelial and smooth muscle cells

  1. Nanodiamond internalization in cells and the cell uptake mechanism

    International Nuclear Information System (INIS)

    Perevedentseva, E.; Hong, S.-F.; Huang, K.-J.; Chiang, I.-T.; Lee, C.-Y.; Tseng, Y.-T.; Cheng, C.-L.

    2013-01-01

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed

  2. Nanodiamond internalization in cells and the cell uptake mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Perevedentseva, E. [National Dong Hwa University, Department of Physics (China); Hong, S.-F.; Huang, K.-J. [National Dong Hwa University, Department of Life Sciences (China); Chiang, I.-T.; Lee, C.-Y. [National Dong Hwa University, Department of Physics (China); Tseng, Y.-T. [National Dong Hwa University, Department of Life Sciences (China); Cheng, C.-L., E-mail: clcheng@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)

    2013-08-15

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed.

  3. From Teaching to Facilitation

    DEFF Research Database (Denmark)

    de Graaff, Erik

    2013-01-01

    A shift from teaching to learning is characteristic of the introduction of Problem Based Learning (PBL) in an existing school. As a consequence the teaching staff has to be trained in skills like facilitating group work and writing cases. Most importantly a change in thinking about teaching...... and learning will have to be realized. In the implementation of PBL it makes a difference how the core features of the problem and the role of the facilitator have been defined. This paper will present components of a PBL faculty-development training programme and discuss the relevance with respect...

  4. Coal export facilitation

    International Nuclear Information System (INIS)

    Eeles, L.

    1998-01-01

    There is a wide range of trade barriers, particularly tariffs, in current and potential coal market. Commonwealth departments in Australia play a crucial role in supporting government industry policies. This article summarises some of more recent activities of the Department of Primary Industries and Energy (DPIE) in facilitating the export of Australian Coals. Coal export facilitation activities are designed to assist the Australian coal industry by directing Commonwealth Government resources towards issues which would be inappropriate or difficult for the industry to address itself

  5. Implications of Resveratrol on Glucose Uptake and Metabolism

    Directory of Open Access Journals (Sweden)

    David León

    2017-03-01

    Full Text Available Resveratrol—a polyphenol of natural origin—has been the object of massive research in the past decade because of its potential use in cancer therapy. However, resveratrol has shown an extensive range of cellular targets and effects, which hinders the use of the molecule for medical applications including cancer and type 2 diabetes. Here, we review the latest advances in understanding how resveratrol modulates glucose uptake, regulates cellular metabolism, and how this may be useful to improve current therapies. We discuss challenges and findings regarding the inhibition of glucose uptake by resveratrol and other polyphenols of similar chemical structure. We review alternatives that can be exploited to improve cancer therapies, including the use of other polyphenols, or the combination of resveratrol with other molecules and their impact on glucose homeostasis in cancer and diabetes.

  6. Implications of Resveratrol on Glucose Uptake and Metabolism.

    Science.gov (United States)

    León, David; Uribe, Elena; Zambrano, Angara; Salas, Mónica

    2017-03-07

    Resveratrol-a polyphenol of natural origin-has been the object of massive research in the past decade because of its potential use in cancer therapy. However, resveratrol has shown an extensive range of cellular targets and effects, which hinders the use of the molecule for medical applications including cancer and type 2 diabetes. Here, we review the latest advances in understanding how resveratrol modulates glucose uptake, regulates cellular metabolism, and how this may be useful to improve current therapies. We discuss challenges and findings regarding the inhibition of glucose uptake by resveratrol and other polyphenols of similar chemical structure. We review alternatives that can be exploited to improve cancer therapies, including the use of other polyphenols, or the combination of resveratrol with other molecules and their impact on glucose homeostasis in cancer and diabetes.

  7. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  8. The uptake of tocopherols by RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Papas Andreas M

    2002-10-01

    Full Text Available Abstract Background Alpha-Tocopherol and gamma-tocopherol are the two major forms of vitamin E in human plasma and the primary lipid soluble antioxidants. The dietary intake of gamma-tocopherol is generally higher than that of alpha-tocopherol. However, alpha-tocopherol plasma levels are about four fold higher than those of gamma-tocopherol. Among other factors, a preferential cellular uptake of gamma-tocopherol over alpha-tocopherol could contribute to the observed higher plasma alpha-tocopherol levels. In this investigation, we studied the uptake and depletion of both alpha-tocopherol and gamma-tocopherol (separately and together in cultured RAW 264.7 macrophages. Similar studies were performed with alpha-tocopheryl quinone and gamma-tocopheryl quinone, which are oxidation products of tocopherols. Results RAW 264.7 macrophages showed a greater uptake of gamma-tocopherol compared to alpha-tocopherol (with uptake being defined as the net difference between tocopherol transported into the cells and loss due to catabolism and/or in vitro oxidation. Surprisingly, we also found that the presence of gamma-tocopherol promoted the cellular uptake of alpha-tocopherol. Mass balance considerations suggest that products other than quinone were formed during the incubation of tocopherols with macrophages. Conclusion Our data suggests that gamma-tocopherol could play a significant role in modulating intracellular antioxidant defence mechanisms. Moreover, we found the presence of gamma-tocopherol dramatically influenced the cellular accumulation of alpha-tocopherol, i.e., gamma-tocopherol promoted the accumulation of alpha-tocopherol. If these results could be extrapolated to in vivo conditions they suggest that gamma-tocopherol is selectively taken up by cells and removed from plasma more rapidly than alpha-tocopherol. This could, in part, contribute to the selective maintenance of alpha-tocopherol in plasma compared to gamma-tocopherol.

  9. Cellular arsenic transport pathways in mammals.

    Science.gov (United States)

    Roggenbeck, Barbara A; Banerjee, Mayukh; Leslie, Elaine M

    2016-11-01

    Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described. Copyright © 2016. Published by Elsevier B.V.

  10. The challenges of facilitation

    DEFF Research Database (Denmark)

    Agger, Annika

    The aim of the paper is to investigate the role of the facilitators in the enactment of the principles of deliberative democracy and how they are carried out in practice. More specifically, the focus is on how the facilitators‟ balances between the intention of opening up for a plurality of voice...

  11. Facilitating leadership team communication

    OpenAIRE

    Hedman, Eerika

    2015-01-01

    The purpose of this study is to understand and describe how to facilitate competent communication in leadership teamwork. Grounded in the premises of social constructionism and informed by such theoretical frameworks as coordinated management of meaning theory (CMM), dialogic organization development (OD), systemic-constructionist leadership, communication competence, and reflexivity, this study seeks to produce further insights into understanding leadership team communicati...

  12. Effect of flunarizine and calcium on serotonin uptake in human and rat blood platelets and rat synaptosomes

    DEFF Research Database (Denmark)

    Jensen, P N; Smith, D F; Poulsen, J H

    1994-01-01

    that the effect is not coupled to a blockade of cellular calcium influx. In human blood platelets, the inhibition was of the noncompetitive type. These results indicate that flunarizine interacts directly with the 5-HT uptake site. The relatively high concentration of flunarizine required to inhibit 5-HT uptake...

  13. Rubidium uptake of mononuclear leukocytes from normotensive and borderline hypertensive first degree relatives to patients with essential hypertension

    DEFF Research Database (Denmark)

    Johansen, Torben; Nielsen, J R; Poulsgård, L

    1985-01-01

    Uptake of 86Rubidium of mononuclear leukocytes (MNL) was used as a measure of cellular sodium-potassium pump activity. 86Rb-uptake was determined with the pump stimulated mainly from inside the cells by sodium as well as with a combined stimulation from inside by sodium and from outside by Rb. In...

  14. Uptake of magnetic nanoparticles into cells for cell tracking

    International Nuclear Information System (INIS)

    Becker, Christiane; Hodenius, Michael; Blendinger, Gitta; Sechi, Antonio; Hieronymus, Thomas; Mueller-Schulte, Detlef; Schmitz-Rode, Thomas; Zenke, Martin

    2007-01-01

    A challenge for future applications in nanotechnology is the functional integration of nano-sized materials into cellular structures. Here we investigated superparamagnetic Fe 3 O 4 iron oxide nanoparticles coated with a lipid bilayer for uptake into cells and for targeting subcellular compartments. It was found that magnetic nanoparticles (MNPs) are effectively taken up into cells and make cells acquire magnetic activity. Biotin-conjugated MNPs were further functionalized by binding of the fluorescent tag streptavidin-fluorescein isothiocyanate (FITC) and, following uptake into cells, shown to confer magnetic activity and fluorescence labeling. Such FITC-MNPs were localized in the lysosomal compartment of cells which suggests a receptor-mediated uptake mechanism

  15. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  16. Nested cellular automata

    International Nuclear Information System (INIS)

    Quasthoff, U.

    1985-07-01

    Cellular automata by definition consist of a finite or infinite number of cells, say of unit length, with each cell having the same transition function. These cells are usually considered as the smallest elements and so the space filled with these cells becomes discrete. Nevertheless, large pictures created by such cellular automata look very fractal. So we try to replace each cell by a couple of smaller cells, which have the same transition functions as the large ones. There are automata where this replacement does not destroy the macroscopic structure. In these cases this nesting process can be iterated. The paper contains large classes of automata with the above properties. In the case of one dimensional automata with two states and next neighbour interaction and a nesting function of the same type a complete classification is given. (author)

  17. Radiolabeled cellular blood elements

    International Nuclear Information System (INIS)

    Thakur, M.L.; Ezikowitz, M.D.; Hardeman, M.R.

    1985-01-01

    This book contains papers delivered by guest lectures and participants at the Advanced Study Institute's colloquium on Radiolabeled Cellular Blood Elements at Maratea, Italy on August 29, to September 9, 1982. The book includes chapters on basic cell physiology and critical reviews of data and experience in the preparation and use of radiolabeled cells, as well as reports on very recent developments, from a faculty that included experts on cell physiology in health and disease and on the technology of in vivo labeling

  18. Wavefront cellular learning automata

    Science.gov (United States)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  19. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  20. Dietary fat composition, food matrix and relative polarity modulate the micellarization and intestinal uptake of carotenoids from vegetables and fruits.

    Science.gov (United States)

    Mashurabad, Purna Chandra; Palika, Ravindranadh; Jyrwa, Yvette Wilda; Bhaskarachary, K; Pullakhandam, Raghu

    2017-02-01

    Dietary fat increases carotenoid bioavailability by facilitating their transfer to the aqueous micellar fraction during digestion. However, the specific effect of both quantity and type of dietary fat required for optimal carotenoid absorption remained unexplored. In the present study, the effect of amount and type of vegetable oils on carotenoid micellarization from carrot, spinach, drumstick leaves and papaya using in vitro digestion/Caco-2 cell model have been assessed. Although, dietary fat (0.5-10% w/w) significantly increased the micellarization of carotenoids from all the test foods, the extent of increase was determined by the food matrix (papaya > drumstick = spinach > carrot) and polarity of carotenoids (lutein > β-carotene = α-carotene > lycopene). Among the dietary fats tested the carotenoid micellarization was twofold to threefold higher with dietary fat rich in unsaturated fatty acids (olive oil = soybean oil = sunflower oil) compared to saturated fatty acids (peanut oil = palm oil > coconut oil). Intestinal cell uptake of lutein exceeded that of β-carotene from micellar fraction of spinach leaves digested with various oils. However, cellular uptake of β-carotene is depended on the carotenoid content in micellar fraction rather than the type of fat used. Together these results suggest that food matrix, polarity of carotenoids and type of dietary fat determines the extent of carotenoid micellarization from vegetables and fruits.

  1. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity

    DEFF Research Database (Denmark)

    Saei, Amir Ata; Yazdani, Mahdieh; Lohse, Samuel E.

    2017-01-01

    can greatly enhance subsequent therapeutic effects of NPs while diminishing their adverse side effects. In this review, we will focus on the effect of surface functionality on the cellular uptake and the transport of NPs by various subcellular processes.......Engineered nanoparticles (NPs) have opened new frontiers in therapeutics and diagnostics in recent years. The surface functionality of these nanoparticles often predominates their interactions with various biological components of human body, and proper selection or control of surface functionality...

  2. Organic anion transporter 2 (SLC22A7) is a facilitative transporter of cGMP.

    Science.gov (United States)

    Cropp, Cheryl D; Komori, Takafumi; Shima, James E; Urban, Thomas J; Yee, Sook Wah; More, Swati S; Giacomini, Kathleen M

    2008-04-01

    The second messenger, cGMP, mediates a host of cellular responses to various stimuli, resulting in the regulation of many critical physiologic functions. The existence of specific cGMP transporters on the plasma membrane that participate in the regulation of cGMP levels has been suggested in a large number of studies. In this study, we identified a novel plasma membrane transporter for cGMP. In particular, we showed that hOAT2 (SLC22A7), a member of the solute carrier (SLC) superfamily, was a facilitative transporter for cGMP and other guanine nucleotides. hOAT2, which is ubiquitously expressed at high levels in many cell types, was previously thought to primarily transport organic anions. Among purine and pyrimidine nucleobases, nucleosides, and nucleotides, hOAT2 showed the greatest preference for cGMP, which transported cGMP with a K(m) value of 88 +/- 11 muM and exhibited between 50- and 100-fold enhanced uptake over control cells. Our data revealed that hOAT2 is a bidirectional facilitative transporter that can control both intracellular and extracellular levels of cGMP. In addition, we observed that a common alternatively spliced variant of hOAT2 demonstrated a complete loss of transport function as a result of a low expression level on the plasma membrane. We conclude that hOAT2 is a highly efficient, facilitative transporter of cGMP and may be involved in cGMP signaling in many tissues. Our study suggests that hOAT2 represents a potential new drug target for regulating cGMP levels.

  3. Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures

    Directory of Open Access Journals (Sweden)

    Murugan K

    2015-03-01

    Full Text Available Karmani Murugan, Yahya E Choonara, Pradeep Kumar, Divya Bijukumar, Lisa C du Toit, Viness Pillay Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa Abstract: Cellular internalization and trans-barrier transport of nanoparticles can be manipulated on the basis of the physicochemical and mechanical characteristics of nanoparticles. Research has shown that these factors significantly influence the uptake of nanoparticles. Dictating these characteristics allows for the control of the rate and extent of cellular uptake, as well as delivering the drug-loaded nanosystem intra-cellularly, which is imperative for drugs that require a specific cellular level to exert their effects. Additionally, physicochemical characteristics of the nanoparticles should be optimal for the nanosystem to bypass the natural restricting phenomena of the body and act therapeutically at the targeted site. The factors at the focal point of emerging smart nanomedicines include nanoparticle size, surface charge, shape, hydrophobicity, surface chemistry, and even protein and ligand conjugates. Hence, this review discusses the mechanism of internalization of nanoparticles and ideal nanoparticle characteristics that allow them to evade the biological barriers in order to achieve optimal cellular uptake in different organ systems. Identifying these parameters assists with the progression of nanomedicine as an outstanding vector of pharmaceuticals. Keywords: nanoparticles, transport mechanisms, cellular uptake, size, shape, charge

  4. Facilitating Learning at Conferences

    DEFF Research Database (Denmark)

    Ravn, Ib; Elsborg, Steen

    2011-01-01

    The typical conference consists of a series of PowerPoint presentations that tend to render participants passive. Students of learning have long abandoned the transfer model that underlies such one-way communication. We propose an al-ternative theory of conferences that sees them as a forum...... for learning, mutual inspiration and human flourishing. We offer five design principles that specify how conferences may engage participants more and hence increase their learning. In the research-and-development effort reported here, our team collaborated with conference organizers in Denmark to introduce...... and facilitate a variety of simple learning techniques at thirty one- and two-day conferences of up to 300 participants each. We present ten of these techniques and data evaluating them. We conclude that if conference organizers allocate a fraction of the total conference time to facilitated processes...

  5. Essence: Facilitating Software Innovation

    DEFF Research Database (Denmark)

    Aaen, Ivan

    2008-01-01

      This paper suggests ways to facilitate creativity and innovation in software development. The paper applies four perspectives – Product, Project, Process, and People –to identify an outlook for software innovation. The paper then describes a new facility–Software Innovation Research Lab (SIRL) ......) – and a new method concept for software innovation – Essence – based on views, modes, and team roles. Finally, the paper reports from an early experiment using SIRL and Essence and identifies further research.......  This paper suggests ways to facilitate creativity and innovation in software development. The paper applies four perspectives – Product, Project, Process, and People –to identify an outlook for software innovation. The paper then describes a new facility–Software Innovation Research Lab (SIRL...

  6. Mindfulness for group facilitation

    DEFF Research Database (Denmark)

    Adriansen, Hanne Kirstine; Krohn, Simon

    2014-01-01

    thinking and ‘Eastern’ mindfulness which refers to an open, accepting state of mind, as intended with Buddhist-inspired techniques such as meditation. In this paper, we are interested in the latter type of mindfulness and demonstrate how Eastern mindfulness techniques can be used as a tool for facilitation......In this paper, we argue that mindfulness techniques can be used for enhancing the outcome of group performance. The word mindfulness has different connotations in the academic literature. Broadly speaking there is ‘mindfulness without meditation’ or ‘Western’ mindfulness which involves active....... A brief introduction to the physiology and philosophy of Eastern mindfulness constitutes the basis for the arguments of the effect of mindfulness techniques. The use of mindfulness techniques for group facilitation is novel as it changes the focus from individuals’ mindfulness practice...

  7. Laser facilitates vaccination

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-01-01

    Full Text Available Development of novel vaccine deliveries and vaccine adjuvants is of great importance to address the dilemma that the vaccine field faces: to improve vaccine efficacy without compromising safety. Harnessing the specific effects of laser on biological systems, a number of novel concepts have been proposed and proved in recent years to facilitate vaccination in a safer and more efficient way. The key advantage of using laser technology in vaccine delivery and adjuvantation is that all processes are initiated by physical effects with no foreign chemicals administered into the body. Here, we review the recent advances in using laser technology to facilitate vaccine delivery and augment vaccine efficacy as well as the underlying mechanisms.

  8. Containers, facilitators, innovators?

    DEFF Research Database (Denmark)

    Makkonen, Teemu; Merisalo, Maria; Inkinen, Tommi

    2018-01-01

    : are they containers, facilitators or innovators? This is investigated here through empirical material derived from 27 interviews with top departmental management in three Finnish cities (Helsinki, Espoo and Vantaa). The results show that local city governments (LCGs) consider cities as facilitators of innovation...... without the active role of LCGs as innovators. City employees are innovative – the seeming lack of public sector innovation is actually a result of measurement issues that favour (patentable) technological innovations rather than those more common to LCGs, meaning service and organisational types....... Therefore, LCGs can be seen as highly innovative organisations. There are, however, barriers to innovation in the public sector, such as the cost of innovation activity, the lack of incentives for it, and working culture that does not support it. Lastly, the results show that LCGs have not really fully...

  9. Facilitating Knowledge Sharing

    OpenAIRE

    Holdt Christensen, Peter

    2005-01-01

    Abstract This paper argues that knowledge sharing can be conceptualized as different situations of exchange in which individuals relate to each other in different ways, involving different rules, norms and traditions of reciprocity regulating the exchange. The main challenge for facilitating knowledge sharing is to ensure that the exchange is seen as equitable for the parties involved, and by viewing the problems of knowledge sharing as motivational problems situated in different organization...

  10. Uptake of nuclides by plants

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2004-04-01

    This review on plant uptake of elements has been prepared to demonstrate how plants take up different elements. The work discusses the nutrient elements, as well as the general uptake and translocation in plants, both via roots and by foliar absorption. Knowledge of the uptake by the various elements within the periodic system is then reviewed. The work also discusses transfer factors (TF) as well as difficulties using TF to understand the uptake by plants. The review also focuses on species differences. Knowledge necessary to understand and calculate plant influence on radionuclide recirculation in the environment is discussed, in which the plant uptake of a specific nuclide and the fate of that nuclide in the plant must be understood. Plants themselves determine the uptake, the soil/sediment determines the availability of the nuclides and the nuclides themselves can interact with each other, which also influences the uptake. Consequently, it is not possible to predict the nuclide uptake in plants by only analysing the nuclide concentration of the soil/substrate.

  11. Aquaporins and root water uptake

    Science.gov (United States)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  12. Uptake of nuclides by plants

    International Nuclear Information System (INIS)

    Greger, Maria

    2004-04-01

    This review on plant uptake of elements has been prepared to demonstrate how plants take up different elements. The work discusses the nutrient elements, as well as the general uptake and translocation in plants, both via roots and by foliar absorption. Knowledge of the uptake by the various elements within the periodic system is then reviewed. The work also discusses transfer factors (TF) as well as difficulties using TF to understand the uptake by plants. The review also focuses on species differences. Knowledge necessary to understand and calculate plant influence on radionuclide recirculation in the environment is discussed, in which the plant uptake of a specific nuclide and the fate of that nuclide in the plant must be understood. Plants themselves determine the uptake, the soil/sediment determines the availability of the nuclides and the nuclides themselves can interact with each other, which also influences the uptake. Consequently, it is not possible to predict the nuclide uptake in plants by only analysing the nuclide concentration of the soil/substrate

  13. Quantification of nanowire uptake by live cells

    KAUST Repository

    Margineanu, Michael B.

    2015-05-01

    Nanostructures fabricated by different methods have become increasingly important for various applications at the cellular level. In order to understand how these nanostructures “behave” and for studying their internalization kinetics, several attempts have been made at tagging and investigating their interaction with living cells. In this study, magnetic iron nanowires with an iron oxide layer are coated with (3-Aminopropyl)triethoxysilane (APTES), and subsequently labeled with a fluorogenic pH-dependent dye pHrodo™ Red, covalently bound to the aminosilane surface. Time-lapse live imaging of human colon carcinoma HCT 116 cells interacting with the labeled iron nanowires is performed for 24 hours. As the pHrodo™ Red conjugated nanowires are non-fluorescent outside the cells but fluoresce brightly inside, internalized nanowires are distinguished from non-internalized ones and their behavior inside the cells can be tracked for the respective time length. A machine learning-based computational framework dedicated to automatic analysis of live cell imaging data, Cell Cognition, is adapted and used to classify cells with internalized and non-internalized nanowires and subsequently determine the uptake percentage by cells at different time points. An uptake of 85 % by HCT 116 cells is observed after 24 hours incubation at NW-to-cell ratios of 200. While the approach of using pHrodo™ Red for internalization studies is not novel in the literature, this study reports for the first time the utilization of a machine-learning based time-resolved automatic analysis pipeline for quantification of nanowire uptake by cells. This pipeline has also been used for comparison studies with nickel nanowires coated with APTES and labeled with pHrodo™ Red, and another cell line derived from the cervix carcinoma, HeLa. It has thus the potential to be used for studying the interaction of different types of nanostructures with potentially any live cell types.

  14. Evaluation of Structural Cellular Glass

    Science.gov (United States)

    Adams, M. A.; Zwissler, J. G.

    1984-01-01

    Preliminary design information presented. First report discusses state of structural-cellular-glass programs as of June 1979. Second report gives further details of program to develop improved cellular glasses and to characterize properties of glasses and commercially available materials.

  15. Role of intracellular calcium in cellular volume regulation

    International Nuclear Information System (INIS)

    Wong, S.M.; Chase, H.S. Jr.

    1986-01-01

    We investigated the role of intracellular calcium in epithelial cell volume regulation using cells isolated from the toad urinary bladder. A suspension of cells was prepared by treatment of the bladder with collagenase followed by ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid. The cells retained their ion-transporting capabilities: ouabain (1 mM) and amiloride (10 microM) inhibited cellular uptake of 86 Rb and 22 Na, respectively. Using a Coulter counter to measure cellular volume, we found that we could swell cells either by reducing the extracellular osmolality or by adding the permeant solute urea (45 mM) isosmotically. Under both conditions, cells first swelled and then returned to their base-line volume, in spite of the continued presence of the stimulus to swell. Volume regulation was inhibited when cells were swelled at low extracellular [Ca] (100 nM) and was retarded in cells preloaded with the calcium buffer quin 2. Swelling increased the intracellular free calcium concentration ([Ca]i), as measured by quin 2 fluorescence: [Ca]i increased 35 +/- 9 nM (n = 6) after hypotonic swelling and 42 +/- 3 nM (n = 3) after urea swelling. Reducing extracellular [Ca] to less than 100 nM prevented the swelling-induced increase in [Ca]i, suggesting that the source of the increase in [Ca]i was extracellular. This result was confirmed in measurements of cellular uptake of 45Ca: the rate of uptake was significantly higher in swollen cells compared with control (1.1 +/- 0.2 vs. 0.4 +/- 0.1 fmol . cell-1 X 5 min-1). Our experiments provide the first demonstration that cellular swelling increases [Ca]i. This increase is likely to play a critical role in cellular volume regulation

  16. Review of cellular mechanotransduction

    Science.gov (United States)

    Wang, Ning

    2017-06-01

    Living cells and tissues experience physical forces and chemical stimuli in the human body. The process of converting mechanical forces into biochemical activities and gene expression is mechanochemical transduction or mechanotransduction. Significant advances have been made in understanding mechanotransduction at the cellular and molecular levels over the last two decades. However, major challenges remain in elucidating how a living cell integrates signals from mechanotransduction with chemical signals to regulate gene expression and to generate coherent biological responses in living tissues in physiological conditions and diseases.

  17. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  18. Cellular mechanics and motility

    Science.gov (United States)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  19. Cadmium uptake by plants

    Energy Technology Data Exchange (ETDEWEB)

    Haghiri, F.

    1973-01-01

    Absorption of /sup 115m/Cd by soybean (Gylcine max l.) plants via foliar and root systems and translocation into the seed was determined. The uptake of /sup 115m/Cd by soybeans via the root system was more efficient than that of the foliar placement. Growth and Cd concentrations of soybean and wheat (Triticum aestivum l.) tops were influenced by soil-applied Cd. In both crops, the Cd concentration of plant tops increased while yield decreased with increasing levels of applied Cd. Cadmium toxicitiy began to occur in both crops at the lowest level of soil applied Cd (2.5 ppM). With soybean plants, Cd toxicity symptoms resembled fe chlorosis. For wheat plants there were no visual symptoms other than the studied growth. The relative concentration of Cd found in several vegetable crops varied depending on the plant species. The relative Cd concentration in descending order for various vegetables was lettuce (Lactuca sativa l.) > radish top (Raphanus sativus l.) > celery stalk (Apium graveolens l.) > celery leaves greater than or equal to green pepper (Capsicum frutescens l.) > radish roots.

  20. Expert and novice facilitated modelling

    DEFF Research Database (Denmark)

    Tavella, Elena; Papadopoulos, Thanos

    2015-01-01

    the behaviour of one expert and two novice facilitators during a Viable System Model workshop. The findings suggest common facilitation patterns in the behaviour of experts and novices. This contrasts literature claiming that experts and novices behave and use their available knowledge differently......This paper provides an empirical study based on action research in which expert and novice facilitators in facilitated modelling workshops are compared. There is limited empirical research analysing the differences between expert and novice facilitators. Aiming to address this gap we study...... and facilitation strategies in contexts in which external, expert facilitation is not always possible are also discussed, and limitations of this study are provided....

  1. Influenza Vaccine Uptake, Hand Hygiene Practices, and Perceived Barriers in Decision Making.

    Science.gov (United States)

    Stedman-Smith, Maggie; Kingsbury, Diana M; Dubois, Cathy L Z; Grey, Scott F

    2017-01-01

    The annual costs of influenza are in the billions of dollars, with employers bearing substantial burdens. Yet, influenza vaccine uptake is sub-optimal. A random survey was administered to employees at a Midwestern public university using mixed quantitative and qualitative methods to identify the rate, characteristics, and barriers of self-reported flu vaccine uptake during March-April of 2012. The lowest uptake was among adults, ages 18 to 49 (29.8%), even though they are included in universal recommendations. Multiple regression analysis adjusted for demographic confounders showed an increase in self-identified protective hand hygiene behavior among those who reported influenza vaccine uptake compared with those who did not. Qualitative thematic analysis revealed contextual accounts of why vaccine uptake was declined including structural, perceptual, and knowledge barriers. Implementation and evaluation of novel multicomponent worksite vaccine interventions tailored to reach young and middle-aged employees including utilization of risk communication is needed to facilitate increased uptake.

  2. Changes in the cellular energy state affect the activity of the bacterial phosphotransferase system

    DEFF Research Database (Denmark)

    Rohwer, J.M.; Jensen, Peter Ruhdal; Shinohara, Y.

    1996-01-01

    The effect of different cellular free-energy states on the uptake of methyl alfa-D-glucopyranoside, an analoque of glucose, by Escherichia coli phosphoenolpyruvate:carbohydrate phosphotransferase system was investigated. The intracellular ATP/ADP ratio was varied by changing the expression...... that the initial uptake rate was decreased under conditions of lowered intracellular ATP/ADP ratios, irrespective of which method was used to change the cellular energy state.. When either the expression of the atp operon was changed or 2,4-dinitrophenol was added to wild-type cells, the relationship between...... initial phosphotransferase uptake rate and the logaritm of the ATP/ADP ratio was approxomately linear. These results suggest that the cellular free-energy state, as reflected in the intracellular ATP/ADP ratio, plays an important role in regulating the activity of the phosphotransferase ssystem....

  3. Essence: Facilitating Software Innovation

    DEFF Research Database (Denmark)

    Aaen, Ivan

    2008-01-01

      This paper suggests ways to facilitate creativity and innovation in software development. The paper applies four perspectives – Product, Project, Process, and People –to identify an outlook for software innovation. The paper then describes a new facility–Software Innovation Research Lab (SIRL......) – and a new method concept for software innovation – Essence – based on views, modes, and team roles. Finally, the paper reports from an early experiment using SIRL and Essence and identifies further research....

  4. Fast Targeting and Cancer Cell Uptake of Luminescent Antibody-Nanozeolite Bioconjugates.

    Science.gov (United States)

    Marega, Riccardo; Prasetyanto, Eko Adi; Michiels, Carine; De Cola, Luisa; Bonifazi, Davide

    2016-10-01

    Understanding the targeted cellular uptake of nanomaterials is an essential step to engineer and program functional and effective biomedical devices. In this respect, the targeting and ultrafast uptake of zeolite nanocrystals functionalized with Cetuximab antibodies (Ctxb) by cells overexpressing the epidermal growth factor receptor are described here. Biochemical assays show that the cellular uptake of the bioconjugate in the targeted cancer cells already begins 15 min after incubation, at a rate around tenfold faster than that observed in the negative control cells. These findings further show the role of Ctxb exposed at the surfaces of the zeolite nanocrystals in mediating the targeted and rapid cellular uptake. By using temperature and pharmacological inhibitors as modulators of the internalization pathways, the results univocally suggest a dissipative uptake mechanism of these nanomaterials, which seems to occur using different internalization pathways, according to the targeting properties of these nanocrystals. Owing to the ultrafast uptake process, harmless for the cell viability, these results further pave the way for the design of novel theranostic tools based on nanozeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes.

    Science.gov (United States)

    Shah-Simpson, Sheena; Lentini, Gaelle; Dumoulin, Peter C; Burleigh, Barbara A

    2017-11-01

    Obligate intracellular pathogens satisfy their nutrient requirements by coupling to host metabolic processes, often modulating these pathways to facilitate access to key metabolites. Such metabolic dependencies represent potential targets for pathogen control, but remain largely uncharacterized for the intracellular protozoan parasite and causative agent of Chagas disease, Trypanosoma cruzi. Perturbations in host central carbon and energy metabolism have been reported in mammalian T. cruzi infection, with no information regarding the impact of host metabolic changes on the intracellular amastigote life stage. Here, we performed cell-based studies to elucidate the interplay between infection with intracellular T. cruzi amastigotes and host cellular energy metabolism. T. cruzi infection of non-phagocytic cells was characterized by increased glucose uptake into infected cells and increased mitochondrial respiration and mitochondrial biogenesis. While intracellular amastigote growth was unaffected by decreased host respiratory capacity, restriction of extracellular glucose impaired amastigote proliferation and sensitized parasites to further growth inhibition by 2-deoxyglucose. These observations led us to consider whether intracellular T. cruzi amastigotes utilize glucose directly as a substrate to fuel metabolism. Consistent with this prediction, isolated T. cruzi amastigotes transport extracellular glucose with kinetics similar to trypomastigotes, with subsequent metabolism as demonstrated in 13C-glucose labeling and substrate utilization assays. Metabolic labeling of T. cruzi-infected cells further demonstrated the ability of intracellular parasites to access host hexose pools in situ. These findings are consistent with a model in which intracellular T. cruzi amastigotes capitalize on the host metabolic response to parasite infection, including the increase in glucose uptake, to fuel their own metabolism and replication in the host cytosol. Our findings enrich

  6. Effect of inhibitors and substrates on methyl mercury uptake by rat erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Wu Guang [National Inst. for Minamata Disease, Kumamoto (Japan). Biochemistry Section

    1995-08-01

    Methyl mercury (MeHg) uptake by isolated erythrocytes from rats was studied at 20 C. Inhibitors and substrates were used to test which transport system was involved in MeHg uptake. Ouabain and ATP were used to test the active transport system. Glycine was used to test system Gly. DL-Methionine was used to test system L. Cysteine was used to test the cysteine-facilitated tranport system. The effects of Ca{sup 2+}, Mg{sup 2+} and Na{sup +} on MeHg uptake have been examined. MeHgCl and 4,4`-diisothiocyano-2,2`-stilbenedisulfonic acid (DIDS) were used to test Cl{sup -} ion transport system. D-Glucose and cytochalasin B were used to test the facilitated diffusive D-Glucose transport system. Colchicine and vinblastine were used to test the microtubule system. Probenecid was used to test the organic acid transport system. Valinomycin was used to test the effect of the membrane potential on MeHg uptake. The results showed that MeHg uptake at 20 C might be involved in the following transport systems: (1) an active transport system; (2) a cysteine-facilitated transport system; (3) a Cl{sup -} ion transport system; (4) a facilitated diffusive D-glucose transport system; (5) an organic acid transport system. The transport systems for MeHg uptake were sensitive to the membrane potential. (orig.)

  7. Effect of isoproterenol on uptake of 45Ca by pregnant human rat myometrium

    International Nuclear Information System (INIS)

    Hodgson, B.J.

    1976-01-01

    Rat and human myometria contract is response to substitution of external Na + with Li + . This contraction was accompanied by elevation of 45 Ca uptake in rat but not human uterus. The lanthanum technique failed to demonstrate elevation of cellular 45 Ca in human myometrium by Li + substitution. It also failed to demonstrate reduction of Li-elevated 45 Ca uptake by isoproterenol or drugs considered to inhibit calcium influx, in rat myometrium although these drugs prevented Li-induced contraction. In human myometrium, isoproterenol increased 45 Ca uptake. This probably represents increased extracellular calcium binding. Isoproterenol relaxed depolarized human myometrium provided that the external calcium had been removed for 15 minutes

  8. Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts

    Directory of Open Access Journals (Sweden)

    Herrmann Thomas

    2008-08-01

    Full Text Available Abstract Background Mechanisms of long chain fatty acid uptake across the plasma membrane are important targets in treatment of many human diseases like obesity or hepatic steatosis. Long chain fatty acid translocation is achieved by a concert of co-existing mechanisms. These lipids can passively diffuse, but certain membrane proteins can also accelerate the transport. However, we now can provide further evidence that not only proteins but also lipid microdomains play an important part in the regulation of the facilitated uptake process. Methods Dynamic association of FAT/CD36 a candidate fatty acid transporter with lipid rafts was analysed by isolation of detergent resistant membranes (DRMs and by clustering of lipid rafts with antibodies on living cells. Lipid raft integrity was modulated by cholesterol depletion using methyl-β-cyclodextrin and sphingolipid depletion using myriocin and sphingomyelinase. Functional analyses were performed using an [3H]-oleate uptake assay. Results Overexpression of FAT/CD36 and FATP4 increased long chain fatty acid uptake. The uptake of long chain fatty acids was cholesterol and sphingolipid dependent. Floating experiments showed that there are two pools of FAT/CD36, one found in DRMs and another outside of these domains. FAT/CD36 co-localized with the lipid raft marker PLAP in antibody-clustered domains at the plasma membrane and segregated away from the non-raft marker GFP-TMD. Antibody cross-linking increased DRM association of FAT/CD36 and accelerated the overall fatty acid uptake in a cholesterol dependent manner. Another candidate transporter, FATP4, was neither present in DRMs nor co-localized with FAT/CD36 at the plasma membrane. Conclusion Our observations suggest the existence of two pools of FAT/CD36 within cellular membranes. As increased raft association of FAT/CD36 leads to an increased fatty acid uptake, dynamic association of FAT/CD36 with lipid rafts might regulate the process. There is no

  9. Why (we think) facilitation works: insights from organizational learning theory.

    Science.gov (United States)

    Berta, Whitney; Cranley, Lisa; Dearing, James W; Dogherty, Elizabeth J; Squires, Janet E; Estabrooks, Carole A

    2015-10-06

    Facilitation is a guided interactional process that has been popularized in health care. Its popularity arises from its potential to support uptake and application of scientific knowledge that stands to improve clinical and managerial decision-making, practice, and ultimately patient outcomes and organizational performance. While this popular concept has garnered attention in health services research, we know that both the content of facilitation and its impact on knowledge implementation vary. The basis of this variation is poorly understood, and understanding is hampered by a lack of conceptual clarity. In this paper, we argue that our understanding of facilitation and its effects is limited in part by a lack of clear theoretical grounding. We propose a theoretical home for facilitation in organizational learning theory. Referring to extant literature on facilitation and drawing on theoretical literature, we discuss the features of facilitation that suggest its role in contributing to learning capacity. We describe how facilitation may contribute to generating knowledge about the application of new scientific knowledge in health-care organizations. Facilitation's promise, we suggest, lies in its potential to stimulate higher-order learning in organizations through experimenting with, generating learning about, and sustaining small-scale adaptations to organizational processes and work routines. The varied effectiveness of facilitation observed in the literature is associated with the presence or absence of factors known to influence organizational learning, since facilitation itself appears to act as a learning mechanism. We offer propositions regarding the relationships between facilitation processes and key organizational learning concepts that have the potential to guide future work to further our understanding of the role that facilitation plays in learning and knowledge generation.

  10. Cellular image classification

    CERN Document Server

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  11. Cellular-scale hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Abkarian, Manouk [Laboratoire des Colloides, Verres et Nanomateriaux, Universite de Montpellier, Montpellier Cedex 5 (France); Faivre, Magalie [CEA-LETI, Division of Technology for Biology and Health, 17, Avenue des Martyrs, 38054 Grenoble (France); Horton, Renita; Stone, Howard A [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Smistrup, Kristian [MIC, Department of Micro and Nanotechnology, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark); Best-Popescu, Catherine A [Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801 (United States)

    2008-09-01

    Microfluidic tools are providing many new insights into the chemical, physical and physicochemical responses of cells. Both suspension-level and single-cell measurements have been studied. We review our studies of these kinds of problems for red blood cells with particular focus on the shapes of individual cells in confined geometries, the development and use of a 'differential manometer' for evaluating the mechanical response of individual cells or other objects flowing in confined geometries, and the cross-streamline drift of cells that pass through a constriction. In particular, we show how fluid mechanical effects on suspended cells can be studied systematically in small devices, and how these features can be exploited to develop methods for characterizing physicochemical responses and possibly for the diagnosis of cellular-scale changes to environmental factors.

  12. Cellular based cancer vaccines

    DEFF Research Database (Denmark)

    Hansen, M; Met, Ö; Svane, I M

    2012-01-01

    -associated antigens introduced to dendritic cells (DCs) generated in vitro. This may in part result from suboptimal maturation of DCs leading to insufficient production of IL-12, a key driver of cellular immunity. Therefore, tremendous efforts have been put into the design of maturation cocktails that are able...... of tolerogenic molecules and activation-induced dendritic cell death should be avoided. Thus, compounds such as IFN-γ may initially induce immunity but later on tolerance. Maturation with PGE(2) obviously promotes migration via expression of CCR7 but on the down side PGE(2) limits the production of IL-12...... to transiently affect in vitro migration via autocrine receptor-mediated endocytosis of CCR7. In the current review, we discuss optimal design of DC maturation focused on pre-clinical as well as clinical results from standard and polarized dendritic cell based cancer vaccines....

  13. Membrane contact sites, ancient and central hubs of cellular lipid logistics

    NARCIS (Netherlands)

    Jain, Amrita; Holthuis, Joost C.M.

    2017-01-01

    Membrane contact sites (MCSs) are regions where two organelles are closely apposed to facilitate molecular communication and promote a functional integration of compartmentalized cellular processes. There is growing evidence that MCSs play key roles in controlling intracellular lipid flows and

  14. Physiology of oxygen uptake kinetics: Insights from incremental cardiopulmonary exercise testing in the Study of Health in Pomerania

    Directory of Open Access Journals (Sweden)

    Anthony J. Barron

    2015-06-01

    Conclusions: Markers of oxygen kinetics are differentially affected by patient characteristics. This study provides normal reference values for these variables thereby facilitating interpretation of oxygen uptake kinetics in health and disease.

  15. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.

    Science.gov (United States)

    Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G

    2014-04-01

    Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems.

  16. Impact of surface modification in BSA nanoparticles for uptake in cancer cells.

    Science.gov (United States)

    Choi, Jin-Seok; Meghani, Nilesh

    2016-09-01

    Recent studies have shown that cellular uptake of nanoparticles are strongly affected by the presence and physicochemical characteristics of protein on the surface of these nanoparticles. Hence, We developed surface-modified bovine serum albumin (BSA) nanoparticles (NPs) and evaluated the effect of surface modification on cellular uptake in two types of cancer cells, MCF-7 and A549. BSA NPs were prepared by desolvation method and their surface was modified with apo-transferrin, hyaluronic acid, and Poly(allylamine hydrochloride) (PAH). Morphology of surface-modified BSA NPs was characterized by field emission scanning electron microscopy and differential scanning calorimetry. In vitro-fluorescence release study was performed in phosphate buffered saline with trypsin (100μL/mL (v/v)) for 24h. Confocal microscopy was performed to evaluate cellular uptake followed by fluorescence analysis to evaluate the quantitative uptake of nanoparticles at 0.5, 1, and 2h. Different types of BSA NPs with a mean size of ∼100nm were successfully prepared. In vitro-fluorescent release showed sustained release pattern in surface-modified BSA NPs compared to unmodified BSA NPs. Surface-modified BSA NPs showed more cellular internalization than unmodified BSA NPs. The uptake of PAH-BSA NPs was about 2 times higher than that of unmodified BSA NPs in both cell types. In conclusion, surface-modified BSA NPs showed enhanced cellular uptake, and PAH-BSA NPs are more effective compared to ligand-specific surface-modified BSA NPs (HA-BSA NPs and Tf-BSA NPs). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Vertical partitioning of phosphate uptake among picoplankton groups in the low Pi Mediterranean Sea

    KAUST Repository

    Talarmin, Agathe Anne Gaelle

    2015-02-26

    Microbial transformations are key processes in marine phosphorus cycling. In this study, we investigated the contribution of phototrophic and heterotrophic groups to phosphate (Pi) uptake fluxes in the euphotic zone of the low-Pi Mediterranean Sea and estimated Pi uptake kinetic characteristics. Surface soluble reactive phosphorus (SRP) concentrations were in the range of 6-80 nmol Lg\\'1 across the transect, and the community Pi turnover times, assessed using radiolabeled orthophosphate incubations, were longer in the western basin, where the highest bulk and cellular rates were measured. Using live cell sorting, four vertical profiles of Pi uptake rates were established for heterotrophic prokaryotes (Hprok), phototrophic picoeukaryotes (Pic) and Prochlorococcus (Proc) and Synechococcus (Syn) cyanobacteria. Hprok cells contributed up to 82% of total Pi uptake fluxes in the superficial euphotic zone, through constantly high abundances (2.7-10.2 × 105 cells mLg\\'1) but variable cellular rates (6.6 ± 9.3 amol P cellg\\'1 hg\\'1). Cyanobacteria achieved most of the Pi uptake (up to 62%) around the deep chlorophyll maximum depth, through high abundances (up to 1.4 × 105 Proc cells mLg\\'1) and high cellular uptake rates (up to 40 and 402 amol P cellg\\'1 hg\\'1, respectively for Proc and Syn cells). At saturating concentrations, maximum cellular rates up to 132 amol P cellg\\'1 hg\\'1 were measured for Syn at station (St.) C, which was 5 and 60 times higher than Proc and Hprok, respectively. Pi uptake capabilities of the different groups likely contribute to their vertical distribution in the low Pi Mediterranean Sea, possibly along with other energy limitations.

  18. Extracellular vesicles regulate immune responses and cellular function in intestinal inflammation and repair.

    Science.gov (United States)

    Bui, Triet M; Mascarenhas, Lorraine A; Sumagin, Ronen

    2018-02-02

    Tightly controlled communication among the various resident and recruited cells in the intestinal tissue is critical for maintaining tissue homeostasis, re-establishment of the barrier function and healing responses following injury. Emerging evidence convincingly implicates extracellular vesicles (EVs) in facilitating this important cell-to-cell crosstalk by transporting bioactive effectors and genetic information in healthy tissue and disease. While many aspects of EV biology, including release mechanisms, cargo packaging, and uptake by target cells are still not completely understood, EVs contribution to cellular signaling and function is apparent. Moreover, EV research has already sparked a clinical interest, as a potential diagnostic, prognostic and therapeutic tool. The current review will discuss the function of EVs originating from innate immune cells, namely, neutrophils, monocytes and macrophages, as well as intestinal epithelial cells in healthy tissue and inflammatory disorders of the intestinal tract. Our discussion will specifically emphasize the contribution of EVs to the regulation of vascular and epithelial barrier function in inflamed intestines, wound healing, as well as trafficking and activity of resident and recruited immune cells.

  19. Facilitative root interactions in intercrops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Jensen, E.S.

    2005-01-01

    Facilitation takes place when plants ameliorate the environment of their neighbours, and increase their growth and survival. Facilitation occurs in natural ecosystems as well as in agroecosystems. We discuss examples of facilitative root interactions in intercropped agroecosystems; including...... of root architecture, exudation of growth stimulating substances, and biofumigation. Facilitative root interactions are most likely to be of importance in nutrient poor soils and in low-input agroecosystems due to critical interspecific competition for plant growth factors. However, studies from more...

  20. Statistical mechanics of cellular automata

    International Nuclear Information System (INIS)

    Wolfram, S.

    1983-01-01

    Cellular automata are used as simple mathematical models to investigate self-organization in statistical mechanics. A detailed analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions approx. =1.59 or approx. =1.69. With ''random'' initial configurations, the irreversible character of the cellular automaton evolution leads to several self-organization phenomena. Statistical properties of the structures generated are found to lie in two universality classes, independent of the details of the initial state or the cellular automaton rules. More complicated cellular automata are briefly considered, and connections with dynamical systems theory and the formal theory of computation are discussed

  1. Muscle contraction increases carnitine uptake via translocation of OCTN2

    Energy Technology Data Exchange (ETDEWEB)

    Furuichi, Yasuro [Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa (Japan); Sugiura, Tomoko; Kato, Yukio [Faculty of Pharmacy, Kanazawa University, Kanazawa (Japan); Takakura, Hisashi [Faculty of Human Sciences, Kanazawa University, Kanazawa (Japan); Hanai, Yoshiteru [Nagoya Institute of Technology, Nagoya (Japan); Hashimoto, Takeshi [Ritsumeikan University, Kusatsu (Japan); Masuda, Kazumi, E-mail: masuda@ed.kanazawa-u.ac.jp [Faculty of Human Sciences, Kanazawa University, Kanazawa (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Muscle contraction augmented carnitine uptake into rat hindlimb muscles. Black-Right-Pointing-Pointer An increase in carnitine uptake was due to an intrinsic clearance, not blood flow. Black-Right-Pointing-Pointer Histochemical analysis showed sarcolemmal OCTN2 was emphasized after contraction. Black-Right-Pointing-Pointer OCTN2 protein in sarcolemmal fraction was increased in contracting muscles. -- Abstract: Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity. The tissue uptake clearance (CL{sub uptake}) of L-[{sup 3}H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL{sub uptake} of [{sup 14}C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL{sub uptake} of L-[{sup 3}H]carnitine in the contracting muscles increased 1.4-1.7-fold as compared to that in the contralateral resting muscles (p < 0.05). The CL{sub uptake} of [{sup 14}C]IAP was much higher than that of L-[{sup 3}H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p < 0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles, possibly

  2. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake

    Directory of Open Access Journals (Sweden)

    Chang Hwa Jung

    2015-06-01

    Full Text Available Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz, a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ and CCAAT/enhanced binding protein alpha (C/EBPα. Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4 from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1, a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1. The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  3. SSRI Facilitated Crack Dancing

    Directory of Open Access Journals (Sweden)

    Ravi Doobay

    2017-01-01

    Full Text Available Choreoathetoid movement secondary to cocaine use is a well-documented phenomenon better known as “crack dancing.” It consists of uncontrolled writhing movements secondary to excess dopamine from cocaine use. We present a 32-year-old male who had been using cocaine for many years and was recently started on paroxetine, a selective serotonin reuptake inhibitor (SSRI for worsening depression four weeks before presentation. He had been doing cocaine every 2 weeks for the last three years and had never “crack danced” before this episode. The authors have conducted a thorough literature review and cited studies that suggest “crack dancing” is associated with excess dopamine. There has never been a documented case report of an SSRI being linked with “crack dancing.” The authors propose that the excess dopaminergic effect of the SSRI lowered the dopamine threshold for “crack dancing.” There is a communication with the Raphe Nucleus and the Substantia Nigra, which explains how the SSRI increases dopamine levels. This is the first documented case of an SSRI facilitating the “crack dance.”

  4. Facilitating post traumatic growth

    Directory of Open Access Journals (Sweden)

    Cox Helen

    2004-07-01

    Full Text Available Abstract Background Whilst negative responses to traumatic injury have been well documented in the literature, there is a small but growing body of work that identifies posttraumatic growth as a salient feature of this experience. We contribute to this discourse by reporting on the experiences of 13 individuals who were traumatically injured, had undergone extensive rehabilitation and were discharged from formal care. All participants were injured through involvement in a motor vehicle accident, with the exception of one, who was injured through falling off the roof of a house. Methods In this qualitative study, we used an audio-taped in-depth interview with each participant as the means of data collection. Interviews were transcribed verbatim and analysed thematically to determine the participants' unique perspectives on the experience of recovery from traumatic injury. In reporting the findings, all participants' were given a pseudonym to assure their anonymity. Results Most participants indicated that their involvement in a traumatic occurrence was a springboard for growth that enabled them to develop new perspectives on life and living. Conclusion There are a number of contributions that health providers may make to the recovery of individuals who have been traumatically injured to assist them to develop new views of vulnerability and strength, make changes in relationships, and facilitate philosophical, physical and spiritual growth.

  5. Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells

    International Nuclear Information System (INIS)

    Guarnieri, Daniela; Guaccio, Angela; Fusco, Sabato; Netti, Paolo A.

    2011-01-01

    The physico-chemical properties of nanoparticles (NPs), such as small dimensions, surface charge and surface functionalization, control their capability to interact with cells and, in particular, with sub-cellular components. This interaction can be also influenced by the adsorption of molecules present in biological fluids, like blood, on NP surface. Here, we analysed the effect of serum proteins on 49 and 100 nm red fluorescent polystyrene NP uptake in porcine aortic endothelial (PAE) cells, as a model for vascular transport. To this aim, NP uptake kinetic, endocytic pathway and intracellular trafficking were studied by monitoring NPs inside cells through confocal microscopy and multiple particle tracking (MPT). We demonstrated that NPs are rapidly internalized by cells in serum-free (SF) medium, according to a saturation kinetic. Conversely, in 10% foetal bovine serum-enriched (SE) medium, NP uptake rate results drastically reduced. Moreover, NP internalization depends on an active endocytic mechanism that does not involve clathrin- and caveolae-mediated vesicular transport, in both SE and SF media. Furthermore, MPT data indicate that NP intracellular trafficking is unaffected by protein presence. Indeed, approximately 50–60% of internalized NPs is characterized by a sub-diffusive behaviour, whereas the remaining fraction shows an active motion. These findings demonstrate that the unspecific protein adsorption on NP surface can affect cellular uptake in terms of internalization kinetics, but it is not effective in controlling active and cellular-mediated uptake mechanisms of NPs and their intracellular routes.

  6. Potassium and thallium uptake in dog myocardium.

    Science.gov (United States)

    Bassingthwaighte, J B; Winkler, B; King, R B

    1997-02-01

    We sought to ascertain the rates and mechanisms of uptake of markers for regional myocardial blood flows. The rates of exchange of potassium and thallium across capillary walls and cell membranes in isolated blood-perfused dog hearts were estimated from multiple indicator dilution curves recorded for 131I-albumin, 42K and 201Tl from the coronary sinus outflow following injection into arterial inflow. Analysis involved fitting the observed dilution curves with a model composed of a capillary-interstitial fluid-cell exchange region and nonexchanging larger vessels. Capillary permeability surface products (PSc) for potassium and thallium were similar, 0.82 +/- 0.33 (mean +/- s.d., n = 19) and 0.87 +/- 0.32 ml min-1 g-1 (n = 24) with a ratio for simultaneous pairs of 1.02 +/- 0.27 (n = 19). For the myocardial cells, PSpc averaged 3.7 +/- 3.1 ml min-1 g-1 (n = 19) for K+ and 9.5 +/- 3.9 (n = 24) for Tl+; the ratio of potassium to thallium averaged 0.40 +/- 0.19 (n = 18), thereby omitting a single high value for potassium. This high cellular influx for thallium is interpreted as due to its passage through ionic channels for both Na+ and K+. The high permeabilities and large volumes of distribution make thallium and potassium among the best ionic deposition markers for regional flow. Their utility for this purpose is compromised by significant capillary barrier limitation retarding uptake; so regional flow is underestimated modestly in high-flow regions particularly.

  7. Presenilin promotes dietary copper uptake.

    Directory of Open Access Journals (Sweden)

    Adam Southon

    Full Text Available Dietary copper is essential for multicellular organisms. Copper is redox active and required as a cofactor for enzymes such as the antioxidant Superoxide Dismutase 1 (SOD1. Copper dyshomeostasis has been implicated in Alzheimer's disease. Mutations in the presenilin genes encoding PS1 and PS2 are major causes of early-onset familial Alzheimer's disease. PS1 and PS2 are required for efficient copper uptake in mammalian systems. Here we demonstrate a conserved role for presenilin in dietary copper uptake in the fly Drosophila melanogaster. Ubiquitous RNA interference-mediated knockdown of the single Drosophila presenilin (PSN gene is lethal. However, PSN knockdown in the midgut produces viable flies. These flies have reduced copper levels and are more tolerant to excess dietary copper. Expression of a copper-responsive EYFP construct was also lower in the midgut of these larvae, indicative of reduced dietary copper uptake. SOD activity was reduced by midgut PSN knockdown, and these flies were sensitive to the superoxide-inducing chemical paraquat. These data support presenilin being needed for dietary copper uptake in the gut and so impacting on SOD activity and tolerance to oxidative stress. These results are consistent with previous studies of mammalian presenilins, supporting a conserved role for these proteins in mediating copper uptake.

  8. 14 C-Glucose uptake studies in the red rot toxin treated sugarcane ...

    African Journals Online (AJOL)

    Fungal toxins cause serious damage to the cellular functions of host tissue. In the present report the toxin extracted from Colletotrichum falcatum Went was partially purified and treatments were given to the callus of susceptible sugarcane callus variety CoC 671. The influence on 14C-glucose uptake and its further utilization ...

  9. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor

    NARCIS (Netherlands)

    Zelcer, Noam; Hong, Cynthia; Boyadjian, Rima; Tontonoz, Peter

    2009-01-01

    Cellular cholesterol levels reflect a balance between uptake, efflux, and endogenous synthesis. Here we show that the sterol-responsive nuclear liver X receptor (LXR) helps maintain cholesterol homeostasis, not only through promotion of cholesterol efflux but also through suppression of low-density

  10. Uptake of 201Thallium in a so-called brown tumour of hyperparathyroidism

    International Nuclear Information System (INIS)

    Simons, M.; Verhaaren, H.; Schelstraete, K.; Schauteet, H.; Craen, M.

    1987-01-01

    When performing a 201 Tl-sup(99m)Tc subtraction scan of the parathyroids in a patient with secondary hyperparathyroidism, a marked accumulation of 201 Tl was observed in a so-called brown tumour of the mandible. The 201 Tl uptake can probably be explained by the rich vascularity and the high cellularity of the lesion. (Author)

  11. GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, P; Frølund, B; Frydenvang, Karla Andrea

    2000-01-01

    GABAA receptor agonists. The availability of these compounds made it possible to study the pharmacology of the GABA uptake systems and the GABAA receptors separately. Based on extensive cellular and molecular pharmacological studies using 23, 24, and a number of mono- and bicyclic analogues, it has been...... demonstrated that neuronal and glial GABA transport mechanisms have dissimilar substrate specificities. With GABA transport mechanisms as pharmacological targets, strategies for pharmacological interventions with the purpose of stimulating GABA neurotransmission seem to be (1) effective blockade of neuronal...... recently been reported as the most selective glial GABA uptake inhibitor so far known and may be a useful tool for further elucidation of the pharmacology of GABA transporters. In recent years, a variety of lipophilic analogues of the amino acids 23 and 24 have been developed, and one of these compounds...

  12. Cellular Imaging of Inflammation in Atherosclerosis Using Magnetofluorescent Nanomaterials

    Directory of Open Access Journals (Sweden)

    Farouc A. Jaffer

    2006-04-01

    Full Text Available Objective: Magnetofluorescent nanoparticles (MFNPs offer the ability to image cellular inflammation in vivo. To better understand their cellular targeting and imaging capabilities in atherosclerosis, we investigated prototypical dextran-coated near-infrared fluorescent MFNPs in the apolipoprotein E-deficient (apo E−/− mouse model. Methods and Results: In vitro MFNP uptake was highest in activated murine macrophages (p < .001. Apo E−/− mice (n = 11 were next injected with the MFNP (15 mg/kg iron or saline. In vivo magnetic resonance imaging (MRI demonstrated strong plaque enhancement by the MFNPs (p < .001 vs. saline, which was confirmed by multimodality ex vivo MRI and fluorescence reflectance imaging. On fluorescence microscopy, MFNPs were found in cellular-rich areas of atheroma and colocalized with immunofluorescent macrophages over endothelial cells and smooth muscle cells (p < .001. Conclusions: Here we show that (1 the in vitro and in vivo cellular distribution of atherosclerosis-targeted MFNPs can be quantified by using fluorescence imaging methods; (2 in atherosclerosis, dextranated MFNPs preferentially target macrophages; and (3 MFNP deposition in murine atheroma can be noninvasively detected by in vivo MRI. This study thus provides a foundation for using MFNPs to image genetic and/or pharmacological perturbations of cellular inflammation in experimental atherosclerosis and for the future development of novel targeted nanomaterials for atherosclerosis.

  13. Impact of Silver and Iron Nanoparticle Exposure on Cholesterol Uptake by Macrophages

    Directory of Open Access Journals (Sweden)

    Jonathan H. Shannahan

    2015-01-01

    Full Text Available Macrophages are central to the development of atherosclerosis by absorbing lipids, promoting inflammation, and increasing plaque deposition. Nanoparticles (NPs are becoming increasingly common in biomedical applications thereby increasing exposure to the immune and vascular systems. This project investigated the influence of NPs on macrophage function and specifically cholesterol uptake. Macrophages were exposed to 20 nm silver NPs (AgNPs, 110 nm AgNPs, or 20 nm Fe3O4 NPs for 2 h and NP uptake, cytotoxicity, and subsequent uptake of fluorescently labeled cholesterol were assessed. Macrophage uptake of NPs did not induce cytotoxicity at concentrations utilized (25 μg/mL; however, macrophage exposure to 20 nm AgNPs reduced subsequent uptake of cholesterol. Further, we assessed the impact of a cholesterol-rich environment on macrophage function following NP exposure. In these sets of experiments, macrophages internalized NPs, exhibited no cytotoxicity, and altered cholesterol uptake. Alterations in the expression of scavenger receptor-B1 following NP exposure, which likely influences cholesterol uptake, were observed. Overall, NPs alter cholesterol uptake, which may have implications in the progression of vascular or immune mediated diseases. Therefore, for the safe development of NPs for biomedical applications, it is necessary to understand their impact on cellular function and biological interactions in underlying disease environments.

  14. Differences in Thallium-201 uptake in reperfused and nonreperfused myocardial infarction

    International Nuclear Information System (INIS)

    Melin, J.A.; Becker, L.C.; Bulkley, B.H.

    1983-01-01

    The respective importance of flow and cellular viability in determining initial myocardial thallium uptake was studied in reperfused and nonreperfused experimental myocardial infarction. Open-chest dogs were subjected to permanent coronary artery occlusion of 70-minute (n . 3) or 5-hour duration (n . 5), or to a 3-hour temporary occlusion followed by reflow (n . 14). Thallium uptake 10 minutes after intravenous injection was compared directly with radioactive microspheres in myocardial samples from excised hearts. Triphenyl tetrazolium chloride staining was used to differentiate necrotic and viable samples with confirmation by electron microscopy. In nonreperfused infarcts, thallium uptake occurred despite necrosis, and a close correlation was found between thallium uptake and regional myocardial blood flow. In reperfused infarcts, thallium uptake again occurred, but was reduced relative to flow in necrotic myocardium and, to a lesser extent, in reperfused viable areas. However, because of the high levels of reflow, actual thallium uptake was often more than 50% of normal in reperfused necrotic regions. This study demonstrates that the presence of thallium uptake is an unreliable indicator of myocardial injury and that reperfused necrotic tissue may have remarkably high levels of thallium uptake

  15. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Dagmar A. Kuhn

    2014-09-01

    Full Text Available Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1 and a human alveolar epithelial type II cell line (A549. In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis. Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.

  16. Getting evidence into practice: the role and function of facilitation.

    Science.gov (United States)

    Harvey, Gill; Loftus-Hills, Alison; Rycroft-Malone, Jo; Titchen, Angie; Kitson, Alison; McCormack, Brendan; Seers, Kate

    2002-03-01

    This paper presents the findings of a concept analysis of facilitation in relation to successful implementation of evidence into practice. In 1998, we presented a conceptual framework that represented the interplay and interdependence of the many factors influencing the uptake of evidence into practice. One of the three elements of the framework was facilitation, alongside the nature of evidence and context. It was proposed that facilitators had a key role in helping individuals and teams understand what they needed to change and how they needed to change it. As part of the on-going development and refinement of the framework, the elements within it have undergone a concept analysis in order to provide theoretical and conceptual clarity. The concept analysis approach was used as a framework to review critically the research literature and seminal texts in order to establish the conceptual clarity and maturity of facilitation in relation to its role in the implementation of evidence-based practice. The concept of facilitation is partially developed and in need of delineation and comparison. Here, the purpose, role and skills and attributes of facilitators are explored in order to try and make distinctions between this role and other change agent roles such as educational outreach workers, academic detailers and opinion leaders. We propose that facilitation can be represented as a set of continua, with the purpose of facilitation ranging from a discrete task-focused activity to a more holistic process of enabling individuals, teams and organizations to change. A number of defining characteristics of facilitation are proposed. However, further research to clarify and evaluate different models of facilitation is required.

  17. MSAT and cellular hybrid networking

    Science.gov (United States)

    Baranowsky, Patrick W., II

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  18. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  19. AMPK-sensitive cellular transport.

    Science.gov (United States)

    Dërmaku-Sopjani, Miribane; Abazi, Sokol; Faggio, Caterina; Kolgeci, Jehona; Sopjani, Mentor

    2014-03-01

    The energy sensing AMP-activated protein kinase (AMPK) regulates cellular and whole-body energy balance through stimulating catabolic ATP-generating and suppressing anabolic ATP-consuming pathways thereby helping cells survive during energy depletion. The kinase has previously been reported to be either directly or indirectly involved in the regulation of several carriers, channels and pumps of high significance in cellular physiology. Thus AMPK provides a necessary link between cellular energy metabolism and cellular transport activity. Better understanding of the AMPK role in cellular transport offers a potential for improved therapies in various human diseases and disorders. In this review, we discuss recent advances in understanding the role and function of AMPK in transport regulation under physiological and pathological states.

  20. Cellular automata analysis and applications

    CERN Document Server

    Hadeler, Karl-Peter

    2017-01-01

    This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward to simulate but hard to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction of cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of different topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification). These classifications suggest to cluster cel...

  1. Lactate, Glucose and Oxygen Uptake in Human Brain During Recovery from Maximal Exercise

    DEFF Research Database (Denmark)

    Kojiro, I.; Schmalbruch, I.K.; Quistorff, B.

    1999-01-01

    Skeletal muscle, brain lactate uptake, brain oxygen uptake, energy metabolism, brain glucose uptake......Skeletal muscle, brain lactate uptake, brain oxygen uptake, energy metabolism, brain glucose uptake...

  2. Overview of molecular, cellular, and genetic neurotoxicology.

    Science.gov (United States)

    Wallace, David R

    2005-05-01

    It has become increasingly evident that the field of neurotoxicology is not only rapidly growing but also rapidly evolving, especially over the last 20 years. As the number of drugs and environmental and bacterial/viral agents with potential neurotoxic properties has grown, the need for additional testing has increased. Only recently has the technology advanced to a level that neurotoxicologic studies can be performed without operating in a "black box." Examination of the effects of agents that are suspected of being toxic can occur on the molecular (protein-protein), cellular (biomarkers, neuronal function), and genetic (polymorphisms) level. Together, these areas help to elucidate the potential toxic profiles of unknown (and in some cases, known) agents. The area of proteomics is one of the fastest growing areas in science and particularly applicable to neurotoxicology. Lubec et al, provide a review of the potential and limitations of proteomics. Proteomics focuses on a more comprehensive view of cellular proteins and provides considerably more information about the effects of toxins on the CNS. Proteomics can be classified into three different focuses: post-translational modification, protein-expression profiling, and protein-network mapping. Together, these methods represent a more complete and powerful image of protein modifications following potential toxin exposure. Cellular neurotoxicology involves many cellular processes including alterations in cellular energy homeostasis, ion homeostasis, intracellular signaling function, and neurotransmitter release, uptake, and storage. The greatest hurdle in cellular neurotoxicology has been the discovery of appropriate biomarkers that are reliable, reproducible, and easy to obtain. There are biomarkers of exposure effect, and susceptibility. Finding the appropriate biomarker for a particular toxin is a daunting task. The appropriate biomarker for a particular toxin is a daunting task. The advantage to biomarker

  3. Cellular effect and efficacy of carfilzomib depends on cellular net concentration gradient.

    Science.gov (United States)

    Schäfer, Julia; Welti, Lukas; Seckinger, Anja; Burhenne, Jürgen; Theile, Dirk; Weiss, Johanna

    2017-07-01

    The cellular interrelation between intracellular concentrations of unbound carfilzomib, a second-generation proteasome inhibitor, and subsequent proteasome inhibition and effect on cell viability are unknown and were evaluated for two different exposure regimens: A high dose bolus regime of 500 nM for 1 h followed by 47 h in drug-free media vs. 48-h continuous exposure to 10 nM. Eight multiple myeloma cell lines were exposed to either one of the two exposure regimens. We quantified the intracellular unbound carfilzomib fraction up to 48 h with a new ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC/MS/MS) method. Intracellular concentrations were compared to simultaneously determined cell viability (AlamarBlue ® assay) and proteasomal subunit activity (ProGlo™ assay). Within the first 10 min, the proportional intracellular enrichment of unbound carfilzomib was higher (313 nM; 62.6%) for the exposure to 500 nM compared to 10 nM (1.93 nM; 19.3%). However, after 1 h, an intracellular/extracellular concentration equilibrium was reached with both settings. At low exposure concentrations, drug removal after 1 h diminished carfilzomib efficacy. Moreover, proteasomal activity recovered when exposed to 10 nM for 48 h. However, when exposure concentration was high (500 nM) proteasome inhibition was complete and sustained even with drug removal after 1 h. We demonstrated that the carfilzomib concentration gradient determines cellular uptake kinetics. The uptake kinetics in turn affects binding, saturation, and activity of the proteasome. Together, these data underscore the importance of steep concentrations for the in vitro efficacy of carfilzomib.

  4. Combining mechanistic and data-driven approaches to gain process knowledge on the control of the metabolic shift to lactate uptake in a fed-batch CHO process.

    Science.gov (United States)

    Zalai, Dénes; Koczka, Krisztina; Párta, László; Wechselberger, Patrick; Klein, Tobias; Herwig, Christoph

    2015-01-01

    A growing body of knowledge is available on the cellular regulation of overflow metabolism in mammalian hosts of recombinant protein production. However, to develop strategies to control the regulation of overflow metabolism in cell culture processes, the effect of process parameters on metabolism has to be well understood. In this study, we investigated the effect of pH and temperature shift timing on lactate metabolism in a fed-batch Chinese hamster ovary (CHO) process by using a Design of Experiments (DoE) approach. The metabolic switch to lactate consumption was controlled in a broad range by the proper timing of pH and temperature shifts. To extract process knowledge from the large experimental dataset, we proposed a novel methodological concept and demonstrated its usefulness with the analysis of lactate metabolism. Time-resolved metabolic flux analysis and PLS-R VIP were combined to assess the correlation of lactate metabolism and the activity of the major intracellular pathways. Whereas the switch to lactate uptake was mainly triggered by the decrease in the glycolytic flux, lactate uptake was correlated to TCA activity in the last days of the cultivation. These metabolic interactions were visualized on simple mechanistic plots to facilitate the interpretation of the results. Taken together, the combination of knowledge-based mechanistic modeling and data-driven multivariate analysis delivered valuable insights into the metabolic control of lactate production and has proven to be a powerful tool for the analysis of large metabolic datasets. © 2015 American Institute of Chemical Engineers.

  5. Increased cellular proliferation in rat skeletal muscle and tendon in response to exercise

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Bayer, Monika L; Mackey, Abigail

    2010-01-01

    -derived standardized uptake values were calculated for Achilles tendons and calf muscles and compared to gene expression and immunohistochemical evaluations of Ki67. RESULTS: Treadmill running induced increased uptake of FLT uptake in calf muscles (30%; p ...-derived results were supported by a correlation in calf muscle to Ki67 (protein and mRNA level), while this coherence was not found in tendon. CONCLUSION: FLT-PET seems to be a promising tool for imaging of exercise-induced cellular proliferation in musculo-tendinous tissue.......PURPOSE: The purpose of this study is to investigate exercise-induced cellular proliferation in rat skeletal muscle/tendon with the use of 3'-[F-18]fluoro-3'deoxythymidine (FLT) and to quantitatively study concomitant changes in the proliferation-associated factor, Ki67. PROCEDURES: Wistar rats (n...

  6. Hg uptake in ureteral obstructions

    International Nuclear Information System (INIS)

    Desgrez, J.P.; Bourguignon, M.; Raynaud, C.; CEA, 91 - Orsay

    1976-01-01

    In the presence of a total obstruction the results obtained with the Hg uptake test, as indeed with other functional tests, inform on the value of the kidney function at the time but have no prognostic value where repair possibilities are concerned. Some preliminary results seem to show however that very soon after the obstacle is removed, by the 10th or 15th day perhaps, quantitative functional tests may once more be used to evaluate the functional prognosis. This would mean that by waiting about two weeks after the disappearance of a total obstruction the Hg uptake test may again be used in all confidence. In order to check this deduction, which is based on slender evidence but which nevertheless has important practical implications, the measurement of the Hg uptake rate during the days following removal of the obstacle appears essential. In long-standing partial obstructions the Hg uptake rate gives an accurate assessment of the functional balance and helps considerably in the choice of therapy [fr

  7. Octreotide Uptake in Parathyroid Adenoma

    Directory of Open Access Journals (Sweden)

    Seyhan Karaçavuş

    2012-08-01

    Full Text Available The patient with a history of bone pain and muscle weakness, was thought to have oncogenic osteomalacia as a result of biochemical investigations and directed to Nuclear Medicine Department for a whole-body bone scintigraphy and 111In-octreotide scintigraphy. There was no focal pathologic tracer uptake, but generalized marked increase in skeletal uptake on bone scintigraphy. Octreotide scintigraphy showed accumulation of octreotide in the region of the left lobe of the thyroid gland in the neck. Thereafter, parathyroid scintigraphy was performed with technetium-99m labeled metroxy-isobutyl-isonitryl (99mTc-MIB and MIBI scan demonstrated radiotracer uptake at the same location with octreotide scintigraphy. The patient underwent left inferior parathyroidectomy and histopathology confirmed a parathyroid adenoma. Somatostatin receptor positive parathyroid adenoma may show octreotide uptake. Octreotide scintigraphy may be promising and indicate a possibility of using somatostatin analogues for the medical treatment of somatostatin receptor positive parathyroid tumors. (MIRT 2012;21:77-79

  8. Tumor uptake of radioruthenium compounds

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Richards, P.; Meinken, G.E.; Larson, S.M.; Grunbaum, Z.

    1980-01-01

    The use of ruthenium-97 as a scintigraphic agent, particularly for tumor localization, is investigated. The tumor uptake of ruthenium chloride and ruthenium-labelled transferrin is evaluated and their application as tumor-imagine agents is compared to gallium-67 citrate

  9. 9 Nitrogen Uptake in Soils

    African Journals Online (AJOL)

    User

    Measured uptake was greatest for the plants under the 30 cm treatment, followed by the 15 cm treatment ... by the plants. Introduction. Nitrogen availability is often the main factor limiting the realization of yield potentials in irrigated rice, and, according to Cassman et al. (1997) ... increase in dry weight, tillering, height and.

  10. [Long-Term Inhibition of FNA on Aerobic Phosphate Uptake and Variation of Phosphorus Uptake Properties of the Sludge].

    Science.gov (United States)

    Ma, Juan; Li, Lu; Yu, Xiao-jun; Sun, Lei-jun; Sun, Hong-wei; Chen, Yong-zhi

    2015-10-01

    An alternating anaerobic/oxic ( An/O) sequencing batch reactor (SBR) was employed to investigate the long-term inhibitory effect of free nitrous acid (FNA) on aerobic phosphorus uptake performance and variation of phosphorus uptake properties of the sludge by adding nitrite. The reactor was started up under the condition of 21-23 degrees C. The results showed that FNA had no impact on phosphate release and uptake capacities of the sludge. However, the specific phosphate release/uptake rates was found to be higher. As FNA concentration (measure by HNO2-N) was lower than 0.53 x 10(-3) mg x L(-1), phosphorus removal efficiency of the system was higher than 96.9%. When the FNA concentration was increased to 0.99 x 10(-3) mg x L(-1), 1.46 x 10(-3) mg x L(-1) and 1.94 x 10(-3) mg x L(-1), the phosphorus removal performance deteriorated rapidly. The phosphorus removal efficiency was recovered to 64.42%, 67.33% and 44.14% after 50, 12 and 30 days, respectively, which implied the deterioration of phosphorus removal performance caused by FNA inhibition could be recovered and long-term acclimation could shorten the recovery process. Notably, increasing nitrite consumption appeared during aerobic phase with the concentration of FNA below 1.46 x 10(-3) mg x L(-1). It was also observed that the phosphorus uptake properties of the sludge varied after long-term inhibition. Nitrate and nitrite type anoxic phosphorus uptake capacity was increased by 3.35 and 3.86 times, respectively, suggesting long-term dosing FNA may facilitate the denitrifying of polyphosphate in organisms utilizing nitrite as electron acceptor. Moreover, long-term acclimation favored sludge settling.

  11. Synthetic High-Density Lipoprotein-Like Nanocarrier Improved Cellular Transport of Lysosomal Cholesterol in Human Sterol Carrier Protein-Deficient Fibroblasts.

    Science.gov (United States)

    Nam, Da-Eun; Kim, Ok-Kyung; Park, Yoo Kyoung; Lee, Jeongmin

    2016-01-01

    Sterol carrier protein-2 (SCP-2), which is not found in tissues of people with Zellweger syndrome, facilitates the movement of cholesterol within cells, resulting in abnormal accumulation of cholesterol in SCP-2-deficient cells. This study investigated whether synthetic high-density lipoprotein-like nanocarrier (sHDL-NC) improves the cellular transport of lysosomal cholesterol to plasma membrane in SCP-2-deficient fibroblasts. Human SCP-2-deficient fibroblasts were incubated with [(3)H-cholesterol]LDL as a source of cholesterol and sHDL-NC. The cells were fractionated by centrifugation permit tracking of [(3)H]-cholesterol from lysosome into plasma membrane. Furthermore, cellular content of cholesteryl ester as a storage form and mRNA expression of low-density lipoprotein (LDL) receptor were measured to support the cholesterol transport to plasma membrane. Incubation with sHDL-NC for 8 h significantly increased uptake of [(3)H]-cholesterol to lysosome by 53% and further enhanced the transport of [(3)H]-cholesterol to plasma membrane by 32%. Treatment with sHDL-NC significantly reduced cellular content of cholesteryl ester and increased mRNA expression of LDL receptor (LDL-R). In conclusion, sHDL-NC enables increased transport of lysosomal cholesterol to plasma membrane. In addition, these data were indirectly supported by decreased cellular content of cholesteryl ester and increased gene expression of LDL-R. Therefore, sHDL-NC may be a useful vehicle for transporting cholesterol, which may help to prevent accumulation of cholesterol in SCP-2-deficient fibroblasts.

  12. Variable effects of mucilage on root water uptake

    Science.gov (United States)

    Carminati, Andrea; Zarebanadkouki, Mohsen

    2013-04-01

    Plants are big water movers. Without an adequate supply of water from the soil, water transpired from leaves cannot be compensated by root water uptake. Such a water shortage is a worldwide constraint to yield and food production. By exuding mucilage, roots keep the soil in their vicinity, the rhizosphere, wet and take up water more easily. However, mucilage turns hydrophobic after drying and it hinders the rewetting of the rhizosphere upon irrigation. Here we show that the temporarily water repellency of the rhizosphere decreases root water uptake after irrigation. We used neutron radiography to trace the transport of deuterated water in soil and roots of transpiring plants. We let one soil region dry for 2 days. Then, we irrigated it. We found that root water uptake in this location did not recover after irrigation. We conclude that, after drying, the rhizosphere became a significant resistance to water flow to roots. Mucilage has therefore dual effects on plant water relations: freshly exuded mucilage facilitates root water uptake until it dries out and it becomes a barrier to water flow. The profits of exuding mucilage depend on root traits and environmental conditions. In soils with water stored in deep regions, plants would benefit from fresh mucilage covering the deep roots segments, while dry mucilage would isolate the roots from the dry upper soil layers. Understanding the relations between mucilage, root traits and environmental conditions will help to increase water use efficiency and yield production in arid areas.

  13. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor.

    Science.gov (United States)

    Zelcer, Noam; Hong, Cynthia; Boyadjian, Rima; Tontonoz, Peter

    2009-07-03

    Cellular cholesterol levels reflect a balance between uptake, efflux, and endogenous synthesis. Here we show that the sterol-responsive nuclear liver X receptor (LXR) helps maintain cholesterol homeostasis, not only through promotion of cholesterol efflux but also through suppression of low-density lipoprotein (LDL) uptake. LXR inhibits the LDL receptor (LDLR) pathway through transcriptional induction of Idol (inducible degrader of the LDLR), an E3 ubiquitin ligase that triggers ubiquitination of the LDLR on its cytoplasmic domain, thereby targeting it for degradation. LXR ligand reduces, whereas LXR knockout increases, LDLR protein levels in vivo in a tissue-selective manner. Idol knockdown in hepatocytes increases LDLR protein levels and promotes LDL uptake. Conversely, adenovirus-mediated expression of Idol in mouse liver promotes LDLR degradation and elevates plasma LDL levels. The LXR-Idol-LDLR axis defines a complementary pathway to sterol response element-binding proteins for sterol regulation of cholesterol uptake.

  14. Rhizosphere biophysics and root water uptake

    Science.gov (United States)

    Carminati, Andrea; Zarebanadkouki, Mohsen; Ahmed, Mutez A.; Passioura, John

    2016-04-01

    The flow of water into the roots and the (putative) presence of a large resistance at the root-soil interface have attracted the attention of plant and soil scientists for decades. Such resistance has been attributed to a partial contact between roots and soil, large gradients in soil matric potential around the roots, or accumulation of solutes at the root surface creating a negative osmotic potential. Our hypothesis is that roots are capable of altering the biophysical properties of the soil around the roots, the rhizosphere, facilitating root water uptake in dry soils. In particular, we expect that root hairs and mucilage optimally connect the roots to the soil maintaining the hydraulic continuity across the rhizosphere. Using a pressure chamber apparatus we measured the relation between transpiration rate and the water potential difference between soil and leaf xylem during drying cycles in barley mutants with and without root hairs. The samples were grown in well structured soils. At low soil moistures and high transpiration rates, large drops in water potential developed around the roots. These drops in water potential recovered very slowly, even after transpiration was severely decreased. The drops in water potential were much bigger in barley mutants without root hairs. These mutants failed to sustain high transpiration rates in dry conditions. To explain the nature of such drops in water potential across the rhizosphere we performed high resolution neutron tomography of the rhizosphere of the barleys with and without root hairs growing in the same soil described above. The tomograms suggested that the hydraulic contact between the soil structures was the highest resistance for the water flow in dry conditions. The tomograms also indicate that root hairs and mucilage improved the hydraulic contact between roots and soil structures. At high transpiration rates and low water contents, roots extracted water from the rhizosphere, while the bulk soil, due its

  15. Cellular plasticity during vertebrate appendage regeneration.

    Science.gov (United States)

    Monaghan, James R; Maden, Malcolm

    2013-01-01

    Many vertebrates have the amazing ability to regenerate all or portions of appendages including limbs, tails, fins, and digits. Unfortunately, our understanding of the cellular and molecular basis of appendage regeneration is severely lacking. However, recent technological advances that facilitate the tracking of cell lineages in vivo through space and time are allowing us to address the unknowns of regeneration, such as characterizing the cells that contribute to regeneration and identifying the tissues these cells differentiate into during regeneration. Here, we describe the experiments and the surprisingly uniform results that have emerged across diverse vertebrate species when specific cell lineages have been tracked during vertebrate appendage regeneration. These investigations show that vertebrates, from zebrafish to salamanders to mammals, utilize a limited amount of cellular plasticity to regenerate missing appendages. The universal approach to appendage regeneration is not to generate pluripotent cells that then differentiate into the new organ, but instead to generate lineage-restricted cells that are propagated in a progenitor-like state. Lessons learned from these natural cases of complex tissue regeneration might inform regenerative medicine on the best approach for re-growing complex tissues.

  16. Cellular and molecular perspectives in rheumatoid arthritis.

    Science.gov (United States)

    Veale, Douglas J; Orr, Carl; Fearon, Ursula

    2017-06-01

    Synovial immunopathology in rheumatoid arthritis is complex involving both resident and infiltrating cells. The synovial tissue undergoes significant neovascularization, facilitating an influx of lymphocytes and monocytes that transform a typically acellular loose areolar membrane into an invasive tumour-like pannus. The microvasculature proliferates to form straight regularly-branching vessels; however, they are highly dysfunctional resulting in reduced oxygen supply and a hypoxic microenvironment. Autoantibodies such as rheumatoid factor and anti-citrullinated protein antibodies are found at an early stage, often before arthritis has developed, and they have been implicated in the pathogenesis of RA. Abnormal cellular metabolism and mitochondrial dysfunction thus ensue and, in turn, through the increased production of reactive oxygen species actively induce inflammation. Key pro-inflammatory cytokines, chemokines and growth factors and their signalling pathways, including nuclear factor κB, Janus kinase-signal transducer, are highly activated when immune cells are exposed to hypoxia in the inflamed rheumatoid joint show adaptive survival reactions by activating. This review attempts to highlight those aberrations in the innate and adaptive immune systems including the role of genetic and environmental factors, autoantibodies, cellular alterations, signalling pathways and metabolism that are implicated in the pathogenesis of RA and may therefore provide an opportunity for therapeutic intervention.

  17. Den gode facilitator af refleksionsarbejde

    DEFF Research Database (Denmark)

    Jørgensen, Pia

    2009-01-01

    præsenteres i det følgende afsnit, og forfatteren argumenterer for begrebet facilitator af refleksionsarbejde. Herefter udfoldes rollen som facilitator ifølge Ghay og Lillyman. De har fokus på positive praksisoplevelser og tillidsfulde relationer. Gillie Boltons teoretiske og praktiske referenceramme...

  18. Facilitating Dialogues about Racial Realities

    Science.gov (United States)

    Quaye, Stephen John

    2014-01-01

    Background/Context: Facilitating dialogues about racial issues in higher education classroom settings continues to be a vexing problem facing postsecondary educators. In order for students to discuss race with their peers, they need skilled facilitators who are knowledgeable about racial issues and able to support students in these difficult…

  19. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... by providing platforms that offer biocompatible surfaces for the cell culturing in lab-on-chip devices integrated with optimized nanosensors with high specificities and sensitivities towards cellular analytes. In this project, novel materials were investigated with a focus on providing suitable surface...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...

  20. Systems biology of cellular rhythms.

    Science.gov (United States)

    Goldbeter, A; Gérard, C; Gonze, D; Leloup, J-C; Dupont, G

    2012-08-31

    Rhythms abound in biological systems, particularly at the cellular level where they originate from the feedback loops present in regulatory networks. Cellular rhythms can be investigated both by experimental and modeling approaches, and thus represent a prototypic field of research for systems biology. They have also become a major topic in synthetic biology. We review advances in the study of cellular rhythms of biochemical rather than electrical origin by considering a variety of oscillatory processes such as Ca++ oscillations, circadian rhythms, the segmentation clock, oscillations in p53 and NF-κB, synthetic oscillators, and the oscillatory dynamics of cyclin-dependent kinases driving the cell cycle. Finally we discuss the coupling between cellular rhythms and their robustness with respect to molecular noise.

  1. A Course in Cellular Bioengineering.

    Science.gov (United States)

    Lauffenburger, Douglas A.

    1989-01-01

    Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)

  2. Origami interleaved tube cellular materials

    International Nuclear Information System (INIS)

    Cheung, Kenneth C; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-01-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis. (paper)

  3. An Information-Motivation-Behavioral Skills Model of PrEP Uptake.

    Science.gov (United St